Assessing the Dependability of Software-
based Systems: A Question of Confidence

Bev Littlewood
Centre for Software Reliability, City University, London
b.littlewood@csr.city.ac.uk

email me if you want a copy of my presentation

City University
m Y London ADA-EUROPE 2005, York - slide 1



Do you remember 10~ and all that?

e Twenty years ago: much controversy about need for 10-°
probability of failure per hour for flight control software

— could you achieve it? could you measure it?
— have things changed since then?

- City University
m Y London ADA-EUROPE 2005, York - slide 2



Issues I want to address in this talk

 Why is dependability assessment still an important problem?
(why haven’t we cracked it by now?)

 What is the present position? (what can we do now?)
 Why is ‘confidence’ in claims so often ignored?
* Where do we go from here?

Cl TV Rt



Why do we need to assess reliability?

Because all software needs to be sufficiently reliable

e This is obvious for some applications - e.g. safety-critical
ones where failures can result in loss of life

e But it’s also true for more ‘ordinary’ applications

— e.g. commercial applications such as banking - the new Basel 11

accords impose risk assessment obligations on banks, and these
include IT risks

— e.g. what is the cost of failures, world-wide, in MS products such as
Office?

e Gloomy personal view: where it’s obvious we should do it
(e.g. safety) it’s (sometimes) too difficult; where we can do it,
we don’t...

City University
m London ADA-EUROPE 2005, York - slide 4



What reliability levels are required?

 Most quantitative requirements are from safety-critical
systems. Even here the figures vary dramatically.

* Some are extremely stringent

— e.g. civil aircraft flight control (A320/330/340, B777, etc): 10~
probability of failure per hour

— e.g. railway signalling and control: 10-'> probability of failure per
hour!

 Some are quite modest

— e.g. UK Sizwell nuclear reactor’s primary protection system: 103
probability of failure on demand

— e.g. surgical robotics: the humans they replace have only modest
reliability!

* Seems likely that for non-safety-critical systems, the range is
just as great

City Universit
m _-;!;-"-3':*;cn e



Why uncertainty?

‘Software failures are systematic - if it fails in certain
circumstances it will always fail in those circumstances’

e True. But it is uncertain when those circumstances will
occur

e There is inherent uncertainty about the process of inputs
e ‘Systematic’ here does not imply ‘deterministic’

m Y City University
: London ADA-EUROPE 2005, York - slide 6



Why probabilities?

There are other ways of dealing with uncertainty: why not use,
e.g. Dempster-Shafer, fuzzy/possibility theory, etc
e Advantages of probability
— advanced and well-understood formalism

— widely accepted and used already, so easy to incorporate into existing
frameworks, e.g. risk analysis, e.g. wider safety cases, etc

e Problems
— can be very hard to estimate the numbers (see later comments)

— but no easier for other formalisms?

Coneon o=



What drives software unreliability?

‘Why doesn’t software work perfectly? it’s only logic, after all,
why don’t you just do it right?’
e Novelty: software is often (usually) used to implement
radical new functionality

— ‘if we can do it, we will do it’

e Difficulty: some of the problems that software designers
have to solve are intrinsically hard

— we routinely build things that would be unthinkable in any other
technology

e Complexity: these trends often result in unnecessary
complexity in the design solutions

— e.g. not constrained by the reliability implications of hardware
complexity

Cl TV Rt



So how bad are things?

If we can’t make real programs fault-free, how many faults can
we expect?

e What are achieved fault densities?

— even for safety-critical industries, 1 fault per kLoC is regarded as
first class

+ e.g. study of C130]J software by UK MoD estimated 1.4 safety-critical
Jaults per KLoC (23 per kLoC for non-critical)

— for commercial software, studies show around 30 faults per kLoC
+ Windows XP has 35 MLoC, so >1 million faults!

e Is there no good news here...?!

City Universit



Many faults means very unreliable?

NOT NECESSARILY!

 Windows reliability has grown from 300 hours MTBF (with
95/98) to about 3000 hours despite increased size and
complexity (i.e. more faults)

e Operational experience with software in aircraft and
automobiles suggest very high reliabilities can be achieved
— After-the-fact estimation of failure rates, based on very extensive
usage.

+ Automobiles: Ellims has estimated that no more than 5 deaths per year
(and about 300 injuries) caused by software in the UK - suggests about
0.2 x 10 death/injury failures per hour. Even better per system - say 107

+ Aircraft: very few accidents have been attributed to software; Shooman
claims, again, about 107 per hour per system

City Universit



Why can software be so reliable...

...when it contains thousands of faults?

