Model-based Development of
Safety Critical Software:
Opportunities and Challenges

John McDermid, FREng

Professor of Software Engineering, University of York
Director Rolls-Royce Systems & Software Engineering UTC
Director BAE Systems Dependable Computing Systems Centre
Non-Executive Director High Integrity Solutions (HIS)

Ada Europe -1 THE UNIVERSITY 0\f%7/<

Overview

® Objectives of model-based development
® Comparisons with other areas
W Safety critical software development

® Opportunities

® Time and Money

® Challenges
¥ Functionality
® Change
® Non-functional properties
¥ Integration

® Conclusions

Ada Europe - 2 THE UNIVERSITYQ]CM

Model-Based Development

® Objectives in “traditional engineering”

® Reduce risks, costs and timescales of developments
®e.g. do bird strike tests only once

® For example in aerospace and automotive industries

® Example of Rolls-Royce engine development
¥ Extensive use of finite-element analysis
M Mechanical properties of design
M Aero-thermal design

® Mechanical design very advanced
¥ Prediction of failure behaviour
¥ Prediction of impact damage
® Enables one-off tests validating the model

Ada Europe - 3 THE UNIVERSITYQ]CM

Cobbler’s Children

® In software development, little use of computer models
® Extensive and expensive manual activity

Ada Europe - 4 THE UNIVERSITYQf%?k

Objectives for SCS

® Safety critical software has a good safety record

® Safety critical software is expensive
W Circa 1 kLoC per person year, but much variation

® Sources of costs
¥ Low level verification
¥ Circa 25% of cost in unit/module test
¥ Rework
Producing software to flight standard three times is not uncommon
¥ Erroneous requirements

@ Perhaps 40% of post unit test errors for simple systems
® As high as 85% for complex ones, e.g. F22

® Save time and money without reducing product integrity

Ada Europe - 5 THE UNIVERSITYQ]CM

Code Size kLoC

100000

10000

1000

100

10 @1

Safety Critical Software is Growing

® 2014

8 2664

®-1987 o o899

® 1993

In Service Date

Ada Europe - 6 THE UNIVERSITYQ]CM

Opportunities: Time and Money

® Code generation enables reduction of cost and time

¥ Move from V model to Y
W Early validation, automated analysis, greater abstraction ...

4 Y
System
Specification

Software
Specification
Software \
Architecture
(@)
Standards

Detailed compliance
Design
a
Source Code >

Ada Europe -7 THE UNIVERSITYQJCM

Software Architecture

® Architecture is a “high level” desigh model
B System components and interconnections

® Software architecture very broad and should cover
¥ Functionality and interfaces
® Data definition, data flow and information flow
¥ Moding and scheduling
¥ Timing and performance
® Mapping to hardware
¥ Failure behaviour and safety properties ...

® Objective to have a rich model enabling
M Validation and verification against (safety) requirements
¥ Prediction of key implementation properties, with confidence

Ada Europe - 8 THE UNIVERSITYQ]CM

But Current Models are Very Low Level

Model is functional, doesn’t address timing, failure ...

E!Lihrary: ProvideThrustBodies /Provide ThrustBody — |D|ﬂ

File Edit Mew Formab Help

todel Browser @ l%ﬂ =

=- W@ ProvideT hrustB odies
EmitlpmvHEThuﬂEDm
- 2 RatingsBody By =10 %
- B ThiustS ettingB ody Input == %
W Highimit Result | ‘@ we Al |(§ Qv ‘ e) |k?
L —Jgge| Lo Lirmit
RangeChack j
In1 Out? ——o n: PackageSpecs-FrovideThrust-FrovideThru
Wi o [—— Body.-Data Type Conversionh
false L In2
» Out? ——
Constantd In
B IndOutd —— eCpecs-ProvideThrust-ProvideThrustTop-Fro
nGo el =_heck
| e It ’—'Enmpﬂ % ®Input ®7
o ighLlimit = |
P HighLimit Fezult I | H =lewLinit %
_LI | | ;|ustBody__MyVarl <% *Result */);
E;.SE ® Subsystem: PackageSpecs-ProvideThrust-ProvideThrustTop-Fro

