

195

Ada User Journal Volume 22, Number 4, December 2001

News
Dirk Craeynest (ed)
Offis nv/sa and K U Leuven. Email Dirk.Craeynest@offis.be

Contents
page

Ada-related Organizations 195
Ada-related Events 195
Ada and Education 195
Ada-related Resources 196
Ada-related Tools 196
Ada-related Products 207
CORBA 211
Ada and Linux 211
Ada and Microsoft 212
References to Publications 214
Java 218
Ada Inside 218
Ada in Context 221

Ada-related
Organizations

The Embedded Systems
Club
From: John@Adaxia.com
Date: Mon, 22 Oct 2001 10:10:30 +0100
Organization: John Robinson & Associates
Subject: The Embedded Systems Club
Newsgroups: comp.lang.ada

The Embedded Systems Club has been
created to improve communication
among members of the embedded
systems community.

The club organises conferences,
distributes the "Embedded Systems
Resource Library" on CD, maintains a
club web site and facilitates the formation
of Special Interest Groups (SIGS) on
embedded systems issues.

Associate Membership is available now
and is free of charge. The first 500
people to register as associate members
will receive a copy of the first release of
the resource library.

More details are available at:
http://www.EmbeddedSystemsClub.com
or from the club manager:
mailto:Hazel@Adaxia.com

The Embedded Systems Club is
sponsored by: Aonix Europe,
http://www.aonix.co.uk; Artisan
Software, http://www.artisansw.com; I-
Logix, http://www.ilogix.com; John
Robinson And Associates,
http://www.JohnRobinsonAndAssociates.
com

Ada-related Events

Upcoming Ada-related
Conferences
From: Clyde Roby <roby@ida.org>
Date: Fri, 2 Nov 2001 08:01:22 -0500
Subject: ABWG and Conferences reminder
To: SIGAda-ABWG@acm.org

Message for November 2001:

Don't forget about our upcoming Ada-
related conferences:

o 11th International Real-Time
Applications Workshop (IRTAW 11)
9-12 April 2002, Mont-Tremblant,
Quebec, Canada

o Ada-Europe'2002 -- 7th International
Conference on Reliable Software
Technologies: Vienna, Austria, 17-21
June 2002 http://www.ada-
europe.org/conference2002.html

o SIGAda 2002 -- Houston, Texas, USA
(dates TBD) -- http://www.acm.org/
sigada/conf/sigada2002

Ada-Belgium Announces
Ada Programming
Competition
From: dirk@cs.kuleuven.ac.be (Dirk

Craeynest)
Date: 7 Nov 2001 23:18:45 +0100
Organization: Ada-Belgium, c/o Dept. of

Computer Science, K.U.Leuven
Subject: Ada-Belgium announces Ada

programming competition
Newsgroups:

comp.lang.ada,be.comp.programming

Ada-Belgium offers 400 Euro for the best
example of what Ada can do.

http://www.cs.kuleuven.ac.be/~dirk/ada-
belgium/contest/

Ada-Belgium announces a competition
open to all. We'd like to see examples of
what Ada can do. We'll award a prize of
400 Euro to the entry we judge to be the
best.

We're looking for an interesting idea and
good Ada. The judges' decision will be
based on originality, utility, quality, style,
reusability, readability and good use of
Ada features.

You can enter existing work or new
material written for the contest. We will
consider all types of projects:
applications, libraries or even incomplete

works. If you are building on top of an
existing library or other piece of code
then your work should be indicated
clearly and should predominantly be in
Ada; the library you use need not be. The
judges will consider the code itself; you
should indicate the most interesting parts
of your source - about 1K lines - for the
judges to examine. If you are targetting a
reasonably common computer and using
generally available tools, then you are
welcome to supply build instructions so
the judges can try to execute your code. If
your target is portable you may be able to
demonstrate the code running.

Judging will take place in January and
February. To help plan the work of the
judges we'd like you to register your
interest in advance. The competition is
open to everyone. Entries must be
submitted in one of English, French,
Dutch or German. Please register as soon
as possible using the contact information
below.

Your entry should reach us by the end of
the seventh of January, 2002. We would
like to publish the best entries. Please
make clear when you submit the entry
whether it may be published and under
what terms. By default the GNU Public
Licence will be assumed if none is
mentioned.

The judges will be members of or
appointed by the Ada-Belgium board.
The judges decisions are final. The
judges will not enter into correspondence
regarding their decisions.

Ada-Belgium reserves the right to award
additional prizes. Funds were already
made available by the sponsors for this
purpose.

Contact: ada-belgium-
contest@cs.kuleuven.ac.be

Organized and sponsored by: Ada-
Belgium. Additional sponsors:
AdaPower.com.

Ada and Education

Ada Training
[This information is included as examples
of public Ada training courses: many are
being organized regularly. For more, see
also "Ada Training" in AUJ 21.3
(October 2000), p.161. -- dc]

From: "Ed Colbert"
<colbert@abssw.com>

196 News – Ada and Educat ion

Volume 22, Number 4, December 2001 Ada User Journal

Date: Sat, 22 Sep 2001 07:50:30 -0700
Organization: Absolute Software Co., Inc.
Subject: [Announcing] Public Ada 83 &

Ada 95 Classes during October &
December in Carlsbad CA

Newsgroups: comp.lang.ada

Absolute Software will be holding a
public Ada 83 class on the week of 15
October and Ada 95 on the week of 10
December. Both will be held in
Carlsbad, CA. You can find a full
description and registration form on our
web-site, www.abssw.com. Click the
Public Courses button in the left margin.
(We also offer classes on object-oriented
methods and other object-oriented
languages.)

If there is anything you'd like to discuss,
please call, write, or send me E-mail.

From: rod@praxis-cs.co.uk (Rod
Chapman)

Date: 29 Nov 2001 04:36:13 -0800
Subject: ANN: SPARK Training Courses for

2002
Newsgroups: comp.lang.ada

We're pleased to announce the dates of 2
up-coming "Software Engineering with
SPARK" Training courses, to be held at
Praxis Critical Systems' offices here in
Bath.

Course 1: 21st - 24th January 2002
Course 2: 8th - 11th April 2002

In addition to the normal content, these
courses will cover the new and improved
features of Release 6.0 of the SPARK
Toolset.

More details, a course flyer, and booking
forms are available on
www.sparkada.com, or email Fiona Joy
at sparkinfo@praxis-cs.co.uk

Ada Tutor
From: john@prousa.net (John Herro)
Date: 4 Oct 2001 06:48:35 -0700
Subject: AdaTutor Has Moved
Newsgroups: comp.lang.ada

[See also AUJ 21.1 (April 2000), pp.20-
21. -- dc]

The Ada Tutor Web site has moved to
www.adatutor.com. Also, our E-mail
address has changed to john [at] adatutor
[dot] com. (The address from which this
message is posted is just a spam trap.)

For those of you maintaining Web pages
with pointers to Ada tutorials, please
update your links.

Most of the people in this newsgroup
already know Ada. We want to reiterate
that we expect shareware registrations
only from people who use AdaTutor to
learn Ada. If you already know Ada, we
don't expect you to register, but we would
be honored to receive any comments you
may have about our tutorial.

John J. Herro, Software Innovations
Technology

Software Engineering: On
the Right Track
From: John McCormick

<mccormic@cs.uni.edu>
Date: Thu, 11 Oct 2001 08:09:56 -0500
Subject: Re: Ada Web Page
To: team-ada@acm.org

[...] I appreciate your including my 1996
Team Ada posting on the comparison of
C and Ada in my real-time embedded
systems course. A more detailed version
was published in CrossTalk and can be
found at http://www.stsc.hill.af.mil/
crosstalk/2000/aug/mccormick.asp

And if anyone is interested in the current
state of my model railroad lab, I have
started a web site at
http://www.cs.uni.edu/~mccormic/
RealTime/

John W. McCormick,
mccormick@cs.uni.edu,
john.mccormick@acm.org Computer
Science Department, University of
Northern Iowa, Cedar Falls, IA 50614-
0507, voice (319) 273-2618, fax (319)
273-7123

Ada-related Resources

Ada and Software
Engineering Library
From: "David C. Hoos"

<david.c.hoos.sr@ada95.com>
Date: Mon, 17 Sep 2001 08:34:43 -0500
Subject: Re: Public Ada Library
Newsgroups: comp.lang.ada

> I've tried to access the PAL at
wuarchive, but it seems to have
disappeared. Does anybody know if it's
still on-line somewhere?

It's at http://unicoi.kennesaw.edu/ase/
index.htm

[The Public Ada Library (PAL) has
evolved into the Ada and Software
Engineering Library (ASE). A full
mirror is also available on the Ada-
Belgium ftp server at
ftp://ftp.cs.kuleuven.ac.be/pub/Ada-
Belgium/cdrom/index.html -- dc]

ProgrammingPages.com
From: "ProgrammingPages.com"

<webmaster@programmingpages.com>
Date: Sat, 22 Sep 2001 18:05:15 +0100
Organization: The University of York, UK
Subject: Ada websites Wanted
Newsgroups: comp.lang.ada

The ProgrammingPages.com is a new site
still under development but will
hopefully soon be fully functional. The
site is hopefully going to be a
directory/top sites list covering all aspects
of computer programming.

Please take a look at the site, although it
is still in its initial stages of development.
The site can be found at
http://www.programmingpages.com.

[...] If you have a programming related
website I would be very grateful if you
could add it to the database of sites. [...] I
would like sites to be included from as
many different, however obscure
languages possible. For this reason if the
language that your site is about is not
listed then you have the ability to add the
language. Thanks, all comments and
suggestions are more than welcome!

Marcus Robinson

Ada-related Tools

Booch Components
From: Simon Wright

<simon@pushface.org>
Date: Sun, 2 Sep 2001 19:34:49 +0100
Subject: Booch Components 20010819
To: team-ada@acm.org

This release has been uploaded to
http://www.pushface.org/components/bc/
and is mirrored at
http://www.adapower.net/booch/.

Features:

Began work on a case study.

Added a missing 'with abort' to a requeue
in BC.Support.Synchronization.

Bounded Bags, Maps and Sets use a
bounded hash table. This reduces the
space requirement considerably and
means that the Available function returns
the correct value. Iteration is much faster.

Began re-indenting to the GNAT default
(basically, 3 spaces standard indent, 2
spaces for continuations).

From: "Ehud Lamm"
<mslamm@mscc.huji.ac.il>

Date: Sat, 8 Sep 2001 00:04:27 +0200
Organization: The Hebrew University of

Jerusalem
Subject: Re: avl tree - booch components
Newsgroups: comp.lang.ada

[From a thread on how to instantiate
some Booch components. -- dc]

> There is also now a "case study" which
doesn't address instantiating Trees but
does cover Collections. May be some
help. http://www.pogner.demon.co.uk/
components/bc/case-study.html

This looks very promising. It is going to
be a real help for those starting out with
the BC library.

AdaSL - Ada Structured
Library
From: minyard@acm.org (Corey Minyard)
Date: Fri, 28 Sep 2001 03:51:54 GMT
Subject: AdaSL 1.3 released
Newsgroups: comp.lang.ada

News – Ada-related Tools 197

Ada User Journal Volume 22, Number 4, December 2001

I have released a new version of the Ada
Structured Library I have written. I
haven't changed any old stuff, only added
new things. In particular, I have added:

* A telnet protocol handler - This
provides a full implementation of
telnet, along with some option
processors and a stream-based version
of telnet.

* An abstract file I/O package - IMHO,
Ada needs some type of abstract file
I/O package. For instance, I wanted to
implement something on top of my
telnet package that looked like a file,
so that all the applications using it
wouldn't generally have to care if it
was a telnet connection, serial port, or
console they were talking to. This is a
lot like Ada.Text_IO and its
subtending packages, so it's pretty
flexible. This is something I would
like to see added to the Ada core
language (Hint, Hint).

* A debug output framework -
Applications often need a way to
generate debug I/O when necessary,
and be able to turn the debug output on
and of by command. This provides a
framework for doing that.

* A string tokenizer - Much like
java.util.StringTokenizer, this provides
a way to take a string and chop it into
tokens.

* An interactive command processor -
This provides a way to allow
commands to be bound into a
command processor, then executed
when the user types that command. A
full telnet implementation of this
exists, it ties the debug output
framework in for a complete
application framework for debugging.
It also has an optional security binding.
This can be instantiated with just a few
lines of code.

* Lots of little helpers to tie all these
together, along with tests and some
examples.

Since I'm not working, I've had some
time to play with this. I'm hoping it's
useful for people, and I'm hoping that
things like this will help Ada succeed in
the marketplace.

Oh, BTW, it's on SourceForge, you can
get to it at http://adasl.sourceforge.net

I consider this release somewhat beta,
and I'll be glad to take comments on
improvements, bug fixes, or other general
input on it. But some things might
change. Probably nothing general, but
perhaps some details.

From: Corey Minyard
<minyard@acm.org>

Date: Tue, 13 Nov 2001 20:53:23 GMT
Subject: Ada Structure Library 1.4 release
Newsgroups: comp.lang.ada

I have just put a new version of AdaSL
on SourceForge (http://adasl.sf.net). This
add the following:

* A reference counting pointer

* A rework of the string tokenizer to
make it more usable.

* A calendar package

The biggie here is the calendar package.
It does pretty much anything you want
with a Gregorian calendar, including leap
seconds. If you do fancy processing
across timezones or back in time, this is
the package for you. I'd appreciate any
commentary on this, like ease of use,
understandability, etc.

Also, it generates a timezone file from
the zone info files supplied with glibc.
[...] It contains all the timezones you
could possibly imagine back to when
timezones started. There is a much
smaller simplified version that only
contains the current timezone data (no
historical information). [...]

Data Structure Packages
From: Jack Beidler

<beidler@cs.scranton.edu>
Date: Mon, 15 Oct 2001 17:54:58 -0400
Organization: University of Scranton
Subject: Re: Ada Question
To: team-ada@acm.org

> Just a quick question about Ada95. Is
there such a thing as a Collection
Object, or an equivalent data structure
[...]. Either included in Ada, or coded
and available somewhere as a library.
[...]

There are several sources of data
structure packages in Ada, you can find
the Booch components, or the packages I
have used for years at
http://www.cs.uofs.edu/~beidler/Ada/
index.html

John (Jack) Beidler, Ph.D., Professor of
Computer Science, Computing Sciences
Department, University of Scranton,
Scranton, PA 18510, Voice: (570)941-
7774, Fax: (570)941-4250

From: aebrain@austarmetro.com.au
Date: Tue, 16 Oct 2001 09:53:46 +1000
Subject: Re: Ada Question
To: team-ada@acm.org

Included in Ada? No. Just as the Java
Classes for such are not part of the Java
Language, nor C++'s STL part of C++.

Coded and available somewhere in a
library? Yes. The difficulty is in finding
exactly what type you want. [...] See
http://www.adapower.com/links.html for
just some of the many libraries of free
Ada software.

[Choosing is] made more difficult
because of Ada's power to control things.
Most collection objects in most languages
don't provide any facilities for saying
what the maximum size of the collection

is, how space is to be managed, garbage
collected etc. It's left entirely up to each
implementation.

There are such "simple user-friendly"
packages available for Ada too.
Implementation of a simple stack, list etc
is as trivial as "Hello World", any basic
textbook will contain one. But there are
many others, some of which are for
polymorphic types, others with controlled
space allocation, automatic space
reclamation, reference counting etc. For a
simple Generic way of doing things, try
the GWU Generic_List by Feldman
http://www.cs.uofs.edu/~beidler/cmps144
/feldman/listgene.html

Ehud Lamm's http://www.adapower.com/
alg/poly_list.zip gives the whole code,
specs and bodies for one such which
might be of use to you if you don't want
to use generics for some reason.

Of course there's also the famous Booch
Components available at
http://www.adapower.com/booch/ which
has amongst other things: Bounded,
Dynamic and Unbounded Bags,
Collections, Ordered Collections,
Deques, Maps, Queues, Ordered Queues,
Rings, Sets, Stacks; Directed and
Undirected Graphs; Single and Double
Lists; AVL Trees; Binary Trees; etc etc
etc

10 minutes searching should find you a
plethora of others. I think one of these
should do :-)

From: Sergei Lodyagin
<ladyagin@acm.org>

Date: Tue, 16 Oct 2001 09:42:07 +0300
Subject: Re: Ada Question
To: team-ada@acm.org

There is the SGL library for Ada (STL
for C++ is an analog of it).

[See "Standard Generic Library (SGL)"
in AUJ 20.1 (April 1999), p.15. -- dc] I
use it in my projects and have several
patches to the original version (you can
find the original in the internet). The
patches fix some serious bugs and
inconviniences. If somebody is
interested in it I can put the patched
version on some internet site.

Sergei Lodyagin, Software Developer.

From: "Marc A. Criley"
<marccriley@earthlink.net>

Date: Tue, 16 Oct 2001 06:24:50 -0400
Subject: Re: Ada Question
To: team-ada@acm.org

And let me just add Corey Minyard's
"Ada Structured Library"
(http://adasl.sourceforge.net). Complete
and well-documented, besides my own
stuff it's been used on at least one Air
Force system that I worked on at
LockMart.

Marc A. Criley, Senior Staff Engineer,
Quadrus Corporation,
www.quadruscorp.com

198 News – Ada-related Tools

Volume 22, Number 4, December 2001 Ada User Journal

PragmARC - PragmAda
Reusable Components
From: Jeffrey Carter <jrcarter@acm.org>
Date: Sat, 03 Nov 2001 23:43:57 GMT
Subject: New Release of the PragmAda

Reusable Components
Newsgroups: comp.lang.ada

A new release of the PragmARCs is now
available at http://home.earthlink.net/
~jrcarter010/pragmarc.htm

[See also AUJ 22.2 (June 2001), p.70. --
dc]

This release provides greater client
control over the priorities used by
protected structures and task decouplers,
as well as introducing a couple of new
components. See the file readme.txt for
more information.

Jeffrey R. Carter, PragmAda Software
Engineering

From: Jeffrey Carter
<jeffrey.carter@boeing.com>

Date: Mon, 12 Nov 2001 17:37:30 GMT
Organization: The Boeing Company
Subject: Re: looking for a fast re-usable

non-pointer data structure
Newsgroups: comp.lang.ada

> Does anyone know of reasonably fast
data structure to store a large amount
of records.

It would help if you provided more
information about what precisely you
want. PragmARC.Queue_Bounded is
fast, non-pointer, and a data structure, but
since you're using an AVL tree I doubt
that it does what you want.

Balanced tree structures tend to be slow
for insertion and deletion, but fast [O(log
N)] for searching. You might be
interested in a skip list. Skip lists are
approximately O(log N) for searching,
and O(1) for insertion and deletion; I do
not understand why people continue to
use balanced trees given the existence of
skip lists. See
PragmARC.Skip_List_Unbounded for an
implementation of a skip list.

It should be reasonably simple to
implement a bounded skip list, just as it is
to implement a bounded list.

SAL - Stephe's Ada Library
From: LeakyStain <leakstan@erols.com>
Date: Sun, 18 Nov 2001 18:02:23 -0500
Subject: Update of SAL
Newsgroups: comp.lang.ada

I've posted a new version of SAL to my
website: http://users.erols.com/leakstan/
Stephe/Ada/sal.html

[See also "Dynamically Growing Arrays"
in AUJ 22.2 (June 2001), p.70. -- dc]

There are a couple new packages, and the
sorted tree now supports three options for
duplicate keys; error, allow, ignore.

Ada compilers for VMS
From: Simon Clubley

<simon_clubley@excite.com>
Date: Mon, 10 Sep 2001 12:01:31 GMT
Subject: Re: Where is GNAT for VMS?
Newsgroups: comp.lang.ada

[In response to a request for the GNAT
port for a "VAXstation" running VMS: --
dc]

> It looks to me like it is at:
ftp://ftp.cs.nyu.edu/pub/gnat/private/
old/openvms/

[...], the port at the above address is for
[OpenVMS] Alpha only and no port for
VAX exists. In case the original poster
knows this and was using "VAXstation"
as a generic term, the following may be
helpful:

Before installing the above kit, you need
to install the Ada Predefined Libraries for
GNAT as well as the current C RTL
patch kit. You can find the Predefined
Libraries at:
http://www.openvms.compaq.com/
commercial/ada/ and follow the link
under "Ada 95 Utilities". [...] You can
find the C RTL patch kit for your version
of VMS by starting at:
ftp://ftp.service.digital.com/public/
vms/axp/

The debugger in use is GDB, but GDB is
not supplied as part of the public kit. [...]
If you do find a GDB for VMS, please
post it's location here, as I would be
interested in finding it.

From: Tucker Taft <stt@avercom.net>
Date: Mon, 17 Sep 2001 09:53:36 -0400
Organization: AverStar (formerly

Intermetrics) Burlington, MA USA
Subject: Re: Where is GNAT for VMS?
Newsgroups: comp.lang.ada

> Does GNAT work at all on a VAX
machine? If not which Ada compiler
system is usable?

Larry Kilgallen is in the process of trying
to rehost our AdaMagic compiler to
Vax/OpenVMS. I believe he has "Hello
World" working. You should contact
him for more details.

Tucker Taft, stt@avercom.net,
http://www.avercom.net, Chief
Technology Officer, AverCom
Corporation (A Titan Company),
Bedford, MA, USA (AverCom was
formerly the Commercial Division of
AverStar: http://www.averstar.com/~stt)

From: Kilgallen@SpamCop.net (Larry
Kilgallen)

Date: 17 Sep 2001 11:59:32 -0500
Organization: LJK Software
Subject: Re: Where is GNAT for VMS?
Newsgroups: comp.lang.ada

> Can I get DECAda somewhere?

You can still purchase Compaq Ada (83)
license for VAX or Alpha. If your

purpose qualifies for the VMS hobbyist
program the cost is zero.

From: "DuckE" <steved94@home.com>
Date: Fri, 21 Sep 2001 00:36:34 GMT
Subject: Re: Where is GNAT for VMS?
Newsgroups: comp.lang.ada

> If not which Ada compiler system is
usable?

Check http://www.irvine.com/native.html
It appears they have a VAX/VMS
targeted Ada 95 Compiler.

[In another message, Tucker Taft wrote: -
- dc]

This compiler passed ACVC suite 2.0.1,
which included Ada 95 tests. The earlier
ACVC suite 2.0 allowed compilers to
pass only Ada 83 tests, but that policy
was dropped for 2.0.1.

GNAT 3.13p Binaries for
OS/2
From: dwparsons@t-online.de (Dave

Parsons)
Date: Sun, 30 Sep 2001 15:47:41 +0200
Subject: GNAT 3.13p binaries for OS/2

available
Newsgroups:

comp.os.os2.programmer.misc,
comp.lang.ada

For any of you who may not have
noticed, GNAT 3.13p binaries for OS/2
are now available at ftp://cs.nyu.edu.

The pub/gnat/3.13p/README.OS2 reads
as follows: There is a contributed port for
GNAT 3.13p for OS/2 in contrib/os2

The pub/gnat/3.13/contrib/os2/
README.txt reads as follows:

This port of GNAT 3.13p for OS/2 has
been contributed by: David William
Parsons, dwparsons@t-online.de

The documentation has been reformated
for OS/2 INF format by: Christian
Hennecke, christian.hennecke@
os2voice.org

See gnat-3.13p-os2-bin-20010916.txt and
gnat-3.13p-os-docs.txt for more
information. The files in this directory
essentially mirrors what is at
ftp://unixos2.org/pub/unix/devtools/
emx+gcc/gnat for GNAT 3.13p

In addition ftp://unixos2.org/pub/unix/
devtools/emx+gcc/v0.9d contains some
EMX elements that may be required for
this port of GNAT.

The file readme.313p-os2 in the compiler
archive provides more information.

Thanks to all concerned at ACT and
NYU.

Plan for GNAT 3.14p
Version
From: dewar@gnat.com (Robert Dewar)
Date: 22 Sep 2001 17:29:52 -0700

News – Ada-related Tools 199

Ada User Journal Volume 22, Number 4, December 2001

Subject: Re: Will there be a 3.14p version
of GNAT?

Newsgroups: comp.lang.ada

> It appears that the non-public version of
GNAT 3.14 has been around for a
while now. I'm curious, will there be a
3.14p (public) release of GNAT?

The current plan is as follows. We are
going to make 3.14p available soon. If we
cannot find the time to build the binaries,
then at the least we will provide the 3.14p
sources so that others can build the
binaries.

This will be the last release in that form.
After that, the GNAT sources will be part
of the GCC 3.x release, and various
people will build public releases from
these sources, as happens for GNU C
today.

Robert Dewar, Ada Core Technologies

From: dewar@gnat.com (Robert Dewar)
Date: 30 Sep 2001 09:00:53 -0700
Subject: Re: Will there be a 3.14p version

of GNAT?
Newsgroups: comp.lang.ada

> [...] think that the GNUAda site
(http://www.gnuada.org/) would be the
natural alternate clearing-house for
precompiled GNAT binaries. It might
even be most logical place for the
sources too...

No, the primary location for the sources
will be the gcc site, since the GNAT
sources will be part of the FSF
distribution of gcc. Of course anyone can
mirror these sources anywhere they like,
but the primary site will always be the
gnu.org site.

GNAT Sources Contributed
to GCC CVS Repository
From: Laurent Guerby

<guerby@acm.org>
Date: Wed, 3 Oct 2001 19:58:55 +0200
Subject: Re: ALT RPMs in next SuSE

distribution.
To: "GNAT Discussion List"

<gnatlist@lyris.seas.gwu.edu>

[...] In the series of great news, GNAT
sources have been commited yesterday
into the GCC CVS repository. [...]

URL: http://www.gnu.org/software/gcc/
gcc.html

Subject: GCC Home Page - GNU Project -
Free Software Foundation (FSF)

[...] In April 1999, [...] GCC was
renamed from the "GNU C Compiler" to
the "GNU Compiler Collection" and
received a new mission statement.

Currently GCC contains front ends for C,
C++, Objective C, Chill, Fortran, and
Java as well as libraries for these
languages (libstdc++, libgcj,...). The next
major release, GCC 3.1, will also include
an Ada front end.

We want to work closely with developers
to help and encourage them to contribute
changes for inclusion in GCC. We thus
provide access to our development
sources with weekly snapshots and
anonymous CVS.

We will provide regular, high quality
releases. We want those releases to work
well on a variety of native (including
GNU/Linux) and cross targets and use an
extensive test suite as well as various
benchmark suites and automated testers
to maintain and improve quality. GCC
3.0.2 is the current release.

News/Announcements [...]

October 2, 2001: Ada Core Technologies,
Inc, has contributed its GNAT Ada 95
front end and associated tools. The
GNAT compiler fully implements the
Ada language as defined by the ISO/IEC
8652 standard. [...]

Ada Compiler Variety

From: Richard Riehle
<richard@adaworks.com>

Date: Mon, 08 Oct 2001 13:25:38 -0700
Organization: AdaWorks Software

Engineering
Subject: Re: is Ada dying?
Newsgroups: comp.lang.ada

[In reply to a remark that there were more
Ada 83 compiler vendors than there are
Ada 95 compiler vendors: -- dc]

[...] Someone might read this as an
indication that there are fewer compilers
for Ada 95 than Ada 83. What has
happened is quite different.

Many of the compilers shown were
developed in-house by companies who
needed a "checkbox" compiler. I have
been told by the senior management of a
couple of these companies that the only
reason for having a validated Ada
compiler is so they could respond to an
RFP by checking off the box labled,
"Validated Ada." Many of these
compilers were designed on top of other
compilers, leveraging someone else's
technology. If one were to carefully
examine the source of these in-house
compilers, it would soon become clear
that only a few compilers were actually in
place, and those targeted to a wide
number of computers. Often, the
compiler was licensed so the hardware
manufacturer could label it with their
own proprietary name.

What has happened with Ada 95 is a
more realistic organization of the
compiler industry. Some compiler
publishers have consolidated, hardware
manufacturers have seen the folly of
trying to be experts in Ada compiler
development, the pricing structures have
changed, and those who were simply
unprofitable failed to make the transition
to Ada 95.

One other detail needs to be noted. When
Ada was a mandated language instead of
an optional one for DoD projects, some
compiler publishers saw the mandate as
an opportunity to charge outrageous
licensing fees for their compilers. Also,
since they could get these fees from the
DoD, they had little incentive to seriously
address the commercial market where
those kinds of fees were unacceptable.
With a few exceptions, these compiler
publishers have been forced to adjust
their licensing fees to more realistically
reflect the choice now available to DoD
software developers.

Ada Cross Compilers for
1750 Processor
From: Stephen Leake

<stephen.a.leake.1@gsfc.nasa.gov>
Date: Tue, 30 Oct 2001 12:28:50 -0500
Subject: Re: Cross compilers for 1750?
To: team-ada@acm.org

> I've just received an inquiry regarding
the availability of cross compilers for
1750 processors. Can anybody give
me a quick indication of any such
compilers currently in the marketplace,
along with the host processor/OS
environment it/they require?

I'm currently on a project using Ada on a
1750. The only compiler available until
recently is from DDCI (used to be
Tartan). It is basically Ada 83, with some
Ada 95 features creaping in. It runs on a
Solaris host; I'm not sure if they support
other hosts.

There is now a port of GNAT, that I have
not used at all. See http://www.xgc.com/.
It appears this is _not_ supported by
ACT, but you should check it out.

[...], I would strongly recommend using a
different chip. The 1750 was designed
for Ada 83. Unfortunately, that includes
not supporting unsigned arithmetic! It
also provides only 64k words for data and
code. There are many better chips out
there, some with similar power
requirements.

Hmm, maybe you mean the extended
1750, with a memory map module. That
goes to more than 64k words. I'm not sure
if the same compiler supports both
versions, or which version the GNAT
port supports. I'd also recommend against
that version. It is _not_ a flat memory
space; it requires manual participation in
the link process to arrange the memory
pages. Error-prone, and not worth it.

It may be that the GNAT port manages to
hide the chip's problems, but if you have
any choice of chip, try for a different one.

From: "Vlietstra, Joe"
<Joe.Vlietstra@aerojet.com>

Date: Tue, 30 Oct 2001 09:38:24 -0800
Subject: Re: Cross compilers for 1750?
To: team-ada@acm.org

200 News – Ada-related Tools

Volume 22, Number 4, December 2001 Ada User Journal

XGC (http://www.xgc.com). M1750
open-source Ada compiler is based on
GCC/GNAT. Runs on Solaris and Linux.

DDC-I (http://www.ddci.com). Ada 83
compiler (originally Tartan Ada). Runs
on Solaris and VAX/VMS.

Joseph P Vlietstra, Northrup Grumman
Space Systems, 1100 West Hollyvale
Street, Azusa, CA 91702,
joevl@aerojet.com, Tel (626) 812-2865,
Fax (626) 812-1290

From: "J.P. Kermode"
<kermode@captec.ie>

Date: Wed, 31 Oct 2001 13:57:48 -0000
Subject: Re: Cross compilers for 1750?
To: team-ada@acm.org

There is also the TLD compiler.
Currently Ada83 but Ada95 based on
Gnat is in pipeline. The TLD Ada83
compiler has been (and is being) used for
European spacecraft, e.g. ISO, SOHO,
Huygens, XMM, Integral, Rosetta, etc.

Primary host is Sun/Solaris - other hosts
are supported. I am not sure but the
1750B target could also be supported
(includes unsigned arithmetic).

64Kword memory limitation is a
problem, but then good quality efficient
code can be written. The ISO AOCS SW
(including full SW autonomy) fitted in
less than this - both code and data; and
there was room for a major post-
operations SW update!

Contact point is Terry Dunbar at
tldworks@bigplanet.com

CAPTEC, Computer Applied Techniques
Limited, 3 St. James's Terrace, Malahide,
Co. Dublin, Ireland, Tel: +353-1-
8450921, Fax: +353-1-8450136, E-mail
mail@captec.ie, Web
http://www.captec.ie

GNAT for Mac OS X
From: dewar@gnat.com (Robert Dewar)
Date: 31 Oct 2001 02:01:28 -0800
Subject: Re: Is there an Ada 95 compiler

for Mac OS X?
Newsgroups: comp.lang.ada

> I was wondering if anyone out there
knows of an Ada 95 compiler for use
on Mac OS X (the new Unix MacOS).
Is a GNAT port planned, or does
anyone know if Green Hills, OCS et.
al. are planning a compiler for Mac OS
X?

I do not know of any commercial efforts
to generate a compiler for Mac OS X.
There is indeed a volunteer effort, by Jim
Hopper, to generate such a compiler, and
ACT is working with him on this effort.

If you are interested in a commercial
compiler with support and full tool set
etc, I would suggest you contact the
various vendors to let them know of your
interest.

From: jim <jim_evart@yahoo.com>

Date: Wed, 31 Oct 2001 14:16:57 -0500
Subject: Re: Running x86 Linux GNAT on

MacOS under Virtual PC
Newsgroups: comp.lang.ada

> [...], in fact the Mac OS X port is quite
tricky (ask Jim Hopper!) and is much
more than just a recompilation!

[See also AUJ 22.3 (September 2001),
p.140, for more information on that port.
-- dc]

Easiest way to run GNAT on OS X right
now is to get Codebuilder from Tenon
which runs fine under classic
environment. However I know Mike
Feldman uses the Windows version of
GNAT under Virtual PC.

Matrix Package
From: Peter Hermann

<ica2ph@csv.ica.uni-stuttgart.de>
Date: 18 Sep 2001 13:55:25 GMT
Organization: Comp.Center (RUS), U of

Stuttgart, FRG
Subject: Re: matrix multiplication using 2d

arrays
Newsgroups: comp.lang.ada

> Can anybody tell me how to multiply 2
matrices together

http://www.csv.ica.uni-stuttgart.de/
ftp/pub/ada/ica/format/

Peter Hermann, Pfaffenwaldring 27, D-
70569 Stuttgart, Uni
Computeranwendungen, Tel +49-711-
685-3611, http://www.csv.ica.uni-
stuttgart.de/homes/ph/

GNU.Jif - New Ada
Graphics Image Library
From: Paul Pukite <puk@umn.edu>
Date: Sun, 23 Sep 2001 11:58:48 -0500
Subject: NEW Ada graphics image library

(GNU.Jif)
To: "GNAT Discussion List"

<gnatlist@lyris.seas.gwu.edu>

This message is to announce the
availability of a new package
implemented for the GNU/Ada library
hierarchy: GNU.Jif

Jif is a graphics interchange format
library which enables one to generate
GIF (pronounced jif) data streams on the
fly. The main image type derives from
controlled and has dispatchable semantics
so that generated data strings can be
rerouted to derived Ada apps.

