
	

	

	

	

Guide	
 to	
 the	
 Industrial	
 Sessions	

15th International Conference on Reliable Software Technologies

Ada-Europe 2010

CONTENTS	

Abstracts	
 and	
 schedule	
 of	
 Industrial	
 Presentations	

	
 2	

	
 3	

Contents	
 and	
 Schedule	

	

	

Industrial	
 Presentations	
 –	
 Session	
 #1	

Wednesday	
 16	
 June,	
 14:30	
 –	
 16:00	

Session	
 Chair:	
 Alok	
 Srivastava	

	

HRT-­‐UML	
 and	
 Ada	
 Ravenscar	
 Profile:	
 A	
 Methodological	
 Approach	
 to	
 the	
 Design	
 of	

Level-­‐B	
 Spacecraft	
 Software	

R.	
 López,	
 A.I	
 Rodríguez	

GMV	

	

5	

Applying	
 Model-­‐Driven	
 Architecture	
 and	
 Spark	
 Ada	
 –	
 A	
 Spark	
 Ada	
 Model	

Compiler	
 for	
 xtUML	

E.	
 Wedin	

Saab	
 Bofors	
 Dynamics	
 AB	

	

7	

Ada	
 95	
 Usage	
 within	
 the	
 Airbus	
 Military	
 Advanced	
 Refuelling	
 Boom	
 System	

I.	
 Lafoz	

Airbus	
 Military	

	

9	

Ada	
 95	
 Usage	
 within	
 the	
 Airbus	
 Military	
 Generic	
 Test	
 Environment	
 System	

B.	
 Lozano	

Airbus	
 Military	

11	

	

	

	

Industrial	
 Presentations	
 –	
 Session	
 #2	

Wednesday	
 16	
 June,	
 17:00	
 –	
 18:00	

Session	
 Chair:	
 David	
 Mirfin	

	

Implementing	
 Polymorphic	
 Callbacks	
 for	
 Ada/C++	
 Bindings	

M.	
 Sobczak	

CERN	

	

15	

A	
 Reusable	
 Work	
 Seeking	
 Parallel	
 Framework	
 for	
 Ada	
 2005	

B.	
 Moore	

General	
 Dynamics	
 Canada	

	

17	

Database	
 Programming	
 with	
 Ada	

F.	
 Piron	

KonAd	
 GmbH	

	

19	

	
 4	

	

	

	

Industrial	
 Presentations	
 –	
 Session	
 #3	

Thursday	
 17	
 June,	
 14:30	
 –	
 16:00	

Session	
 Chair:	
 Dirk	
 Craeynest	

	

Future	
 Enhancements	
 to	
 the	
 U.S.	
 FAA’s	
 En-­‐Route	
 Automation	
 Modernization	

Program	
 (ERAM)	
 and	
 the	
 Next	
 Generation	
 Air	
 Transportation	
 System	
 (NextGen)	

J.	
 O’Leary,	
 US	
 FAA	

A.	
 Srivastava,	
 TASC	
 Inc.	

	

21	

System	
 Architecture	
 ViÒÔual	
 Integration	
 Case	
 Study	

B.	
 Lewis	

US	
 Army	
 Aviation	
 and	
 Missile	
 Command	

	

23	

Lessons	
 Learned	
 from	
 the	
 First	
 High	
 Assurance	
 (EAL6+)	
 Common	
 Criteria	

Software	
 Certification	

D.	
 Kleidermacher	

Green	
 Hills	
 Sofware	
 Inc.	

	

25	

An	
 Introduction	
 to	
 ParaSail:	
 Parallel	
 Specification	
 and	
 Implementation	
 Language	

S.T.	
 Taft	

SofCheck	
 Inc.	

	

27	

	

	
 5	

HRT-UML AND ADA RAVENSCAR PROFILE: A METHODOLOGICAL
APPROACH TO THE DESIGN OF LEVEL-B SPACECRAFT SOFTWARE

Roberto López, Ana Isabel Rodríguez

roblopez@gmv.com, airodriguez@gmv.com
GMV, Spain

This presentation will provide feedback on the use of Hard Real-Time Unified
Modeling Language (HRT-UML) and Ravenscar Profile in the design definition of the
Instrument Control Module (ICM) of Ocean & Land Color Instrument (OLCI),
developed in the context of Sentinel-3 satellite. The ICM software, build around an
ERC32 microprocessor, is a critical software (ECSS-E-ST-40C critical level B)
responsible for interfacing with the satellite central computer (Satellite Management
Unit), as well as controlling the rest of instrument units. The aim of this paper is
discussing the advantages and disadvantages of using this approach in a real on-board
critical software development.
HRT-UML method aims to provide a comprehensive solution to the modeling of Hard
Real Time systems. Its goal is to define a customized version of UML to express the
HRT-HOOD methodology, making the most of both standards and also capturing and
compensating for the respective weaknesses. The resulting design method permits static
scheduling analysis of the system and also caters for automated generation of Ada 95
code that complies with the Ravenscar Profile. The only supporting toolset, provided by
Intecs s.p.a., has been used in our development.
The Ravenscar Profile is a subset of the Ada tasking model, restricted to meet the real-
time community requirements for determinism, schedulability analysis and memory-
boundedness, as well as being suitable for mapping to a small and efficient run-time
system that supports task synchronization and communication, and which could be
certifiable to the highest integrity levels. The concurrency model promoted by the
Ravenscar Profile is consistent with the use of tools that allow the static properties of
programs to be verified. In this development, we have used the High Integrity
Ravenscar Run Time for ERC32 (GNAT Pro for ERC32), provided by AdaCore.
The synergy between both technologies, which in fact has been the main reason for
selecting this approach, is the possibility of using static verification techniques such as
schedulability analysis and model checking. These techniques allow analysis of a
system to be performed throughout its development life cycle, thus avoiding the
common problem of finding only during system integration and testing that the design
fails to meet its non-functional requirements.
By complying Ravenscar Profile tasking model (automatically checked at model level)
and estimating the timing requirements of each task and protected object (Period,
WCET, Deadline and WCET of each protected method), HRT-UML allows performing
assignment of fixed priorities to the different tasks and protected objects according to
Ravenscar Profile scheduling model, schedulability analysis based on the previous
assignment, and CPU load analysis. WCET can be estimated at first stages of the design
and refined in subsequent phases, making possible to check the non- functional timing
requirements along the whole development life cycle.
On the other side, some difficulties have been faced when using the proposed approach.
Some of them are related to the HRT-UML methodology itself, and some others can be
understood as improvements to the HRT-UML supporting toolset. The following list
summarizes the proposed improvements:

