
Towards a Runtime Verification Framework for the
Ada Programming Language

André de Matos Pedro, David Pereira, Luís Miguel Pinho
CISTER & INESC-TEC, ISEP, Porto, Portugal

{anmap,dmrpe,lmp}@isep.ipp.pt

Jorge Sousa Pinto
Haslab & INESC-TEC, University of Minho, Portugal

jsp@di.uminho.pt

June 25, 2014

Talk Outline

Motivation and Contextualization

The RMF4Ada Runtime Verification Framework
Architecture and RML Structure
Monitoring Modes
Monitor Context-Switches

Contract Language Extension for Runtime Verification
The RMTL-

∫
Logic

Timed Regular Expressions

Experimental Setup

Conclusions and Future Work

Talk Outline

Motivation and Contextualization

The RMF4Ada Runtime Verification Framework
Architecture and RML Structure
Monitoring Modes
Monitor Context-Switches

Contract Language Extension for Runtime Verification
The RMTL-

∫
Logic

Timed Regular Expressions

Experimental Setup

Conclusions and Future Work

Motivation

Design of a Runtime Monitoring Framework and an extension of
contracts for Ada programming language.

Contextualization

Main Ideas/Goals

I to complement static analysis approaches, in particular when
static verification leads to the state explosion;

I to deal with knowledge gathered at runtime (real data);
I to avoid defensing code;
I to shutdown a malfunction component and give the control to

a small and simple formally verified component;
I to use a mathematical (logical) language with rigorous syntax

to automatically synthesize monitors;
I to extend the Ada’s contract language, allowing both static

checking (within the classical constraints) as well as dynamic
checking.

Talk Outline

Motivation and Contextualization

The RMF4Ada Runtime Verification Framework
Architecture and RML Structure
Monitoring Modes
Monitor Context-Switches

Contract Language Extension for Runtime Verification
The RMTL-

∫
Logic

Timed Regular Expressions

Experimental Setup

Conclusions and Future Work

RMF4Ada

"... It is not simply yet another RM framework, since the properties
to be verified or enforced are generated from timed specifications
written in the supported formal languages, in a
correct-by-construction way..."

RMF4Ada Architecture

.ads with specification

new ada files (.adb and .ads)

system (.adb + .ads)

Behavior Modes Theories Modules

Instrumentor

instrumented system ada files (.adb + .ads) +

RMF4Ada

Input

Output

Creator

Controller Event-Manager

I RMF4Ada is composed by a set of Ada packages and two
external tools (Intrumentor and Creator);

I some packages provide schemes for monitors (possibly
executing in different patterns);

I other packages provide data structures to represent formal
languages and the evaluation of their formulas/terms;

RML Structure

Event Manager Monitors/Checkers

In
st
ru
m
en
ta
tio

n

System Program/Controller

Protected Type

Ta
sk

Ty
pe

s

Pr
ot

ec
te

d
Ty

pe
s

Software Timers

Event Buffer
erelease

estart
esleep
eresume

· · ·

Timming EventsTimming Interrupts

Package Task Type

In
te
rc
on

ne
ct
io
n

erelease(a,0.1)
erelease(b,0.2)

esleep(a,0.33)
estop(b,0.35)

...

B
in
ar
y
M
ap

Functions/Procedures
C
od

e

Event Garbage Collector

· · ·

Automatically
generated Monitor

Monitor Contract

Synthesized monitor
in Ada

Scheduler

Data Racing Algorithm
Hardware Timers

System Code

Operating System

Ev
en
t

Id
en
tifi

er

Context Switch Support

Figure: Illustration of the interconnection of the element blocks provided
by the RML

Monitoring Modes of RMF4Ada

Pre-defined behaviors
I Time-Triggered mode – executes as a periodic task;

P
εM εM εM εM

I Event-Based mode – executes as a sporadic task (each
inter-arrival time shall be supplied before the execution and
statically checked);

P
εM εM εM

Monitor Context-Switches provided by RMF4Ada
Pre-defined conditions

1. step-bounded condition – the execution of the monitor ends
when n iterations have been processed or when events have
not arrived;

2. time-bounded condition – the execution of the monitor is
bounded by t time units, exiting if no events occur;

3. symbol-based condition – the execution ends when one or
more symbols of the path are consumed, and the monitor
sleeps until a new symbol arrives;

(3)

(1)

εM εM εM εM εM
ρ

Talk Outline

Motivation and Contextualization

The RMF4Ada Runtime Verification Framework
Architecture and RML Structure
Monitoring Modes
Monitor Context-Switches

Contract Language Extension for Runtime Verification
The RMTL-

∫
Logic

Timed Regular Expressions

Experimental Setup

Conclusions and Future Work

Contract Language Extension Overview

Weaknesses of the current contract language

I unable to support runtime verification of non-functional
properties such as explicit time formulas or temporal logic;

I inexpressive for specification of monitoring behaviors;