Go to the top of this URL to see what it
can do and to download the source:
http://umn.edu/~puk

This package should get quite a buzz at
the SigAda conference to be held in
Minneapolis later this week. In my
opinion it is an excellent fit within an
XML environment. Try to catch me if
you plan to attend.

AdaGraph Revised Version
From: "Kester, Rush W."

<Rush.Kester@jhuapl.edu>
Date: Mon, 5 Nov 2001 12:44:53 -0500
Subject: RE: Intel-OA: Basic Graphics

Representation on OA
To: intel-objectada@sf.aonix.com

[See also "AdaGraph v0.6 - High-
Resolution Color Graphics" in AUJ 22.2
(June 2001), p.72. -- dc]

The documentation for AdaGraph see
http://home.trouwweb.nl/Jerry/
adagraph.html

There is a version for ObjectAda 7.1 at
either http://home.trouwweb.nl/Jerry/
ag05oa71.zip ftp://ftp.seas.gwu.edu/pub/
ada/windows95/ag05oa71.zip

Martin Carlisle has a revised version see
http://www.usafa.af.mil/dfcs/bios/
mcc_html/ada_stuff.html
ftp://ftp.usafa.af.mil/pub/dfcs/carlisle/ada
graph2000/adagraph2000-install.exe

[Revised version allows drawing off the
edge of the screen, moves the origin to
lower left corner, etc. -- dc]

Rush Kester, Software Systems Engineer,
AdaSoft at Johns Hopkins Applied
Physics Lab., phone: (240) 228-3030,
fax: (240) 228-6779,
http://hometown.aol.com/rwkester/
myhomepage/index.html

Finder - Ada Web Crawler

From: tmoran@acm.org
Date: Thu, 13 Sep 2001 03:58:51 GMT
Subject: Ada web crawler
Newsgroups: comp.lang.ada

David Botton has kindly posted finder.zip
at www.adapower.com/os/finder.html.

It's source plus (Windows) executable for
a program that crawls a site checking
links. Thus "finder www.adapower.com"
will scan the adapower site, following
links to local html files and noting links
to other files.
"finder www.adapower.com/os" will scan
just the "os" directory, treating any links
outside that as "foreign", to be noted, but
not scanned.

Speed is of course highly dependent on
internet access speed. The program is not
polished, and still contains some
capabilities that were needed for a
specific application, but the source code
is there for your customization.

AdaDoc - Html Generator
for Ada Package
Specifications
From: "toa$t" <rogspr@newdeal.ch>
Date: Sun, 21 Oct 2001 15:38:29 +0200
Subject: AdaDoc (make a html file from a

package specification for documentation
purposes)

Newsgroups: comp.lang.ada

News – Ada-related Tools 201

Ada User Journal Volume 22, Number 4, December 2001

AdaDoc is a tool for the Ada 95
developer. AdaDoc makes an html file
from a package specification for
documentation purpose.

For Linux & Win32:
http://sourceforge.net/projects/adadoc/

[From a later posting: -- dc]

> Very nice. But is there a way to get
Adadoc to hyperlink different packages
in a project? As I understand it can
create individual html files for each
.ads. I'm thinking more in the way
gnathtml does it? [Gnathtml is included
in GNAT distributions. -- dc]

It's not possible to hyperlink different
packages (only if you select it). gnathml
is not for the same use. AdaDoc use is to
present one specific package (promotion).

AWS 1.1 - Ada Web Server
Component
From: Pascal Obry <p.obry@wanadoo.fr>
Date: 29 Oct 2001 18:12:15 +0100
Subject: ANNOUNCE : AWS 1.1
Newsgroups:

comp.lang.ada,fr.comp.lang.ada

AWS - Ada Web Server, 1.1 release
Authors: Dmitriy Anisimkov, Pascal
Obry

Dmitriy Anisimkov and I are very happy
to announce the availability of the AWS
1.1 release. The API could change
slightly at this stage but should be fairly
stable now.

AWS stand for Ada Web Server. It is not
a real Web Server like Apache. It is a
small yet powerful HTTP component to
be embedded in any applications. It
means that you can communicate with
your application using a standard Web
browser and this without the need for a
Web Server. AWS is fully developed in
Ada with GNAT.

[See also "AWS 1.0 - Ada Web Server
Component" in AUJ 22.3 (September
2001), pp.142-143. -- dc]

Here are the main changes:

- Server push implementation. Tested
only with Netscape Navigator.

- SOAP - beta implementation of SOAP.
Support all SOAP types. This
implementation has been validated
through http://validator.soapware.org/
and therefore should be quite inter-
operable with other SOAP
implementation. This implementation
covers the SOAP client interface and as
all supports to build SOAP servers.
Versions that validate on
http://validator.soapware.org/ are the
AWS version string (AWS.Version)
catenated with the SOAP version string
(SOAP.Version).

- Add accept queue size parameter to help
building heavy loaded servers.

- Fix the Runme NT service demo.

- Web Servers is started only if needed
(during Server.Start) call and not when
declaring the HTTP objects.

- Max Connection is not anymore a
discriminant. This parameter is set with
the Start routine. This change is not
upward-compatible, but it is worth it
since now, it is possible to change the
server configuration dynamically.
What need to be changed: (1) remove
the discriminant on each HTTP
objects; (2) pass the number of
maximum connections (was the
discriminant) in the Server.Start call.
This will make the server configured
the very same way.

- Handle User_Agent and Referer HTTP
headers.

- Add message size in the log files (last
field). Now the log format is 100%
compatible with the standard ones
(Apache and Internet Information
Server).

- Add server start time in the status page.

- Add support for user's log.

- Properly terminate task Session.Clean
up and release associated memory. Fix
a memory leak.

- Properly wait for tasks termination
before releasing memory. Fix memory
leak.

- Improves the documentation.

- Install AWS as a library (libaws.a)

- As always some minor bugs have been
fixed but are not listed here. See
src/ChangeLog and SOAP/ChangeLog.

- Change the build procedure, should be
easier and it is cleaner. See
documentation.

- First version of the regression tests
suite. This will help keeping AWS
more stable.

- Add timeouts support for the AWS
client interface. Because of this the
AWS.Client.Create routine has its spec
changed (it was a function it is now a
procedure).

- In AWS.Client, default retry count is set
to 0 (was 1 before). Now the
AWS.Client routines wont try more
than once to get the data by default.

- Properly handle textual (text/html,
text/xml...) data that is chunked
encoded.

- Fix SSL support in AWS. The SSL
layer should now be as reliable as the
standard socket one.

- Update distribued Win32 OpenSSL
library to version 0.9.6b. Also now
there are built as DLL.

[...]

Pointers [updated]:
- AWS User's Mailing List:

http://lists.act-europe.fr/mailman/

listinfo/aws

- AWS Home Page (sources and
documentation): http://libre.act-
europe.fr/

- Templates_Parser sources:
Templates_Parser module (sources and
documentation) is provided with AWS
distribution. Latest version of this
module and the documentation can be
found at: http://perso.wanadoo.fr/
pascal.obry/contrib.html
http://perso.wanadoo.fr/pascal.obry/
templates_parser.html

Templates_Parser is a very useful add-
on for AWS. You should have a look at
it if you plan to develop a Web service.
Templates_Parser permits to
completely separate the HTML design
from the Ada code. [...]

- XMLada (optional): You need this
library only if you want to use AWS
SOAP feature. You need at least
XMLada 0.6. http://libre.act-europe.fr/

XMLAda 0.6 has some memory leaks.
This has been fixed now, so with future
version of XMLAda it will be possible
to build long-lived servers.

- Socket binding: for Win32:
http://perso.wanadoo.fr/pascal.obry/
contrib.html for UNIX:
http://www.rfc1149.net/devel/
adasockets

- POSIX Binding (optional) : for Win32:
http://perso.wanadoo.fr/pascal.obry/
contrib.html for UNIX:
http://www.cs.fsu.edu/~baker/
florist.html

- OpenSSL library (optional) : Sources
for UNIX or Win32:
http://www.openssl.org Binaries for
Win32 with GNAT 3.13 (and later):
included with the main AWS
distribution.

Note that we have used and we
distribute (for Win32 platform)
OpenSSL version 0.9.6b with this
AWS release. OpenSSL have been
built with GCC version 2.95.2 with
optimization (-O3) on. See OpenSSL
license (docs/openssl.license).

- Windows Services API (optional): To
build the runme demo as a Windows
NT/2000 service you must download
the services API made by Ted
Dennison for his SETI@Home project.
http://www.telepath.com/dennison/Ted
/SETI/SETI_Service.html

Reporting bugs: you can report bugs to
Dmitriy Anisimkov
(anisimkov@yahoo.com) and Pascal
Obry (p.obry@wanadoo.fr).

It would be nice if you could also sent us
a note if you are using AWS just to know
if it is used at all or not :) And if you are
ok, we'll add an entry for your project in
the next section.

202 News – Ada-related Tools

Volume 22, Number 4, December 2001 Ada User Journal

AWS User's Mailing List:

A good way to keep informed of AWS
news and to share experience with other
AWS users is to register to the AWS
dedicated mailing list. See:
http://lists.act-
europe.fr/mailman/listinfo/aws

AWS uses:

- Internet Currency Trading System at
www.actforex.com by Dmitriy
Anisimkov

This is a server used to keep historical
data about currency trading to build
charts of currency prices. The charts
viewer part is written in Java and
loaded through AWS. This server can
be reach on the Internet. Ongoing
work is done to base this development
on AWS framework only and to
remove all the Java layers. It is also
interesting to note that this is a heavy
loaded server, it has something like 40
to 50 requests per second.

- [For more projects using AWS, see a.o.
"AWS - Ada Web Server Package" in
AUJ 22.2 (June 2001), pp.75-77. -- dc]

Thanks to all who have reported bugs and
have sent us patches.

Dmitriy & Pascal.

Pascal Obry, Team-Ada Member, 45, rue
Gabriel Peri, 78114 Magny Les
Hameaux, France,
http://perso.wanadoo.fr/pascal.obry

Tools for Creating Ada
Bindings to C Headers
From: Hal Hart <Hal.Hart@trw.com>
Date: Fri, 26 Oct 2001 12:26:00 -0700
Subject: Re: C-to-Ada conversion
To: team-ada@acm.org

What do Teamers think is the best tool
these days to assist converting C
programs to Ada. (Yes, someone here at
TRW is in the position of needing to do
so. :-) Thanks in advance for any help,
-HH

[From another message: -- dc]

PS: Is the old c2ada program from the
80's regarded as "reputable"? If so, where
do we get it now? I see no immediately
obvious links (to c2ada or the subject in
general) from the SIGAda or PowerAda
websites...

From: Mark Lundquist
<mlundquist2@home.com>

Date: Fri, 26 Oct 2001 13:35:49 -0400
Subject: Re: C-to-Ada conversion
To: team-ada@acm.org

http://www.averstar.com/~stt/bindings/
c2ada/c2ada.html
I don't know how "old" this c2ada is (nor
how "reputable") :-)

[See also "Former "Intermetrics"
Bindings" in AUJ 21.1 (April 2000),
pp.17-18, and "Tools for Creating Ada

Bindings to C Headers" in AUJ 20.4
(January 2000), pp.235-236. -- dc]

From: David Botton <David@botton.com>
Date: Fri, 26 Oct 2001 16:33:22 -0400
Subject: Re: C-to-Ada conversion
To: team-ada@acm.org

Cbind ported to windows (source in
package) http://members.tripod.com/
vagul/ I use this as part of automated
makes to convert the headers generated
by Resource Editors. I don't know how
well it works beyond that.

C2ada [ported to linux -- dc]
http://home.pacbell.net/nma123/

From: Chad Bremmon <chad.bremmon@
parnassussolutions.com>

Date: Wed, 31 Oct 2001 09:54:44 -0500
Subject: Re: C-to-Ada conversion
To: team-ada@acm.org

> [...] I was just curious what's the
advantage in converting the C
programs to Ada? I mean, if the C
program works, isn't it better to just
import the C program?

I'm tending to agree with Steven on this
one. What I recommend is starting out
using Ada pieces to glue the C
components that you have. Each compiler
has an "interfaces.c" package that you
can use to glue everything together.
Then piece by piece, you could rethink
each component and rebuild it. Divide
and conquer supporting the interfaces.

Chad Bremmon, Senior Solution
Specialist, Parnassus Solutions

Using Sockets in Ada

From: Preben Randhol
<randhol+abuse@pvv.org>

Date: Wed, 17 Oct 2001 10:17:55 +0000
(UTC)

Organization: Norwegian university of
science and technology

Subject: Re: sockets in Ada
Newsgroups: comp.lang.ada

> Can someone tell me were can I find
documentation about the use of sockets
in Ada language? I'd like to build a
Server program able to comunicate
whith different client programs.

Here you can find AdaSockets. I believe
GNAT also has a socket package now,
but is not yet in the public version of
GNAT. http://www.infres.enst.fr/ANC/

Here is a Simple MUD that uses the Ada
Sockets
http://members.aol.com/drveg/mud/

Here from the "Big Online Book of
Linux Ada Programming", though it
looks like it also does some thin binding
to the C lib ie. not using AdaSockets.
http://www.vaxxine.com/pegasoft/homes/
16.html#16.23

From: john.mccabe@emrad.com (John
McCabe)

Date: Wed, 17 Oct 2001 11:00:01 GMT

Organization: Emrad Ltd
Subject: Re: sockets in Ada
Newsgroups: comp.lang.ada

For a Winsock 2 binding go to:
http://www.adapower.com/reuse/
winsock2.html

For BSD Socket bindings (including one
for Win32) go to:
http://www.adapower.com/os/
bsd-sockets.html

There are some examples here (I think) of
using sockets. Although the basics of
using Sockets on BSD and Win32 is
pretty much the same, there are
differences which need to be considered
if you want to do anything interesting
with them (especially Winsock). For
instance Winsock uses macros FD_SET,
FD_CLR, and FD_ZERO, but the
underlying structure is totally different
between Winsock and BSD. I would
assume that, as long as you use one of the
above bindings, these differences should
be catered for. You may already know a
fair bit about sockets, but if not....

For resources related to Winsock 2, have
a look at: http://www.stardust.com/
winsock/index.htm

For more information on BSD sockets,
try a book like: UNIX Network
Programming Vol 1: Networking APIs -
Sockets and XTI by W. Richard Stevens.
Published by Prentice Hall, ISBN
013490012X

From: "Marc A. Criley"
<mcqada@earthlink.net>

Date: Wed, 17 Oct 2001 11:52:34 GMT
Organization: Quadrus Corporation
Subject: Re: sockets in Ada
Newsgroups: comp.lang.ada

You may wish to examine "Ada Web
Server" (http://perso.wanadoo.fr/
pascal.obry/aws.html) as both a way to
understand how to do socket
programming in Ada, and as a very
useful and capable client/server tool
itself.

From: Samuel Tardieu
<sam@rfc1149.net>

Date: Mon, 22 Oct 2001 20:17:40 +0200
Subject: Re: sockets in Ada
Newsgroups: comp.lang.ada

The latest AdaSockets package works
now on both Unix and Windows
platforms, thanks to Dmitriy and Pascal
[of AWS fame -- dc]. It can be fetched
from:
http://www.rfc1149.net/devel/adasockets/

From: whraven@usenet-access.com
(Richard Pinkall-Pollei)

Date: 17 Oct 2001 11:38:47 -0500
Subject: Re: sockets in Ada
Newsgroups: comp.lang.ada

The Florist package from Florida State
University implements POSIX standard
sockets for Ada. However, unless you've
won the lottery, or have a boss who's

204 News – Ada-related Tools

Volume 22, Number 4, December 2001 Ada User Journal

willing to fork over cash for
documentation (POSIX standards
documents are expensive), you'll need to
study the source files to understand how
to use it, and even then, there'll be stuff
you just have to discover for yourself by
trying it.

Others have already mentioned the
AdaSockets package.

The third option is to use `Interfaces.C' to
use your OS's native sockets library.

From: tmoran@acm.org
Date: Wed, 17 Oct 2001 17:31:52 GMT
Subject: Re: sockets in Ada
Newsgroups: comp.lang.ada

For a short and simple web server (that
uses Claw.Sockets) see:
www.adapower.com/reuse/clawweb.html

To see Claw.Sockets itself, download the
source from www.rrsoftware.com (The
$>0 version has additional stuff, but isn't
needed for a simple web server.) Full
disclosure: I wrote it so I'm probably
biased.

Indexed_IO Package
From: Wesley_Groleau@raytheon.com
Date: Fri, 28 Sep 2001 09:02:30 -0500
Subject: Indexed_IO
To: team-ada@acm.org

Ages ago, I had to port an app from VAX
Ada to Verdix. It used a VMS-specific
"Indexed_IO" package which had to have
a Verdix version created. Due to the
usual employee innovation agreements, I
can't offer it to the public, but something
similar might be a useful thing if
someone wanted to re-invent it.

Just imagine some form of search tree
and/or hash mechanism, only replace the
access types with Direct_IO.Count

From: Dirk Craeynest
<Dirk.Craeynest@cs.kuleuven.ac.be>

Date: Fri, 28 Sep 2001 21:40:07 +0200
Subject: Re: Indexed_IO
To: team-ada@acm.org

[...] You might be interested in "Indexed
sequential files in Ada" at
http://www.cs.kuleuven.ac.be/~dirk/ada-
belgium/software/#IND on the "Free Ada
Software provided by Belgian Ada users"
part of the Ada-Belgium web-server.

The text of that item on our software
page is:

Indexed sequential files in Ada: a
didactical example

Author: Marc A. Gobin, Royal Military
Academy, Brussels Status: Source code
available. Platforms: portable, tested with
Meridian (Ada 83) and GNAT (Ada 95)
on PC/DOS. Entry added: 1996/10/23.
Entry last changed: 1997/03/16.

Reference: "Indexed Sequential Files in
Ada: a Didactical Example", by Marc A.
Gobin, Ada-Belgium Newsletter, Nov
1996, Pages 85-91, Volume 4

Abstract: As an introduction to a course
on implementing data bases, the working
of an indexed sequential file system is
explained. Indexed sequential files are
not included in the Ada reference manual,
but can (easily?) be implemented. To
serve its purpose the implementation
should be easy to explain, easy to use and
as efficient as possible. In a paper
presented at the 1996 Ada-Belgium
Seminar the main features of an indexed
sequential package are explained and the
different choices and restrictions are
justified. The result is a quite efficient
package for defining and using the
traditional index sequential concepts.
Note: the entire package is available as
freeware and can be obtained in source
form here. The package is Ada83
compatible.

The following files are available:

* indexed.doc: a copy of the author's
paper in the Ada-Belgium Newsletter
(MS Word 6.0 document);

* indexed.ppt: a copy of the author's
presentation at the 1996 Ada-Belgium
Seminar (Powerpoint file);

* indexed.ada: the source code.

Check out the URL mentioned above if
you would like to download one of these
files or to contact the author.

Dirk Craeynest, Offis - Aubay Group,
Weiveldlaan 41/32, B-1930 Zaventem,
Belgium,
Dirk.Craeynest@cs.kuleuven.ac.be (Ada-
Belgium), Dirk.Craeynest@offis.be
(work), Phone +32(2)725.40.25, Fax
+32(2)725.40.12

From: Pascal Obry <p.obry@wanadoo.fr>
Date: Fri, 28 Sep 2001 22:38:37 +0200
Subject: Re: Indexed_IO
To: team-ada@acm.org

> Just imagine some form of search tree
and/or hash mechanism, only replace
the access types with Direct_IO.Count

Don't imagine, just grab Adbm from my
homepage. This is an indexed file
implementation using a hash code at the
first level and then a B-Tree on disk...
don't remember all the details since I
have done it long time ago, I have used it
a lot and it seems quite stable...

[From another message: -- dc]

As a side note, Adbm is completly
written in Ada and is not an interface to
gdbm. I have never compared the speed
of Adbm and gdbm, yet I think Adbm is
quite fast certainly slower than gdbm
which has been optimized a lot. Adbm is
one component I used a lot in a search
engine which is part of numerous projects
I have built at work... so I'm confident
that it should be working fine.

From: Wesley_Groleau@raytheon.com
Date: Fri, 28 Sep 2001 16:21:12 -0500
Subject: Re: Indexed_IO
To: team-ada@acm.org

So two someones (at least) already DID
invent it! :-)

Ada Binding to MySQL
From: Preben Randhol

<randhol+abuse@pvv.org>
Date: Sun, 7 Oct 2001 19:21:04 +0000

(UTC)
Organization: Norwegian university of

science and technology
Subject: Re: Ada MySQL binding
Newsgroups: comp.lang.ada

> I'm trying to find a free binding to
MySQL. [...]

http://gnade.sourceforge.net/

[See also "GNADE - GNU Ada Database
Environment" in AUJ 22.3 (September
2001), p.144. -- dc]

From: byhoe@greenlime.com (Adrian Hoe)
Date: 7 Oct 2001 18:17:17 -0700
Subject: Re: Ada MySQL binding
Newsgroups: comp.lang.ada

You can try this:
ftp://ftp.greenlime.com/pub/Ada/

[The file ada-mysql.tar.gz -- dc]

Free Online Game Project
in Ada
From: "Christophe"

<christophe.dubach@epfl.ch>
Date: Tue, 9 Oct 2001 17:15:55 +0200
Subject: Free Online Game project in Ada
Newsgroups: comp.lang.ada

I've an idea of a online game project in
Ada. The game would be a strategic
game (like mankind), I think about
creating a game under the GPLlicense.
The game could use MySQL as Database
and OpenGL for graphic (library exists in
Ada).

What do you think about that? It could be
very good to do such a thing, first of all
to build something on Ada and also to do
it under GPL license. For the moment it's
only an idea but if other people think this
could be fun to do it, why not :-) Waiting
for your post...

[From another message: -- dc]

The idea would be to create this on
Linux, but it will be better to make an
OS-Independant game... I know that
Glade (which can access to MySQL) and
Glut (OpenGL) can run on windows...

I'll create a website to explain more in
details what the project would be, and
also let people telling their opinion...

[And somewhat later: -- dc]

Check this url :
http://www.freename.f2s.com/
adagame.html

I've created this page in a few minutes, so
don't expect to have something nice ;-)

From: Pascal Obry <p.obry@wanadoo.fr>
Date: 09 Oct 2001 20:48:42 +0200

News – Ada-related Tools 205

Ada User Journal Volume 22, Number 4, December 2001

Subject: Re: Free Online Game project in
Ada

Newsgroups: comp.lang.ada

> The game could use MySQL as
Database and OpenGL for graphic
(library exists in Ada).

I have some demos and a working
binding on my homepage. Look for
OpenGL, GLUT and GLAUX keywords
on this page: http://perso.wanadoo.fr/
pascal.obry/contrib.html

[See also "OpenGL Bindings and
Demos" in AUJ 22.2 (June 2001), pp.72-
73. -- dc]

From: Lorenzo Micheletto
<lorenzomicheletto@libero.it>

Date: Thu, 11 Oct 2001 17:41:11 GMT
Subject: Re: Free Online Game project in

Ada
Newsgroups: comp.lang.ada

> The idea would be to create this on
Linux, but it will be better to make an
OS-Independant game... I know that
Glade (which can access to MySQL)
and Glut (OpenGL) can run on
windows...

For the low_level_graphics/audio/
game_input check SDL too
(www.libSDL.org). It covers most of the
basic needs and has lots of add-on
modules. It is written in C (with some
add-ons written in C++) but there is an
Ada binding. SDL supports accelerated
2D and OpenGL, plus joystick/gamepad/
mouse/keyboard IO routines, audio mixer
for sound effects,"portable" timing and
threads and "raw" cd-rom support (to
play audio tracks directly from cdrom)
plus other useful things.

[See also "AdaSDL - Binding to Simple
DirectMedia Layer (SDL)" in AUJ 22.3
(September 2001), p.141. -- dc]

It runs on Windows, Linux, OS/2, Beos
and there is a Playstation II port in
progress.

[Preben Randhol <randhol@pvv.org>
wrote: -- dc]

Yes. Looks like more and more projects
use SDL.

Mine Detector Game
From: Jeffrey Carter <jrcarter@acm.org>
Date: Sun, 04 Nov 2001 22:24:13 GMT
Subject: Mine Detector Game
Newsgroups: comp.lang.ada

PragmAda Software Engineering has
released a game called Mine Detector.
Written entirely in Ada, it is released
under the GNU Public License. Win32
and Linux/x86 executables are available.
Full source code is also available, of
course.

http://home.earthlink.net/~jrcarter010/mi
ndet.html

Jeffrey R. Carter, PragmAda Software
Engineering

From: Tucker Taft <stt@avercom.net>
Date: Tue, 06 Nov 2001 10:34:09 -0500
Organization: AverCom Corp, a Titan

company
Subject: Re: Mine Detector Game
Newsgroups: comp.lang.ada

Great job. This is just the kind of thing to
help broaden the appeal of Ada.

"Fun with Ada" Lab at
AdaPower
From: "Kester, Rush W."

<Rush.Kester@jhuapl.edu>
Date: Wed, 14 Nov 2001 12:32:58 -0500
Subject: Re: Mine Detector Game
To: team-ada@acm.org

[...] To all interested in Ada Games:

How about joining the "Fun with Ada"
lab at AdaPower? I setup a lab area on
David Botton's AdaPower site for getting
folks together who want to help promote
Ada by showing how much fun you can
have with Ada applications. Ada games
are a perfect match.

See, http://www.adapower.com/
lab/adafun.html for how you can help
from anywhere in cyberspace or just
track what's going on. To discuss this
further please use
http://www.adapower.com/
lab/adafun/chat.html

My goal is to reach the budding
programmers in high school and expose
them to software engineering with Ada
before they learn too many bad habits. I
plan to use various applications that will
capture the interest of young
programmers (or those young in spirit :-).

For example, controlling model trains,
slot cars, and robots. Barry Fagin has
developed an interface to allow Ada
programs to control the LEGO
Mindstorm's robots. see
http://www.usafa.af.mil/dfcs/
adamindstorms.htm We had a demo of
an Ada controlled LEGO Mindstorms
robot at the SIGAda 2000 conference
hosted here at Johns Hopkins University
Applied Physic Laboratory.

Another example is David Wheeler's
skeleton of an object-oriented adventure
game called "Small" in Ada,
http://www.adahome.com/Tutorials/
Lovelace/small.htm.

Rush Kester, President Baltimore
SIGAda

Distributed Systems Annex
and Transport Security
From: David Brown <davidb-

cla@davidb.org>
Date: Fri, 28 Sep 2001 16:30:01 GMT
Subject: Glade using SSL.
Newsgroups: comp.lang.ada

I am considering using DSA (with Glade)
to implement remote backups and such in

my Adump backup software
<http://www.davidb.org/adump/>.

[See also "Adump 1.0 - Backup
Software" in AUJ 22.3 (September
2001), p.140. -- dc]

I was wondering if anyone has looked in
how to implement transport security
(such as SSL) into Glade.

I looked at the filter mechanism example
for zip, but it appears that the Glade
filters assume every chunk of input data
makes another chunk of output data.
This doesn't apply to SSL, at the
beginning an exchange must happen.

The other problem is that Garlic opens
multiple sockets between the programs
(boot server and such). The port numbers
are also not fixed. This would be difficult
to use for an administrator that needs to
open a port on a firewall.

The other idea I've thought of is to use
Garlic as a base and implement a more
primitive PCS that only implements the
features that I want and uses SSL.

From: Pascal Obry <p.obry@wanadoo.fr>
Date: 28 Sep 2001 20:37:04 +0200
Subject: Re: Glade using SSL.
Newsgroups: comp.lang.ada

> I was wondering if anyone has looked
in how to implement transport security
(such as SSL) into Glade.

Of course :) Not SSL but DES, RSA and
IDEA.

http://lglwww.epfl.ch/Ada/filters/
home_page.html

Another solution could be to use AWS
and do the transport through HTTPS
(SSL 3).

BUSH 0.8 - AdaScript Shell

From: PegaSoft Canada - ALT Drop Box
<adalin-l@tiamet.vaxxine.com>

Date: Sun, 30 Sep 2001 16:01:03 -0400
(EDT)

Subject: BUSH 0.8 beta release
To: "GNAT Discussion List"

<gnatlist@lyris.seas.gwu.edu>

In the next day I will be posting the
source code for my AdaScript shell
BUSH. This should be considered a
release candidate and I'm looking for any
obvious bugs that need fixing prior to the
official release of version 0.8. BUSH is
available at http://www.vaxxine.com/
pegasoft.

BUSH is a Linux/UNIX shell which uses
a subset of Ada 95. Version 0.8 is a
major upgrade over 0.1, and many
sections of the source code have been
completely rewritten. [See also AUJ 22.1
(March 2001), p.11. -- dc]

New features are too numerous to list, but
include:

* works as a login shell

206 News – Ada-related Tools

Volume 22, Number 4, December 2001 Ada User Journal

* standard Text_IO, numeric and string
functions implemented

* while, case, loop, enumerated for loop
implemented

* TCP/IP sockets

* much greater reliability and
performance

* better documentation and improved
help command

* no longer a front-end to BASH, now a
true shell

* sample shell script: Eliza, the famous
AI program

[...]

Ken O. Burtch,
http://www.vaxxine.com/pegasoft,
ken@tiamet.vaxxine.com, Pegasoft,
R.R.#1, Jordan Station, ON, Canada L0R
1S0

From: PegaSoft Canada - ALT Drop Box
<adalin-l@tiamet.vaxxine.com>

Date: Sat, 6 Oct 2001 08:52:33 -0400
(EDT)

Subject: BUSH 0.8 beta 2 available
To: "GNAT Discussion List"

<gnatlist@lyris.seas.gwu.edu>

A new beta version of my BUSH
AdaScript shell is available on the
PegaSoft web site at
http://www.vaxxine.com/pegasoft/
bush-down.html.

* cd command has been fixed

* --restricted (-r) restricted shell option

* several other small bugs tested and
fixed

From: Ken Burtch
<kburtch@sympatico.ca>

Date: Fri, 19 Oct 2001 12:13:16 -0400
Subject: BUSH 0.8 - Open Source

AdaScript Shell released
Newsgroups: comp.lang.ada

BUSH (AdaScript Business Shell) 0.8
Released

BUSH binaries and GPL source code:
http://www.vaxxine.com/pegasoft/bush-
down.html. BUSH currently runs on HP-
UX and Linux. Ports to other platforms
are welcome!

New to this Release:

* BUSH tutorial

* Built-in string and numeric packages

* TCP/IP sockets

* Faster performance

See the BUSH Guide for complete
details.

Post bug reports to
pegasoft@tiamet.vaxxine.com or on the
BUSH forum. Please include source code
to duplicate the problem. [...]

ELSE - Emacs Language
Sensitive Editing
From: Stephen Leake

<stephen.a.leake.1@gsfc.nasa.gov>
Date: 29 Oct 2001 12:48:35 -0500
Organization: NASA Goddard Space Flight

Center
Subject: Emacs Language Sensitive Editing
Newsgroups: comp.lang.ada

For those who might have missed it, here
is the announcement of a version release
for Else, which has excellent support for
Ada. It was posted on
comp.emacs.sources.

Emacs Language Sensitive Editing
(ELSE). Access to the package can be
obtained from
http://www.zipworld.com.au/~peterm

Keywords: template, skeleton,
abbreviation

ELSE is a minor mode for Emacs that
provides code templates/skeletons/
abbreviations for whatever language
major mode is in force in the current
buffer (assumes that you have a set of
ELSE template definitions for that
language, of course! :-)). Very similar in
concept to the template, skeleton and
others but more powerful and (hopefully)
easier to understand for people who are
not Elisp experts because: (a) ELSE
template definitions are written in an
ASCII format rather than Elisp style
(with all those "gotchas" of missing
closing braces etc :-)); and (b) comes
with extensive documentation (40+ page
manual).

ELSE comes with language templates for
C, Python, Ada (83 and 95), Emacs Lisp,
C++ and Java. These template files are in
varying degrees of "completeness" and
"usability" so choosing just one to trial
ELSE may not necessarily be fair to the
mode :-). For instance, the C++ and Java
templates are in a very primitive state. I
don't program in either of these languages
so they are pretty much first passes from
a program I have written that generates
ELSE templates from EBNF. I am only
publishing these language templates in
the hopes that they can give someone a
starting point for further development :-)
I know of one developer who has started
to use the C++ templates and his changes
are available on the web site (in C++-
cust.lse).

I consider the Python and Ada templates
the most complete sets. The C templates
are from a very early era when I first
started coding with ELSE and thus reflect
a fairly primitive set of templates. I am
back into a C environment now but in a
maintenance role, so they don't get much
of a chance to get a work out :-).

This version has been a very long time in
gestation. Users of ELSE will appreciates

some of the small, but significent changes
that have been made to the package.

As always, if there are any questions,
comments, suggestions or requests for
help, feel free to contact me at
peter.milliken@gtech.com :-) I am more
than happy to help people understand and
use the package.

Ada Kalinda Operating
System
From: "Vincent Morin"

<vincent.morin@univ-brest.fr>
Date: Fri, 2 Nov 2001 16:52:46 +0100
Organization: Universite de Bretagne

Occidentale
Subject: Ada Kalinda operating system

software initial release
Newsgroups: comp.lang.ada

I released an initial version of the Ada
translation for the Kalinda OS formerly
written in metrowerks Pascal, it is
available at http://sourceforge.net/
projects/sx-ada-kalinda. Sources can be
Gnat or Aonix compiled but system is not
operational due to deep transformations
in the file/resource system. If anybody is
interested in the project or has comment
about the sources, all constructive
participations are welcome.

I also hope it could give some ideas for
AdaOS (I think it is not the direction
taken, but at least, I have sources and the
old Pascal system was working). Sources
are in french (sorry, but as I understand
english, I think some english
programmers can understand french. I is
not great literature!).

Vincent Morin, Laboratoire de
Biostatistiques et Informatique Médicale,
22 Avenue Camille Desmoulins, 29285
Brest cedex, France

Auto_Text_IO ASIS
Application
From: LeakyStain <leakstan@erols.com>
Date: Sun, 18 Nov 2001 18:00:48 -0500
Subject: Auto_Text_IO ASIS application
Newsgroups: comp.lang.ada

I've posted an ASIS application to my
web site: http://users.erols.com/
leakstan/Stephe/Ada/auto_text_io.html

It generates Text_IO routines Put and
Get, using named notation, when given
an Ada package containing types. This
makes it much less tedious to write
readable unit tests, and provides
persistent storage in human readable
format.

