
Parallelism in Ada:
status and prospects

Luís Miguel Pinho, Brad Moore, Stephen Michell

Ada-Europe 2014, Paris, France

Outline

• Motivation
– (Almost) nothing new

• Review of the tasklet model
– Tight(er) semantics

• Proposals in this paper
– Annotating data types

• Impact in expressions

– Parallel blocks

• Open Issues
– Some still open

2 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Motivation

• Paradigm shift

– The shift from relying upon increasing processor speed to
relying upon increasing parallelism impacts heavily in
software development

– Amdahl’s law is clear: the only way to improve Speedup is
improving p, the percentage of the program which can be
parallelized (very low)

– Virtualization helps but processors tend to be idle

– It is not just a question of mapping tasks/threads to cores
• There are more cores than parallel activities in the system

• And cores can be themselves highly parallel (vectorization)

3 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Motivation

• Software is heavily impacted

– Needs to adapt and be parallel
• If not, there is no gain from multi- and many-core

• But more complex and error prone

• Compiler-based parallelization is not enough

– There is no consensus as to programming models
• Sequential model with automatic parallelization

• Programming with low level threads interface

• Task-centric programming

• Data-flow models

4 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Motivation

• Our view is that concurrency and parallelism should
both be in the language semantics

– Actual syntax is irrelevant …
• Needs to fit the language model

– … but it is needed
• For the general case to help reduce manual re-writes of algorithms

– Parallel loops, blocks, …

• For specific cases

– Specification of parallelism behavior

5 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Motivation

• Architectures

6 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Review of the model

• Based on the notion of a logical unit of potential
parallelism

– A lightweight task, denoted Tasklet
• When there is no parallelism, there is an implicit tasklet for the

Ada Task

– Tasklet creation is either explicit
• The programmer specifies algorithms informing the compiler that

tasklets should be generated

– Or implicit
• The compiler itself generates the tasklets (e.g. operating on

parallel data types)

7 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Review of the model

• Separate the design of parallelism from the
implementation of parallel execution

– Allow parallelism design during the development process
without the need for profiling

– Compiler and runtime (with assisted profiling) knows best
how to map to the underlying hw

• Programmer annotates places in code that are Parallelism
OPportunities (POP)

» Actual execution can be sequential

» Compiler may even not generate the code

• However, also consider the need of a model, where the
programmer specifies the details of the mapping, for analyzability

8 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Review of the model

• Restrictions on what the logical unit can be

– Many models allow these logical units to float around in
the application

– Relation between the logical task and the design model or
the concurrent model is very loose at most

– Ada must clearly
have a well-defined
model

• Tasklets are within
Tasks

• With a strict fork-join
model

9 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Review of the model

• What about syntax

– The basic approach to the annotation is to use the Ada
aspect mechanism

 with parallel => [True| False]

– This can be applied to
• Subprogram specifications

– Identifies POPs when calling the subprogram

• For loops

– Iterations can be in parallel

• Data types (arrays and records)

– Operations in the type can be in parallel

• Blocks

– Runs in parallel with following code

24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014 10

Review of the model

• We have clarified the semantics a bit

– Semantics for parallel subprogram calls in standalone
statements also applies to parallel blocks and complex
expressions

• Call to a subprogram in a standalone statements and parallel blocks
execute in parallel with the following statement(s) in the same scope

• Calls to parallel subprograms in expressions will execute in parallel with
the following subexpression(s)

– When a subprogram or a block executes in parallel with
following statements, the synchronization point for the
parallel computations is the earlier of:

• either the end of the deepest enclosing construct, or

• the first point where an object updated by the parallel call or block is read
or written by the following statements

11 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Review of the model

• Only placing aspects on spec, not on actual call

– Change only in spec no need to change everywhere it is
used

• Expressions became confusing with aspects in call

– Parallel => False on specification guarantees that calls to
the subprogram are executed by the tasklet that executes
the enclosing scope of the call

• It does not prevent parallelism from being initiated within the body of the
subprogram itself

• It does not prevent parallelization at levels above the immediately
enclosing scope of the call.

• Also, other subprograms in the same enclosing scope may be executing in
parallel within that scope, and hence with the subprogram.

12 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Review of the model

• Subprogram call example

 -- programmer identifies opportunities:

 -- procedures X and Y can be executed in

 -- parallel with code at place of call

 procedure X with parallel=> true;

 procedure Y with parallel=> true;

begin

 -- …

 X(); -- compiler may create tasklet here

 Y(); -- no need to create tasklet here

end; -- since enclosing ends here

13 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Review of the model

• Recursive subprogram example

function Fib(Left : Natural)

 return Natural with Parallel is

begin

 return -- Expression is the enclosing scope

 Fib(Left-1) -- Tasklet spawned to execute parallel

 -- with following sub-expressions

 + -- consumes results, so sync

 -- happens before “+”

 Fib(Left-2);-- Nothing left for parallel execution

 -- in the expression hence no spawning

end Fib;

14 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Review of the model

• For loops

 S: Integer := 0;

 P: Integer := 1;

begin

 for I in 1 .. 100 -- compiler/runtime may “chunk”

 with Parallel => True,

 Accumulator => (S, Reduction=> “+”,

 Identity => 0),

 Accumulator => (P, Reduction=> “*”,

 Identity => 1)

 loop

 S := S + I;

 P := P * I;

 end loop;

15 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Review of the model

• Specifying behaviour

– Allow the ability for the programmer to take control of
parallel behaviour (e.g. for timing analysis)

