
Exposing Uninitialized Variables:
Strengthening and Extending Run-Time Checks in Ada

Uninitialized Variables

►Common cause of bugs that are difficult to find

►Often lead to unpredictable behavior

►May show up under special circumstances not
encountered during testing

Example

One release of the Eurcontrol CFMU Air Traffic Flow Management app
had the following bug in compatibility code:

---- Correct Version Correct Version
ifif Reading_Current_Version Reading_Current_Version thenthen

Boolean'Read Boolean'Read (Stream, A_Flight.New_Field);(Stream, A_Flight.New_Field);
elseelse

A_Flight.New_Field := False;A_Flight.New_Field := False;
end if;end if;

---- Initial versionInitial version
ifif Reading_Current_Version Reading_Current_Version thenthen

Boolean'Read Boolean'Read (Stream, A_Flight.New_Field);(Stream, A_Flight.New_Field);
end if;end if;

Detecting Uninitialized Variables

►Static detection
• Formal validation techniques
• Compiler Warnings

►Run-Time detection
• Purify-like solutions
• Ada 95 Normalize_Scalars pragma

Static Detection of Uninitialized Variables

►Formal validation techniques
• Difficult to apply to large-scale applications such as

Eurocontrol's (1.5 M SLOC)
• Even harder if the application exists already

►Compiler warnings
• GNAT produces warnings about dubious code such as

procedure P isprocedure P is
K : Natural;K : Natural;

beginbegin
K := K + 1;K := K + 1;
……

end P;end P;

Compile time warningCompile time warning

More on Compiler Warnings

►GNAT emits such warnings in various cases by tracing possible
static flow paths

►Problem is undecidable in general
• E.g. array element initialization

►Generating too many false alerts is counter-productive

procedureprocedure Q (N : Positive) Q (N : Positive) isis
A : A : arrayarray (1 .. 3) (1 .. 3) ofof Natural;Natural;

beginbegin
A (2) := 0; A (2) := 0;
A (1) := A (N) + 1;A (1) := A (N) + 1;
……

endend Q;Q;

Example of Compile-Time False Alarm

procedureprocedure Read_Or_Write (Read_Mode : Boolean; A : Read_Or_Write (Read_Mode : Boolean; A : in outin out Natural) Natural) isis
beginbegin

if if Read_Mode Read_Mode thenthen
A := …; A := …; ---- Read from somewhereRead from somewhere

elseelse
Write (A); Write (A); ---- Write somewhereWrite somewhere

end if;end if;
endend Read_Or_Write;Read_Or_Write;

Run-Time Detection: Purify-Like Solutions

►An all or nothing tool, cannot be applied selectively

► Instrumented object code is 3 to 5 times slower and takes
40% more memory

►Precludes the use of Purified applications in operational
context

►Purify did not detect all of the problems that GNAT's new
pragma Initialize_Scalars detected

Run-Time Detection: Normalize_Scalars

►Pragma Normalize_Scalars (Ada 95 Annex H)
• Designed to eliminate non-determinacy from safety-critical apps

►Requires application wide consistency
• Precludes its use for testing small portions of a large application

►Manual coding is required to detect invalid values

ifif A_Flight.New_A_Flight.New_Field'Valid Field'Valid thenthen
… … ---- The field can be usedThe field can be used

elseelse
… … ---- Error handlingError handling

end if;end if;

GNAT New Solution

►New pragma Initialize_Scalars

►Ability to select the initial value for uninitialized scalars

►Compiler support for additional validity checking levels

Pragma Initialize_Scalars

►Behaves like Normalize_Scalars
• That is it initializes uninitialized scalars

►You can apply this pragma just to some units
• Don't have to apply it to the whole program like Normalize_Scalars

►Can be conveniently used for large portions of a large application
• For instance for newly introduced units

Choice of Initial Values

►The initial value can be selected at bind time between
• All bits 0
• All bits 1
• Invalid value if possible (like as in Normalize_Scalars)
• A specified bit pattern

►Running the app with different settings can detect more bugs

►This is particularly useful when no invalid value exists
• Variation in behavior can indicate the existence of uninitialized

variables

Selective Validity Checking

checks for tests-gnatVt/T

checks for subscripts-gnatVs/S

checks for returns-gnatVr/R

checks for operators-gnatVo/O

checks for "in out" parameters-gnatVm/M

checks for "in" parameters-gnatVi/I

checks for floating points-gnatVf/F

RM checks (on by default)-gnatVd/D

checks for copies-gnatVc/C

Turn ON/OFF all validity checks (including RM)-gnatVa/n

ConstraintConstraint--Error Error
raisedraised

If invalid value is If invalid value is
detecteddetected

Eurocontrol uses -gnatVaM

procedureprocedure Read_Or_Write (Read_Mode : Boolean; A : Read_Or_Write (Read_Mode : Boolean; A : in outin out Natural) Natural) isis
beginbegin

if if Read_Mode Read_Mode thenthen
A := …; A := …; ---- Read from somewhereRead from somewhere

elseelse
Write (A); Write (A); ---- Write somewhereWrite somewhere

end if;end if;
endend Read_Or_Write;Read_Or_Write;

Application to the Eurocontrol Application

►GNAT has only reported real errors (uninitialized scalar usage)

►GNAT helped detect subtle bugs
• Procedure waiting for an X protocol event up to a certain deadline. When

deadline was reached before event occurred the variable that said if X event
was pending was left uninitialized. This left open the possibility to a call to X
to handle an unexisting event

• Very helpful for instance in numerical algorithm where bugs could only
otherwise uncovered by checking the precision of the computation

►GNAT helped detect efficiency bugs
• Not all bugs lead to functional problems, some subtle ones can lead to

useless searches in a list

Performance Impact

Run TimeExecutable
Size

BUILD
TimeCurrent UseMode

9172252
Optimization
Inizialize_Scalars
All validity checks ON

7069197OperationalOptimization
RM checking

6968190
Optimization
All validity checks
OFF

160107118Development
No Optimization
Inizialize_Scalars
All validity checks ON

100100100No optimization
RM checking

Summary
►Eurocontrol experience with Initialize_Scalars has been very

positive
• Recommend the use of -gnatVa

►GNAT fine-grain control over validity checking makes it practical for
use in existing applications

►Trend in programming guidelines to "force" initializing everything at
declaration can lead to wrong code that is much harder to detect

B : Natural := 0; B : Natural := 0; ---- NOT a good ideaNOT a good idea :):)
……
ifif … … thenthen

B := 5;B := 5;
elsifelsif … then… then

B := 8;B := 8;
end if;end if;

