
Copyright © 2007 FZI Karlsruhe kmg

RST‘07, 26-June-2007
„Challenges for reliable software design
in automotive electronic control units“

Prof. Dr.-Ing. Klaus D. Müller-Glaser

FZI
Forschungszentrum Informatik
an der Universität Karlsruhe

Copyright © 2007 FZI Karlsruhe kmg

Contents

Characteristics of Automotive Electronic Control Units (ECU)
State of the art in ECU design

Typical Design Flow, V-Model
Manufacturer Supplier Relationship

Model Based Design
Heterogeneous models
CASE tool integration platform
Tool chains

ECU Design Challenges
Complexity, Flexibility
Open Systems and Standards
Software Redistribution
New System Level Design Tools

Conclusions

Copyright © 2007 FZI Karlsruhe kmg

System under Design: automotive electronic control units
Characteristics: distributed system,

complex distributed functionality
in a premium class car
up to 80 computers (Electronic Control Units ECU)
> 100 Electrical Motors, > 2 km Wiring
millions of lines of code

courtesy DaimlerChrysler AG

Control Unit
Suspension

Control Units for
Engine, Transmission

and ESP

COMMAND und
Air Conditioning

Control Units for
TELE-AID, PARKTRONIC
und LINGUATRONIC

CD-Changer und
Sound System

Optical Data Bus
D2B

CAN Data Bus Class BCAN Data Bus Class CInstrument Panel

Copyright © 2007 FZI Karlsruhe kmg

Mechatronic Example:
Hydraulic
Brake System

Benz

Characteristics: distributed, mechatronic

ECU’s are part of
mechatronic systems for
measurement and control

Software
is part of
ECU

Copyright © 2007 FZI Karlsruhe kmg

Characteristics: distributed, mechatronic, hard real time

Hard Real Time Constraints

Example:
Airbag Control
Unit

Copyright © 2007 FZI Karlsruhe kmgBenz

General structure of an ECU

Microcontroller
DSP

Real Time Operating System

Communication with
other Systems

Communication with
other Systems

Po
w

er
 S

up
pl

y

Sy
st

em
 C

on
tr

ol

optical

mechanical

thermal

electrical

magnetic

A
ct

ua
to

rs
Se

ns
or

s

R
ea

l e
nv

iro
nm

en
t

Analog
signal

processing

Analog
signal

processing

Digital
Signal

Processing

Digital
Signal

Processing

Sp
ec

ia
l i

nt
er

fa
ce

s

Power electronicsPower electronics

Copyright © 2007 FZI Karlsruhe kmg

Complex Communication (e.g. Audi A8)

Courtesy Volkswagen/Audi

4 application domains for ECUs:

Power train: mainly closed loop control functions
Chassis control: mainly closed loop control functions
Body electronics: mainly reactive, event driven functions
Infotainment: mainly reactive, event driven functions

software intensive >>100k LOC

Copyright © 2007 FZI Karlsruhe kmg

Mechanics/Electrics-CoDesign (Digital Mockup - DMU)

The State-of-the-Art DMU technology provides the basis for the
mechanical integration and optimization

of EE components (ECU’s, batteries, wiring harness, ...)

Copyright © 2007 FZI Karlsruhe kmg

Embedded electronic systems in a car

Relatively high production volumes (5.000 – 1.000.000)
High number of variants (car families, countries, customers),
Reusability
tough operating conditions

Temperature range: -40°C … +125°C … +175°C
Supply voltage: 6V … 14V … 28V … (42V)
Mechanical stress: acceleration, vibration
Chemical stress: humidity, oil, exhaust gases, road salt …
Electromagnetic compatibility

High reliability: << 1ppm/h Failure rate
Performance, Reliability, Safety, Security, Costs, Weight, 3D shape and volume
Energy Consumption (5% of fuel for EE-Systems)
Diagnosis and Maintainability (Service, Updates, Lifelong-Guaranty)
Long term availability: > 15 years

Copyright © 2007 FZI Karlsruhe kmg

Automotive Electric/Electronic Systems

More than 30% of production costs
for a passenger car

is for electric/electronic systems
(up to 40% by 2010)

90 % of all innovations are
based on electronic systems

Software part is increasing rapidly

Copyright © 2007 FZI Karlsruhe kmg

Automotive ECU: complex Design Process

Complex, distributed mechatronic system
with hard real time constraints

Design process shared between car manufacturer (OEM)
and several tier 1 suppliers

