
Ada Europe - 1

Model-based Development of
Safety Critical Software:

Opportunities and Challenges

John McDermid, FREng
Professor of Software Engineering, University of York

Director Rolls-Royce Systems & Software Engineering UTC
Director BAE Systems Dependable Computing Systems Centre

Non-Executive Director High Integrity Solutions (HIS)

Ada Europe - 2

Overview
Objectives of model-based development

Comparisons with other areas
Safety critical software development

Opportunities
Time and Money

Challenges
Functionality
Change
Non-functional properties
Integration

Conclusions

Ada Europe - 3

Model-Based Development
Objectives in “traditional engineering”

Reduce risks, costs and timescales of developments
e.g. do bird strike tests only once

For example in aerospace and automotive industries

Example of Rolls-Royce engine development
Extensive use of finite-element analysis
Mechanical properties of design
Aero-thermal design

Mechanical design very advanced
Prediction of failure behaviour
Prediction of impact damage
Enables one-off tests validating the model

Ada Europe - 4

Cobbler’s Children
In software development, little use of computer models

Extensive and expensive manual activity

Ada Europe - 5

Objectives for SCS
Safety critical software has a good safety record

Safety critical software is expensive
Circa 1 kLoC per person year, but much variation

Sources of costs
Low level verification

Circa 25% of cost in unit/module test
Rework

Producing software to flight standard three times is not uncommon
Erroneous requirements

Perhaps 40% of post unit test errors for simple systems
As high as 85% for complex ones, e.g. F22

Save time and money without reducing product integrity

Ada Europe - 6

Safety Critical Software is Growing

1980

1987 1993 19981999

20042004

2014

1

10

100

1000

10000

100000

In Service Date

C
od

e
Si

ze
 k

Lo
C

Ada Europe - 7

Opportunities: Time and Money
Code generation enables reduction of cost and time

Move from V model to Y
Early validation, automated analysis, greater abstraction …

Detailed
Design

Software

Software
Specification

System
Specification

VY
State of practice

Standards
compliance

Architecture

Source Code

Ada Europe - 8

Software Architecture
Architecture is a “high level” design model

System components and interconnections

Software architecture very broad and should cover
Functionality and interfaces
Data definition, data flow and information flow
Moding and scheduling
Timing and performance
Mapping to hardware
Failure behaviour and safety properties …

Objective to have a rich model enabling
Validation and verification against (safety) requirements
Prediction of key implementation properties, with confidence

Ada Europe - 9

But Current Models are Very Low Level
Model is functional, doesn’t address timing, failure …

Need more expressive power, and more abstraction …

Ada Europe - 10

But there is a bigger problem …

Perfect
Model

Garbage
Model

Garbage
Data

Garbage
Results

Perfect
Data

Garbage
Results

Ada Europe - 11

Analysis of Architectural Models
To avoid GIGO, analysis needs to address

Verification
Does it meet the requirements?

Validation
Is it consistent and complete (both internally and externally)?
Is it feasible (given the hardware resources)?
Does the model meet derived safety requirements (DSRs)?
Are there potentially unsafe deviations from design intent?

Approaches
Review
Safety analyses, e.g. HAZOP
Automated analysis of specifications

Illustrate using extensions to Matlab/Simulink/Stateflow (MSS)

Ada Europe - 12

Illustrative Example
Engine thrust reverser control

Reverses air flow to decelerate aircraft
Achieved by moving “Bucket Doors”

Ada Europe - 13

Example of Automated Analysis
Example of aero-engine thrust reverser control

Aircraft deceleration using bucket doors
Hazard if used in flight or asymmetrically, or at too high thrust
Specified using state machines (Stateflow in MSS)
DSRs on safe operation and recovery, e.g. interlocks

Analysis via
extraction of the
model, DSRs and
formal proof

Completeness,
internal/external
consistency,
meets DSRs …

NB Software “unsafe” if its view of the world differs from reality

Ada Europe - 14

Example of DSR and Analysis
Analysis for validation, and verification against DSRs

Automated analysis approach
Healthiness checks,
e.g. determinism
Annotations to define
DSRs, linked to state
machine
Assumptions which
model behaviour of
embedding system/
physics
Formal analysis to
check DSR holds
A counterexample
is given if the check
fails

Checks reduce chance of GIGO due to model errors

Ada Europe - 15

The Challenge of Change
Change is inevitable

Benjamin Disraeli, 1867

Can reduce the likelihood of change
Verification and validation, e.g as illustrated

Can reduce the impact of change
Automated verification and validation
Design to accommodate change

Product lines, strong similarity between products
Produce configurable assets for product line
Select and configure for particular products
Save time, reduce risk of error and enforced change
Embed in models, making them configurable

Ada Europe - 16

Example: Engine Starting

Ada Europe - 17

Adjust Drives - Details

Ada Europe - 18

Control over Configuration

Ada Europe - 19

Changing between Product Line Members

Ada Europe - 20

Top-Level Model – Change Localised

Ada Europe - 21

Adjust Drives – No SAV

Ada Europe - 22

Product Line Management
Benefits

Encodes product line ideas in tools used by design engineers
Can produce checks to ensure sound configuration
Can verify and validate components independently
Save time, money and reduces risk

Controlled reuse

Limitations
Quite complex to encode in current tools

In MSS some ugly “mechanics” to realise variability
Hard to ensure consistent change to models held by multiple tools

