Reliable Handling
of Real-Time Scheduling Attributes
on Multiprocessor Platforms

in Ada 2012

Sergio Saez, Jorge Real, Alfons Crespo

Universitat Politécnica de Valéncia, Spain

19th International Conference on Reliable Software Technologies - Ada-Europe 2014 - Paris, France, June 23-27, 2014

Outline

Introduction
Data type for real-time attributes
Problem statement

Design alternatives and their implementation
Conclusions

Introduction

m Real-time scheduling attributes determine how
resources are allocated to tasks

= Priority, deadline, CPU, ...

m Ada 2012 supports their handling

= System.Multiprocessors.Dispatching_Domains
Querying and setting a task's CPU
Delay_Until_And_Set_CPU

= Ada.Dispatching.EDF

Querying and setting a task's deadline
Delay_Until_And_Set_Deadline

= Ada.Dynamic_Priorities
Querying and setting a task's priority
NO Delay_Until_And_Set_Priority

Introduction

m However, it is not possible to atomically modify
several attributes at a time...

= ...neither immediately nor after a delay

m This would be most useful in cases such as
= Job partitioning — next activation
= Task splitting, Dual-priority — after some time
= Mode changes — upon mode change request

Data type for real-time attributes

package Ada_Real Time.Scheduling Attributes is

type Scheduling_Attributes is tagged private;
procedure Set Priority (SP: in out Scheduling_Attributes; Prio: Any_Priority);
function Get_Priority (SP: in Scheduling_Attributes) return Any_Periority;
procedure Set CPU (SP: in out Scheduling_Attributes; CPU_Nr: CPU_Range);
function Get CPU (SP:in Scheduling_Attributes) return CPU_Range;
procedure Retrieve Scheduling_Attributes (SP: out Scheduling_Attributes;

T Id: Task _Id := Current_Task);

type Any_Scheduling_Attributes is access all Scheduling _Attributes'Class;
procedure Apply _Scheduling_Attributes (SP: Any_Scheduling_Attributes;
T Id: Task_Id := Current_Task);
procedure Delay Until And_Apply_Scheduling_Attributes (SP: Any_Scheduling_Attributes;
Delay _Until_Time: Time);
private

type Scheduling_Attributes is tagged record

Prio: Any_Priority := Default_Priority;

CPU_Nr: CPU_Range := Not_A_Specific CPU;
end record,;

procedure Enforce Scheduling_Attributes (SP: Scheduling_Attributes; T_Id: Task_Id);
end Ada_Real Time.Scheduling_Attributes;

Data type for real-time attributes

m Root subprogram ultimately applying the change of
attributes

m It has to be implemented for each extension of the

type

= For example:

procedure Enforce Scheduling_Attributes (SP: Scheduling_Attributes; T_Id: Task Id) is
begin
Ada.Dynamic_Priorities.Set_Priority (Priority => SP.Prio; T => T_Id);
System.Multiprocessors.Dispatching Domains.Set CPU (CPU => SP.CPU_Nr; T => T _Id);
end Enforce Scheduling_Attributes;

Problem statement

Scenario A Scenario B
Change CPU and lower priority Change CPU and raise priority

Priority 4 Case 1 Case 1

20| ' prio__cpu

15

CPU1 1A y

10
T mmm [IHTHTHRm

20 Artefact

CPU2 5 ;«6

10

rtefact

Problem statement

Scenario A Scenario B
Change CPU and lower priority Change CPU and raise priority

Priority 4 Case 1 Case 1

20| ' prio__cpu

| —

15 -
CPU1 x

10
i

20 Artefact

CPU2 5 ;«6

10

s Order of enforcement matters
m Even in the correct order, artefacts occur since changes are not atomic

Problem statement

m Goal: reliably change several attributes at a time

= Removing the errors

Attributes must be changed in the right order
Changing several attributes requires atomicity

= If artefacts cannot be removed, they must be precisely
identified

Minimal, bounded duration
Affected CPU must be known

m Using only Ada 2012

m Plan: explore use of Ada mechanisms that provide
atomicity

Design alternatives

m Plan: explore Ada mechanisms for atomicity
= 1 Use a protected operation
= 2 Self-change from the highest priority
= 3 Use timing event handlers
= 4 Use rendezvous with server task at high priority

Design alternative 1: Protected operation

s Changing priority, deadline, CPU, are task
dispatching points...

m ...but deferred until the end of protected action
= Scheduling errors would seem to disappear...

m Delay _Until_And_Set _Scheduling_Atributes could

be obtained in combination with requeue to a
closed entry, later opened with a timing event

= But the runtime will ultimately apply the changes in
some order, hence reproducing errors and artefacts

