
Reliable Handling
of Real-Time Scheduling Attributes

on Multiprocessor Platforms
in Ada 2012

Sergio Sáez, Jorge Real, Alfons Crespo

Universitat Politécnica de Valéncia, Spain

19th International Conference on Reliable Software Technologies - Ada-Europe 2014 - Paris, France, June 23-27, 2014

2

Outline

n  Introduction
n  Data type for real-time attributes
n  Problem statement
n  Design alternatives and their implementation
n  Conclusions

Introduction

n  Real-time scheduling attributes determine how
resources are allocated to tasks
n  Priority, deadline, CPU, …

n  Ada 2012 supports their handling
n  System.Multiprocessors.Dispatching_Domains

n  Querying and setting a task's CPU
n  Delay_Until_And_Set_CPU

n  Ada.Dispatching.EDF
n  Querying and setting a task's deadline
n  Delay_Until_And_Set_Deadline

n  Ada.Dynamic_Priorities
n  Querying and setting a task's priority
n  NO Delay_Until_And_Set_Priority

3

Introduction

n  However, it is not possible to atomically modify
several attributes at a time…
n  …neither immediately nor after a delay

n  This would be most useful in cases such as
n  Job partitioning – next activation
n  Task splitting, Dual-priority – after some time
n  Mode changes – upon mode change request

4

Data type for real-time attributes

package Ada_Real_Time.Scheduling_Attributes is

 type Scheduling_Attributes is tagged private;
 procedure Set_Priority (SP: in out Scheduling_Attributes; Prio: Any_Priority);
 function Get_Priority (SP: in Scheduling_Attributes) return Any_Priority;
 procedure Set_CPU (SP: in out Scheduling_Attributes; CPU_Nr: CPU_Range);
 function Get_CPU (SP: in Scheduling_Attributes) return CPU_Range;
 procedure Retrieve_Scheduling_Attributes (SP: out Scheduling_Attributes;
 T_Id: Task_Id := Current_Task);

 type Any_Scheduling_Attributes is access all Scheduling_Attributes'Class;
 procedure Apply_Scheduling_Attributes (SP: Any_Scheduling_Attributes;

 T_Id: Task_Id := Current_Task);
 procedure Delay_Until_And_Apply_Scheduling_Attributes (SP: Any_Scheduling_Attributes;
 Delay_Until_Time: Time);
private
 type Scheduling_Attributes is tagged record
 Prio: Any_Priority := Default_Priority;
 CPU_Nr: CPU_Range := Not_A_Specific_CPU;
 end record;

 procedure Enforce_Scheduling_Attributes (SP: Scheduling_Attributes; T_Id: Task_Id);
end Ada_Real_Time.Scheduling_Attributes;

5

Data type for real-time attributes

6

procedure Enforce_Scheduling_Attributes (SP: Scheduling_Attributes; T_Id: Task_Id) is
begin
 Ada.Dynamic_Priorities.Set_Priority (Priority => SP.Prio; T => T_Id);
 System.Multiprocessors.Dispatching_Domains.Set_CPU (CPU => SP.CPU_Nr; T => T_Id);
end Enforce_Scheduling_Attributes;

n  Root subprogram ultimately applying the change of
attributes

n  It has to be implemented for each extension of the
type
n  For example:

Problem statement

7

Scenario A
Change CPU and lower priority

Scenario B
Change CPU and raise priority

Problem statement

8

Scenario A
Change CPU and lower priority

Scenario B
Change CPU and raise priority

n  Order of enforcement matters
n  Even in the correct order, artefacts occur since changes are not atomic

Problem statement

n  Goal: reliably change several attributes at a time
n  Removing the errors

n  Attributes must be changed in the right order
n  Changing several attributes requires atomicity

n  If artefacts cannot be removed, they must be precisely
identified

n  Minimal, bounded duration
n  Affected CPU must be known

n  Using only Ada 2012
n  Plan: explore use of Ada mechanisms that provide

atomicity

9

Design alternatives

n  Plan: explore Ada mechanisms for atomicity
n  1 Use a protected operation
n  2 Self-change from the highest priority
n  3 Use timing event handlers
n  4 Use rendezvous with server task at high priority

10

Design alternative 1: Protected operation

n  Changing priority, deadline, CPU, are task
dispatching points…

n  …but deferred until the end of protected action
n  Scheduling errors would seem to disappear…

n  Delay_Until_And_Set_Scheduling_Atributes could
be obtained in combination with requeue to a
closed entry, later opened with a timing event

n  But the runtime will ultimately apply the changes in
some order, hence reproducing errors and artefacts
n  Reliable application-level solution not guaranteed by PO