The tool is released under the GPL, the
run-time components under the GMGPL.

There's a switch to generate Ada 83
compatible code; no Get then, because
Ada 83 doesn't have
Text_IO.Look_Ahead.

News – Ada-related Tools 207

Ada User Journal Volume 22, Number 4, December 2001

The Get routines are not as robust as an
Ada compiler; the components must be in
declaration order. That's sufficient for
reading the output of the Put routines,
less good for hand-written inputs. It
would be interesting to try to combine
this with OpenToken to make it more
powerful.

Stephen Leake

Ada-related Products

ACT-Europe - XML/Ada
0.6
From: Emmanuel Briot <briot@act-

europe.fr>
Date: Fri, 07 Sep 2001 16:27:20 GMT
Subject: [ANNOUNCE] XML/Ada 0.6

released
Newsgroups: comp.lang.ada

We are happy to announce the release of
a new version of XML/Ada (0.6). This is
a set of Ada packages that can be used to
manipulate XML streams. It includes a
full XML parser (including for the DTD
part), as well as SAX 2.0 and DOM 2.0
compliant interfaces (please see the web
page and the documentation for more
information on these interfaces). It also
includes a Unicode module to manipulate
and convert Unicode streams.

It passes all of the applicable tests of the
official XML conformance testsuite.
This new release includes an optimized
parser (rewritten from scratch since the
previous release). This fixes the last
problems with the official XML
conformance testsuite.

[The software is available at
http://libre.act-europe.fr/xmlada/. See
also "ACT-Europe - XML/Ada 0.5 Suite
of Tools" in AUJ 22.2 (June 2001), p.79.
-- dc]

ACT is providing full support for this
tool set. Let us know at sales@gnat.com
or sales@act-europe.fr if you are
interested in evaluating this library for
commercial use.

From: Ted Dennison
<dennison@telepath.com>

Date: Mon, 10 Sep 2001 14:04:49 GMT
Subject: Re: [ANNOUNCE] XML/Ada 0.6

released
Newsgroups: comp.lang.ada

> I think Emmanuel missed a change
which might be important for some
people: XML/Ada is now released
under the GPL with GNAT
modifications.

It is indeed great news that there is now
an XML solution we can recommend to
people without reservations.

T.E.D.,
http://www.telepath.com/dennison/Ted/
TED.html

Aonix - ObjectAda 7.2.1 for
Windows
From: "Peter Dencker"

<dencker@web.de>
Date: Sun, 11 Nov 2001 20:11:59 +0100
Subject: FREE ObjectAda version 7.2.1

now available!
Newsgroups: comp.lang.ada

[...] For Immediate Release

Contact: Greg Gicca, Director of Product
Management, adamark@sd.aonix.com;
additional product information: (858)
457-2700, info@aonix.com

Aonix Expands Capabilities of Best-
Selling ObjectAda for Windows

SAN DIEGO, September 1, 2001 -
Aonix, a leading provider of Windows
software development environments,
announced today that the latest version of
its object-oriented development
environment, ObjectAda version 7.2.1, is
now available for Windows 98, Windows
NT, Windows 2000 and for the
embedded ETS Real-Time Win32
operating systems.

Aonix, the leading supplier of quality
Ada technology for the Windows
platform, says that the new release
represents a significant upgrade for over
150,000 worldwide software developers
who have used ObjectAda and enjoyed
its pacesetting compiler, debugger,
browser, editing, and project
management capabilities.

The ObjectAda Ada95 and Multi-
Language development environment has
just become more powerful. While the
past release added multi-language
editing, project control, and a newer MS
Visual Studio look and feel, Version
7.2.1 adds more power to the core
product. It includes: a more powerful
code generator for better program
performance; additional debugging
capabilities; and an SCCI (Source Code
Control Interface) capability.

The latter provides direct access to the
MS SCCI from the ObjectAda IDE/GUI.
It allows users to make use of any CM
system that conforms to this MS
standard. The previous release of
ObjectAda offered the capability to add
integrations with any external tools via its
Customize option.

The new SCCI capability adds the
following functions for any underlying
CM system: List Files; Keep Checked
Out; Comment; Select All / UnSelect All;
Get Latest Version; Check Out; Check
In; Undo Check Out; Add to Source
Control; Remove from Source Control;
Show History; Show Differences; Source
Control Properties; Invoke External
Source Control.

"With SCCI as the industry standard CM
interface on Windows, Aonix can offer
CM integration to almost any Windows-

based CM system from ObjectAda. This
new feature provides both a powerful and
versatile capability for all our Windows
hosted products," states Greg Gicca,
Product Manager for ObjectAda.

The ObjectAda free Special Edition is
now available on the Aonix web site. To
get your copy go to:
http://www.aonix.com/
content/products/objectada/windows.html
and select "ObjectAda for Windows
Special Edition" in the right hand
download section.

About Aonix

Aonix is a leading international software
company providing a comprehensive
suite of products and services aimed at
managing the complexity of today's
business-critical application development
and information management. The Aonix
Critical Development Solutions division
provides a comprehensive suite of
software development products that
support the customer's development
process, methods and tools. The result is
minimized risk, improved developer
productivity and increased software
quality. Along with our native product
offerings Aonix offers embedded and full
Safety Critical development
environments. Headquartered in San
Diego, Aonix operates sales offices
throughout North America and Europe in
addition to a network of international
distributors. More information about
Aonix can be found on its Web site at
www.aonix.com.

From: Ada Marketing
<adamark@sd.aonix.com>

Date: Wed, 14 Nov 2001 11:47:53 -0500
Subject: Aonix Expands Capabilities of

Best-Selling ObjectAda for Windows
To: team-ada@acm.org

For a copy of the latest free ObjectAda
for Windows version 7.2.1, see the below
page and select the download button on
the right hand frame.
http://www.aonix.com/
content/products/objectada/windows.html

The product release description is [at]
http://www.aonix.com/content/news/
pr_09.01.01.html

From: "Peter Dencker"
<dencker@web.de>

Date: Thu, 8 Nov 2001 10:48:57 +0100
Subject: Re: ObjectAda 7.1 Special Edition

- [...]
Newsgroups: comp.lang.ada

You may ask your local Aonix office for
a free copy of the Special Edition [7.2.1]
if you don't have the bandwidth to
download it directly from
http://www.aonix.com/content/products/
objectada/windows.html or via ftp [from]
ftp://ftp.aonix.com/pub/ada/public/pal/

Peter Dencker, Sales Manager Aonix
GmbH (Germany)

208 News – Ada-related Products

Volume 22, Number 4, December 2001 Ada User Journal

From: "Snodgrass, Britt (NM75)"
<Britt.Snodgrass@honeywell.com>

Date: Thu, 15 Nov 2001 09:14:50 -0700
Subject: Re: object ada
To: team-ada@acm.org

> I think the 'Save File As' function is
disabled in the _demo_ version of the
GUI builder.

With the free ObjectAda 7.2.1 Special
Edition, you can now save your GUI
builder project. However the project is
restricted to two windows, four controls
per window, and no ActiveX controls.

Aonix - ObjectAda 7.2.1 for
SPARC/Solaris
URL: http://www.aonix.com/content/

news/pr_10.26.01.html
Date: Thu, 15 Nov 2001 10:57:00 +0100
Subject: Aonix(r) Announces the Next

Major Release of ObjectAda(r) for
SPARC Solaris Version 7.2.1

Aonix(r) Announces the Next Major
Release of ObjectAda(r) for
SPARC(r)/Solaris(r) Version 7.2.1

BOULDER, Colorado, October 26, 2001
- Aonix(r), a member of the Gores
Technology Group and a leading provider
of Ada 95 software development
environments, announced today that the
latest version of its object-oriented
development environment, ObjectAda(r)
version 7.2.1, is now available for the
SPARC(r)/Solaris(r) operating system,
versions 2.6, 7, and 8.

Aonix, the leading supplier of quality
Ada technology, says that this new
release represents a significant upgrade
for over 150,000 worldwide software
developers who have used ObjectAda and
enjoyed its pacesetting compiler,
debugger, browser, editing, and project
management capabilities. ObjectAda
version 7.2.1 now fully supports the latest
validation suite, ACATS (ACVC) version
2.4. This is the first ObjectAda version to
fully conform to this new ACATS
version. Along with these technology
enhancements, several new task oriented
debug capabilities have been added,
further enhancing the already powerful
debugging capabilities of ObjectAda.

ObjectAda 7.2.1 now supports specific
compile time options to optimize code
generation for the three supported
operating systems. Thus users can further
optimize their applications based on the
operating system they are targeting. An
alternate implementation of the package
Ada.Numerics.Generic_Elementary_Fun
ctions (RM A.5.1) is provided with
ObjectAda 7.2.1. For most applications,
the new alternate implementation
provides improved execution time
performance.

All these capabilities are designed to
increase the performance of programs
generated with ObjectAda, states Greg

Gicca, Product Manager for ObjectAda.
All these enhancements bring ObjectAda
up to date with the latest related
technologies to move ObjectAda onward
into the future. [...]

About Aonix

Aonix, a Gores Technology Group
company, is a leading international
software company with customers drawn
from the Global 1000. The Critical
Development Solutions (CDS) division
produces Software through Pictures(r)
(StP), Architecture Component
Development(r) (ACD), TeleUSE(r),
ObjectAda(r), AdaWorld(r) and Raven.
CDS products support the highest
criticality levels of software design. The
company's Select Business Solutions
division provides a comprehensive suite
of business software development
products comprising Select Component
Factory, Select Enterprise(r), Reviewer,
JSync, VBSync, and CSync. These tools
are supported by a full complement of
professional services in addition to the
development methodology, Select
Perspective. The Enterprise Business
Intelligence Solutions division provides
products such as Nomad(r) and
UltraQuest, and services designed to
dramatically simplify access and analysis
of mainframe data. Headquartered in San
Diego, Aonix operates sales offices
throughout North America and Europe in
addition to a network of international
distributors. For more information, visit
www.aonix.com.

Press Contacts: Greg Gicca, Director of
Product Management,
greg.gicca@aonix.com; additional
Product Information: (858) 457-2700,
info@aonix.com

Green Hills Software -
INTEGRITY RTOS and
AdaMULTI SDE Selected
for F-35 JSF
URL:

http://www.ghs.com/news/211031l.html

Green Hills Software's INTEGRITY(TM)
Selected As Operating System For F-35
Joint Strike Fighter

Green Hills to Provide Operating System
and Development Environment for
Largest Military Procurement in History

Santa Barbara, CA, October 31, 2001 --
Green Hills Software, Inc., today
announced that Lockheed Martin will be
using Green Hills' INTEGRITY(TM)
real-time operating system (RTOS) and
AdaMULTI(r) 2000 software
development tools to develop software
for its Joint Strike Fighter (JSF) aircraft.
Lockheed Martin's design for the JSF was
selected by the Department of Defense
(DoD) in a $200 billion award, the largest
in US DoD history. Avionics software

developed by Lockheed Martin will run
on airborne PowerPC processors
operating under the INTEGRITY RTOS.

[For the full text, see URL mentioned
above. Some extracts: -- dc]

[...] John Carbone, vice president of
marketing at Green Hills [...] continues,
"The INTEGRITY RTOS, together with
Green Hills' AdaMULTI IDE, and Ada
95/C/C++ compilers provides a complete
single-vendor RTOS and development
solution for developing real-time mission
and safety-critical software systems
capable of meeting the security and
safety standards of ISO/IEC 15408
(Common Criteria) and RTCA DO-178B.
[...]

INTEGRITY RTOS is optimized for
safety-critical embedded applications that
place a premium on maximum reliability,
security, and testability. It features
advanced memory protection capabilities,
an optional ARINC-653 partition
scheduler, dynamic download, task- and
system-level debug, a configurable real-
time EventAnalyzer, POSIX support, and
TCP/IP networking. It is also the first
memory-protected real-time operating
system to be offered on a royalty-free
basis.

INTEGRITY is engineered from the
ground up to provide security and
determinism. At the lowest level, the
kernel employs an object-oriented design
and access verification to protect against
inadvertent and malicious kernel access
problems such as invalid kernel addresses
and invalid system call parameters. The
kernel design also guarantees bounded
computation times by eliminating the
need for features such as dynamic
memory allocation and heuristic
scheduling. Underlying hardware
mechanisms are used to provide full
system memory protection of all
components, including user applications,
device drivers, and inter-address space
communications. Clocks and timers are
protected with access permissions and
implemented entirely in software.

INTEGRITY is tightly integrated with
Green Hills' AdaMULTI(r) IDE.
Together with Green Hills' family of
optimizing Ada 95, C, and C++
compilers, AdaMULTI automates all
aspects of embedded software
development, including editing, source-
level debugging, program building, run-
time error checking, version control, and
code/performance optimization.
INTEGRITY also features ISIM, an
RTOS simulator that enables
programmers to develop and test their
code on a PC or workstation without the
need for target hardware. INTEGRITY
also includes the EventAnalyzer(TM),
which enables viewing of system and
user events in a graphical display. [...]

More On Green Hills Software

News – Ada-related Products 209

Ada User Journal Volume 22, Number 4, December 2001

Founded in 1982, Green Hills Software,
Inc., is the technology leader for real-
time operating systems and software
development tools for 32- and 64-bit
embedded systems. Green Hills offers
INTEGRITY and INTEGRITY real-time
operating systems and a family of
optimizing Ada 95 and C/C++ compilers.
The company's unique INTEGRITY
RTOS provides guaranteed resource
availability in both time and space
domains for the highest reliability and
security in a commercial RTOS.

Green Hills' tools support all of the major
advanced microprocessor families and
target environments, including target
simulators, ROM monitors, other
commercial and home grown real-time
operating systems, and in-circuit
emulators (ICE).

Green Hills Software is headquartered in
Santa Barbara, CA., and has 11 US
offices located in California, Colorado,
Illinois, Massachusetts, North Carolina,
Texas, Washington, and Florida.
European headquarters are located in the
United Kingdom, with offices in France,
Germany, the Netherlands and Sweden.

For sales information on Green Hills'
safety-critical products, including
INTEGRITY, call 800-789-9695 or email
inquiries to ada-sales@ghs.com.

For More Information Contact: Green
Hills Software, Lynn J. Robinson, (805)
965-6044, lynnr@ghs.com; Davis-Marrin
Communications, Michelle Ragsdale,
(858) 573-0736,
michelle@davismarrin.com

OAR - RTEMS Operating
System
From: Simon Clubley

<simon_clubley@excite.com>
Date: Mon, 10 Sep 2001 12:37:09 GMT
Subject: RTEMS and Ada, Was: Re: Ada

OS talk (was: Progress on AdaOS)
Newsgroups: comp.lang.ada

> OAR had an Ada version of the
RTEMS operating system a while
back. I think they have dropped
support for it, but I'm sure the source is
available from them. This would
probably be a good starting point [for
an Ada operating system. -- dc]

The situation's a bit more complicated
than that. :-)

OARcorp _do_ support Ada as a
development environment for RTEMS.
However, some of the BSP's (for
example, the i386 BSP) have moved from
COFF to ELF.

The current GCC used for GNAT, 2.8.x,
generates COFF format binaries. It has
been commented on several times in the
RTEMS mailing list that OARcorp are
eagerly awaiting for ACT to deliver a
GNAT for GCC 3.x. :-)

PS: I am not associated with OARcorp in
any way apart from wanting to use Ada
with RTEMS...

From: joel@OARcorp.com (Joel Sherrill)
Date: 10 Sep 2001 13:39:07 -0700
Subject: Re: Ada OS talk (was: Progress on

AdaOS)
Newsgroups: comp.lang.ada

> I'm aware of RTEMS - it might make
"A Good Start". My recollection of
what it was all about was that it might
be a bit limited for a full-up OS. More
like an RTK and some device drivers
to support an Ada implementation on a
bare board.

Correct RTEMS is what used to be called
an executive or kernel. It is not as
limited as you might think though with
major features like TCP/IP, filesystem,
about 85% of POSIX 1003.1b, uITRON,
and a pSOS+-like API ported to about a
dozen CPUs.

> There might be licensing issues as well.
I believe it is GPL - don't know the
specifics - but it might not be A Good
Thing to force any additional work to
fall under the GPL. (That's an opinion -
others may differ on that.)

RTEMS is GPL'ed with the same type of
exception as the GNAT run-time [hence
permitting its use in proprietary software
-- dc].

It has been a long time but it can be dug
up. :) When it was new, there was very
little feedback to it. The C
implementation got a lot more interest
and when the C version was used as the
run-time for GNAT, it seemed to satisfy
the same goal without duplicating effort.

Joel Sherrill, Ph.D., joel@OARcorp.com;
Ask me about RTEMS: a free RTOS,
Support Available; Director of Research
& Development, On-Line Applications
Research, Huntsville AL 35805, (256)
722-9985

From: Simon Clubley
<simon_clubley@excite.com>

Date: Mon, 10 Sep 2001 20:25:33 GMT
Subject: Re: RTEMS and Ada, Was: Re:

Ada OS talk (was: Progress on AdaOS)
Newsgroups: comp.lang.ada

[About "BSP's (...) have moved from
COFF to ELF."]

> Hmm. In my experience, a Board
Support Package (BSP) is written in C,
or Ada, or (most likely) Assembler.
Not object code.

In this case, the RTEMS BSP's are
written in C.

> So what does it mean that a BSP has
"moved from COFF to ELF"? Maybe
the BSP defines the loader, and it
needs to know the object file format. I
guess that would make sense.

Yes, I was not precise enough here. Your
description above is closer, although as I

have not yet successfully built RTEMS
with Ada support and as my background
is VMS and not Unix, I am still a little
unsure on the fine details. My
understanding is that, amongst other
things, a specific BSP's build
environment is designed differently
depending on if COFF or ELF formats
are in use.

[About "GCC used for GNAT, 2.8.x,
generates COFF format binaries."]

> This is misleading. GCC, the compiler,
does not generate binaries; it generates
Assembler code. The system assembler
and linker generate binaries. If using
the Gnu assembler and linker, they
come from the binutils package, not the
GCC package. So just because GNAT
uses GCC 2.8.1, does not mean
RTEMS can't use it with binutils 2.11
(latest on Gnu site). I suppose there
may be some upward incompatibilities,
but I'd be surprised.

I do know that when I attempted to do
just this (with or without the OARcorp
supplied patches to the GCC/GNAT/
binutils sources), in order to get pre-ELF
versions of the i386 BSP working with
GNAT, then the build failed in various
ways.

[About "awaiting for ACT to deliver a
GNAT for GCC 3.x."]

> They don't have to use only the binary
distributions from ACT! I would
consider it part of a 3rd parties job, to
repackage things for exactly this kind
of reason.

I never implied that they were waiting for
a binary distribution. :-) Like the rest of
us, I understand they are waiting for ACT
to release a source distribution. OARcorp
do optionally build some binary
environments for easy installation, but
generally RTEMS is built from source
and a GNAT cross-compiler (or just GCC
if you are not interested in using Ada
with RTEMS) is also built from source as
part of the installation.

PS: Once again, I am not associated with
OARcorp in any way apart from an
interest in RTEMS.

From: joel@OARcorp.com (Joel Sherrill)
Date: 10 Sep 2001 13:56:18 -0700
Subject: Re: RTEMS and Ada, Was: Re:

Ada OS talk (was: Progress on AdaOS)
Newsgroups: comp.lang.ada

[...] GCC 2.8.1 did support ELF for the
Sparc and PowerPc so it has not been that
difficult to try those out. In fact, I
recently tested 3.13p for the PowerPc and
posted ACATS results to the RTEMS
users list. They were quite good. The
Sparc results were also good although the
Sparc backend now makes some Solaris
dependent calls. :(

We made RPMs available for
GNAT/RTEMS 3.13p targetting the
PowerPC and they are at

210 News – Ada-related Products

Volume 22, Number 4, December 2001 Ada User Journal

ftp://ftp.oarcorp.com/pub/rtems/
snapshots/ada_tools/gnat-3.13p-2 These
support the latest development snapshots
of RTEMS.

[See also "GNAT 3.13p Linux RPMs for
RTEMS" in AUJ 21.4 (January 2001),
p.231. -- dc]

> PS: I am not associated with OARcorp
in any way apart from wanting to use
Ada with RTEMS...

And although I AM associated with
OARcorp, personally I want to see Ada
and RTEMS work together also. :)

From: "Michael Garrett"
<michaelgarrett@csi.com>

Date: Tue, 11 Sep 2001 22:40:18 -0500
Subject: RTEMS Ada Micro Kernel (Was

Ada OS Progress)
Newsgroups: comp.lang.ada

I may not understand the whole picture....
(been in managment for a while) but the
original Ada version of RTEMS could be
put on top of a hardware abstraction
layer, with minimal amount of assembly,
(it probably was implemented this way)
forming a micro kernel, which could be
the foundation of the operating system.

With suitable layers on top of this
foundation (GNORT compiled, or no
runtime), a runtime could be provided
that GNAT could call into, providing a
full Ada runtime environment on top of
an all Ada kernel. (I'm in over my head
but you get the picture).

What I think this would provide is
deterministic behavior. If an all Ada OS
is to be considered, my opinion is that it
should be deterministic to a hard realtime
level. This is a lofty goal, but starting
with a deterministic all Ada micro kernel
is a good start.

QNX is built this way, on top of a small
scalable micro kernel. If the goal is an all
Ada scalable OS this seems to be an ideal
way to leverage the work already done by
OAR, the all Ada micro kernel.

Michael C. Garrett, Vice President
Research and Development, Medical
Research Laboratories, www.mrlinc.com,
michaelgarrett@csi.com

Praxis Critical Systems -
SPARK Toolset 6.0
From: rod@praxis-cs.co.uk (Rod

Chapman)
Date: 28 Nov 2001 10:13:43 -0800
Subject: ANN: SPARK Toolset Release 6.0

now available
Newsgroups: comp.lang.ada,

comp.software-eng, comp.realtime

Praxis Critical Systems is pleased to
announce the immediate availability of
release 6.0 of the SPARK language and
the SPARK toolset. [...]

A new edition of the "SPARK Book" by
John Barnes is also planned.

Release 6.0 adds significant functionality
over previous releases, including:

* Support for "external variables" - these
allow the automated modelling of
volatile input and output "streams" to
and from a SPARK program. Our
"INFORMED" design approach has
been updated to illustrate the use of
external variables.

* Modular types with binary modulus are
supported in SPARK95 mode. Bit-wise
logical operators are permitted for such
types.

* A new "derives null from ..." annotation
form allows the declaration of
procedures which take parameters, but
have no observable effect on any state
within the SPARK boundary of a
program. This is particularly useful in
the construction of data-logging
packages, testpoints, diagnostic code
and so on.

* VC-Generation in much improved. In
particular, fewer hypotheses are
generated for most VCs, resulting in
faster simplification of those VCs
[Verification-Conditions -- dc].

* SPADE Simplifier version 2.00 ships
on Windows and Solaris platforms
with this release. This includes
improved proof tactics for modular
expressions, bit-wise logical operators,
and inequalities involving enumerated
types. The new Simplifier behaves
identically on Windows and Solaris.

* A new tool called "SPARKSimp" is
supplied on Windows and Solaris. This
is a "make" style tool for the Simplifier
which assists in the proof of large
programs.

This release re-inforces SPARK's
position as the leading language subset
and static analysis technology for the
construction of high-integrity software.

Please email us for more information at
sparkinfo@praxis-cs.co.uk or see
www.sparkada.com

The SPARK Team, Praxis Critical
Systems

Note: The SPARK programming
language is not sponsored by or affiliated
with SPARC International Inc and is not
based on SPARC(tm) architecture.

RainCode Corp. - RainCode
for Ada
From: Deborah Torrekens

<Deborah@raincode.com>
Date: Wed, 05 Dec 2001 18:37:21 +0100
Subject: Ada User Journal
To: Dirk.Craeynest@cs.kuleuven.ac.be

RainCode for Ada - Press Release -
November 2001

RainCode for Ada is a quality control
technology that operates on large
amounts of existing Ada code, both

legacy or during development. RainCode
detects, counts, and measures non-trivial
things in your Ada code, and it can take
any corrective or preventive action in it.

RainCode measures compliance to
coding standards based on style or on
technical matters (portability); or apply
potentially large numbers of automated
patches. Such patch strategies address
issues such as modularisation, comments
generation, etc.

How does it work? RainCode actually
reads the Ada source code and builds an
annotated parse tree after a fully
documented object model. A scripting
language can then be used to walk
through the parse tree, taking full
advantage of the features provided by the
object model.

RainCode for Ada performs more than
just syntactical analysis; it includes type
analysis and a complete access to the
tagging information for each and every
function, procedure, variable and type in
the code.

The scripting language is a dynamically
typed Pascal-like language, which has a
number of very useful features such as:

* Quantifiers

* Modularity

* Set-based operations (membership,
union, difference, etc)

* Access to XML trees through the DOM
API

* Pattern matching, which allows you to
comfortably express what you are
looking for in a program

More information available at
www.raincode.com

Deborah Torrekens, Raincode Corp., Rue
de l'Autonomie, 1, B-1070 Bruxelles,
Belgium, Tel 322 + 522.06.63, Fax 322 +
522.09.30

Rational - Apex 4.0.0c,
TestMate 4.0.0, Ada
Analyzer 4.0.1, and AXI
4.1.9 for IBM AIX
From: "Greg Bek" <gab@Rational.Com>
Date: Tue, 30 Oct 2001 12:36:23 -0800
Subject: Apex 4.0.0c, TestMate 4.0.0, Ada

Analyzer 4.0.1, AXI 4.1.9 for IBM AIX
are available by FTP

To: "Apex Announcements" <apex-
announcements@Rational.Com>

Rational Apex 4.0.0c, Rational TestMate
4.0.0, Ada Analyzer 4.0.1, and AXI 4.1.9
for IBM AIX are available by FTP.

[In all Rational' URLs below, substitute
<apex> by <ftp>/apex, <analyzer> by
<ftp>/ada_analyzer, <axi> by <ftp>/axi,
<testmate> by <ftp>/testmate, <doc> by
<documents/unix>, and <ftp> by
ftp://ftp.rational.com/public -- dc]

News – Ada-related Products 211

Ada User Journal Volume 22, Number 4, December 2001

These releases are pending Generally
Available (GA) status as they go through
the final steps of the manufacturing
process. We anticipate that this will be
complete within the next 30 days. Once
these releases reach GA status, they will
be available for shipping. Until then,
they are being provided on this FTP
server for immediate access. Follow the
links for download and installation
instructions. There are 3 ways to do the
download. You can use the classic
method of the UNIX ftp command, use a
web browser, or use Rational's rinstall
program to do the FTP download in a
user-friendly way. <ftp>/.standard.msgs/
install_instructions.html

Product: Rational Apex Version: 4.0.0c
Platform: IBM AIX URL: <apex>/
releases/aix/apex.4.0.0c Release Note:
<apex>/<doc>/release_note.4.0.0c.dir/
release_noteTOC.html <apex>/<doc>/
release_note.4.0.0c.ps.Z Install Guide:
<apex>/<doc>/install_guide.4.0.0c.dir/
igTOC.html <apex>/<doc>/
install_guide.4.0.0c.ps.Z

Product: Rational TestMate Version:
4.0.0 Platform: IBM AIX URL:
<testmate>/releases/aix/testmate.4.0.0
Release Note: <testmate>/<doc>/
testmate_release_note.4.0.0.dir/
testmate_noteTOC.html <testmate>/
<doc>/testmate_release_note.4.0.0.ps.Z

Product: Ada Analyzer Version: 4.0.1
Platform: IBM AIX URL: <analyzer>/
releases/aix/ada_analyzer.4.0.1 Release
Note: <analyzer>/<doc>/
release_note.4.0.1.dir/AA_Release_Note.
4.0.html <analyzer>/<doc>/
release_note.4.0.1.ps.Z

Product: AXI (Ada/X Interface) Version:
4.1.9 Platform: IBM AIX URL:
<axi>/releases/aix/axi.4.1.9 Release
Note: <axi>/<doc>/
axi_relnotes.4.1.9.aix.dir/
relnotesTOC.html
<axi>/<doc>/axi_relnotes.4.1.9.aix.ps.Z

Rational - Apex 4.0.0b for
Windows NT
From: "Greg Bek" <gab@Rational.Com>
Date: Tue, 13 Nov 2001 13:18:21 +1030
Subject: Apex 4.0.0b, Ada Analyzer 4.0.1

for Windows NT are available by FTP
To: "Apex Announcements" <apex-

announcements@Rational.Com>

[...]

Product: Rational Apex Version: 4.0.0b
Platform: Windows NT (Intel) Directory
URL: <apex>/releases/win/
apex_nt.4.0.0b-self_extract File URL:
<apex>/releases/win/apex_nt.4.0.0b-
self_extract/apex_nt.400b.exe

Common Object
Request Broker
Architecture (CORBA)

CORBA vs. Distributed
Systems Annex
From: "Jean-Pierre Rosen"

<rosen@adalog.fr>
Date: Mon, 3 Sep 2001 19:45:12 +0200
Organization: Adalog
Subject: Re: CORBA vs. Distributed

Systems Annex?
Newsgroups: comp.lang.ada

> Is there a brief description of the
differences between CORBA and
DSA? I don't know much about either,
and I'm looking for a starting point in
deciding which to use.

In a nutshell: DSA is for one (Ada)
program, whose execution is distributed
over several machines (aka partitions).
CORBA is for several, possibly
heterogenous, programs communicating
together.

J-P. Rosen, http://www.adalog.fr

From: Samuel Tardieu
<sam@rfc1149.net>

Date: Mon, 3 Sep 2001 19:45:51 +0200
Subject: Re: CORBA vs. Distributed

Systems Annex?
Newsgroups: comp.lang.ada

You can get an article called "CORBA &
DSA: divorce or marriage?" from Laurent
Pautet, Thomas Quinot and myself
published in Ada Europe '99 on
http://www.rfc1149.net/biblio

From: Thierry Lelegard
<thierry.lelegard@canal-plus.fr>

Date: Tue, 04 Sep 2001 15:59:35 +0200
Organization: CANAL+ Technologies
Subject: Re: CORBA vs. Distributed

Systems Annex?
Newsgroups: comp.lang.ada

At the SIGAda'99 conference, there were
a number of sessions on the subject. See
http://www.acm.org/sigada/conf/
sigada99/Sessions.html

Thierry Lelegard, CANAL+
Technologies, 34 place Raoul Dautry, F-
75906 Paris Cedex 15, France, Tel +33 1
71 71 54 30, Fax +33 1 71 71 52 08

Selecting CORBA
Implementations
From: Nielson Mark S Civ OO-ALC/TISEB

<Mark.Nielson@hill.af.mil>
Date: Wed, 24 Oct 2001 14:47:27 -0600
Subject: The November Issue of CrossTalk

is now available on-line.
To: Dirk@offis.be

The November 2001 issue of CrossTalk,
The Journal of Defense Software
Engineering is now available on our Web

site at: http://www.stsc.hill.af.mil. The
theme of this month's issue is
"Distributed Software Development."
[...]

If you are in the market for distributed
software middleware, Dr. Thomas Croak
presents Factors to Consider When
Selecting CORBA Implementations.
This article can help you choose and fine-
tune a Common Object Request Broker
Architecture (CORBA) Object Request
Broker. It looks at 10 software
architecture variability dimensions that
cause different behaviors in CORBA.
[...]

Ada and Linux

New Linux packages on
www.gnuada.org
From: Jürgen Pfeifer

<juergen.pfeifer@gmx.net>
Date: Thu, 13 Sep 2001 01:42:28 +0200
Subject: News
To: "GNAT Discussion List"

<gnatlist@lyris.seas.gwu.edu>

I've updated www.gnuada.org. There are
new RPM releases for GNU/Linux of the
following packages:

- XML/Ada (Version 0.6, Release 1)

- AWS (Version 1.0, Release 1)

- GNADE (Version 1.1.5, Release 1)

Please note that on the homepage there is
now also a link for Ada on OS/2. John
Poltorak asked for that link and he took
responsibility to provide the content. If
you're an OS2er, stay tuned...

Please note that the spelling for ALT has
changed a little bit. ALT = Ada for
GNU/Linux Team ;-)

From: Jürgen Pfeifer
<juergen.pfeifer@gmx.net>

Date: Tue, 20 Nov 2001 01:19:18 +0100
Subject: News
To: "GNAT Discussion List"

<gnatlist@lyris.seas.gwu.edu>

I've uploaded new builds of these
packages:

- XmlAda (minor release, fixes an
omission in previous RPMs)

- Adasl (new version 1.4)

- Adabindx (new version)

Ada RMPs in Next SuSE
distribution
From: Jürgen Pfeifer

<juergen.pfeifer@gmx.net>
Date: Wed, 3 Oct 2001 11:59:40 +0200
Subject: ALT RPMs in next SuSE

distribution.
To: "GNAT Discussion List"

<gnatlist@lyris.seas.gwu.edu>

212 News – Ada and Linux

Volume 22, Number 4, December 2001 Ada User Journal

I just want to let you know that the next
release of SuSE Linux (7.3) will contain
the ALT packages for GNAT.

Ada and Microsoft

GWindows - Ada 95 Win32
RAD Framework
From: "David Botton"

<David@Botton.com>
Date: Thu, 6 Sep 2001 23:57:13 -0400
Subject: GWindows progress
Newsgroups: comp.lang.ada

GWindows has been getting some
attention these days.....

What is GWindows you ask?

GWindows is a framework for quickly
creating Windows applications the Ada_
way, released with the freedoms of the
Modified GPL. It is more then just a
comprehensive "thick" binding to Win32
implementing additional extensions to
ease development on Windows beyond
just making the API accessible. It offers
features not found in any other
framework or binding such as support for
__GUI__ ActiveX controls, full
UNICODE support (a simple build
switch and GWindows is completely
UNICODE) for getting the best
performance out of WinNT and Win2K,
and _both_ handler (access to
subprogram) and inheritance based event
models.

[See also "GWindows 0.1 - Win32 RAD
Development Environment" in AUJ 21.3
(October 2000), p.170. -- dc]

Currently it is in what I call pre-beta (it
needs more work on printing support and
there are a few additional methods I
would like to add to some of the controls)
and should be beta with in weeks. It is
fully functional and has been used
already by a number of people (including
myself) for some decent size projects.

