Observation Rooms for Program
Execution Monitoring

Liviu Iftode
Department of Computer Science

Rutgers University

Distributed Computing Laboratory
(DisCo Lab) at Rutgers University

Focus on Network-Centric Systems
Two research areas

m Defensive architectures

m Pervasive computing
Defensive Architectures

m Self-Monitoring for Availability and Security
Pervastve Systems

m Distributed Embedded Systems, Vehicular Computing
People

m Ten graduate students

m Visiting students: Finland, France, India, Romania, Spain
International collabotations

m INRIA/IRISA, UPC Batcelona, University of Cyprus, University of
Helsinki, University Paris 6, Technical University of Bucharest,

FEESTOP: 0x000000D1 {0x00000000, 0xF7I120AE, 0xCO000008, 0xCO0Q0000)

A problem has been detected and Windows has been shut down to prevent damage
to your computer

DRIVER_IRQL_MOT_LESS_OR_EQUAL

If this iz the first time you've seen this Stop error screen,. restart your
computer. If this screen appears again, follow these steps:

Check to make sure any new hardware or software is properly installed. If thisis a
new installation, ask your hardware or software manufacturer for any Windows updates
you might need.

If problems continue, disable or remove any newly installed hardware or software.
Disable BIOS memory options such as caching or shadowing. If you need to use Safe
Mode to remorve or dizable components, restart your computer, press f8 to select

Advanced Startup Options, and then select Safe Mode.

TEY WXYZSYS - Address FT3120AE base at C00000000, DateStamp 36b072a3

Kernel Debugger Using: COM2 (Port Bx2f8, Baud Rate 19208H>

Beginning dump of phyzical memory

Phyzical memory dump complete. OContact your system administrator op
technical support group.

Why do we get the “Blue Window” ?

Software is too complicated for humans

Windows 1s too complicated for humans

Success 1s easier to measure for performance than for
reliability

Reliability is too expensive

Microsoft people do not attend this conference

Other reasons?

User Humiliation

m Rebooting is not a solution
m Destructive: it destroys state
m Disrupting: it takes time

m Offending: need the power button to “convince” the computer

to return to work

Frustration Scalability

m How to automatically detect a system failure, recover the
application state and resume it immediately on another machine?

2004: Mars Rover’s Incident

—

m There is no 100% software reliability even at NASA
m Rebooting does not always work
m How to handle the unexpected?

2005, FBI Computer Crime Survey

Pornography (child)
Website defacement

Wireless network misuse

Unauthorized access to the organizations
intellectual property/proprietary information

Telecom fraud
Financial fraud

none (skip to 18)

Network intrusion

Da$ (Denial of Service)

Insider abuse of computer
(pirated software/music)

Laptop/Desktop/PDA theft]

Source: 2005 FEI Computer Crime Survey

Pornography (adult)
Sahotage of data or network
Port scans

Spyware

Virus (including worms and trojans)

1 1
10% 20% 409 509 o 80% 90% 100%

Software Bugs Make Computers
Vulnerable

Vulnerabilities attract attacks

Damage spreads fast because attacks execute automatically
Intrusion detection is not enough

Early detection must be followed by automated containment
= Monitor system behavior to discover suspicious anomalies

= Hxecute containment actions automatically when attacks are
detected

Planetary-Scale Service Maintenance

Internet

9:00pm EST 2-00am GMT 11:00am JST

m Human operators, phone calls and emails are slow and do
not scale

10

Problem and Solution

Despite decades of research, computer programs
= continue to have bugs and fail
® remain vulnerable to various attacks
= require human intervention for healing

Defensive Architectures: augment computer systems with trusted
and standalone observation rooms tor

® Execution/Communication monitoting
m Failure prediction and detection
m Healing actions
Observation rooms
m Passive: monitoring

m Active: monitoring, diagnosis and healing

11

Observation Room Requirements

Isolated: external to the OS

Autonomous: without involving local OS
Non-intrusive: no need to change the OS or the network protocols
Highly available: work even when the OS fails
Trustworthy: OS cannot alter its functioning
Responsive: OS cannot indefinitely delay its operations
Efficient and scalable: low overhead

Accurate: few false positives

Comprehensive: few false negatives

Flexible: programmable

Easy to deploy

Distributed /Cooperative monitoring: Inter-room communication

12

Main Questions:

m How to implement an observation roon?

m Where to place it?

