
12 June 2012

Source Code as the Key Artifact inSource Code as the Key Artifact in
Requirement-Based Development:
The Case of Ada 2012

Cyrille Comar
Managing Director
AdaCore

José F. Ruiz
Senior Software Engineer
AdaCore

Yannick Moy
Senior Software Engineer
AdaCoreAdaCoreAdaCore AdaCore

Ada-Europe 2012, Stockholm

Slide: 1Copyright © 2012 AdaCore

da u ope 0 , Stoc o

Outline

• Safety-critical standards
– The case for DO-178The case for DO 178

• Artifacts to produce
How to manage them easily– How to manage them easily

– How to verify them

• How to handle their interrelationship

• ConclusionConclusion

Slide: 2Copyright © 2012 AdaCore

Safety-Critical Software

• What is “safety critical” software?
– Failure can cause loss of human life or have other catastrophic consequencesFailure can cause loss of human life or have other catastrophic consequences

• How does safety criticality affect software development?
Regulatory agencies require compliance with certification requirements– Regulatory agencies require compliance with certification requirements

– Safety-related standards may apply to the finished product, to the development process,
or both

Slide: 3Copyright © 2012 AdaCore

DO-178: the civil avionics standard

• “Just” reasonable development process…
– PlanningPlanning

– Specify requirements

– Implement only requirements

– Test– Test

– Verify tests

– Reviews

Control the development process– Control the development process

ut
 … … now this process is checked and validated (objectives are met)

d ll d l if b bl

• That’s the certification process

b … and all development artifact must be traceable

• Certification authorities check that the process is followed
– All software plane flying in the civil air space must have software certified

Slide: 4Copyright © 2012 AdaCore

All software plane flying in the civil air space must have software certified

Agility

• Approaches to handle the evidences
– Traditional activity-centricTraditional activity centric

Temporal and causal dependencies among activities

– Artifact-centric

Focus on what the activities produceFocus on what the activities produce

R i t IntegrationIntegrationRequirementsLLRs
g

tests
g

Testing

Designarchitecture Unit
Testing

Low-level
tests

Coding

Slide: 5Copyright © 2012 AdaCore

code

Goals of this presentation: to take-away

• The goal is to centralize in Ada 2012 code the artifacts generated during
development and verificationp

– Requirements

– Architecture

– CodeCode

– Test cases

– Test procedures

Test results– Test results

• Traceability made easy

Slide: 6Copyright © 2012 AdaCore

Requirements

• Software requirement process produces
– High-level requirements (HLRs)High level requirements (HLRs)

What to implement

– Low-level requirements (LLRs)

How to implementHow to implement

• What we propose to represent LLRs
Ad 2012 t diti– Ada 2012 pre- post- conditions

Design-by-Contract approach

– Informal part of the requirement can also be captured

package Arith is
procedure Double (X : in out Integer) withp (g)

Pre => X >= Integer'First / 2 and then
X <= Integer'Last / 2,

Post => X = 2 * X'Old;
end Arith;

Slide: 7Copyright © 2012 AdaCore

;

DO-178 objectives for requirements

• Accuracy and consistency
– Contracts defined by the static and dynamic semantics of AdaContracts defined by the static and dynamic semantics of Ada

– Use coding standard avoiding ambiguities
Rules such as: “Use only short-circuit boolean operators”

• Verifiability
– Formal prove

Contracts translated into logical formulas that can be proved– Contracts translated into logical formulas that can be proved

– Subprograms proved in isolation using callee’s contracts

– Testing

C t t t l t d i t ti h k d t ti ti– Contracts translated into assertions checked at execution time

– Or a mixed approach

– Proving what is easy to prove and test the rest

Slide: 8Copyright © 2012 AdaCore

Software architecture

• Architecture implementing the requirements

• We propose to use
– Ada package specs

E l d b– Encapsulates components and subsystems

– Shows their interfaces

– With clauses and hierarchical dependencies

– Relationships

Slide: 9Copyright © 2012 AdaCore

DO-178 objectives for the software architecture

• Consistency
– Data and control flow analysisData and control flow analysis

– Ada helps
• Visibility rules limit the scope of the analysis
• Coding standards may restrict data and control couplingg y p g
• Flow information in parameter mode

– SPARK can take you much further

procedure Process
(Output : out T;
Input1, Input2 : in T);

l b l t Gl b l O t t--# global out Global_Output;
--# in Global_Input;
--# derives Output from Input1, Input2 &
--# Global_Output from Global_Input, Input2;
--# pre Input1 /= 0;
--# post Output = Input2 / Input1;

Slide: 10Copyright © 2012 AdaCore

Code

• Code is produced by the software coding process, from
– Low-level requirements

– Architecture

• We propose to
– Implement the Ada bodies corresponding to the specs

– Compliant with LLRs (contracts)

package Arith is
procedure Double (X : in out Integer) with

Pre => X >= Integer'First / 2 and then
X <= Integer'Last / 2,g / ,

Post => X = 2 * X'Old;
end Arith;

package body Arith isp g y
procedure Double (X : in out Integer) is
begin

X := 2 * X;
end Double;

Slide: 11Copyright © 2012 AdaCore

;
end Arith;

Code (II)