Full database integration is already in the
works for the 1.1 version to allow for
rapid development of database front ends
in Ada (the gap between the power of
Ada and the ease of VB is shrinking....)
Tutorials and documentation have also
been started. (Although, the specs are
already well documented and the samples
should get you off to a good start.)

Between GWindows and GNATCOM
you have bindings (or the equivalent
there of) to almost every single facet of
Windows. You can "Experience" the
ease of development with GWindows by
visiting and downloading at
http://www.adapower.com/gwindows and
joining the GNATCOM mailing list
where GWindows is discussed.

A quick list of features available now:

Bound Objects: Windows, Buttons,
Default Buttons, Cancel Buttons, Radio

Buttons, Check Box Buttons, Three State
Buttons, Group Boxes, Combo Boxes,
Drop Down Combo Boxes, Drop Down
List Boxes, List Boxes, Multiple
Selection List Boxes, Edit Boxes, Multi
Line Edit Boxes, Rich Text Edit Boxes
(both single and multi line), Scroll Bar
Controls (and Window scroll bars),
Labels, Icon controls, Bitmap controls,
Menus (Both window and right click
styles), Accelerator Tables, Open and
Save File Common Dialogs, Color
Common Dialog, Cursors, Carets,
Dialogs, Image Lists, AVI Animation
Control, Status Bars, Date/Time Controls
w/ Pop-Up Calendar, IP Address Control,
Progress Control, Up Down Control,
Trackbar Control, List View Control,
Tree View Control, Tab Control, Tool
Tips, Owner Drawn Controls

Other Features: COM Access to Rich
Edit - Text Object Model (TOM), Scroll
Panels, MDI Support, Keyboard support,
GDI Drawing (Windows, Bitmaps and
the Printer), Garbage collecting on
dynamically created GWindows objects,
Listener/Handler (access to subprogram)
and OO Event Models, Prefab Events,
ActiveX controls, Custom controls,
Create windows from dialog resources,
Use windows as dialogs, Message Boxes
/ Beeps, File Drag and Drop, Z-Order
control, Window Docking, Examples
(Web Browser, PDF Viewer, Embedded
Tcl/TK widgets...), Registry access, Tab
controls with child window support,
ANSI and UNICODE support, more...

From: "David Botton"
<David@Botton.com>

Date: Sun, 9 Sep 2001 23:58:03 -0400
Subject: GWindows Tutorials
Newsgroups: comp.lang.ada

Ever wish you could be programming
Windows applications with Ada? Maybe
you thought it was too difficult or the
learning curve to high...

GWindows makes it easy and learning to
program GWindows just got easier!

So far, 11 short tutorials and more on the
way. Each introducing another simple
facet of the power of the GWindows
frame work.

Go ahead take a look:
http://www.adapower.com/
gwindows/user_guide.html then take a
look at the many sample programs
included in the distribution to get a little
more depth.

GWindows should be going Beta this
week after I complete my current review
of the code.

What is GWindows? Take a look at
http://www.adapower.com/gwindows to
get an idea.

From: "David Botton"
<David@Botton.com>

Date: Tue, 11 Sep 2001 00:57:52 -0400
Subject: Easy databases with Ada

Newsgroups: comp.lang.ada

I've added a new package gwindows-
databases that allows easy access to
OLEDB and ODBC databaes via ADO.

I hope to add very soon events for
changes to fields, record movement, etc.
and databound controls. Yup, you will be
able to link text boxes, etc. to fields in the
database and automaticly have them
update when you move around the
queries/tables, edit the field values, etc.
The power of Ada with the ease of VB
(or Delphi ;-)

Here is a simple non-GUI example of
using the databases (from Tutorial 18):
[30 lines deleted, see online tutorial. --
dc]

Couldn't get any easier! All this and more
in the current release on the GWindows
page, http://www.adapower.com/
gwindows [...]

From: David Botton <David@botton.com>
Date: Thu, 13 Sep 2001 14:50:46 -0400
Subject: Re: printing
To: team-ada@acm.org

[In response to a question about printing
from an Ada 95 program on Windows. --
dc]

> If you want to draw lines and use fonts,
you have to access the Win32 GUI
functions, via Windex or Claw or
GtkAda, and write to a printer device
instead of a screen device.

You can also get the Beta of GWindows
that includes printing support and more at
http://www.adapower.com/gwindows.
Tutorial 10 covers printing using
GWindows and can be seen on-line at
http://www.adapower.com/gwindows/
user_guide.html.

From: "David Botton"
<David@Botton.com>

Date: Thu, 13 Sep 2001 15:34:51 -0400
Subject: GWindows Announcement
Newsgroups: comp.lang.ada

Announcing the first beta release of
GWindows

The Ada 95 Win32 RAD Framework

September 13, 2001

GWindows, the Professional Open
Source Ada 95 Win32 RAD Framework,
introduces for the first time to Ada
programming a comprehensive rapid
application development framework
spanning GUI, Database and Active X
integration. It brings AdaPower ;-) to
programming domains that up until now
are dominated by VB and Delphi.

GWindows includes extensive bindings
to the Windows GUI including support
for common controls and dialogs,
printing, and owner drawn extensions to
controls. In addition, GWindows adds a
number of new controls, keyboard
support, multiple models of event
handling, Active X controls, support for

News – Ada and Microsof t 213

Ada User Journal Volume 22, Number 4, December 2001

creating dialogs and windows from
resource files, dynamic garbage collected
windows, Window docking, non-GUI
bindings, database support, _database
bound controls_, and much more!

GWindows builds as either ANSI or
UNICODE (a first for Ada!) for
internationalization and performance
boosts on Windows NT, 2000, and XP.
GWindows is tightly integrated with
GNATCOM, the Ada 95
COM/DCOM/COM+ Development
Framework and Tools opening every
facet of the Windows platforms to Ada
95 development. Never again will the
cries be heard, "but there are no bindings"
on the Windows platform!

GWindows is designed to take advantage
of Ada's unique combination of features
rich typing mechanisms. It is not a thick
binding to an underlying C interface, but
a complete framework that takes
advantage of Ada at every level.

GWindows is already being used for
production products by large companies
to small personal projects. The final
release of GWindows will follow the beta
period. During the beta period bug fixes,
if any will be made available and
reported on the mailing list.

GWindows is being made available under
the GNAT modified GNU GPL used by
GNAT's runtime library making it
available for use in both GPL and
proprietary applications.

For more information on GWindows, to
view the on-line documentation, and to
download the product, please visit
http://www.adapower.com/gwindows.

Tutorials for GWindows are available at:
http://www.adapower.com/gwindows/
user_guide.html

Information on the public version of
GNATCOM can be found at
http://www.adapower.com/gnatcom.
Professional support for GNATCOM is
available from Ada Core Technologies,
Inc. Please contact report@gnat.com for
a no-cost GNATCOM evaluation
package.

From: "David Botton"
<David@Botton.com>

Date: Sun, 7 Oct 2001 12:01:18 -0400
Subject: GWindows Precompiled
Newsgroups: comp.lang.ada

GWindows the Open Source Win32 RAD
Ada 95 GUI Development Framework
now has a precompiled version available
to ease installation on Windows 9X
boxes. Information is available at
http://www.adapower.com/gwindows

Be sure to check out the GWindows
tutorials to Jump Start you in to GUI and
Database front end programming on
Windows with Ada 95.

GWindows - The Power of Ada 95 with
the Ease of VB and Delphi

Adobe's SVG Engine and
Ada 95
From: "David Botton"

<David@Botton.com>
Date: Sat, 8 Sep 2001 23:41:58 -0400
Subject: SVG and Ada 95 - Re:

[ANNOUNCE] XML/Ada 0.6 released
Newsgroups: comp.lang.ada

> I can of course take advantage with
Ada already on Win32 of Adobe's
SVG engine using GNATCOM, but it
would be very nice to have a cross
platform version.

I have created a stand alone SVG viewer
application in the latest release of
GWindows (gwindows\samples\svg)
using GWindow's ActiveX support.

After installing the latest gwindows (don't
forget GNATCOM must be installed
first) and after downloading and
installing the Adobe SVG component
(http://www.adobe.com/svg/viewer/
install/main.html) you can go to the
directory gwindows\samples\svg and do a
make. Once you open svg_demo you can
open the file GWindows.svg

You can take a look at the bindings
generated by GNATCOM to see that the
SVG control gives you increadible power
over each element in the SVG file. If I
find the time, perhaps I'll see if I can
come up with a demo of doing some
interesting interactions between Ada code
and SVG elements.

Returning from the Dark
Side to Ada
From: David Botton <David@botton.com>
Date: Sun, 7 Oct 2001 12:10:26 -0400
Subject: Returning from the Dark Side to

Ada
To: team-ada@acm.org

The question is, now that it is possible to
create powerful Win32 GUI applications
and Database Front Ends in Ada 95 using
GWindows will those Ada 95 people who
defected to the Dark Side for the empty
promises of VB return to see the light......

http://www.adapower.com/gwindows

GWindows the Open Source Win32 RAD
Ada 95 GUI Development Framework
now has a precompiled version available
to ease installation. Information is
available at
http://www.adapower.com/gwindows

Be sure to check out the GWindows
tutorials to Jump Start you in to GUI and
Database front end programming on
Windows with Ada 95.

GWindows - The Power of Ada 95, VB
and Delphi combined.

At least one GUI builder is already in
development and others are being
discussed. It is my intention to pound on
VB and Delphi lists once at least one of

them is available as the Open Source
Alternative to VB and Delphi... I hope
everyone is ready ;-)

From: Frank Manning
<frankmanning@earthlink.net>

Date: Mon, 8 Oct 2001 21:36:48 -0700
Subject: Re: Returning from the Dark Side

to Ada
To: team-ada@acm.org

> It is my intention to pound on VB and
Delphi lists once at least one of them is
available as the Open Source
Alternative to VB and Delphi... I hope
everyone is ready ;-)

In the case of VB, you probably couldn't
pick better timing, with VB.NET coming
up, IMHO. Where I work, we do a lot of
VB development, and we're facing the
rather daunting prospect of migrating to
VB.NET, which has significant
incompatibilities relative to VB6.

Although there are translation tools
available, even Microsoft apparently
takes the position that migration will
involve more rewrite than porting. Plus
there's all the new stuff we'd have to learn
-- managed/unmanaged code, assemblies,
delegation, MSIL, CLR, etc. Can't say
I'm overjoyed at the prospect of
transitioning from one proprietary
language to yet another proprietary
language.

If migration is going to be such a hassle,
why not migrate to an ISO language?
Like, well, you-know-what?

While we're on the subject, is there an
Ada guide for VB programmers that is
similar to Simon Johnston's excellent
guide for C/C++ programmers that's
posted at adahome.com?

Frank Manning, Tucson, AZ

From: "S. Ron Oliver"
<sroliver@csc.calpoly.edu>

Date: Tue, 9 Oct 2001 07:34:03 -0600
Subject: Re: Returning from the Dark Side

to Ada
To: team-ada@acm.org

I have been following this thread with
interest.

I believe David's original point that many
of the "arguments" for using VB, Delphi,
etc., and thus for NOT using Ada, are
completely invalidated. (Actually, I think
they have been for a long time, but the
work David and others have done
recently makes this so clear even a C
programmer will probably understand. :)

There is one key ingredient remaining,
however, to get people to use these
wonderful tools (and Ada) - getting the
word out. Remember, best kept secrets...

More importantly, the BEST way to "get
the word out" is to put together good
training courses and get them presented
in a forum where practicing and would be
"programmers" can readily take
advantage of them. I don't have any

214 News – Ada and MIcrosof t

Volume 22, Number 4, December 2001 Ada User Journal

figures, but I suspect that a fairly high
percentage of these practicing
"programmers" would never have "cut a
line of code", if they hadn't been able to
attend a training session that showed
them how easy it is to do so much by
imitating some good examples.

S. Ron Oliver, semi-retired professor of
Computer Science and Computer
Engineering,
www.csc.calpoly.edu/~sroliver

NT_Console Package

From: Jeffrey Carter
<jeffrey.carter@boeing.com>

Date: Wed, 7 Nov 2001 16:37:52 GMT
Organization: The Boeing Company
Subject: Re: Clear screen
Newsgroups: comp.lang.ada

> Do you mean to clear a console
window? If so I would guess it is one
of the ANSI Escape Codes. Have a
look here...

Except that those don't work on WinNT.
For that you need Jerry Van Dijk's
NT_Console package available from
http://home.trouwweb.nl/Jerry/packages.
html#CONSOLE

References to
Publications

George Romanski - "The
Challenges of Software
Certification"
From: Nielson Mark S Civ OO-ALC/TISEB

<Mark.Nielson@hill.af.mil>
Date: Wed, 29 Aug 2001 09:39:32 -0600
Subject: The September 2001 Issue of

CrossTalk is now available on-line.
To: Dirk@offis.be

The September 2001 issue of CrossTalk,
The Journal of Defense Software
Engineering is now available on our Web
site at: http://www.stsc.hill.af.mil. [...]
The theme of this month's issue is
"Avionics Modernization."

[...] stay informed on "The Challenges of
Software Certification" in George
Romanski's article. Lastly, Lockheed
Martin shares its lessons learned in
modernization of the C-130 in "Avionics
Modernization and the C-130J Software
Factory" by Richard Conn, Stephen
Traub, and Steven Chung. [...]

[Direct URL to the former:
http://www.stsc.hill.af.mil/crosstalk/
2001/sep/romanski.pdf -- dc]

DDC-I Online News
From: JC <jcdk@ddci.com>
Date: Fri, 31 Aug 2001 10:26:48 -0700

(MST)

Subject: Real-Time Industry Updates -
News from DDC-I

To: T8DK Online News <jcdk@ddci.com>

DDC-I Online News August 2001, Vol.
2, Num. 6 A monthly news update
dedicated to DDC-I customers &
registered subscribers.

This Month:

* Ada Stands Ready for the 21st Century.
Invented for, but no longer required by,
the military, Ada is a clear winner in
the era of COTS because of its inherent
safety-critical reliability, modularity
and excellent lifecycle underpinnings.
This article written by Joyce Tokar,
V.P. of Technology for DDC-I, was
published in the May 2001 issue of the
COTS Journal. Read how Ada is
finding its way into numerous
nonmilitary applications.

[...] For the complete newsletter, go to
http://www.ddci.com/
news_vol2num6.shtml [...]

From: JC <jcdk@ddci.com>
Date: Thu, 27 Sep 2001 14:48:53 -0700

(MST)
Subject: Real-Time Industry Updates -

News from DDC-I
To: V8 Sept 2001 Online News - DK

<jcdk@ddci.com>

DDC-I Online News September 2001,
Vol. 2, Num. 7 A monthly news update
dedicated to DDC-I customers &
registered subscribers.

This Month:

* Patterns-One Way to Solve the Reuse
Problem An introduction to patterns
and why they are important for
software development.

* Support for IDE Hard-disks from the
DACS-80x86 Cross Compiler System.
DACS-80x86 now supports IDE Hard-
disks. Read more about this hardware
independent interface system which
provides basic functionality for file
manipulation such as open, close, read
and write.

[...] For the complete newsletter, go to
http://www.ddci.com/news_vol2num7.
shtml [...]

From: JC <jcdk@ddci.com>
Date: Tue, 23 Oct 2001 14:46:33 -0700
Subject: Real-Time Industry Updates -

News from DDC-I
To: W8 - DK Oct 2001 Online News

<jcdk@ddci.com>

DDC-I Online News October 2001, Vol.
2, Num. 8 A monthly news update
dedicated to DDC-I customers &
registered subscribers.

This Month:

* Where in the World is SCORE Rabbit?
Enter to win a $50.00 gift certificate to
Amazon.com. Each month a new
contest begins. Check it out and win
money!!!

* The Vasa: A Disaster Story with
Software Analogy The story of an
engineering tragedy -- the sinking of
the Swedish warship, Vasa, on her
maiden voyage on August 10, 1628.
The Vasa disaster was an obvious
failure but no one did anything wrong!
Read this fascinating story and see the
software parallels.

[...] For the complete newsletter, go to
http://www.ddci.com/
news_vol2num8.shtml [...]

Marc A. Criley - "A Socket-
Based Manifestation of
Streams"
From: "Marc A. Criley"

<mcqada@earthlink.net>
Date: Tue, 04 Sep 2001 12:02:27 GMT
Organization: Quadrus Corporation
Subject: Re: adasockets and adatypes
Newsgroups: comp.lang.ada

> Does anyone know a way of sending an
Ada type (especially a record of string
and enumerated types) down a socket
so it can be received by another ada
program which recognises the type....

Certainly! See my article in Ada Letters:
http://www.acm.org/sigs/sigada/
ada_letters/issues/june2001/
socket_streams.pdf

Ada Book
Recommendations
From: Thomas Smets <tsmets@altern.org>
Date: Mon, 17 Sep 2001 16:34:27 +0200
Organization: Brutele sc, 29, rue de Naples,

B1050 Bruxelles, Belgium
Subject: book
Newsgroups: comp.lang.ada

I've been on www.bn.com (Barnes &
Nobles) to look for a good Ada book.
They all seem decent but I've no idea
which I should choose from the list
http://shop.barnesandnoble.com/
booksearch/results.asp?WRD=ada+
programming Would someone have a tip
for me? I'm working most of my time on
the following OSes: Linux (MDK or
Slack), WinNT.

From: "Marin David Condic"
<marin.condic@pacemicro.com>

Date: Mon, 17 Sep 2001 11:53:36 -0400
Subject: Re: book
Newsgroups: comp.lang.ada

You will find lots of book resources at:
http://www.adapower.com/. There are
descriptions and links there for a variety
of books. Check it out.

A favorite of mine for a "get started in
Ada quickly" book is "Ada Essential:
Overview, Examples and Glossary"
which is bookmarked at Adapower. (For
your convenience:
http://www.learnada.com/)

216 News – References to Publ icat ions

Volume 22, Number 4, December 2001 Ada User Journal

For a more in-depth view, I rather like:
"Programming in Ada 95" by John
Barnes, but many others have
recommended "Ada as a Second
Language" by Norm Cohen. (Sorry.
Never read that one.) Both have good
reputations as good, general-purpose
texts.

Other books you can investigate at
AdaPower may deal with Ada from the
perspective of a special interest (OOP,
Realtime, etc.). Look over the
bibliography to see what might best suit
your needs.

From: "David Botton"
<David@Botton.com>

Date: Mon, 17 Sep 2001 12:01:16 -0400
Subject: Re: book
Newsgroups: comp.lang.ada

It is more about your style and level of
learning. Your platform doesn't matter
much, Ada is not compiler/platform
dependant as all implementations tend to
provide the standard as a minimum (that
should be refreshing if you have C++
experience :-)

You can find information about books at:
http://www.adapower.com/books.
Reviews at: http://www.seas.gwu.edu/
~mfeldman/ada95books.html. On line
resources in general at:
http://www.adapower.com.
Reference material at:

http://www.adapower.com/ref.

As for platform specific information, I
suggest starting with:
http://www.gnuada.org for Linux
compiler and links to resources for Linux,
http://www.adapower.com/windows for
links to various Windows bindings.

From: Darren New <dnew@san.rr.com>
Date: Mon, 17 Sep 2001 16:07:59 GMT
Subject: Re: book
Newsgroups: comp.lang.ada

I really liked "Ada as a Second
Language." Very well organized. Very
useful if you already know C++,
COBOL, and/or Fortran 9x. Well-
indexed as well. Extremely dense, in the
sense that as you get farther into it, it may
take several long seconds to figure out
what a single sentence means, since if
you haven't internalized all the Ada
terminology, you have to translate from
"classwide types with derived types
containing unconstrained arrays with
limited components ..." to what that
actually means in English. :-)

It is not specific to any particular OS or
compiler, however. (Which may be good
or bad, depending on your needs.)

Darren New, San Diego, CA, USA
(PST).

Roderick Chapman -
"SPARK and Abstract
Interpretation"
From: rod@praxis-cs.co.uk (Rod

Chapman)
Date: 21 Sep 2001 06:56:14 -0700
Subject: ANNOUNCE: New white paper

available on www.sparkada.com
Newsgroups: comp.lang.ada

A new white paper entitled "SPARK and
Abstract Interpretation" is now available
for download on www.sparkada.com.
The introduction reads:

"Recently, there has been significant
interest in the use of Abstract
Interpretation (AI) technology in the
static analysis of critical software. A
number of AI-based tools exist, but some
of their marketing suffers from a level of
hyperbole that is at best optimistic, and at
worst somewhat irresponsible.

There have also been some attempts to
compare AI-based static analysis tools
with the analysis implemented by the
SPARK language and the SPARK
Examiner toolset. The aim of this white
paper is to dispel some of the common
myths and to avoid potential confusion
with customers."

I'm sure many readers of c.l.a might be
interested in this.

Rod Chapman, SPARK Team, Praxis
Critical Systems, sparkinfo@praxis-
cs.co.uk

From: Manuel Carro
<boris@lml.ls.fi.upm.es>

Date: 24 Sep 2001 15:24:54 +0200
Organization: Computer Science

Department, Technical U. of Madrid,
Spain

Subject: Re: ANNOUNCE: New white
paper available on www.sparkada.com

Newsgroups: comp.lang.ada

> Do you have any links to description of
what Abstract Interpretation is - i.e.
what is it based on?

Basically it is a general means to analyze
programs by mapping them into an
abstract value space. As a simple
example, all numbers can be mapped to
either 0, positive, or negative, and the
builtin operations be redefined
accordingly, i.e.,

x * y = y * x; (0) * _ = (0); (+) * (+) =
(+); (+) * (-) = (-); (-) * (-) = (-);

The program is then run in the abstract
domain, possibly several times, until the
information concerning the program does
not change. Then one might be able to
infer that a variable is, e.g., always
positive at some point. The good point is
that having a finite abtract domain (with
some mathematical properties) ensures
termination of the analysis. The bad
point is that, of course, information is lost
both with respect to the actual program (I

know that something is positive, but that
does not help me to get rid of a "X > 3"
test), and with respect to the abstract
domain itself (i.e., I might end up with a
variable which has "any value").

The abstract domain should be carefully
chosen to reflect the properties one wants
to study. The nice thing is that the
analysis algorithm can be made (in
principle) generic and be used with any
abstract domain.

There has been a lot of work in abstract
interpretation in logic and declarative
languages.

Manuel Carro, DLSIIS, e-mail:
mcarro@fi.upm.es,
http://lml.ls.fi.upm.es/~boris, Phone +34
91 336-7455, Fax +34 91 336-7412

From: "Ken Garlington"
<Ken.Garlington@computer.org>

Date: Tue, 25 Sep 2001 17:42:40 GMT
Subject: Re: ANNOUNCE: New white

paper available on www.sparkada.com
Newsgroups: comp.lang.ada

There is also a brief description at
http://www.polyspace.com/abstract.htm

Availability of "High
Integrity Ada: The SPARK
Approach"
From: rod@praxis-cs.co.uk (Rod

Chapman)
Date: 19 Oct 2001 05:52:40 -0700
Subject: ANNOUNCE: High Integrity Ada:

The SPARK Approach availability
Newsgroups: comp.lang.ada

It has come to our attention that many
people are experiencing significant
difficulty, especially in the USA, in
obtaining the "SPARK Book" by John
Barnes.

The book is definitely in print, and is
available (we have about 40 copies here
in the office for courses...), despite what
is said by the various on-line booksellers
and their databases.

If you're having trouble obtaining a copy,
please contact us directly at
sparkinfo@praxis-cs.co.uk and we will
seek to rectify the situation. Knowing
how many people are in this situation will
be useful for us to pass on to our
publisher.

John English - "Ada 95: The
Craft of Object-Oriented
Programming"
From: John English <je@brighton.ac.uk>
Date: Sun, 23 Sep 2001 00:00:21 +0100
Organization: University of Brighton
Subject: ANNOUNCE: Online Ada textbook
Newsgroups: comp.lang.ada

Since my book "Ada 95: The Craft of
Object-Oriented Programming" is now
out of print following Prentice Hall being

News – References to Publ icat ions 217

Ada User Journal Volume 22, Number 4, December 2001

swallowed up by the all-enveloping
Pearson group, I have reacquired the
copyright and released it online at
http://www.it.bton.ac.uk/staff/je/adacraft/
in HTML format. It can also be
downloaded for offline use.

I've fixed the errata from the print edition
(I think) but there will no doubt be others
that I've missed (or added). Please let me
know if you spot anything that needs
fixing... Enjoy!

John English, Senior Lecturer, Dept. of
Computing, University of Brighton,
je@brighton.ac.uk,
http://www.it.bton.ac.uk/staff/je, non-
profit CD for CS students: see
http://burks.bton.ac.uk

From: John English <je@brighton.ac.uk>
Date: Fri, 28 Sep 2001 17:53:48 +0100
Organization: University of Brighton
Subject: Re: ANNOUNCE: Online Ada

textbook
Newsgroups: comp.lang.ada

> It would make a very nice part of a
student/beginner/hobbyist "kit" -
having the HTML & possibly PDF
available on a CD with a compiler, etc.
Getting the pieces assembled in one
place and making it easy for the
beginner to get started with Ada would
help a lot. This on-line book is an
excelent addition to all the pieces and
one that has been, to some extent,
missing.

See my .sig for a link to the BURKS set
of CDs. This set is priced at £7.50 for 4
CDs (a DVD edition will also be
available shortly), and it includes my
book and Mike Smith's book, the RM and
Rationale, the old FAQs and Lovelace, as
well as GNAT, GNATCOM, my
GnatIDE, AdaGIDE, GVD, JEWL, GTk,
TASH, ...

The whole lot is also online -- the Ada
page is here: http://burks.bton.ac.uk/
burks/language/ada/

It also includes tutorials, reference
material and compilers for about 20 other
languages, a dictionary of computing, a
complete set of RFCs, many of the W3C
specifications, lots more tutorial and
reference material, and a copy of
Mandrake Linux. Would this do, do you
think? :-)

From: John English <je@brighton.ac.uk>
Date: Tue, 13 Nov 2001 15:54:29 +0000
Organization: University of Brighton
Subject: ANNOUNCE: Online Ada textbook

-- update
Newsgroups: comp.lang.ada

A new version of my online textbook,
"Ada 95: The Craft of Object Oriented
Programming", has now been uploaded to
the website at
http://www.it.brighton.ac.uk/staff/je/
adacraft/. This version corrects a number
of glaring errors, both in the text and in
the formatting.

Many thanks to those who sent me
corrections, and in particular to Tad
Ashlock and Jeffrey Cherry who each
found an astonishing number of bloopers
(with very few in common!)...

Information about HRT-
HOOD
From: "Jean-Pierre Rosen"

<rosen@adalog.fr>
Date: Fri, 9 Nov 2001 20:16:23 +0100
Organization: Adalog
Subject: Re: Methodology: HRT HOOD
Newsgroups: comp.lang.ada

[In response to a request for information
about HRT-HOOD, an old URL of the
"HOOD Method Home Page" was given.
-- dc]

Thanks for the plug :-), but please use
http://www.adalog.fr/huf. The other
address is valid, but may change any
time.

From: Stephen Leake
<stephen.a.leake.1@gsfc.nasa.gov>

Date: 09 Nov 2001 12:13:09 -0500
Organization: NASA Goddard Space Flight

Center
Subject: Re: Methodology: HRT HOOD
Newsgroups: comp.lang.ada

Well, this is not about HOOD directly,
but try: http://www.tni.fr/tni/offre/stood/
index.eng.html. It's a tool for modelling
HOOD designs. They also have
information about HOOD in general.

From: Michal Nowak <vinnie@inetia.pl>
Date: Fri, 09 Nov 2001 19:05:50 +0100
Subject: Re: Methodology: HRT HOOD
Newsgroups: comp.lang.ada

> Does anyone know of any good
websites that have information about
HRT-HOOD?

Following a link from
[http://www.adalog.fr/huf] I came to ESA
home page at http://www.estec.esa.nl/
wmwww/WME/oot/. From there it is
possible to download very useful
documents about HOOD method. That
was just in the case if you miss this link,
so it may not provide any help if you
were there already.

Mikem, Mike Nowak, vinnie@inetia.pl,
http://www.geocities.com/vinnie14pl

German Ada Programming
Books
From: Georg Bauhaus <sb463ba@l1-

hrz.uni-duisburg.de>
Date: Sun, 11 Nov 2001 23:41:56 +0000

(UTC)
Subject: Re: [Newbie] Searching for good

german programming guide in Ada95
Newsgroups: comp.lang.ada

> I'm searching for a good programming
guide in the internet. All I found was
the Lovelace Tutorial... But no german
one to see...

[As the replies are obviously mainly of
interest for our German-speaking readers,
I've kept the responses in German. -- dc]

Manfred Nagl: Softwaretechnik mit Ada
95 (auf 95 achten, es gibt auch eine alte
Auflage)

Diana Schmidt: ... Ada, ...
objektorientierten Standards (kenne ich
aber nicht)

Es gibt eine Reihe aeltere Ada 83
Buecher, die vielleicht hilfreich sind, in
vielen Buechereien.

Und keinesfalls sich die Gelegenheit
entgehen lassen, fortgesetzt Englisch zu
lernen :-) (which means: by all means
keep on learning English (I am talking to
myself))

From: Alfred Hilscher
<Alfred.Hilscher@icn.siemens.de>

Date: Mon, 12 Nov 2001 11:50:00 +0100
Organization: Siemens AG
Subject: Re: [Newbie] Searching for good

german programming guide in Ada95
Newsgroups: comp.lang.ada

Erfolgreich programmieren mit Ada.
Unter Berücksichtigung des
objektorientierten Standards. von D.
Schmidt

I have it, and I like it.

And: Ada, eine Einführung von K.P.
Kratzer

Online Ada Books

From: Preben Randhol
<randhol+abuse@pvv.org>

Date: Mon, 12 Nov 2001 19:02:23 +0000
(UTC)

Organization: Norwegian university of
science and technology

Subject: Re: function to generic
Newsgroups: comp.lang.ada

> [...] how it works exactly? I try to find
out from ref guides, but I don't find it.
:((

Don't read ref. books, read a text on Ada
book. Here are some online.

http://www.it.bton.ac.uk/staff/je/adacraft/
http://burks.bton.ac.uk/burks/language/
ada/ada95.pdf
http://www.adapower.com/learn/
adadistilled.html

From: "David Botton"
<David@Botton.com>

Date: Thu, 15 Nov 2001 09:00:09 -0500
Subject: Re: pointers in Ada
Newsgroups: comp.lang.ada

I know of at least seven books on line for
Ada.

http://www.adapower.com/learn

* Ada Distilled

* Ada 95: The Craft of Object-Oriented
Programming

* Object Oriented Programming in Ada
95

218 News – References to Publ icat ions

Volume 22, Number 4, December 2001 Ada User Journal

* The Big Online Book of Linux Ada
Programming

* Ada in Action

* Introducing Ada 95

* LAW - Lear Ada on the Web = Ada: A
Developmental Approach

The top 3 are new, but the other four
have been with us for some time. BTW,
if you count the RM, Rationale and Style
Guide that makes _10_ books on-line.
Plus we have Quick Reference Cards and
more :-) (http://www.adapower.com/ref)

Java

Generating Ada Package
Specifications for Java Class
Files
From: David Emery

<demery@cox.rr.com>
Date: Sat, 06 Oct 2001 00:55:03 GMT
Subject: Java to Ada...
Newsgroups: comp.lang.ada

> ... Last I heard, the author was working
on an option to produce Ada source
files from the class files.

Karl Nyberg and I did a paper on this for
Ada-Europe a couple of years ago.
There's one really significant problem
with generating Ada package specs from
class files, and that is that the parameter
names are missing. Otherwise, most of
what you'd want to know about a class
can be figured out from the class file,
which is kind of neat.

By the way, the absence of named
parameter notation is #2 on my list of big
mistakes in the Java language. #1 is the
lack of separation of spec and body.

[See "Automating the Ada Binding
Process for Java - How Far Can We
Go?", by David E. Emery, Robert F.
Mathis, and Karl A. Nyberg, in L.
Asplund (Ed.): "Reliable Software
Technologies - Ada-Europe'98", 1998
Ada-Europe International Conference on
Reliable Software Technologies,
Uppsala, Sweden, June 1998.
Proceedings, Springer LNCS 1411.
Abstract at
http://link.springer.de/link/service/series/
0558/tocs/t1411.htm. -- dc]

Ada Inside

Joint Strike Fighter
From: Richard Riehle

<richard@adaworks.com>
Date: Sun, 28 Oct 2001 20:55:53 -0800
Organization: AdaWorks Software

Engineering
Subject: Joint Strike Fighter
Newsgroups: comp.lang.ada

Now that LMCO has been awarded the
contract for JSF, does anyone know if the
original plan to do the software in Ada
remains unchanged?

From: "Marin David Condic"
<marin.condic@pacemicro.com>

Date: Mon, 29 Oct 2001 10:02:24 -0500
Subject: Re: Joint Strike Fighter
Newsgroups: comp.lang.ada

I used to work on the JSF engine control
and that was done in Ada and I can't think
of a good reason Pratt & Whitney would
want to switch and lose all that
verification work. I'd have to verify it
with one of my former associates [...] but
I would doubt that after years of
development and testing anyone would
want to throw out all the code and start
over and have to once again flight certify
the control.

I wouldn't know about all of the other
avionics in the JSF. That would be a
lot of systems. Are there any in
particular you had in mind?

From: Paul A Storm
<paul.a.storm@lmco.com>

Date: Mon, 29 Oct 2001 09:55:13 -0800
Subject: Re: Joint Strike Fighter
Newsgroups: comp.lang.ada

Ada use is alive and well here at LMCO.
;-)

From: dirk@cs.kuleuven.ac.be (Dirk
Craeynest)

Date: 2 Nov 2001 21:03:50 +0100
Organization: Ada-Belgium, c/o Dept. of

Computer Science, K.U.Leuven
Subject: Re: Joint Strike Fighter
Newsgroups: comp.lang.ada
Summary: Green Hills' AdaMULTI selected

Check out the recent news at
http://www.ghs.com/news/211031l.html.
[...]

[See "Green Hills Software -
INTEGRITY RTOS and AdaMULTI
SDE Selected for F-35 JSF" in this AUJ
issue. -- dc]

From: "Marin David Condic"
<marin.condic@pacemicro.com>

Date: Sun, 11 Nov 2001 10:24:28 -0500
Subject: Re: JSF Avionics Software
Newsgroups: comp.lang.ada

In my most recent conversations with
colleagues still at Pratt, the word has
been that Pratt is still using Ada for the
engine control software and has no
intention of changing that any time soon.
[...]