11

Design alternative 2: Self-change at IP'Last

n  Task changes its own attributes from a sufficiently high
priority (e.g. Interrupt_Priority'Last)

12

Design alternative 2: Self-change at IP'Last

n  Task changes its own attributes from a sufficiently high
priority (e.g. Interrupt_Priority'Last)

n  Artefacts affect higher-priority tasks on the destination CPU
n  Regular interference on lower-priority tasks

13

Design alternative 2: Self-change at IP'Last

n  Implementation of delayed attribute change

n  Drawback: artefact and added interference may occur too
often in destination CPU in case of bursts of migrating tasks

14

procedure Delay_Until_And_Apply_Scheduling_Attributes (
 SP: Any_Scheduling_Attributes;
 Delay_Until_Time: Time) is

begin
 Set_Priority (Interrupt_Priority’Last); −− Rise caller’s priority to highest
 Delay_Until_And_Set_CPU (Delay_Until_Time, SP.CPU_Nr);

 −− Caller wakes up from delay in the destination CPU, still with the highest priority

 SP.Enforce_Scheduling_Attributes (Current_Task); −− Update other attributes
 Set_Priority (SP.Prio); −− Decrease caller's priority down to target priority

end Delay_Until_And_Apply_Scheduling_Attributes;

Design alternative 3: Timing events

n  Timing events are handled at the highest priority
n  Promising, in terms of atomicity

n  Plus, they can be programmed for the future
n  Handy for deferred attribute changes

n  For immediate effect, use a time in the past

n  Plus, efficient implementation (vs. PO's)
n  A TE handler is a protected procedure with the

highest priority (IP'Last, under ceiling locking)
n  But we said PO's are not a good idea…
n  But using a TE, we apply changes to another task

n  All changes applied at highest priority à no re-schedule

15

n  Timing event scenarios

Design alternative 3: Timing events

16

n  Timing event scenarios

n  Errors may disappear, artefacts are still present
n  Drawback: effects impact an unknown CPU

n  CPU affinity for timing events could solve the issue

Design alternative 3: Timing events

17

Design alternative 3: Timing events

n  Implementation scheme:
n  One PO with TE handler per task (with changing

attributes)
n  Owner task of the PO is known by the PO

18

protected body Scheduling_Manager is

 entry Apply_Scheduling_Attributes (SP: Any_Scheduling_Attributes) when True is
 begin
 Task_Waiting := True; −− Barrier for entry Wait
 −− An immediate timing event is programmed...
 Timing_Ev.Set_Handler (Time_First, Handler’Access, SP.Get_CPU);
 −− The client task is requeued to Wait until Handler updates its attributes
 requeue Wait;
 end Apply_Scheduling_Attributes;

 procedure Handler (Event : in out Timing_Event) is
 begin
 Sched_Params.Enforce_Scheduling_Attributes (Owner_Task);
 Task_Waiting := False;
 end Handler;

 entry Wait when not Task_Waiting is
 begin
 null;
 end Wait;

end Scheduling_Manager;

Design alternative 3: Timing events

n  Use of (hypothetical) timing event affinities

19

Design alternative 4: Server task & rendezvous

n  A server task in charge of changing another
(client) tasks' attributes
n  The server runs at the highest priority (IP'Last)

n  Client calls the appropriate server entry
n  Immediate or deferred change

n  We want both client and server at IP'Last, even
some time after the rendezvous
n  Hence client raises to IP'Last before calling the server

n  During the rendezvous, the calling task is blocked
à Its attributes are changed while it is not running
n  Eliminates chances for glitches

20

n  Immediate change is relatively simple
n  Client raises prio to IP'Last
n  Client calls server à caller blocked, rendezvous starts at IP'Last
n  Server enforces new client's attributes while client is blocked
n  Server loops back to selective accept waiting for new calls
n  Client is now at the new priority queue of the new CPU

