
Ada Ravenscar Code Archetypes for
Component-based Developmentp p

Marco Panunzio1 Thales Alenia Space – France
Tullio Vardanega University of Padova, Italy

17th International Conference on Reliable Software Technologies –
Ada Europe 2012

Stockholm, June 12, 2012

1work performed while at the University of Padova

Outline

• Introduction
– Rationale for code archetypes
– Target context: a software reference architecture

• Founding principles
S ti f– Separation of concerns

• Realization in CBSE

• Component model• Component model
– Overview

• Code archetypesCode archetypes
– Example (model and source code level)
– Containers
– Delegation chain for extra-functional properties enforcement
– Sporadic operations

C l i d f t k

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 2

• Conclusions and future work

Ravenscar code archetypes for CBD

• Goals
– Support separation of concerns

• In particular between functional and extra-functional aspects
– Sequential algorithmic code separate from tasking, synchronization and

interaction code
• Advantages

– Reuse of functional (algorithmic) code under different extra-functional
requirements

– Complement a defined component-oriented approach
• We briefly outline the overall context and the component model

Cover the complete infrastructural code– Cover the complete infrastructural code
• Interfaces, components, communication code
• Implementation of extra-functional properties

– Tasking, synchronization, real-time

– Support the inclusion of business code written in Ada or C/C++

• Leveraging on lessons learned from past R&D projects

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 3

• Leveraging on lessons learned from past R&D projects

Context of use: a software reference architecture
Component model

C

Container
Composability

requires
To develop software
as a set of reusable

software units

Computational Model

j
ihpj j

n
i

ii
n
i C

T
RCBR ∑

∈∀

+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
++=

)(

1Composition
with guarantees Compositionality

Softw
a

To relate architectural
entities to analysis

equations
pj j ⎥⎥⎢⎢)(

Programming model
task T1(TP: Priority;

Period: Milliseconds);

with guarantees are reference
To convey in the

implementation the
extra-functional

ti t ti ll

Execution platform

Middleware Library X

task body T1 is…

Property
preservation

e architectur

properties statically
asserted by analysis

To actively warrant
the properties Middleware Library X

RTOS BSW

Model-Driven Engineering

P

re

asserted by analysis

P

Domain-specific
concerns

Industrial
applicability requires

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 4

concerns

Cornerstone principle: separation of concerns

• To sharply separate different aspects of software design
– In particular functional and extra-functional concerns
– Allows each development actor to focus exclusively on their area

of expertise
– Fosters the use for each concern of the best-fit formalisms toolsFosters the use for each concern of the best fit formalisms, tools

and verification techniques

• Achieved
– In the design space by use of design views
– In the component model and implementation by allocation of

different concerns to different software entitiesdifferent concerns to different software entities
• Component, container, connector

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 5

Separation of concerns: realization in CBSE (I)

Exposes a set of
cohesive functional

Reuse of components
under different extra-Component

services

enables

functional concerns →
increased reuse potential

A

A component is a
pure functional unit

Declares the functionalDeclares the functional
services required from

other components or the
system to operate

The source code of
components is pure

sequential code.
correctly

Declares the applicable

Extra-functional concerns
(i.e. tasking,

synchronization, real-time)
i l t d (dDeclares the applicable

extra-functional
requirements in terms of

annotations of its functional
f

are implemented (and
warranted) by the
component model

infrastructure

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 6

interface

Separation of concerns: realization in CBSE (II)

Component
A

Container - Wrapper responsible for the declared extra-
functional attributes

Container A
- Provides the component with a mediated
connection with the execution platform and the
system in general

Connector AB

Connector

Component
A

Container A

Component
B

Container B

Connector AB

Container A Container B

- Addresses interaction concernsAddresses interaction concerns

- Decouples the component from the other end-point(s) of a communication

- Realizes connection properties (best-effort, at most once, exactly once)

E d /f ti ll t i I/O fil ti

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 7

- E.g. procedure/function call, remote message passing, I/O file operation, …

The concept in a nutshell (I)

1. Define (or reuse)
3. Define the hardware topology No hardware modeling.

Interest in communication,

<<Sporadic operation>>
Period = 250 ms

Deadline = 250 ms

CAda

1. Define (or reuse)
a set of components

2. Assemble the
components to satisfy
th i f ti l d RT RT

Gyroscope Star Tracker

schedulability analysis,
code generation only.