Robustness as part of the requirements

package Arith ispackage Arith is
procedure Double (X : in out Integer) with

Post => (if X < Integer'First / 2 then
-- Underflow
X = Integer'FirstX = Integer First

elsif X > Integer'Last / 2 then
-- Overflow
X = Integer'Last

elseelse
-- Nominal
X = 2 * X’Old)

end Arith;
package body Arith is

procedure Double (X : in out Integer) is
begin

if X < Integer'First / 2 then
X := Integer'First;

elsif X > Integer'Last / 2 then
X := Integer'Last;

else
X := 2 * X;

Slide: 12Copyright © 2012 AdaCore

end if;
end Double;

end Arith;

DO-178 objectives for the code (I)

• Compliance with LLRs
1. Implement the required functionality …1. Implement the required functionality …

– Testing or contract proving

2. … and only that

– This is more difficult but:– This is more difficult but:
• You can do manual code review, or
• You can rely on exhaustive coverage analysis, or

Also symbolic executiony
• Use SPARK flow analysis

Detection of ineffective statements

• Compliance with software architecture
– Match desired data and control flow

– Ada already helps

– With visibility control and parameter modes

– You can visualize control-flow with tools

– Compiler, GPS, …

Slide: 13Copyright © 2012 AdaCore

p , ,

– Tools can help data-flow analysis showing who uses the data

– Or define data and information flow with SPARK

DO-178 objectives for the code (II)

• Verifiability
– Avoid statements and structures that cannot be verified

– Everything accessible from the spec is easy

– Private parts with child units

– Everything hidden in package bodies must be used through the spec

• Conformance to coding standard
– Ada provides pragma Restrictions and pragma ProfileAda provides pragma Restrictions and pragma Profile
– There are tools such as GNATcheck, AdaControl, … for extended and fine-grain checking

• Traceability to LLRs• Traceability to LLRs
– Straightforward: implementation linked to the contracts

• Accuracy and consistency• Accuracy and consistency
– It is about correctness and consistency of the code

– Ada reliability underpinnings

You can go a step further with mathematical analysis

Slide: 14Copyright © 2012 AdaCore

– You can go a step further with mathematical analysis

– SPARK, CodePeer

Testing

• The goal is to
– Demonstrate code satisfies the requirementsDemonstrate code satisfies the requirements

– Potential sources of errors have been removed

• Three kinds of tests• Three kinds of tests
– Hardware/software integration

– Software integration

L l l t ti– Low-level testing

• What we propose for low-level testing is
– Follow the DO-178C Formal Method Supplement, with mix of

– Automated formal verification

– Testing
• Translate contract into run-time checks, and
• Create a test aspect

Slide: 15Copyright © 2012 AdaCore

Test aspect

package Arith ispackage Arith is
procedure Double (X : in out Integer) with

Pre => X >= Integer'First / 2 and then
X <= Integer'Last / 2,

Post => X = 2 * X'Old,,
Test_Case => (Name => "positive",

Mode => Nominal,
Requires => X >= 0,
Ensures => X >= 0),),

Test_Case => (Name => "lower-bound",
Mode => Nominal,
Requires => X = Integer'First / 2,
Ensures => X = Integer'First),g),

Test_Case => (Name => "off-by-one-positive",
Mode => Robustness,
Requires => X = Integer'Last / 2 + 1,
Ensures => X = Integer'Last),g),

Test_Case => (Name => "off-by-one-negative",
Mode => Robustness,
Requires => X = Integer'First / 2 - 1,
Ensures => X = Integer'First);

Slide: 16Copyright © 2012 AdaCore

g ;
end Arith;

Traceability

• Every single artifact must be traceable
– Modifications applied to any artifact must be traceable too

High Level
Requirements HR1

Low level Requirements LL1 LL2

Code C1 C2

Test cases TC1 TC2

Test procedures TP1 TP2

Slide: 17Copyright © 2012 AdaCore

Test results TR1

Traceability – How to

package Arith is
()

Architecture Requirements
Code

procedure Double (X : in out Integer) with
Pre => …,
Post => …,
Test_Case => …;
i

package body Arith is
procedure Double (X : in out Integer) is

end Arith; begin
X := 2 * X;

end Double;
end Arith;

GNATtest

Test cases

procedure Test_Double_XXX (T : in out Test) is
procedure Double (X : in out Integer) renames

GNATtest

Test resultsWrap_Test_Double_XXX;
begin

…
AUnit.Assertions.Assert (…);

OK Operators Test Data Tests Test Double XXX

Test results

end Test_Double_XXX; OK Operators.Test_Data.Tests : Test_Double_XXX
…

Total Tests Run: N
Successful Tests NAUnitTest procedures

Slide: 18Copyright © 2012 AdaCore

Successful Tests: N
Failed Assertions: 0
Unexpected Errors: 0

AUnitTest procedures

Conclusion

• Ada 2012 very helpful in a DO-178 context
– Contracts for the requirementsContracts for the requirements

– Modularity, encapsulation, visibility control for the architecture

– Aspect programming for testing

– Automatic generation of test procedures and test results– Automatic generation of test procedures and test results

• Traceability links are there by construction
T l h l t ti ti f tif t– Tools help automating generation of artifacts

• Facilitates hybrid approach for verification
– Formal proofs plus testing

• Reviews are more effective
– The context is clear

• Maintainability and evolution easier

Slide: 19Copyright © 2012 AdaCore

• Maintainability and evolution easier
– More Agile

