Towards the Definition of a Pattern
Sequence for RT Applications using a

MDE Approach
Juan Angel Pastor, Diego Alonso, DS 1€
Universidad Pedro Sidnchez, Barbara Alvarez DIVISION DE SISTEMAS E

Politécnica INGENIERIA ELECTRONICA

de Cartagena



AR e RN

Table of Contents

Introduction and Problem Context

A Proposed Solution, from 20.000 Feet ...

A Close Look at the Proposed Problem & Solution
Pattern Sequence: Implementation Issues
Sample Framework Use Case

Conclusions and Future Work



1.- Context of the Problem

* Component-Based (CB) applications with Real-Time
requirements in Robotics - frameworks

* Main drawback: despite being CB in their conception,
designers must develop, integrate and connect
components using Object-Oriented (OO) technology

CB designs require more/different abstractions and tool support than
OO technology can offer

Normally framework design ignores real-time issues




2.- Our solution, From 20.000 feet

* [n our opinion, it is needed a new approach for CB
software development that:

Considers components as architectural units

Enables components to be truly reusable among frameworks, by
separating their design from the implementation details

Considers domain-specific requirements (time in this case)

*» Model-Driven Software Engineering can help:

Providing formal languages for modeling CB applications, checking
their correctness, performing V&V actions, etc.

Providing model transformations for automatically generating code
from input models



2.- Modeling CB applications

* In general, any language (UML, SySML, AADL, etc.) can be used as
long as it provides both structural and behavioural modelling

rﬂ

B . n — q i I |
Structural Algor/thm/c
: k Coordination view
view view

e Simplicity and economy of concepts: just 3 views

e Both view and component reuse
e Controlled semantics

* Open for extension



3.- A Close Look at the Proposed Problem

*» The behavioural views (state-charts and activity
diagrams) abstract designers away from run-time

issues (e.g. number of tasks, concurrency model,
etc.)

e These details must be realised in executable code
in a way that:

Reflects the behaviour of the original CB model

Is organised in a set of tasks compliant with the
application-specific timing requirements

7o

(e@ |

A~

(ae )



3.- A Close Look at the Proposed Solution

()

System .
Developers i * Code structured as
o follows:
evelops
model - CS1: provides a run-time
"Lamenork //f support compliant with
- the requirements
Application (- ) .
Requirements e - CS2: pI’OVIdeS an
Framework interpretation of CB
Catalogue
with hot-spots conce ptS

| o - CS3: provides application
: into code

P— (et

-

Application with objects

models in hotspots




3.- Code Sets of the Proposed Solution

* These three code sets are arranged in a way that:

CS1 and CS2 constitute a framework where CS3 must be integrated
in order to obtain the final application

CS2 provides the framework ‘hot-spots’ and minimises the coupling
between CS3 and CS1
* As long as CS2 remains the same,
CS1 can be reused with different CS3
A suitable CS1 can be selected for the same CS3, depending on the
application domain requirements
e CS1 and CS2 have been designed and implemented
manually, while CS3 is meant to be automatically derived
from input CB models



3.- A Close Look at the Proposed Solution

The system is defined by a set of components. Every component has a statechart with orthogonal regions.

Cl Cc2 Ck
[ R11 E i Rin R21 i 5 E R2m Rel i Ren
I 1 1| | |
g ='-' : g g : i." ! 8 @ ; A
P D 2 1| L 2 2 | 2
7 ) ) F D {d i U
| | i i Eachstate has associated one activity. f 1 i 1
| l i I Each region executes the activity of its ) i | i
1 ) | I current state. ! I ! 1
Yy VvV Vv ¥ Yy VvV v Y Yy VvV Vv ¥
|£ju_‘ Ay A%n A o An | A ] (A Ag | A | Ak ":}n
-
o B LA . 1 D mlL  mE 1 F L
'\ -~ e V‘ -
N~ iy ~ ,’
-~ - o~ ~ Activities are associated to M tasks taking into S 4
~ Fi i - % V4
-~ account different criteria

N\

[~/

~

These M tasks may be reconfiguredinto K tasks for planning or eficience purposes (heuristics, etc.)

The functionality of the system has to be that defined in the original statemachines.

