
Preliminary Multiprocessor Support of
Ada 2012 in GNU/Linux Systems

Sergio Sáez <ssaez@disca.upv.es>
Alfons Crespo <alfons@disca.upv.es>

Instituto de Automática e Informática Industrial
Universidad Politécnica de Valencia

Outline

Introduction
Objectives
Multiprocessor Task Scheduling
CPU Clocks and Timers
Interrupt Affinities
Timing Events
Conclusions

Preliminary Multiprocessor Support of Ada 2012 in GNU/Linux Systems

1 of 10

Introduction
Ada multiprocessor support

Ada 2005 allows real-time applications to be executed on
multiprocessor platforms.
No direct support is provided to allow the programmer to control the
task-to-processor mapping process.
No information or control is provided to determine the execution
processor of timer or interrupt handlers.

Operating System multiprocessor support

There are no standard API to control task-to-processor assignment.
GNU/Linux provides a specific API and system tools to control thread
and interrupt processor affinities.

Main goals

A predictable behaviour of Ada real-time
applications over multiprocessor platforms

To allow the Ada programmer to control the processor
assignment of any executable unit

Support for different multiprocessor task scheduling approaches.
Control over timer and interrupt handlers execution processor.

To analyse the required support from the GNU/Linux
Operating System point of view

Current kernel system call support.
Required extension at kernel and library level.

Preliminary Multiprocessor Support of Ada 2012 in GNU/Linux Systems

2 of 10

Multiprocessor Task Scheduling

Global scheduling

All tasks can be executed on any
processor and after a preemption the
current job can be resumed in a
different processor.

Job partitioning

Each job activation of a given task
can be executed on a different
processor, but a given job cannot
migrate during its execution.

Task partitioning

All job activations of a given task
have to be executed in the same
processor. No job migration is
allowed.

Required functionalities

The ability to specify the target processor of the current task or
a different one.
The ability to change the execution processor immediately, or
to specify the target processor for the next activation of a task.
The ability to specify a unique target processor or a subset of
the available ones for a given task.

Preliminary Multiprocessor Support of Ada 2012 in GNU/Linux Systems

3 of 10

Ada Programming Interface
Task partitioning
package System.Multiprocessors is
 type CPU_Range is range 0 .. <implementation-defined>;
 subtype CPU is CPU_Range range 1 .. CPU_Range'last;
 ...
end System.Multiprocessors;

with Ada.Task_Identification; use Ada.Task_Identification;
with System.Multiprocessors; use System.Multiprocessors;
package System.Multiprocessors.Dispatching_Domains is
 ...
 procedure Set_CPU(P: CPU_Range; T : Task_Id := Current_Task);
 function Get_CPU(T : Task_Id := Current_Task) return CPU_Range;
end System.Multiprocessors.Dispatching_Domains;

It allows to specify the execution processor of a given task
If the current task invokes Set_CPU procedure the processor
switch is performed immediately.

It allows the implementation of task splitting approaches.

Ada Programming Interface (cont'ed)
Restricted global scheduling
package System.Multiprocessors.Dispatching_Domains is
 type Dispatching_Domain is limited private;

 function Create(First, Last: CPU) return Dispatching_Domain;

 procedure Assign_Task(DD: in out Dispatching_Domain;
 P : CPU_Range;
 T : Task_Id := Current_Task);
 function Get_Dispatching_Domain(T : Task_Id := Current_Task)
 return Dispatching_Domain;
 ...
end System.Multiprocessors.Dispatching_Domains;

It allows any task to join a dispatching domain, restricting the
global scheduling policy to the corresponding processor
subset.
It could be used to partition available processors for real-time
and non real-time purposes.

Preliminary Multiprocessor Support of Ada 2012 in GNU/Linux Systems

4 of 10

Ada Programming Interface (cont'ed)
Job partitioning support
procedure Delay_Until_And_Set_CPU(DT: Ada.Real_Time.Time;
 P: CPU_Range; T: Task_Id:= Current_Task);

It collides with Delay_Until_And_Set_Deadline procedure
already present in Ada 2005.

procedure Set_Next_CPU(P: CPU_Range; T : Task_Id := Current_Task);

It establishes the next processor to be used after the next
scheduling point.

It could be implement to defer processor assignment until the next
delay construction.

