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Introduction

Event-driven real-time schedulers

I Activate tasks when certain events occur:
I external interrupts, timer interrupts, software mechanisms, ...

I Depending on the activation event, tasks can be classified in:

Hardware Activated Tasks
Tasks are woken up by Interrupt Service Routines.

Software Activated Tasks
Tasks are woken up by software mechanisms: timing
events, delays, semaphores, barriers, ...

I Tasks have priorities that establish the execution order.

I These priorities can be used to map task’s criticality level.

I It is desirable that a high priority task did not suffer
unnecessary interference from lower priority tasks.
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Introduction

Classical Interrupt Model

I Since interrupts have higher priorities than any task, their
ISRs are always executed despite of:

I the priority of the task currently in execution
I the task that is going to be activated by a given interrupt.

Task1

Task2

Int1

Int2

Task0

Int0 Int. request

ISR + sched

Task activation

Task execution

I High priority tasks suffer interference from interrupts used to
activate lower priority tasks that are obviously not executed at
activation instant.
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Introduction

Classical Interrupt Model (cont.)

I Blocking Time at priority i is:

B(i) = |L(i)|︸ ︷︷ ︸
Nr of lower priority tasks

× (δisr + δSched−A)︸ ︷︷ ︸
Task activation overhead

I δisr → mostly ISR execution time
I δSched−A → scheduler has to ...

QR
insert → update the ready queue,

QR
find−min → determine the highest priority task

... each time a task is activated.

Question:
If the activated task is not going to be immediately executed,
why does the ISR have to interfere with high priority tasks?
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Integrated Interrupt Model

Integrated Interrupt Model

I A unique priority space is used for tasks and ISRs.

I Each time a task is activated, the interrupt priority level is
changed to avoid lower priority interrupts to be attended.
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I The Hardware Interrupt Controller receives lower priority
interrupt requests but the CPU is not notified.
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Integrated Interrupt Model

Integrated Interrupts Model: Hardware Activated Tasks

I Requires a Hardware Interrupt Controller with multiple
interrupt priorities.

I If this HW support is not present, an additional overhead is
introduced:

δhic time to mask unnecessary interrupts according to the new
priority level.
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Integrated Interrupt Model

Integrated Interrupts Model: Software Activated Tasks

I To fully support SAT multiple HW timers with different
priorities are required.

⇒ This HW is not commonly available.

I SATs have to share the Timer interrupt

⇒ Timer interrupt is always enabled.
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Lower priority tasks 
do not require to 
reprogram HIC 
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Integrated Interrupt Model

Integrated Interrupts Model: Software Activated Tasks

I Only SATs activations can produce interference, but the
interference is higher.

→ ∃ Blocking Time at priority i due to unnecessary activations:

BSAT(i) = |LSAT(i)| × (δisr + δSched−A + δtimer)

δSched−A =

Remove τ from timer queue︷ ︸︸ ︷
QW

delete−min +

Find out next activation time︷ ︸︸ ︷
QW

find−min

+ QR
insert︸ ︷︷ ︸

Insert τ into ready queue

+ QR
find−min︸ ︷︷ ︸
Schedule

δtimer → Overhead of reprogramming the HW timer.
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Fully Integrated Interrupt Model

A new proposal: Virtual Integrated Interrupt Model

GOAL: To program timer interrupts corresponding only to higher
priority tasks.

I Each time a task starts its execution, it has to:

1. Find the closer waiting task with a priority higher than the
current one.
⇒ The next preemptor.

2. Program the timer interrupt for activating only the next
preemptor.

I When the next preemptor wakes up, previously ignored lower
priority tasks are also awakened.

Drawbacks

→ This approach gives rise to additional scheduling overheads.

→ Commonly used data structures for ready and waiting queues
are not adequate for these new scheduling operations.
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Fully Integrated Interrupt Model

Scheduling overheads using ready/waiting queues

I Waiting queue is sorted by release time
→ to find the next preemptor could have a O(NW) cost.

I When the next preemptor is activated
→ Np lower priority tasks have to be moved from the waiting
queue into the ready queue.
→ in the worst case Np = NW.

δSched−A
I = Np ×

wake up a lower priority task︷ ︸︸ ︷
(QW

delete−min + QR
insert)

+ QR
find−min︸ ︷︷ ︸

select the next task

+ QW
find−preemptor︸ ︷︷ ︸

determine its next preemptor
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Scheduling Cartesian Tree

Scheduling Cartesian Tree

Goals

I To avoid massive task movements from waiting queue.

I To efficiently determine the next preemptor.

Cartesian Tree

I A binary tree sorted by two keys:
priority (top-bottom subtrees) and release time (node depth).
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Scheduling Cartesian Tree

Scheduling Cartesian Tree (cont.)

I Only one tree that represents the ready and waiting queue.

I SC-Tree is sorted by absolute release time:
⇒ a task activation does not modify the structure.

δSched−A
I =

((((
((((

(((
(((

Np × (QW
delete−min + QR

insert)+QR
find−min+QW

find−preemptor

I Next preemptor is the top child node:
⇒ activation time overhead is constant. No release jitter!!

δSched−A
I = Cfind−min + Cfind−preemptor

I Main scheduling overhead occurs during task suspension.
I It can be accounted as part of the WCET.
I A careful implementation could allow preemptive SC-Tree

operations
→ It produces no/low blocking times.
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Scheduling Cartesian Tree

Priority Inheritance

I When a task locks/unlocks a shared resource and an
Inheritance Protocol is used, priority changes are produced.

I These temporal priority changes have an aditional cost in an
Integrated Interrupt Model:

QPO = δhic + QR
insert + QR

delete−min

+ ��
���

��:Cf

2× QR
find−min +

��
���

���
��:Cp

2× QW
find−preemptor

I When the shared resource is freed, the cost of activate
pending medium priority tasks is lower than if they had been
activated in their release instants:

→ no ISR has been executed
→ no interrupt priority level has been changed.
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Conclusions

Summarising

I A new approach has been presented to completely avoid
activation interference from lower priority tasks.

I Suitability of dual-queue schedulers to implement this
approach has been evaluated.

I A new data structure has been proposed and its overhead
compared against the classical model.

I The paper provides the necessary tools to check if this
approach is suitable for a given system taking into account
the real system overheads.

Pending issues

I SC-Tree behaviour during priority inheritance can be improved.

I To study the applicability of the Integrated Interrupt Model to
dynamic priorities.
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Thank you! Any question?