13

Outline

m Introduction

m Remote Observation Rooms (Backdoors)

m Virtual Observation Rooms (Paladin)

m Network Observation Rooms (FileWall)

m Observation Rooms for MultiCore Processors

m Conclusions

14

00

AL

15

A Hardware Backdoor

7

BD Network

m Programmable/intelligent network interface card (I-NIC)
connected to a high-speed private network

m Can access computer memory/resources without OS intervention

16

A Simple Defensive Architecture

Remote

Observation Room RS S e

17

A Sensor Box

m Collection of health indicators (sensors) in the target OS
memory used for monitoring

m <ID, Type, Threshold, Value>

Sensor Type Threshold

Level Max/Min value

e Rl
Max number of events

18

Failure Detection using Sensor Box

m Progress sensors: number of interrupts
m Target OS updates sensors continuously

m Monitoring thread from the remote observation room
read sensors periodically

m Failure = counter stalled beyond its deadline

m [false positive rate vs. detection latency tradeoff

Sensor Box

<Timer interrupts> Observation
<Context switches> Room
<NIC interrupts> Threads

Backdoor

19

Monitoring and Detection Using
Backdoor

20

Active Remote Observation Rooms

m Repair
m Identify damaged OS state
m Modify target OS memory to correct damaged state
m Recovery
= Continuation box: “essential” OS and application state
m Bxtract continuation boxes from the failed system and insert
them into healthy systems to resume execution
m Active remote observation rooms are intrusive

= OS must provide locking for backdoor access and
continuation box for remote state extraction

= Application must cooperate with the backdoor to allow state
synchronization

21

Diagnosis Using Backdoor

Externalized
state

22

Repair Using Backdoor

23

Case Study: OS State Repairing

m Damaged OS state : resource exhaustion, corrupted
data structures, compromised OS, etc.

B Resource exhaustion

m Attack, overload, system misconfiguration,
programming error

24

Example: A Memory Hog Process

m Program allocates memory in an infinite loop

= Both memory and swap space will be eventually exhausted
m The computer system freezes

= Cannot be accessed from console or the network

= Cannot spawn New Processes

= Cannot handle interrupts

® [ocal daemons cannot repair system

25

Observation Room Operations

[Monitoring

m Pressure sensor signals when severe low memory
condition 1s detected

® Diagnosis
m Target OS externalizes process table and process
memory usage statistics

= Monitoring thread identifies the culprit process
B Repairing
= Monitoring thread kills culprit by remotely writing a
“killing” signal on its signal table

26

Backdoor Prototype

m Implemented on Myrinet LanaiX NIC

m Modified firmware and low level GM library
m Modified FreeBSD 4.8 kernel

m Observation room is intrusive for repair/recovery
m Experimental setup

m Dell Poweredge 2600 servers with 2.4 GHz dual Intel Xeon,
1GB RAM, 2GB swap, Myrinet Lanai X NIC

27

Remote

Repair
/_)%

Repairing Timeline

Local cleanup of damaged state

Memory pressure
Il Detection
Il Diagnosis & Repair

I End of repair

28

Cluster Server Configuration with a
Backdoor Network

Interconnect

29

Remote State Monitoring and
Recovery

30

Remote State Monitoring and
Recovery

Server

31

Continuation Box Extraction

Continuation Recovered
[210)¢ State

Victim machine Recovery machine
(crashed) (healthy)

32

Client-Session Continuation Box

for Multi-Process Servers

I App. state
mmm Comm. state

Client 1

Client 2

Process 1 Process 2

33

Changes to Make Server Recoverable

while (cid = accept()) {

cbid = create_cb(cid)

if (import(cbid, &{file_name, offset}) == NULL) {
receive(cid, file_name)
offset =0

¥

fd=open(file_name)

seek(fd, offset)

while (read(fd, block, size) '= EOF) {
send(cid, block, size)
offset += size
export(cbid, {file_name, offset})

}
}

34

Case Study: Recoverable Multi-
ier Auction Server (RUBIS)

Front-End (FE)

Apache web server

Middle Tier (MT)

JBoss app. server

Back-End
MySQL DB server

35

Recovery 1s Fast

Recovery latency

/—/%

Detection Latency

36

Outline

m Introduction

m Remote Observation Rooms (Backdoors)

m Virtual Observation Rooms (Paladin)

m Network Observation Rooms (FileWall)

m Observation Rooms for MultiCore Processors

m Conclusions

37

Virtual Observation Rooms

Privileged VM

Observation
Room

Virtual Machine Monitor (VMM)
“

38

Virtual Observation Rooms (cont’d)

m Complete access to the guest OS and application state
m Virtual backdoors must be provided by the VMM
m Two implementations
m Asynchronous/Continuous Monitoring: similar to the remote

observation rooms

m Synchronous/Event- Driven: system call interception

39

Synchronous Virtual Observation
Rooms

VM1 Privileged VM

Application Application
Observation

sys call Room

Virtual Machine Monitor
“

40

Case Study: Rootkit Detection

m Rootkit: collection of tools used by the attack to hold
root privileges on the compromised system.

m Rootkit hiding mechanisms:
m Replace system binaries like ps and nefstar
m Replace shared libraries
m Replace entries in system call table
m Replace entries in interrupt descriptor table (IDT)
m Replace kernel text.
m Synchronous virtual observation room tasks:
m Detect intrusion

m Contain damage without restarting the system

41

Rootkit Example

m System call hijacking

sys_read(--.)
int mainQ)
{
read(...);

return(0)

System call table

42

Intrusion Timeline

Happens at time Manifests at time 2 Detected at time t3
t

Damage done to the system ————*
m Damage done to the system from t1-t3 needs to be discovered
and undone — typically done manually

m [deally intrusion should be detected at tl(Prevention)

= Easier for known attacks

m Hard for new/unknown attacks
m Intrusion Detection Systems (IDS)

= Move t3 closer to t2

m Jdeally move t3 close to tl

43

Observation Room for
Intrusion detection

Deftine protected zones
® [n memory
= On file system
Detect attempted illegal access to protected zones.

