Shortcuts for the ADA Standard Container Library

Jordi Marco and Xavier Franch
Dept. Llenguatges i Sistemes Informatics (UPC)
¢/ Jordi Girona 1-3. E-08034 Barcelona, (Spain)

jmarco@lsi.upc.es,franch@lIsi.upc.es

1. MISSION STATEMENT

To provide a generic and versatile feature aimed at pro-
viding efficient and secure access to elements stored in any
container, while keeping other quality criteria of the library
remarkably reusability and extendibility.

QOur proposal has been applied to the Booch Component Li-
brary improving it from many points of view. This work was
presented at the Ada-Europe 2000 Conference [1] and it is
referenced, as a contribution, at the Booch Component page:

http://www.pogner.demon.co.uk/components/bc/contrib/.

The Ada 95 code of the resulting library can be found at
ftp://ftp.lsi.upc.es/pub/users/jmarco/.

2. INTRODUCTION

In this position paper our main objective is not to propose
a concrete collection of abstract data types to be included
in the Standard Container Library for Ada. Rather we pro-
pose the use of a concrete framework for the design of this
library: the Shortcut-Based Framework [2]. This framework
allows solving the majority of drawbacks that are present in
the most widespread container libraries (see [2, Sect. 2]).
This is achieved by means of the Shortcut concept that we
propose at the core of our framework. As a result, container
libraries developed using our framework not only improve
reusability but also other quality criteria including efficiency

(see Sect. 5).

3. THE SHORTCUT CONCEPT

Shortcuts encapsulate the feature of location or position of
an object in a container. Shortcuts provide an abstract, re-
liable and efficient (all the operations are O(1)) alternative
access path to the elements stored in the container. Most of
the existing container libraries recognise the need for such
a kind of alternative access method and thus they have
similar mechanisms but they are ad-hoc implementation-
dependent and unreliable proposals (e.g., iterator in STL,
references in JCF, item in LEDA, etc.). Instead, we provide
an implementation-independent approach based on the use
of shortcuts to implement a generic container which acts as
a base class of the rest of concrete containers. Shortcuts
allow implementing only once, in the base class, the most
common capabilities (e.g., iterators) in a highly efficient and
reliable way. The implementation of both the shortcuts and
the common capabilities are decoupled from the details of
the implementation of its inheritors.

4. THE SHORTCUT-BASEDFRAMEWORK

In this section we outline the main features of the Shorcut-
based Framework (SBF), implementation details can be found
in [2]. The key point consists on storing the objets of any
concrete container in a Container class, while keeping in the
concrete container only the shortcuts bound to them. We
show throughout this section the complete development of

this idea. We first define the Shortcut-based Framework hi-
erarchy for container libraries. This hierarchy has been built
borrowing the main ideas from the different hierarchies of
some widespread container libraries [2, Sect. 2]. In fact, we
are not interested in fixing all the details of the hierarchy
(i.e., which concrete containers, and which concrete opera-
tions in them, do exist), but its general layout. A complete
hierarchy of a container library must provide: a container
base class (where common capabilities are offered); a hi-
erarchy of iterators; locations for accessing and modifying
containers; concrete containers classes; and different 1imple-
mentation strategies for each concrete container. Qur objec-
tive i1s to reuse in the concrete containers classes the com-
mon capabilities of the (fully-implemented) container base
class. Figure 1 shows the hierarchy we have chosen for the
Shortcut-based Framework.

Bidirectional Shortcut<Item>
iterator<Item>
Item ItemOf()
BindToContainer () bool Defined()
First (), Last(),

Next (), Previous(),
Item CurrentItem()
IsDone ()

Container<Item>

Container_shortcut Add (Item
yAN Container_Shortcut AddBefore (Item, YAN

Container_shortcut)
pelete (Shortcut) Lo
Modify (Shortcut, Item)

v
Container_ Container_
iterator<Item> ZX shortcut<Item>
BindToContainer () Ttem ItemOf ()
First(), Last(),  [7777777777TTTT | TTTOTOTTITOTOT ‘} bool Defined ()
Next (), Previous(),
Ttem CurrentItem(

IsDone ()
Container_shortcut
CurrentShortcut ()

[

Concrete container 1 Concrete container n

Operations for Container n
Operations to be overriden

Operations for Container 1
Operations to be overriden

1

Concrete implementation Concrete implementation
1 of Container 1 k of Container 1

Overriding operations Overriding operations

Figure 1: The Shortcut-based Framework

The classes involved in this hierarchy are:

o Bidirectional_iterator. An abstract class that provides
the interface of this kind of iterator, i.e. iterators that
support forward and backward traversal of a container.

o Container_iterator. An efficient implementation of Bidi-



rectional_iterator enlarged with a new method that re-
turns the shortcut bound to the current item of the
iterator. This class is implemented over the base class
Container; as a consequence, it is fully independent of
the specific kind of container. All operations of this
class must be O(1).