VSTOL Predecessor of Joint
Strike Fighter
From: ian0kerr@my-deja.com (Ian)
Date: 1 Nov 2001 03:38:12 -0800
Subject: Re: Joint Strike Fighter
Newsgroups: comp.lang.ada

> To be generous, there may be issues
surrounding the availability of tools

and utilities. There is a lot of stuff
available for C++ that you might have
a hard time duplicating in Ada.

Working currently on the VSTOL
predecessor of JSF I don't find anything
that we need from Ada and the available
tools that C++ would provide.

[Clarified in a subsequent message as:]
Ada provides us with everything we
need. C++ does not have an advantage
for us.

Our process, (on a different project) is
described in FULL in:

"GENESYS: An Application of OO
technology to Aircraft Display Systems",
Neil Davidson, BAE Systems Avionics
Ltd, presented in "Symposium on
Reliable Object-Oriented Programming",
at Institution of Electrical Engineers,
Savoy Place, London, 24th October 2001.

Except we use a substitute for Labview.
We don't have a problem recruiting Ada
experienced software engineers and then
practically everyone who wants it gets
training. I have done courses on
statecharts, UML, UML to Ada95 code
generation, Test instrumentation tools for
Ada and Ada95 updates.

I don't think it is that difficult to do
avionics in Ada95 if you already know
C++ properly (assuming some knowledge
of SW Engineering principles). On a
large project there is a lot of opportunities
for mentoring from other more
experienced team members.

Indirect Information on Ada
Usage
[Extracts from job-ads and other postings
illustrating Ada usage around the world.
-- dc]

From: Lionel Draghi
<Lionel.Draghi@free.fr>

Date: Wed, 29 Aug 2001 20:55:23 GMT
Subject: [Emploi] SchlumbergerSema
Newsgroups: fr.comp.lang.ada

[Extracts translated from French: -- dc]

SchlumbergerSema [...] for our defense
department we are looking for junior and
senior Ada development engineers. You
will be responsible for the
implementation of models (coding, unit
tests) for a war-game simulation in an
object-oriented architecture. [...]
Significant Ada 95 experience is
indispensable, with a good knowledge of
the object-oriented mechanisms of the
language. [...]

From: Patrice Serange
<pserange@alten.com>

Date: Fri, 31 Aug 2001 09:50:41 +0200
Subject: Re: Ada-related job

announcements (was: Fwd: New job
opening)

To: Dirk.Craeynest@cs.kuleuven.ac.be

News – Ada Ins ide 219

Ada User Journal Volume 22, Number 4, December 2001

[At URL http://www.cs.kuleuven.ac.be/
~dirk/ada-belgium/jobs/ Ada-Belgium
maintains web-pages with Ada-related
job offers for Belgium. See also "Ada
Jobs Web Pages" in AUJ 21.2 (July
2000), pp.97-98. -- dc]

Ada Software Engineers & Project
Managers (Belgium)

Within our embedded competence center,
we are looking for engineers and project
managers specialized in Ada design and
development. Projects are varied and
could reach managerial responsabilities
depending on your experience. The
sectors involved are: aeronautic (design
of avionic equipment) or railway. The
evolution of this role can be international
depending on your motivation. The
knowledge of real-time constrained
methodologies of development are an
advantage, as well as experience in
aeronautic or military standards. [...]

From: Christophe Le Bris
Date: Fri, 7 Sep 2001 19:19:32 +0200
URL: <ada-france>/2001-

September/000365.html

[Ada-France posts Ada-related job
announcements to the fr.comp.lang.ada
newsgroup and to Ada-France's mailing
list. The latter are available at
http://www.ada-france.org/pipermail/ada-
france (abbreviated in URLs here as
<ada-france>); extracts from a discussion
about projects where Ada is used, are
included below, translated from French:
-- dc]

- Ariane 5 (both on-board and ground) -
earth observing satelites (SPOT 5,
Helios 2)

- all flight software for geostationary
satelites based on the SpaceBus
platform (including the new generation
now in development)

- all flight software for the small satelites
in low orbit based on the Proteus
platform.

From: Xavier Gandibleux
Date: Sat, 08 Sep 2001 12:39:09 +0200
URL: <ada-france>/2001-

September/000382.html

Add transport-related activies as well
(railway and aviation). [...]

From: Culos Alain
Date: Mon, 10 Sep 2001 09:46:34 +0100
URL: <ada-france>/2001-

September/000368.html

[...] As well as in all air traffic control
systems delivered by Thomson (now
Thales). Thales is one of the world
leaders in this domain.

Add also the supervision of the Syracuse
II system (French inter-army
communications). [...]

From: Francois Gody
<francois.gody@amaltheus.com>

Date: Mon, 10 Sep 2001 15:00:58 +0200

URL: <ada-france>/2001-
September/000370.html

- EADS (Aerospatiale, Airbus, ...)

- Thales (several projects both military as
well as civil)

- CNES (several satelites and scientific
missions)

- the space station (ISS) has most
software for the European Columbus
module written in Ada (Matra Space)

- the EGNOS air navigation system
(Alcatel Space), whose specifications
are being finalized, will be written in
Ada (Aonix' SMART)

François Gody, Matra Marconi Space,
Toulouse, France

From: David Luc <Luc.David@ganil.fr>
Date: Fri, 14 Sep 2001 09:42:29 +0200
Subject: Ada en entreprise
URL: <ada-france>/2001-

September/000392.html

The control system of the "Grand
Accelerateur National d'Ions Lourds",
situated in Caen, Calvados. All our
programming is done in Ada, the real-
time parts as well as the human-machine
interfaces. We develop all our code
ourselves, as we don't have the budget to
subcontract software. [...]

Luc David, Groupe Informatique
Machine, G.A.N.I.L., Caen, France

From: Lionel Draghi
<Lionel.Draghi@free.fr>

Date: Sat, 15 Sep 2001 22:08:30 GMT
Subject: [Emploi] SII Toulouse
Newsgroups: fr.comp.lang.ada

[Extracts translated from French: -- dc]

SII Toulouse [...] specialised in industrial
software [...] is looking for engineers
embedded software with Ada experience,
if possible in a real-time environment
(VRTX, VxWorks, Tornado, LynxOS);
and an experienced project leader
embedded real-time software, familiar
with the following languages and tools:
Ada, Assembler, C, C++, VxWorks,
Tornado, VRTX, Attol. [...]

From: Lionel Draghi
<Lionel.Draghi@free.fr>

Date: Sat, 15 Sep 2001 22:16:07 GMT
Subject: [Emploi] Quaternove
Newsgroups: fr.comp.lang.ada

[Extracts translated from French: -- dc]

Ada development engineers, Paris region,
defense & aerospace, from beginner up to
5 years experience. Quaternove, [...]
specialised in industrial software, optical
and electronic engineering. [...]
competences in Ada 83 and/or Ada 95 in
a Unix environment. [...]

Date: Thu, 20 Sep 2001 09:22:37 +0200
Subject: ada-france: Emplois & stages
URL: http://www.ada-

france.org/EMPLOIS/offres.html

[At URL http://www.ada-
france.org/EMPLOIS Ada-France
maintains a web-page with Ada-related
job offers from its members, and
currently has entries from: -- dc]

- Rational France, technical consultants

- Aonix, software development engineers

- CS Aerospace, project leaders,
engineers, embedded real-time systems

- Adalog, Ada developers

From: Claude Marinier
<claude.marinier@dreo.dnd.ca>

Date: Wed, 26 Sep 2001 09:44:41 -0400
Subject: Re: gnat and heap size
Newsgroups: comp.lang.ada

We want to use large arrays (well, large
for us: 10000 x 10000 complex numbers).
We are using GNAT 3.13p on Solaris 7.
[...] The application is an electromagnetic
simulation. [...]

Claude Marinier, Information
Technology Group, Defence Research
Establishment Ottawa (DREO), 3701
Carling Avenue, Ottawa, Ontario, K1A
0Z4, Canada, http://www.dreo.dnd.ca

From: "PlanetRecruit.com"
<mailout@planetrecruit.com>

Date: Thu, 04 Oct 2001 07:05:36 +0000
Subject: ** 3 NEW Jobs from

PlanetRecruit.com (04/10/2001) **

Ada Software specialist (Belgium)

You must have a minimum of 2 years
Ada experience, experience of
Development of Safety Critical software
and Rational Apex as a user.

Functional validation Engineer (Belgium)

Minimum of 2 years experience in Ada
on a single project. Experience in the
development of safety critical software,
the development of real-time and
infrastructure software. Tools required
Rational Apex (as user), other Ada
Compilers (Aonix &/or Greenhills) Unix
and Integration tools (eg logic analyser).
Plus Testing experience at requirement
and module level. Need to be French
speaking.

Functional Validation Engineer
(Belgium)

I have 2 contract positions for a [...]
functional validation engineer with 3-5
years current experience with Ada,
development of safety critical software,
Rational Apex (as user), (Aonix &/or
Greenhills), Unix, Integration tools and
Knowledge of Ada run-time, Power Pc
target and understanding of real-time
control systems and testing experience at
requirement [...]

From: "PlanetRecruit.com"
<mailout@planetrecruit.com>

Date: Sat, 20 Oct 2001 06:20:41 +0000
Subject: ** 1 NEW Jobs from

PlanetRecruit.com (20/10/2001) **

220 News – Ada Ins ide

Volume 22, Number 4, December 2001 Ada User Journal

Software Functional Validation
Engineers (Belgium)

Looking for Validation/Integration
Engineers to work in Belgium for 6
months. You must have min 4 yrs exp of
Ada83 or Ada95, ideally 2 years or more
on 1 project. Other skills req: Yourdon,
HOOD, SSADM, UML, Teamwork,
Rational Apex, Ipsys, Artisan, Word,
Excel, PVCS, SCCS, Apex, Clearcase,
AdaTest, LDRA Testbed, TeamTest,
ATTOL, Change Control, SPARC Ada.
You will be involved in full project life
cycle. French language will be a great
benefit.

From: JPV <jean-
philippe_vassilakis@jyhoriba.fr>

Date: Tue, 23 Oct 2001 10:36:48 +0200
Subject: Re: Blending Delphi with Ada95
To: team-ada@acm.org

[...] this is what we do on Windows
projects for many years. Ada95 for the
business logic. Delphi (sometimes
VC++) for the user interface. Middleware
by home made messaging allowing a
LAN between those 2 parts. Works
really good.

Jean-Philippe Vassilakis, Jobin-Yvon
Thin Films Division, Software for
Process Control & Ellipsometers, 5
Avenue Arago, 91380 Chilly-Mazarin,
France

From: "PlanetRecruit.com"
<mailout@planetrecruit.com>

Date: Tue, 13 Nov 2001 07:21:25 +0000
Subject: ** 3 NEW Jobs from

PlanetRecruit.com (13/11/2001) **

Ada Software Engineer (Belgium)

World Class International Company
requires an Ada Software Engineer to
intergrate into a project involving the
design, development, testing and writing
of documentation. You will play an
integral part in the development team,
and ideally you have at least 2 years
commercial Ada experience with a
Computer Science/Engineering degree.

Ada Software Engineer (Belgium)

My client, the leader in its field, urgently
requires an experienced Ada Engineer to
join cutting edge development team
working on various projects. You will
have at least 2 years commercial
experience using Ada 83-95 with
knowledge of C++ a distinct advantage.
You will also be of graduate calibre with
a degree in Computer
Sciences/Engineering (Civil/Industrial).
[...]

From: "PlanetRecruit.com"
<mailout@planetrecruit.com>

Date: Wed, 14 Nov 2001 06:13:19 +0000
Subject: ** 1 NEW Jobs from

PlanetRecruit.com (14/11/2001) **

Ada Software Engineer (Belgium)

Internationally renowned market leader
requires an experienced Ada Software

Engineer to join expanding development
team. You will play an integral part in the
team, and ideally you have at least 2
years commercial Ada experience with a
Computer Science/Engineering degree.
Duties include the design, developing,
implementing and testing of
documentation for various projects.

Date: Tue, 20 Nov 2001 08:42:13 +0100
(MET)

Subject: Ada-related job announcements

[Posted on the monster.be website. -- dc]

Belgium, Brussels, Ada Developer
Required

Required for an urgent contract in
Brussels. You should have good
experience of Ada and knowledge of a
scripting language like Perl. You will be
working on a large project performing
code review in Ada and coaching the
team. French speaker preferred. [...]

From: "PlanetRecruit.com"
<mailout@planetrecruit.com>

Date: Wed, 21 Nov 2001 06:54:33 +0000
Subject: ** 1 NEW Jobs from

PlanetRecruit.com (21/11/2001) **

Ada Engineers/Project Managers
(Belgium)

My client requires French or Dutch
speaking Ada Engineers to work on
important projects. Technically you will
have good commercial experience of
Ada, C++, OOAD (UML) and good
knowledge of Unix and NT. Successful
candidates will also have Degree in
Software Engineering (or related
technical discipline) and excellent
communication skills.

From: "PlanetRecruit.com"
<mailout@planetrecruit.com>

Date: Thu, 22 Nov 2001 06:40:05 +0000
Subject: ** 3 NEW Jobs from

PlanetRecruit.com (22/11/2001) **

[...] Ada Software Engineer (Belgium)

Leading Consultancy requires
experienced engineers and project
managers to work on client projects. You
must have good commercial experience
of Ada design and development, with
knowledge of real-time/embedded
systems a distinct advantage.
French/Dutch speaking a bonus. [...]

From: Erik Wischmann
<erik.wischmann@euro-telematik.de>

Date: Thu, 22 Nov 2001 12:14:15 +0100
Organization: Euro Telematik AG
Subject: Job Offer: Ada SW Engineers
Newsgroups: comp.lang.ada

Ada SW-Engineers needed!

Euro Telematik AG was founded in 1998
as a Management Buy-Out of then
Daimler-Benz Aerospace (DASA). We
are offering products and engineering
services in the aerospace and road
telematics market.

For our ongoing expansion of our
engineering business in the aerospace
sector, we are currently seeking software
engineers with a good knowledge of Ada.
Avionics background is preferred, but not
a necessity.

The offer is for a long-term employment.
Since our customer is working on
military projects, all employees in this
sector will be subject to clearance
screening.

Work will be performed at our customer's
facilities in Ottobrunn near Munich. The
job will include: SW-Design, Coding,
Module- and Sub-System testing, and
documentation on enhanced avionic
systems for military aircraft. [...]

[And from another message: -- dc]

We are also looking for a SW engineer to
work in Edinburgh, Scotland. The other
mentioned conditions apply to this job, as
well. [...]

From: "PlanetRecruit.com"
<mailout@planetrecruit.com>

Date: Fri, 23 Nov 2001 06:04:08 +0000
Subject: ** 4 NEW Jobs from

PlanetRecruit.com (23/11/2001) **

Ada Project Managers (Belgium)

Ada Project Managers are urgently
required by market leading consultancy
to work on full life cycle projects for
aviation industry. You will have
knowledge of Ada design and
development along with Real-Time
constrained methodologies. Fluency in
either Dutch or French a massive
advantage. Opportunities for perm roles
as well.

Ada Software Engineer (Belgium)

My client urgently requires experienced
Ada Engineers to work in their embedded
competence centre for the aeronautic and
railway sectors. You will have excellent
Ada Development and Design
experience, with a knowledge of real-
time methodologies a distinct advantage.
[...]

The Future of Ada
From: dewar@gnat.com (Robert Dewar)
Date: 8 Oct 2001 08:02:52 -0700
Subject: Re: is Ada dying?
Newsgroups: comp.lang.ada

[In a thread spreading a lot of FUD, such
as "it seems Ada is dying", "from what I
can see very few people use Ada", "Ada's
parents (the U.S. DoD) are dropping Ada
95", etc. -- dc]

Isn't it odd in this field that if a
technology is not dominant (by number
of applications), then it is considered
dead (examples, Pascal, PL/1, OS/2 ... all
of which are alive and used for many
important applications). The trade press
has even announced that Java is dead on
the client side, and no doubt given

News – Ada Ins ide 221

Ada User Journal Volume 22, Number 4, December 2001

Microsoft's decision to exclude Java from
XP, will pronounce it completely dead.
Sometimes people even decide that
widely used technologies are dead. I
once heard a high up official in the DoD
tell me that no one outside the DoD used
COBOL any more (that statement was
made over a year ago!)

The U.S. DoD is not "dropping Ada", to
think this is as wrong as to think that
everyone in the DoD was using Ada
during the mandate. The actual fact is
that, not at all surprisingly, some people
in the DoD like Ada, and fight to do as
much as possible in Ada, and some
people in the DoD dislike it, and fight to
do as much as possible in some other
language (C++ or even Java).

Ada is certainly not dead, and use of Ada
will continue for a long time. Will usage
increase or decrease? Hard to say. Here at
Ada Core Technologies, we see a steady
increase in use. This can of course be due
to three factors

a) people updating from Ada 83 to Ada
95;

b) people shifting from other Ada
technologies to GNAT;

c) new projects being started in Ada.

We certainly know some projects that are
in category c, but it is hard to know what
the division between these three is. In any
case, regardless of what other vendors do,
ACT expects to be supporting Ada for a
long time to come, and to continue to do
active development and enhancements to
the GNAT technology (we already have a
long list of enhancements that have been
made for version 3.15). As you know
from our web site, 3.14 also had a long
list of enhancements (and we expect to
see 3.14 public versions out soon for
selected targets).

If you want to learn a dominant
technology that is very widely used, I
would suggest Visual Basic or COBOL,
there is a big demand for people in both
areas, and these are still among the most
widely used languages. But if you want
to learn Ada, you will find that

a) You acquire skills and knowledge that
are useful not only in Ada, but in other
arenas.

b) There are definitely jobs for competent
Ada programmers.

Robert Dewar, Ada Core Technologies

Ada in Context

On Separation of Interface
and Implementation
From: chris.m.moore@amsjv.com (Chris

M. Moore)
Date: Wed, 05 Sep 2001 11:08:37 GMT
Organization: Alenia Marconi Systems

Subject: Another good URL for all you
C++ haters

Newsgroups: comp.lang.ada

[Excerpt from] http://www.byte.com/
documents/s=1271/byt20010831s0001/
0903_nichols.html

Even Floyd, who loves the language,
admits that, "Its greatest weaknesses is a
flaw in the interface/implementation
separation. A class exposes its private
data/methods to the world and a
programmer must use some tricks (that
should be supported directly in the
language) to overcome this."

Chris M. Moore, Software engineer

From: Tucker Taft <stt@avercom.net>
Date: Fri, 07 Sep 2001 13:54:52 -0400
Organization: AverStar (formerly

Intermetrics) Burlington, MA USA
Subject: Re: Another good URL for all you

C++ haters
Newsgroups: comp.lang.ada

> Doesn't have Ada a similar problem?

Ada requires the full definition of a
private type to be in the package spec, but
it doesn't require the declaration of
"helper" functions the way C++ does.
Helper functions can be declared in the
package body, without perturbing the
spec.

> In C++, one can use a "friend" class to
contain the helper functions, but that is
pretty obscure.

Note that both C++ and Ada allow
access/pointer types to be declared
without exposing the full details of the
target type.

Tucker Taft, stt@avercom.net,
http://www.avercom.net, Chief
Technology Officer, AverCom
Corporation (A Titan Company),
Bedford, MA, USA

From: James Rogers
<jimmaureenrogers@worldnet.att.net>

Date: Wed, 05 Sep 2001 14:43:13 GMT
Subject: Re: Another good URL for all you

C++ haters
Newsgroups: comp.lang.ada

The author of this article claims he spoke
to a lot of C++ programmers. He may
have. He also posted a questionnaire on
comp.lang.c++.moderated asking specific
questions about C++. The thread in that
newsgroup is titled "Whether C++?". I
know, it should be "Whither", as in the
article, but he misspelled the title in his
posting.

I learned a lot from the responses to this
article. Mostly I learned that many C++
programmers know only C, C++, Java,
and Perl. They do not know about any
languages not descended from C syntax.

For instance, several responders stated
that the primary strength of C++ is that it
is the only language that gives you a
choice of design paradigms (OO and non-

OO) as well as generics and low level
programming capability. This is a clear
indication that those responders have no
understanding of Ada.

There was general agreement that C++ is
a very complex language. It is so
complex that, four years after its
standardization, there are no compilers
fully compliant with the standard. Some
people see this as a problem. Some
people see it as a good thing. I only hope
I do not have to work with anybody who
thinks it is best to use a tool that takes
years of study before it can be used
correctly.

I do not hate C++. I do have an aversion
to ignorance masquerading as knowledge.
My conclusion from the thread was that
many people prefer C++ because they are
ignorant of any alternatives.

Jim Rogers, Colorado Springs, Colorado
USA

From: James Rogers
<jimmaureenrogers@worldnet.att.net>

Date: Wed, 05 Sep 2001 21:49:24 GMT
Subject: Re: Another good URL for all you

C++ haters
Newsgroups: comp.lang.ada

> Doesn't have Ada a similar problem?
[see above -- dc]

Similar but not quite as severe.

Ada private data and subprograms are
what C++ calls "protected" data/methods.
Ada's equivalent to C++ private
data/methods is data and methods defined
in a package body but not in the
specification. C++ public, private, and
protected data and functions are normally
declared in a header file. Functions are
then defined in the .CPP (source) file.

There is no automatic enforcement of
separation of implementation and
interface in C++. The entire
implementation can be placed in the C++
header file. As with so many other C++
features, only good practice can produce
good separation of interface and
implementation.

Compare both C++ and Ada to Java.
Most Java classes are defined without
benefit of an interface. In fact, Java
interfaces are most typically used to
define a call-back interface rather than to
define common classes. Java does not
even provide you the choice of using a
header file. Java fans proclaim a lack of
separation of interface and
implementation to be an advantage
because you have less code duplication.

From: James Rogers
<jimmaureenrogers@worldnet.att.net>

Date: Thu, 06 Sep 2001 16:57:52 GMT
Subject: Re: Another good URL for all you

C++ haters
Newsgroups: comp.lang.ada

[On the remark that "Java fans proclaim a
lack of separation of interface and

222 News – Ada in Context

Volume 22, Number 4, December 2001 Ada User Journal

implementation to be an advantage
because you have less code duplication."
-- dc]

> In my experience, Java fans claim that
the Interface/Implementation
separation feature of OO is provided
by the Java Interface structure and
Class structure (i.e. the Interface
provides the Interface, and the Class
provides the Implementation). This
seems a very high level viewpoint
corresponding to something like a pure
virtual class (C++), or abstract tagged
type (Ada) rather than what Ada
programmers often see as the
separation, i.e. the package spec/body.
Personally I believe it is a combination
of both.

Java also allows the definition of abstract
classes. They have the expected
restrictions such as not being able to
create an instance of an abstract class.
Java interfaces are treated differently by
the language. In Java you can extend
(inherit from) only one class, producing
single inheritance similar to Ada's. On the
other hand, you can implement any
number of interfaces, and interfaces may
inherit from other interfaces.

In many cases you can program Java
entirely without the use of interfaces.
Exceptions to this include the use of
event handlers. Java event handlers are
commonly used in GUIs and the reusable
code modules called Java Beans.

Note that, for Java Beans, only the event
handler interface is required. There is no
interface requirement for the get and set
methods for Bean properties. Common
practice, then, provides only partial
separation of interface and
implementation for Java Beans. Builder
tools that use Java Beans employ
introspection to evaluate Bean properties.
In this case the implementation must
report its interface at run time.

Furthermore, there is no way to specify a
constructor in a Java interface. Thus,
even if you are diligent about building
your Java classes from interfaces, you
must still omit critical parts of the class
definition.

Why is introspection not as good as
explicit separation of interface and
implementation? Not every program uses
introspection. Furthermore, introspection
is a run-time activity. This means that
compilers must have access to full
implementation code, even though Java
exclusively uses a shared library (aka dll)
model for linking. There is no way in
Java to perform an early compilation of
just the interfaces, as can be done in Ada.
Lack of separation inhibits large team
development.

On Languages, Productivity
and Quality
From: "Marin David Condic"

<marin.condic@pacemicro.com>
Date: Mon, 1 Oct 2001 11:02:45 -0400
Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

> I come from the M$ world. I make my
living as a programmer and as such I
don't have to tell you how aggravating
it gets some times. Anyway, to make a
long story short, I have a project in
mind that needs a rock solid OS. It
can't crash or freeze like windblows
does cause it's aircraft instrumentation.
[...]

I've used Ada to build jet and rocket
engine controls with no COTS OS (bare
machine - our own "executive") where
failure was not an option. Compared to
other languages we used, we got a
doubling of productivity and a four-fold
reduction in errors. We considered it a
major step forward in reliability & could
see no reason to go elsewhere.

I've not used it, but I believe RTEMS was
a suitable OS for military missile
technology and was written in Ada. I
believe it has been used in mission
critical projects, so it has a track record.
Its definitely worth looking into for a
serious avionics project. [See "OAR -
RTEMS Operating System" in this AUJ
issue. -- dc]

Marin David Condic, Senior Software
Engineer, Pace Micro Technology
Americas, www.pacemicro.com,
http://www.mcondic.com/

From: "Pat Rogers"
<progers@classwide.com>

Date: Mon, 01 Oct 2001 17:54:35 GMT
Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

[Someone who was involved in a "good"
C project and a "bad" Ada project
responded: -- dc]

> Good coders can write good code
regardless of language. Language
won't make marginal coders, marginal
coding teams, or bad design any better.
You missed his point. The question is
not whether language is a replacement
for talent, and he did not assert that it
was impossible to make high reliability
code with anything other than Ada.
The question is "for how much
money?". His point (if I may be so
bold) is that they did it much more
economically in Ada. Others have
seen these results too.

Patrick Rogers,
http://www.classwide.com

From: "Marin David Condic"
<marin.condic@pacemicro.com>

Date: Mon, 1 Oct 2001 14:42:36 -0400

Subject: Re: Is Linux right for Embedded?
Newsgroups:

linux.dev.kernel,comp.realtime,comp.lan
g.ada

> [...] Good coders can write good code
regardless of language. [...]

I currently am building embedded
systems in C so it isn't as if I have no
experience on the other side. I would
agree that good software engineers can
produce good code in any language -
including assembler. But after having
acquired years of experience with Ada, I
believe that the job is a *lot* easier using
that language as opposed to C/C++.

I would caution against relying on what I
like to call the "Any *Competent*
Programmer" argument. All of us on any
given day make stupid little mistakes and
I've had metric data demonstrating that a
team of highly "competent" realtime
software engineers with years of
experience in engine controls make 4
times fewer mistakes that made it into the
lab using Ada as compared to other
languages. These were engineers that for
the most part all had at least 10 years of
experience in realtime systems and
working with engine controls
specifically. They were not greenhorns or
morons. Yet their productivity doubled
and their error rates were reduced to a
fourth of what they were before. Many
were skeptical of Ada initially but grew
to appreciate the language as they learned
to use it. Languages can and do make
measurable differences in the quality &
cost of the end product.

Note that the engine controls we made
prior to that still had to work with
extremely high reliability, so I won't
dispute that you can build a solid product
in other languages. It just costs more and
requires more time. Now that I'm
working on digital TV equipment in C, I
am once again reminded of this fact as I
have to constantly track down and fix
errors that would otherwise be caught
automatically by a more secure
programming language. The box still
needs to be reliable, so we'll end up
spending lots of the stockholder's money
testing and fixing it, rather than making
more and better products - but there isn't
anything I can do about that since too
many of my associates are entrenched in
C and too much of the infrastructure is
reliant on C. The data is there to
demonstrate that a better, more
productive job can be done in other
languages - specifically Ada - but it is
hard to beat the entrenched establishment
that is stuck inside the box we're all
supposed to think outside of. Oh well...

From: "Marin David Condic"
<marin.condic@pacemicro.com>

Date: Mon, 1 Oct 2001 14:52:01 -0400
Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

News – Ada in Context 223

Ada User Journal Volume 22, Number 4, December 2001

[In response to Pat Rogers' message
quoted above: -- dc]

[...] That is exactly my point.
Productivity doubled and errors were
reduced by a factor of four. (The latter
probably having a significant impact on
the former.) That has to translate into
lower cost and higher reliability. You can
get good systems in any language - you
just might have to spend the next 5 years
debugging & patching in the lab to get
there. I'd rather get all the automated help
I can find by way of Ada's checking,
structural integrity and organizational
capabilities. That will preserve the
stockholder's money for something more
productive.

Also, I would contend that there are
likely to be other languages that show
similar improvements over C/C++ in
terms of productivity and error rates. I
just don't have any data on other
languages that provide similar safety
capabilities. [...]

From: dmitry@elros.cbb-automation.de
(Dmitry Kazakov)

Date: Tue, 02 Oct 2001 08:06:44 GMT
Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

[In reply to "You can get good systems in
any language - you just might have to
spend the next 5 years debugging &
patching in the lab to get there" someone
wrote: -- dc]

> Cool. More job security! The boss
can't fire me, because the product still
has bugs in it that needs to be fixed
(and of course no one else can fix them
because no one else can figure the code
out because we did not write any
design documents).

[and someone else: -- dc]

> But the customers can fire the whole
company!

Yes they can but will not (:-)). When you
develop in Ada and thus have a higher
quality product, the customer has an
ability to concentrate on real issues (and
discover that the whole project makes no
sense at all (:-)). With C++ (powered by
Windows) he concentrates on bug
reports, updates, service packs etc, which
gives him a warm feeling that "the
process goes" and that he pays for a damn
good and hard work. It sounds cynical,
but sometimes the worse is better...

From: "Marin David Condic"
<marin.condic@pacemicro.com>

Date: Tue, 2 Oct 2001 13:43:15 -0400
Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

[In reply to a request for published
information to illustrate or support the
statement "Compared to other languages
we used, we got a doubling of

productivity and a four-fold reduction in
errors.": -- dc]

Unfortunately, the study was an internal
one for a company that I am no longer
employed by and the results were never
published. Companies tend to get a little
reluctant sometimes when it comes to
publicizing things about their internal
operations - especially if they perceive it
to have some competitive advantage.
[See "Measuring Productivity" in AUJ
22.3 (September 2001), p.167. -- dc]

However, this was not the only source for
productivity data. A better source for a
study can be found at:
http://www.stsc.hill.af.mil/crosstalk/
2000/aug/mccormick.asp and
http://www.tcsigada.org/meeting/
feb99mtg.htm and
http://www.rational.com/products/
whitepapers/337.jsp

Dr McCormick's studies come about as
close to a controlled experiment in
software productivity as I've seen. Other
industry studies are plagued by the fact
that you seldom build the same thing
twice. His experience is based on
multiple groups building software to
satisfy identical requirements under
nearly identical circumstances. That, I
think, offers a little more weight to his
results than might be given to my own
internal study. [See "Software
Engineering: On the Right Track" in this
AUJ issue. -- dc] But in either case, the
conclusion was that use of Ada bought an
improvement in productivity and a
reduction in errors. Of course, YMMV.
:-)

From: Kilgallen@SpamCop.net (Larry
Kilgallen)

Date: 2 Oct 2001 13:40:06 -0500
Organization: LJK Software
Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

[On "they did it much more economically
in Ada. Others have seen these results
too.": -- dc]

> Man hours, maybe, if you have a team
that already has significant Ada
experience. Include costs of compiler,
language & tool training, development
& emulation platforms, & future
maintenance plus factor in employee
turnover, may reveal a different
economic interpretation.

Absolutely! Ada is much easier to learn
to a satisfactory level than C++, and also
suffers less from the phenomena of
people who used it a little in a class
passing themselves off as expert.

[Others responded as well, e.g. on
compiler cost: -- dc]

Comparable, ranging from free to pricey,
as is the case for any language. Surely
you're not thinking of the 1980's, are
you? Ancient history. [And:] Yes, sure.

With programmers costing $50/hr and
sometimes double that, I can see that a
$200 or so for a compiler is really too
much to pay for.

[On cost of language & tool training:]
Comparable to any other language.
[And:] If you know a programmer who
needs more than 2 weeks training to pick
up a new language, let me know, so I
make sure I do not hire them.

[On future maintenance:] A big win for
Ada, compared to other languages.
[And:] Yes, good point. Languages such
as C and Perl are the best language for
future maintenance, they provide years
and years of sustained maintenance for us
programmers to live on.

[On employee turnover:] Yup. The Ada
people tend to stay longer. That's just my
personal observation. [And:] Those dim a
dozzen programmers, we do not want to
lose them, those who need years to learn
a new language, and get confused when
they see BEGIN instead of "{". We got to
keep those ones.

From: "Marin David Condic"
<marin.condic@pacemicro.com>

Date: Tue, 2 Oct 2001 14:44:12 -0400
Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

Q: What do you get when you add one
plus one?

Mathematician: 2.0

Engineer: 2.0 +/- 0.001

Accountant: What do you want it to be?
:-)

The point: If you *want* the answer to be
"Program everything in C", you can
probably find a way to stack up a bunch
of reasons why it is that "C" is the right
answer. OTOH, if you truly have an open
mind and want to investigate what might
be an optimal solution for development
of a particluar kind of system, you might
look at some of the studies I cited
elsewhere and the experience attested to
by a variety of users and *possibly* come
to the conclusion that it is worth a shot at
using Ada (or other languages that
provide more safety) and then think that
the one-time transitional overhead is
worth it.

Remember that at one time Java didn't
exist, yet a bunch of people didn't see any
big problem in adopting it for a variety of
applications. It required training,
investment in compilers, tools, etc. as you
pointed out. But they believed they were
going to get something as a result. Not
really different for Ada, would you think?

BTW: As for cost of compilers and tools,
depending on your platform the cost can
be as little as $0.00. See:
http://www.adapower.org/ for links to
free compilers, free GUI builders, free
bindings, free etc.

224 News – Ada in Context

Volume 22, Number 4, December 2001 Ada User Journal

From: "Marin David Condic"
<marin.condic@pacemicro.com>

Date: Wed, 3 Oct 2001 13:39:14 -0400
Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

> [...] if there *were* numbers on C vs.
Fortran, I wouldn't be shocked to see
Fortran (even F77) come out on top.
C's overeliance on pointers cause a
great deal of its problems. But this is
all theoretical. The numbers on Ada
and C actually exist.

If anecdotes count for anything, I could
enumerate a long list of hours spent in the
last few weeks (We're busy trying to test
quality into the system! :-) where I've
been tracking down memory leaks,
dangling pointers, illegal memory
references, and bad array indexes all
because of pointer usage and/or lack of
checks in C which - FWIW - wouldn't
happen in Ada because of the a) limited
use of pointers, b) scope rules, c) compile
time checks or d) run time checks.