	
 6	

• HRT-UML model restrictions to comply Ravenscar Profile seem to be more
restrictive than the profile itself. The constraint that forbids a passive object to use
a non-passive object is a HRT-UML constraint not derived from the Ravenscar
profile. We understand that the aim of this constraint is making easy the automatic
schedulability analysis, as it is simplest way to make a map of the protected
objects being used by each task. This HRT-UML restriction makes difficult the
design and probably could be solved by providing a more complex algorithm to
analyze relationships between objects.

• The difference between classes and types is not clearly understood. From UML
point of view, an Ada type is exactly the same UML class concept.

• The way the types are managed by HRT-UML tool makes difficult the
maintenance of the design in large systems. The same maintainability problem can
be observed at code level if the provided code generator is used.

• Toolset does not allow other UML diagrams necessary to complete the design,
such as use cases, sequence diagrams, etc. The only supported diagrams are HRT-
UML object diagrams.

Finally, an alternative to the selected Ravenscar run time system (GNAT Pro High
Integrity Ravenscar Run Time for ERC32) has been assessed in the context of this
project. It must be taken into account that the Sentinel 3 OLCI ICM software, including
the run-time system, needs to fulfill the criticality requirement (ECSS-E-ST-40C critical
level B). The reason for evaluating an alternative to the selected run time has been
trying to mitigate the impact of the GNAT Pro High Integrity Ravenscar Run Time for
ERC32 qualification risk, which is currently being performed by Ada Core. The
proposed alternative is based on the use of RTEMS, which is also being qualified to
level B by RTEMS Centre. The solution is possible because the Ravenscar restrictions
can be reproduced on top of RTEMS, which is providing the same scheduling model
(pre-emptive fixed priority scheduling and priority ceiling protocol when accessing to
shared sections). However, it is not possible to use the RTEMS Ada API for two
reasons: OAR has stopped to support Ada for RTEMS, and the only qualified API is the
RTEMS Classic API. So, the proposed solution is based on using GNAT Pro for ERC32
with Zero-Foot-Print run time system (i.e. no run time system) on top of RTEMS
Classic API.

	
 7	

APPLYING MODEL-DRIVEN ARCHITECTURE AND SPARK ADA –
A SPARK ADA MODEL COMPILER FOR XTUML

Erik Wedin, M.Sc. (C.Sc. & E.)

erik.wedin@saabgroup.com
Senior Specialist - Software Systems Architecture

Software Development
Development & Technology

Saab Bofors Dynamics AB, Sweden
	

Saab Bofors Dynamics has worked with MDA (Model-Driven Architecture) and
xtUML (Executable and Translatable UML) and their precursors since the early 1990’s.
The methodology brings full automation of the translation of models to other models
and finally to code, and the reuse of application models as well as architecture models
between different types of systems.
The translation rules are formalised in a model compiler. A model compiler is in fact a
reusable software architecture containing architecture metamodels expressed in xtUML,
translation rules, target source code components and marks. Marks are used to control
how the translation of the xtUML application models is performed.
The presentation covers how SPARK Ada has been used on a joint embedded software
safety-related programme with a partner company in a Model-Driven Architecture
context.
Initially the software parts produced were temporally isolated from the surrounding
safety-related software, so an in-house model compiler generating full Ada code was
used successfully. The surrounding software was implemented in SPARK Ada by the
partner company.
When the temporal separation was removed, i.e. the software parts produced were
executing concurrently with the safety-related software parts, a new model compiler
generating SPARK Ada was developed. It was developed from scratch since SPARK
Ada affects all aspects of a software architecture thus it was not realistic to re-design the
existing full Ada architecture.
A number of requirements on the architecture were identified including, high execution
performance, small footprint and to support SPARK analysis – dataflow, information
flow and proof of absence of run-time errors.
The software architecture was developed during a number of technical workshops
where the partner company contributed with SPARK knowledge and Saab Bofors
Dynamics with MDA, xtUML and model compiler expertise.
The result was a SPARK Ada software architecture suitable for automatic translation
from xtUML being used live. The architecture was formalised into an xtUML model
compiler for SPARK Ada, generating 100% complete SPARK Ada code, including
annotations, from 100% executable platform-independent models in xtUML. The
existing xtUML models were regenerated without being modified.
The presentation shares experiences and reflections from the design of the software
architecture, how it was formalised in a model compiler and from its usage in the
project.

	
 8	

	
 9	

ADA95 USAGE WITHIN THE AIRBUS MILITARY
ADVANCED REFUELLING BOOM SYSTEM

Ismael Lafoz

Ismael.Lafoz@military.airbus.com
Control Systems Software Department, AIRBUS MILITARY

Po. John Lennon, 2, 28906 Getafe (Madrid) – Spain

The presentation will show the usage of the Ada95 programming language during the
development and the final implementation of the Fly-By-Wire system of the Advanced
Refuelling Boom System (ARBS) designed, developed and commercialized by Airbus
Military.
The ARBS has been installed in the A330 MRTT, which is a conversion of a basic
Airliner Aircraft into a Tanker Aircraft to transfer fuel in-flight from the main fuel tanks
to receiver aircraft. It consists of a telescopic mast or Boom, attached to the underside
fuselage of the aircraft, and the relevant electronic and mechanical systems, which make
the mast deployment possible from the stowage position, its extension and connection
with the receiver aircraft, the supply of fuel and, after the refuelling, the mast
disconnection, retraction and stowage.

