AdaEurope 2012

SW RELIABILITY PANEL – A PERSPECTIVE FROM INDUSTRY

- We know how to do 99% reliable software systems
 - Standards, recommendations, rules...
 - Guidelines, Methods and Techniques for the assessment of the software dependability and safety.
- Growing SW complexity, cost and schedule constraints!
- Where do the failures come from?

- Failures are caused by different reasons:
 - Software requirements are incorrect, incomplete or ambiguous.
 - Software requirements have not been implemented, validated and verified properly.
 - Software has not been tested enough or has been tested inadequately.
 - Software Defects.
 - Software is used incorrectly.
 - Poor design or implementation.
 - Rare events can lead to uncontrolled states.

- Failures due to inadequate designs or implementations are easier to detect and solve.
- Unexpected behaviours or states due to different failures are more difficult to detect and therefore to solve
- Analysis of consequences of failures:
 - Any single or combination of failures does not cause critical or catastrophic consequences.
- How to make software as fault tolerant as possible?

- Single Points of Failure (SPF), a part of a system which, if it fails, will stop the entire system from working, shall be minimised.
- The implementing fault tolerant measures can be done at the following levels:
 - System-level measures: redundant networking equipments, redundant storage, a carefully planned monitoring, operational and maintenance strategy...
 - Component-level measures: using fault tolerant components, Error Correction Code (ECC) memory, redundant fans and networking components
 - Operating Systems and SW environment measures
 - SW development

© GMV

- DO-178B Partitioning: (1) independence of software components and processes, and (2) error containment.
- Design and coding practices:
 - Design partitions: different safety levels software running on the same processor
 - Design diversity: different failure strategies
 - Design as simple as possible
 - Defensive layers
 - Dynamic reconfigurations
 - Specify recovery actions
 - Structured programming, modularization, etc. Etc. Etc.

- Failures exist
- 99,xxx% SW Reliability
- Minimise Single Points of Failures (SPF)
- Design and coding practices for fault tolerance

