
ADA-EUROPE 2005, York - slide 1

Assessing the Dependability of Software-
based Systems: A Question of Confidence

Bev Littlewood
Centre for Software Reliability, City University, London

b.littlewood@csr.city.ac.uk

email me if you want a copy of my presentation

ADA-EUROPE 2005, York - slide 2

Do you remember 10-9 and all that?

• Twenty years ago: much controversy about need for 10-9

probability of failure per hour for flight control software
– could you achieve it? could you measure it?

– have things changed since then?

ADA-EUROPE 2005, York - slide 3

Issues I want to address in this talk

• Why is dependability assessment still an important problem?
(why haven’t we cracked it by now?)

• What is the present position? (what can we do now?)
• Why is ‘confidence’ in claims so often ignored?
• Where do we go from here?

ADA-EUROPE 2005, York - slide 4

Why do we need to assess reliability?

Because all software needs to be sufficiently reliable

• This is obvious for some applications - e.g. safety-critical
ones where failures can result in loss of life

• But it’s also true for more ‘ordinary’ applications
– e.g. commercial applications such as banking - the new Basel II

accords impose risk assessment obligations on banks, and these
include IT risks

– e.g. what is the cost of failures, world-wide, in MS products such as
Office?

• Gloomy personal view: where it’s obvious we should do it
(e.g. safety) it’s (sometimes) too difficult; where we can do it,
we don’t…

ADA-EUROPE 2005, York - slide 5

What reliability levels are required?

• Most quantitative requirements are from safety-critical
systems. Even here the figures vary dramatically.

• Some are extremely stringent
– e.g. civil aircraft flight control (A320/330/340, B777, etc): 10-9

probability of failure per hour

– e.g. railway signalling and control: 10-12 probability of failure per
hour!

• Some are quite modest
– e.g. UK Sizwell nuclear reactor’s primary protection system: 10-3

probability of failure on demand

– e.g. surgical robotics: the humans they replace have only modest
reliability!

• Seems likely that for non-safety-critical systems, the range is
just as great

ADA-EUROPE 2005, York - slide 6

Why uncertainty?

‘Software failures are systematic - if it fails in certain
circumstances it will always fail in those circumstances’
• True. But it is uncertain when those circumstances will

occur
• There is inherent uncertainty about the process of inputs
• ‘Systematic’ here does not imply ‘deterministic’

ADA-EUROPE 2005, York - slide 7

Why probabilities?

There are other ways of dealing with uncertainty: why not use,
e.g. Dempster-Shafer, fuzzy/possibility theory, etc
• Advantages of probability

– advanced and well-understood formalism

– widely accepted and used already, so easy to incorporate into existing
frameworks, e.g. risk analysis, e.g. wider safety cases, etc

• Problems
– can be very hard to estimate the numbers (see later comments)

– but no easier for other formalisms?

ADA-EUROPE 2005, York - slide 8

What drives software unreliability?
‘Why doesn’t software work perfectly? it’s only logic, after all,
why don’t you just do it right?’
• Novelty: software is often (usually) used to implement

radical new functionality
– ‘if we can do it, we will do it’

• Difficulty: some of the problems that software designers
have to solve are intrinsically hard

– we routinely build things that would be unthinkable in any other
technology

• Complexity: these trends often result in unnecessary
complexity in the design solutions

– e.g. not constrained by the reliability implications of hardware
complexity

ADA-EUROPE 2005, York - slide 9

So how bad are things?

If we can’t make real programs fault-free, how many faults can
we expect?
• What are achieved fault densities?

– even for safety-critical industries, 1 fault per kLoC is regarded as
first class

+ e.g. study of C130J software by UK MoD estimated 1.4 safety-critical
faults per kLoC (23 per kLoC for non-critical)

– for commercial software, studies show around 30 faults per kLoC
+ Windows XP has 35 MLoC, so >1 million faults!

• Is there no good news here…?!

ADA-EUROPE 2005, York - slide 10

Many faults means very unreliable?