* yideThrustBody-RangeCheclk
*.
RawdeChecl (&EPRCommand ~* #Input
&tmpd % *HighLimit =/ |
EtmpSs <% *Lowlimit *-
&BVDemand? ~* #Rezult %2

D'z et
PravideThrust. adb
FrowideThrust, ads
ProvideT hrust.c
ProvideT hrust h
PravideThrust net

R atings.adb * Sub=vy —Pemlesm=SreCs - ProvideThrust ~ProvideThrust Top-Fro
R atings. ads * yideThrustBody Compl

Need more expressive pewer;and-more-abstraction ...
| (158 [% [read [ow ok [ovne e [ops
Ada Europe - 9 THE UNIVERSITYQf/mk

But there is a bigger problem ...

Garbage Garbage

Data ‘ Results

-, Garbage Garbage
- Model "y Results

Ada Europe - 10 THE UNIVERSITY of York

Analysis of Architectural Models

® To avoid GIGO, analysis needs to address
M Verification
¥ Does it meet the requirements?

® Validation
¥ Is it consistent and complete (both internally and externally)?
¢ Is it feasible (given the hardware resources)?
® Does the model meet derived safety requirements (DSRs)?
¥ Are there potentially unsafe deviations from design intent?

® Approaches
¥ Review
® Safety analyses, e.g. HAZOP

¥ Automated analysis of specifications
¢ lllustrate using extensions to Matlab/Simulink/Stateflow (MSS)

Ada Europe - 11 THE UNIVERSITYQ]CM

lllustrative Example

® Engine thrust reverser control
¥ Reverses air flow to decelerate aircraft
® Achieved by moving “Bucket Doors”

Ada Europe - 12 THE UNIVERSITYQfM

Example of Automated Analysis

® Example of aero-engine thrust reverser control
® Aircraft deceleration using bucket doors
¥ Hazard if used in flight or asymmetrically, or at too high thrust
W Specified using state machines (Stateflow in MSS)
¥ DSRs on safe operation and recovery, e.g. interlocks

= N
O AnaIyS!s via /léolanor;/;:;ce)zmer \\\ o {TsolationvalveOn _ ™

extraction of the - soeion |

model, DSRs and { e T {E”‘”ge”“ |

formal proof A 2%“:{%”5& ek

B Completeness, solato] -

internal/external L s ol W
consistency,)
meets DSRs ... \x N — y

NB Software “unsafe” if its view of the world differs from reality

Ada Europe - 13 THE UNIVERSITYQJCM

Example of DSR and Analysis

® Analysis for validation, and verification against DSRs
¥ Automated analysis approach

¥ Healthiness checks,
e.g. determinism

¥ Annotations to define

DSRs, linked to state
machine

¥ Assumptions which
model behaviour of
embedding system/
physics

¢ Formal analysis to
check DSR holds

€ A counterexample
is given if the check
fails

= =Tk
File Copy from environment Choose state |
State machine =l
State Mormal
Check Next assumptions established =i Frove it |
* Mormal s [ast
Hilever = 3
&’ OnCreswLever ‘s last
Hizolation =191 x|

& OnCrew Leser's next

Hiever <= 4

=» Marmal’s next

Hiever <= 4

[E skipping translation: model file unchanged.

[E skipping generation of conjectures: they e up-to-date.
[Proving healthiness condition. ..

B Proved it!

