
Preservation of Timing Properties
with the Ada Ravenscar Profile

15th International Conference on Reliable Software
Technologies – Ada-Europe 2010

Valencia, Spain, June 15th, 2010

Enrico Mezzetti, Marco Panunzio , Tullio Vardanega

Department of Pure and Applied Mathematics
University of Padova, Italy

{emezzett, panunzio, tullio.vardanega}@math.unipd.it

Outline

� Property preservation
� The Ravenscar Profile
� Ada 2005 monitoring constructs
� Property enforcement
� Property monitoring

Ada-Europe 2010 - 2 / 17 -

� Fault handling
� Conclusion

Property preservation

� A significant value fraction of new-generation
systems arises from non-functional properties
� Verified at design time

� Values assumed for static analysis should
become constraints on system behavior
� Else the value of analysis is denied

Ada-Europe 2010 - 3 / 17 -

Else the value of analysis is denied
� Must be conveyed to implementation and preserved at run time

� Key ingredients
1) Analysis framework

� To statically analyze the system
2) Programming model

� To enforce analysis assumptions
� To solely express the semantics assumed by the analysis

3) Run-time enforcement of properties

Preservation of timing properties

� Realized in three steps
� Enforcement of controllable properties

� Period [periodic tasks]
� Minimum inter-arrival time (MIAT) [sporadic tasks]
� Phase

� Monitoring of properties determined by system execution
Worst-case execution time (WCET)

Ada-Europe 2010 - 4 / 17 -

� Worst-case execution time (WCET)
� Deadline
� Worst-case blocking time (WCBT)

� Treatment of detected violations

The Ravenscar Profile

� Reduced tasking model
� Reject language constructs exposed to

� Non-determinism
� Unbounded execution time

� Ravenscar systems are amenable to static analysis
� In the time dimension

� RP and property preservation

Ada-Europe 2010 - 5 / 17 -

� RP and property preservation
1) Analysis framework

� Based on (e.g.) Response Time Analysis

2) Programming model
� Strict subset of Ada 2005

� Enforced through pragma Profile / pragma Restrictions
� Programs with forbidden constructs rejected by the compiler

3) Run-time enforcement of properties
� Language mechanisms are insufficient

Monitoring of execution time

� Worst-case execution time is one fundamental input to
schedulability analysis
� Safe and tight bound needed
� Achieving both qualities is difficult

� Assumed bounds may prove unsafe in unanticipated scenarios
� We need mechanisms to promptly detect violations (i.e., overruns)

n
in C

R
CBR ∑+

++=1

Ada-Europe 2010 - 6 / 17 -

� Efficient, practical and standard means to measure execution
time are important to industrial practice
� Best achieved with language-level constructs

� Ada 2005 provides execution-time timers
� Monitor the CPU time consumed by a single task
� Handler (protected procedure) raised on timer expiration
� IRTAW-14 proposed to include it in the Ravenscar Profile

j
ihpj j

i
ii

n
i C

T

R
CBR ∑

∈∀

+

++=
)(

1

Ada 2005 monitoring constructs

Language
constructs

Timing properties Within the Ravenscar
ProfilePeriod

or MIAT
Deadline WCET

delay until * N/A N/A yes

Ada-Europe 2010 - 7 / 17 -

Timer N/A N/A ● proposed for inclusion

Timing_Event N/A ● N/A yes (library level)

* enforcement of the property
● monitoring of property and notification of violation

Task template

� 4 blocks which address distinct concerns

OBCS

Put

Get_Request

Generic Task Structure

Op1

Sequential
code

OPCS
Op2

P
ro

vi
de

d
in

te
rf

ac
e

Op1

Op2

Sequential
code

R
equired interface

Thread

Ada-Europe 2010 - 8 / 17 -

� 4 blocks which address distinct concerns
� Provided and Required Interface
� OPCS (Operation Control Structure)

� Sequential behaviour of each service

� Thread
� Task behaviour – executes the OPCS services as required

� OBCS (Object Control Structure)
� Synchronization agent – management of release events for the task
� Reifies calls to the PI in a request descriptor, later fetched by the thread
� Data-oriented asynchronous communication as per the Ravenscar profile

Add enforcement/
monitoring constructs to
the Thread

Enforcement of period/MIAT
-- structure for a periodic / sporadic task with optional Phase

Next_Time := System_Activation_Time + Phase;

loop

delay until Next_Time;

<fetch a request descriptor from the OBCS and decode it>

<invoke the required service in the OPCS>

Next_Time := Next_Time + Milliseconds(Interval);

end loop;

Ada-Europe 2010 - 9 / 17 -

� Use of delay until
� Absolute-time suspension as opposed to relative-time

suspension
� No drift in the period
� Precision dependent on the hardware

end loop;

Monitoring of deadlines

-- deadline-monitored loop for a periodic / sporadic task
loop

Set_Handler (Deadline_Event, Next_Deadline, Deadline_Miss_Handler);
<task operations>
Next_Time := Next_Time + Milliseconds (Interval);
Next_Deadline:= Next_Time + Milliseconds (Rel_Deadline);
Cancel_Handler (Deadline_Event, isSetHandler);
delay until Next_Time;

end loop;