Figure 1: Flying Boom in the pre-contact position with an A330 MRTT receiver (left).

Boom coupled with an F-16 receiver (right).

The core system of the ARBS is the Boom Control and Computing System (BCCS), a
redundant control/monitor architecture that comprises four computers. The basic
functionality of the BCCS is to receive inputs from the operator through flight control
sticks, sensors and aircraft systems, to compute the flight control laws, to determine the
system operational mode and to control and monitoring the actuators, which are mainly
connected to the aerodynamic surfaces. Additionally, the BCCS is in charge of the
management of the control and monitoring of the extension/retraction system and the
control and monitoring of the hoist and uplock system for raising/lowering and
locking/unlocking the boom. Besides, the BCCS is in charge of the management of the
Pilot Director Lights, which are used by the boom operator to guide the receiver aircraft
to the right contact position for the refuelling operation. The BCCS is also in charge of
providing the failure detection, recording and isolation system and of managing the
redundancy mechanisms. Instruction operations are also allowed using two flight
control sticks in order to provide training capabilities when the Boom is in flight. Every
computer that comprises the BCCS is based on a PowerPC 750 CPU and a VME
chassis where additional boards are included for supporting all the following physical
interfaces: discretes, analogues, ARINC 429 and CAN Bus.
The SW architecture defined for this system is based on ARINC 653 architecture, so it
comprises different partitions where the functionality implementation is deployed. Such
partitioning- based architecture is based on a Real Time Operating System that supports

	
 10	

the ARINC 653 specification, as it is VxWorks 653 from WindRiver.
The major part of the Application SW has been manually implemented in Ada95, but
there is also some C code automatically generated from models taking advantage of the
model-based development for such complex algorithm easily defined, simulated and
implemented using modelling tools. Additionally, the Board Support Package (BSP)
and the interfaces drivers, both supplied by the HW provider, were developed also in C.

Figure 2: Types of partitions of the ARINC 653 SW Architecture defined for the BCCS system.

The safety assessment of the system defined the DAL of the BCCS as Level A, so all
the development processes, the architecture, the implementation and the verification of
the developed SW were performed in order to be compliant with the DO-178B
certification standard and all its objectives for Level A SW.
The system was mainly developed using Ada95 as programming language, taking
advantage of the safety-related Ada95 features, the usage of an Ada95 high integrity
compiler, a safe subset of Ada95 according to a specific Coding Standard and a specific
safe Ada95 profile provided by the compiler provider.
Ada95 code was also automatically generated using homemade generation tools from
the SW Design UML model for the implementation of the code mainly related to the
ICD requirements and the ARINC 653 artifacts (partitions, intra and inter-partition
communication and processes). Model-based design methodology was used in this
project mainly for the development and implementation of the control algorithms or
flight control laws, so an specific mechanism was designed for connecting or modeling
the models performed in modeling or simulation environments as Simulink, within an
UML Design model. The SW components for connecting both the C code automatically
generated from the Simulink model and the Ada95 code manually implemented, were
automatically generated in Ada95 in order to ensure the right and proper mapping
between both languages.
Specific tools for Ada95 were used for the verification of the compliance with the
Coding Standard rules, so qualification, in terms of DO-178B, of such tools as
verification tools were performed during the development of the project. The robust–
ness, safety and reliability of the system have been demonstrated through hundreds of
test flights with the actual aircraft platform, with a fully absence of incidents. So, the
flight test phase is almost finished and the final certification phase of the system has
been already started with the current Spanish Military Certification Authority.

	
 11	

ADA95 USAGE WITHIN THE AIRBUS MILITARY GENERIC TEST
ENVIRONMENT

Bartolomé Lozano

Bartolome.Lozano@military.airbus.com
Airbus Military

Spain
	

The current abstract summarizes the proposed Industrial Presentation to show the usage
of the Ada95 programming language and the GNATPRO suite during the development
and the final implementation of the Generic Test Environment “SEAS”.
Aircraft electronics systems in recent years have increased their complexity and
sophistication, to achieve their demanding requirements of performance, reliability and
security.
Verification and validation process, of such systems, requires large tests sessions, at
different phases of the development route. These system integration benches are
required to perform equipment/subsystem/system verification tests against
equipment/subsystem/system specification, and to perform equipment, subsystem, and
system validation tests to check that the product as implemented meets the expectations
of the product customer.
For reasons of safety and cost most of these tests are passed in laboratory facilities and
on ground plane, leaving for flight tests the confirmation that the behaviour observed in
laboratory is not affected by the installation in aircraft and the environmental effects.
To achieve laboratory tests the so-called Integration benches are needed, which use real
equipment, connected to each other as in the aircraft and the possibility of interaction
with the drivers / operators, reproduce dynamically the input interfaces to a system;
monitor the behaviour and feeding back the responses to simulated environment. To
support this functionality Integration Benches must have large capabilities for
simulation, stimulation of entries, data acquisition, recording, sequencer, configuration
and presentation. All these capabilities are provided by the so-called test system what is
the "brain" of the Integration bench.
All AI Military integration benches use a standardized solution for system testing, the
SEAS (Stimulation, Acquisition and Simulation, System). SEAS is a computer aided
test environment responsible for the preparation, execution, analysis, configuration and
data distribution, simulation, recording, replay, sequencer, HW interface and
instrumentation of the tests required by A/C equipments/subsystems/systems validation
and verification process. [fig 1]
“SEAS” Generic Test environment is a set of modular, scalable and distributed HW and
SW items, which acts in combination, and in an integrated way, to provide support for
the testing activities, throughout Aircraft equipments/subsystems/systems development
life-cycle processes, starting from virtual, in an early design stage, to real on all
development stages, or even during flight test and during in-service maintenance by
using a common environment for Engineering Simulators, SW Benches, Functional test
benches, Target Benches and Final Assembly Lines Aircraft Interface Modules.
Test Bench used to having closed methods and tools set with A/C electronic systems.
Both domains share ICD’s, models, test cases and when appropriate programming
languages.