I recall a Bell Labs study of bugs in one
of their big switching applications in
which the report found a whole slew of
common bugs which were classified into
types & examples given. Their
recommendation was to institute coding
standards and code reviews to check for
those specific problems. The
overwhelming bulk of the bug types they
identified were impossible to commit in
Ada because of compile or runtime
checks and the rest were highly unlikely
because Ada doesn't depend on
addresses/pointers for everything in sight.
[See "Ada is More Productive" in AUJ
20.4 (January 2000), pp.262-263. -- dc]

It's anectdotal, but it adds a level of
experience and reasoning that explains
why the studies indicate superior
productivity/error rates with Ada vs C.

On Languages, Reliability
and Time-To-Market
From: Ted Dennison

<dennison@telepath.com>
Date: Wed, 03 Oct 2001 17:31:30 GMT
Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

> [...] If your job ads read "I need
Microsoft Visual C++ / IBM-PC /
Windows95 programmers..." what will
you do with them if Linux becomes the
hot craze? Or if the architecture
changes to Sun/Unix? Or (God
Forbid!) some *other* language
becomes the hot item this week?
Makes more sense to me to find
adaptable engineers, 'cause the world
of computers is *always* changing.

That's one of the reasons I think Ada is a
good choice. If you do your software
right, it is probably going to end up

lasting for many years. Thus if you
choose a language that has *nothing* to
offer other than it present-day market
share or "coolness", you might as well
choose the one with the prettiest box, for
all the good it will have do you 5 years
down the line.

Ada isn't about market share or slick
marketing or cool logos. Ada is about
writing fast, bullet-proof software,
period. Those are timeless values that
will *never* quit paying you dividends,
no matter what language is cool 3
years(or weeks) from now.

From: "Marin David Condic"
<marin.condic@pacemicro.com>

Date: Wed, 3 Oct 2001 13:52:09 -0400
Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

Well, there *are* problem domains in
which 5 years represents 10 generations
of product. :-) You and I may have lots of
experience with long-lived systems and
see the value of Ada there rather readily.
For faster product cycles, things like
maintenance may be less of a concern.
But then, so would be the concern about
finding programmers who know the
language 5 years from now.

In fast product cycle environments, I'd
think the advantages of high reliability
are still of major importance. Who wants
to put out an electronic gadget and sell
millions of them only to discover some
fatal flaw after they ship that forces
recalls and/or lawsuits? We all know it
has happened and could probably cite lots
of cases here. Ada wouldn't guarantee it
doesn't happen, but it helps minimize that
risk.

From: Ted Dennison
<dennison@telepath.com>

Date: Wed, 03 Oct 2001 20:07:43 GMT
Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

I wasn't talking specificaly about
maintenance. Just because you have to
develop quickly doesn't mean that
people won't be trying to use that
software 5 years from now. It also doesn't
mean that developers won't be trying to
use your sources 5 years from now. In a
short-cycle environment reuse of old
code from the previous generation is
vital to a project's success. What you
don't want in that enviroment is to find
yourself stuck with a language that was
designed to promote *itself*, rather than
reuse.

From: "Marin David Condic"
<marin.condic@pacemicro.com>

Date: Wed, 3 Oct 2001 16:27:11 -0400
Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

I was rather thinking about the case
where someone develops software for a
product and the product lives for a
relatively short time and the *next*
product that comes along reuses little to
none of the existing code because it is
sufficiently "new" to warrant a whole
new development. You might see this in
some kinds of consumer electronics
products and some PC types of apps,
where basically a whole new look & feel
needs to be developed every year to 18
months. In effect, the developers are
building throw-away code.

Granted, part of the reason this may be
done is that the language of
implementation makes it sufficiently hard
to maintain, enhance or reuse, so it
becomes more cost effective to pitch it
and start over. Some of the reason it
might get done is simply to guarantee a
difference with every release. Some of
the reason may be because the company
wants to avoid the costs involved in
building systems that will hang around
for a long time or have big reuse factors.
[...]

I'll easily concede that Ada buys you a lot
for long-lived systems or developing
reusable code or any of the conditions
that may keep what you build around for
five years. I'd just offer that even when
you don't have long-lifespan concerns,
Ada can make a lot of sense from a
reliability and time-to-market perspective
as well.

From: Preben Randhol
<randhol+abuse@pvv.org>

Date: Wed, 3 Oct 2001 23:48:47 +0000
(UTC)

Organization: Norwegian university of
science and technology

Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

> [...] Everything you say is true, but
when talking to people who develop
throw-away code, the emphasis should
be on time-to-market and reliability
rather than long-term benefits such as
reduced maintenance or reusable code.

I cannot see that Ada wouldn't
accommodate on all these areas. :-)

> Otherwise, folks in a fast-moving
throw-away market may find the
argument interesting, but not
compelling.

My hope is that the folks in the fast-
moving throw-away market are throwing
themselves out with the bath water :-) I
mean "Good Enough" isn't "Good
Enough" for the consumer when he
suddenly finds himself with a negative
bank account on Monday morning due to
a software error in a banks software
which is fixed soonest next day more
likely next week.

News – Ada in Context 225

Ada User Journal Volume 22, Number 4, December 2001

I don't expect the Software Industry to
clean up its act themselves. I'm hoping
the consumers take action and start
realizing that it _may_ be cheaper in the
long run to pay for good quality and
avoid all costy troubles in the future that
cheap JIT code gives. It is funny as I just
see now that Microsoft is saying that they
will "Step Up Software Security"
(http://linuxtoday.com/news_story.php3?
ltsn=2001-10-03-019-20-SC-MS). I guess
the only reason for this statement is
recent suggestions from Gartner Group
(and others) that consumers should
replace Windows with other OSes due to
poor security.

From: pete@nospam
<pete_member@newsguy.com>

Date: 3 Oct 2001 16:56:25 -0700
Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

> [...] when talking to people who
develop throw-away code, the
emphasis should be on time-to-market
and reliability [...]

But, but, but, code reuse is what will
make time-to-market much smaller. Ada
is one of the best languages for designing
code reuse, which means if you want
very short time-to-market, then Ada is
one of the best choices.

> Otherwise, folks in a fast-moving
throw-away market may find the
argument interesting, but not
compelling.

Until they see that code reuse = profit and
shorter time-to-market. Of course,
writing packages with the idea of reuse
requires more time and effort, but it will
soon pay of (in the next project).

From: "Marin David Condic"
<marin.condic@pacemicro.com>

Date: Thu, 4 Oct 2001 09:51:16 -0400
Subject: Re: Is Linux right for Embedded?
Newsgroups: linux.dev.kernel,

comp.realtime, comp.lang.ada

Never said I was against code reuse. [...] I
said that in some types of development
for some problem domains, code reuse is
not very interesting or important - for a
variety of reasons. Of course reuse is a
good way to speed time to market. Where
would we be without APIs to operating
systems or GUI interfaces, etc? That's
"reuse" and the more of it you can do, the
better.

The point is, if a given application
domain isn't interested in reuse, then
there are still *other* reasons why Ada is
an advantage. Those areas should be
emphasized when talking to developers
who don't have an interest in the long
term benefits Ada has.

From: "David Botton"
<David@Botton.com>

Date: Thu, 4 Oct 2001 13:19:03 -0400
Subject: Re: Is Linux right for Embedded?

Newsgroups: comp.lang.ada

> And in some cases, missing that first
time window of delivery means that
even if you did built a fantasically
designed and reusable system, the
market isn't going to afford you the
opportunity to make use of it since you
won't be around for that second release
:-)

Ada also excels here since many "human"
errors that quickly start to be a drain on
productivity are found at compile time.
Being both a C++ and Ada programmer, I
find that Ada is exceptionally well suited
to getting things done quickly the first
time and on time. I even often prototype
in Ada before writing C++ (since C++ is
often "required"...).

Strange Criteria for
Language Comparisons
From: minyard@acm.org (Corey Minyard)
Date: Tue, 16 Oct 2001 15:30:53 GMT
Subject: Re: "Size" of Ada vs. C++
Newsgroups: comp.lang.ada

[From a thread comparing the "size" of
programming languages based on the
number of pages of the reference manual.
-- dc]

> In any case, I doubt that the "size" of
the language tells us much about the
language itself. Perhaps there are
additional factors that indicate that the
language is too big (for example, if no
complete implementations exist), but
size is not a problem per se. For
example, I think most if not all Ada
programmers appreciate the
elaboration semantics. They are rather
complex, but without them, very
annoying problems would arise.

I'm not arguing that point, the "size" of a
language is quite meaningless, otherwise
we would all be programming Turing
machines :-). Someone was saying that
Ada might not be smaller than C++, and I
was giving some fuel for the debate.

But, it's quite amazing to me that Ada can
include all the tasking semantics, a full
set of I/O libaries, all the fancy numeric
types, annexes for real-time, systems
programming, information systems,
distributed systems, and safety and
security, and still weigh in with a smaller
and more usable specification than C++
and a simpler syntax.

From: Richard Riehle
<richard@adaworks.com>

Date: Tue, 16 Oct 2001 22:39:55 -0700
Organization: AdaWorks Software

Engineering
Subject: Re: "Size" of Ada vs. C++
Newsgroups: comp.lang.ada

> Anyway, I think it's rather strange to
judge a language by the "size" of its
definition.

Absolutely correct. I have seen people
compare languages based on the number
of reserved words (less is better), the size
of a "hello world" program's executable
(less is better), the number of predefined
libraries (more is better), the number of
people who use it for programming (more
is better), the number of ads in the help
wanted section (more is better), and on
and on and on. There is no end to the
silliness that people use to compare
programming languages. The Modula-3
exercise that attempts to define a
language in some number of pages of the
reference manual also approaches
absurdity.

A programming language needs to be
judged on its expressiveness first. One
factor in this judgement is, how well it
expresses the software problems it is
intended to solve. We could reframe this
as, how well does the solution space
(represented by the language and its
corresponding tools) map to the problem
space? Another factor derives from
Donald Knuth's notion of "Literate
Programming." This notion suggests the
question, how well does the language
support the human process of developing
software? There are other factors, but
this margin is too small to enumerated
them all.

In evaluating a programming language,
we need to define qualitative criteria as
well as quantitative criteria. Sadly, most
of quantitative criteria are flawed due to
the immature reasoning that leads to their
selection. Sadder still, such reasoning is
likely to prevail for a very long time,
given the current state of software
engineering practice. Sorry for my
pessimism.

Why Do Some Projects
Move to C++?
From: Ted Dennison

<dennison@telepath.com>
Date: Thu, 01 Nov 2001 14:55:03 GMT
Subject: Re: Joint Strike Fighter
Newsgroups: comp.lang.ada

> [...] many younger employees want
C++ because that is what they learned
in school (in many cases) so that's their
skill set, or, yes, they want to get paid
to learn it in the first place, for job
security and mobility.

[...] The folks pushing for C++ (or other
languages for that matter) over Ada are
almost never the experienced engineers
who will actually have to *use* the damn
language. Some fresh out of college types
would prefer not to use [Ada] too, but
they generally come around after they
actually use it for a while.

Way back in the "mandate" days I
worked on one project where our lead
software developer basicly took over the
entire project (with the backing of the rest

226 News – Ada in Context

Volume 22, Number 4, December 2001 Ada User Journal

of us developers of course). Program
management had our Ada waiver all
ready, and was absolutly shocked when
we didn't want it. :-) That was the best-
run project it has ever been my privelege
to work on, btw.

From: Richard Riehle
<richard@adaworks.com>

Date: Sat, 03 Nov 2001 08:58:03 -0800
Organization: AdaWorks Software

Engineering
Subject: Re: Joint Strike Fighter
Newsgroups: comp.lang.ada

> A lot of things go into the decision to
move to C++. The techies may want it
because it is what they know or what
they want to know for career
enhancement. Management may favor
it because they figure its easier to hire
people who know C++, it has the
appearance of where the computer
industry is going and "Nobody ever got
fired for buying C++..." lemming
mentality.

One of the most important benefits of
C++ is that, once people have enough
experience with it, it becomes obvious
how inherently hideous it is. For those
with a cursory knowledge of C++, or
those whose experience with it is
shallow, the language can look quite
appealing. Only after wrestling with
some of the more entertaining aspects of
the language in the production of large-
scale software does one begin to realize
that it falls far short of what they enjoyed
with Ada. I know former Ada software
developers who are now engaged, by
managment fiat, in using C++. They
were at first full of enthusiasm for
moving to a better resume-building
language. They looked at the simple C++
class model and considered it easier to
understand than Ada's package model. In
those early stages, C++ seemed more
accessible.

Ahhhh, but "the devil is in the details."
The more preceptive among them
eventually discover that whoever said,
"C++ is its own virus" was on to
something. Unfortunately, once they
have committed to a particular course of
action, they are stuck with it. It is too
late for "buyer's remorse" to save them. I
believe it was Thorsten Veblen who used
the phrase, "Caveat Emptor," to describe
this situation. It makes one wonder
whether those who are willing to risk
using C++ for a safety-critical project are
"playing dice with the universe."

From: Jeffrey Carter <jrcarter@acm.org>
Date: Sat, 03 Nov 2001 18:52:21 GMT
Subject: Re: Joint Strike Fighter
Newsgroups: comp.lang.ada

> One of the most important benefits of
C++ is that, once people have enough
experience with it, it becomes obvious
how inherently hideous it is.

That's an interesting use of "benefit". :)

There is a column in ESP called
"Programmer's Toolbox". The author
used to present algorithms in Turbo
Pascal; while I thought an ALGOL based
pseudocode might have been a better
choice, the results were generally easily
understood, and I found the column
interesting and sometimes useful. Then
he changed to the then-current fad
language, C++. I found the results
difficult to understand. When he devoted
3 consecutive columns to the intricacies
of redefining "=" (assignment), I stopped
reading the column. That was also when I
stopped thinking that C++ might have
some redeeming social qualities. I think
he eventually gave up C++ and is now
using C, but with no improvement in
clarity.

As to language choice for large US
defense contracts, in 26 years of
professional software development, I
have seen numerous such projects, and
am acquainted with more through
colleagues. They almost all seem to
suffer from poor designs and poor
implementations (too much code for the
functionality). This seems to be the case
despite the best efforts of competent
software engineers on the projects.

While I usually hesitate to ascribe to
malice what may be due to incompetence,
this effect is so widespread that I have to
wonder. I note that only established large
defense contractors can successfully bid
on large defense contracts, and those
contractors have many decades of
experience with the government's
understanding of software quality and its
reaction to cost and schedule overruns.
The contractors exist to make money, and
the contracts are usually arranged so that
the longer the contract takes, the more
money the contractor makes. It may even
be to the contractor's advantage to have
the project fail (terminated by the
customer before usable software is
delivered). I have seen a contract in
which the contractor received hundreds
of millions of dollars before the contract
was terminated. No failure ever seems to
affect the contractors' ability to obtain
new contracts. Such projects may be
failures from the customer's point of
view, but they are very successful from
the contractor's.

I thus propose that the contractors have a
highly optimized technique for finding
the saddle point for maximizing profits
while not angering the government
enough to not win future contracts. Poor
designs and implementations take longer
to finish and to get working properly.
Poor language choice would seem to be
another tool to the same end.

Standard Languages: Java
vs. Ada
From: aebrain@austarmetro.com.au

Date: Wed, 5 Sep 2001 09:38:59 +1000
Subject: Re: Standard Languages
To: team-ada@acm.org

[...] I agree with your main point, Java is
not particularly standard, as anyone who's
ever worked with it can attest.

Ada has 2 standards, Ada-83 and Ada-95.

Java has (so far), 1.0, 1.1, 1.2, 1.3 and the
new still-not-stable 1.4. There is more
difference between 1.0 and 1.1 than Ada-
83 vs Ada-95. Then there's the Evil
Empire(tm)'s Virtual Machine which is
different again. Behaviour of any given
Java source on various virtual machines
is neither consistent nor easily
predictable.

Now I like Java. After Ada, it's my
favourite language, and I often find
myself wishing "gee, I wish Ada could do
X as quickly and easily as I can with Java
1.whatever". (Of course just as often, I
wish that Java of any variety could do Y
at all, when Ada-95 does it trivially, and
Java suffers from fatal flaws due to its C
ancestry, and but that's beside the
point).

But Java standard? "The good thing
about standards is that there are so many
to choose from...".

From: Wes Groleau
<wwgrol@ftw.rsc.raytheon.com>

Date: Wed, 5 Sep 2001 11:47:31 -0500
Organization: Raytheon Company
Subject: Re: Standard Languages
To: team-ada@acm.org

One thing I find amusing (in view of
Java's alleged goal in life) is how often I
hear of some hot new product in Java
with "system requirements" listing a
particular version of Windows. Once or
twice, I thought "maybe that's a mistake
from marketing and it really is portable."
Each time, I found that it was not.

Wes Groleau,
http://freepages.rootsweb.com/~wgroleau

From: Michael Feldman
<mfeldman@seas.gwu.edu>

Date: Wed, 5 Sep 2001 15:37:21 -0400
Subject: Re: Standard Languages
To: team-ada@acm.org

Remember "Java: write it once, run it
anywhere."

Then later "Java: write it once, debug it
everywhere."

Now I guess it's "Java: write it once, run
it under Windows."

This industry finds it pretty hard to do
anything meaningfully platform-
independent.:-(

Java Often Misrepresented

From: James Rogers
<jimmaureenrogers@worldnet.att.net>

Date: Mon, 08 Oct 2001 15:35:58 GMT
Subject: Re: is Ada dying?
Newsgroups: comp.lang.ada

News – Ada in Context 227

Ada User Journal Volume 22, Number 4, December 2001

> The Java classes are well documented.
Much better than anything Ada has
actually.

The Java classes are documented about as
well as an Ada package specification
documents an Ada package. I am
speaking of the HTML API
documentation generated from javadoc.
Of course there are textbooks which
expand on that documentation, just as
there are Ada textbooks which expand on
the information contained in the standard
package specifications. [...]

> I find that I can much easier find a class
in Java to do something, than I can find
a function in Ada to do something. [...]

The javadoc tool is very useful. It
localizes the documentation of the
standard Java classes. The same can be
said for the Ada RM. It is true that Java
has more standard classes than Ada has
standard packages. It is also true that all
those standard Java classes are available
to Ada compilers targeted at the JVM.

> Having a central single place to get
things from is a Good Thing (tm).
Examples of such things: want any
Solaris package?
http://www.sunfreeware.com/, want the
JDK? http://java.sun.com, want the
GNU Java collection?
http://www.gnu.org/software/java/,
want the Giant Java tree collection?
http://www.gjt.org/, etc..

Wait a minute while I count my fingers
and toes. It looks to me like this is a list
of more than one place to find
everything. Am I missing something
here? [...]

Yes I am missing the concept that a list of
four sites followed by "etc.." is exactly
one. This is a feature of Java I have
always found distasteful. The Java white
papers, and subsequent Java supporters,
have often made statements which are
contrary to the normal usage of English.
The example above declares that four or
more sites is a single location. This is
pure nonsense.

The Java white paper uses a lot of
unsupported buzz words to describe Java.
Some of my favorite are "simple" and
"high performance". Java is not a simple
language. There are thousands of
standard classes to learn. Java is not high
performance. It is simply faster than a
dial-up network connection. What I am
missing is an honest and accurate use of
the English language.

> Show me an Ada site that is like
java.sun.com. I know it is not fair for
Ada to ask for this, given that even
C++ does not have anything like that
site, and C++ is much more used than
Ada.

Well, I would say that adapower.com is
pretty close. In fact, I believe
adapower.com is a better starting point in

a search for Ada information than
java.sun.com is for Java information.
There are relatively few links to non-Sun
sites on java.sun.com.

> If you think the current state of Ada
packages and libraries is good enough,
I am happy for you. I am not arguing
with you, [...]

You are now changing the subject. [...]
The current state of Ada standard
packages is very good. It is not as
extensive as the set of Java standard
classes. Quality and quantity are not the
same thing.

For instance, Java provides several GUI
packages useable in applets. The classes
in the java.awt package hierarchy are
useable in most browsers. The
javax.swing classes are supposed to be
useable in all browsers, but browser
support for these classes varies. Note that
applets (and servlets) also require you to
learn another language, namely HTML. If
you want to move to a more modern web
server approach you can use JSP's, which
require you to learn XML.

The biggest problem with browser
support of Java applets is the differences
in HTML required to support the Swing
classes.

> Java has a standard, it is just not an
ANSI nor ISO. But who cares. If you
think having an ISO or ANSI stamp on
the language will suddenly make it
popular, then I am afraid you are
completly wrong. Show me the VB
standard out there, yet millions use VB
to this day.

This is more Sun propaganda. Sun has a
history of avoiding formal standards.
They like to play in the arena of "defacto"
standards. This means that they can
produce a product and publish an API
document for it. Once done, they call the
product a standard.

Only Sun can decide what is Java and
what is not. Only Microsoft can decide
what is VB and what is not. This is the
antithesis of open source. This is also
forcing those using these tools to put
complete trust in Sun and Microsoft. You
have no input to the new features for the
language. You only have the ability to
report language defects if you pay for that
privilege. [...]

[On "Given the changes in the language
from Java 1.0 to Java 1.1 to JDK 1.2 to
JSDK 1.3 to the almost released JSE 1.4,
I wonder which language you use when
you say you use Java." -- dc]

> [...] Java has improvements being
added to it all the time. More packages
and more libraries. You seem to think
this is bad. [...] Generics are being now
added to Java, and will be part of JDK
1.5. It is a good thing.

Generics may or may not be a good thing
in Java. Interestingly, they will have a

definite Ada flavor, rather than a C++
flavor. This is due in part to the fact that
Norman Cohen has been actively
involved in the definition and
development of Java generics. [See also
"Generics in Java" in AUJ 22.3
(September 2001), p.161. -- dc] I expect
JDK 1.5 to be released some time in
2002. In terms of generics this will allow
Java to catch up to Ada after a mere 20
years.

Note that up to this point Java supporters
have been claiming that generics are
unnecessary. They believed their
inheritance model subsumed all
requirements for generics. Could it be
that they were wrong? There must be
some reason for adding generics to JDK
1.5.

This is more evidence to me that Java is a
language desparately working to live up
to its press releases. For seven years Java
has claimed the flexibility and
extensibility provided by generics
without having generics. Now they are
adding generics to provide what is best
provided by generics.

Similarly, Java has staunchly declared no
need for a separation of specification and
implementation. There have been several
exceptions to this rule. You MUST create
a Java interface to call a C library from
Java. You MUST create a Java interface
to create and deploy Enterprise Java
Beans. You MUST create an interface to
use the Java event model.

Such redefinitions of the language make
programming in Java an adventure in
learning.

Don't forget that you need standard
patches to do some of the more useful
stuff. For instance, you must patch the
JSE 1.3 with JSEE 1.3 to be able to use
Enterprise Java Bean technology. [...]
You must first download J2SE 1.3,
followed by J2SEE 1.3 if you want to use
Enterprise Java Beans. You cannot
simply download one or the other. [...]
This means that your client's Java
Runtime Environment must have the
compatible libraries also. A big part of
your Java system is shipped to your
customers as the Java Runtime
Environment. This presents you with
serious compatibility and upgrade issues.

> I have no idea where you are coming
on with all of the above. [...]

I have nothing against the use of Java in
its appropriate domains. I do have issues
with the way the Java community has
misappropriated the English language.
Many people use Java thinking they
understand what is meant by that
language. For instance, one local
manager decided to re-write all his Cobol
programs in Java. This meant retraining
his entire IT staff. After making the
decision he asked the question "What will
be my performance improvement?"

228 News – Ada in Context

Volume 22, Number 4, December 2001 Ada User Journal

Unfortunately the answer to that is about
-30%.

Java and Real-Time
From: minyard@acm.org (Corey Minyard)
Date: Tue, 09 Oct 2001 03:42:59 GMT
Subject: Re: is Ada dying?
Newsgroups: comp.lang.ada

[In a thread where being suitable for
"real-time" was confused with being
"fast": -- dc]

Real-time does NOT mean fast. Real-
time means guaranteed performance, like
"I can stop the robot arm +/- 100us", or
"the air bag will inflate between 1 and
1.5ms from impact". True real-time
systems tend to have worse performance
than non-real-time systems because
providing the guarantees requires system
overhead. As for performance, Java is
fast approaching C/C++. Some tests we
did on some platforms had C++ and Java
within a few percent on just about
everything.

Much theoretical work has been done on
Java hard real-time performance, I have a
copy of the spec, and it looks reasonable.
You could build a moderately hard real-
time system in Java, if you are willing to
jump through all the right hoops. But the
hoops are actually rather significant.

The main problem, though, is not with
Java itself. If you use any third-party
libraries, they will almost certainly
violate your real-time constraints. So you
can't use any third-party stuff in your
system, or if you do, it has to be carefully
isolated from the rest of your system. We
used several third-party libraries in our
system. They all were extremely sloppy
with memory management; they threw
tons of garbage needlessly. Plus, because
of the slack Java package/class usage
rules, Java software tends to be a "big
glob of software", you generally cannot
extract just the parts of the code you need
because everything uses everything else.
Because of lazy initialization rules, it
would be easy for hitting a new path in
the code to cause a mass initialization
event.

So the bottom line, IMHO, is that it's not
worth it to do hard real-time in Java. The
big advantage of Java is all the stuff that
comes along with it, but you really can't
use that stuff in a real-time application.
To get true real-time in Java, you have to
manage your own memory and segment
your application. You have to be very
careful with garbage generation. But if
that's the case, why not write the real-
time portion in another language and
interface it with Java?

Note that soft real-time is a different
story. You can probably implement a
soft real-time system in Java if you are
willing to do some work. Before what I
was working on was cancelled, we had a

reasonable system working, and I knew
of others that had at least limited success.
But I know of no practical written
material on this subject, and I doubt any
exists, because it's kind of a black art
right now. And we did a lot of
customization to our chosen compiler to
help us meet our goals, including a
custom GC and some careful analysis on
how the libraries worked. So it's still not
easy, but it might be better than using
C/C++ due to Java's improved safety. I
have a lot of knowledge on the subject,
but in essence it's only theoretical
because we never actually delivered a
product.

But then, I'd rather use Ada. It has all the
safety advantages of Java (and more)
without the baggage of GC, lack of call-
by-reference, etc. But non-technical
reasons often take precedence. We did a
language analysis on the project in
question. Ada won by a significant
margin, but we chose Java anyway.

The Origin of Java
From: "Marin David Condic"

<marin.condic@pacemicro.com>
Date: Wed, 10 Oct 2001 12:04:10 -0400
Subject: Re: Gratuitous bashing ?
Newsgroups: comp.lang.ada

> http://www.cafeaulait.org/
1998august.html Look for the word
"Ada" within it....

I noticed they claim Java was developed
for embedded systems. I don't recall that
being the objective behind Java [...]. Last
I heard, it basically went to interpreted
byte code - which is not a typical strategy
for embedded computing. This is rather
implying that the author might not be up
on all the facts about Java and hence
might not be the best source for
information about Ada (which *was*
developed for embedded systems.)

From: Darren New <dnew@san.rr.com>
Date: Wed, 10 Oct 2001 16:37:12 GMT
Subject: Re: Gratuitous bashing ?
Newsgroups: comp.lang.ada

IIRC, Java was originally called "Green"
or "Greentree" or some such, and was
intended for set-top boxes. The idea was
to allow stuff like TV listings and such to
not rely on the specifics of the set-top
box. [...]

From: Wes Groleau <wwgrol@
sparc01.ftw.rsc.raytheon.com>

Date: Wed, 10 Oct 2001 15:52:48 -0500
Organization: Raytheon Company
Subject: Re: Gratuitous bashing ?
Newsgroups: comp.lang.ada

> I don't know that Java was invented
specifically for STBs - I rather recall
it being something developed because
they thought web apps would be multi-
platform....

According to a Sun marketing video, a
group was assigned to develop a set top

box or something. This part of the video
was very unclear. I had the impression
that it was something like WebTV.

Anyway, they were working in C, and
kept having problems traced to certain
kinds of mistakes. So they invented a
language in which you could not make
those kinds of mistakes.

Joy or Gosling (I forgot which, they were
both in the video) held up a book on C
with lots of stuff lined out and said
something like, "Basically, we just went
through here and deleted everything that
was causing us problems."

Then somebody else saw it and thought,
"Hey, we could sell this!"

Really. I saw it. It really was like that.
Honest.

OK, my bias may have colored my report
a little--but not much!

From: Wes Groleau <wwgrol@
sparc01.ftw.rsc.raytheon.com>

Date: Thu, 11 Oct 2001 10:20:46 -0500
Organization: Raytheon Company
Subject: Re: Gratuitous bashing ?
Newsgroups: comp.lang.ada

> O.K. I'll accept that story. However,
that sounds more like Necessity being
the Mother of Invention. [...], it doesn't
sound like somebody said: "Since we
have to program STBs, let's design a
language that is suited to STB software
development..." That seems different
than "Lets use a subset of C because
we are having trouble with full-up C...
Hey wait a minute! This is a new
language!!!!"

I left out the part where they did add
some OO features (with as little true
engineering as the rest of it).

I also left out my own observation that
they did _not_ remove some bad features
of C because, being more experienced,
they did not have as many problems with
those features. They also removed
good features "because they are
unsafe" which Ada and other languages
had already proven can be done safely.

Java and Teaching
Programming
From: john.mccabe@emrad.com (John

McCabe)
Date: Mon, 15 Oct 2001 08:21:42 GMT
Organization: Emrad Ltd
Subject: Re: is Ada dying?
Newsgroups: comp.lang.ada

> (In fact I even think that using Pascal is
better than using Java as a first
language).

Of course it is - Pascal was designed as a
teaching language, Java wasn't designed.

From: john.mccabe@emrad.com (John
McCabe)

Date: Mon, 15 Oct 2001 16:10:52 GMT
Organization: Emrad Ltd

News – Ada in Context 229

Ada User Journal Volume 22, Number 4, December 2001

Subject: Re: is Ada dying?
Newsgroups: comp.lang.ada

> did you mean to cut off the sentence
above as is,

Yes.

> i.e. did you mean to say that Java was
not designed, period, or that it was not
designed to be a teaching language?

The former.

> [...] so many do not learn the more
basic things in programming, like data
structures and records (in Java,
programmers do not even know what a
record is :). These things are not
learned well. Java programmers do not
even know too well about enumeration
and parameters passing mehanism, but
know how to create an object or extend
one and use an interface.

Enumeration types are an almost
mandatory feature of any language that
can claim to be safe but, even then, it
depends on the implementation. Ada's
definition of Enumeration types, and their
use as array and loop bounds is excellent
- the C++ version is vaguely useful, but
not all that good relying too much on
history. The fact that Java does not even
have Enumeration types is, to me, a
serious defect.

> Speaking of records. In true OO, the
concept of a record does not exist
really. All what you have is an object,
which contains attributes (state
information). So, I can sort of
understand when a Java programmer
ask me what is a record?

I can understand that and, often, a record
can be replaced by a Class with no
behavioural aspects (i.e. no methods).
The problem is that the overhead
(possibly just in syntax) of a class can be
a nuisance and confuse the issue and,
certainly in Java, there is no way to
define the representation of elements in a
Class (unlike Ada with its very powerful
representation clauses). To me this shows
a great difference in the target audience
of the languages, and their history.

Security Issues

From: Tom Moran <tmoran@acm.org>
Date: Thu, 4 Oct 2001 19:43:38 GMT
Subject: 9/11 -> Ada
To: team-ada@acm.org

Seems to me a responsible person trying
to make important software less
vulnerable to "cyberterrorism" must
seriously consider Ada as one of his
tools. Using known-to-be-fragile tools
would be irresponsible.

From: Carlisle Martin C Dr USAFA/DFCS
<Martin.Carlisle@usafa.af.mil>

Date: Fri, 5 Oct 2001 06:13:50 -0600
Subject: Re: 9/11 -> Ada
To: team-ada@acm.org

> Interesting theory, but nobody is really
exploiting language flaws to break into
security systems. If Ada has built in
security measures that C++ doesn't
(and Java does) then that is useful to
sell, but security is much more than
preventing overflow on an array.

I agree and disagree. The vast majority
of security flaws I see are overflowing
arrays. These would all go away in Ada
or Java. However, certainly there are
other flaws for which language is not a
magic bullet.

Martin C. Carlisle, PhD, Associate
Professor of Computer Science, United
States Air Force Academy

From: Wesley_Groleau@raytheon.com
Date: Fri, 5 Oct 2001 09:10:54 -0500
Subject: Re: 9/11 -> Ada
To: team-ada@acm.org

> [...] nobody is really exploiting
language flaws to break into security
systems. [...]

Seems to me that many of the malicious
hacks and viruses (but certainly far from
all) DID depend on flaws in C, especially
lack of bounds checking. I have heard
plenty about flaws in Java and/or JVM
security, but I have never heard of an
actual break-in using such a flaw.

The original post hinted at cyber-
terrorism. Perpetrators of such an act are
concerned with causing damage, not with
getting anything out of it. Therefore, they
do not have to be concerned with "doing
things neatly."

From: Michael Feldman
<mfeldman@seas.gwu.edu>

Date: Fri, 5 Oct 2001 12:24:28 -0400
Subject: Re: 9/11 -> Ada
To: team-ada@acm.org

> [...] many of the malicious hacks and
viruses [...] DID depend on flaws in C,
especially lack of bounds checking.

And an interesting paper a while back in
CACM reported on a world-wide survey
of people's nastiest bugs, and more than
50% were memory-related, things like
array overrunning, trash pointers, etc.

BUT... any language or environment that
allows arbitrary access to memory or files
can be used to do damage. Let's not
oversell Ada on "security" grounds -
anyone smart enough to use pragma
Suppress can get around all our
wonderful language features. I content
that all our checking was really designed
to help us prevent _bugs_, not
mischief. One could envision a specific
compiler and/or execution environment,
designed for safety, that prevented such
arbitrary access, and ignored (or rejected)
Suppress, but that's a tool issue, not a
language one.

> [...] flaws in Java and/or JVM security,
[...]

Well, as long as there are flaws, someone
will be smart and mischievous enough to
exploit them. Flaws and bugs can
(should) be fixed.

[...] Some of the recent worms ("I Love
You", etc.) exploited "cool features" of
Microsoft products, like the ability to run
VB scripts from an e-mail attachment.
I've read some fairly scary trade-press
articles about M$'s seemingly
contemptuous attitude toward security.
I'm actually quite surprised that we
haven't seen any multi-billion-dollar
class-action suits about this. Where are
the lawyers when we need them? :-)

[Wesley_Groleau@raytheon.com
responded: -- dc]

Nor do they learn from history--nearly
twenty years ago VMS began filtering
escape sequences out of e-mails because
besides allowing fancy formatting (can
you say HTML?) they were being used to
reprogram the function keys on
sysadmin's terminals to execute
commands.