Ada-Europe 2010 - 10 / 17 -

� Use of Timing_Event
� Sets the timer to expire at the absolute time of the next deadline
� Deadline_Miss_Handler is triggered upon timer expiration

� The alarm must be canceled at the end of each task activation

� Inconclusive to determine the cause of the fault
� The task which misses the deadline or a higher-priority task

Monitoring of worst-case execution time

-- WCET-monitored loop for a periodic / sporadic task
loop

Set_Handler (WCET_Timer, WCET_bound, WCET_Overrun_Handler);
<task operations>
Next_Time := Next_Time + Milliseconds (Interval);
delay until Next_Time;

end loop;

Ada-Europe 2010 - 11 / 17 -

� Use of execution-time timers
� Sets the timer to expire when the task executes for more than

WCET_bound CPU time
� WCET_Overrun_Handler triggered upon timer expiration

� Precise indication of the faulty task

Monitoring of worst-case blocking time

� WCBT bounded by the resource access protocol
� Ceiling_Locking policy (ICP) under the Ravenscar Profile

� Overrun in WCBT may cause subtle timing faults
� An overrun in a critical section may cause a deadline miss in higher-

priority tasks (with p < ceiling(CS))
� Unrelated to WCET overrun
� Solution: direct monitoring of blocking time

j
ihpj j

n
i

ii
n
i C

T

R
CBR ∑

∈∀

+

++=

)(

1

Ada-Europe 2010 - 12 / 17 -

� Solution: direct monitoring of blocking time
� Requires specialized kernel support

� Group_Budgets and Execution_Time.Timers not useful

-- WCBT-monitored critical section
Time_In := Execution_Time.Clock;
<beginning of critical section CS>
<end of critical section CS>
Time_Out := Execution_Time.Clock;
if (Time_Out − Time_In > CS_WCET) then

<overrun handling>
end if;

� Use of the execution-time Timers
unsatisfactory
� WCBT overrun detected after exiting

from critical section
� Overrun handled at task priority level

(occurs when the blocked task has
already missed its deadline)

Fault handling

Error logging

Integration of
WCET

Period / MIAT
change

Task inhibition
via OBCS

Can be realized with

Transient
WCET

overrun

Ada-Europe 2010 - 13 / 17 -

Can be realized with
Ravenscar

Dynamic_Priorities

Not Ravenscar-compliant

Kernel API

Task termination

Permanent
WCET

overrun

Asynchronous task control

Integration of WCET

� Sensitivity analysis can calculate the largest WCET overrun
which does not impair overall system schedulability
� Can be used to safely increase the WCET bound for a task in case of

transient overruns
� Requires recalculation of all ∆Cx

Ci ∆Ci Ci ∆Ci Ci ∆Ci

Ada-Europe 2010 - 14 / 17 -

� Scheduling analysis as formulated for “weakly hard real-time
systems”
� The task set meets “any n in m deadlines”
� The task set meets “any row n in m deadlines”
� Possible to calculate the ∆Cx even under the above requirements

� Both require extension to account for shared resour ces
� For the calculation of task ∆Cx and ∆CCSi

a)
0 task execution time

b)
0 task execution time

c)
0 task execution time

Handling of permanent overruns

� Dynamic_Priorities

� Only to decrease base
priority

� Preserves task schedulability
� Not satisfactory for data

integrity
� Large time and space

� Kernel API
� To flag a task as non-

executable
� Immediate task dispatching point

� Reversible flag
� Little time and space overhead

� Asynchronous Task Control

Ada-Europe 2010 - 15 / 17 -

overhead
� Unable to cope with task stuck

in critical section

� How to deal with overruns inside shared resources?
� Who should use those mechanisms?
� How fast are we able to react to a fault detection?
� What is the maximum latency of the fault handling mechanism?

Architectural
issues

Recap

Techniques Transient
WCET overrun

Permanent
WCET overrun

Ravenscar
compliance

Error logging * ○ yes

Integration of WCET ● ○ yes

Period/MIAT change ● ○ yes

Inhibition via OBCS ● ○ yes

Ada-Europe 2010 - 16 / 17 -

Task termination ○ ● no

Dynamic priorities ○ ● no

Asynchronous Task Control ○ ● no

Kernel API ● ● no

* = applicable to the temporal fault
● = possible to remedy to the temporal fault
○ = unable or inappropriate to cope with such temporal fault

Conclusion

� Property preservation is essential
� To assure that the system at run time corresponds with the

analysis stipulations

� The Ravenscar Profile (with execution-time timers)
offers good property preservation value
� Enforces controllable properties

Ada-Europe 2010 - 17 / 17 -

Enforces controllable properties
� Monitors timing properties at run-time
� Reacts to timing faults
� Still some areas with no satisfactory solution yet

� Monitoring of blocking time
� Permanent overruns

� However we may consider those situations as exceptional in
high-integrity real-time systems