[~/

[~/

[~/




3.- Some Requirements ...

e The solution must not force a 1-to-1 relationship between
components and execution tasks - flexible schemes for
allocating activities to tasks, since activity allocation can
be driven by

Real-Time requirements
Scheduling algorithms
Allocation heuristics
Platform constraints
etc.

* ... which can greatly vary from application to application



4.- Pattern Sequence: freely allocate activities to tasks

1. COMMAND PROCESSOR pattern: provides a task to separate
service requests from their execution

2. Required by the previous pattern > COMMAND pattern
for modelling activities

3. Derived problem: concurrent access to component’s
internal data - protected BLACKBOARD pattern



4.- Pattern Sequence: state-chart implementation

Structure of the state-chart > COMPOSITE pattern

Behaviour of the state-chart - METHODS FOR STATE pattern
Modification of the STATE pattern when there are many states
sharing behaviour and data. Reduces space and overhead

Specific activities for considering and explicitly integrating

component ports and state-chart management:

Region activity: manages regions (active state, transitions, etc.)

Port handling activity: manages component communication through
their ports

Null activity
... provides regularity and flexibility



4.- Solution Implementation: CS1

I‘fpplication-Specific

Cad
s N

¢

’ .
s ‘.,\
rmrmon data -— Sy
tructuresforstate Sepecific_Leaf_ Port_Handler
machine Blackboard Activity Adtivty
. Y
forprent | L i i B ol Commnd
data ’ ..‘..‘- 4/' Vd "ln ~~-"- Pa“m \‘\
: ™S ’ V2 Sa o v LY
i | D V3Data Orthogonal_Region"K}— Leafl_State Leaf_Activity Region_Activity NUll_Activity
| ‘\‘ ry T t T
Specific Specific i kY ? | ' I
Component Component Methods for -1
Data 1 Datan Stf_t_es Pm{! v v Port_State
- N 1
vapot f——> ¥3Component ™| State

[— ’L\ """"""""""""""

- Adatatype |
V3lhput_Port Y30utput Port l

Application <>




4.- Solution Implementation: CS2

N

omponent
subclass specfic
data

mrmon data
tructuresforstate
machine
management

Specific
Component
Data 1

Blackhoard
Paufm

Composite

I’,(pplication-Specific

Cad
s N

’

Sepecific_Leaf_
Activity

Activity Processor

Command
Processor Pattern




4.- Solution Implementation: CS3

prplication-Specific

o
~
4w

d ~_
zémmon data ," Sn
tructuresforstate Sepecific_Leaf_ Port_Handler_
machine Blackboard ) Activity Activity
%mponent management Pattern Composite Null Command
subclass specic S ol Pattern \
data Sl ',' o — Pattern N
1 1
I T D V3Data Orthogonal_Region <: Leaf_State Leaf_Activity Region_Activity I Null_Activity
— ] ¥ S i > T : T
. - b |
Specific Specific | " R D —— I
Component Component Methods for ‘.\ . T 1
Data 1 Data n States Patterp 1 Port_State I
=" oV V4 Command
V3Port —<> V3Component State <> StateAclivity Pattern

e = FECDIITTT L \
Adata ype Adatatyoe 1
h— j“x?’jlﬁput_P ort '\f'SOutpLTf"'Pb'r’f"r ——

Application >

Command
Processor Pattern

Activity Processor

e Other patterns not shown: OBSERVER, PROXY, STRATEGY,
TEMPLATE METHOD, COPIED VALUE, etc.

» 18 patterns in total



4.- Implementation of Command Processor (l)

generic
package Common.Activity Processor is
procedure Set_Priority (Priority : System.Any_Priority);
procedure Set_Period (Period: Time_Span);
procedure Start();
procedure Add_Activity (Act : access | _State Activity'Class);
end Common.Activity Processor;




4.- Implementation of Command Processor (ll)

task body Worker is
Next_Exec : Time := Clock;

lterator  : P_DII.Cursor;
Element :State Activity All;
begin

while Continue loop
delay until Next_Exec;
Next_Exec := Next_Exec + Period;
Iterator := Activity_List.First;
while (P_Dll.Has_Element (Iterator)) loop
Element := P_DIl.Element (lterator);
Element.Execute_Tick;
P_DIl.Next (Iterator);
end loop;
end loop;
end Worker;




