
Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Integrated Schedulers for a Predictable Interrupt
Management on Real-Time Kernels

S. Sáez A. Crespo

Instituto de Automática e Informática Industrial
Universidad Politécnica de Valencia

19th International Conference on Reliable Software Technologies

June 2014, Paris

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Outline

Index

1 Introduction

2 Integrated Interrupt Model

3 Fully Integrated Interrupt Model

4 Scheduling Cartesian Tree

5 Conclusions

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Introduction

Index

1 Introduction

2 Integrated Interrupt Model

3 Fully Integrated Interrupt Model

4 Scheduling Cartesian Tree

5 Conclusions

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Introduction

Event-driven real-time schedulers

I Activate tasks when certain events occur:
I external interrupts, timer interrupts, software mechanisms, ...

I Depending on the activation event, tasks can be classified in:

Hardware Activated Tasks
Tasks are woken up by Interrupt Service Routines.

Software Activated Tasks
Tasks are woken up by software mechanisms: timing
events, delays, semaphores, barriers, ...

I Tasks have priorities that establish the execution order.

I These priorities can be used to map task’s criticality level.

I It is desirable that a high priority task did not suffer
unnecessary interference from lower priority tasks.

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Introduction

Classical Interrupt Model

I Since interrupts have higher priorities than any task, their
ISRs are always executed despite of:

I the priority of the task currently in execution
I the task that is going to be activated by a given interrupt.

Task1

Task2

Int1

Int2

Task0

Int0 Int. request

ISR + sched

Task activation

Task execution

I High priority tasks suffer interference from interrupts used to
activate lower priority tasks that are obviously not executed at
activation instant.

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Introduction

Classical Interrupt Model (cont.)

I Blocking Time at priority i is:

B(i) = |L(i)|︸ ︷︷ ︸
Nr of lower priority tasks

× (δisr + δSched−A)︸ ︷︷ ︸
Task activation overhead

I δisr → mostly ISR execution time
I δSched−A → scheduler has to ...

QR
insert → update the ready queue,

QR
find−min → determine the highest priority task

... each time a task is activated.

Question:
If the activated task is not going to be immediately executed,
why does the ISR have to interfere with high priority tasks?

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Integrated Interrupt Model

Index

1 Introduction

2 Integrated Interrupt Model

3 Fully Integrated Interrupt Model

4 Scheduling Cartesian Tree

5 Conclusions

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Integrated Interrupt Model

Integrated Interrupt Model

I A unique priority space is used for tasks and ISRs.

I Each time a task is activated, the interrupt priority level is
changed to avoid lower priority interrupts to be attended.

Task1

Task2

Int1

Int2

Task0

Int0

Interrupt requests
that activate lower
priority tasks are

delayed

Int. request

ISR + sched

Task activation

Task execution

Interrupt
priority level

I The Hardware Interrupt Controller receives lower priority
interrupt requests but the CPU is not notified.

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Integrated Interrupt Model

Integrated Interrupts Model: Hardware Activated Tasks

I Requires a Hardware Interrupt Controller with multiple
interrupt priorities.

I If this HW support is not present, an additional overhead is
introduced:

δhic time to mask unnecessary interrupts according to the new
priority level.

Task1

Task2

Int1

Int2

Task0

Int0 Int. request

isr+sched

Task activation

Task execution

hic

Mask lower
priority

interrupts

Unmask
lower priority

interrupts

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Integrated Interrupt Model

Integrated Interrupts Model: Software Activated Tasks

I To fully support SAT multiple HW timers with different
priorities are required.

⇒ This HW is not commonly available.

I SATs have to share the Timer interrupt

⇒ Timer interrupt is always enabled.

Task1

Task2

Task0

Timer Int. request

isr+sched

Task activation

Task execution

hic

Lower priority tasks
do not require to
reprogram HIC

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Integrated Interrupt Model

Integrated Interrupts Model: Software Activated Tasks

I Only SATs activations can produce interference, but the
interference is higher.

→ ∃ Blocking Time at priority i due to unnecessary activations:

BSAT(i) = |LSAT(i)| × (δisr + δSched−A + δtimer)

δSched−A =

Remove τ from timer queue︷ ︸︸ ︷
QW

delete−min +

Find out next activation time︷ ︸︸ ︷
QW

find−min

+ QR
insert︸ ︷︷ ︸

Insert τ into ready queue

+ QR
find−min︸ ︷︷ ︸
Schedule

δtimer → Overhead of reprogramming the HW timer.