	
 12	

	

	

	

	

	

	

	

	

	

	
 	

	
 	

	

	

	

	

	

	

	

	

	

Fig 1. SEAS Context Diagram
	

The challenge was how to build test environments with a common core, following
Modular Open System Approach principles (MOSA), with sufficient open standards for
HW/SW interfaces, services, and supporting formats to enable properly engineered
components to be utilized across a wide range of test systems with minimal changes, to
interoperate with other components on local and remote test systems, and to interact
with users in a style that facilitates portability offering:

• Continued access to cutting edge technologies and products from multiple
suppliers of processors, avionics and non-avionics HW Interfaces,
Instrumentation, Models, ICD’s and test requirements.

• Greater reliability, reconfigurability , portability, interoperability, reusability,
scalability and maintainability.

• Supports timely and affordable technology insertion (reduced cycle time) for
Simulation, ICDs, Test cases, HW interfaces and instrumentation.

• Lower Risk mitigating the risks associated with technology obsolescence
• Reduced Life Cycle Cost.
• Adaptable to evolving requirements and threats.	

	

 In the current nightmare scenario of continuous evolution of technology:	

• Increasingly powerful multi-core processors.
• Increasingly networking computing technology used in A/C systems.
• Increasingly networking computing technology used in instrumentation (LXI).
• Web technology for Service Oriented Architecture (SOA) of engineering and

configuration tools frameworks.
• New avionics interfaces.
• The exchange of information is increasing in volume and speed.
• Protocols are used with more complicated interfaces.	
 	

The AI Military test environment solution show how thanks to the GNATPRO suite it
was possible to fulfil the strong requirements of such test systems, taking advantages to

	
 13	

provide a backbone to articulate the integration of components with mixed languages,
mixed components and a variety of Commercial Off The Shelf.
This backbone is the glue for the big variety of HW/ SW test bench items like Chassis,
I/O Interface boards, Fault Insertion Break-out boards, Commutation Matrix boards,
Relays Boards, processors Boards, third parties tools, semi-detached tools, integrated
tools, Laboratory Instruments, power distribution control, User stations, Simulations,
recording, sequencer, Data dictionaries and configuration control, Test preparation, test
execution and test analysis, graphical data-visualisation, numerical display, trend
display, synoptic and user defined components.
The presentation is focussed in the SEAS Core SW developed using GNATPRO suite
like:

• IO board drivers binding of a wide family of interfaces including aircraft
multiplexed links like AFDX, MIL-STD-1553, MIL-STD-3910, CANbus; Point
to Point links ARINC429, Discretes, Analogues, Synchros, LVDT, RVDT.

• Test bench configuration management.
• Signals, interfaces, buses configuration and scaling objects distribution to

remote processors by using GNATPRO GLADE.
• The integrated development environment for Simulations explaining how these

simulations are seamless integrated from user written models or Simulations
written in languages like Ada , C, C++, FORTRAN, binary code or mixed
languages.

• Examples of HMI.
	

This test environment shares signals, buses topology, simulations, data-visualisation
across different facilities needed by a/c system life cycle, starting from Desktop
Simulators, Virtual Test Benches, Equipment/subsystem/system Integration Benches,
and Aircraft Interface Modules for Final Assembly Lines.
SEAS is a SW/HW components federation used as the basic building block that it
allows bench scalability to form more complex federations for a multi-system
integration bench.
The maturity, robustness, safety and reliability of the system have been demonstrated
throughout hundreds of test facilities in use with this common test environment
including Engineering Simulators for Aircraft Refuelling Boom System, System
Integration Benches for Multirole Tanker Aircrafts, A400M, Lights&Medium Transport
Aircraft, Full Integrated Tactical Systems and Aircraft Interface Modules for Final
Assembly Lines of A400M, Multirole Tanker Aircrafts and L&MT aircrafts.

	
 	
 	
 	
 	
 	
 	

	
 14	

	
 15	

IMPLEMENTING POLYMORPHIC CALLBACKS FOR ADA/C++ BINDINGS

Maciej Sobczak
Maciej.Sobczak@cern.ch

CERN
Switzerland

Context of the actual work
The work that has lead to the development of presented solution was done during the
last year on the YAMI4 project, which is an open-source set of communication libraries
for multilanguage distributed systems. Ada, C++ and Java are currently supported by
the project.
The core part of the library set is implemented in C++ and implements basic
communication services. This part is used by high-level libraries implemented in Ada
and C++, which handle message routing, progress tracking and user-provided actions.
The messaging system needs a way to propagate event notifications between the low-
level core components and the high-level message handlers. These notifications were
implemented in the form of object-oriented callbacks. The challenge was to preserve the
object-oriented notions (dispatching calls via class-wide types) across the language
boundaries in the binding between Ada and C++.

Generic nature of the problem
The problem of notifications between layers in the software stack is not limited to
messaging systems. In fact, this problem pattern can be identified in many other
systems, and as such can be extracted and presented in the form of a simplified example
– a separately provided presentation handout serves as a reference and a starting point
for more elaborate implementations.

The technical details
The actual problem involves a C++ library with a callback engine, where an abstract
class is used as a callback interface for notifications.
The Ada binding that preserves the object-oriented notions in the callback includes two
translation layers that are added for the Ada and C++ parts – these layers reduce the
high-level language constructs (class-wide types and dispatching calls) to a simpler
subprogram call model that is appropriate for standardized language linking that is
supported by a relevant pair of Ada and C++ compilers.
In such a multi-layered architecture, the high-level constructs that are visible at the level
of each language are preserved without reliance on obscure or undocumented compiler
conventions.
An important property of the presented solution is its non-intrusiveness and loose
coupling that allows the individual layers to be reused in other architectural
combinations.