4.- Some Notes About COMMAND PROCESSORS

* COMMAND PROCESSOR is a very flexible pattern that has
been constrained

* Not allowed to spawn new tasks = set of tasks is known at
design time

e Activities cannot be added/removed at run-time = task
load is known at design time

* Periods and priorities cannot be changed at run-time -
fixed priority with pre-emption schedulers



5.- Example of Framework Usage

e Sample state-chart of a motor controller of a Cartesian

robot

I’N A T HETERE N |

-

FullOperative \

[ Rg_Limits I

[ St_Max_Limit_] |

St_Min_Limit

Rg_Reference

[ St_Referenced ]

A

[ St_Referencing ]

Reference
[Stopped]

[St_Not_Referenced]

| Rg_Enable

|St_EnabIed l

|
|
|
I
|
|
|
|
|
|
|
|

Enable
[Stopped]

Disable
[Stopped]

I
|
I
I
|
|
|
|
I
I
|
I
|

Rg_Motion Enter_St_Max_Limit]/, )

Enter_St_Disabled/, St_Moving_To

Stop
Fhter_St_Max_Limit/,
Enter_St_Min_Limit/,
Enter_St_Disabled/,
Stop/,
EndMoving /,
Pause

St_Jog_Mas

St_Jog_Menos

Enter_St_Min_Limit]/,
Enter_St_Disabled/,

Stopping
JogMenos
[Not\St_Min_Limit,
t_Enabled]
Stopped

MoveTo [Referenced * St_In_Limits*Enabled ]/

Resume[Referenced * St_In_Limits*Enabled]

JogMas
[Not St_Max_Limit,
ASt_Enabled]




5.- Framework Usage: Added Activities and Regions

o After creating CS3 ...
* Region handling activity to manage each region:

Periodic activity with period £ the minimum period of the region
activities
» Additional region/s with a port handling activity to
manage component ports:

Periodic activity with period < the minimum period of all the
component activities

* The framework already provides sample ones (CS2) that
can be reused or new ones can be created by developers



5.- Allocation of Activities to Tasks

» Currently, the granularity is region handling activity to a
COMMAND PROCESSOR

* Developers are free to choose any allocation criteria,
considering also the additional regions described before
Maximum concurrency: 1 task for each region
Minimum concurrency: 1 task for the whole application



5.- Schedulability Issues

* Region handling activities:
Execute both periodic and sporadic activities, making no distinction
— heterogeneous tasks

Their periods are set to the lowest period of their region - worst
case scenario, but only one activity is executed in each region

* Port handling regions and activities:

As many as needed, depending on the timing characteristics of the
activities triggered by the command - provides a finer control

But again, their periods are set to the lowest period of their region
—> worst case scenario



6.- Conclusions

The framework provides a solution for distributing

component activities across tasks, is fully operative and can
be used “as-is”

It provides an OO interpretation of CB concepts
Has been developed as a pattern sequence

The structure of the solution (i.e. the code sets) facilitates
The development of model transformations

The development of other frameworks, for applications with different
requirements

Nevertheless, it is just a first step



6.- Future Work

e Correct current limitations of the framework:

Increase the granularity of concurrency - leaf states

Deal with sporadic activities - probably in an specialised sporadic COMMAND
PROCESSOR

Testing and adding heuristics for activities allocation and task grouping
Perform schedulability analysis

Component distribution using middleware

Adopt the Ravenscar profile, as it suits many requirements

* Develop other frameworks with different requirements

* Extend the modelling language (V3CMM) in order to incorporate
timing requirements (timed automata or petri nets)

e Generate CS3 through a model transformation, since it is the
main design driver behind the framework



Towards the Definition of a Pattern
Sequence for RT Applications using a

MDE Approach
Juan Angel Pastor, Diego Alonso, DS 1€
Universidad Pedro Sidnchez, Barbara Alvarez DIVISION DE SISTEMAS E

Politécnica INGENIERIA ELECTRONICA

de Cartagena



5.- A Sample Execution Scenario

:V3OutputPort

:V3InputPort

) [forever]

:St_Machine_H

:Specifi
:V3OutputPort :V3InputPort :ActivityProcessor C:;i;(:,c,ent Datan :ActivityProcessor
Update(data) loop ) [forever]
> loop
.Port Handler .|
< Read()
Set(data) andler

T

Get

:LeafSpecific
Action

Set(chtal

—T

ResolyeTransitions

/l ] Update(gata)