This approach could also be used with other attributes as an
alternative to Delay_Until_And_Set_Something procedures.
procedure Set_Next_Deadline(D: in Deadline; T: in Task_Id := Current_Task);
procedure Set_Next_Priority(P: in Priority; T: in Task_Id := Current_Task);

Job partitioning example
Periodic task with job partitioning based on delay until.
with Ada_System; use Ada_System;
with System.Multiprocessors.Dispatching_Domains;
use System.Multiprocessors.Dispatching_Domains;
task body Periodic_With_Job_Partitioning is
 type List_Range is mod N;
 CPU_List : array (List_Range) of CPU_Range := (...); -- Decided at design time
 CPU_Iter : List_Range := List_Range'First;
 Next_CPU : CPU_Range;
 Next_Release : Ada.Real_Time.Time;
 Period : Time_Span := ...;
begin
 Task_Initialise;
 Next_Release := Ada.Real_Time.Clock;
 Set_CPU(CPU_List(CPU_Iter)); -- Processor for first activation
 loop
 Task_Main_Loop;
 -- Next job preparation
 CPU_Iter := CPU_Iter'Succ;
 Next_CPU := CPU_List(CPU_Iter);
 Next_Release := Next_Release + Period;
 Set_Next_CPU(Next_CPU); -- Set the processor for the next job
 delay until Next_Release; -- Delay until next job activation
 end loop;
end Periodic_With_Job_Partitioning;

Preliminary Multiprocessor Support of Ada 2012 in GNU/Linux Systems

5 of 10

GNU/Linux operating system support
Current functionalities
#define _GNU_SOURCE

#include <sched.h>
#include <linux/getcpu.h>

int sched_setaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask);
int sched_getaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask);

int getcpu(unsigned *cpu, unsigned *node, struct getcpu_cache *tcache);

sched_setaffinity allows to specify a subset of processors to
be used by pid process among the available ones.

As the Linux kernel has a different pid for each thread, called thread
ID (gettid(2)), this function can also be used for specifying the
processor affinity of any thread.

As describes by Linux manual pages:
If the process specified by pid is not currently running on one of the CPUs
specified in mask, then that process is migrated to one of the CPUs
specified in mask.

Linux kernel and glibc library extensions
To allow the job partitioning approach some extensions are
required at kernel and library level.

Proposed extension of the sched_setaffinity system call.
#define SCHED_SET_IMMEDIATE 1
#define SCHED_SET_DEFERRED 2

long sched_setaffinity(pid_t pid, const struct cpumask *in_mask, const long flag);

If flag is set to SCHED_SET_DEFERRED, then the internal kernel function
migrate_task is not invoked and processor migration is postponed
until the thread becomes suspended.

Library level extensions
/* The old one use SCHED_SET_IMMEDIATE flag */
int sched_setaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask);

/* The new one use SCHED_SET_DEFERRED flag */
int sched_setnextaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask);

To maintain backward compatibility at library level, the current library
function sched_setaffinity will use the new implementation of the
system call with SCHED_SET_IMMEDIATE flag activated.

Preliminary Multiprocessor Support of Ada 2012 in GNU/Linux Systems

6 of 10

CPU Clocks and Timers

Ada 2005 introduces CPU clocks for single and groups of tasks
in the Ada.Execution_Time package and its child packages.
GNAT GPL 2009 does not implement CPU clocks in the native
RTS for the GNU/Linux platform.
However GNU/Linux OS implements the POSIX API for CPU
clocks and timers, although group budgets are not supported.

/* CPU clocks support */
#include <pthread.h>
#include <time.h>

int pthread_getcpuclockid(pthread_t thread, clockid_t *clock_id);
int clock_getres(clockid_t clk_id, struct timespec *res);
int clock_gettime(clockid_t clk_id, struct timespec *tp);

/* Timer support */
#include <signal.h>
#include <time.h>

int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid);
int timer_settime(timer_t timerid, int flags, const struct itimerspec *new_value,
 struct itimerspec * old_value);
int timer_gettime(timer_t timerid, struct itimerspec *curr_value);
int timer_delete(timer_t timerid);

CPU Clocks and Timers (cont'ed)

However, Ada 2005 does not provided any control about the
execution processor of the timer handler.

Proposed Execution Time Timers extension

with Ada_System; use Ada_System;
with System.Multiprocessors.Dispatching_Domains;
use System.Multiprocessors.Dispatching_Domains;
package Ada.Execution_Time.Timers is
 ...
 procedure Set_Dispatching_Domain(TM : in out Timer;
 DD: access all Dispatching_Domain);
 function Get_Dispatching_Domain(TM : Timer) return Dispatching_Domain;
 procedure Set_CPU(TM : in out Timer; P: CPU_Range);
 function Get_CPU(TM : Timer) return CPU_Range;
end Ada.Execution_Time.Timers;

It allows to specify the processor or group of processors where
the timer handler will be executed.
The default processor affinity of the timer handler can be
inherited from the task to be monitored.

Preliminary Multiprocessor Support of Ada 2012 in GNU/Linux Systems

7 of 10

Implementation over GNU/Linux systems

Upon timer creation, the Linux kernel allows to specify how the
caller should be notified when the timer expires within the
sigevent structure.
int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid);

A Linux-specific value of the sigev_notify field of this
structure (SIGEV_THREAD_ID) allows to send the specified signal
to a given thread when the timer expires.