Our Proposal

I introduce some contracts of the form:
I Monitor_Mode => Mode — Mode should be

Time_Triggered or Event_Triggered, and
I Monitor_Case => (Theory , Formulas) — (RMTLD, φ) or

(TRE, α);

I use theories such as MTL-
∫

(Restricted Metric Temporal
Logic) and TRE (Timed Regular expressions);

The Language of RMTL-
∫

Syntax of RMTL-
∫

terms and formulas

I Terms:
δ ::= c | x | duration[δ]φ

I Formulas:
φ ::= p | δ1 op δ2 | φ1 or φ2 | not φ | φ1 U[γ]φ2 | φ1 S [γ]φ2 |
exists x φ, with c ∈ R, x ∈ V, p ∈ P, op ∈ {=, <,≤}, and
γ ∈ R+

0 .

Common Abbreviations
Eventually : eventually [γ] φ ≡ p or not p U[γ] φ
Always : always[γ] φ ≡ not (eventually [γ] not φ)
Next : next[φ1] φ2 ≡ φ1 U[∞] φ2
Implies Next : φ1 next implies φ2 ≡ not φ1 or next[φ1] φ2

Graphical interpretation over duration terms

ρ
εα εidle εβ εidle εβ εidle εα εidle εα

x

Undef .duration[x] φ

εβ

εα∨εβ

εidle

εα

εβ

I ρ is a path; εβ , εα, and εidle are events;
I φ = εβ (), φ = εα (), and φ = εβ ∨ εα ()

The Language of Timed Regular Expressions

Syntax of TRE expressions

α ::= 0 | 1 | a ∈ Σ |α + α |αα |α? | 〈α〉I ,

with Σ a the set of all events, and I a time interval of the form
[a..b] with a, b ∈ R+

0 .

Talk Outline

Motivation and Contextualization

The RMF4Ada Runtime Verification Framework
Architecture and RML Structure
Monitoring Modes
Monitor Context-Switches

Contract Language Extension for Runtime Verification
The RMTL-

∫
Logic

Timed Regular Expressions

Experimental Setup

Conclusions and Future Work

Enforcement of Timing properties - Property 1

Statement
I the properties (1) and (2) have been synthesized manually

using evaluation algorithms (future step for Creator tool);
I properties have been manually instrumented in a Mine

Drainage Simulator using Ada packages provided by RMF4Ada
(future step for Intrumentor tool);

task type T_Simulation (period: integer; deadline:
integer)

with
Monitor_Mode => Event_Triggered,
Monitor_Case => (RMTLD ,

T_Simulation’Event(Task_Release) next implies
duration[T_Simulation’Time(period)]
T_Simulation’Event(ANY) < T_Simulation’Time(wcet)

);

Enforcement of Timing properties - Property 2

protected type Protected_Environment
with

Monitor_Mode => Time_Triggered
Monitor_Case => (TRE,
(Protected_Environment.read_CH4’Event(pre) .
<(Protected_Environment.read_Air_Flow’Event(ANY)

+ Protected_Environment.read_WaterPipe_Flow’
Event(ANY))∗>[0..20] .

Protected_Environment.read_CO2’Event(post))∗
) ,

is
function read_CO2 return CO2_Level_State;
function read_CH4 return CH4_Level_State;
function read_Air_Flow return Air_Exhaust_State;
function read_WaterPipe_Flow return

WaterPipe_Flow_State;
end;

Talk Outline

Motivation and Contextualization

The RMF4Ada Runtime Verification Framework
Architecture and RML Structure
Monitoring Modes
Monitor Context-Switches

Contract Language Extension for Runtime Verification
The RMTL-

∫
Logic

Timed Regular Expressions

Experimental Setup

Conclusions and Future Work

Main Conclusions I

Positive Aspects

I enables the instrumentation of Ada programs with monitors
that enforce RV behavior;

I introduces a small extension to the current Ada contract
language for enabling the specification of contracts to be
checked at runtime by monitors;

I introduces the monitoring synthesis of duration formulas from
a formal language;

I automatically synthesizing a monitor from a formal language
reduces the introduction of errors.

Main Conclusions II

Negative Aspects

I heavy-weight syntax for some simple WCET detections (using
execution time timers);

I provides verification only for past executions (incomplete)
I who watches the watchdog?

Future Research Directions

Next Steps

I provide Creator and Instrumentor tools;
I combine monitor modes with prior analysis (where we should

use event-based mode instead of time-triggered mode);
I optimize monitor context-switches;
I explore further formal systems;
I research adequacy of RMF4Ada for multi-core environments

and for COTS as internal black-box components.

The End...

Thank you for watching our presentation.
Please send any comment to anmap@isep.ipp.pt.

	Motivation and Contextualization
	The RMF4Ada Runtime Verification Framework
	Architecture and RML Structure
	Monitoring Modes
	Monitor Context-Switches

	Contract Language Extension for Runtime Verification
	The RMTL- Logic
	Timed Regular Expressions

	Experimental Setup
	Conclusions and Future Work