<<Protected operation>>

Simulink

their functional needs RT

RT

RT

RT

RT

BC AOCS
computer

Reaction WheelThruster

Data Handling
computer

<<Sporadic operation>>
Period = 250 ms

Deadline = 200 ms

<<Cyclic operation>>4. Annotate components

<<1553B>>

y p
Period = 125 ms

Deadline = 125 ms

4. Annotate components
with extra-functional

requirements 5. Specify deployment directives

6. Automatically analyze the software model to ascertain that the whole set of extra-functional attributes can be fulfilled

Operation Dedicated thread Code executed Short description
kind executor by the caller

Cyclic Y Executed with a defined period

Sporadic Y Minimum separation between 2 subsequent executions (MIAT)

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 8

Protected Y Concurrent execution guarded with mutual exclusion

Unprotected Y No synchronization protocol

The concept in a nutshell (II)
a. A model-to-code transformation wraps a
container around a component so as to realize
all the declared extra-functional properties
(tasking, period, etc...)

b. A model-to-code transformation, using the component bindings and
the deployment information, realizes the desired communication,
possibly relying on the execution platform for remote communication

Resolved as a local
asynchronous call1 Sporadic Task (MIAT=250ms)

1 Protected Object [Request queue] 1 Sporadic Task (MIAT=250ms)
1 Protected Object [Request queue]

1 Protected Object [Protected operation]
1 Cyclic Task (Period = 125ms)

C SimulinkAda

Container Container Container

Resolved as a remote call

Execution platform Execution platform

Comm
bus

Data Handling Computer AOCS computer

In the following we are going to present the code archetypes for the implementation

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 9

of interfaces, components and containers that makes this possible.

Example (component model level)
<<interface>>
Producer_IF

<<interface>>
Param_IF

<<interface>>
Consumer_IF

Produce() SetParX(x: in Param)
SetParY(y: in Param)

Consume(c: in MyFloat)

Service declaration and
grouping by

functional cohesiveness

<<type>>
Producer

RI_1 : Consumer_IF
PI_1 : Producer_IF

PI_2 : Param_IF
<<type>>
Consumer

PI_ 3 : Consumer_IF

Provided and
required services

PI_1 : Producer_IF

PI_2 : Param_IF

RI_1 : Consumer_IF PI_ 3 : Consumer_IF

<<implementation>>
Producer_impl0

<<implementation>>
Consumer_impl0

Subcontracting,
business code

PI_1 : Producer_IF

RI_1 : Consumer_IF PI_ 3 : Consumer_IFProduce: <<Cyclic>>

Component bindings,
PI_2 : Param_IF

Consumer_IF

<<instance>>
Consumer_impl0_inst0

<<instance>>
Producer_impl0_inst0

SetParX: <<Protected>>
SetParY: <<Protected>>

Consume: <<Sporadic>>

Component bindings,
deployment,

declaration of
extra-functional properties

<<instance>>
Consumer_impl0

_inst0

<<instance>>
Producer_impl0

_inst0

Producer_IF

Param_IF Realization of
extra-functional properties

and communication code

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 10

P_impl0_inst0 Container C_impl0_inst0 Container
and communication code

Example (source code level)

<<interface>>
Producer_IF

<<interface>>
Param_IF

<<interface>>
Consumer_IF

Produce() SetParX(x: in Param)
SetParY(y: in Param)

Consume(c: in MyFloat)
(y)

<<abstract>>
<<tagged type>>

<<abstract>>
<<tagged type>>

<<realizes>> <<realizes>>

<<requires>>

<<realizes>>

tagged type
Producer

RI_1 : Consumer_IF_ptr

Produce()
SetParX(x: in Param)

<<abstract>>
<<abstract>>

Consumer

<<abstract>> Consume(c: in MyFloat)

q

SetParY(y: in Param)<<abstract>>

<<tagged type>>
Producer impl0

<<implements>>

<<tagged type>>
Consumer impl0

<<implements>>

<<tagged type>> <<tagged type>>

<<realizes>>

<<realizes>>

<<realizes>>

Producer_impl0
RI_1 : Consumer_IF_ptr

Produce()
SetParX(x: in Param)
SetParY(y: in Param)

