AdaCore

The GNAT Pro Company

Safe Parallel Language
Extensions for Ada 202X

Tucker Taft, AdaCore

Co-Authors of HILT 2014 paper:
Brad Moore, Luis Miguel Pinho, Stephen Michell

www.adacore.com

HILT 2014 Co-Locatgd-with OO_P§LA/SPLASH in Porland OR

Y
@ October 18-21, 2014 — Portland, Oregon (USA) g &
Pre-conference tutorials: October 18-19 :

Conference: October 20-21; Co-located with SPLASH 2014

Sponsored by ACM SIGAda in cooperation with SIGBED, SIGCSE, SIGPLAN, SIGSOFT,
Ada-Europe and the Ada Resource Association

Contact: SIGAda.HILT2014 at acm.org www.sigada.org/conf/hilt2014
KEYNOTE SPEAKERS

celebrating the

20" Anniversary
of completion of
Tom Ball Christine Anderson AdadX
Submission Deadline

Technical articles, extended abstracts,

experience reports, panel session June-75-2014 now July 5!

proposals, or workshop proposals

5 : July 5, 2014 (overview)
Industrial presentation proposals Aug 6, 2014 (extended abstract)
Send Tutorial proposals to June 7520144 now July 5!

www.sigada.org/conf/hilt2014

Safe Parallel Ada 2

AdaCore

The GNAT Pro Company

The Right Turn in Single-Processor Performance

1,000,000
100,000

= 10,000
= Courtesy IEEE
) Computer,
5 100 January 2011,
= page 33.

100

10

1985 1990 1995 2000 2005 2010 2015 2020
Year of introduction

Safe Parallel Ada 3

The GNAT Pie S _

Titan Supercomputer at Oak Ridge National Lab in US

TITAN
PEAKP[RF[]RMANE[299 008
OPTERON CORES iy ' | ' :
| Advancing the Era of Accelerated Computing
PETAFLOPS

NVIDIA TESLA TOTAL SYSTEM MEMORY
K20 GPU ACCELERATORS

18 88 710 B

TERABYTES
COMPUTE NODES b
18,688 q \
Memory Per Node
cEming 4,392 e Dlstrlbuted Computing with 18 688 “nodes
ITERCOMNEST B * Multicore (16 cores each) with Vector unit
ST noms « GPU with 64 warps of 32 lanes

Safe Parallel Ada 4

Example of parallel programming language (ParaSail),
with implicit parallelism for divide-and-conquer

func Word Count
(S : Univ_String; Separators : Countable Set<Univ_ Character> := [' '])
-> Univ_Integer is
// Return count of words separated by given set of separators
case |S| of

B [0] => return 0 // Empty string
[1] =>
Simple if S[1] in Separators then
cases return 0 // A single separator
else
return 1 // A single non-separator
— end if
[..] => // Multi-character string; divide and conquer
— const Half Len := |S|/2
const Sum := Word Count(S[1 .. Half Len], Separators) +
Word Count(S[Half Len <.. |S| 1, Separators)
Divide if S[Half Len] in Separators
and == or else S[Half Len+l] in Separators then
Conquer return Sum // At least one separator at border
else
return Sum-1 // Combine words at border
— end if
end case

end func Word Count

Safe Parallel Ada 5

Count words in a string, given a set of separators , using
divide-and-conquer (rather than sequential scan)

S: “This is a test, but| it’s a bit boring."
1111111111 12222222222333333333

1234567890123456789(0123456789012345678
Separators: [* *, ‘,", ‘."]

Word Count (S, Separators) == ?

|S| == 38 // |..| means “magnitude”
Half Len == 19

Word Count(S[1 .. 19], Separators) == 5
Word Count(S[1l9 <.. 38], Separators) ==
Sum == // X <.. Y means (X, Y]
S[19] == ‘t’ // ‘t’ not in Separators
S[19+1] == * // * 4 is 1in Separators

return 9

Safe Parallel Ada 6

AdaCore

The GNAT Pro Company

Word_Count example in Ada 2012:

function Word Count(S : String; Separators : String) return Natural is
use Ada.Strings.Maps;
Seps : constant Character Set := To_ Set(Separators);

task type TT(First, Last : Natural; Count : access Natural);

subtype WC TT is TT; -- So is visible inside TT
task body TT is begin
ol if First > Last then -- Empty string
Count.all := 0;
) elsif First = Last then -- A single character
Simple if Is In(S(First), Seps) then
cases Count.all := 0; -- A single separator
else
Count.all := 1; -- A single non-separator
—_— end if;
else -- Divide and conquer
e See next slide
end if;
end TT;
Result : aliased Natural := 0;
begin
— declare -- Spawn task to do the computation
Start Tsk : TT(S'First, S'Last, Result'Access);
outer —a Pegin
null;
task end; -- Wait for subtask

== return Result;

end Word Count;
Safe Parallel Ada 7

AdaCore

The GNAT Pro Company

Word_Count example in Ada 2012 (cont'd):

function Word Count(S : String; Separators : String) return Natural is
use Ada.Strings.Maps;

Seps : constant Character Set := To Set(Separators);
task type TT(First, Last : Natural; Count : access Natural);
subtype WC TT is TT; -- So is visible inside TT
task body TT is begin
if ... -- Simple cases (see previous slide)
else -- Divide and conquer
— declare
Midpoint : constant Positive := (First + Last) / 2;
Left Count, Right Count : aliased Natural := 0;
begin
declare -- Spawn two subtasks for distinct slices

Left : WC TT(First, Midpoint, Left Count'Access);
Right : WC TT(Midpoint + 1, Last, Right Count'Access);