OEM defines features, sets up requirement specification
Supplier refines requirements specification, designs and delivers

optimized and verified subsystem
(complete mechatronic system including sensors, actuators,
ECU hardware and software)

OEM tests subsystem, integrates with other subsystems
and verifies and validates overall system

Complex design process

Copyright © 2007 FZI Karlsruhe kmg

Hierarchical Organization of Design Processes

System
Specification

System
Simulation

Development of
HW /SW

Specification

Prototype
Development

Calibration
Vehicle

Validation

Release to
Manufacturing Manufacturing

Functional
Test Service

HW
Design

HW
Simulation

Prototype
Assembly

Design
Verification

Release to
Manufacturing Manufacturing

Functional
Test

Autocode
Prototyping

SW
Coding

Static and
Dynamic Test

Development of
Control Algorithms

and Onboard
Diagnostics

Car program
requirements

Emission laws
Strategic

requirements

10s + 10
s+5+-

+

Specification and Design Manufacturing Service

Mechatronic
Vehicle
System

Electronic
Control
Unit (HW)

Embedded
Realtime
Software

void main()

{...}

void initialization()

{...}

static void control (input, states, output)

{...}

multiple
interleaving design processes

Concurrent Engineering
distributed between OEM and Tier 1 Suppliers

Copyright © 2007 FZI Karlsruhe kmg

Complex Manufacturer Supplier Relationship

Car manufacturer controls system design and system integration
different „Business-Models“ for software and hardware development

by tier 1 suppliers

Require-
ments
Specifi-
cation

Function
Analysis,
Design &
Modelling

Logical
System
Integration

ECU
Developm.
Integration

Physical
System
Integration

SW / HW
Supplier

Software
Supplier

Car
Manufact.

Hardware
Supplier

SW / HW
Supplier

Car
Manufact.

Car
Manufact.

Car
Manufact.

Concurrent Engineering
distributed between OEM and supplier

Quality Assurance requires
comprehensive life cycle model (V-Model)

strictly controlled design methodology
supporting computer aided design tools

Copyright © 2007 FZI Karlsruhe kmg

Design Methodology - a Lifecycle Process Model

Lifecycle Process Model

V-Model
Development Standard for IT-Systems

of the Federal Republic of Germany

http://www.v-modell.iabg.de

Copyright © 2007 FZI Karlsruhe kmg

V Model: 4 sub models
Four sub models are closely linked to one another and influence each other
concerning the exchange of products/results.

Configuration
Structure

Planning and
Controlling the Project

PM

SD

QA CM

Plan Data Actual Data SDE

SDE

QA
Result

Actual
Data

QA Requirement

Product

Product
Development

Specification of
QA

Requirements

Product
Assessment

Administration of
Products/

Rights

Planning Product
Structure

Plan
Data

SDE SDEPlan
Data

Plan
Data

Actual
Data

Actual
Data

Product

Rights

Setting up Prerequisites
and Availability of Software

Development Environment (SDE)

Cooperation of Submodels

PM plans, controls and
informs the SD, QA and
CM sub models.

QA specifies quality
requirements, test cases
and criteria, and examines
the products and the
compliance with the
standards

CM administrates the
products generated

SD develops the system
or the software.

Copyright © 2007 FZI Karlsruhe kmg

System oriented
Process steps

Application Software
oriented Process steps

ECU oriented
Process Steps

SW-Design

Applic.-SW
Analysis

System
Design

ECU
Design

System-
Analysis

Car
Integration

Network
Integration

ECU
Analysis

ECU
Implement.

ECU
Integration

Software
Integration

Software Implement.

V-Model for automotive ECU‘s

Courtesy ETAS

Copyright © 2007 FZI Karlsruhe kmg

ECU Software Development

Automotive V-Modell accord. to Bortolazzi (DaimlerChrysler)

Software Implementation
Coding/Compile/Link

Calibration/Data Processing
Software Documentation

System Test
Vehicle Test

Integration Test

Module Test
static

dynamic

SW Implement. Design
Implementation Model

Refined Functional Specs
Module Level Test Cases

SW Architecture Design
Interface Definition

Resource Allocation
Timing Design

Software Requirements
Physical Function Model

Functional Specs
System Level Test Cases

System Design
System Specification

System Requirements
System Specification

System
Requ

Review

Spec.
Review

SW
Architect.
Review

Impl.
Design
Review

Software Subsystem
Integration

Integration of the SW Parts
from DC/Supplier

Software Integration
Integration of the
SW Subsystems

System Integration
Integration of the

Software on the ECU

Approval for Production
Software Release

Data Release

SW
Release
Review

Implement
Correctly

Capture
Exactly

Evaluate
Completely

Code
Review

OEM

Supplier

Copyright © 2007 FZI Karlsruhe kmg

System specification as basis for cooperative design process

Costumer-
Order

System
Specification

System
Design

Module
Design

Implementation SW
Realization HW

Module
Test HW/SW

Subsystem
Test HW/SW

System-
Integration, Test, Application

Delivery
to costumer

expensive iteration
cycles due to
- incomplete
- wrong
- ambiguous
- inconsistent

