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Overview

® Objectives of model-based development
® Comparisons with other areas
W Safety critical software development

® Opportunities

® Time and Money

® Challenges
¥ Functionality
® Change
® Non-functional properties
¥ Integration

® Conclusions
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Model-Based Development

® Objectives in “traditional engineering”

® Reduce risks, costs and timescales of developments
®e.g. do bird strike tests only once

® For example in aerospace and automotive industries

® Example of Rolls-Royce engine development
¥ Extensive use of finite-element analysis
M Mechanical properties of design
M Aero-thermal design

® Mechanical design very advanced
¥ Prediction of failure behaviour
¥ Prediction of impact damage
® Enables one-off tests validating the model
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Cobbler’s Children

® In software development, little use of computer models
® Extensive and expensive manual activity
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Objectives for SCS

® Safety critical software has a good safety record

® Safety critical software is expensive
W Circa 1 kLoC per person year, but much variation

® Sources of costs
¥ Low level verification
¥ Circa 25% of cost in unit/module test
¥ Rework
# Producing software to flight standard three times is not uncommon
¥ Erroneous requirements

@ Perhaps 40% of post unit test errors for simple systems
® As high as 85% for complex ones, e.g. F22

® Save time and money without reducing product integrity
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Opportunities: Time and Money

® Code generation enables reduction of cost and time

¥ Move from V model to Y
W Early validation, automated analysis, greater abstraction ...
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Software Architecture

® Architecture is a “high level” desigh model
B System components and interconnections

® Software architecture very broad and should cover
¥ Functionality and interfaces
® Data definition, data flow and information flow
¥ Moding and scheduling
¥ Timing and performance
® Mapping to hardware
¥ Failure behaviour and safety properties ...

® Objective to have a rich model enabling
M Validation and verification against (safety) requirements
¥ Prediction of key implementation properties, with confidence

Ada Europe - 8 THE UNIVERSITYQ]CM



But Current Models are Very Low Level

Model is functional, doesn’t address timing, failure ...
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But there is a bigger problem ...
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Data ‘ Results
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Analysis of Architectural Models

® To avoid GIGO, analysis needs to address
M Verification
¥ Does it meet the requirements?

® Validation
¥ Is it consistent and complete (both internally and externally)?
¢ Is it feasible (given the hardware resources)?
® Does the model meet derived safety requirements (DSRs)?
¥ Are there potentially unsafe deviations from design intent?

® Approaches
¥ Review
® Safety analyses, e.g. HAZOP

¥ Automated analysis of specifications
¢ lllustrate using extensions to Matlab/Simulink/Stateflow (MSS)
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lllustrative Example

® Engine thrust reverser control
¥ Reverses air flow to decelerate aircraft
® Achieved by moving “Bucket Doors”
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Example of Automated Analysis

® Example of aero-engine thrust reverser control
® Aircraft deceleration using bucket doors
¥ Hazard if used in flight or asymmetrically, or at too high thrust
W Specified using state machines (Stateflow in MSS )
¥ DSRs on safe operation and recovery, e.g. interlocks
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Example of DSR and Analysis

® Analysis for validation, and verification against DSRs
¥ Automated analysis approach

¥ Healthiness checks,
e.g. determinism

¥ Annotations to define

DSRs, linked to state
machine

¥ Assumptions which
model behaviour of
embedding system/
physics

¢ Formal analysis to
check DSR holds

€ A counterexample
is given if the check
fails
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B Checks reduce chance of GIGO due to model errors
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The Challenge of Change

Change is inevitable
Benjamin Disraeli, 1867

® Can reduce the likelihood of change
M Verification and validation, e.g as illustrated

® Can reduce the impact of change

m Automated verification and validation

® Design to accommodate change
@ Product lines, strong similarity between products
@ Produce configurable assets for product line
# Select and configure for particular products
¥ Save time, reduce risk of error and enforced change
¥ Embed in models, making them configurable

Ada Europe - 15 THE UNIVERSITYQ]CM



TalLit

= SusfeiningToFailed

e To StarterDff

oFailed

P WH Slow For StarterDet

arterDff

dutlex Sterte Hempts

= CurreniTime

] ToLit —

Ignifion Req

Example: Engine Starting

N

FuelOnStarting Reg

TimeOfLastsage

Chart

Igniﬁkn Req
ataring Req
e lanition Req
= oncround

\I- StartProgress

WotorLul Sferting Reg

lanLwlstering Req

w

nwmnTime Of LastUsage

tlotor Rl Sterting Req

1
Motaor LvlStarting Reg

lanLuEtarting Req

3
lgnLyvlStarting Reg

w4 )

T

conf_AdiustDrives

Ada Europe - 16

StartProgress

THE UNIVERSITYQJC/M



@ onGround

On Ground

StartProgAutoStart

ngrvess

StartProgress

Autostedin Progress

Adjust Drives - Details

tatLviMormal

Groundsutostart

P
-4 I MotReqLevel
{

fdatLvl Continuous

‘ﬁ

(1)