Close Let me try

B Checks reduce chance of GIGO due to model errors

Ada Europe - 14

THE UNIVERSITYQ]C/M

The Challenge of Change

Change is inevitable
Benjamin Disraeli, 1867

® Can reduce the likelihood of change
M Verification and validation, e.g as illustrated

® Can reduce the impact of change

m Automated verification and validation

® Design to accommodate change
@ Product lines, strong similarity between products
@ Produce configurable assets for product line
Select and configure for particular products
¥ Save time, reduce risk of error and enforced change
¥ Embed in models, making them configurable

Ada Europe - 15 THE UNIVERSITYQ]CM

TalLit

= SusfeiningToFailed

e To StarterDff

oFailed

P WH Slow For StarterDet

arterDff

dutlex Sterte Hempts

= CurreniTime

] ToLit —

Ignifion Req

Example: Engine Starting

N

FuelOnStarting Reg

TimeOfLastsage

Chart

Igniﬁkn Req
ataring Req
e lanition Req
= oncround

\I- StartProgress

WotorLul Sferting Reg

lanLwlstering Req

w

nwmnTime Of LastUsage

tlotor Rl Sterting Req

1
Motaor LvlStarting Reg

lanLuEtarting Req

3
lgnLyvlStarting Reg

w4)

T

conf_AdiustDrives

Ada Europe - 16

StartProgress

THE UNIVERSITYQJC/M

@ onGround

On Ground

StartProgAutoStart

ngrvess

StartProgress

Autostedin Progress

Adjust Drives - Details

tatLviMormal

Groundsutostart

P
-4 I MotReqLevel
{

fdatLvl Continuous

‘ﬁ

(1)

Motaring Reg

WotorLuwl Staring Reg L @
otor Ll Starting Feg

tdatLviMone

lgnLviLow

lgnLylHigh

P
-4 I lan Reqlevel

Cz)

IgnitionFeg

‘ﬁ

2)
IgnLvl Starting Feg

lan Lyl Sfarfing Req

I Lyl Mone

Ada Europe - 17

THE UNIVERSITYQ]C/M

Control over Configuration

= ToLit —

FuelOnStarting Reg

Tolit P SustaininaToFailed
lanitian Req anTeq reernTine Of Last Usage
o Failed e To StarterDff

L] Motorina Reg

| MH Slow ForSterterDet .
arteroff WotorLul Sferting Reg HatorLul terfing Feg
L——— P ianitionReg

dvhilen Sterta Hempts Motaor LvlStarting Reg
TimeOfLastsage

= CurreniTime = oncround

lanLwlstering Req lanLulsterfingReq

Chart
] startProgress
lgnLyvlStarting Reg

AdiustDrives

/\@

StartProgress

T

conf_AdiustDrives

Ada Europe - 18 THE UNIVERSITYQJCM

Changing between Product Line Members

— configuration (mask) (link)

Configuration block for access to family
(WL library.

— Parameters

— configuration (mask) (link)

Configuration block for access to family
(Waly library.

— Parameters
Target

Target
AdjustDrives
Configurations
SaV|noSAY

AdjustDrives
Configurations

SAV|nosAaY
Configuration ,!’G:m:un
X | (D) |
Library 'iW
libAdjustDrives libAdjustOrives

Dk | Cancel Help

o
s

Ok | Cancel| Help Apply |

—

Ada Europe - 19 THE UNIVERSITYQ]CM

Top-Level Model — Change Localised

FuelOnStarting Redg

rvrmnTime OfLast Usage

Motor Lwl Star ting Reg

] TaLit —
Tolit I SusteiningTo Failed /\
lgnifion Reqg
o Failed P To Starteroff
MotaringReq
prmpwy | MH Slow For SterterDet MotarLul Starting Reg
lanitionReq
duhlar Stertatempts
TimeOfLastlsage
i CurrentTime onGround
lan Ll stertina Reg
Chart
P startProgress
AdiustDrives

IgnLylStarting Reg

conf_Adjust Drives

Ada Europe - 20

StartProgress

THE UNIVERSITYQJC/M

@ onGround

OnGround

StartProgautoStart

AutostatinFrogress

Adjust Drives — No SAV

AnD |_eroundsutostart

I

@ StartProgress

StartProgress

»

P
L

MotLviMone .-

Motor Lyl Starting Feg

totaringFed Terminator
lanLylLow
E| | lan Reqg Lewsl
o
lgnLvIHigh
b
@ - lan LulSterting Req =®
lanition Fieg