system specification
Formal Specifications, executable,

Model Based Design

Copyright © 2007 FZI Karlsruhe kmg

prime error source: requirements specification

More than 40% of system faults originate from errors
during requirements analysis and management , costly when late repair...

28%

5% 5% 6% 7%

2%

42%

6%

Requirements
Errors

Logic
Design

Document-
ation

Human

Environment InterfaceData Other

Sheldon, et al
IEEE Software, July 1992

Percentage of errors classified by problem
type on a large IT project

Copyright © 2007 FZI Karlsruhe kmg

System Integration
Calibration, Application
Transition to Utilization

Typical Design Flow

Rapid Prototyping
Hardware Platform
Code Generation

Real Time Operating System
configurable Interfaces

HW/SW-Implementation
Integration

W-Modules, Data Dictionary, SW-Comp
HW-Component, HW-Module
HW-Realization Documents

&

&

&
&

Detailed HW/SW-Design
SW-Design, Data Dictionary

HW-Drawings
HW-Analysis Report

PROCESS (schlupf, state)
BEGIN

CASE state IS
WHEN freilauf =>

IF schlupf > 0 THEN
next_state <=

bremsen;
ELSE

HW/SW-Requirements Analysis
Preliminary HW/SW-Design

HW-Architecture, SW-Architecture
Interface Description

FreiFrei

BremsenBremsen

Rad 1 Rad 1

ASR KontrolleASR Kontrolle

Rad 1

Bremsen

Frei

Rad 2

Bremsen

Frei

Idea System-Analysis
executable Specs
System Design

model based
Customer Requirements
Technical Requirements
Real Time Requirements

System Architecture
Simulation, Verification

Copyright © 2007 FZI Karlsruhe kmg

ECU development for passenger cars: 3 Prototypes

concept-oriented
Rapid Prototyping
(A-Muster)

architecture-oriented
Rapid Prototyping
(B-Muster)

Implementation-oriented
Rapid Prototyping
(C-Muster)

Requirements-
Analysis

Life Cycle-
Analysis

System
Specification

System
Design

Subsystem
Design

Module
Design

System-
Implementation

Module
Test

Subsystem
Test

System
Test

System
Delivery

Prototype

Prototype

Prototype

Copyright © 2007 FZI Karlsruhe kmg

Verification and Validation

Copyright © 2007 FZI Karlsruhe kmg

Design Challenges

"Smart Systems" - Engineering
complex, distributed, heterogeneous, HW and SW
technology road maps spectacular
however, design gap gets larger

Smart - "Systems Engineering"
design methodology
early system design phases most important
model based design, executable specification

rapid prototyping, hardware in the loop
productivity (reuse, automatic code generation)
enhanced design quality

system level modeling and simulation

promising approach

Model Based Design

Copyright © 2007 FZI Karlsruhe kmg

Model Based Design - graphical descriptions preferred

Closed Loop Control

Reactive Systems

Performance Analysis

Copyright © 2007 FZI Karlsruhe kmg

Model Based Design:

System
Environment-

Model

Stimuli-
Model System-

Model
(MUT)

Analysis-
model

(expected
responses)

Models for Executable Specification and Analysis
(Simulation)

Copyright © 2007 FZI Karlsruhe kmg

Modeling

Modeling for complete system including system environment
(ECU, car, driver, road, weather conditions)

Domain specific models for Subsystems and Components
(closed loop control, reactive systems, software intensive systems)

Different abstraction levels, Parameter variation and boundaries
(functional and non-functional data for early design space exploration)

Use of characterized libraries (reuse, variant design)

Macro modeling

Model verification through extensive testing

Model characterization

Model documentation

Meta modeling

Copyright © 2007 FZI Karlsruhe kmg

Challenges for Modeling

Domain Specific Modeling Languages
Model Synthesis
Model Validation
Model Transformation
Executable Models
Automatic Generation of Product Artefacts

Meta-Modeling
Tools on Meta-Model-Level
Integration of Domain Specific Tools
on Meta-Level