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Fully Integrated Interrupt Model

Index

1 Introduction

2 Integrated Interrupt Model

3 Fully Integrated Interrupt Model

4 Scheduling Cartesian Tree

5 Conclusions

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Fully Integrated Interrupt Model

A new proposal: Virtual Integrated Interrupt Model

GOAL: To program timer interrupts corresponding only to higher
priority tasks.

I Each time a task starts its execution, it has to:

1. Find the closer waiting task with a priority higher than the
current one.
⇒ The next preemptor.

2. Program the timer interrupt for activating only the next
preemptor.

I When the next preemptor wakes up, previously ignored lower
priority tasks are also awakened.

Drawbacks

→ This approach gives rise to additional scheduling overheads.

→ Commonly used data structures for ready and waiting queues
are not adequate for these new scheduling operations.

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Fully Integrated Interrupt Model

Scheduling overheads using ready/waiting queues

I Waiting queue is sorted by release time
→ to find the next preemptor could have a O(NW) cost.

I When the next preemptor is activated
→ Np lower priority tasks have to be moved from the waiting
queue into the ready queue.
→ in the worst case Np = NW.

δSched−A
I = Np ×

wake up a lower priority task︷ ︸︸ ︷
(QW

delete−min + QR
insert)

+ QR
find−min︸ ︷︷ ︸

select the next task

+ QW
find−preemptor︸ ︷︷ ︸

determine its next preemptor

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Scheduling Cartesian Tree

Index

1 Introduction

2 Integrated Interrupt Model

3 Fully Integrated Interrupt Model

4 Scheduling Cartesian Tree

5 Conclusions

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Scheduling Cartesian Tree

Scheduling Cartesian Tree

Goals

I To avoid massive task movements from waiting queue.

I To efficiently determine the next preemptor.

Cartesian Tree

I A binary tree sorted by two keys:
priority (top-bottom subtrees) and release time (node depth).

r p

1120
r p

683

r p

36163

r p

16142

r p

19241

r p

priority
Release

time

Time

Priority
rr pp

107107 2222

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Scheduling Cartesian Tree

Scheduling Cartesian Tree (cont.)

I Only one tree that represents the ready and waiting queue.

I SC-Tree is sorted by absolute release time:
⇒ a task activation does not modify the structure.

δSched−A
I =

((((
((((

(((
(((

Np × (QW
delete−min + QR

insert)+QR
find−min+QW

find−preemptor

I Next preemptor is the top child node:
⇒ activation time overhead is constant. No release jitter!!

δSched−A
I = Cfind−min + Cfind−preemptor

I Main scheduling overhead occurs during task suspension.
I It can be accounted as part of the WCET.
I A careful implementation could allow preemptive SC-Tree

operations
→ It produces no/low blocking times.

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Scheduling Cartesian Tree

Priority Inheritance

I When a task locks/unlocks a shared resource and an
Inheritance Protocol is used, priority changes are produced.

I These temporal priority changes have an aditional cost in an
Integrated Interrupt Model:

QPO = δhic + QR
insert + QR

delete−min

+ ��
���

��:Cf

2× QR
find−min +

��
���

���
��:Cp

2× QW
find−preemptor

I When the shared resource is freed, the cost of activate
pending medium priority tasks is lower than if they had been
activated in their release instants:

→ no ISR has been executed
→ no interrupt priority level has been changed.

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Conclusions

Index

1 Introduction

2 Integrated Interrupt Model

3 Fully Integrated Interrupt Model

4 Scheduling Cartesian Tree

5 Conclusions

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Conclusions

Summarising

I A new approach has been presented to completely avoid
activation interference from lower priority tasks.

I Suitability of dual-queue schedulers to implement this
approach has been evaluated.

I A new data structure has been proposed and its overhead
compared against the classical model.

I The paper provides the necessary tools to check if this
approach is suitable for a given system taking into account
the real system overheads.

Pending issues

I SC-Tree behaviour during priority inheritance can be improved.

I To study the applicability of the Integrated Interrupt Model to
dynamic priorities.

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Integrated Schedulers for a Predictable Interrupt
Management on Real-Time Kernels

S. Sáez A. Crespo

Instituto de Automática e Informática Industrial
Universidad Politécnica de Valencia

19th International Conference on Reliable Software Technologies

June 2014, Paris

Thank you! Any question?

