
Dispatching Domains for
Multiprocessor Platforms
and their Representation

in Ada
Alan Burns and Andy Wellings

Reliable Software Technology – p. 1/26



Motivation
Multiprocessor and multicore platforms are
becoming widespread

For real-time systems the control of affinities
is as important as the control of priorities

Ada05 allows, but does not support,
multiprocessor execution

Reliable Software Technology – p. 2/26



Contents of Talk
Background

Scheduling – State of Art

Basic support

Current definition of support

Example

Conclusions

Reliable Software Technology – p. 3/26



Background

Identical, homogeneous, symmetric
processors - SMPs, MPSoCs

Assume basic OS support

Ideas developed at IRTAW14 – thanks to all
participants

Proposal focused by ARG

Presentation matches current proposal not
paper!

Reliable Software Technology – p. 4/26



Scheduling – State of
Art

Single processor scheduling is well
understood

Fixed Priority and EDF are mature
technologies – and supported by Ada

Multiprocessor state of art much less certain

For example:
EDF is not an optimal scheme
Rate/Deadline monotonic priority ordering
is not optimal

Reliable Software Technology – p. 5/26



Multiprocessor
Scheduling

Two basic approaches:
1. Partitioned – allocate all tasks to

particular processors
2. Global – allow tasks to migrate during

execution.

Partitioning is really ‘bin packing’ followed by
single processor scheduling

Global is potentially more effective, but
increased overheads, probably does not
scale and many open research questions

Reliable Software Technology – p. 6/26



Basic Model
Want to support partitioned and controlled
global scheduling

A fully flexible model is not justified at this
time

View all CPUs as a sequence
1..Number_Of_CPUs (not a set)

Define Dispatching Domains to be slice of
this sequence

Reliable Software Technology – p. 7/26



Example

16 CPUs, denoted by 1..16

4 Dispatching Domains: 1..4, 5..8, 9..12 &
13..16, or

3 Domains: 1..1, 2..12, 13..16

Reliable Software Technology – p. 8/26



Dispatching Domains

All CPUs must be in exactly one Dispatching
Domain

All tasks (essentially) fixed to a single domain

A task many be globally scheduling within its
domain (can run on any CPU from within the
domain), or

A task can be fixed to just one CPU

Reliable Software Technology – p. 9/26



Language Model

Need to representing CPUs and Dispatching
Domains

Ideally these are done before any tasks
execute

But Ada’s model of computation does not
allow this pre-execution phase

So a means of creating dispatching domains
must be provided, and

There needs to be a default initial domain for
the environmental task.

Reliable Software Technology – p. 10/26



Language Model

In this talk:
1. CPUs are just ordered integers – ie not

sets
2. Dispatching Domains are slices
3. All dispatching domains have the same

dispatching policies
4. Interrupts may also have infinities
5. Simpler than the model in the paper

Reliable Software Technology – p. 11/26



Representing CPUs

package System.Multiprocessors is

pragma Preelaborate;

type CPU_Range is range 0 .. <implementation-defined>;

Not_A_Specific_CPU : constant CPU_Range := 0;

subtype CPU is CPU_Range range 1 .. CPU_Range’last;

function Number_Of_CPUs return CPU;

-- always returns the same value

end System.Multiprocessors;

Reliable Software Technology – p. 12/26



Representing DDs

with Ada.Real_Time;

package System.Multiprocessors.Dispatching_Domains is

pragma Preelaborate;

Dispatching_Domain_Error : exception;

type Dispatching_Domain is private;

System_Dispatching_Domain : constant Dispatching_Domain;

function Create(First,Last : CPU) return Dispatching_Domain;

function Get_First_CPU(DD : Dispatching_Domain) return CPU;

function Get_Last_CPU(DD : Dispatching_Domain) return CPU;

Reliable Software Technology – p. 13/26



Representing DDs

function Get_Dispatching_Domain(T : Task_Id := Current_Task)

return Dispatching_Domain;

procedure Assign_Task(

DD : in out Dispatching_Domain; P : in CPU_Range;