Generic Modeling-Platforms

Copyright © 2007 FZI Karlsruhe kmg

Meta-model based design (Sztipanovits, Karsai: Vanderbilt University)

Copyright © 2007 FZI Karlsruhe kmg

Modeling for heterogeneous electronic embedded systems

Architecture
Modelling with UML

Rhapsody in C++ (i-Logix)
Statemate (i-Logix)
Stateflow (The MathWorks)
ASCET (ETAS)

Event driven
Modelling with state charts

Buffer::Buffer SocketListItem
1 *

outputBuffer 1

ProcessorBuffer

BatchController

SocketListItem

inputBuffer

1 *

1

Idle Sending Waiting_For_Repeat

Waiting_For_Ack

evRepeat[myCondition]

evBusy
evAck /Action1()

Idle Sending Waiting_For_Repeat

Waiting_For_Ack evBusy
/Action1()

ASCET (ETAS)
MATLAB/Simulink (The MathWorks)
MATRIXx (National Instruments)

Signal flow oriented
Modelling with block diagrams

Real-time Studio (ARTiSAN)
Rhapsody in C++ (i-Logix)
Rose (Rational Software, IBM)
Together (Borland)
Poseidon (Gentleware)
MagicDraw (NoMagic)
Ameos (Aonix)
TAU2 (Telelogic)

Heterogeneous modeling requires integration platform
e.g. ETAS Integrio, Vector DaVinci

Copyright © 2007 FZI Karlsruhe kmg

Compiler / Linker / Make

Matlab/Wrapper
Generator

JAVA

C

Matlab/Wrapper
Generator

JAVA

Matlab
Automation

JAVA

Matlab
Embedded Coder

DCOM

Target platforms (RTOS)

ITIV/FZI Tool integration platform (model transformation)

GeneralStore CASE-Tool Integration Platform

Template
UML Coder

XMI

C
++

...
generator

other
commercial

code generators

XMI2XX

C
/C

++

CG-Adaptor

Rhapsody in
MicroC

automation

JAVA

MicroC

XMI

C

JAVA

Target-Monitoring
Model Debugging

Test

Matlab/Wrapper
Generator

JAVA

Matlab/Wrapper
Generator

JAVA

Matlab Wrapper
Generator

JAVA

Statemate Wrapper
Generator

JAVA

Model Data
MySQL, ORACLE

SQL

MATLAB
Simulink

MDL

MATLAB
Simulink
Stateflow

MDL

ASCET

XMI XMI 1.0, XMI 1.1, XMI 1.2

Rhapsody

Poseidon

MagicDraw

Together

Rose

ARTiSAN

AONIX

Statemate

new challenge

Copyright © 2007 FZI Karlsruhe kmg

Meta-Modeling 4 Abstraction Layers (OMG standard)

real

abstract M3 layer MOF

M2 layer UML 1.5 UML 2.0 MATLAB
Simulink

Statechart
(D. Harel)

M1 layer UML
Model

Statechart
Model

Simulink
Model

M0 layer Objects Data Source
code

Real artefacts

Copyright © 2007 FZI Karlsruhe kmg

Tools Chains used at ITIV/FZI

VHDL / Verilog

Mentor Graphics u.a.

ALTERA
Quartus-II

Xilinx
ISE 5.2

ALTERA
Stratix

Xilinx
Virtex-2/Pro

Mentor Graphic, Protel DXP u.a.

MATLAB/Simulink

ALTERA
DSP-Builder

Xilinx
System

Generator

dSPACE
TargetLink

MPC555
TriCore

OSEK/VDX

Statemate

R-in-uC

MPC555
TriCore

OSEK/VDX

UML-Tools

CG

MPC555
AT91

uC/OS

C-Code VHDL-Code VHDL-Code C-Code C/C++-Code

Copyright © 2007 FZI Karlsruhe kmg

ITIV/FZI Tool Chains (Automotive) Verification Support

MATLAB/Simulink

dSPACE
TargetLink

MPC555
TriCore

OSEK/VDX

Statemate

R-in-uC

MPC555
TriCore

OSEK/VDX

C-Code C-Code

ETAS ASCET-
SD

TIP

MPC555
TriCore

OSEK/VDX

C-Code

POLYSPACE C-Verifier (MISRA-C, DO-178B)