[And after yet another mail arrived with a
worm attached, Nick Roberts wrote: --
dc]

Good Lord, isn't it just Twighlight Zone
that IIS still suffers from 'buffer overrun'
weaknesses (yes that's weaknesses
plural)? Write it in Ada and they vanish!
How's that for Ada advocacy?

From: Wesley_Groleau@raytheon.com
Date: Fri, 5 Oct 2001 11:46:07 -0500
Subject: Re: 9/11 -> Ada
To: team-ada@acm.org

> [...] Let's not oversell Ada on
"security" grounds - anyone smart
enough to use pragma Suppress can get
around all our wonderful language
features. [...]

I agree with the selling part and the "bugs
not mischief", but if you're a cracker, you
can't add pragma suppress to your target's
code and recompile/reinstall it. So you
instead attack programs written in a
language that doesn't allow suppress to be
turned off. :-) [...]

From: Tom Moran <tmoran@acm.org>
Date: Sun, 7 Oct 2001 13:23:16 -0700
Organization: Decision Aids
Subject: Re: 9/11 -> Ada
To: team-ada@acm.org

We agree security is not just preventing
array overflows, and Ada is not a magic
bullet. But the environment has changed.
The estimated cost of a bug in
infrastructure software has increased
because we now realize it has a higher
likelihood of being exploited by bad guys
and the cost of damage therefrom is
higher than we thought. So "C's fine,
why use Ada?" should change to "How
can you justify not using better tools
(Ada among them)".

230 News – Ada in Context

Volume 22, Number 4, December 2001 Ada User Journal

Another change is the drop in
interest/discount rates. That means long
term savings are now raised in
importance relative to short run costs.
"How can you justify ignoring the long
term, life cycle, savings of using Ada?"

As to whether Ada is indeed better for
bug prevention and long term
maintenance, "prove it" gives way to
"what evidence exists says Ada's better -
if you don't think so, prove that."

How to Stamp Out Buggy
Software?
From: "Thomas A. Panfil"

<t.panfil@gte.net>
Date: Wed, 10 Oct 2001 22:23:10 -0400
Subject: Request for Comments on How to

Stamp Out Buggy Software
To: team-ada@acm.org

Journalist seeks comments on how to
stamp out buggy software!!

See article in 01 Oct 2001 issue of
"Network Computing" entitled: "Growing
Up with a Little Help from the Worm".
It's in a "Security Watch" column. See
URL:
http://www.networkcomputing.com/
1220/1220colshipley.html

It ends with the following (note the nice
way he starts his comment): "... The time
is right for our industry to get educated
and smart -- and that means we all have
to grow up. Send your comments on this
column to Greg Shipley at
gshipley@neohapsis.com."

Perhaps some Team-Ada members can
provide useful comments to him. [...]

Doesn't Management Like
Ada?
From: "Marin David Condic"

<marin.condic@pacemicro.com>
Date: Tue, 23 Oct 2001 09:48:05 -0400
Subject: Re: Have you ever had a bug

caused by...
Newsgroups: comp.lang.ada

> But if instead of chasing bugs you
could add new features which would
improve the bussiness of the
companies that buy the product... :-)

What always confounds me about it is
that even when you can make a strong
business case for using Ada based on
higher reliability, lower development and
maintenance cost, etc., and actually back
it up with data, you still lose because
management will end up asking their
techies about it (fair enough) and the
techies don't like Ada or don't want the
headache of switching to Ada, so they
recommend against it. A manager can't be
expected to know all the technical aspects
and they've got to trust their techies to
make those decisions, so I don't really
blame them. That's why it is important to

make the case with the techies and get
them to want to use Ada. [...]

From: Ted Dennison
<dennison@telepath.com>

Date: Tue, 23 Oct 2001 15:45:24 GMT
Subject: Re: Have you ever had a bug

caused by...
Newsgroups: comp.lang.ada

Actually, I've seen more cases where the
grunts like it, but management doesn't for
whatever reason (I quit trying to analyze
their reasoning process when I discovered
it has little to do with reasoning).

From: "Marin David Condic"
<marin.condic@pacemicro.com>

Date: Tue, 23 Oct 2001 13:08:07 -0400
Subject: Re: Have you ever had a bug

caused by...
Newsgroups: comp.lang.ada

This is sometimes a problem as well. All
too often some (pointy haired) bosses
have been busy reading industry journals
and pick up on buzzwords and think "this
is the direction to go in" because
everybody is writing about it. Trade
journals can suffer from the same GIGO
phenomenon as computers: Garbage In,
Gospel Out.

We used to have an "insider" expression
taken from a Dilbert commic: "Mauve
has more RAM..." to indicate when a
manager was speaking techno-babel. It
had to do with Dilbert testing to see if the
PHB knew what he was talking about
when he wanted to have Dilbert acquire a
new relational database. Dilbert asks
what color it should be. The answer was
mauve because "Mauve has more RAM".

The sad thing about Dilbert is that Scott
Adams is *not* making this stuff up.

From: "Marc A. Criley"
<mcqada@earthlink.net>

Date: Wed, 24 Oct 2001 12:44:14 GMT
Organization: Quadrus Corporation
Subject: Re: Have you ever had a bug

caused by...
Newsgroups: comp.lang.ada

When mentioning Ada to some
developers where I used to work that
were working on C++ projects, I found
that a number of them had used Ada in
the past and liked it. But then, when new
projects started up with C++ as the
implementation language, they, being
good engineers, simply learned the new
language and went to work.

The _strident_ calls for C++ (and now
Java) often seemed to come from a small
number of opinionated individuals who
were only too happy to get up in front of
management or the customer and beat the
pulpit on how "we have to go where the
market is going!". The majority of these
individuals were on-staff types who
hadn't coded in years... but certainly
knew how it ought to be done!

I had a a perpetual smouldering battle
against one such faction on the project on

which I worked, who advocated tossing
out a measurably high-quality, efficient,
reliable, maintainable weapon control
simply because it was written in Ada, and
redo it in C++.

In a follow-on program, I knew that there
was no chance of any new subsystems
being written in Ada, but these techno-
surfers were advocating writing a soft
realtime mission- and safety-critical
portion of the system in Java--and not
today's Java, but 1999 Java. Even the
skeletal version done for the proposal
demo was unstable and a total dog on
performance. I went ballistic over that
and the blind advocacy fell appart, with
the system ending up being proposed in
C++. (And I knew the lead designer was
a very competent engineer, so I had less
heartburn than I might've otherwise.)

Marc A. Criley, Senior Staff Engineer,
Quadrus Corporation,
www.quadruscorp.com

From: Jeffrey Carter
<jeffrey.carter@boeing.com>

Date: Wed, 24 Oct 2001 18:55:30 GMT
Organization: The Boeing Company
Subject: Re: Have you ever had a bug

caused by...
Newsgroups: comp.lang.ada

> [...], when new projects started up with
C++ as the implementation language,
they, being good engineers, simply
learned the new language and went to
work.

When new projects started with
substandard steel as the implementation
material, they, being good civil
engineers, simply built the bridge with it.

Of course, when the bridge collapses and
kills people, the civil engineers go to jail.
When the S/W fails, the manager gets
promoted.

Tony Hoare on Ada - a
Quote
From: mjsilva697@earthlink.net (Mike

Silva)
Date: 14 Oct 2001 10:27:11 -0700
Subject: Re: Language design by by

committee
Newsgroups: comp.lang.java.advocacy,

comp.lang.ada

[In a thread where once more the old
urban legend circulated about "Tony
Hoare was an early member of the [Ada]
design committee until he left in disgust.
In his ACM Turing Award lecture "The
Emperor's Old Clothes" he says just that."
-- dc]

> Tony Hoare left because he thought the
language was way too big. Later on he
wrote a foreward to a book in which he
recanted this view, and hope people
would have the opportunity to use Ada
[...]

A Google search finds this:

News – Ada in Context 231

Ada User Journal Volume 22, Number 4, December 2001

Here is the text of Mr. Hoare's foreword
to an Ada book in 1987. You may judge
for yourself whether he was as anti-Ada
as you suggest.

C.A.R. Hoare's comments in the foreward
to Ada Language and Methodology

" 'I enjoyed reading the Algol 60 report; it
taught me a lot about programming.'
This is the comment of a data processing
manager of a major motor manufacturing
company, who had no conceivable
prospect of ever using the language to
program a computer. It is a most
perceptive comment, because it describes
an important goal in the design of a new
programming language: that it should be
an aid in specification, description, and
design of programs, as well as in the
construction of reliable code.

This was one of the main aims in the
design of the language which was later
given the name Ada. As a result, the
language incorporates many excellent

structural features which have proved
their value in many precursor languages
such as Pascal and Pascal Plus.

The combination of many complex
features into a single language has led to
an unfortunate delay in availability of
production-quality implementations. But
the long wait is coming to an end, and
one can now look forward to a rapid and
widespread improvement in
programming practice, both from those
who use the language and from those
who study its concepts and structures.

I hope that this book will contribute
directly to these ideals, which have
inspired many of the other books in the
same series. It continues the tradition of
the series in that it describes how the
language can be used as the target of
sound programming methodology,
embracing the full life-cycle of a
programming project. It explains not just
the features and details of the language,

but also their purpose and method of
effective use.

The complexities and difficulties are not
glossed over; they are explained within
the appropriate context, with hints on
how to avoid any consequent problems. I
hope the book will be useful, both to
those who have the privilege or
obligation to use the language, and to
those who have the interest and curiosity
to understand and appreciate its
rationale."

from the foreword to "Ada Language and
Methodology", David A. Watt, Brian A.
Wichmann, and William Findlay,
Prentice-Hall International Series in
Computer Science, ISBN 0-13-004078-9,
Published in 1987.

[Next time you hear or read this urban
legend, I suggest you use the above
extract. -- dc]

Conference Calendar 233

Ada User Journal Volume 22, Number 4, December 2001

Conference Calendar
This is a list of European and large world-wide events that may be of interest to the Ada community. More information on
items marked ♦ is available elsewhere in the Journal. The information here is extracted from the online Conference
announcements for the international Ada community at http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/events/list.html on
the Ada-Belgium webserver. These pages contain full announcements, calls for papers, calls for participation, programmes,
URLs etc and are updated regularly.

2002

07-09 January 7th IEEE Computer Society's International Workshop on Object-oriented Real-Time
Dependable Systems (WORDS'2002) San Diego, California, USA.

07-10 January 2002 Embedded & Real-time Distributed Object Systems Workshop (RTEmbedded'2002)
Burlingame, California, USA.

16-18 January 29th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL'2002) Portland, Oregon, USA.

19 January 9th International Workshop on Foundations of Object-Oriented Languages (FOOL 9)
Portland, Oregon, USA. Topics include: language semantics, type systems, program analysis and
verification, concurrent and distributed languages, etc.

21-24 January Software Engineering with SPARK Training Course Bath, UK. Topics include: in addition to
the normal content, these courses will cover the new and improved features of Release 6.0 of the
SPARK Toolset.

22 January Workshop on Refinement of Critical Systems: Methods, Tools and Experience (RCS'2002)
Grenoble, France. Topics include: Refinement applied to software engineering, control systems,
distributed systems, embedded systems, real-time, reactive and hybrid systems, information
systems; etc.

23-25 January 8th International Conference on Languages and Models with Objects (LMO'2002)
Montpellier, France. Topics include (in French): Programmation par objets (Languages,
interpretation, compilation; modeles d'objets pour la programmation; objets et types;
environnements de programmation; etc.); Composants et objets en reseau (Modeles de composants
a objets; interactions de composants; developpement a base de composants, composants
reutilisables; objets et composants distribues, repartis; acteurs, parallelisme; objets et internet;
interoperabilite); Genie des objets (Cycle de vie des objets; retro-conception, evolution des
programmes, versions; surete des programmes, specifications formelles; methodes d'analyse et de
conception objet, UML; ingenierie des modeles et des meta-modeles; reutilisation, architectures
logicielles reutilisables et a base de composants; hierarchies, frameworks, patterns); Applications;
etc.

18-21 February 14th Software Engineering Process Group Conference (SEPG'2002) Phoenix, Arizona, USA.

18-21 February Technology of Object-Oriented Languages and Systems (TOOLS Pacific'2002) Sydney,
Australia. Theme: "Objects for Internet, Mobile, and Embedded Applications".

21-22 February 2nd Workshop on Aspect-Oriented Software Development (AOSD'2002) Bonn, Germany.

25-26 February Workshop on Open Source Software Development Newcastle upon Tyne, UK.

25-27 February 15th Conference on Software Engineering Education and Training (CSEET'2002)
Covington, Kentucky (Greater Cincinnati), USA.

TBD March 1st Bi-Annual Embedded Systems Club Conference Newbury, UK. Topics include: knowledge
of technologies and practices related to embedded systems engineering; user experience with
embedded technologies or practices applied to industrial strength applications; emerging
embedded technologies; etc.

234 Conference Calendar

Volume 22, Number 4, December 2001 Ada User Journal

04-08 March International Conference on Practical Software Quality Techniques & Testing Techniques
(PSQT/PSTT'2002 South) New Orleans, USA. Deadline for early registration January 25.

06-08 March Ada-Deutschland Tagung 2002 Jena, Germany. Topics include (in German): Methoden und
Werkzeuge für Echtzeitsysteme; Qualitätsmanagement in SW-Projekten; Vorgehensmodelle und
Lifecycle Management von IT-Systemen mit Ada; Echtzeitsysteme mit Ada (Annex D);
Interoperabilität von Ada und anderen Programmiersprachen; Sichere Software mit Ada (Annex
H); Erfahrungsberichte über Produktivität, Performance und Kosten in Ada-Projekten; Ada in der
Ausbildung; etc..

10-13 March 2002 ACM Symposium on Applied Computing (SAC'02) Madrid, Spain.

11-13 March 6th European Conference on Software Maintenance and Reengineering (CSMR'2002)
Budapest, Hungary.

11-13 March 5th International Conference on "Achieving Quality In Software" (AQUIS'2002) Venezia,
Italy.

11-15 March 5th International Internet & Software Quality Week Europe (QWE'2002) Brussels, Belgium
QWE'2001 was rescheduled from 12-16 November 2001 to 11-15 March 2002. Theme: "Internet
NOW!" Description: QWE2002 focuses on advances in software test technology, reliability
assessment, software quality processes, quality control, risk management, software safety and
reliability, and test automation as it applies to client-server applications and to websites. Topics
include: Productivity and Quality Issues; Process Improvement; Real-Time Software; Object
Oriented Testing; Application of Formal Methods; Cost/Schedule Estimation; Software Reliability
Studies; E-Commerce Reliability; Quality of Service (QoS); Risk Management; etc. Deadline for
early registration: January 25, 2002.

14-15 March 2nd International Software Process Improvement and Capability determination Conference
(SPICE'2002) Venice, Italy.

20-22 March 5th IFIP International Conference on Formal Methods for Open Object-based Distributed
Systems (FMOODS’2002) Twente, The Netherlands. Topics include: Specification and analysis
techniques for distributed systems; Semantics of object-based programming languages; Design
and software life-cycle of object-based distributed applications; Applications to
telecommunications and related areas; etc.

06-14 April European Joint Conferences on Theory and Practice of Software (ETAPS'2002) Grenoble,
France. Includes:

06-14 April 8th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS'2002) Topics include: Verification and
construction techniques; Compositional and refinement-based methodologies;
Analytical techniques for real-time, hybrid and safety-critical systems; Tool
environments and tool architectures; Applications and case studies; etc..

07 April Workshop on Software Composition (SC'2002)

07 April International Conference on Compiler Construction (CC'2002) Topics:
compiler construction, programming language implementation and language
design.

08-12 April Fundamental Approaches to Software Engineering (FASE'2002) Topics
include: Experience reports on best practices with component models and
specifications, development tools, modelling environments, and software
development kits; Integration of formal concepts and current best practices
concepts in industrial software development; etc.

13 April 2nd Workshop on Language Descriptions, Tools and Applications
(LDTA'2002)

13 April Synchronous Languages, Applications, and Programming (SLAP'2002) .

Conference Calendar 235

Ada User Journal Volume 22, Number 4, December 2001

07-10 April 10th Object Technology Conference (OT'2002) Oxford UK. Topics include: Component
technology, Languages, Distributed systems, Small and embedded systems, Patterns, Lessons
learned/experience reports etc.

08-10 April 6th International Conference on Empirical Assessment and Evaluation in Software
Engineering (EASE'2002) Keele University, UK. Deadline for submissions: February 7, 2002
(experience reports), April 2, 2002 (posters).

08-11 April Software Engineering with SPARK Training Course Bath, UK Topics include: in addition to
the normal content, these courses willcover the new and improved features of Release 6.0 of the
SPARK Toolset.

08-11 April 9th Annual IEEE International Conference and Workshop on the Engineering of Computer
Based Systems (ECBS'2002) Lund, Sweden. Topics include: Component-based Design and
Reuse; Applied Formal Methods and Security; Tools and Environments; Education and Training;
Embedded Systems; Reliability, Dependability, Safety; Verification and Validation; Standards;
etc.

09-12 April 11th International Real-Time Ada Workshop (IRTAW'2002) Mont-Tremblant, Quebec,
Canada.

15-17 April 9th Annual European Concurrent Engineering Conference (ECEC'2002) Modena, Italy
Topics include: Formal Methods and Techniques; Engineering of embedded systems (e.g.
HW/SW co-design, system development process, specification languages, ...); Networking and
distribution in CE (e.g. CORBA based environments and integrated frameworks, Architectures for
building CE systems, ...); Practical Applications and Experiences (e.g. Practical solutions, Pitfalls
and success stories, Case studies, pilot projects and experiments, ...); etc.

15-19 April 7th International Conference on Software Reuse (ICSR-7) Austin, Texas, USA. Topics
include: Software product lines and product line architectures; Component-based software
engineering; Lightweight approaches to software reuse; Quality aspects of reuse, e.g. security and
reliability; Success and failure stories of reuse approaches from industrial context; etc. Deadline
for submissions: January 30, 2002 (posters and demos).

15-19 April International Parallel and Distributed Processing Symposium (IPDPS'2002) Fort Lauderdale,
Florida, USA. Topics include: Applications of parallel and distributed computing, including web
applications and scientific applications; Parallel and distributed software, including parallel
programming languages and compilers, operating systems, schedulers, runtime, middleware,
libraries, programming environments and tools for parallel and distributed computing; etc.
Includes:

15-19 April 7th International Workshop on Formal Methods for Parallel
Programming: Theory and Applications (FMPPTA'2002)

17-19 April 3rd International Conference on Software Testing (ICSTEST'2002) Dusseldorf, Germany.

21-24 April 2nd International Conference on Computational Science (ICCS'2002) Amsterdam, The
Netherlands. Topics include: Parallel and Distributed Computing; Problem Solving Environments
(including: Software Component Technology); Education in Computational Science; etc.

23-26 April 1st International Conference on Aspect-Oriented Software Development (AOSD'2002)
Enschede, The Netherlands. Topics include: language design and implementation; analysis, design
and development tools; software engineering; lifecycle support; etc. Deadline for submissions:
January 15, 2002 (demonstrations).

29 April – 01 May 5th IEEE International Symposium on Object-oriented Real-time distributed Computing
(ISORC'2002) Washington DC, USA.

15-18 May 3rd International Conference on Integrated Formal Methods 2002 (IFM'2002) Turku,
Finland.

19-25 May International Conference on Software Engineering (ICSE'2002) Buenos Aires, Argentina.

26-29 May 3rd International Conference on eXtreme Programming and Agile Processes in Software
Engineering (XP'2002) Alghero, Sardinia, Italy.

236 Conference Calendar

Volume 22, Number 4, December 2001 Ada User Journal

27-31 May 14th Conference on Advanced Information Systems Engineering (CAiSE'02) Toronto,
Canada. Topics include: Distributed, Web and Mobile Architectures; OO and Agent-Oriented
Technologies and their Applications to IS Development; Languages and Protocols for IS;
Component-ware and IS; etc. Deadline for submissions: March 1, 2002 (posters).

04-07 June 8th International Symposium on Software Metrics (Metrics'2002) Ottawa, Canada Theme:
"Measuring and Managing Software Risks in the Age of Internet”.

09-12 June 7th European Conference on Software Quality Helsinki, Finland.

09-14 June 27th Annual USENIX Technical Conference (USENIX'2002) Monterey, Canada. Topics
include: Reliability and QoS; Usage studies; Web technologies; Interoperability of heterogeneous
systems; special track on freely redistributable technology (GNOME, GNU, Linux, Tcl/Tk and
more); etc.

10-14 June 16th European Conference on Object-Oriented Programming (ECOOP'2002) Málaga, Spain.
Topics include: implementations of language features; language support for security and safety;
techniques for embedded and mobile code; compilation for distributed, heterogeneous systems;
languages and compilers for parallel computing; etc. Deadline for submissions: April 15, 2002
(demonstrations, posters)

17-19 June ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation
(PLDI'2002) Berlin, Germany. Sponsored by ACM SIGPLan in cooperation with ACM SIGSoft
Topics include: implementations of language features; language support for security and safety;
techniques for embedded and mobile code; compilation for distributed, heterogeneous systems;
languages and compilers for parallel computing; etc.

♦ 17-21 June 7th International Conference on Reliable Software Technologies - Ada-Europe'2002 Vienna,
Austria. Sponsored by Ada-Europe, in cooperation with ACM SIGAda. Topics include:
management of software development and maintenance; software quality; software development
methods and techniques; software architectures; tools; kinds of systems; applications; Ada
language and tools; Ada experience reports; education and training; case studeies and experiments;
and a special session on embedded systems, including the use of Ada in this realm.

19-21 June ACM SIGPLAN Joint Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES'02) and Software and Compilers for Embedded Systems (SCOPES'02)
Berlin, Germany. Immediately after PLDI'02. Topics include: Programming languages for
embedded applications; Software design for multiprocessor systems; Memory
management/garbage collection for embedded systems; Concurrent+distributed embedded
environments/runtime systems; Real-time operating systems: environment and tools (e.g., RT-
Linux); Exception and interrupt handling for real-time; Code generation for embedded processors;
Program optimization for real-time performance and DSPs; Real-time scheduling analysis; etc.
Deadline for paper submissions: February 1, 2002.

20-21 June 1st International IFIP/ACM Working Conference on Component Deployment (CD'2002)
Berlin, Germany.

23-26 June International Conference on Dependable Systems and Networks (DSN'2002) Washington,
D.C., USA. Deadline for submissions: January 14, 2002 (tutorials).

24-27 June 2002 International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA'2002) Las Vegas, Nevada, USA. Topics include: Parallel/Distributed
applications; Reliability and fault-tolerance: Software and hardware fault-tolerance (system- and
application-level), etc.; Real-time and embedded systems; Object Oriented Technology and related
issues; Software tools and environments for parallel and distributed platforms: Operating systems,
compilers, languages, debuggers, monitoring tools, software engineering on parallel/distributed
systems, ...; Education: parallel and distributed processing in computer science curriculum (both
graduate and undergraduate levels.); Recent history (last decade) of parallel/distributed processing
and what to expect during the next decade if history repeats itself; etc. Deadline for submissions:
February 22, 2002 (draft papers).

02-03 July International Workshop on Distributed Event-Based Systems (DEBS'02) Vienna, Austria.
Topics include: Programming language support and integration (e.g. typing, abstractions); Real-

Conference Calendar 237

Ada User Journal Volume 22, Number 4, December 2001

time distributed event systems; Integration with standard middleware; Fault-tolerant event
distribution; Quality of service and its specification; Case studies of challenging applications and
requirement analysis; etc.

20-24 July 11th Formal Methods Europe Symposium (FME'2002) Copenhagen, Denmark. Theme:
"Formal Methods: Getting IT Right". In conjunction with the third Federated Logic Conference
(FLoC'02) Deadline for submissions: January 15, 2002.

20-23 August 13th International Conference on Concurrency Theory (CONCUR'2002) Brno, Czech.
Repubic. Topics include: concurrency related aspects of: real-time systems, distributed
programming, object-oriented programming, case studies, tools and environments for
programming and verification, etc. Deadline for submissions: December 1, 2001 (workshops),
March 25, 2002 (papers)

26-28 August International Conference on Pervasive Computing (PERVASIVE'2002) Zurich, Switzerland.
Deadline for submissions: February 22, 2002 (papers and demos), June 19, 2002 (posters and short
papers).

27-30 August European conference on Parallel Processing (Euro-Par'2002) Paderborn, Germany. Topics
include: Support Tools and Environments; Performance Evaluation, Analysis and Optimization;
Distributed Systems and Algorithms; Parallel Programming: Models, Methods and Programming
Languages; etc. Deadline for submissions: February 8, 2002.

09-12 September 7th International Symposium on Formal Techniques in Real-Time and Fault Tolerant
Systems (FTRTFT'2002) University of Oldenburg, Germany. Deadline for submissions: March
1, 2002.

10-13 September 21st International Conference on Computer Safety, Reliability and Security (Safecomp'2002)
Catania, Italy. Focuses on safety-critical computer applications. Deadline for submissions:
February 10, 2002 (papers), April 7, 2002 (tutorials).

17-20 September 6th International Enterprise Distributed Object Computing Conference (EDOC'2002)
Lausanne, Switzerland. Deadline for submissions: March 4, 2002 (abstracts), March 22, 2002
(papers), April 15, 2002 (tutorials).

23-27 September 17th IEEE International Conference on Automated Software Engineering (ASE'2002)
Edinburgh, U.K. Deadline for submissions: May 6, 2002 (abstracts), May 13, 2002 (papers).

TBD September 2002 ACM SIGAda Annual International Conference (SIGAda'2002) Houston, Texas, USA.

09-11 December 5th USENIX Symposium on Operating Systems Design and Implementation (OSDI'2002)
Boston, Massachusetts, USA. Topics include: distributed systems, parallel systems, embedded
systems, the influence of hardware development on systems and vice-versa, etc. Deadline for
paper submissions: May 12, 2002.

10 December Birthday of Lady Ada Lovelace, born in 1815 – Happy Programmers' Day!

2003

05-13 April European Joint Conferences on Theory and Practice of Software (ETAPS'2003) Warsaw,
Poland. Event includes: conferences from 7 to 11 April 2003, affiliated workshops on 5-6 and 12-
13 April, 2003.

7th International Conference on

Reliable Software Technologies -

Ada-Europe 2002

Vienna, Austria, June 17-21, 2002

http://www.ada-europe.org/conference2002.html

SIGAda

Ada-Europe 2002
In 2002, the 7th International Conference on Re-
liable Software Technologies will take place in Vi-
enna, Austria, from June 17th to June 21st. The
conference offers a technical program and exhibi-
tion, plus a series of tutorials and a workshop.
The conference provides an international forum
for researchers, developers and users of reliable
software technologies. Presentations and discus-
sions cover applied and theoretical work currently
conducted to support the development and main-
tenance of software systems.
Vienna, a city with about 2 million inhabitants
is situated in the heart of Europe. It is a city

on which its ever-changing history has left an
indelible mark, manifested also in the rich cul-
tural heritage. Shaped by its hundreds of years
as capital of an empire, the city’s ultimate fasci-
nation nowadays stems from combining imperial
grandeur with explosive modernity.

The conference will take place in the Parkhotel
Schönbrunn which originated in 1907 as the guest
house of Emperor Franz Josef I. The newly ren-
ovated hotel is located in the immediate vicin-
ity of the ”Schönbrunn Palace” and its beautiful
surrounding park, situated close to the center of
Vienna.

Preliminary Program
Morning Late Morning After Lunch Afternoon

Monday
June 17th
Tutorials

MaRTE OS: Bringing Embedded Systems and
Real-Time POSIX Together,
M. González and M. Aldea

Using Open Source Hardware and Software to
Build Reliable Systems,
J. Sherrill and J. Gaisler

Principles of Physical Software Design in
Ada95,

M. Heaney
Implementing Design Patterns in Ada95,

M. Heaney

SPARK, an ”Intensive Overview”,
P. Amey and R. Chapman

Tuesday
June 18th
Sessions &
Exhibition

Embedded Systems
unsuitable for

object orientation,
Maarten Boasson

Embedded Systems Real-Time Systems High Integrity
Systems

Case Studies Vendor presentations

Wednesday
June 19th
Sessions &
Exhibition

On Architectural
Stability and
Evolution,

Mehdi Jazayeri

Ada Language
Issues

Program Analysis
Tools

Vendor presentations

Thursday
June 20th
Sessions &
Exhibition

Reasoning About
Reliable Distributed

Programs,
Rachid Guerraoui

Distributed Systems Libraries Contextware: Bridging
Physical and Virtual

Worlds,
Alois FerschaVendor presentations OO Technology

Friday
June 21st
Tutorials &
Workshop

Improved Software Testing with the Use of Metrics,
A. Sorkowitz

WG9 Meeting
CORBA 3 and CORBA
for Embedded Systems,

S. Ron Oliver

Workshop: A Standard
Container Library for Ada,

E. Lamm

Cleanroom Software Engineering:
An Overview,

W. Bail

Invited Speakers
Embedded Systems Unsuitable
for Object Orientation

Maarten Boasson, Quaerendo Invenietis
bv & University of Amsterdam

It will be argued that the current focus on object
technology is detrimental to progress in embed-
ded systems. The core of the problem is that OO
is fine for analysis but does not answer the de-
sign needs. Solutions for shortcomings are sought
within the OO dogma, making things worse. This
talk will outline a different approach.
Maarten Boasson studied mathematics in Gro-
ningen, the Netherlands. He became involved in
advanced studies aiming at control of complex-
ity, both of the development process and of the
system under development itself. This resulted in
the creation of a novel architecture for distributed
reactive systems, that has been applied success-
fully in numerous systems and is, more than 10
years after its introduction, still unsurpassed in
its support for integration, fault tolerance and
component reuse. In 1996 Boasson was appointed
professor of computer science at the University of
Amsterdam, where he holds a chair in Industrial
Complex Computer Systems. He played a ma-
jor role in establishing a dutch national research
program in embedded systems, and is currently
associate editor-in-chief of IEEE Software.

Reasoning About Reliable Dis-
tributed Programs

Rachid Guerraoui, Swiss Federal Insti-
tute of Technology in Lausanne (EPFL)

What does it mean for a distributed program to
be reliable? A program is reliable if it looks like
a centralized program that does never fail. This
talk aims at addressing the ramifications underly-
ing this first glance intuitive answer. While doing
so, the talk overviews several decades of work on
correctness of distributed programs, from Lam-
port’s atomicity and Papadimitrious’ serializabil-
ity, to linearizability and x-ability.
Rachid Guerraoui is professor in computer sci-
ence at the Swiss Federal Institute of Technol-
ogy in Lausanne (EPFL). He leads the Dis-
tributed Programming Laboratory and teaches
object-oriented programming and distributed al-
gorithms. He is interested in devising abstrac-
tions for reliable distributed programming.

Contextware: Bridging Physical
and Virtual Worlds

Alois Ferscha, University of Linz

Alois Ferscha joined the University of Linz as full
professor in 2000. He published more than 60
technical papers on topics related to parallel and
distributed computing. Currently his research
interests are in the areas of Pervasive Comput-
ing, Embedded Software Systems, Wireless Com-
munication, Multiuser Cooperation, Distributed
Interaction and Distributed Interactive Simula-
tion.

On Architectural Stability and
Evolution

Mehdi Jazayeri, Technical University of
Vienna

Many organizations are now pursuing software ar-
chitecture as a way to control their software de-
velopment and evolution challenge. A software
architecture describes the properties of a family
of products, thus addressing the problems of both
development and evolution. An important prob-
lem is to be able to evaluate the ”goodness” of
a proposed architecture. The talk will propose
stability or resilience as a measure of goodness
of an architecture. The stability of an architec-
ture is a measure of how well it accommodates
new family members. It can be measured by the
amount of code changes necessary for the intro-
duction of a new member. A case study of several
releases of a telecommunication software system
containing a few million lines of code will be used
to demonstrate one way to try to estimate ar-
chitectural stability. The talk will also present
the challenges in software evolution and conclude
with recommendations for future research.
Mehdi Jazayeri is a professor of computer sci-
ence at the Technical University of Vienna. He
spent many years in software research and devel-
opment at several Silicon Valley companies, in-
cluding ten years at Hewlett-Packard Laborato-
ries in Palo Alto, California. His recent work
has been concerned with component-base soft-
ware engineering of distributed systems, partic-
ularly Web-based systems. He is a coauthor
of Programming Language Concepts (John Wi-
ley, 1998), Fundamentals of Software Engineering
(Prentice-Hall, 2002), and Software Architecture
for Product Families (Addison-Wesley, 2000).

Other Program Details

Exhibiting
Exhibition space will be provided at the Parkho-
tel Schönbrunn in the area of the so-called
”Kaisersalon”. The exhibition and a summary of
the exhibits will be publicized in handouts, con-
ference schedule, and conference program. An-
nouncements will be made in the course of tech-
nical presentations.

Sponsoring
A sliding scale of sponsorship provides a range of
benefits. All levels include display of the spon-
sor’s logo on the conference web site and it the
program.

Social Program
Several activities have already been organized.
On Tuesday the City of Vienna has invited us all
for a reception at the historic town hall. Before
that we will enjoy a guided tour by bus that will
provide a first impression of the city and several
of its well-known sights.
Wednesday evening the conference banquet will
take place at a famous ”Heurigen” in Grinz-
ing. Over a glass of wine and traditional Vi-
ennese cuisine we will have the opportunity
to experience several of the mundane ingredi-
ents such as ”Schrammel-Musik” and ”Wiener
Gemütlichkeit” that add to the flair of this city.

See the conference web site for more details (http://www.ada-europe.org/conference2002.html).