Biographical note
Maciej Sobczak works as the middleware team leader at CERN, where he is responsible for central
communication services in the accelerator control system. In addition to this work, he is an open-source
contributor and provides independent consulting services.
You can contact him at http://www.inspirel.com/

Reliable Software Technologies, Ada-Europe 2010 – Industrial Presentation
Implementing Polymorphic Callbacks for Ada/C++ Bindings (presentation handout)

Maciej Sobczak

C++ layer – callback engine with wrapper Ada layer – adapter with example user program
// base.h:
class Callback
{
public:
 virtual void call() = 0;
};

void registerCallback(Callback * c);
void fireAll();

// base.cpp:
#include "base.h"
#include <cstdio>
#include <vector>

std::vector<Callback *> allCallbacks;

void registerCallback(Callback * c)
{
 std::puts("base: register callback");
 allCallbacks.push_back(c);
}

void fireAll()
{
 std::puts("base: fire all!");
 for (std::vector<Callback *>::iterator it =
 allCallbacks.begin(); it != allCallbacks.end(); ++it)
 {
 (*it)->call();
 }
}

// wrapper.cpp:
#include "base.h"

extern "C" typedef void (*CallbackFunctionType)(void *);

class WrappedCallback : public Callback
{
public:
 WrappedCallback(
 CallbackFunctionType function, void * object)
 : f_(function), obj_(object) {}

 virtual void call()
 {
 // call into the Ada translator procedure
 f_(obj_);
 }

private:
 CallbackFunctionType f_;
 void * obj_;
};

// functions "exposed" to the Ada layer:

extern "C" void wrapped_registerCallback(
 void * function_addr, void * object)
{
 // brute-force conversion from
 // raw procedure address obtained from Ada
 // to C++ function pointer
 union
 {
 void * raw_pointer;
 CallbackFunctionType function_pointer;
 } converter;

 converter.raw_pointer = function_addr;
 CallbackFunctionType function = converter.function_pointer;

 registerCallback(new WrappedCallback(function, object));
}

extern "C" void wrapped_fireAll()
{
 fireAll();
}

-- callbacks.ads:
package Callbacks is

 type Callback is interface;
 type Callback_Access is access all Callback'Class;

 procedure Call (Self : in Callback) is abstract;

 procedure Register_Callback (C : in Callback_Access);
 procedure Fire_All;

end Callbacks;

-- callbacks.adb:
with System.Address_To_Access_Conversions;

package body Callbacks is

 subtype Void_Ptr is System.Address;

 package Conversions is
 new System.Address_To_Access_Conversions
 (Object => Callback'Class);

 -- helper translator,
 -- will be directly called by the C++ wrapper:
 procedure Callback_Translator (Obj : in Void_Ptr);
 pragma Convention (C, Callback_Translator);

 procedure Callback_Translator (Obj : in Void_Ptr) is
 C : Callback_Access :=
 Callback_Access (Conversions.To_Pointer (Obj));
 begin
 -- actual dispatching call to the Ada implementation:
 C.all.Call;
 end Callback_Translator;

 procedure Register_Callback (C : in Callback_Access) is
 procedure Wrapped_Register_Callback
 (Fun : in Void_Ptr; Obj : in Void_Ptr);
 pragma Import (C, Wrapped_Register_Callback,
 "wrapped_registerCallback");
 begin
 Wrapped_Register_Callback
 (Callback_Translator'Address,
 Conversions.To_Address (Conversions.Object_Pointer (C)));
 end Register_Callback;

 procedure Fire_All is
 procedure Wrapped_Fire_All;
 pragma Import (C, Wrapped_Fire_All, "wrapped_fireAll");
 begin
 Wrapped_Fire_All;
 end Fire_All;

end Callbacks;

-- example.adb:
with Ada.Text_IO;
with Callbacks;

procedure Example is

 type Some_Callback is new Callbacks.Callback with null record;
 overriding procedure Call (Self : in Some_Callback);

 overriding procedure Call (Self : in Some_Callback) is
 begin
 Ada.Text_IO.Put_Line ("Ada: Some Callback called");
 end Call;

 type Other_Callback is new Callbacks.Callback with null record;
 overriding procedure Call (Self : in Other_Callback);

 overriding procedure Call (Self : in Other_Callback) is
 begin
 Ada.Text_IO.Put_Line ("Ada: Other Callback called");
 end Call;

 SC : aliased Some_Callback;
 OC : aliased Other_Callback;

begin

 Ada.Text_IO.Put_Line ("Ada: registering callbacks");
 Callbacks.Register_Callback (SC'Unchecked_Access);
 Callbacks.Register_Callback (OC'Unchecked_Access);

 Ada.Text_IO.Put_Line ("Ada: fire all!");
 Callbacks.Fire_All;

end Example;

	
 17	

A REUSABLE WORK SEEKING PARALLEL FRAMEWORK FOR ADA 2005
	

Brad Moore
Brad.Moore@gdcanada.com

General Dynamics
Canada

	

The Ada programming language is seemingly well positioned to take advantage of
emerging multicore technologies. While it has always been possible to write parallel
algorithms in Ada, there are certain classes of problems where the level of effort to
write parallel algorithms outweighs the ease and simplicity of a sequential approach.
This can result in lost opportunities for parallelism and slower running software
programs.
This presentation explores Ada's concurrency features to see whether it is possible to
easily inject iterative and recursive parallelism to code written in Ada, without having to
resort to special language extensions or non-standard language features.
This paper identifies a “work-seeking” technique, which can be viewed as a form of
compromise between work-sharing and work-stealing, two competing strategies
described in the literature. The presentation then goes on to propose how parallelism
pragmas could be added to Ada to further facilitate parallelism. The presentation
concludes by suggesting how the approach might be applied to a Battlefield Spectrum
Management application.