Track dependencies between processes and between files
and processes

Contain damage in progress using dependency information

44

Memory

Protected Zones

Kernel

Kernel
Text

Jum
Tablgs

Files

/bin
/sbin
/boot
/usr/bin
/usr/sbin

Service
Files

Core System
Utilities

Configuration
Files

Shared
Libraries

RD X
RD X
RD X
RD X
RD X

Fig 1: Protected Zones

/etc/passwd RD_ONLY
Fig 2: Sample policy file (protected files)

System call table
Interrupt descriptor table
Kernel text

Fig 3: Protected Memory Zones

45

Track Dependencies

m Infer dependencies
m Parent-child relationships between processes
® Dependencies between files and processes

m Store dependencies
® Dependency tree stored in a database

® Dependency tree must be kept small to allow fast
response

46

Dependency Rules and Tree

P1 creates P2
P2 exits

P1 creates P3
P1 creates P4
P3 creates F1
P4 creates F2
F1 is deleted

P4 exits

P1 exits

47

Automatic Containment

m Use dependency tree to locate the largest possible
malicious subtree that includes the process which
performed the malicious access

m Kill all processes from the malicious subtree to stop the
ongoing damage

m Many challenges

48

Containment Algorithm

Process Resident Set

Malicious Access

49

Prototype (Paladin*) on VMware

Guest Apps

Guest OS _

1
| Y

VMM

1 x
v |

Driver [*

Physical Machine

m Successtully tested against 27 rootkits available for Linux

50

Outline

m [ntroduction

m Remote Observation Rooms (Backdoors)

m Virtual Observation Rooms (Paladin)

m Network Observation Rooms (FileWall)
m Observation Rooms for MultiCore Processors

m Conclusions

51

FileWall: A Network Observation
Room for Network File Systems

“\"‘:"
—
—

m Tile system accesses translated into messages

File Server

m Passive FileWall: file system message monitoring
m Active FileWall
m Perform message transformations

m Implement file access policies and other file system extensions

52

Example: Temporal Access
Control using the FileWall

FileWall

Filewall Engine

l File Server

FS Client

CUR_TIME =6 PM ‘ . Policies

CUR_TIME <5 PM?

53

Example: Temporal Access
Control using the FileWall

FileWall

F|IeWaII Engine

: File Server
FS Client
CUR_TIME =4 PM

Policies

CUR_TII\/IE <5 PM?

54

FileWall Prototype

m FileWall
m Click Modular Router
m NES over UDP
m Policies
m Statistics Monitoring
m Temporal Access Control
= File Handle Security

m Client Transparent Failover

55

Interposition Overheads

NFS ===

Kemesl Tunnel ===
Tunne| -
FileWWall —

w
]
i
=
g
@

Y
M

|
a
7]
<
(=]
=
o
a

o

getattr lookup access read write rdplus

56

w
=
iy,
]
=
=7

2
(53]

=
2 k]
1]
53]
| -
[ni]
=

T

FStress Performance

NFS-300MHz
NFS-1200MHz
FileWall-300MHz
FileWall-1200MHz

N i ﬁ

-+

.

1000 1500 2000
Ciffered Load (operations(s)

57

Outline

m [ntroduction

m Remote Observation Rooms (Backdoors)

m Virtual Observation Rooms (Paladin)

m Network Observation Rooms (FileWall)
m Observation Rooms for MultiCore Processors

m Conclusions

58

Continuous Monitoring

MultiCore Architectures: an opportunity to trade performance

for reliability
m Observation room hosted on dedicated core
= Continuous monitoring
Application level monitoring
= Application threads (application cores)
= Monitoring thread (observation room core)
Monitoring thread

m Shares the address space and 1s co-scheduled with the
application threads

m Its local data is protected from the application threads
m Checks value-based invariants: (e.g. return addresses)
Asynchronous or synchronous monitoring

59

Conclusions

60

Online Monitoring Has a Role in

Software Lifecycle

Traditional

— —

Modern

— —

Redesign ﬂ@

61

Online Monitoring

Distance from the target OS and applications

 Backdoor

Monitoring granularity and overheads

62

What is an Observation Room?

Asynchronous/
Continuous Monitoring

Passive

Repair/Recovery

Synchronous/
Event Driven

Destroy/Restore

63

Our Observation Rooms

Hardware

Goal: Reliability Backdoors

External Monitoring and Adaptation

Paladin

Network

Goal: Extensibility FileWall

64

More Conclusions

Observation rooms can be placed at various distances
from the target: remote system, network, virtual
machine

Consume resources; trade some performance for
)
possibly extra reliability and security

Provide system survivability, complementary to existing
reliability solutions

Limitations: false positives and false negatives
Big challenge: observation room programmability

Big opportunity: multicore processor architectures

65

Thank You!

http://discolab.rutgers.edu

66