Copyright © 2007 FZI Karlsruhe kmg

Tools used for ECU design

specification support (Doors, QFD/Capture)
reactive systems (SDL, Stateflow, Statemate)

closed loop control systems (ASCET-SD, Matlab/Simulink, MatrixX)

software systems (Real-time Studio, Rhapsody in C++,
Rose, Together, Poseidon, MagicDraw,
Ameos TAU2)

performance analysis (SES/Workbench, Foresight)

ASIC Design (Cadence, Mentor, Synopsys)

rapid prototyping, HiL (dSPACE, ETAS, IPG, Quickturn)

tolerance analysis (Rodon)

application, test, diagnosis (ETAS, Hitex, Vector, RA)

C-Verifier (PolySpace)

Copyright © 2007 FZI Karlsruhe kmg

Design Challenges: Automotive ECU

Complex, distributed mechatronic system
with hard real time constraints

Design process shared between car manufacturer (OEM)
and several tier 1 suppliers

OEM defines features, creates specification model
Supplier develops specification model into

implementation model, does analysis and design,
verification and validation, builds and tests,
finally delivers optimized subsystem to OEM
(Sensor, Actuator, ECU hardware and software)

However,
Still increasing complexity (more comfort and safety functions

coming)

Copyright © 2007 FZI Karlsruhe kmg

EUCAR: Active Safety – System Integration

ACC
S&G
etc

Lane
departure
warning

Brake
assistant

Emergency
braking
system,
Collision

avoidance

Pedestrian
airbag

Crash
severity sensing
for ignition levels
and belt tension

Emergency/
Mayday
SystemsA

D
A

SE

Basic Vehicle Safety Occupant Protection

Collision Avoidance

Pre-Crash Phase
Rescue

Normal
Driving

Warning
Systems

Assistance
Systems

Automatic
Safety

Systems

Safety
Systems

for
minimal
crash

Safety
Systems
soft level

Safety
Systems

hard level Safety
Systems

after Crash

1.
2.

3. 4.

5.

6.

7.

Passive Safety

Active Safety
Crash Probability

Le
ve

l o
f c

rit
ic

al
 s

af
et

y
si

tu
at

io
ns

Holistic Safety Approach

Crash

Challenge: new safety functions

Copyright © 2007 FZI Karlsruhe kmg

Future systems

Copyright © 2007 FZI Karlsruhe kmg

Active Safety: Next Generation Technology

Variety of mechanical, radar, video sensors
to provide optimum of crash avoidance, crash detection

Plus future car2car, road2car, TMC2car communication
forming highly dynamic, reconfigurable sensor/actor networks

Copyright © 2007 FZI Karlsruhe kmg

Distributed ECU’s in cars - design challenges

Still increasing complexity (more comfort and safety functions coming)

number of ECU’s must not increase, should decrease!
less, but more powerful HW platforms (8, 16, 32-bit µC)
eventually new, more flexible architectures
(e.g. dynamically reconfigurable?!)

Copyright © 2007 FZI Karlsruhe kmg

Typical automotive micro controller architecture

Running
the
standard
operating
system
OSEK/VDX

Motorola M683xx
Motorola HC08,12
Motorola MPC5xx
Infineon C16x
Infineon TriCore
Hitachi SH2
Hitachi H85/26xx
TI TMS47OR1
Mitsubishi El. M32R

Copyright © 2007 FZI Karlsruhe kmg

Dynamic reconfiguration of a FPGA module slot

Bus system
Arbiter

ICAP/
Decompressor

CAN-
Anbindung

Slot 3Slot 2Slot 1Slot 0
MicroBlaze

(Runtime system)

Copyright © 2007 FZI Karlsruhe kmg

Dynamic reconfiguration of a FPGA module slot

Bus system
Arbiter

ICAP/
Decompressor

CAN-
Anbindung

Slot 3Slot 2Slot 1Slot 0
MicroBlaze

(Runtime system)

Copyright © 2007 FZI Karlsruhe kmg

Distributed ECU’s in cars - design challenges

Still increasing complexity (more comfort and safety functions coming)

number of ECU’s must not increase, should decrease!
less, but more powerful HW platforms (8, 16, 32-bit µC)
eventually new, more flexible architectures
(e.g. dynamically reconfigurable?!)

