ADA EUROPE 2010 **HRT-UML** and Ada **Ravenscar Profile:** a Methodological **Approach to the Design Of Level B Spacecraft Software**

Roberto López, Ana Rodríguez

© GMV, 2010 Property of GMV All rights reserved

OVERVIEW

- Multinational conglomerate founded in 1984
- Private capital
- Subsidiaries in Spain, Portugal and USA
- Over 1000 employees all over the world
- Roots tied to the Space and Defense industries
- Currently operating in Aeronautics, Space, Defense, Security, Transportation, Healthcare and ITC industries.

GMV Innovating Solutions Sp.zo.o

HRT-UML and Ada Ravenscar Profile

16/06/10 Page 2

© GMV, 2010

BACKGROUND

- Sentinel-3 continues the observation missions of ESA's ENVISAT and SPOT Satellites
 - Ocean & Land Colour Instrument (OLCI) continuation of ENVISAT/MERIS mission, launch on March 2002
 - GMV involved in the development of the OBSW for MERIS for ENVISAT
 - ESA PSS05, HOOD Methodology
 - 15K LOCS Ada
 - 144K LOCS Test Software
 - 136 Person/Month Efforts

19 April 2010 by ESA's ENVISAT satellite The Eyjafjallajoekull Volcano in Iceland http://www.esa.int/

BACKGROUND (2)

- Under Thales Alenia Space contract, GMV is responsible for the development of the ICM software
- Critical software ECCS-E-40B level B
- ERC32 microprocessor
- SW Development Environment:
 - Ada95,
 - AdaCore High Integrity Ravenscar Run Time for ERC32 (GNAT Pro for ERC32)

MOTIVATION

- An integrated solution (method + toolset) for the design of Ada95 OBSW systems compatible with ESA's criticality categories
- Assessment of timing and performance requirements during the whole development lifecycle, as requested by ECSS-E-ST-40C:
 - Technical Budgets:
 - Memory size
 - CPU utilization
 - Schedulability analysis for real-time software
 - Behaviour modelling verification
- Possibility of accurate analysis of real-time behaviour by choice of scheduling/dispatching method together with suitable restrictions on the interactions allowed between tasks

HRT-UML

- The selected analysis and design methodology has been Object-Oriented supported by HRT-UML
 - Initial HRT-UML based on UML 1.4
 - A new evolution of the methodology has been developed in the context of ASSERT project, based on UML 2.0, but it is out of scope of this presentation
 - Customized version of UML expressing the HRT-HOOD methodology
- Extensions for Dependable Systems and Control Systems have not been used

HRT-UML (2)

- HRT-UML main features:
 - Easy decomposition of the software architecture into design objects having internal parts that communicate with each other and with the outside environment
 - Explicit recognition of the typical activities of real-time systems
 - Integration of appropriate scheduling paradigms with the design process
 - Explicit definition of the application timing requirements for each activity
 - Static verification of processor allocation, schedulability and timing analysis
 - Provided toolset by Intecs implements Utilization Test, Response Time Test and Hyperplane Test

RAVENSCAR PROFILE

- A subset of the Ada tasking model defining restrictions to reduce the full tasking model
- Allows potential verification techniques
 - information flow analysis,
 - schedulability analysis,
 - execution order analysis and
 - formal model checking.
- Scheduling model:
 - Pre-emptive fixed priority scheduling
 - Priority Ceiling Protocol to avoid unbounded priority inversions and deadlocks
 - Supports cyclic and sporadic activities, and the idea of hard, soft, firm and non-critical tasks

EXAMPLE: SENTINEL 3 OLCI ICM SW

EXAMPLE: SENTINEL 3 OLCI ICM SW (2)

HRT-UML and Ada Ravenscar Profile

16/06/10 Page 10

10 © GMV, 2010

EXAMPLE: SENTINEL 3 OLCI ICM SW (3)

It is possible to check Ravenscar compliance at model level
 HRT-UML rules are generally compliant with allowed Ravenscar features (e.g. no task allocators, no dynamic priorities, etc.)

EXAMPLE: SENTINEL 3 OLCI ICM SW (4)

EXAMPLE: SENTINEL 3 OLCI ICM SW (5)

H Analyze d	ialog										
				Task Pro	operties			\sim			
Ta	isk Name		type	e wcet	deadline	period	offset	priority	blocking	utilizati	respon
RSW_SMU_If_	Bus_Manage	er	Sporadi	c 3.0	25.0	25.0	0.0	1	-1.0	-1.0	3.3
RSW_Comman	dability_TC_	Server	Cyclic	3.0	33.0	100.0	0.0	2	-1.0	-1.0	6.3
RSW_Time_Ma	nager_PPS_	Manager	Sporadi	c 1.5	1000.0	1000.0	0.0	3	-1.0	-1.0	7.8
RSW_Memory	Manager		Sporadi	c 300.0	1000.0	1000.0	0.0	4	0	-1.0	358.5
	D014 0	DOWN F	DOW	Protecte	d Utilization	n Table				DOM T	
Coiling Drievit	RSW_Co	RSW_E	RSW	RSW_SMU	_lf_TM_Buff	fers R	SW_StRSV	W_PRSW	_EPICA_I	RSW_Tim	1e_M
Task pame	1	5	2					5	5		
RSV/ SMLL	0.3	0	0			0.3	0	0	0		0.3
RSVV Comm	0.3	0	0.3			0.3	0	0	0		0.3
DOWL T:											
				Priority I	Kind List						
Deadline Mono	tonic prioritie	es									-
				Analysis	List						
Utilization anal	ysis										-
					Ok	Cancel					

 Priority assignment to tasks and protected objects according to Rate or Deadline Monotonic methods.

