Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Integrated Schedulers for a Predictable Interrupt

Management on Real-Time Kernels

S. Saez A. Crespo

Instituto de Automatica e Informatica Industrial
Universidad Politécnica de Valencia

19th International Conference on Reliable Software Technologies
June 2014, Paris

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Outline

Index

Introduction

Integrated Interrupt Model

Fully Integrated Interrupt Model

Scheduling Cartesian Tree

Conclusions

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Introduction

Index

H Introduction

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Introduction

Event-driven real-time schedulers

» Activate tasks when certain events occur:
» external interrupts, timer interrupts, software mechanisms, ...
» Depending on the activation event, tasks can be classified in:

Hardware Activated Tasks
Tasks are woken up by Interrupt Service Routines.
Software Activated Tasks
Tasks are woken up by software mechanisms: timing
events, delays, semaphores, barriers, ...

» Tasks have priorities that establish the execution order.
» These priorities can be used to map task’s criticality level.

» It is desirable that a high priority task did not suffer
unnecessary interference from lower priority tasks.

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Introduction

Classical Interrupt Model

» Since interrupts have higher priorities than any task, their
ISRs are always executed despite of:
» the priority of the task currently in execution
» the task that is going to be activated by a given interrupt.

IntO ! \ Int. request
Tasko [l ISR + sched
ﬁ """""""""""""""""""" ¥ Task activation
Intl ﬂ [Task execution
Taskl | | [
Int2
Task2 v [

» High priority tasks suffer interference from interrupts used to

activate lower priority tasks that are obviously not executed at
activation instant. ﬁ‘ﬁ@

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Introduction

Classical Interrupt Model (cont.)

> Blocking Time at priority i is:

B(I) — ‘L(I)| % (6isr + 6Sched—A)
~——

Vv
Nr of lower priority tasks Task activation overhead

> 5 — mostly ISR execution time
» §Sched—A _y ocheduler has to ...

QR ... — update the ready queue,
QF 4_..i, — determine the highest priority task
... each time a task is activated.
Question:

If the activated task is not going to be immediately executed,
why does the ISR have to interfere with high priority tasks?

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Integrated Interrupt Model

Index

Integrated Interrupt Model

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Integrated Interrupt Model

Integrated Interrupt Model

» A unique priority space is used for tasks and ISRs.

» Each time a task is activated, the interrupt priority level is
changed to avoid lower priority interrupts to be attended.

IntO X Int. request
Tasko Y—| [l ISR + sched
................. Y Task activation
Intl ! [Task execution

Taskl Yo

Int2 S ——
Task2 | |

Interrupt requests
that activate lower
priority tasks are
delayed

» The Hardware Interrupt Controller receives lower priority
interrupt requests but the CPU is not notified.

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Integrated Interrupt Model

Integrated Interrupts Model: Hardware Activated Tasks

» Requires a Hardware Interrupt Controller with multiple
interrupt priorities.

> If this HW support is not present, an additional overhead is

introduced:
oM time to mask unnecessary interrupts according to the new
priority level.
IntO Y Int. request
i h
TaskO [l isr+sched
1 hic

Int1 V Task activation

Taskl . [] Task execution
Int2 :
Task2

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Integrated Interrupt Model

Integrated Interrupts Model: Software Activated Tasks

» To fully support SAT multiple HW timers with different
priorities are required.

= This HW is not commonly available.
» SATs have to share the Timer interrupt

= Timer interrupt is always enabled.

Timer_ ﬂ \ Int. request

[l isr+sched

TaskO i ihic

* Task activation
/ [Task execution
Taskl | | !

.............................. Lower priority tasks
""""""" do not require to
reprogram HIC

ai2

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Integrated Interrupt Model

Integrated Interrupts Model: Software Activated Tasks

» Only SATs activations can produce interference, but the
interference is higher.

— d Blocking Time at priority i due to unnecessary activations:

BSAT(i) — |LSAT(i)| % (5isr + 5Sched—A + 6timer)

Remove 7 from timer queue Find out next activation time

Sched—A w 4%
6o = Qdelete—min + Qﬁnd—min
R R
+ Qinsert + Qﬁnd—min
Insert T into ready queue Schedule

stmer s Qverhead of reprogramming the HW timer.