Difficult to reduce/remove need for re-verification
Limited help with unpredicted changes
Doesn’t directly address non-functional properties

Ada Europe - 23

Non-Functional Properties
Non-functional is an awful term

Aspects of behaviour, not just “ideal functionality”

Range of properties of interest
Some, e.g. timing, can be represented as attributes
Others, e.g. fault management, require new/modified functions

Timing
Can articulate requirements for software

Deadlines, jitter, etc.
Annotate models with WCET, etc. (estimates or actuals)
Undertake analysis or synthesise schedules

Consider fault accommodation

Ada Europe - 24

Fault Management Code
Development generally a manual process

Costly, may be more than half system code
Error prone, and likely to change

Alternatively, automate configuration
Provide configuration for existing product-line components
Select software components based on data on

Hardware failure modes (FMEAs)
Configuration rules (fragments of Markov models)

Code production by reuse, not generation
Change handled through selection of different code templates

Traceable behaviour
From choice of component back to requirements

Ada Europe - 25

Software Layering
System functions

Drivers for devices
Validated sensor data
and actuator control

Fault management
To produce “trusted”
data for application

NB hazard if software
view of world differs
from reality

Abstraction from
processing hardware

Operating system

Application
Requirements from Platform Level

Hardware Abstraction Layer (HAL)
Isolation from details of Computing Hardware

H
AL

Is
ol

at
io

n
fro

m
 d

et
ai

ls
 o

f
S

en
so

rs
 a

nd
 A

ct
ua

to
rs

Sensed Values

V
al

id
at

ed
 V

al
ue

s

Failure Management
for embedding system
sensors and actuators

Ada Europe - 26

Fault Management Logic
Fault-accommodation requirements in Markov model

Can despatch (use) system “carrying” failures
Despatch analysis based on Markov model
Evaluate probability of being in non-dispatchable state, e.g. only
one failure from hazard
Link between safety/availability process and software design

Auto-generation ensures software and analysis in step
Reuse pre-verified fault-accommodation modules

May use four valued logic
Working, undetected, detected,
and confirmed
Table illustrates “logical and” ([.])
Used for analysis ccccc

cdddd
cduuu
cduww
cduw.

Ada Europe - 27

Example Implementation

cccc
cddd
cdww
cdw[.]

Ada Europe - 28

Deriving Safety Analyses
By adding failure assumptions to models, possible to
generate safety analyses

Complements work on
fault management

Derive safety
models used for
certification

Several alternative
approaches

Needs semantic
model for failures
and propagation

Several challenges
Scale, intelligibility of
output, trust in tools

Requires integration

Ada Europe - 29

Integration
Need (at least)

Notational integration
Method/process integration (development and safety processes)
Toolset integration

Notations
Expressive enough to cover all properties of interest
A “single” notation, or related views

Architecture Analysis and Definition Language (AADL)
Developed out of work by Honeywell and US Army
Good concept, with growing support

Notation, tools and SAE standard
Potential for timing / reliability / safety analysis

Ada Europe - 30

Process and Toolset Integration
Most tools are quite specialised

Do some things well
Don’t address all relevant issues, e.g. don’t model all of the
architectural properties, and are unlikely to address all

Need to set up
Process models, to
link activities
Data models, to link
notations and to
provide traceability
Tool infrastructure
that realises links
including impact
analysis HIS V-Model

S a f e t y
E n g .

S a f e t y
E n g in e e r in g

S a f e t y
E n g in e e r in g

C o n f ig u r a t io n M a n a g e m e n t

Q u a l i t y A s s u r a n c e

V e r i f ic a t io n

P r o je c t M a n a g e m e n t

F u n c t io n a l
T e s t

S y s t e m
I n t e g r a t io n

T e s t in g

S o f t w a r e
D e s ig n

A r c h i t e c t u r a l
D e s ig n

R e q u i r e m e n t s

C e r t i f ic a t io n L ia is o n

S o f t w a r e
I n t e g r a t io n

T e s t in g

M o d u le T e s t

C o d e

Ada Europe - 31

Conclusions
Model-based development important for future safety
critical software developments

Believe this will become the norm, in time

So, is this the end for program level analysis?

No
Currently, program level toolsets, e.g. SPARK Examiner better
developed than modelling tools – for safety critical software
Much code generation will be linking pre-defined code modules

These modules need to be developed and verified
Continued challenges in compositional verification

Model based development will shift balance …

Ada Europe - 32

	Model-based Development of Safety Critical Software:Opportunities and Challenges
	Overview
	Model-Based Development
	Cobbler’s Children
	Objectives for SCS
	Safety Critical Software is Growing
	Opportunities: Time and Money
	Software Architecture
	But Current Models are Very Low Level
	But there is a bigger problem …
	Analysis of Architectural Models
	Illustrative Example
	Example of Automated Analysis
	Example of DSR and Analysis
	The Challenge of Change
	Example: Engine Starting
	Adjust Drives - Details
	Control over Configuration
	Changing between Product Line Members
	Top-Level Model – Change Localised
	Adjust Drives – No SAV
	Product Line Management
	Non-Functional Properties
	Fault Management Code
	Software Layering
	Fault Management Logic
	Example Implementation
	Deriving Safety Analyses
	Integration
	Process and Toolset Integration
	Conclusions
	