	
 18	

	
 19	

DATABASE PROGRAMMING WITH ADA

Frank Piron
frank.piron@konad.de

KonAd GmbH, Freiburg
Germany

Keywords: Database Programming, GUI Development, Automatic Layout, Multitasking
Konada.Db, GWindows, Oracle Call Interface

Summary
Since 10 years ago the KonAd team develops Oracle Database Applications based on the
Oracle Call Interface and the Developer 2000 tool chain. By the beginning of the
millennium ORACLE cancelled further development of the PL/SQL-based Client-Server
tools and decided to switch to Java. Since Java was not the language we wanted to work
with, KonAd started to build an own database development framework in Ada based on the
Oracle Call Interface, but database independent by design.
The talk will give an introduction to the Konada.Db library with code examples and real
project experiences. Especially the work done since our presentation at the Ada-Europe
2006 conference [1] will be presented.
The presentation will concentrate on the structure and use of the library but will also show
the reasons why we chose Ada for database programming and which experiences we made.

Why Database Programming in Ada?
We wanted to use a language with object orientation and suitable for the development of
large applications. Further programming on different OS-Platforms should be possible. At
this point the standardization of Ada came in. The detection of errors at compile time was a
very important feature because runtime errors in online transaction database applications
with hundreds of users would be difficult to handle.
Finally we considered the built in multitasking capabilities and the similarity between Ada
and the Oracle procedural language PL/SQL as an Ada83 derivative, and decided to use Ada
in our future development.

The Konada.Db Library
The Konada.Db library contains database and GUI services. The database services are
organized in four layers.

• AdaOci, a thin binding to the Oracle Call Interface written by Dmitryi Anisimkov,
Blob-enhancement by Frank Piron

• Konada.Db.Sql, a SQL-based thick binding
• The Konada.Db.Row container datatype to hold a table row of data
• The Konada.Db.Tables datatype which allows data manipulation without use of SQL

The GUI services have three layers

• Gwindows, a thick binding to the Win32-API (David Botton)
• Gwindows.Extended, extensions written by KonAd
• GUI-Controls for direct user interaction

	
 20	

The Konada.Db Framework - a structural view (shaded boxes are available under GMGPL)

GUI-Controls
The GUI-controls of our framework are the basic components for complex database
applications with state of the art user interfaces for the win32-platform. They provide default
functionality for the presentation and manipulation of data. For that only few lines of code
are necessary since layout is done automatically by the library using high-level layout
directives. A flexible and extensible event-model is provided to enhance the controls with
application specific code. Since the GUI are created dynamically all information about
layout and item types like checkbox | listbox | textitem… may be hold in the database and
may be changed without recompilation.
The presentation will conclude with examples and project reports including demonstration
of running applications

• Simple table maintenance programs with Konada.Db
• A complete ERP-Solution built with Konada.Db
• Non GUI-database applications on Linux/Solaris

References
[1] Frank Piron, “The Development and Deployment of a Workflow System Partially

Written in Ada95”, Ada Europe 2006, Industrial Presentation.
http://www.hurray.isep.ipp.pt/activities/ae2006/index2.html

	
 21	

FUTURE ENHANCEMENTS TO THE U.S. FEDERAL AVIATION
ADMINISTRATION’S (FAA) EN-ROUTE AUTOMATION MODERNIZATION

(ERAM) PROGRAM AND THE NEXT GENERATION AIR TRANSPORTATION
(NEXTGEN) SYSTEM

Jeffrey O’Leary

Software Development and Acquisition Lead, En Route and Oceanic Services
Directorate, US Federal Aviation Administration, Washington DC (USA)

Alok Srivastava

alok.srivastava@auatac.com
TASC Inc, (formally Northrop Grumman IT), Washington DC (USA)

This presentation will discuss the future enhancements to the En-route Automation
Modernization (ERAM) program, the biggest modern Ada software engineering based
system with focus on new lessons learned during the deployment, short falls and
enabling new technologies. The new functionalities and enhanced capabilities will be
piggyback on ERAM’s robust software infrastructure therefore will continue to
significantly use Ada.
The presentation will also talk about FAA’s most ambitious new undertaking, the Next
Generation Air Transportation System that would replace the current radar- based air
traffic control system in which data, communications and instructions flow to and from
a handful of ground control facilities, to a satellite-based system that would allow
aircraft to locate each other and communicate with each other. This would allow more
efficient use of congested air space and airport facilities. The NextGen is expected to be
in place by 2025 with few capabilities that can be achieved in the mid-term, from 2012
to 2018. The current plan includes five major programs, Automatic Dependent
Surveillance Broadcast (ADS-B), System- Wide Information Management, NextGen
Data Communications, Network Enabled Weather and the National Airspace Voice
Switch. The presentation will also discuss how the NextGen components will be
integrated with ERAM and what enhancements in Ada Software Engineering and
products the FAA would like to see to accomplish such goals.