Given new hardware platforms requires redistribution (mapping) of
software onto fewer hardware platforms

Easy redistribution only possible with open system architecture
(standardized communication, standardized RTOS)

Copyright © 2007 FZI Karlsruhe kmg

Evolution of hardware/software architectures in a car

Evolution led to open system architectures with modular software architecture:
Milestones: CAN, OSEK/VDX, (AUTOSAR)

1.
Add-on

2.
Networking

3.
Integration

4.
Vehicle Module

Orientation

CAN-Bus
Architecture

Open System
Architecture

Client-Server-
Architecture

ECU

ECU

ECU

ECU

ECU

ECU ECUS

S

S

Sensor Actuator
Electronic

Control
Unit

A

A

A

S
A

S
A

Sensor

Actuator

Vehicle specific
data bus

S
A

S

S
A

A

Standardized
software modules
(OSEK/VDX)

ECU

ECU

S
A

A
S

Smart
Sensor

Smart
Actuator

ECU
(highly
integrated)

Standard
Vehicle
Processor

Module
specific
integration

Copyright © 2007 FZI Karlsruhe kmg

Architecture Real Time Operating System OSEK

Copyright © 2007 FZI Karlsruhe kmg

AUTOSAR

AUTOSAR RTE:
Specification of interfaces and communication

mechanisms
separate application programs
from underlying ECU HW and
Basic SW

Automotive Open System
Architecture (AUTOSAR):

standardized and
open interfaces

HW– independent SW-comp.

enables standard SW-
function libraries

* z. B. : OSEK, QNX, VxWorks, Windows CE, …

Copyright © 2007 FZI Karlsruhe kmg

Desired

Basic
Functions

Additional
Functions

Reuse of Designs
Reuse and maximum usage of Hardware
Reuse of Software
Reuse of Validation and Verification

Courtesy ETAS GmbH

Copyright © 2007 FZI Karlsruhe kmg

Goal (AUTOSAR)

Vehicle B

Hardware B

Goal:

Automatic
Code Generation

Hardware A

Mapping B

Functional
Integration

Vehicle A

Seat Adjustment A

Seat Adjustment B

Lighting

Seat Heating A

Seat Heating B

Air Conditioning

Function Library

ECU Library

Mapping A Quality Assured
Software Function Library

Quality Assured
Hardware Platforms
Library

Copyright © 2007 FZI Karlsruhe kmg

Challenge

Algorithm
Integration

C, C++
Matlab

SDL, SPW
Cossap

Functional
Network

Does the
functionally

integrated
design work

Executable
Functional

Specification un
lim

ite
d

mapping

Architecture
Performance

CPU, DSP
Bus, I/O

Memory, HW
SW, RTOS

Unambiguous
Structure

Pe
rf

or
m

an
ce Are

Partitioning &
Performance
Sufficient?

Executable
Performance
Specification

detailed designAlberto Sangiovanni Vincentelli

Copyright © 2007 FZI Karlsruhe kmg

Another Challenge: Upcoming X-by-Wire Systems

Delayed for 4 to 5 years

First driver assistance systems overruling driver
currently being introduced (truck emergency brake system)

EN 61508 norm for safety critical electronic control systems not yet
finally adapted for car industry.

System Redundancy required:
HW redundancy: sensors, actuators, ECU’s, busses (Flexray) doubled
Information redundancy: error detection/correction codes used
Time redundancy: all messages send twice on each bus
Software Redundancy: two version programming?!

Certification required as in aerospace industry?

Copyright © 2007 FZI Karlsruhe kmg

Aircraft-Level FHA

PSSAs

SSAs

System-Level
FHA Sections

Aircraft-Level
Requirement

Allocation Aircraft
Function to Systems

Development of
System Architecture

Allocation of
Requirements
to HW & SW

System
Implementation

Safety Assessment Process System Development Process

Certification

Aircraft Functions

Failure Conditions, Effects, Class., Safety Requ.

System Architecture

Item Requirements

Results
Physical System

CCAs

Failure
Conditions
& Effects

Separation
Requir.

System Functions

Failure Cond., Effects, Class., Safety Objectives
Architectural Requirements

Implementation
Separation
& Verification

Safety critical aerospace ECU development

Stefan Benz

Development Standard SAE ARP 4754

Aircraft-Level FHA

PSSAs

SSAs

System-Level
FHA Sections

Aircraft-Level
Requirement

Allocation Aircraft
Function to Systems

Development of
System Architecture

Allocation of
Requirements
to HW & SW

System
Implementation

Safety Assessment Process System Development Process

Certification

Aircraft Functions

Failure Conditions, Effects, Class., Safety Requ.

System Architecture

Item Requirements

Results
Physical System

CCAs

Failure
Conditions
& Effects

Separation
Requir.