Motaring Reg

WotorLuwl Staring Reg L @
otor Ll Starting Feg

tdatLviMone

lgnLviLow

lgnLylHigh

P
-4 I lan Reqlevel

Cz)

IgnitionFeg

‘ﬁ

2 )
IgnLvl Starting Feg

lan Lyl Sfarfing Req

I Lyl Mone

Ada Europe - 17

THE UNIVERSITYQ]C/M



Control over Configuration
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Changing between Product Line Members

— configuration (mask) (link)

Configuration block for access to family
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Top-Level Model — Change Localised
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Product Line Management

® Benefits

¥ Encodes product line ideas in tools used by design engineers
m Can produce checks to ensure sound configuration
® Can verify and validate components independently

¥ Save time, money and reduces risk
¢ Controlled reuse

® Limitations

¥ Quite complex to encode in current tools
€ In MSS some ugly “mechanics” to realise variability
¥ Hard to ensure consistent change to models held by multiple tools

® Difficult to reduce/remove need for re-verification
¥ Limited help with unpredicted changes
¥ Doesn’t directly address non-functional properties
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Non-Functional Properties

® Non-functional is an awful term
® Aspects of behaviour, not just “ideal functionality”

® Range of properties of interest
W Some, e.g. timing, can be represented as attributes
M Others, e.g. fault management, require new/modified functions

® Timing
¥ Can articulate requirements for software
# Deadlines, jitter, etc.

¥ Annotate models with WCET, etc. (estimates or actuals)
® Undertake analysis or synthesise schedules

® Consider fault accommodation
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Fault Management Code

® Development generally a manual process
® Costly, may be more than half system code
™ Error prone, and likely to change

® Alternatively, automate configuration
¥ Provide configuration for existing product-line components

M Select software components based on data on
# Hardware failure modes (FMEASs)
¥ Configuration rules (fragments of Markov models)

# Code production by reuse, not generation
# Change handled through selection of different code templates

® Traceable behaviour
® From choice of component back to requirements
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Software Layering

® System functions > Application
Requirements from Platform Level

® Drivers for devices

M Validated sensor data
and actuator control

[ Validated Value>

/

L
Isolation frgm details of
Sensors and Actuators

Failure Management
—>» for embedding system
sensors and actuators

® Fault management ——

¥ To produce “trusted”
data for application

© NB hazard if software

H

view of world differs —Sonesd Valu%
from reality |
® Abstraction from » Hardware Abstraction Layer (HAL)

processing hardware Isolation from details of Computing Hardware

¥ Operating system
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Fault Management Logic

® Fault-accommodation requirements in Markov model

® Can despatch (use) system “carrying” failures
¥ Despatch analysis based on Markov model

¥ Evaluate probability of being in non-dispatchable state, e.g. only
one failure from hazard

¢ Link between safety/availability process and software design
B Auto-generation ensures software and analysis in step
¥ Reuse pre-verified fault-accommodation modules

® May use four valued logic wlu|d]|c
® Working, undetected, detected, wlw| u|d]c
and confirmed uluflu|d]|ec

H Table illustrates “logical and” ([.]) d|d|d|d|c

B Used for analysis clc|c|c|c
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Deriving Safety Analyses

® By adding failure assumptions to models, possible to

generate safety analyses R
B Complements work on
fault management | -
# Derive safety T o
models used for
certification e | |
W Several alternative
approaches
¥ Needs semantic 1 1 | [ o B
model for fallyres _ | "’i‘“ | Fﬁ\“ e
and propagation = =
M Several challenges e ot
¥ Scale, intelligibility of o |

output, trust in tools
¥ Requires integration

=0 =0

Ada Europe - 28 THE UNIVERSITYQ]CM



Integration

® Need (at least)
® Notational integration
® Method/process integration (development and safety processes)
¥ Toolset integration

® Notations
W Expressive enough to cover all properties of interest
H A “single” notation, or related views

® Architecture Analysis and Definition Language (AADL)
® Developed out of work by Honeywell and US Army

® Good concept, with growing support
€ Notation, tools and SAE standard

H Potential for timing / reliability / safety analysis
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Process and Toolset Integration

® Most tools are quite specialised
¥ Do some things well

¥ Don’t address all relevant issues, e.g. don’t model all of the
architectural properties, and are unlikely to address all

Functional

® Need to set up

® Process models, to
link activities

B Data models, to link
notations and to
provide traceability

. TOOI infrastructu re Configuration Management

that realises links ——
including impact —
analysis HIS V-Model

Software
Integration

Software ’g
vEst Engineering
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Conclusions

® Model-based development important for future safety
critical software developments
¥ Believe this will become the norm, in time

® So, is this the end for program level analysis?

® No

¥ Currently, program level toolsets, e.g. SPARK Examiner better
developed than modelling tools — for safety critical software

B Much code generation will be linking pre-defined code modules
¥ These modules need to be developed and verified
¥ Continued challenges in compositional verification

® Model based development will shift balance ...
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