<<inherited>>

Consumer_impl0

Consume(c: in MyFloat)

gg yp
P_impl0_inst0

Produce()
SetParX(x: in Param)
SetParY(y: in Param)

C_impl0_inst0

Consume(c: in MyFloat)

<<object>> <<object>>
C i l0 i t0

SetParY(y: in Param)

<<references>> f
<<object>> <<object>>

<<instantiates>><<instantiates>> <<instantiates>><<instantiates>>

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 11

Producer_impl0_inst0 :
Producer_impl0

Consumer_impl0_inst0 :
Consumer_impl0

references <<references>>P_cont_obj :
P_impl0_inst0

C_cont_obj :
C_impl0_inst0

More on containers (I)

• Call to a PI operation of a container
– Step1: Enforcement of the extra-functional properties by the

t icontainer
• Calls to sporadic and protected operations are redirected to the

container entities enforcing the desired concurrent nature
• Cyclic operations are triggered by the execution platform
• Unprotected operations do not require special treatment [go to next

step]p]
– Step2: Call the corresponding operation on the component

instance referenced by the container
[St 3] C ll t RI f d th RI i t d fi d– [Step3]: Calls to an RI are performed on the RI pointer defined
on the component type

Example: Produce tagged as <<sporadic>>

<<object>>
Producer impl0 inst0 :Produce

<<object>>
P_cont_obj: P_impl0_inst0 Sporadic

Thread
Step1
“Redirection”

Step3
“Call RI ptr”

RI_ptr.Consume(5.0);

p gg p

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 12

Producer_impl0_inst0 :
Producer_impl0

Produce

OBCS Step2
“Call Produce”

SetParX(x: in Param)
SetParY(y: in Param)

More on containers (II)

• RI pointers are set by the deployment at initialization
time
– Set with a reference to the container “encompassing” the

container instance to be called
• Possible as the container realizes all the interfaces provided by itsPossible as the container realizes all the interfaces provided by its

component instance
• So that the delegation chain for extra-functional properties

enforcement is executedenforcement is executed

• Explicit connectors are necessary to support distribution
transparencep
– The connector redirects the call to the communication

middleware
Th t li th i t f f th RI it i t d t– The connector realizes the interface of the RI it is connected to

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 13

Delegation chains for extra-functional properties (I)

Produce tagged as <<unprotected>>

<<object>>

<<object>>
P_cont_obj: P_impl0_inst0

Step1
“Direct Call to Produce”

Step 2
“Call RI ptr”

j
Producer_impl0_inst0 :

Producer_impl0
Produce
SetParX(x: in Param)
SetParY(y: in Param) RI_ptr.Consume(5.0);

Produce tagged as <<protected>>

Step2
“Call Produce”

Step1
“Redirection”

<<object>>
P_cont_obj: P_impl0_inst0

<<object>>

Step 3
“Call RI ptr”

OBCS

Produce
SetParX(x: in Param)
SetParY(y: in Param)

<<object>>
Producer_impl0_inst0 :

Producer_impl0
RI_ptr.Consume(5.0);

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 14

Delegation chains for extra-functional properties (II)

Step3
Produce tagged as <<cyclic>>

Step1
“Thread
enqueuing”

bj t Cyclic
Thread

“Call RI ptr”

Produce

<<object>>
P_cont_obj: P_impl0_inst0

SetParX(x: in Param)

<<object>>
Producer_impl0_inst0 :

Producer impl0
OBCS Step2

“Call Produce”

SetParX(x: in Param)
SetParY(y: in Param)

Producer_impl0

RI_ptr.Consume(5.0);

Step1

Produce tagged as <<sporadic>>

Step2

Sporadic
Thread

Step1
“Redirection” Step 4

“Call RI ptr”

Step2
“Request Fetching”

<<object>>
P_cont_obj: P_impl0_inst0

<<object>>

OBCS Step 3
“Call Produce”

Produce
SetParX(x: in Param)
SetParY(y: in Param)

<<object>>
Producer_impl0_inst0 :

Producer_impl0
RI_ptr.Consume(5.0);