This notification facility can be used by the Ada RTS to create a
set of server tasks that manage timer expiration on a
per-processor or per-dispatching domain basis.
The notification thread will directly depend on the target
processor specified for the timer handler execution.
Information about the handler to be executed can be attached
to a real-time signal, if required.

Interrupt Affinities

It could desirable to control in which processor an interrupt
handler will be executed.

It will allow not only to attach real-time related interrupts to specific
processors, but also to move away non-real-time interrupts from
processors that are executing real-time tasks.

Ada 2005 also lacks of support for interrupt affinities under
multiprocessor platforms.

Explicit multiprocessor support for Ada Interrupts

with Ada_System; use Ada_System;
with System.Multiprocessors.Dispatching_Domains;
use System.Multiprocessors.Dispatching_Domains;
package Ada.Interrupts is
 ...
 procedure Set_Dispatching_Domain(Interrupt : Interrupt_ID;
 DD: Dispatching_Domain);
 function Get_Dispatching_Domain(Interrupt : Interrupt_ID)
 return Dispatching_Domain;
 procedure Set_CPU(Interrupt : Interrupt_ID; P: CPU_Range);
 function Get_CPU(Interrupt : Interrupt_ID) return CPU_Range;
end Ada.Interrupts;

Preliminary Multiprocessor Support of Ada 2012 in GNU/Linux Systems

8 of 10

Hardware interrupts over GNU/Linux systems

To support hardware interrupts the package
Ada.Interrupt.Names needs to be extended with new interrupt
identifiers.

As HW interrupt numbers change from one system to another, a
generic interrupt identifiers could be defined.

package Ada.Interrupts.Names is
 ...
 HW_Interrupt_0 : constant Interrupt_ID := ...;
 HW_Interrupt_1 : constant Interrupt_ID := ...;
 ...
end Ada.Interrupt.Names;

In Linux systems, the processor affinity of a hardware interrupt
N can be established by writing the processor mask value on
/proc/irq/IRQN/smp_affinity file.
However, no interrupt handler can be defined in an Ada
application for a hardware interrupt.
Ada interrupt handlers in GNU/linux systems are limited to
POSIX signal handlers.

Signal interrupts over GNU/Linux systems

POSIX does not allow to specify the thread within a process that
will receive a given signal.
However, the Ada RTS can use pthread_sigmask function to
block the signals that are mapped as Ada interrupts in every
application thread.

#include <pthread.h>
#include <signal.h>
int pthread_sigmask(int how, const sigset_t *newmask, sigset_t *oldmask);
int sigwaitinfo(const sigset_t *set, siginfo_t *info);

Then synchronous wait for signals can be performed by a set of
signal server threads, each one attached to a different
processor.
Each time an interrupt handler is attached to a given processor
by means of Set_CPU, the signal mask of the signal server
allocated in that processor is modified accordingly.

If an interrupt is not attached to a specific processor in its dispatching
domain, then the signal mask of each signal server in that dispatching
domain will accept that signal.

Preliminary Multiprocessor Support of Ada 2012 in GNU/Linux Systems

9 of 10

Timing Events

Finally, the last Ada event handlers to consider are Timing
Events, with an Ada interface similar to the ones shown
previously.

Multiprocessor support for Timing Events

with Ada_System; use Ada_System;
with System.Multiprocessors.Dispatching_Domains;
use System.Multiprocessors.Dispatching_Domains;
package Ada.Real_Time.Timing_Events is
 ...
 procedure Set_Dispatching_Domain(TM : in out Timing_Event;
 DD: access all Dispatching_Domain);
 function Get_Dispatching_Domain(TM : Timing_Event) return Dispatching_Domain;
 procedure Set_CPU(TM : in out Timing_Event; P: CPU_Range);
 function Get_CPU(TM : Timing_Event) return CPU_Range;
end Ada.Real_Time.Timing_Events;

To support multiprocessor platforms, an event-driven server
task can be allocated on each processor and execution domain.
When procedure Set_Handler was invoked, the timing event
information will be queued on the appropriate server task that
will finally execute the handler code.

Conclusions

Some of the proposed extensions of Ada 2012 for
multiprocessor platforms have been analysed.

Existing support for the required features at Linux kernel and
GNU C Library level have been analysed, and simple
extensions proposed to support unaddressed requirements.

Also simple Ada interfaces and implementations have been
proposed to allocate any kind of execution units (timer and
interrupt handlers) to specific platform processors.

After this analysis, the support of the presented features has
been considered feasible for its implementation at Ada RTS, C
library and kernel level.

Preliminary Multiprocessor Support of Ada 2012 in GNU/Linux Systems

10 of 10