– Aspects added to Parallel => true to refine behaviour

Chunk_Size -- fixes amount of work per tasklet

Worker_Count -- number of workers

Parallel_Manager -- programmer own parallel manager

Task_Pool -- create own pool of workers

Work_Plan -- strategy for partitioning

 (e.g. work-sharing, stealing, …)

16 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Review of the model

• Example
package My_Pool is new My_Pool_Implementation (

 Number_Of_Workers => 4);

TP: My_Pool.Pool(…);

package Max_Loops is new Reducing_Loops (

 Result_Type => Integer,

 Reducer => Integer'Max,

 Identity => Integer'First,

package My_Loop is new Max_Loops.Work_Sharing;

for I in Some_Range with Parallel => true,

 Task_Pool => TP,

 Accumulator => Max_Value,

 Parallel_Manager => My_Loop.Manager

loop

 Max := Integer'Max (Max_Value, Some_Array (I));

end loop;

17 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Parallel Data Types

• A Parallel aspect can be added to data types

– Inform the compiler that (and how) some of its primitive
operations can be parallelized

– Two new aspects are introduced
• Parallel_By_Element for arrays

• Parallel_By_Component for composite types.

– These aspects specify how the operation on the data type
is to be performed

• based on the composition of its individual elements

18 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Parallel Data Types

• Array example

type Par_Arr is array (1..100) of Some_Type

 with Parallel => true;

function “+”(Left, Right: Par_Arr) return Par_Arr

 with Parallel_By_Element => “+”;

 -- the full specification of the individual

 -- by element +” operation is known to the

 -- compiler so it is only the operation name

 -- that is required

19 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Parallel Data Types

• Array example

type Par_Arr is array (1..100) of Some_Type

 with Parallel => true;

function “+”(Left, Right: Par_Arr) return Par_Arr

 with Parallel_By_Element => “+”,

 Chunk_Size => 10;

 -- programmer my specify the size of each “chunk”

20 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Parallel Data Types

• Not all operations may be “By_Component”

function “*”(Left,Right: Par_Arr)

 return Some_Type is

 Result: Some_Type := Id_Value;

begin

 for I in 1 .. 100

 with Parallel => True,

 Accumulator => (Result,

 Reduction => “+”,

 Identity => Id_Value)

 loop

 Result := Result + Left(I) * Right(I);

 end loop;

 return Result;

end “*”; 21 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Parallel Data Types

• Record example

type Par_Rec is record

 with Parallel => True

 A: Some_Type_A;

 B: Some_Type_B;

end record;

function “+”(Left, Right: Par_Rec) return Par_Rec

 with Parallel_By_Component => (A => “+”,

 B => Some_Op);

22 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Impact in Expressions

23

• Previous work allowed for programmers to introduce
aspects within expressions

– To control the actual spawning of parallelism
• However, we now consider that this is a very complex, error

prone, and “inelegant” mechanism, which should not be used.

• Instead, we now propose that expressions are
parallelized by the compiler

– Using the knowledge on parallel operations on data types
and function calls

24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Parallel Blocks

• Allowing a block to be annotated (using the with Parallel
aspect notation) as being possible to execute in parallel
– Block executes in parallel with the statements immediately following

the block end statement.

– The synchronization point for the parallel block and subsequent
statements is the end of the immediately enclosing scope

begin

 declare with Parallel => True

 -- …

 begin

 -- this code executes in parallel

 end;

 -- with this code

End;

24 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Open Issues

• Implicit synchronization
– The first model considered the possibility to synchronize implicitly to

wait for asynchronous results

• We are now forbidding such race condition, the compiler rejects code
where a potential race condition occurs

• This applies to both results of parallel call to subprogram and reading
variables which are being updated in a parallel block

• Pure subprograms
– By introducing parallel notations, the cases where the code may be

updating the same variable simultaneously increases

• Compilers can detect many cases of unsafe behavior, but many situations
are not detectable.

• Introducing real pure subprograms in Ada, without side effects, could
potentially make for much safer parallelism

– There [will be] {is} an alternative proposal along this line

25 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Open Issues

• Tasklet synchronization

– Many times we may need to synchronize or communicate
between tasklets

– Using protected objects and barriers may be possible but
we still need to analyze this further

• E.g. if iterations of a loop synchronize, it may deadlock if compiler
“chunks” the iterations

• If actual execution is sequential, runtime must guarantee
equivalent semantics as of parallel execution

– This is still open

26 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Open Issues

• Distribution

– Some modern many-core architectures can be seen as
truly distributed systems

– The model proposed here can be extended so that tasklets
can execute in different partitions

– However analysis is needed to determine if a different
distribution execution model is required

• Particularly considering communication between partitions

– This is still open

27 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

Open Issues

• Specifying behavior and mapping

– Aspects are provided for the programmer to specify
parallel behavior

• Still need to further detail how the tasklet model provides
analyzability

• Also need control on/off of implicit parallelism

– Hardware mapping may also be required

– And how to address this under the new proposal

– This is still open

24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014 28

Summary

• There is a need to support parallel programming

– Effort being done in all languages, new and existing

• Ada needs to be augmented with parallel
programming facilities

– With a strong semantic model

– And syntactic sugar to reduce re-writes

• There is an ongoing effort to produce a proposal

– This paper presented one of the possibilities

– More in the future (and in the past)
• Several open issues (IRTAW-15?)

29 24/06/2014 Parallelism in Ada: status and prospects, Ada-Europe 2014

