Including HW-SW Co-Design in the ASSERT Model Driven Engineering Process

Elena Aldaña, GMV Francisco Ferrero, GMV Ana Isabel Rodríguez, GMV Juan Zamorano, UPM Juan Antonio de la Puente, UPM

Aims

- Add HW-SW co-design to ASSERT process:
 - model-driven approach to software development
 - definition of co-design methodology supported by tools
- Case study
 - on-board image processing system

- HWSWCO study funded by ESA/ESTEC
 - GMV, U Cantabria, UP Madrid

The original ASSERT software process

Key elements

- Property preserving model transformations
 - especially real-time properties
 - implemented by common meta-model
 - based on Ravenscar Computational Model
- Separation of concerns
 - data, functional, interface and deployment
- Automatic code generation
 - for specialized execution platform (virtual machine)
 - based on ORK+ and PolyORB-HI-Ada
 - automatic synthesis of SW interfaces

The TASTE toolset

- Based on the ASSERT process
- Uses AADL as a common language
 - meta-model enforced by means of templates

HW-SW Co-design

- Concurrent development of HW and SW systems
- Integrated design flow:
 - abstract specification: common component model
 - HW-SW partitioning
 - Based on high-level software estimation (SCoPE): assesses performance and power-related metrics (trade-off speed-accuracy)
 - Allocation of system functions to processing resources to fulfill performance and power-related requirements
 - parallel implementation of HW and SW
 - system integration: minimization of integration issues

HWSWCO methodology

- Co-Specification
 - abstract view of system
- Co-Design
 - map to processing resources
 - feasibility analysis
- Co-Synthesis
 - implement HW and SW in parallel paths
 - synthesis of HW and SW interfaces
 - integration of HW and SW systems

ASSERT model transformation tool

Case study: image processing

Image processing testbed

Conclusions

- Key points in HW-SW co-design
 - Unified representation of HW-SW components
 - HW system component model compatible with ASSERT component model
 - HW data model compatible with ASSERT data model
 - Similar programming language for HW and SW systems: ANSI C
- Future work
 - Exploration HW issues in relation to RCM
 - Automatic design space exploration (DSE)