= Reliable application-level solution not guaranteed by PO

Design alternative 2: Self-change at IP'Last

m Task changes its own attributes from a sufficiently high
priority (e.g. Interrupt_Priority'Last)

PriorityA

| P'Last

20

CPU1
15

| _P'Last

CPU2
20

15

Effect on higher-priority tasks

D_U_Set_CPU

N

Set other attributes
Set target priority

Delay time

Effect on lower-priority tasks

D_U_Set_CPU

N

e
Set_Priority (IP'Last)

Set other attributes
Set target priority

Delay time

Design alternative 2: Self-change at IP'Last

m Task changes its own attributes from a sufficiently high
priority (e.g. Interrupt_Priority'Last)

PriorityA

| P'Last

20

CPU1
15

| _P'Last

CPU2
20

15

Effect on higher-priority tasks

D_U_Set_CPU

A Delay time

Set other attributes

Set target priority /D

A
Artefact o

Effect on lower-priority tasks

D_U_Set_CPU

N

e
Set_Priority (IP'Last)

Set other attributes
Set target priority

Delay time

m Artefacts affect higher-priority tasks on the destination CPU
m Regular interference on lower-priority tasks

Design alternative 2: Self-change at IP'Last

s Implementation of delayed attribute change

procedure Delay Until And_Apply Scheduling_Attributes (
SP: Any_Scheduling_Attributes;
Delay_Until_Time: Time) is
begin
Set_Priority (Interrupt_Priority’Last); —— Rise caller’s priority to highest
Delay _Until_And_Set CPU (Delay_Until_Time, SP.CPU_Nr);

—— Caller wakes up from delay in the destination CPU, still with the highest priority

SP.Enforce_Scheduling_Attributes (Current_Task); —— Update other attributes
Set_Priority (SP.Prio); —— Decrease caller's priority down to target priority

end Delay _Until_And_Apply Scheduling_Attributes;

s Drawback: artefact and added interference may occur too
often in destination CPU in case of bursts of migrating tasks

Design alternative 3: Timing events

= Timing events are handled at the highest priority
= Promising, in terms of atomicity

m Plus, they can be programmed for the future
= Handy for deferred attribute changes
For immediate effect, use a time in the past

m Plus, efficient implementation (vs. PO's)

m A TE handler is a protected procedure with the
highest priority (IP'Last, under ceiling locking)
= But we said PO's are not a good idea...

= But using a TE, we apply changes to another task
All changes applied at highest priority = no re-schedule

Design alternative 3: Timing events

m [iming event scenarios

Scenario A Scenario B

Priority A prio & cpu prio & cpu

Design alternative 3: Timing events

m [iming event scenarios

Scenario A Scenario B

Priority A prio & cpu prio & cpu

m Errors may disappear, artefacts are still present

s Drawback: effects impact an unknown CPU
= CPU affinity for timing events could solve the issue

Design alternative 3: Timing events

s Implementation scheme:

= One PO with TE handler per task (with changing
attributes)

= Owner task of the PO is known by the PO

Design alternative 3: Timing events

m Use of (hypothetical) timing event affinities

protected body Scheduling_Manager is

entry Apply_Scheduling_Attributes (SP: Any_Scheduling_Attributes) when True is
begin
Task_Waiting := True; —— Barrier for entry Wait
—— An immediate timing event is programmed...
Timing_Ev.Set_Handler (Time_First, Handler’Access, SP.Get_CPU);
—— The client task is requeued to Wait until Handler updates its attributes
requeue Wait;
end Apply_Scheduling_Attributes;

procedure Handler (Event : in out Timing_Event) is

begin
Sched_Params.Enforce_Scheduling_Attributes (Owner_Task);
Task_Waiting := False;

end Handler;

entry Wait when not Task_Waiting is
begin

null;
end Wait;

end Scheduling_Manager;

Design alternative 4: Server task & rendezvous

m A server task in charge of changing another
(client) tasks' attributes

= The server runs at the highest priority (IP'Last)
m Client calls the appropriate server entry
= Immediate or deferred change
m \We want both client and server at IP'Last, even
some time after the rendezvous
= Hence client raises to IP'Last before calling the server
m During the rendezvous, the calling task is blocked
—> Its attributes are changed while it is not running
= Eliminates chances for glitches

Design alternative 4: Server task & rendezvous

s Immediate change is relatively simple
= Client raises prio to IP'Last
Client calls server > caller blocked, rendezvous starts at IP'Last
Server enforces new client's attributes while client is blocked
Server loops back to selective accept waiting for new calls
Client is now at the new priority queue of the new CPU

Priority N Immediate change Deferred change

prio & cpu 12 3
| P'Last 8

20 S S S - . g
Artefact A

15 Artefact .

10
\ 1T |

20

15

10

Design alternative 4: Server task & rendezvous

O Deferred change requires carefully considering the delay

= Client raises priority to IP'Last and calls server 1 2Dsefe”ed change
Caller blocked, rendezvous starts at IP'Last —