EXAMPLE: SENTINEL 3 OLCI ICM SW (6)

Checking CPU utilization

EXAMPLE: SENTINEL 3 OLCI ICM SW (7)

🔢 Response Time Analysis					
Name	Wcet	Deadline	Period	Response	Sched
RSVV_SMU_If_Bus_Manager	3.0	25.0	25.0	3.3	
RSVV_Commandability_TC_Server	3.0	33.0	100.0	6.3	
RSW_Time_Manager_PPS_Manager	1.5	1000.0	1000.0	7.8	
RSW_Memory_Manager	300.0	1000.0	1000.0	358.5	
RSW_SMU_If_Bus_Manager RSW_Commandability_TC_Server RSW_Time_Manager_PPS_Manager RSW_Memory_Manager	3.3 25.0 6.3 33.0 7.8		358.5		1000.0
		Ok Help			

Checking system schedulability according to Response Time Test

EXAMPLE: SENTINEL 3 OLCI ICM SW (8)

Hyperplane analysis to check system schedulability, distance and speed factor.

EXAMPLE: SENTINEL 3 OLCI ICM SW (9)

EXAMPLE: SENTINEL 3 OLCI ICM SW (10)

📕 Response Time Analysis

X

Name	Wcet	Deadline	Period	Response	Sched
RSW_SMU_If_Bus_Manager	3.0	4.0	4.0	3.3	V
RSW_Commandability_TC_Server	3.0	33.0	100.0	15.3	V
RSW_Time_Manager_PPS_Manager	1.5	1000.0	1000.0	19.8	V
RSW_Memory_Manager	300.0	1000.0	1000.0	1380.0	
RSW_SMU_If_Bus_Manager RSW_Commandability_TC_Server RSW_Time_Manager_PPS_Manager RSW_Memory_Manager	3.3 4.0 15.3 33.0 19.8				1000. 1000.
		Ok Help]		

EXAMPLE: SENTINEL 3 OLCI ICM SW (11)

📕 Hyperplane Analysis

Speed Factor = 108,1%

Name	wcet	deadline	period	Sched.	distance
RSW_SMU_If_Bus_Manager	3	4	4	~	-0,326
RSW_Commandability_TC_Server	3	33	100	~	-8,15
RSW_Time_Manager_PPS_Manager	1,5	1.000	1.000	~	-81,5
RSW_Memory_Manager	300	1.000	1.000		-81,5

EXAMPLE: SENTINEL 3 OLCI ICM SW(12)

H Response Time Analysis					×
Name	Wcet	Deadline	Period	Response	Sched
RSW_SMU_If_Bus_Manager	2.6	4.0	4.0	2.8999999	V
RSW_Commandability_TC_Server	3.0	33.0	100.0	11.099999	v
RSW_Time_Manager_PPS_Manager	1.5	1000.0	1000.0	15.2	1
RSW_Memory_Manager	300.0	1000.0	1000.0	947.69995	V
RSW_SMU_lf_Bus_Manager	2.8999999 4.0				
RSW_Commandability_TC_Server	11.099999 3	3.0			
RSW_Time_Manager_PPS_Manag	er 15.	2			1000
RSW_Memory_Manager				94	7.69995 1000
		Ok Help			

DIFFICULTIES

- HRT-UML model restrictions to comply Ravenscar Profile seem to be more restrictive than the profile itself.
- HRT-UML classes and Data types
 - Objects are instances of Classes
 - Attributes are instances of Data Types.
 Arguments of operations are also based on Data Types
 - Data Type and UML class concept are the same: Not completely necessary to have Data Types, could be replaced by Passive classes

Process_And_Deposit Extract Pr <u>Buffer:Buffer</u>
Extract Pr Buffer:Buffer
Pr Buffer:Buffer
Pr Buffer:Buffer
< <paer>> Deposit</paer>
< <pre><<pre>paer>> Extract</pre></pre>

 Implications from schedulability point of view and HRT-UML consistency needs to investigated

RAVENSCAR RUN-TIME KERNEL

- Apart from specific Ravenscar kernels on ERC32:
 - GNAT Pro (Adacore): Being qualified for ECCS-E40-B level-B.
 - ERC32 Ada (XGC)
 - ObjectAda RAVEN (Aonix)
 - GNAT/ORK
- Same approach can be achieved using ESA's RTEMS:
 - Possible to reproduce Ravenscar restrictions on top on RTEMS
 - RTEMS provides the same Ravenscar scheduling model: preemptive fixed priority scheduling and priority ceiling protocol when accessing to shared sections
 - RTEMS Ada API is not used due to:
 - OAR has stopped to support ADA for RTEMS
 - The only qualified API (under level B qualification process, performed by RTEMS Center) is the RTEMS Classic API
 - Solution based on using GNAT Pro for ERC32 compiler using Zero-Foot-Print run time system on top RTEMS Classic API

CONCLUSIONS

- Covered expectations
 - An integrated solution (method + toolset) for the design of embedded real-time systems \checkmark
 - Assessment of timing and performance requirements during the whole development lifecycle, as requested by ECSS-E-ST-40C
 - Technical Budgets :
 - Memory size, X (manually done)
 - CPU utilization and \checkmark
 - Schedulability analysis for real-time software \checkmark
 - Behaviour modelling verification Partially
 - Possibility of accurate analysis of real-time behaviour by choice of scheduling/dispatching method together with suitable restrictions on the interactions allowed between tasks \checkmark

Thank you

Ana Isabel Rodríguez airodriguez@gmv.com www.gmv.com