	
 22	

	
 23	

SYSTEM ARCHITECTURE VIRTUAL INTEGRATION CASE STUDY

Bruce Lewis
bruce.a.lewis@us.army.mil

US Army Aviation and Missile Command
USA

The System Architecture Virtual Integration project (SAVI) is a major multi-phase program
being sponsored within the Aerospace Vehicle Systems Institute (AVSI).
Originally a Boeing initiative, the AVSI is now an international organization sponsoring
pre-competitive research primarily in the domain of aviation and aerospace. The
participants in the SAVI first phase project and demonstration were Airbus, Boeing, and
Lockheed Martin, as system integrators, and BAE Systems, GE and Rockwell Collins as
system suppliers, with the involvement of the DoD, the FAA, and the Software Engineering
Institute.
The SAVI project is very ambitious, providing a new paradigm for system development. It
is to demonstrate and then develop for production use an architecture centric “virtual
integration” approach based on quantitative model based, component based and proof based
engineering for system acquisition, development and lifecycle upgrades. The SAVI
paradigm will significantly impact the commercial and military aviation industry first, then
other domains with similar requirements for real-time, safety, security, and predictable
performance.
At this point, the first phase has been completed and this report will provide a summary of
the results based on the published SAVI Case Study and the author’s personal participation
in the project. The next phase is about to begin.
Driving the industry to work together on a solution, software/system integration costs are
now a major component, if not the largest component, of system development cost and
schedule risk and threaten each company’s ability to develop the next generation of aircraft.
However, the technology solution pieces to this driving need can now be leveraged by small
programs and the concepts applied to embedded real-time system upgrades. The key
concept is to address system requirements and design errors as early as possible through
quantitative modeling, in effect to provide a virtual validation or feasibility assessment
incrementally throughout the program.
The focus is not on component correctness, which is now less of an issue, but on the
integration of components. The participants agreed that the most expensive errors
discovered in integration were in the software/system architecture. Hence, SAVI phase 1
shifts the discovery process forward by using a precise architecture description language
(AADL) to model early and incremental advances in the architecture’s definition, driving
from a unified system model, many dimensions of analysis of critical architecture qualities
and constraints with incremental enhancements in fidelity as the design matures. This semi-
formal architectural approach enables early discovery. In fact, the SAVI process starts pre-
acquisition and involves the exchange of quantitatively analyzable, integratable models
throughout the development process.
Thus the SAVI catch phrase, “Integrate, then Build”. The first phase of SAVI has
demonstrated the ability to do model based, component based and proof based architectural
analysis supporting virtual integration in an acquisition process for the incremental
validation of requirements and design. The first phase project included: 1) development of
the model-based architecture centric acquisition process, 2) selection of analysis approaches
from experiences in system integration, 3) development of the shareable but protected
repository for the unified system architectural model, based on strong architectural

	
 24	

semantics, 4) model bus transformations to various analysis tools and to a UML modeling
tool, 5) demonstration of the model-based acquisition and development process using the
selected analysis methods through multiple stages of the process and multiple tiers of the
architecture, and finally 5) analysis of expected Return on Investment.
Each of these elements will be summarized in the presentation.

	
 25	

LESSONS LEARNED FROM THE FIRST HIGH ASSURANCE (EAL 6+)
COMMON CRITERIA SOFTWARE CERTIFICATION

David Kleidermacher

davek@ghs.com
Green Hills Software Inc.

Overview

An operating system has recently been certified to the highest Common Criteria security
level (EAL 6+ High Robustness) ever achieved for a software technology. This case
study will describe the certification requirements, including formal methods and NSA
penetration testing, lessons learned navigating the certification process, and the security
principles that guided development.

Outline for the presentation:
1. Introduction
• Brief Overview of Common Criteria, Assurance Levels
• Comparison of Operating System Protection Profiles
• Issues Relating to Validating a Protection Profile and using custom Security

Targets

2. Overview of Certified Software
• What Drove the Requirement for Certification
• What is Meant by EAL 6+ and “High Robustness”
• Historic Certifications Performed on Similar Classes of Software

3. EAL 6+ Requirements and Lessons Learned from Meeting Them
• Configuration Management
• Testing
• Understanding the Applicability of other Reliability Standards to this Certification

Effort
• Development Security and Secure Delivery
• Formal Functional Specification, Design, and Implementation Representation;

Lessons Learned with Formal Methods
• Assured Maintenance Process and Lessons Learned from Subsequent Applications
• Tools Assurance
• Vulnerability Assessment and Lessons Learned working with US NSA Penetration

Testers

4. Conclusion
• How the Common Criteria Standard Performed in this Effort
• Applications, Cost, and Importance of High Assurance Software Security

Certifications

	
 26	

	
 27	

AN INTRODUCTION TO PARASAIL:
PARALLEL SPECIFICATION AND IMPLEMENTATION LANGUAGE

	

S. Tucker Taft

stt@sofcheck.com
SofCheck, Inc.
Burlington, MA

USA
	

This	
 presentation	
 will	
 provide	
 an	
 introduction	
 to	
 "ParaSail”,	
 a	
 new	
 programming	

language	
 being	
 designed	
 from	
 scratch,	
 in	
 the	
 belief	
 that	
 a	
 well-­‐designed	

programming	
 language	
 can	
 result	
 in	
 more	
 productive	
 programmers	
 building	

higher	
 quality	
 software.	
 In	
 the	
 particular	
 area	
 of	
 high-­‐integrity	
 software,	
 including	

both	
 safety-­‐critical	
 software	
 and	
 high-­‐security	
 software,	
 there	
 is	
 all	
 the	
 more	

reason	
 to	
 use	
 the	
 very	
 best	
 programming	
 language	
 you	
 can,	
 because	
 the	
 problems	

you	
 are	
 trying	
 to	
 solve	
 and	
 the	
 level	
 of	
 quality	
 required	
 is	
 at	
 the	
 very	
 limits	
 of	
 what	

can	
 be	
 accomplished.	

ParaSail	
 is	
 meant	
 to	
 address	
 the	
 goals	
 of	
 producing	
 inherently	
 safe	
 and	
 secure	

software,	
 while	
 taking	
 advantage	
 of	
 the	
 wider	
 availability	
 of	
 true	
 parallel	

processing	
 in	
 the	
 form	
 of	
 multi-­‐core	
 chips.	
 It	
 is	
 intended	
 to	
 promote	
 a	
 formal	

approach	
 to	
 software,	
 where	
 the	
 program	
 text	
 includes	
 pre-­‐	
 and	
 postconditions,	

liberal	
 use	
 of	
 assertions	
 and	
 invariants,	
 etc.,	
 with	
 tool-­‐supported	
 proof	
 of	

correctness	
 with	
 respect	
 to	
 the	
 formal	
 annotations.	