= Step 1: Server makes local copy of new
attributes and rendezvous ends

Client and server both at IP'Last
= Step 2: Server yields control back to client

Client executes Delay_Until_And_Set CPU
and suspends

= Step 3: Control goes back to server
= Server then enforces new client's attributes

Artefact ™

Delay_Until_And_Apply

Design alternative 4: Server task & rendezvous

O Deferred change requires carefully considering the delay

= Client raises priority to IP'Last and calls server 1 2D39fe”ed change
Caller blocked, rendezvous starts at IP'Last —

= Step 1: Server makes local copy of new
attributes and rendezvous ends

Client and server both at IP'Last
= Step 2: Server yields control back to client

Client executes Delay_Until_And_Set CPU
and suspends

= Step 3: Control goes back to server
= Server then enforces new client's attributes

Artefact ™

Delay_Until_And_Apply

= No scheduling errors
m Artefact is blocking time for tasks of higher priority

m It only affects tasks in origin CPU
= This is an important advantage with respect to TE

Design alternative 4: Server task & rendezvous

m Server task implementation: spec

task type Scheduling_Manager_Type (CPU_Nr: CPU := Next_CPU)
with Interrupt_Priority => Interrupt_Priority'Last,
CPU => CPU_Nr is

entry Apply_Attributes_Immediately (
SP: Any_Scheduling_Attributes; T_Id: Task_Id);

entry Apply_Attributes_On_Suspend (
SP: Any_Scheduling_Attributes; T_Id: Task Id);

end Scheduling_Manager_Type;

Design alternative 4: Server task & rendezvous

m Server task implementation: body

task body Scheduling_Manager_Type is
Sched_Param: Any_Scheduling_Attributes; Target_Task: Task_Id;
begin
loop
select
accept Apply_Attributes_Immediately (SP: Any_Scheduling_Attributes; T_Id: Task_Id) do
SP.Enforce_Scheduling_Attributes (T_Id); -- Change task’s attributes
end Apply_Attributes_Immediately ;
or
accept Apply_Attributes_On_Suspend (SP: Any_Scheduling_Attributes; T_Id: Task Id) do
Target_Task := T_Id; -- Stores the target task and new attributes
Sched_Param := SP; -- Step 1
end Apply_Attributes_On_Suspend;
delay 0.0; -- Step 2: Yield to allow client task to execute "delay until”
-- Step 3: Change the attributes of the suspended client task
Sched_Param.Enforce_Scheduling_Attributes (Target_Task);
or
terminate;
end select;
end loop;
end Scheduling_Manager_Type;

DeS|gn aIternatlve 4 Server task & rendezvous

m Class-wide subprograms in Ada_R_T.Scheduling_Attributes

procedure Apply_Scheduling_Attributes (SP: Any_Scheduling_Attributes;
T_Id : Task_Id := Current_Task) is

begin

Set_Priority (Interrupt_Priority’Last);

Scheduling_Manager (Current_CPU).Apply_Parameters_Immediately (SP, T_Id);
end Apply_Scheduling_Attributes;

procedure Delay_Until_And_Apply_Scheduling_Attributes (SP: Any_Scheduling_Attributes;
Delay_Until_Time: Time) is
begin
Set_Priority (Interrupt_Priority'Last); -- Rise priority to IP'Last
Scheduling_Manager (Current_CPU).Apply_Attributes_On_Suspend (SP, Current Task);
delay until Delay_Until_Time; —— Attributes will be changed during suspension (Step 2)
-- Task will wake up with the new attributes applied
end Delay_Until_And_Apply_Scheduling_Attributes;

Conclusions

m Changing several scheduling attributes at a time is
challenging

= Especially when the CPU is one of them

s From the four application-level schemes explored
we conclude...

Conclusions

= A PO-based, application-level scheme does not
guarantee absence of scheduling issues in itself

Ultimately depends on how the runtime/OS enforces the
attributes at the end of a protected action

= Self-changing the attributes from IP'Last introduces
remote interference in the destination CPU
Bursts of migrating tasks challenge schedulability
= Artefacts introduced by the timing-event scheme affect
unknown CPUs
Could be mitigated if timing events had affinity

= The server task approach is the most reliable, although
it's not for free...

Conclusions

= The server task approach is the most reliable, although
it's not for free...
Requires up to one server task per CPU

The interference affects only the origin CPU
m Can be accounted for as blocking time for tasks of hp(t)

Changes are applied while task is suspended
m It will wake up with the new attributes enforced

There is a runtime cost involved in the double context switch
m But it is predictable

m Allin all...

= Doable in Ada 2012
= Timing event affinities would enable more efficient
solution