 Because many (most?) faults are ‘very small’
— i.e. they occur extremely infrequently during operation
 Adams - more than twenty years ago - examined occurrence

rates of faults on large IBM system software: found that
more than 60% were ‘5000-year’ bugs

— 1.e. each such bug only showed itself, on average, every 5000 years
(across a world-wide population of many users)

— the systems he studied had many thousands of these faults, but were
acceptably reliable in operation

City Universit



So what’s the problem?

Is there a problem?
e Just because large complex programs can be very reliable, it
does not mean you can assume that a particular one will be

— even if you have successfully produced reliable software in the past,
you can’t assume from this that a new program will be reliable

— even if some software engineering processes have been successful in
the past, this does not guarantee they will produce reliable software
next time

e So you need to measure how reliable your software actually
IS

e And this assessment needs to be carried out before extensive
real-life operational use

— how else can you make a risk assessment?

City University
m London ADA-EUROPE 2005, York - slide 12



S0 how can we assess dependability?

City University
m London ADA-EUROPE 2005, York - slide 13



Direct evaluation: Operational testing

e Statistical methods based upon operational testing are the
only means of direct evaluation of reliability

— allow estimation and prediction of such measures as mtbf, reliability
function (i.e. probability of surviving failure-free for time ¢), failure
rate, etc

e They require

— means of generating test data that is statistically representative of
operational use

— an oracle to allow unacceptable (‘failed’) output to be detected

e The resulting process of ‘acceptable’ and ‘unacceptable’
outputs is used to estimate and predict reliability

City University
m London ADA-EUROPE 2005, York - slide 14



Reliability growth modelling

 Huge literature developed over the past 25 years
e Idea here is that faults are fixed as they are identified in
operational testing

— so reliability grows

 Many sophisticated probability models have been developed
— aim is to predict future failure behaviour from observation of the past
— none of the models can be trusted to be accurate a priori
— but ways of telling whether a model is accurate in a particular context

— also ways of ‘learning from past errors’

* Sophisticated tools for doing this
— e.g. our ‘PETERS’ tool, and several others

— the bottom line here is that you can generally obtain trustworthy
results from this approach, and know that the results are trustworthy

City University
m London ADA-EUROPE 2005, York - slide 15



Example of real software failure data

Peterz - [PLOT: syz2 - Failure timesz]
B5: Flle “iew Data Estimates Plot Table Prediction: ‘Window  Help -|&] x|
Failure data for dataset sys?
[nterfailure
tirmes
gO00T
. Cumulative
soont times
= 1 ’ . Both
S 40007 ' .
£ o "
£ 3000t o, .
E T . _ . | Bold plots
= 20001 - e . .
+ * - * * g *
10004 * . . e " * . . . .t
‘1: - toe : * 'h""..:‘. L ’ e ¢ *
1] L P, Y. S S P .: |
1] 10 20 an 40 a0 =] 70 an all]
Failure index
[ - Interfailure times]
Databaze; Z:\data“febll . mdb | Dataszet; syz? E stimates: Jelinzki-toranda

City Universit



Cumulative plot of same data

Feters - [PLOT: sys2 - Cumulative Failures]

5. File “iew [Data Estimate: Plot Table Predictions: Window Help _|5’ ﬂ
Failure data for dataset spzs
Area plot
a0+ .
a0+ L g Line plaot
1 o n B
1 o
g o1 - Eoald line
£ B0t - _f' plat
< =] s
| rf
g 401
g of
20+ ‘F
m})f
[IE, + + + + + + + + + + + |
0 20000 40000 BOO00 20000 100000 120000
Time
| - Curnulative failures|
Databaze: 2 hdatasfeb0l.mdb | Datazet; sysd E stimates: Jelingki-Moranda

City Universit



Successive median predictions

Peters - [PLOT: svs? - Medianz ] Mi=] 3
B5. File Wiew [Data Estmates Plot Table Prediction: Window  Help - ||5'|£|
tedians for dataset sys
edians for datazet sus Al plot
2a007 T 2800 Add
recalibrated
plot
2000+ T 2000

E M Edit plot range

= 1 1 — Du

% 1500 1500 MO

E G0

E 1000+ 1000 LMHFP

'.,'é |

o r—

A00 T h00
0 —tt—t—t—t—+—+—+—t+—+—+—+ 0
20 30 40 B0 BOD YD 30 40
Failure index

| D atabase: Z:\dataMiebll.mdb | Dataset: sys2 | Estimates: Jelinski-Maoranda i

m Y City University
London ADA-EUROPE 2005, York - slide 18



What sort of claims can you make?

It turns out that this kind of evidence of reliability growth from
testing only allows quite weak claims

 e.g. if you want to claim mtbf of x hours, you will typically
need to see 10s or 100s times x hours on test

e even worse, there is a very strong law of diminishing returns
operating

— you may end up with very many very small faults, each of which is
very hard to find

e what about the ‘best possible’ case - where no failures at all
are seen in x hours of test?