Shortcut. Defines the interface of the new design pat-
tern that introduces the concept of shortcut as the
location or position of objects.

Container_shortcut. An efficient (i.e., O(1) time) and
safe implementation of the Shortcut interface. Con-
tainer_shortcut is implemented over the base class Con-
tainer; as a consequence, it is fully independent of the
specific kind of container but can be used for access to
items them store.

Container. This base class acts as a common parent
class for all kinds of containers. It provides the inter-
face and implementation of the most common capabil-
ities of container libraries.

Concrete containers. Children classes of Container
that are not leaves, which represent, different types of
containers (list, map, etc.). Each of them adds the
interface and implementation of its specific function-
alities to the ones inherited from the Container class.

The strategy chosen to implement these classes con-
sists on storing the items in the base class Container
and the shortcuts bound to them in a concrete imple-
mentation (an array, dynamic storage, ...). In order
to do this, specific operations of concrete containers
are implemented using (if it is necessary) an opera-
tion implemented by their subclasses (i.e., using the
Template Method design pattern). Concrete contain-
ers also define as protected the interface of the de-
ferred operations that appear as a result of applying
the Template Method design pattern (that we call con-
crete interface) and implement a (in some cases non-
efficient) version of them using the Container interface
and shortcuts. We want to remark that this imple-
mentation strategy uses the base class Container as a
black box and, at the same time, makes the concrete
container a black box for its children classes. More-
over, all the operations of the container class are O(1).
Last but not least, each concrete container is an im-
plementation (non-abstract) class.

Concrete implementations. Children classes of con-
crete containers that are leaves. These classes imple-
ment the concrete interface by means of data struc-
tures. They inherit all the functionalities of the con-
crete container and as a consequence their implemen-
tation can be made avoiding iterators and locations.
On the other hand, inherited implementations may re-
main if they already fulfil efficiency requirements.

SBFBENEFITS

Step-by-step implementation. Each SBF class imple-
ments all the common capabilities that the class offers
(those ones identified in the current step), so it is an
implementation class. The full implementation of each
class is carried out using its parent class (implemented
in previous steps) as a black box (i.e., using only its
interface) and without making any assumption about
the implementation of the classes appearing in the next
step.

o Implementation with reuse. The most common capa-

bilities (remarkably iterators and shortcuts) are im-
plemented only once in the most efficient way (all the
operations of shortcuts and iterators are O(1)).

¢ Implementation for reuse: generality. The generality

of a Shortcut-based container library depends on the
number of concrete containers and concrete implemen-
tations it offers. As far as the implementation of the
hierarchy does not make any assumption about the
form or behaviour of its components, the library may
contain an utterly rich variety of containers and imple-
mentations. Last, a lot of generic algorithms working
over the container base interface or over the container
iterators can be offered.

o Implementation for reuse: extendibility. As many con-

crete containers as needed may be added; in addition,
there is no restriction on the number and variety of
container implementations that can appear, and new
implementations may be added to existing concrete
containers as required. These extensions are easy to
carry out because they can reuse the most common
capabilities (iterators and shortcuts); furthermore, as
a consequence, the implementation of these classes is
not restricted for the efficiency requirements of these
capabilities.

e Functionality. In addition to offering the common fea-

tures of the container libraries, secure updating of the
container during iteration is supported.

e Integrity. Iterators not become out-of-date when a new

object is inserted to, or an existing one is removed
from, the container. The SBF offer operations to know
if an iterator is still valid or not and if a shortcut is
bound to an item in the container or not.

e Time efficiency. Shortcuts allow highly efficient ac-

cess to elements without interfering in a significant
manner with the efficiency of the other operations.
Moreover, iterators are highly efficient (all of the it-
erator operations are Q(1) in the worst case). Com-
plete computational results corresponding to compare
the time efficiency of some operations of the origi-
nal version of the Booch Component library and of
the shortcut version of this library can be found at
http://www.lsi.upc.es/~jmarco/testing.html.

e It is possible to design generic algorithms using the

iterators and shortcuts provided by the container base
class (like those in the C++ STL). These algorithms
could be applied equally well to any data structure
without any performance difference between them.

REFERENCES

J. Marco and X. Franch. Reengineering the Booch
Component Library In Reliable Software Technologies
Ada-Europe 2000, volume 1845 of Lecture Notes in
Computer Science, pages 96-111. Springer-Verlag, 2000.

J. Marco and X. Franch. Improving Design and
Implementation of OO Container-like Components
Libraries. Technical Report, Departament de
Llenguatges i Sistemes Informatics. Universitat
Politécnica de Catalunya, 2001.
http://www.lsi.upc.es/~jmarco/TR125.pdf.



