
Using SPARK to ensure
System to Software

Integrity
Tonu Naks, M. Anthony Aiello, S. Tucker Taft

DeCPS workshop 2019, 14.06.2019 Warsaw

1

Agenda

▪ AdaCore System-to-Software Integrity (SSI) initiative

▪ Workflow in a nutshell

▪ Workflow demonstrated by a case study

▪ Challenges/open questions/next steps

SSI

System-to-software integrity is a desired

trait of high-assurance systems engineering.

▪ Ensure development process yields adequate assurance

▪ Link artifacts at different levels with formal properties &

tool support

▪ Help engineers in moving from level to level with smart

translations

▪ Reduce information loss in communication of various

teams

System-level properties maintained through each

development step until realized in software.

SSI Tooling Bridges Silos

Hard to engage with
systems engineers and
project managers with

technology focused
here!

SSI allows earlier
engagement.

SSI

System-level properties

maintained in software

▪ Hard for software engineers to identify

application-specific properties

▪ Hard for systems engineers to think

about software-level properties

▪ SSI allows early engagement and

property continuity

Hard to engage with
systems engineers and
project managers with

technology focused
here!

SSI allows earlier
engagement.

SSI

Property Identification

Formal Requirements +
Safety & Security Properties

Architecture Properties +
Component Contracts

Software Properties +
Software Contracts

Formal Verification of
Software Contracts

traceab
ility tran

slatio
n tran

slatio
n

p
ro

o
f

SSI

Property Identification

Formal Requirements +
Safety & Security Properties

Architecture Properties +
Component Contracts

Software Properties +
Software Contracts

Formal Verification of
Software Contracts

traceab
ility tran

slatio
n tran

slatio
n

p
ro

o
f

1. Translation

2. Traceability

3. Analysis

4. Argument

SSI

SSI System-level properties maintained in software

1. Translation

▪ Translate Properties

from one “level” to

the next

▪ Example: properties

for requirements ->

properties as

contracts in a design.

▪ Property

decomposition may

be required

2. Traceability

▪ Bidirectional

traceability of

properties across

“levels”

▪ Trace properties to

models & code

▪ Monitor for broken

links

3. Analysis

▪ Vertical: prove that

properties are

consistent across

levels

▪ Horizontal: prove that

decompositions

satisfy higher-level

properties

4. Argument

▪ SSI evidence may

need logical induction

to justify fully

▪ Present & justify

evidence where

deduction is not fully

possible

▪ Provide support for

certification

SSI tooling example
SysML Requirements Diagram Simulink Synchronous Observer SPARK Contracts

SysML Internal Block Diagram Simulink Subsystem SPARK Code

Manual Refinement

Translation

Translation

QGen Verifier

Translation

Translation

GNATProve

A Case Study

SysML →

Simulink →

SPARK

A sample workflow

▪ A simple demo application mimicking

behavior of a car cruise controller

▪ STM-32 board running the cruise

control and car model

▪ LCD screen on the board emulating car

cockpit displays

▪ A dashboard application allowing to

control the board from PC

Stakeholders

& Use-Cases

▪ Two types of users:

1. ModelUser: manipulates the system

through physical controls on the demo

box

2. PCUser: controls the system through

PC application

▪ Both have access to the same use-cases

Main

Components

▪ System divided into two main parts:

1. PhysicalModel: implements

▪ vehicle simulation and

▪ cruise control

2. VirtualDasboard: allows access from

PC

High-level

requirements

▪ Initially, requirements are defined

textually

▪ Formalization of selected subset apply

to

▪ High-Level Requirements or

▪ Low-Level Requirements

Internal

Structure &

Data Flows

▪ Defining the internal structure provides

high-level division into software

components

▪ Interface definitions provide names and

types for further decomposition and

formalization of the requirements

Low-Level

Requirements

▪ Redefine the High-Level Requirements

▪ Use interface names defined in system

high-level architecture

▪ Specify functional behavior for each

component

Requirement

Formalization

▪ Rewrite requirements as constraints

▪ allows consistency checks between

requirements, design, and

implementation

▪ Allocate requirements to components

▪ Here, we have chosen SPARK as the

language for formalization

Conversion to

Simulink

▪ Aim of Simulink conversion:

▪ provide a skeleton for refining the

design by defining computation

algorithms

▪ validate the system definition by

simulation

Internal

Structure →

Simulink

▪ Convert blocks from IBD to Simulink

▪ Provide skeletons / containers for

▪ control algorithms

▪ plant model

Requirements

→ Simulink

Observers

▪ The requirements formalized by

constraints are inserted in Simulink as

synchronous observers

▪ Block mask tells the code generator

that subsystem contents should be

handled as a post-condition

Observer

Contents

▪ A QGen observer is a subsystem that

▪ takes signals from functional part of

the model as input

▪ compares signal values with

▪ each other

▪ an oracle defined by constraints in

SysML

▪ raises an exception when comparison

fails

Reasoning

About Time

▪ A simplified way of inserting the time in

constraints is to refer to previous

computation steps

▪ Here the modeler has a choice to either

▪ insert the memory buffer explicitly and

refer to this

▪ rely on ‘Old mechanism in Ada

▪ To mimic the ‘Old behavior in Simulink
we use the UnitDelay block

Contract in

generated

code

▪ Each observer block is converted to a

check function

Contract in

generated

code

▪ The check function is called from pre-

or postcondition of a functional

subsystem

▪ Internal memory blocks in observers

are replaced with ‘Old actuals

Formalizing requirements

▪ Parametric diagrams

▪ Good for physical phenomena – the „plant model“

▪ May need „creative interpretation“ while translating to software constraints

▪ Activity diagrams/state models

▪ Potential candidates for draft algorithm design or test oracle

▪ Equivalence proofs not trivial (if possible at all) after refinements in subsequent design steps

▪ Constraint blocks

▪ Good form for representing axiomatic definitions of properties and their relationships

▪ Easy to carry forward to the next levels and backpropagate changes

Why SPARK in

SysML?

▪ Looking for axiomatic specifications

potentially with late binding

▪ OCL seems too strictly defined for this

purpose (e.g. pre and postconditions

bound to behaviors) => using a different

language rather than loosening the

constraints

▪ The current converter is easily

extensible to support OCL or some

other expression language

The Role of

Simulink

▪ An appropriate tool for algorithm

design

▪ More natural choice for a control

engineer than activity or parametric

diagrams

▪ Qualifiable automated workflow from

Simulink to code already exists (QGen)

Observers in

Simulink

▪ SPARK expression would be sufficient

for code generation and simulation

(using a s-function)

▪ Difficult to validate and modify in

Simulink

▪ Block diagram simplifies contract

refinement at simulation time

Questions/challenges/next steps

▪ Relation between parametric diagrams and constraints?

▪ Good workflow for binding the constraint expression with block properties?

▪ Composability and validation of the constraints

▪ First formalization in SysML where the only validation mechanism is review

▪ Easy to validate in Simulink or source code but this is too late for systems engineer

▪ Achieving completeness assumes iterations between system design and algorithm design

▪ Support for automatic proof

▪ Need for additional hints about code to successfully prove postconditions

Thank you!

29