— even here, you can only make modest claims for future behaviour

+ e.g. only about a 50:50 chance of seeing further x hours failure-free
operation before failure.

City Universit
m _-;!;-"-3':*;cn e



So what can we do?

In fact, of course, there is always lots of other information
available, in addition to operational test data

e e.g. quality of software engineering process used
e e.g. information from static analysis
e e.g. expert judgement, etc

 we need ways of combining such disparate evidence in
formally reasoned dependability cases to support
(probabilistic) dependability claims

City University
m Y London ADA-EUROPE 2005, York - slide 20



Dependability ‘case’

Informally, a dependability case is an argument, based on
assumptions and evidence, that supports a dependability claim
at a particular level of confidence

e For a particular claim (e.g. the probability of failure on
demand of this system is better than 10-3), your confidence in
the truth of the claim depends on:

— strength/weakness of evidence (e.g. the extensiveness of the testing)
— confidence/doubt in truth of assumptions

* Conjecture: assumption doubt is a harder problem to handle
than evidence weakness

m Y City University
London ADA-EUROPE 2005, York - slide 21



But evidence in SE is weak

e E.g. software engineering ‘process’ evidence is often used to
support product dependability claims

e But it is very weak

* We have some evidence to support inference of the kind
process->product (e.g. fault count)

e We don’t have much evidence to support inference of the
kind process->product->product_reliability (e.g. failure rate)

Cl TV Rt



A promising formalism for ‘cases’: BBNs

 manageable visual description,
automated Bayesian inference
e describe prior knowledge about
— development quality
— V&V quality

 modify with inference from
observed failures

Faults

e propagate to prediction about
lifetime reliability

ystem
PED > Test

\ Failures
Op.

Failures

City Universit
CLIT]Y Rt



BBNs - advantages and disadvantages

e Advantages
— powerful aid to reasoning
— computational algorithms now make ‘proper’ analysis feasible

— allow expert knowledge to be incorporated (i.e. combine judgement
and empirical evidence) - this seems vital for software-based systems

e Limitations/disadvantages
— permit over-enthusiastic use of expert knowledge!

— humans are very poor at expressing probabilistically their beliefs
about uncertainty

— even the topologies of BBNs are not easy to construct

e Current position: use with caution and humility

— e.g. be more willing to trust simple BBNs than complex ones

City University
m London ADA-EUROPE 2005, York - slide 24



Analogy between arguments and systems

There’s an analogy between arguments and systems. Think of a
protection system, and an argument supporting a dependability
claim:

 Both can ‘fail’

— argument: accept claim when it’s false (or reject when true)

— system: fails to trip when it should (or trips when it shouldn’t)

e Confidence in argument <-> reliability of system

— both concern probability of not failing

You would not want to push the analogy too far, but can we
exploit ‘system tricks’ to improve arguments? E.g......

m Y City University
: London ADA-EUROPE 2005, York - slide 25



Dependability case ‘fault tolerance’

Can we borrow ideas from system fault tolerance? ‘Argument
diversity’ as analogy of ‘system diversity’?

e Multi-legged arguments to
increase confidence in claim(s)
— leg B could overcome evidence

weakness and/or assumption
doubt in leg A

— legs need to be diverse

— advocated in some existing
standards (but only informal
justification)

— we are trying to formalise this
via special BBN structure

+ same ‘independence’ issues as
for systems

City University
m Y London

Reliability
Claim

N

Evidence A

¢

Assumption A

ADA-EUROPE 2005,

Evidence B

?

Assumption B

York - slide 26




Summary; and where do we go now?

e The need for trustworthy dependability assessment
continues - even grows

e For many situations - essentially those with modest
requirements - trustworthy evaluation of software reliability
is possible

e Great difficulties when required levels are very high

— the 10 problem remains unsolved, and is likely to remain so

* We need

— more and better evidence

— better, more formal, ways of reasoning about disparate evidence in
‘cases’ to support dependability claims

— in particular, formal treatment of ‘confidence’ in claims

City University
m London ADA-EUROPE 2005, York - slide 27



Some new, harder problems loom

We need a much more holistic approach
 Beyond ‘reliability and safety’, to incorporate security

— very little work has been done on problem of (probabilistic) security
assessment

— but some of the reliability techniques probably apply
— need to be able to understand trade-offs

 Beyond ‘software and computers’

— it’s very rare for systems to be purely ‘technical’ - there are almost
always humans and organisations involved, and the whole system
needs to be addressed

— interactions here can be complex and counter-intuitive

— require collaboration with psychologists, sociologists, etc

City University
m London ADA-EUROPE 2005, York - slide 28



THE END

(with no apologies for being so gloomy)

City University
m Y London ADA-EUROPE 2005, York - slide 29