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Fully Integrated Interrupt Model

Index

Fully Integrated Interrupt Model

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Fully Integrated Interrupt Model

A new proposal: Virtual Integrated Interrupt Model

GOAL: To program timer interrupts corresponding only to higher
priority tasks.
» Each time a task starts its execution, it has to:
1. Find the closer waiting task with a priority higher than the
current one.
= The next preemptor.
2. Program the timer interrupt for activating only the next
preemptor.
» When the next preemptor wakes up, previously ignored lower
priority tasks are also awakened.

Drawbacks
— This approach gives rise to additional scheduling overheads.

— Commonly used data structures for ready and waiting queues

are not adequate for these new scheduling operations.

i2)
\: -4

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Fully Integrated Interrupt Model

Scheduling overheads using ready/waiting queues

» Waiting queue is sorted by release time
— to find the next preemptor could have a O(NYW) cost.

» When the next preemptor is activated
— N, lower priority tasks have to be moved from the waiting
queue into the ready queue.
— in the worst case N, = NW.

wake up a lower priority task
N

Sched—A __ w R
5/ - NP X (Qdelete—min + Qinsert)

R w
+ Qﬁnd—min + Qﬁnd—preemptor
—— N —

select the next task determine its next preemptor

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Scheduling Cartesian Tree

Index

Scheduling Cartesian Tree

A i

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Scheduling Cartesian Tree

Scheduling Cartesian Tree

Goals

» To avoid massive task movements from waiting queue.

» To efficiently determine the next preemptor.

Cartesian Tree

» A binary tree sorted by two keys:
priority (top-bottom subtrees) and release time (node depth).

1

Priority

Time

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Scheduling Cartesian Tree

Scheduling Cartesian Tree (cont.)

» Only one tree that represents the ready and waiting queue.

» SC-Tree is sorted by absolute release time:
= a task activation does not modify the structure.

Sched—A w R w
6 N X e—min + Qinsert)+Qﬁnd—min+Qﬁnd—preemptor

» Next preemptor is the top child node:
= activation time overhead is constant. No release jitter!!
Sched—A
5 e Cﬁnd min 1 Cﬁnd preemptor
» Main scheduling overhead occurs during task suspension.

» It can be accounted as part of the WCET.
» A careful implementation could allow preemptive SC-Tree
operations

— It produces no/low blocking times. ﬁ%

&

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Scheduling Cartesian Tree

Priority Inheritance

» When a task locks/unlocks a shared resource and an
Inheritance Protocol is used, priority changes are produced.

» These temporal priority changes have an aditional cost in an
Integrated Interrupt Model:

PO __ hic R R
Q = 4 + Qinsert + Qdelete—min

C

f
R w
+ %—F 2 —preemptor

» When the shared resource is freed, the cost of activate
pending medium priority tasks is lower than if they had been
activated in their release instants:

— no ISR has been executed
— no interrupt priority level has been changed.

Cp

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Conclusions

Index

Conclusions

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels
Conclusions

Summarising

>

A new approach has been presented to completely avoid
activation interference from lower priority tasks.

» Suitability of dual-queue schedulers to implement this
approach has been evaluated.

» A new data structure has been proposed and its overhead
compared against the classical model.

» The paper provides the necessary tools to check if this
approach is suitable for a given system taking into account
the real system overheads.

Pending issues

» SC-Tree behaviour during priority inheritance can be improved.
» To study the applicability of the Integrated Interrupt Model to
dynamic priorities. o

Integrated Schedulers for a Predictable Interrupt Management on Real-Time Kernels

Integrated Schedulers for a Predictable Interrupt

Management on Real-Time Kernels

S. Sdez A. Crespo

Instituto de Automadtica e Informatica Industrial
Universidad Politécnica de Valencia

19th International Conference on Reliable Software Technologies
June 2014, Paris

Thank you! Any question?