System Functions

Failure Cond., Effects, Class., Safety Objectives
Architectural Requirements

Implementation
Separation
& Verification

Copyright © 2007 FZI Karlsruhe kmg

Distributed ECU’s in cars - design challenges

Still increasing complexity (more comfort and safety functions coming)

Today’s E/E architecture in a car is characterized by an assembly of
(too) many locally optimized subsystems

Only OEM can go for global optimum

new system level design exploration tools are required

Copyright © 2007 FZI Karlsruhe kmg

EE-Architecture alternative solutions

Copyright © 2007 FZI Karlsruhe kmg

Tools to support architecture based development process

Courtesy J.Bortolazzi, DC

Copyright © 2007 FZI Karlsruhe kmg

Requirements for new system level tools

Model based design as a basis.
Is accepted in research and predevelopment, not yet standard
in ECU development

Design space exploration means
distribution of hardware and software under consideration of
sensor/actuator locations
computation performance as well as communication performance
Co-design not only for hardware and software but also
function, safety, security

Metrics and parameters used are domain specific
therefore, domain specific system level tools are required
interfacing seamlessly with component specific tools (meet in the middle).

A lot of model transformations are required

Copyright © 2007 FZI Karlsruhe kmg

Architecture Layers in Concept Development

Copyright © 2007 FZI Karlsruhe kmg

Abstraction Layers

Feature Function Network

List of Features

Functions Network

Components and Networking

Topology

FL

FFN

FN

KN

TOP

To
p-

D
ow

n-
D

es
ig

n

B
ot

to
m

-U
p-

D
es

ig
n

Which features?

Detailed Specification of
Functions architecture

Comp. Architecture
Network Infrastructure
Power Distribution

Topology
wiring harness

What is the concept
behind the features?
How do they interact?

Copyright © 2007 FZI Karlsruhe kmg

Abstraction Layers

Typical domain specific views

Features

Functions

Components

Component locations and wiring

Design space exploration
needs domain specific metrics
and parameters

Copyright © 2007 FZI Karlsruhe kmg

Abstraction layers of new EE-concept tool
Customer Requirements

Functions-Architecture

-Feature-Architecture

Features

Component-Network Architecture

(MAP)

Electronic

HW

SW

Feature-Function Type Builder

Requirem.

Electric

Physics
Geometry

(MAP)

(MAP)

(MAP)

Feature-Function Network Edit.

Function Type BuilderFunction Network Editor

Signal Editor

Network Editor Component Editor

Power Distribution Editor Demand View

Cluster View

Physical Architecture

Topology Editor

Cable Harness

Copyright © 2007 FZI Karlsruhe kmg

60

Overview EECT
EECT is development name for “Electric/Electronic Concept Tool”
A prototype of EECT was developed in co-operation of FZI and

DaimlerChrysler AG
Commercial version by aquintos GmbH
Release 1.0 was released December 2006, availability to General Market

Some Benefits of the EECT
Support for concept evaluation of E/E-Systems in early design phases
Complete meta-model for the description of automotive E/E-Systems
Special diagram notations for Layers

• Feature List, Feature Functions Network, Function Network,
Components, Topology, Cable harness

Metrics interface for calculation of E/E-architectures
Variant Management
Interfaces to different industrial standards: Fibex, DBC, etc.
Documentation

Copyright © 2007 FZI Karlsruhe kmg

61

Evaluation / Calculation of the EE Concept

User defined metrics are supported
Metrics are implemented in Python
Metrics examples:

Count metrics
• Weight
• Volume
• Space
• Networking Complexity

Costs
Power calculation

Copyright © 2007 FZI Karlsruhe kmg

62

Highlights of Model-to-Model-Technology

Optimized Transformator-Engine with Interfaces to
ETAS ASCET® (>= 5.1)
The Mathworks MATLAB®/Simulink®/Stateflow® (R13 – R16)
Fully integrated in PREEvision (for model consistency checks, variant
propagation…)

Model-based Specification of Transformation Rules
Rule Set modeled with UML
Maintainability, Readability
Automated Code Generation of the
Rule-Set, no manual design process behind

Purpose of M2M Transformation
Model data migration
Model-Refactoring
Model-Optimization
Model-Verification

M2ToS

Copyright © 2007 FZI Karlsruhe kmg

63

M2M Engines Architecture

Rule4
Rule3

Rule2

Importer Transformator Exporter

Rule-Model
UML

Source Model
Tool A

Target-Model
Tool B

<<metamodel>>
Source-Metamodel

<<metamodel>>
Target-MetamodelRule1

LHS RHS

Instance of Instance of

Copyright © 2007 FZI Karlsruhe kmg

EE-Architecture Concept Tool PreeVision (www.aquintos.com)