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 15

Call Produce

Sporadic Task
with System; with Ada.Real_Time; with Data_Structure;
package Sporadic_Task is

task type Thread_T (Thread_Priority : System.Any_Priority;
MIAT : Natural;
Get_Request : access procedure (Req : out Data_Structure.Request_Descriptor_T;

Release : out Ada.Real_Time.Time)) is
pragma Priority (Thread_Priority);
end Thread_T;

end Sporadic_Task;

with System_Time; with Ada.Real_Time; use Ada.Real_Time;
package body Sporadic_Task is

t k b d Th d T itask body Thread_T is
Req_Desc : Data_Structure.Request_Descriptor_T;
Release : Time;
Task_MIAT : constant Time_Span := Milliseconds(MIAT);
N t Ti Ti S t Ti S t St t Ti + S t Ti T k A ti ti D lNext_Time : Time := System_Time.System_Start_Time + System_Time.Task_Activation_Delay;

begin
loop
delay until Next_Time;
G t R t(R D R l)

MIAT enforcement

Enqueue in the OBCS.
Fetch the next request or block on empty queue.

Get_Request(Req_Desc, Release);
Data_Structure.My_OPCS(Req_Desc.Params.all);
Next_Time := Release + Task_MIAT;

end loop;
d Th d T

Execute the functional code of the
sporadic operation (see next slide)

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 16

end Thread_T;
end Sporadic_Task; Calculate next wake-up time.

Sporadic operations: parameter passing
<<abstract tagged record>>

Param_Type

procedure My_OPCS (Self : in out Param_Type) is abstract;

Define an abstract root for all parameter
types [and its Class-wide access type]

Define a request descriptor to reify
incoming requests

<<record>>
Request_Descriptor_T

Params: Param_Type_Ref

Operation to be called:
procedure Op1(a: in T1; b: in T2);

type Op1_Param_T is new Param_Type with record
OPCS_Instance : <<Access to the interface comprising the operation>>

Define in the container the record for the
operation’s parameters

a: T1;
b: T2;

end record ;

Define the container as a realization of the
interface comprising the operation (so that it

exposes the same subprograms)

Calls by clients to Op1 are encoded in a
Request_Descriptor_T containing an

Op1_Param_T and enqueued at the OBCS
Set the RI of client components
with an access to the container

Override My_OPCS so that it calls the functional code

procedure My_OPCS(Self : in out Op1_Param_T) is
begin
Self.OPCS_Instance.Op1(Self.a, Self.b) ;

The call My_OPCS(Req_Desc.Params.all); on
the request descriptor fetched by the sporadic

thread from the OBCS dispatches to the
functional code of Op1 (defined in the

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 17

end My_OPCS;functional code of Op1 (defined in the
component implementation)

Conclusions

• We presented a set of Ravenscar-compliant code
archetypes for Ada 2005
– Support separation of concerns

• In particular between functional and extra-functional aspects
– Separate sequential algorithmic code from tasking, synchronization andSeparate sequential algorithmic code from tasking, synchronization and

interaction code
• Advantages

– Reuse of functional (algorithmic) code under different extra-functionalReuse of functional (algorithmic) code under different extra functional
requirements

– Complement a defined component-oriented approach
Support the inclusion of business code written in Ada or C/C++– Support the inclusion of business code written in Ada or C/C++

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 18

Future work

• Management of the component state
– The collection of the internal members (variables/parameters) of

the task and the actual bindings of its required interfacesthe task and the actual bindings of its required interfaces
– Data-level protection of the component state
– Saving, restoration and loading of it shall be possible by

di b t l “ i th it ”commanding by an external “supervisor authority”

Op_Z

C t i 1
Container2 Op_Za) b)

Container2

Op_A Op_Z
Component State
v1: val1 v2: val2
r1: ref1 r2:ref2

Container1 Op_A
Op_Z

Component State
v1: val1 v2: val5
r1: ref4 r2:ref2

Container1

<<Supervisor request>> Container3r1: ref4 r2:ref2

Op_Z
load new “context”

• Support for space-specific concerns
– At design and implementation level

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 19

End of presentationEnd of presentation

Questions?Questions?

Marco Panunzio and Tullio Vardanega Ada-Europe 2012 20

