SWIN
BUR

SWINBURNE
UNIVERSITY OF

TECHNOLOGY




Overview

e Boolean specifications

e Types of Fault

« MUMCUT Strategy

e Test Case Prioritization

e Experiment and Results

e Conclusions and Future work




Boolean Specifications

Example:
S = ac + abd + af + be

where a, b, ¢, d, e, and f are Boolean
variables




Boolean Specifications (cont’d)

A Boolean variable i1s one which has a value
of either True (1) or False (0).

A Boolean formula connects Boolean
variables with logic operators: and -, or +,
not -, etc.

A Boolean formula S represents a function
f:B"® B where B={0,1}

 With n Boolean variables, there are 22"
distinct Boolean functions.




Boolean specifications (cont’d)

 Complex conditions in software are often
specified in the form of a Boolean formula.
* Input domain: n-dim Boolean space B"

e Requires all 2" test points to distinguish a
Boolean function from another

 Problem: How to select a ‘small’ subset of
test points to detect certain types of fault?




Types of Fault

e Expression Negation Fault (ENF)
— The whole expression is negated

e Literal Negation Fault (LNF)
— A literal in a term is negated

e Term Omission Fault (TOF)
— A term is omitted

e Literal Omission Fault (LOF)
— A literal in a term is omitted

e Operator Reference Fault (ORF)
An operator is replaced by another operator




Types of Fault (cont’d)

e Literal Insertion Fault (LIF)
— A literal Is inserted into a term

e Literal Reference Fault (LRF)
— A literal is replaced by another literal




Types of Fault — Example

Original spec. S=ab+cd
ENF = ab +cd
LNF | =ab + cd
TOF | = ab
LOF | =a+cd
ORF | =abcd or l=ab+c+d
LIF | = ab + acd
LRF | = ad + cd




Types of Fault (cont'd)

e Sand I may be equivalent
—eg.S=a+b,l=a+ab

e Test cases that detect the non-equivalent
Implementations are good test cases.
—eg.S=ab+cd, | =a+cd
— Good: 1000, 1001, ...
— Not good: 0011, 1011, ...




True Point

e Assume that S is in irredundant disjunctive normal
form (e.g. S=ab +cd)

e True point: point such that S evaluates to true (1)
— TP ={ 1100, 1110, 1101, 1111, 0011, 0111, 1011}

e Unique true point of i-th term: point such that only
the i-th term of S evaluates to true
— UTP(1) = { 1100, 1110, 1101 }
— UTP(2) = { 0011, 0111, 1011}




False Point

e Example: S =ab + cd
e False point: point so that S evaluates to false (0)
— FP = {0100,0101,0110,1000,1001,1010,0001,0010,0000}

e Near false point of j-th literal of i-th term: false
point that p;; evaluates to true where p;; Is the
term obtained by negating the j-th literal of the i-th
term

— NFP(1,1)={0100,0101,0110} NFP(1,2)={1000,1001,1010}
— NFP(2,1)={0001,0101,1001} NFP(2,2)={0010,0110,1010}




MUMCUT Strategy

e A strategy by combining three different strategies
— MUTP, MNFP and CUTPNFP strategy

e MUTP strategy

— Select test points in UTP(i) such that every truth value of
every missing variable is covered

— e.g. {1101, 1110,0111,1011} (S =ab +cd)
— Can detect ENF, LNF, TOF, and LIF

e MNFP strategy

— Select test points in NFP(i,j) such that every truth value of
every missing variable is covered

— e.g. {0101, 0110, 1001, 1010} (S=ab + cd)
Can detect ENF, LNF, and LOF

SWIMNBLIEME
UMIWERSITY CF

-I ECHMOLOGY




MUMCUT Strategy (cont’d)

e CUTPNFP strategy

— Select a unique true point in UTP(1) and a near
false point in NFP(i,)) such that the two points
differ only at the j-th literal of the iI-th term

— e.g. { 1101, 0101, 1001 , 0111, 0101, 0110}
(S=ab+cd)
e The MUMCUT strategy can detect all seven
types of fault




MUMCUT Strategy (continued)

e A strategy for generating test cases
— No guidelines on execution order

e Any particular execution order can detect
faults earlier in testing?
— MUTP strategy
— MNFP strategy
— CUTPNFP strategy




Test Case Prioritization, TCP

e Faster detection of more faults facilitates earlier
debugging and fault removal

e Problem:

— What are the effects, if any, of the order of executing test
cases that collectively satisfy the MUMCUT strategy on
the rate of fault detection during testing?

e Two dimensions of assessment:

— Rate of fault detection
— Time for fault detection (wrt the percentage of test set)

e Metric used:
— weighted Average of the Percentage of Faults Detected

S IMBLIRME
LUMNIWERSITY QF

LIMIWER
TECHMOLOGY



Test Case Prioritization, TCP (cont’d)

 Why study Black-box test cases?
— Guidelines are independent of source code

e Why MUMCUT?

— Is a fault-based strategy
— Exists a test set that satisfies MUMCUT strategy
— Contains different groups of test cases




Test Case Prioritization (cont’'d)

e Previous results on prioritizing MUMCUT test cases
— CNU order is better than random and serial

e |s that just a coincidence?

e Different possible orders
— CNU (CUTPNFP, MNFP, MUTP)
— CUN
— NCU
— NUC
— UCN
— UNC




Experiment

e Subject under study: Boolean specifications
derived from TCAS Il (Traffic Collision
Avoidance System)

e Number of Boolean variables: 5 — 13

e For most specifications except a few, there
IS a large number of MUMCUT test sets

e Randomly pick 1000 MUMCUT test sets

e Monitor the executions of test cases to
compute the APFD




Experimental Result

e UCN order gives the highest average values
(APFD) over the 20 Boolean specifications
under study

e The U-group Is consistently better than the
C-group which in turn is better than the N-
group

e This Is differently than as expected from
Kuhn’s fault hierarchy (VRF > VNF > ENF)

— C-group first, U-group/N-group later




Conclusions and Future Work

e Test cases executed In the “U-C—N" order
yield highest APFD values.

 Need further investigation on the fault-class

hierarchy based on the observations from
the experiments.