The	
 language	
 is	
 named	
 ParaSail	
 as	
 an	
 acronym	
 for	
 Parallel	
 Specification	
 and	

Implementation	
 Language.	
 ParaSail	
 is	
 a	
 completely	
 new	
 language,	
 but	
 it	
 steals	

liberally	
 from	
 other	
 programming	
 languages,	
 including	
 the	
 ML	
 family,	
 the	

Algol/Pascal/Ada	
 family,	
 the	
 C/C++/Java	
 family,	
 and	
 the	
 region-­‐based	
 languages	

(especially	
 Cyclone).	
 Perhaps	
 one	
 significant	
 deviation	
 from	
 the	
 excellent	
 baseline	

established	
 by	
 ML,	
 Eiffel,	
 Java,	
 Scala,	
 etc.	
 is	
 that	
 ParaSail	
 is	
 intended	
 to	
 avoid	
 "fine-­‐
granule"	
 garbage	
 collection	
 in	
 favor	
 of	
 stack	
 and	
 region-­‐based	
 storage	

management.	
 	
 The	
 other	
 major	
 deviation	
 from	
 the	
 above-­‐named	
 language	
 families	

is	
 that	
 ParaSail	
 is	
 inherently	
 parallel.	
 	
 The	
 programmer	
 has	
 to	
 work	
 harder	
 to	
 force	

sequential	
 evaluation.	
 	
 By	
 default,	
 evaluation	
 proceeds	
 in	
 parallel	
 for	
 almost	
 all	

constructs.	

As	
 far	
 as	
 language	
 design	
 philosophy,	
 ParaSail	
 tries	
 to	
 minimize	
 implicit	

operations,	
 implicit	
 parameters,	
 implicit	
 dynamic	
 binding	
 (virtual	
 function	
 calls),	

implicit	
 initializations,	
 implicit	
 conversions,	
 etc.	
 This	
 is	
 both	
 in	
 the	
 name	
 of	
 clarity	

for	
 the	
 human	
 reader,	
 and	
 in	
 the	
 name	
 of	
 formal	
 testability	
 and	
 verifiability.	

ParaSail	
 uses	
 a	
 small	
 number	
 of	
 concepts	
 to	
 represent	
 all	
 of	
 the	
 various	

composition	
 mechanisms	
 such	
 as	
 records,	
 packages,	
 classes,	
 modules,	
 templates,	

capsules,	
 structures,	
 etc.	
 Arrays	
 and	
 more	
 general	
 containers	
 are	
 treated	

uniformly.	

On	
 the	
 other	
 hand,	
 ParaSail	
 allows	
 many	
 things	
 to	
 proceed	
 in	
 parallel	
 by	
 default,	

effectively	
 inserting	
 implicit	
 parallelism	
 everywhere.	
 Parameter	
 evaluation	
 is	

logically	
 performed	
 in	
 parallel.	
 The	
 language	
 disallows	
 uses	
 that	
 would	
 make	
 the	

result	
 depend	
 on	
 the	
 order	
 or	
 concurrency	
 of	
 parameter	
 evaluation.	
 The	
 iterations	

of	
 a	
 for	
 loop	
 are	
 by	
 default	
 executed	
 in	
 an	
 arbitrary	
 order.	
 Explicit	
 ordering	
 must	

be	
 specified	
 if	
 it	
 is	
 required	
 by	
 the	
 algorithm.	
 Even	
 sequential	
 statements	
 are	

	
 28	

essentially	
 converted	
 into	
 a	
 data-­‐flow	
 based	
 DAG,	
 which	
 is	
 then	
 evaluated	
 in	

parallel	
 in	
 so	
 far	
 as	
 possible.	
 In	
 all	
 cases,	
 the	
 language	
 disallows	
 code	
 that	
 could	

result	
 in	
 race	
 conditions	
 due	
 to	
 inadequately	
 synchronized	
 access	
 to	
 shared	
 data.	
 	

Race	
 conditions	
 are	
 avoided	
 either	
 by	
 using	
 data	
 structures	
 specifically	
 designed	
 to	

support	
 concurrent	
 access	
 (either	
 lock-­‐based	
 or	
 lock-­‐free),	
 or	
 by	
 relying	
 on	

handoff	
 semantics	
 (similar	
 to	
 that	
 of	
 linear	
 types,	
 distributed	
 languages	
 like	

Hermes,	
 or	
 the	
 UVM	
 virtual	
 memory	
 system).	
 Handoff	
 semantics	
 ensures	
 that	
 once	

a	
 variable	
 is	
 passed	
 as	
 a	
 writable	
 parameter	
 as	
 part	
 of	
 a	
 call,	
 it	
 is	
 no	
 longer	

available	
 for	
 other	
 use	
 until	
 the	
 called	
 routine	
 returns,	
 effectively	
 eliminating	
 both	

race	
 conditions	
 and	
 unintended	
 aliasing.	

Much	
 of	
 this	
 kind	
 of	
 implicit	
 parallelism	
 is	
 possible	
 in	
 pure	
 functional	
 languages,	

and	
 ParaSail	
 will	
 support	
 a	
 functional	
 programming	
 style	
 where	
 it	
 works	
 naturally.	

Unfortunately,	
 doing	
 certain	
 relatively	
 straightforward	
 things	
 in	
 pure	
 functional	

languages	
 can	
 be	
 awkward,	
 while	
 a	
 normal	
 assignment	
 statement	
 is	
 something	

that	
 most	
 developers	
 understand	
 intuitively,	
 even	
 though	
 it	
 potentially	
 breaks	
 the	

referential	
 transparency	
 that	
 pure	
 functional	
 languages	
 can	
 provide.	

This	
 presentation	
 will	
 provide	
 examples	
 of	
 the	
 features	
 of	
 ParaSail	
 as	
 currently	

designed,	
 compare	
 and	
 contrast	
 it	
 with	
 other	
 existing	
 languages,	
 and	
 discuss	
 the	

rationale	
 behind	
 the	
 choices	
 made	
 in	
 its	
 design.	
 	
 We	
 will	
 also	
 identify	
 the	
 open	

issues	
 needing	
 resolution	
 prior	
 to	
 completing	
 the	
 design	
 of	
 ParaSail.	

	