IgnLvIMone

Ada Europe - 21

Ign Ll Starting Reg

THE UNIVERSITYQ]C/M

Product Line Management

® Benefits

¥ Encodes product line ideas in tools used by design engineers
m Can produce checks to ensure sound configuration
® Can verify and validate components independently

¥ Save time, money and reduces risk
¢ Controlled reuse

® Limitations

¥ Quite complex to encode in current tools
€ In MSS some ugly “mechanics” to realise variability
¥ Hard to ensure consistent change to models held by multiple tools

® Difficult to reduce/remove need for re-verification
¥ Limited help with unpredicted changes
¥ Doesn’t directly address non-functional properties

Ada Europe - 22 THE UNIVERSITYQ]CM

Non-Functional Properties

® Non-functional is an awful term
® Aspects of behaviour, not just “ideal functionality”

® Range of properties of interest
W Some, e.g. timing, can be represented as attributes
M Others, e.g. fault management, require new/modified functions

® Timing
¥ Can articulate requirements for software
Deadlines, jitter, etc.

¥ Annotate models with WCET, etc. (estimates or actuals)
® Undertake analysis or synthesise schedules

® Consider fault accommodation

Ada Europe - 23 THE UNIVERSITYQ]CM

Fault Management Code

® Development generally a manual process
® Costly, may be more than half system code
™ Error prone, and likely to change

® Alternatively, automate configuration
¥ Provide configuration for existing product-line components

M Select software components based on data on
Hardware failure modes (FMEASs)
¥ Configuration rules (fragments of Markov models)

Code production by reuse, not generation
Change handled through selection of different code templates

® Traceable behaviour
® From choice of component back to requirements

Ada Europe - 24 THE UNIVERSITYQ]CM

Software Layering

® System functions > Application
Requirements from Platform Level

® Drivers for devices

M Validated sensor data
and actuator control

[Validated Value>

/

L
Isolation frgm details of
Sensors and Actuators

Failure Management
—>» for embedding system
sensors and actuators

® Fault management ——

¥ To produce “trusted”
data for application

© NB hazard if software

H

view of world differs —Sonesd Valu%
from reality |
® Abstraction from » Hardware Abstraction Layer (HAL)

processing hardware Isolation from details of Computing Hardware

¥ Operating system

Ada Europe - 25 THE UNIVERSITYQJCM

Fault Management Logic

® Fault-accommodation requirements in Markov model

® Can despatch (use) system “carrying” failures
¥ Despatch analysis based on Markov model

¥ Evaluate probability of being in non-dispatchable state, e.g. only
one failure from hazard

¢ Link between safety/availability process and software design
B Auto-generation ensures software and analysis in step
¥ Reuse pre-verified fault-accommodation modules

® May use four valued logic wlu|d]|c
® Working, undetected, detected, wlw| u|d]c
and confirmed uluflu|d]|ec

H Table illustrates “logical and” ([.]) d|d|d|d|c

B Used for analysis clc|c|c|c

Ada Europe - 26 THE UNIVERSITYQ]CM

File Edit Wiew Simulation

Format Tools Help

AEBV

&
a

_’.

[] Logical &nd
e
.’.

logical_and_propagation

e
] EUAST | [E0=
[] Logical And [] Logical And
g ™
- \ EUAST_Fault | [Bus
A Ri51
Ll ™
BUAS2 _’_ EVE
[] Logical And
™
ELA52_Fault [
B2\
. BUAES
[] Logical And
™
e EU&53_ Fault
1 Input_1
Input_1_ Fanlt
e irprt 2 cutput
1} P=|input 2 Feult
Input_1 select_healthiest Dutput
(2)
Inpout_1_Fault —»{ 2
Output_Fault
(3
Input_2
(4
Input_2_Fault
e Input_1
B, —
] Input_2_ Fault