NOT NECESSARILY!
• Windows reliability has grown from 300 hours MTBF (with

95/98) to about 3000 hours despite increased size and
complexity (i.e. more faults)

• Operational experience with software in aircraft and
automobiles suggest very high reliabilities can be achieved

– After-the-fact estimation of failure rates, based on very extensive
usage:

+ Automobiles: Ellims has estimated that no more than 5 deaths per year
(and about 300 injuries) caused by software in the UK - suggests about
0.2 x 10-6 death/injury failures per hour. Even better per system - say 10-7

+ Aircraft: very few accidents have been attributed to software; Shooman
claims, again, about 10-7 per hour per system

ADA-EUROPE 2005, York - slide 11

Why can software be so reliable…

…when it contains thousands of faults?
• Because many (most?) faults are ‘very small’

– i.e. they occur extremely infrequently during operation

• Adams - more than twenty years ago - examined occurrence
rates of faults on large IBM system software: found that
more than 60% were ‘5000-year’ bugs

– i.e. each such bug only showed itself, on average, every 5000 years
(across a world-wide population of many users)

– the systems he studied had many thousands of these faults, but were
acceptably reliable in operation

ADA-EUROPE 2005, York - slide 12

So what’s the problem?

Is there a problem?
• Just because large complex programs can be very reliable, it

does not mean you can assume that a particular one will be
– even if you have successfully produced reliable software in the past,

you can’t assume from this that a new program will be reliable

– even if some software engineering processes have been successful in
the past, this does not guarantee they will produce reliable software
next time

• So you need to measure how reliable your software actually
is

• And this assessment needs to be carried out before extensive
real-life operational use

– how else can you make a risk assessment?

ADA-EUROPE 2005, York - slide 13

So how can we assess dependability?

ADA-EUROPE 2005, York - slide 14

Direct evaluation: Operational testing

• Statistical methods based upon operational testing are the
only means of direct evaluation of reliability

– allow estimation and prediction of such measures as mtbf, reliability
function (i.e. probability of surviving failure-free for time t), failure
rate, etc

• They require
– means of generating test data that is statistically representative of

operational use

– an oracle to allow unacceptable (‘failed’) output to be detected

• The resulting process of ‘acceptable’ and ‘unacceptable’
outputs is used to estimate and predict reliability

ADA-EUROPE 2005, York - slide 15

Reliability growth modelling

• Huge literature developed over the past 25 years
• Idea here is that faults are fixed as they are identified in

operational testing
– so reliability grows

• Many sophisticated probability models have been developed
– aim is to predict future failure behaviour from observation of the past

– none of the models can be trusted to be accurate a priori

– but ways of telling whether a model is accurate in a particular context

– also ways of ‘learning from past errors’

• Sophisticated tools for doing this
– e.g. our ‘PETERS’ tool, and several others

– the bottom line here is that you can generally obtain trustworthy
results from this approach, and know that the results are trustworthy

ADA-EUROPE 2005, York - slide 16

Example of real software failure data

ADA-EUROPE 2005, York - slide 17

Cumulative plot of same data

ADA-EUROPE 2005, York - slide 18

Successive median predictions

ADA-EUROPE 2005, York - slide 19

What sort of claims can you make?

It turns out that this kind of evidence of reliability growth from
testing only allows quite weak claims
• e.g. if you want to claim mtbf of x hours, you will typically

need to see 10s or 100s times x hours on test
• even worse, there is a very strong law of diminishing returns

operating
– you may end up with very many very small faults, each of which is

very hard to find

• what about the ‘best possible’ case - where no failures at all
are seen in x hours of test?

– even here, you can only make modest claims for future behaviour
+ e.g. only about a 50:50 chance of seeing further x hours failure-free

operation before failure.

ADA-EUROPE 2005, York - slide 20

So what can we do?

