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Motivation

Design of a Runtime Monitoring Framework and an extension of
contracts for Ada programming language.



Contextualization

Main Ideas/Goals

I to complement static analysis approaches, in particular when
static verification leads to the state explosion;

I to deal with knowledge gathered at runtime (real data);
I to avoid defensing code;
I to shutdown a malfunction component and give the control to

a small and simple formally verified component;
I to use a mathematical (logical) language with rigorous syntax

to automatically synthesize monitors;
I to extend the Ada’s contract language, allowing both static

checking (within the classical constraints) as well as dynamic
checking.
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RMF4Ada

"... It is not simply yet another RM framework, since the properties
to be verified or enforced are generated from timed specifications
written in the supported formal languages, in a
correct-by-construction way..."



RMF4Ada Architecture

.ads with specification

new ada files (.adb and .ads)

system (.adb + .ads)

Behavior Modes Theories Modules

Instrumentor

instrumented system ada files (.adb + .ads) +

RMF4Ada

Input

Output

Creator

Controller Event-Manager

I RMF4Ada is composed by a set of Ada packages and two
external tools (Intrumentor and Creator);

I some packages provide schemes for monitors (possibly
executing in different patterns);

I other packages provide data structures to represent formal
languages and the evaluation of their formulas/terms;



RML Structure
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Figure: Illustration of the interconnection of the element blocks provided
by the RML



Monitoring Modes of RMF4Ada

Pre-defined behaviors
I Time-Triggered mode – executes as a periodic task;

P
εM εM εM εM

I Event-Based mode – executes as a sporadic task (each
inter-arrival time shall be supplied before the execution and
statically checked);

P
εM εM εM



Monitor Context-Switches provided by RMF4Ada
Pre-defined conditions

1. step-bounded condition – the execution of the monitor ends
when n iterations have been processed or when events have
not arrived;

2. time-bounded condition – the execution of the monitor is
bounded by t time units, exiting if no events occur;

3. symbol-based condition – the execution ends when one or
more symbols of the path are consumed, and the monitor
sleeps until a new symbol arrives;

(3)

(1)

εM εM εM εM εM
ρ
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Contract Language Extension Overview

Weaknesses of the current contract language

I unable to support runtime verification of non-functional
properties such as explicit time formulas or temporal logic;

I inexpressive for specification of monitoring behaviors;

Our Proposal

I introduce some contracts of the form:
I Monitor_Mode => Mode — Mode should be

Time_Triggered or Event_Triggered, and
I Monitor_Case => (Theory , Formulas) — (RMTLD, φ) or

(TRE, α);

I use theories such as MTL-
∫

(Restricted Metric Temporal
Logic) and TRE (Timed Regular expressions);



The Language of RMTL-
∫

Syntax of RMTL-
∫

terms and formulas

I Terms:
δ ::= c | x | duration[δ]φ

I Formulas:
φ ::= p | δ1 op δ2 | φ1 or φ2 | not φ | φ1 U[γ]φ2 | φ1 S [γ]φ2 |
exists x φ, with c ∈ R, x ∈ V, p ∈ P, op ∈ {=, <,≤}, and
γ ∈ R+

0 .

Common Abbreviations
Eventually : eventually [γ] φ ≡ p or not p U[γ] φ
Always : always[γ] φ ≡ not (eventually [γ] not φ)
Next : next[φ1] φ2 ≡ φ1 U[∞] φ2
Implies Next : φ1 next implies φ2 ≡ not φ1 or next[φ1] φ2



Graphical interpretation over duration terms

ρ
εα εidle εβ εidle εβ εidle εα εidle εα

x

Undef .duration[x ] φ

εβ

εα∨εβ

εidle

εα

εβ

I ρ is a path; εβ , εα, and εidle are events;
I φ = εβ ( ), φ = εα ( ), and φ = εβ ∨ εα ( )



The Language of Timed Regular Expressions

Syntax of TRE expressions

α ::= 0 | 1 | a ∈ Σ |α + α |αα |α? | 〈α〉I ,

with Σ a the set of all events, and I a time interval of the form
[a..b] with a, b ∈ R+

0 .
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Enforcement of Timing properties - Property 1

Statement
I the properties (1) and (2) have been synthesized manually

using evaluation algorithms (future step for Creator tool);
I properties have been manually instrumented in a Mine

Drainage Simulator using Ada packages provided by RMF4Ada
(future step for Intrumentor tool);

task type T_Simulation (period: integer; deadline:
integer)

with
Monitor_Mode => Event_Triggered,
Monitor_Case => ( RMTLD ,

T_Simulation’Event(Task_Release) next implies
duration[T_Simulation’Time(period)]
T_Simulation’Event(ANY) < T_Simulation’Time(wcet)

);



Enforcement of Timing properties - Property 2

protected type Protected_Environment
with

Monitor_Mode => Time_Triggered
Monitor_Case => ( TRE,
( Protected_Environment.read_CH4’Event(pre) .
<(Protected_Environment.read_Air_Flow’Event(ANY)

+ Protected_Environment.read_WaterPipe_Flow’
Event(ANY))∗>[0..20] .

Protected_Environment.read_CO2’Event(post))∗
) ,

is
function read_CO2 return CO2_Level_State;
function read_CH4 return CH4_Level_State;
function read_Air_Flow return Air_Exhaust_State;
function read_WaterPipe_Flow return

WaterPipe_Flow_State;
end;
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Main Conclusions I

Positive Aspects

I enables the instrumentation of Ada programs with monitors
that enforce RV behavior;

I introduces a small extension to the current Ada contract
language for enabling the specification of contracts to be
checked at runtime by monitors;

I introduces the monitoring synthesis of duration formulas from
a formal language;

I automatically synthesizing a monitor from a formal language
reduces the introduction of errors.



Main Conclusions II

Negative Aspects

I heavy-weight syntax for some simple WCET detections (using
execution time timers);

I provides verification only for past executions (incomplete)
I who watches the watchdog?



Future Research Directions

Next Steps

I provide Creator and Instrumentor tools;
I combine monitor modes with prior analysis (where we should

use event-based mode instead of time-triggered mode);
I optimize monitor context-switches;
I explore further formal systems;
I research adequacy of RMF4Ada for multi-core environments

and for COTS as internal black-box components.



The End...

Thank you for watching our presentation.
Please send any comment to anmap@isep.ipp.pt.
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