Tool-Framework for Development
using Eclipse-Basis

Extensibility
Open API

Supports Model Exploration
Model Management

Multi-User (Database)
Single-User (File-based)

Variant Management
Kernel based on
pure:systems technology

Export / Import Filters
DBC
FIBEX
KBL
MATLAB/Simulink
UML ARTiSAN Studio

Report Generation
BIRT Technology
User Configurable Reports

Metric-Interface
Python, alternative Java API

Graphical Editors
Variants Management

MySQL® Oracle®

Model-Data Backbone

E³.cable

Microsoft EXCEL

Telelogic Doors

Open API & M2M

Documentation
Analysis,
Metrics

Excel

Word

Multi-User (DBMS) / Single-User (XML-File)

Simulink u.w.

Copyright © 2007 FZI Karlsruhe kmgBenz

System Level Tool Support

Microcontroller
DSP

Real Time Operating System

Po
w

er
 S

up
pl

y

Sy
st

em
 C

on
tr

ol

optical

mechanical

thermal

electrical

magnetic

A
ct

ua
to

rs
Se

ns
or

s

R
ea

l e
nv

iro
nm

en
t

Digital
Signal

Processing

Digital
Signal

Processing

Power electronicsPower electronics

Communication with
other Systems

Communication with
other Systems

Analog
signal

processing

Analog
signal

processing

Sp
ec

ia
l i

nt
er

fa
ce

s

Not seamless somehow satisfying support: standard hardware platforms, software, RTOS, Sensors und Actuators

Copyright © 2007 FZI Karlsruhe kmg

• What system level tools should provide
Documentation (readable for men, specific for application domain)
Data exchange between all designers across company boundaries
Data exchange between computer aided tools supporting distributed
databases
Intellectual Property, reusable in libraries
Parameterized for variant design
Supporting standards and guidelines (e.g. HIS, Autosar)
Testable (Fault models, automatic Model validation), quality assured
(automatic generation of test pattern and test bench) and documented
(what is modeled, but also what is not modeled)
Seamless in design flow
(Analysis, Design, Verification, Integration, Validation, Test, Application,
Diagnosis)
Reviews, Rule Checking, Simulation, Formal Verification, Model Checking
Synthesis, automatic, interactive optimizing (e.g. RP-Code, Production Code)
allow access for automatic parameter-extraction

Conclusion (1)

Copyright © 2007 FZI Karlsruhe kmg

Conclusion (2)
Design studies show:
• Model based methodologies and tools are well performing and promising
• Seamless design flow only partially given (e.g. digital hardware, software).
• Interfaces for Modeling, Simulation, Characterization mostly manual
• hard problem for design of embedded systems

Cross sensitivity of Components (insufficient characterization)
Safety, Security, Function-Codesign
According modeling is really time and cost consuming
Mixed-Mode, Multi-Level-Simulation required
Formal Verification und Validation not possible?!

• Non functional requirements
• Time-, frequency- und parameter-domain

Module / System-Integration und –Test
Cross-sensitivities, EMC, Certification

Model based system design is possible,
but there are many design and analysis steps still missing, especially in early
design phases.

Copyright © 2007 FZI Karlsruhe kmg

Conclusion (3)
Industrial design practice shows:
• Challenges for the design of embedded systems

many modeling techniques from computer science not adequate:
FSM, Hybrid Automata, LSC, MSC, Petri nets, process algebra, Statecharts,
Temporal Logic, Timed Automata, Z …
Is academic willing to prove their research results for real designs?!
Seamless flow required with respect to industrial life cycle processes, therefore
support of standard interfaces must be done also by academics
There exist large libraries in different description methodologies that can‘t be
neglected
There exist standard RTOS (OSEK/VDX) and bus systems
There exist tight cost boundaries
New algorithms and tools must be made commercially available
Engineering constraints, adequate description methods according to
De-Facto-Standards (tools) must be obeyed: Matlab, ASCET, Statemate, Doors,
Saber, VHDL, C, Assembler
Formal methods are not yet scaling for many real industrial problems
Required from industry: availability of real requirements, constraints, cost
numbers etc. for research

• Required: more close cooperation between system manufacturer,
(tier 1) suppliers, EDA companies and academics

Copyright © 2007 FZI Karlsruhe kmg

Questions

Thank you very much
for your attention

Contact:
Klaus Müller-Glaser
Universität Karlsruhe, ITIV
kmg@itiv.uni-karlsruhe.de