Divide begin
and — null; '
end; -- Wait for subtasks to complete
Conquer
if Is In(S(Midpoint), Seps) or else
Is In(S(Midpoint+l), Seps) then -- At least one separator at border
Count.all := Left Count + Right Count;
else -- Combine words at border
Count.all := Left Count + Right Count - 1;
end if;
— end;
end if;
end TT;

«. See previous slide
end Word Count; Safe Parallel Ada 8

AdaCore

The GNAT Pro Company

Word_Count example in (hypothetical) Ada 202X:

function Word Count (S : String; Separators : String) return Natural
with Global => null, Potentially Blocking => False is
case S’'Length is

when 0 => return 0; -- Empty string
when 1 => -- A single character
. if Is In(S(S’'First), Seps) then
Simple — return 0; -- A single separator
cases else
return 1; -- A single non-separator
end if;
— when others =>
declare -- Divide and conquer
Midpoint : constant Positive := (S’First + S'Last) / 2;
Left Count, Right Count : Natural;
begin
parallel -- Spawn two tasklets for distinct slices
Left Count := Word Count (S(S’First .. Midpoint), Separators);
.. and
Divide Right Count := Word Count (S(Midpoint+l .. S’Last), Separators);
and end parallel; -- Wait for tasklets to complete
Conquer
if Is In(S(Midpoint), Seps) or else
Is In(S(Midpoint+l), Seps) then -- At least one separator at border
return Left Count + Right Count;
else -- Combine words at border
return Left Count + Right Count - 1;
end if;
end;
end case;

end Word Count; Safe Parallel Ada 9

Aca

T Pro Company

Parallel Block

parallel
sequence of statements
{and
sequence of statements}
end parallel;

Each alternative is an (explicitly specified) “parallelism opportunity” (POp)
where the compiler may create a tasklet, which can be executed by an
execution server while still running under the context of the enclosing task
(same task ‘ldentity, attributes, etc.). Compiler will complain if any data
races or blocking are possible (using Global and Potentially Blocking
aspect information).

cf. ARM 9, Note 1: ... whenever an implementation can determine that the
required semantic effects can be achieved when parts of the execution of a
given task are performed by different physical processors acting in parallel,
it may choose to perform them in this way.

Safe Parallel Ada 10

Global (cf. SPARK) and Potentially_Blocking aspects

Global => all —— default within non-pure packages

—-— Explicitly identified globals with modes (SPARK 2014)
Global => (Input => (P1.A, P2.B),

In Out => P1.C,

Output => (P1.D, P2.E))

-—- Pkg private, access collection, task/protected/atomic
Global => (In Out => P3) -- pkg P3 private data
Global => (In Out => Pl.Acc Type) -- acc type
Global => (In Out => synchronized)

Global => null —-— default within pure packages

Potentially Blocking [=> True | => False |

Safe Parallel Ada 11

Aca

T Pro Company

Parallel Loop

for I in parallel 1 .. 1 000 loop
A(I) := B(I) + C(I);
end loop;

for Elem of parallel Arr loop
Elem := Elem * 2;
end loop;

Parallel loop is equivalent to parallel block by unrolling loop, with each
iteration as a separate alternative of parallel block.

Compiler will complain if iterations are not independent or might block
(again, using Global/Potentially _Blocking aspects)

Safe Parallel Ada 12

The GNAT Fie S _

Wonderfully simple and obvious, but what about... ?

e Exiting the block/loop, or a return statement?

— All other tasklets are aborted (need not be preemptive) and awaited,
and then, in the case of return with an expression, the expression is
evaluated, and finally the exit/return takes place.

— With multiple concurrent exits/returns, one is chosen arbitrarily, and
others are aborted.

e With a very big range or array to be looped over, wouldn’t
that create a huge number of tasklets?

— Compiler may choose to “chunk” the loop into subloops, each subloop
becomes a tasklet (subloop runs sequentially within tasklet).

o Iterations are not completely independent, but could
become so by creating multiple accumulators?
— We provide notion of parallel array of such accumulators (next slide)

Safe Parallel Ada 13

Ada

The GNAT Pro Company

Parallel arrays of accumulators; Map/Reduce

declare
Partial: array (parallel <>) of Float := (others => 0.0);
Sum Of Squares : Float := 0.0;
begin
for E of parallel Arr loop -- "Map” and partial reduction
Partial (<>) := Partial(<>) + E ** 2;
end loop;
for T in Partial’Range loop -- Final reduction step
Sum Of Squares := Sum Of Squares + Partial (I);
end loop;
Put Line (“Sum of squares of elements of Arr =% &

Float’ Image (Sum Of Squares));
end;

Parallel array bounds of <> are set to match number of “chunks” of parallel
loop in which they are used with (<>) indices. May be specified explicitly.

Safe Parallel Ada 14

Map/Reduce short hand

e Final reduction step will often look the same:
Total := <identity>;
for I in Partial’'Range loop
Total := <op> (Total, Partial);
end loop
e Provide an attribute function '‘Reduced to do this:
— Total := Partial’'Reduced(Reducer => “+", Identity => 0.0);
or
— Total := Partial’/Reduced; -- Reducer and Identity defaulted

e The 'Reduced attribute may be applied to any array
when Reducer and Identity are specified explicitly

e The '‘Reduced attribute may be implemented using a
tree of parallel reductions.

Safe Parallel Ada 15

Aganre

Summary

Safe Parallel Ada 16

Summary

e Parallel programming constructs can simplify taking
advantage of modern multi/manycore hardware

e Parallel block and Parallel loop constructs are natural
solutions for Ada

e Global (cf. SPARK 2014) and Potentially_Blocking aspects
enable compiler to check for data races and blocking

o Parallel arrays and '‘Reduced attribute simplify map/reduce
sorts of computations.

o Please submit extended abstracts to HILT 2014 by July 5 and
come to Portiand, OR

Safe Parallel Ada 17