In fact, of course, there is always lots of other information
available, in addition to operational test data
• e.g. quality of software engineering process used
• e.g. information from static analysis
• e.g. expert judgement, etc
• we need ways of combining such disparate evidence in

formally reasoned dependability cases to support
(probabilistic) dependability claims

ADA-EUROPE 2005, York - slide 21

Dependability ‘case’

Informally, a dependability case is an argument, based on
assumptions and evidence, that supports a dependability claim
at a particular level of confidence
• For a particular claim (e.g. the probability of failure on

demand of this system is better than 10-3), your confidence in
the truth of the claim depends on:

– strength/weakness of evidence (e.g. the extensiveness of the testing)

– confidence/doubt in truth of assumptions

• Conjecture: assumption doubt is a harder problem to handle
than evidence weakness

ADA-EUROPE 2005, York - slide 22

But evidence in SE is weak

• E.g. software engineering ‘process’ evidence is often used to
support product dependability claims

• But it is very weak
• We have some evidence to support inference of the kind

process->product (e.g. fault count)
• We don’t have much evidence to support inference of the

kind process->product->product_reliability (e.g. failure rate)

ADA-EUROPE 2005, York - slide 23

A promising formalism for ‘cases’: BBNs

Faults
Found

Op.
Failures

Test
Failures

System
PFD

Faults
Delivered

Initial
Faults

• manageable visual description,
automated Bayesian inference

• describe prior knowledge about
– development quality

– V&V quality

• modify with inference from
observed failures

• propagate to prediction about
lifetime reliability

ADA-EUROPE 2005, York - slide 24

BBNs - advantages and disadvantages

• Advantages
– powerful aid to reasoning

– computational algorithms now make ‘proper’ analysis feasible

– allow expert knowledge to be incorporated (i.e. combine judgement
and empirical evidence) - this seems vital for software-based systems

• Limitations/disadvantages
– permit over-enthusiastic use of expert knowledge!

– humans are very poor at expressing probabilistically their beliefs
about uncertainty

– even the topologies of BBNs are not easy to construct

• Current position: use with caution and humility
– e.g. be more willing to trust simple BBNs than complex ones

ADA-EUROPE 2005, York - slide 25

Analogy between arguments and systems

There’s an analogy between arguments and systems. Think of a
protection system, and an argument supporting a dependability
claim:
• Both can ‘fail’

– argument: accept claim when it’s false (or reject when true)

– system: fails to trip when it should (or trips when it shouldn’t)

• Confidence in argument <-> reliability of system
– both concern probability of not failing

You would not want to push the analogy too far, but can we
exploit ‘system tricks’ to improve arguments? E.g……

ADA-EUROPE 2005, York - slide 26

Dependability case ‘fault tolerance’

Can we borrow ideas from system fault tolerance? ‘Argument
diversity’ as analogy of ‘system diversity’?

Assumption A

Evidence A

Reliability
Claim

Evidence B

Assumption B

• Multi-legged arguments to
increase confidence in claim(s)

– leg B could overcome evidence
weakness and/or assumption
doubt in leg A

– legs need to be diverse

– advocated in some existing
standards (but only informal
justification)

– we are trying to formalise this
via special BBN structure

+ same ‘independence’ issues as
for systems

ADA-EUROPE 2005, York - slide 27

Summary; and where do we go now?

• The need for trustworthy dependability assessment
continues - even grows

• For many situations - essentially those with modest
requirements - trustworthy evaluation of software reliability
is possible

• Great difficulties when required levels are very high
– the 10-9 problem remains unsolved, and is likely to remain so

• We need
– more and better evidence

– better, more formal, ways of reasoning about disparate evidence in
‘cases’ to support dependability claims

– in particular, formal treatment of ‘confidence’ in claims

ADA-EUROPE 2005, York - slide 28

Some new, harder problems loom

We need a much more holistic approach
• Beyond ‘reliability and safety’, to incorporate security

– very little work has been done on problem of (probabilistic) security
assessment

– but some of the reliability techniques probably apply

– need to be able to understand trade-offs

• Beyond ‘software and computers’
– it’s very rare for systems to be purely ‘technical’ - there are almost

always humans and organisations involved, and the whole system
needs to be addressed

– interactions here can be complex and counter-intuitive

– require collaboration with psychologists, sociologists, etc

ADA-EUROPE 2005, York - slide 29

THE END

(with no apologies for being so gloomy)