T : in Task_Id := Current_Task);

procedure Set_CPU(P:CPU_Range; T : Task_Id := Current_Task);

function Get_CPU(T:Task_Id := Current_Task) return CPU_Range;

procedure Delay_Until_And_Set_CPU(

Delay_Until_Time : in Ada.Real_Time.Time; P : in CPU_Range);

private

-- not defined by the language

end System.Multiprocessors.Dispatching_Domains;

Reliable Software Technology – p. 14/26



Pragmas

pragma CPU (expression);

pragma Dispatching_Domain (expression);

Reliable Software Technology – p. 15/26



Ravenscar
1. No use of dispatching domains

2. All tasks statically partitioned

3. Task make use of pragma CPU

4. Each processor is advised to have its own
set of ready queues

Reliable Software Technology – p. 16/26



Interrupt Affinities

function Get_CPU(I: Interrupt_Id) return CPU_Range;

-- The function Get_CPU returns the processor on which the

-- handler for I is executed.

-- If the handler can execute on more than one processor the

-- value Not_A_Specific_CPU is returned.

Reliable Software Technology – p. 17/26



Protected Objects

Care must be taken with ceilings

Real locks are needed

Deadlocks etc are possible

Execute PO code non-preemptively is one
effective model

Reliable Software Technology – p. 18/26



Example

First using default dispatching domain

A task executes on CPU 1 for this first 1.7ms,
with a deadline of 5ms

It then executed on CPU 2 with a deadline of
20ms

Scheduling is via EDF

Uses a Timer to switch CPUs

Reliable Software Technology – p. 19/26



PO Spec.

protected Switcher is

procedure Register(ID : Task_ID; E : Time_Span);

procedure Handler(TM :in out Timer);

private

Client : Task_ID;

Extended_Deadline : Time_Span;

end Switcher;

Reliable Software Technology – p. 20/26



Task Spec.

task Split is

pragma Relative_Deadline(Milliseconds(5));

pragma Priority (15); -- computed from deadline of task

pragma CPU(1);

pragma Dispatching_Domain(System_Dispatching_Domain);

end Split.

Reliable Software Technology – p. 21/26



PO Body

protected body Switcher is

procedure Register(ID : Task_ID; E : Time_Span) is

begin

Client := ID;

Extended_Deadline := E;

end Register;

Reliable Software Technology – p. 22/26



PO Body

procedure Handler(TM :in out Timer) is

New_Deadline : Deadline;

begin

New_Deadline := Get_Deadline(Client);

Set_Deadline(New_Deadline + Extended_Deadline,Client);

-- extends deadline by fixed amount passed in as E

Set_CPU(2,Client);

end Handler;

end Switcher;

Reliable Software Technology – p. 23/26



Task Body

task body Split is

ID : Task_ID := Current_Task;

Switch : Timer(ID’Access);

Next : Time;

First_Phase : Time_Span := Microseconds(1700);

Period : Time_Span := Milliseconds(20); -- equal to full deadline

First_Deadline : Time_Span := Milliseconds(5);

Temp : Boolean;

begin

Switcher.Register(ID,Period-First_Deadline);

Next := Ada.Real_Time.Clock;

Reliable Software Technology – p. 24/26



Task Body

loop

Switch.Set_Handler(First_Phase,Switcher.Handler’Access);

-- code of application

Next := Next + Period;

Switch.Cancel_Handler(Temp); -- to cope with task

-- completing early (ie < 1.7ms)

Set_Deadline(Next+First_Deadline);

Delay_Until_And_Set_CPU(Next,1);

end loop

end Split;

Reliable Software Technology – p. 25/26



Conclusions
Historically, Ada has always taken a neutral
position on multiprocessor implementations.

On the one hand, it tries to define its
semantics so that they are valid on a
multiprocessor.

On the other hand, it provides no direct
support for allowing a task set to be
partitioned.

This talk has presented a set of facilities that
is being considered for Ada2012.

Reliable Software Technology – p. 26/26


	Motivation
	Contents of Talk
	Background
	Scheduling -- State of Art
	Multiprocessor Scheduling
	Basic Model
	Example
	Dispatching Domains
	Language Model
	Language Model
	Representing CPUs
	Representing DDs
	Representing DDs
	Pragmas
	Ravenscar
	Interrupt Affinities
	Protected Objects
	Example
	PO Spec.
	Task Spec.
	PO Body
	PO Body
	Task Body
	Task Body
	Conclusions