Example Implementation

-

Input_1

ut_1_Fault

b

Input_1_healthiest

A w1)

sqiect_healthiest Cutput

Inga
== —
healthiest
Input_2 Fatnes
Input_2_ Pt

Irput_1

Input_1_Fault

lhput_2_ Fault

Ihput_2

Ada Europe - 27

Terminator

[l]]w]|d]|c
wlw|d]| c
d|d|d|c
C C Cc Cc
propagated_fault
Output_Fault
logical_and_takle

Terminator

THE UNIVERSITYQ]C/M

Deriving Safety Analyses

® By adding failure assumptions to models, possible to

generate safety analyses R
B Complements work on
fault management | -
Derive safety T o
models used for
certification e | |
W Several alternative
approaches
¥ Needs semantic 1 1 | [o B
model for fallyres _ | "’i‘“ | Fﬁ\“ e
and propagation = =
M Several challenges e ot
¥ Scale, intelligibility of o |

output, trust in tools
¥ Requires integration

=0 =0

Ada Europe - 28 THE UNIVERSITYQ]CM

Integration

® Need (at least)
® Notational integration
® Method/process integration (development and safety processes)
¥ Toolset integration

® Notations
W Expressive enough to cover all properties of interest
H A “single” notation, or related views

® Architecture Analysis and Definition Language (AADL)
® Developed out of work by Honeywell and US Army

® Good concept, with growing support
€ Notation, tools and SAE standard

H Potential for timing / reliability / safety analysis

Ada Europe - 29 THE UNIVERSITYQ]CM

Process and Toolset Integration

® Most tools are quite specialised
¥ Do some things well

¥ Don’t address all relevant issues, e.g. don’t model all of the
architectural properties, and are unlikely to address all

Functional

® Need to set up

® Process models, to
link activities

B Data models, to link
notations and to
provide traceability

. TOOI infrastructu re Configuration Management

that realises links ——
including impact —
analysis HIS V-Model

Software
Integration

Software ’g
vEst Engineering

Ada Europe - 30 THE UNIVERSITYQJCM

Conclusions

® Model-based development important for future safety
critical software developments
¥ Believe this will become the norm, in time

® So, is this the end for program level analysis?

® No

¥ Currently, program level toolsets, e.g. SPARK Examiner better
developed than modelling tools — for safety critical software

B Much code generation will be linking pre-defined code modules
¥ These modules need to be developed and verified
¥ Continued challenges in compositional verification

® Model based development will shift balance ...

Ada Europe - 31 THE UNIVERSITYQ]CM

Ada Joint Program Office

awards
Ada Validation Certificate # §890531N1.10097
to
York Software Engineering Limited

for successfully validating

York Ada Compiler Environment (ACE) Release 4

Natnional Computing - ; .
Centre. UK. l'ested Configuration MHU:ITEJ

Ada Vahdauon Facility , . _
a vahd:] Host{s): Imtergraph Inter Pro 340
(under UNDX Sysiem V.3) o :,_';' o x‘ CoNFOAws
2 | OETEAMINEL f
20 June 1989 e 3
.i'”"'l"..'l[H]' Same as Host | TEETING P F Do
Date of Issue ARSI) b T b :

01 December 1990 ACVC Version: 1,10

Expiration Date

	Model-based Development of Safety Critical Software:Opportunities and Challenges
	Overview
	Model-Based Development
	Cobbler’s Children
	Objectives for SCS
	Safety Critical Software is Growing
	Opportunities: Time and Money
	Software Architecture
	But Current Models are Very Low Level
	But there is a bigger problem …
	Analysis of Architectural Models
	Illustrative Example
	Example of Automated Analysis
	Example of DSR and Analysis
	The Challenge of Change
	Example: Engine Starting
	Adjust Drives - Details
	Control over Configuration
	Changing between Product Line Members
	Top-Level Model – Change Localised
	Adjust Drives – No SAV
	Product Line Management
	Non-Functional Properties
	Fault Management Code
	Software Layering
	Fault Management Logic
	Example Implementation
	Deriving Safety Analyses
	Integration
	Process and Toolset Integration
	Conclusions
	