Design alternative 4: Server task & rendezvous

21

Design alternative 4: Server task & rendezvous

22

n  Deferred change requires carefully considering the delay

n  Client raises priority to IP'Last and calls server
n  Caller blocked, rendezvous starts at IP'Last

n  Step 1: Server makes local copy of new
attributes and rendezvous ends

n  Client and server both at IP'Last

n  Step 2: Server yields control back to client
n  Client executes Delay_Until_And_Set_CPU

and suspends
n  Step 3: Control goes back to server

n  Server then enforces new client's attributes

Design alternative 4: Server task & rendezvous

23

n  No scheduling errors
n  Artefact is blocking time for tasks of higher priority
n  It only affects tasks in origin CPU

n  This is an important advantage with respect to TE

n  Deferred change requires carefully considering the delay

n  Client raises priority to IP'Last and calls server
n  Caller blocked, rendezvous starts at IP'Last

n  Step 1: Server makes local copy of new
attributes and rendezvous ends

n  Client and server both at IP'Last

n  Step 2: Server yields control back to client
n  Client executes Delay_Until_And_Set_CPU

and suspends
n  Step 3: Control goes back to server

n  Server then enforces new client's attributes

Design alternative 4: Server task & rendezvous

n  Server task implementation: spec

24

task type Scheduling_Manager_Type (CPU_Nr: CPU := Next_CPU)
 with Interrupt_Priority => Interrupt_Priority'Last,

 CPU => CPU_Nr is

 entry Apply_Attributes_Immediately (

 SP: Any_Scheduling_Attributes; T_Id: Task_Id);

 entry Apply_Attributes_On_Suspend (

 SP: Any_Scheduling_Attributes; T_Id: Task Id);

end Scheduling_Manager_Type;

Design alternative 4: Server task & rendezvous

n  Server task implementation: body

25

task body Scheduling_Manager_Type is
 Sched_Param: Any_Scheduling_Attributes; Target_Task: Task_Id;
begin
 loop
 select
 accept Apply_Attributes_Immediately (SP: Any_Scheduling_Attributes; T_Id: Task_Id) do
 SP.Enforce_Scheduling_Attributes (T_Id); -- Change task’s attributes
 end Apply_Attributes_Immediately ;
 or
 accept Apply_Attributes_On_Suspend (SP: Any_Scheduling_Attributes; T_Id: Task Id) do
 Target_Task := T_Id; -- Stores the target task and new attributes
 Sched_Param := SP; -- Step 1
 end Apply_Attributes_On_Suspend;
 delay 0.0; -- Step 2: Yield to allow client task to execute "delay until"
 -- Step 3: Change the attributes of the suspended client task
 Sched_Param.Enforce_Scheduling_Attributes (Target_Task);
 or
 terminate;
 end select;
 end loop;
end Scheduling_Manager_Type;

Design alternative 4: Server task & rendezvous

procedure Apply_Scheduling_Attributes (SP: Any_Scheduling_Attributes;

 T_Id : Task_Id := Current_Task) is
begin
 Set_Priority (Interrupt_Priority’Last);
 Scheduling_Manager (Current_CPU).Apply_Parameters_Immediately (SP, T_Id);
end Apply_Scheduling_Attributes;

procedure Delay_Until_And_Apply_Scheduling_Attributes (SP: Any_Scheduling_Attributes;

 Delay_Until_Time: Time) is
begin
 Set_Priority (Interrupt_Priority'Last); -- Rise priority to IP'Last
 Scheduling_Manager (Current_CPU).Apply_Attributes_On_Suspend (SP, Current Task);
 delay until Delay_Until_Time; −− Attributes will be changed during suspension (Step 2)
 -- Task will wake up with the new attributes applied
end Delay_Until_And_Apply_Scheduling_Attributes;

26

n  Class-wide subprograms in Ada_R_T.Scheduling_Attributes

Conclusions

n  Changing several scheduling attributes at a time is
challenging
n  Especially when the CPU is one of them

n  From the four application-level schemes explored
we conclude…

27

Conclusions

n  …
n  A PO-based, application-level scheme does not

guarantee absence of scheduling issues in itself
n  Ultimately depends on how the runtime/OS enforces the

attributes at the end of a protected action

n  Self-changing the attributes from IP'Last introduces
remote interference in the destination CPU

n  Bursts of migrating tasks challenge schedulability

n  Artefacts introduced by the timing-event scheme affect
unknown CPUs

n  Could be mitigated if timing events had affinity

n  The server task approach is the most reliable, although
it's not for free…

28

Conclusions

n  …
n  The server task approach is the most reliable, although

it's not for free…
n  Requires up to one server task per CPU
n  The interference affects only the origin CPU

n  Can be accounted for as blocking time for tasks of hp(τ)

n  Changes are applied while task is suspended
n  It will wake up with the new attributes enforced

n  There is a runtime cost involved in the double context switch
n  But it is predictable

n  All in all…
n  Doable in Ada 2012
n  Timing event affinities would enable more efficient

solution
29