Organization
Conference Chair
Gerhard H. Schildt
Technical University Vienna
Department of Computer-Aided
Automation
Schildt@auto.tuwien.ac.at

Program Co-Chairs
Johann Blieberger
Technical University Vienna
Department of Computer-Aided
Automation
Blieberger@auto.tuwien.ac.at
Alfred Strohmeier
Swiss Fed. Inst. of Technology
Lausanne
Software Engineering Lab
Alfred.Strohmeier@epfl.ch

Tutorial Chair
Helge Hagenauer
University of Salzburg
Dept. Comp. Science & System
Analysis
hagenau@cosy.sbg.ac.at

Exhibition Chair

Thomas Gruber
Austrian Research Centers
Seibersdorf
thomas.gruber@arcs.ac.at

Publicity Chair

Dirk Craeynest
Offis nv/sa & K.U.Leuven
Dirk.Craeynest@cs.kuleuven.ac.be

Local Organization Chair
Bernd Burgstaller
Technical University Vienna
Department of Computer-Aided
Automation
Burgstaller@auto.tuwien.ac.at

In cooperation with With the support of

SIGAda

The city of Vienna

http://www.ada-europe.org/conference2002.html

244

Volume 22, Number 4, December 2001 Ada User Journal

The SPARK way to Correctness is Via Abstraction
John Barnes
11 Albert Road, Caversham, Reading RG4 7AN, United Kingdom; Tel +44 118 947 4125

Abstract
This paper gives a short introduction to the SPARK
language and illustrates how the use of abstraction
leads towards correctness.

Keywords: Abstraction, Spark, Ada

Introduction
Abstraction is a key concept in the design of many systems
whether they be made of intangible software or real hard
stuff such as an automobile. A good system will be such
that the various components interact through well-defined
interfaces in an appropriate manner. This should eliminate
unwanted interactions which might occur if the interfaces
are not properly defined. The brake pedal of your car
should not change the volume of the radio and so on. This
desirable state can be achieved by ensuring that interactions
only occur via defined interfaces and moreover that the
functionality of the components are completely and
correctly specified by the interface definitions (the whole
truth and nothing but the truth).

Ada provides interfaces through specifications – typically
package specifications containing subprogram
specifications. However, these subprogram specifications
do not provide a full definition of the subprograms. All they
provide is enough information to enable the compiler to
construct calls of the subprograms but say little if anything
about what the subprograms might actually do. Although
the Ada approach enables information hiding to be
achieved and good component specifications to be written,
and indeed encourages these through its style, nevertheless
it does not ensure correctness and completeness.

SPARK enables Ada specifications to be strengthened by
providing more information about interfaces and the
behaviour of components. This extra information can be
provided at various levels. At the simplest level it ensures
that a component can only interact with certain objects but
need say nothing about what it does to them; at the highest
level it provides a complete definition of what it does to the
objects. At the simplest level it thus prevents unexpected
side effects whereas at the highest level it can lead to
complete proofs of correctness.

SPARK should be looked upon as a language in its own
right. In practical terms, it is a subset of Ada with
additional information provided through annotations which
take the form of Ada comments. Programs are therefore
compiled with a normal Ada compiler and in addition are
examined with independent SPARK tools which also analyse
the annotations.

It is often felt that formal tools are hard to use and require a
great deal of effort. One of the advantages of SPARK is its
flexibility. It can be used for formal proof but a great deal
of benefit can be obtained by its use at the simplest level
which requires little effort. This paper outlines some
important features of SPARK using a number of examples.

Abstraction
The first part of this paper introduces the basic ideas of
abstraction and refinement.

A simple example
We start by considering a very simple example which
shows how the SPARK annotations increase the level of
information concerning abstraction. Consider the
information given by the following Ada procedure
specification

procedure Add(X: in Integer);

Frankly, it tells us very little. It just says that there is a
procedure called Add and that it takes a single parameter of
type Integer whose formal name is X. But it says nothing
about what the procedure does. It might do anything at all.
It certainly doesn’t have to add anything nor does it have to
use the value of X. It could for example subtract two
unrelated global variables and print the result to some file.
But now consider what happens when we add the lowest
level of SPARK annotation. The specification might become

procedure Add(X: in Integer);
--# global in out Total;

This states that the only global variable that the procedure
can access is that called Total. Moreover it has mode
information similar to that of parameters; indeed a global
variable can be looked upon as a parameter in which the
actual is always the same. The SPARK rules also say more
about the modes. Whereas in Ada the modes provide
permission to read or update as appropriate, in SPARK such
reading or updating is mandatory (SPARK generally abhors
unused entities). So the specification tells us that the initial
value of Total must be used (in) and that a new value will
be produced (out) and also that the parameter X (in) must
be used.

So now we know rather a lot. We know that a call of Add
will produce a new value of Total and that it will use the
initial value of Total and the value of X. We also know that
Add cannot affect anything else. It certainly cannot print
anything nor have any other malevolent side effect.

The next level of annotation gives the detailed dependency
relations so that the specification becomes

Barnes 245

Ada User Journal Volume 22, Number 4, December 2001

procedure Add(X: in Integer);
--# global in out Total;
--# derives Total from Total, X;

In this particularly simple example, this adds no further
information. We already knew that we had to use X and the
initial value of Total and produce a new value of Total and
this is precisely what this derives annotation says.

Finally we can add the third level of annotation which
concerns proof and obtain

procedure Add(X: in Integer);
--# global in out Total;
--# derives Total from Total, X;
--# post Total = Total~ + X;

The postcondition explicitly says that the final value of
Total is the result of adding its initial value (distinguished
by ~) to the value of X. So now the specification is
complete.

It is important to emphasize that these annotations are part
of the procedure specification. (In the case of distinct
specification and body, the annotations are not repeated in
the body; if there is no distinct specification then they occur
in the body before the reserved word is.) The annotations
separate the interaction between the caller and the
specification from that between the specification and the
implementation. Hence the Examiner (the main SPARK

tool) carries out two sets of checks; it checks that the
annotations are consistent with the procedure body and it
also checks that the annotations are consistent with each
call of the procedure.

Thus when we come to implement Add, if we access a
global other than Total or use Total or X in a way
inconsistent with the mode information then the SPARK

Examiner will produce appropriate error messages.

Generally, the higher levels of annotation enable the
Examiner to carry out a more searching analysis.

State
The idea of state is vitally important. Programs do things by
changing the state of objects in a general sense. In Ada,
state is typically held in the form of variables in packages.
A simple example is provided by a random number
generator in which the state of the sequence is held in a
variable hidden in a package body. Consider

package Random_Numbers
--# own Seed;
--# initializes Seed;
is

procedure Random(X: out Float);
--# global in out Seed;
--# derives X, Seed from Seed;

end Random_Numbers;

package body Random_Numbers is
Seed: Integer;
Seed_Max: constant Integer := ... ;

procedure Random(X: out Float) is
begin

Seed := ... ;
X := Float(Seed) / Float(Seed_Max);

end Random;

begin -- initialization part
Seed := 12345;

end Random_Numbers;

This example shows the package body containing the
declaration of a variable Seed and the body of the
subprogram Random. Each call of Random updates the
value of Seed using some pseudo-random algorithm and
then updates X by dividing by the constant Seed_Max.
Each successive value of Seed depends upon the previous
value and is preserved between calls of Random. The
variable Seed is initialized in the initialization part of the
package body.

This example also illustrates a number of other annotations.
The variable Seed has to be mentioned in both an own
annotation and an initialization annotation of the package
specification. The own annotation makes it visible to other
annotations and the initializes annotation indicates that it
must be initialized by the elaboration of the package. The
procedure Random contains a global annotation for Seed as
well as a derives annotation.

The initializes annotation can also be satisfied by
initializing Seed in its declaration. An alternative approach
might be to declare some procedure Start in the package
Random_Numbers (to be called from outside) whose
purpose is to assign a first value to Seed. In this case an
initializes annotation would not be required but the
Examiner will complain if flow analysis reveals that
Random is being called before Start.

It is important to observe that from the Ada point of view
the variable Seed is not declared until the body and is thus
not known to the compiler at the point of the specification
of the subprogram Random. However, Seed is a global
variable of Random from the point of view of SPARK and
thus must be mentioned in the annotation for Random so
that flow through Random may be tracked; the own
annotation ensures that Seed is known to the Examiner at
the specification of Random.

The derives annotation shows explicitly that each call of
Random produces a number X derived from Seed and also
modifies Seed. As mentioned earlier this annotation is
optional.

The variable Seed is protected from manipulation by users
of the procedure Random by being declared within the
body of the package although it is visible in the annotations
in the specification. It could be argued that making the
existence of Seed known to the user is a violation of
abstraction. However, we certainly ought to know that the
procedure Random does something to some state external
to itself otherwise we could deduce that each call of
Random would inevitably produce the same value each
time it is called. On the other hand we don't need to know

246 The SPARK way to Correctness is Via Abstraction

Volume 22, Number 4, December 2001 Ada User Journal

exactly what Seed is and indeed in this example the
external view reveals no details.

Abstract state machines
The random number package is a very simple example of
an abstract state machine. In general an abstract state
machine is an entity, which has well defined states plus a
set of operations, which cause state transitions; properties
of the state can be observed by calling appropriate
functions.

An abstract state machine is typically represented in Ada by
a package, with variables which record its state declared in
its body. Procedures that act on the machine and functions
that observe its state are specified in the visible part of the
package specification. All other details are hidden in the
package body.

The following shows the full details of a single stack
treated as an abstract state machine with the state initialized
automatically on elaboration.

package The_Stack
--# own S, Pointer;
--# initializes Pointer;
is

procedure Push(X: in Integer);
--# global in out S, Pointer;
--# derives S from S, Pointer, X &
--# derives Pointer from Pointer;

procedure Pop(X: out Integer);
--# global in S; in out Pointer;
--# derives Pointer from Pointer &
--# derives X from S, Pointer;

end The_Stack;

package body The_Stack is
Stack_Size: constant := 100;
type Pointer_Range is range 0 .. Stack_Size;
subtype Index_Range is

Pointer_Range range 1 .. Stack_Size;
type Vector is array (Index_Range) of Integer;
S: Vector;
Pointer: Pointer_Range;

procedure Push(X: in Integer) is
begin

Pointer := Pointer + 1;
S(Pointer) := X;

end Push;

procedure Pop(X: out Integer) is
begin

X := S(Pointer);
Pointer := Pointer - 1;

end Pop;
begin

Pointer := 0;
end The_Stack;

The stack state variables S and Pointer are declared in the
body of the package and Pointer is initialized. These
internal variables are not directly accessible to users of the

stack object. However, their existence and the existence of
the initialization of Pointer are made visible to the
Examiner for the purpose of analysis by the own and
initializes annotations in the package specification just as
the variable Seed of the package Random was made
visible.

However, the above technique is not satisfactory since we
have made visible considerable detail of the internal
representation of the state of the machine, namely the
existence of the individual variables S and Pointer. If at
some later stage we need to change the implementation
then there is a high risk that the specification will need to
be changed because of the SPARK rules even though it
would not need to be changed by the Ada rules. This would
in turn give rise to tiresome dependencies since it would
require all the calls to be reexamined and recompiled.

(A minor problem with the package as written is that when
we come to use it we will get messages saying that S is
being used before it is given a value. Of course we know
that the dynamic behaviour is such that the initialization of
S is unnecessary but the Examiner is not aware of this.
Perhaps the best solution is simply to initialize S as well.)

Refinement
The problems of unnecessary dependencies can be
overcome by using abstract own variables to provide what
is known as refinement. An abstract own variable does not
correspond to a concrete Ada variable at all but instead
represents a set of variables used in the implementation.

As a consequence, an abstract own variable occurs in two
annotations, the own variable clause in the package
specification and then also in a refinement definition in the
body giving the set onto which it is mapped.

The stack example could then be rewritten as

package The_Stack
--# own State; -- abstract variable
--# initializes State;
is

procedure Push(X: in Integer);
--# global in out State;
--# derives State from State, X;

procedure Pop(X: out Integer);
--# global in out State;
--# derives State, X from State;

end The_Stack;

package body The_Stack
--# own State is S, Pointer; -- refinement definition
is

Stack_Size: constant := 100;
type Pointer_Range is range 0 .. Stack_Size;
subtype Index_Range is

Pointer_Range range 1 .. Stack_Size;
type Vector is array (Index_Range) of Integer;
S: Vector;
Pointer: Pointer_Range;

Barnes 247

Ada User Journal Volume 22, Number 4, December 2001

procedure Push(X: in Integer)
--# global in out S, Pointer;
--# derives S from S, Pointer, X &
--# derives Pointer from Pointer;
is
begin

Pointer := Pointer + 1;
S(Pointer) := X;

end Push;

procedure Pop(X: out Integer)
--# global in S; in out Pointer;
--# derives Pointer from Pointer &
--# derives X from S, Pointer;
is
begin

X := S(Pointer);
Pointer := Pointer - 1;

end Pop;

begin -- initialization
Pointer := 0;
S := Vector'(Index_Range => 0);

end The_Stack;

This enables the more abstract specification to be linked
with the concrete body. The refinement acts as the link and
says that the abstract own variable State is implemented by
the two concrete variables S and Pointer.

Note moreover that the subprogram bodies have to have a
refined version of their global and derives annotations (if
provided) written in terms of the concrete variables.

One consequence of the refinement is that both Pointer and
S have to be initialized because we have promised that the
abstract variable State will be initialized. Of course, as
mentioned earlier, we know that the dynamic behaviour is
such that the initialization of S is unnecessary and we could
omit it in practice and ignore the consequential message
from the Examiner.

The various constituents of the refinement must either be
variables declared immediately within the package body
(such as S and Pointer) or they could be own variables of
private child packages or of embedded packages declared
immediately within the body. The process of refinement
can be repeated since an own variable in the constituent list
might itself be an abstract own variable of the child or
embedded package.

It is worth summarizing some key points regarding the
visibility of state variables of abstract state machines.

• The own annotation of an abstract state machine
makes the existence of its state visible wherever the
machine is visible.

• Annotations of subprograms external to a machine
which (indirectly) read or update its state (by
executing subprograms of the machine) must indicate
that they import or export the machine state.

• Only the existence of the machine state (and its
reading or updating) is significant in this context. The
details can still be hidden by refinement.

The second point is important and states that annotations
have to be explicitly transitive. Thus a procedure that calls
Push and Pop also has to be annotated to indicate that it
changes the state of the stack.

procedure Use_Stack
--# global in out The_Stack.State;
--# derives The_Stack.State from The_Stack.State;
is
begin

The_Stack.Push(...);
...
The_Stack.Pop(...);
...

end Use_Stack;

Finally note that one abstract state machine could be
implemented using another abstract state machine
embedded within it. Thus if a machine B is to be embedded
in a machine A, this can be done by embedding the package
representing B in the body of the package representing A.
The state of B can then be represented as an item in the
refinement. Alternatively the package representing B could
be a private child of the package representing A.

Refinement of course relates to top-down design and
provides a natural way of implementing such a design. It is
especially important that refinement can be cascaded; this
avoids a combinatorial explosion of visible data items
which might otherwise occur especially in large programs.
The key point is that it makes the existence of state known
without giving away the details - the irrelevant detail is
kept hidden.

The location of state
It is very important to ensure that state is located sensibly.
In order to illustrate this first consider the following simple
example

procedure Exchange(X, Y: in out Float)
--# derives X from Y &
--# derives Y from X;
is

T: Float;
begin

T := X; X := Y; Y := T;
end Exchange;

The parameters X and Y have mode in out. This requires
them to be both read and updated. The (optional) derives
annotation in addition states that the final value of X
depends upon the initial value of Y and vice versa. Note
that the final value of X does not depend upon the initial
value of X.

The scope of program objects should always be as
restricted as possible. The rules of SPARK discourage the
use of a global variable simply as a ‘temporary store’. For

248 The SPARK way to Correctness is Via Abstraction

Volume 22, Number 4, December 2001 Ada User Journal

example we might try to redefine the procedure Exchange
so that the temporary T is global by writing

procedure Exchange(X, Y: in out Float)
--# global out T;
--# derives X from Y &
--# derives Y from X;
is
begin

T := X; X := Y; Y := T;
end Exchange;

But this is illegal because it violates one of several rules of
completeness. The one that is violated here is that every
variable mentioned in a global definition must be used
somewhere in the dependency relation. We have to add T to
the derives annotation thus

--# derives X from Y &
--# derives Y, T from X;

and this forces us to admit that we actually change T.
Moreover, flow analysis of a call of Exchange will reveal
the use of T. Thus a succession of calls such as

Exchange(A, B);
Exchange(P, Q);

results in the following message from the Examiner

Exchange(A, B);

^1

!!! (1) Flow Error : Assignment to T is

ineffective.

This is because the value of T produced by the first call of
Exchange is overwritten by the second call without being
used. Remember that analysis of the calls is done using
only the abstract view presented by the specification and so
the internal use of the value of T in the body is not relevant.
Note further that this message will be produced even if the
optional derives annotation is omitted.

Unnecessary state should thus be avoided. Indeed, the use
of unnecessary state as in this example requires annotations
for T on the subprogram calling Exchange and so on
transitively. The annotations therefore cascade and so the
use of unnecessary state is very painful and thereby
discouraged.

But some state is necessary and we have seen how
refinement may be used to ensure that although the
existence of state in an abstract state machine must be made
visible, nevertheless the fine details are properly hidden.
(We can have our abstraction cake and still eat it!)

There is an interesting analogy between abstraction through
refinement and the composition of records out of
components. Consider a private type defining a position
where the full type reveals the details in terms of x- and y-
coordinates

type Position is private;

...

type Position is
record

X_Coord, Y_Coord: Float;
end record;

Such a record type is sensible because the two coordinates
are logically related; we can then consider a value of the
type Position as a single entity which can be manipulated as
a whole without knowing the details of its inner
construction.

Refinement allows an abstract own variable to provide an
external view of a more detailed set of variables within the
package. Using the analogy to records, we should only use
refinement to group together naturally related items. Thus
the refinement of the variable State of the package
The_Stack into the variables Pointer and S is appropriate.

Proof
For some applications formal proof is a valuable technique
for showing correctness. SPARK has comprehensive
facilities for proof including the ability to develop proofs
with refinement when there are two views of a state. In
order to illustrate this it is necessary to explain some of the
basic techniques involved.

The proof process
The general idea is that we state certain hypotheses which
we assert are always satisfied when a subprogram is called
(the preconditions) and we also state the conditions which
we want to be satisfied as a result of the call (the
postconditions). These conditions are given as further
annotations in the subprogram specification. We then have
to show that the postconditions always follow from the
preconditions.

The Examiner processes the text and generates one or more
theorems (conjectures really since they might not turn out
to be true) which then have to be proved in order to show
that the postconditions do indeed always follow from the
preconditions. These theorems which are called verification
conditions are often trivially obvious. If they are not then
there are two tools which can be used. These are the
Simplifier which carries out routine simplification and the
Proof Checker which is an interactive assistant that enables
the user to explore the problem and hopefully construct a
valid proof.

In order for the proof tools to function correctly, they need
to be aware of the various rules which can be used. For the
predefined types these are built into the system but other
rules can be provided as we shall see in a moment.

As a first example consider once more the procedure
Exchange. There is no precondition since it is designed to
work no matter what the values of the parameters happen to
be. But there is of course a postcondition and so the
procedure becomes

procedure Exchange(X, Y: in out Float)
--# derives X from Y &
--# derives Y from X;
--# post X = Y~ and Y = X~ ;

Barnes 249

Ada User Journal Volume 22, Number 4, December 2001

is
T: Float;

begin
T := X; X := Y; Y := T;

end Exchange;

Note again the use of the tilde character with in out
parameters; the decorated form indicates the initial
imported value of the parameter whereas the undecorated
form indicates the final exported value.

The verification condition generated by the Examiner for
the procedure Exchange is

H1: true .
->

C1: y = y .
C2: x = x .

The notation used is that there are a number of hypotheses
(H1, H2, ...) followed by a number of conclusions (C1, C2,
...) which have to be verified using the hypotheses. Note
that the conditions are written in a language known as FDL
(Functional Definition Language) which has a strong
mathematical flavour.

In this example there is no precondition and so effectively
no hypotheses (this is represented as the single hypothesis
H1 which is true). The two conclusions to be proved are
that y = y and x = x which are reasonably self-evident and
so it is pretty clear that the procedure Exchange is correct.

If we were stubborn and wanted to be completely confident
then we could submit the above verification condition to
the Simplifier which would reduce it to simply

*** true . /* all conclusions proved */

Verification conditions often appear mysterious and not
obviously related to the code; they are produced by a
"hoisting process" whereby the postcondition is
transformed backwards through the statements in order to
arrive at the so-called weakest precondition; this is the
condition that must hold at the start in order for the
postcondition to hold. We then have to show that the
weakest precondition follows from the given precondition.
In the verification condition, the hypotheses correspond to
the given precondition and the conclusions to be proved
correspond to the weakest precondition. However, the
details of the hoisting transformations need not concern us
in this paper.

Loops
Significant computations usually have loops and these
cause complexity in proving correctness. The problems
arise because the code of a loop is usually traversed a
number of times with different conditions.

The approach taken is to cut a loop so that the various parts
can be treated separately. The cut is made by inserting an
assert statement which gives conditions that are to be true
at that point. The conditions can be thought of as
postconditions for the sequence of code arriving at the

cutpoint and as preconditions for the sequence going on
from the cutpoint.

A simple example is provided by the following integer
division algorithm which might be used on a processor
without a hardware divide instruction.

procedure Divide(M, N: in Integer; Q, R: out Integer)
--# derives Q, R from M, N;
--# pre (M >= 0) and (N > 0);
--# post (M = Q * N + R) and (R < N) and (R >= 0);
is
begin

Q := 0;
R := M;
loop

--# assert (M = Q * N + R) and (R >= 0);
exit when R < N;
Q := Q + 1;
R := R - N;

end loop;
end Divide;

Each transversal of the loop adds one to the trial quotient
and subtracts the divisor N from the corresponding trial
remainder until the remainder first becomes less than the
divisor. Clearly it only works if both M and N are not
negative and also the divisor must not be 0; hence the
precondition.

The postcondition has two parts. First the output parameters
must have the appropriate mathematical relation implied by
the division process and secondly the remainder must be
less than the divisor and not negative, so we have

--# post (M = Q * N + R) and (R < N) and (R >= 0);

The choice of assertion is fairly obvious. As noted above,
the final postcondition has two parts, the division relation
and the upper and lower bounds on the remainder. All the
loop does is keep the division relation true and reduce the
remainder until it satisfies the upper bound (as well as
keeping the lower bound satisfied). The assertion is simply
that the division relation is true and that the remainder
satisfies the lower bound; the exit statement is taken when
the upper bound is satisfied as well. The initial statements
before the loop are designed to ensure that the assertion is
true when the loop is first entered.

There are therefore three sections of code to be verified.
They are from the start to the beginning of the loop, around
the loop, and from the loop to the end. The assert statement
acts as the postcondition for the first section and as the
precondition for the last section. It also acts as both
precondition and postcondition for the loop itself; since it is
unchanged by the loop it is often referred to as a loop
invariant.

When the Examiner is applied to this subprogram, it
produces verification conditions corresponding to the three
sections. From the start to the assertion the verification
condition is

250 The SPARK way to Correctness is Via Abstraction

Volume 22, Number 4, December 2001 Ada User Journal

H1: m >= 0 .
H2: n > 0 .

->
C1: m = 0 * n + m .
C2: m >= 0 .

Conclusion C2 is trivially obvious since it is just the
hypothesis H1. Conclusion C1 is pretty obvious as well.

The verification condition for going around the
loop from assertion to assertion is

H1: m = q * n + r .
H2: r >= 0 .
H3: not (r < n) .

->
C1: m = (q + 1) * n + (r - n) .
C2: r - n >= 0 .

and that from the assertion to the final end is

H1: m = q * n + r .
H2: r >= 0 .
H3: r < n .

->
C1: m = q * n + r .
C2: r < n .
C3: r >= 0 .

In all cases the Simplifier reduces all the conclusions to
true. It is also quite straightforward to show that they are
true by hand – although perhaps a little tedious in the case
of the loop itself which requires some manipulation.
However, such trivial manipulation is prone to error if done
by hand and the great advantage of the Simplifier is that it
does not make careless mistakes.

Having shown that the verification conditions for the three
separate sections of code are true it then follows that the
procedure is correct. (To be honest we have only proved
that it is partially correct; this means that it is correct
provided that it terminates.)

In practice one does not bother to look at the unsimplified
conditions and so the process is quite straightforward.

Proof functions
Annotations such as postconditions can be very expressive.
Not only can we use the variables of the program but
various other notations are also available. We have already
noted the use of the tilde character to distinguish initial and
final values of in out parameters. The following examples
illustrate other possibilities.

type Atype is array (Index) of T;

procedure Swap_Elements(I, J: in Index;
A: in out Atype);

--# derives A from A, I, J;
--# post A = A~[I => A~(J); J => A~(I)];

The postcondition means that the final value of A is the
initial value with elements I and J interchanged. Note
carefully that it is the initial value of A that is referred to on
the right hand side and so there are three uses of the tilde
character.

function Max(X, Y: Integer) return Integer;
--# return M => (X >= Y -> M = X) and
--# (Y >= X -> M = Y);

This illustrates that functions have return annotations rather
than postconditions. The annotation should be read as
return M such that if X >= Y then M is X and if Y >= X then
M is Y.

function Value_Present(A: Atype; X: T) return Boolean;
--# return for some M in Index => (A(M) = X);

This function returns true if at least one component of the
array has the value X. Remember that Index is the index
type of the array type Atype.

function Find(A: Atype; X: T) return Index;
--# pre Value_Present(A, X);
--# return Z => (A(Z)) = X) and
--# (for all M in Index range Index'First .. Z-1 =>
--# (A(M) /= X));

This function returns the index of the first component of the
array with the value X. Note the precondition which uses
the previous function to ensure that such a value does exist.
All Ada functions can be used in annotations in this way
with any global variables being added as explicit additional
parameters (remember the earlier remark that global
variables can be looked upon as parameters that are always
the same).

Sometimes, however, the functional nature of the
annotation language is not rich enough in which case we
can add our own so-called proof functions which do not
exist as Ada functions at all.

As an elementary example consider the following
implementation of the factorial function

--# function Fact(N: Natural) return Natural;

function Factorial(N: Natural) return Natural
--# pre N >= 0;
--# return Fact(N);
is

Result: Natural := 1;
begin

for Term in Integer range 1 .. N loop
Result := Result * Term;
--# assert Term > 0 and Result = Fact(Term);

end loop;
return Result;

end Factorial;

The approach we take is to introduce a proof function Fact
which we can use in the annotations even though it is not
defined in the Ada program text. An interesting observation
is that although recursion is not permitted in SPARK

because dynamic storage is forbidden, nevertheless proof
rules can use recursion in their definition because proof is
done offline independently of program execution.

The Examiner is now able to produce verification
conditions; it does this without needing to know what the
proof function Fact actually means because the process of

Barnes 251

Ada User Journal Volume 22, Number 4, December 2001

producing verification conditions simply involves formal
substitution.

There are four paths including one from start to finish
which bypasses the loop in the case of N being zero. We
will look at the verification conditions for just two of them.
That from the assertion to the finish is

H1: term > 0 .
H2: result = fact(term) .
H3: term = n .

->
C1: result = fact(n) .

This is clearly correct by simply substituting from H3 into
H2 irrespective of what Fact actually means. That from
assertion to assertion is more interesting

H1: term > 0 .
H2: result = fact(term) .
H3: not (term = n) .

->
C1: term + 1 > 0 .
C2: result * (term + 1) = fact(term + 1) .

In order to prove this we need a mathematical theorem for
the Fact function namely

fact(n) = n × fact(n-1) n > 0

The other two paths need the other obvious mathematical
theorem

fact(0) = 1

In order to prove the verification conditions using the Proof
Checker, it is necessary to give the Checker the rules
corresponding to the above theorems. These can be
expressed in the following form

rule_family fact:
fact(X) requires [X : i] .

fact(1): fact(N) may_be_replaced_by
N * fact(N-1) if [N > 0] .

fact(2): fact(0) may_be_replaced_by 1 .

Given such rules the proofs can be entirely mechanized.

The reader might feel that this is all a bit of a cheat.
However, the approach is typical of many safety-related
mechanisms. Two routes to the solution are provided using
entirely different technologies; one uses the Ada program
and the other uses the annotations and proof rules. Since
they agree we have a high degree of confidence in their
correctness.

Proof and refinement
We are now in a position to return to the theme of
abstraction and consider how we might add annotations for
proof to the stack example.

We saw how we could have two views of the state of the
package The_Stack – an external abstract view provided by
the abstract variable State and an internal concrete view
provided by the two variables S and Pointer. In order to
develop proofs we need to map abstract conditions for the

external view onto concrete conditions for the internal
view. The package might become

package The_Stack
--# own State: Stack_Type; -- abstract variable
--# initializes State;
is

--# type Stack_Type is abstract; -- proof type

--# function Not_Full(S: Stack_Type) return Boolean;
--# function Not_Empty(S: Stack_Type)

return Boolean;
--# function Append(S: Stack_Type; X: Integer)

return Stack_Type;

procedure Push(X: in Integer);
--# global in out State;
--# pre Not_Full(State);
--# post State = Append(State~, X);

... -- similarly Pop

end The_Stack;

package body The_Stack
--# own State is S, Pointer; -- refinement definition
is

... -- etc as before

procedure Push(X: in Integer)
--# global in out S, Pointer;
--# pre Pointer < Stack_Size;
--# post Pointer = Pointer~ + 1 and
--# post S = S~[Pointer => X];
is
begin

Pointer := Pointer + 1;
S(Pointer) := X;

end Push;

... -- similarly Pop plus initialization

end The_Stack;

The above omits the derives annotation partly for simplicity
but also to emphasize that derives annotations are not
necessary in order to develop proofs although we have
shown them in earlier examples for completeness.

The abstract own variable State now includes a type
announcement for the proof type Stack_Type. In
developing the verification conditions, the Examiner
converts this proof type into an FDL record type having
two components corresponding to the variables S and
Pointer. (Note again the strong analogy between refinement
and record composition.)

There are also proof functions Not_Full and Append (with
parameters of the proof type) which are used to give the
pre- and postconditions for Push. The proof function
Not_Empty is required for Pop.

Three verification conditions are generated for Push – one
shows that the refined precondition follows from the
abstract precondition, one shows that the abstract
postcondition follows from the refined postcondition and

252 The SPARK way to Correctness is Via Abstraction

Volume 22, Number 4, December 2001 Ada User Journal

the other (the usual one) shows that the refined
postcondition follows from the refined precondition. The
first is

H1: not_full(state) .
H2: s = fld_s(state) .
H3: pointer = fld_pointer(state) .

->
C1: pointer < stack_size .

The notation should be self-evident, H2 means that the
refined variable S corresponds to the field s of the abstract
State.

To complete the proofs we need proof rules for the proof
functions in terms of the concrete variables such as

not_full(S) may_be_replaced_by
fld_pointer(S) < stack_size .

Given such rules the verification conditions can all be
proved.

The stack package might be used by external procedures
which themselves have proof annotations in terms of the
proof functions. Of course they can only see the external
view of the stack and so rules need to be developed in
terms of that view. But the rules can themselves be proved
using the concrete view.

Design and implementation
One of the goals of this paper is to show that SPARK uses
abstraction as a key ingredient in showing correctness. The
important thing about abstraction is controlling the level of
visibility. We are familiar in Ada with the idea of having
more than one view of a type, for example the full view and
the partial view of a private type. SPARK allows private
types of course but as we have seen extends this idea of
views to the representation of state through refinement. We
have also seen how proofs may be developed around the
two representations.

But it must not be thought that proof is the major goal of
SPARK. The real goal is developing correct programs more
cheaply and also of course convincing the customer that
they are correct within a given budget. Sometimes formal
proof is the appropriate tool to being convinced that the
program is correct – but for most purposes it would be
overkill.

But perhaps the real strength of SPARK is that it encourages
good design by revealing the flow of information. For
example, suppose we have a package Stuff which contains a
procedure Do_It which in turn calls the procedures Push
and Pop and thereby manipulates The_Stack. The Ada
structure might be

package Stuff is
procedure Do_It;

end Stuff;

with The_Stack;
package body Stuff is

procedure Do_It is
begin

...
The_Stack.Push(...);
...
The_Stack.Pop(...);
...

end Do_It;
end Stuff;

with Stuff;
procedure Main is
begin

Stuff.Do_It;
end Main;

By just looking at the procedure Main we have absolutely
no idea what it does. Even if we look at the specification of
Stuff we are none the wiser. We have to look at the body of
Stuff to see that it has access to The_Stack. Clearly this is
against the spirit of separation of specification and body.
The specification ought to tell us what something does
whereas the body should simply tell us how it does it. Of
course the very fine detail is not always relevant but at least
we ought to be clear about what is affected by looking at
the specification.

Now consider the same example with the minimal SPARK

annotations.

--# inherit The_Stack;
package Stuff is

procedure Do_It;
--# global in out The_Stack.State;

end Stuff;

with The_Stack;
package body Stuff is

procedure Do_It is
begin

...
The_Stack.Push(...);
...
The_Stack.Pop(...);
...

end Do_It;
end Stuff;

with Stuff;
--# inherit The_Stack, Stuff;
--# main_program;
procedure Main
--# global in out The_Stack.State;
is
begin

Stuff.Do_It;
end Main;

This introduces two more annotations. One is the inherit
clause which is required on the specification of a package
in order to give access to other packages. The other is the
main program annotation. The global annotations now
reveal that the state of the package The_Stack is being
manipulated by the procedure Do_It and (transitively) by
the main subprogram. The fine details of just what is being

Barnes 253

Ada User Journal Volume 22, Number 4, December 2001

done to The_Stack are not revealed and indeed it is
probably not necessary to know at this structural level.

But the key point is that the side effect of manipulating the
state of the stack is revealed. The annotations encourage
good design because a bad design will often have a lot of
curious unexpected side effects which are embarrassingly
revealed by the annotations. Changing the structure in order
to reduce the complexity of annotations will simplify the
design by increasing coherence and reducing unnecessary
cross-coupling.

Design relates to the specifications of components and their
interrelationships whereas implementation relates to their
bodies. It is interesting to note that most SPARK annotations
apply to specifications and this emphasizes that SPARK is
primarily about encouraging good design which then in
turn leads to correctness of implementation.

An important issue is scalability, that is the ability to cope
with large programs as well as small ones. In this context it
is important that refinement can be cascaded. Thus if a
component C uses a subcomponent S such as the stack as
implementation detail then this fact need not be revealed at
the top level. The subcomponent S can be embedded in C
or (equivalently) be a private child of C. The state of C can
then be refined to include the state of S so that S becomes
just an implementation detail.

Note carefully that the most benefit will be obtained from
SPARK if it is used as early as possible in the design
process. It can weed out poor design before energy is spent
on implementation. Of course, SPARK is valuable at the
implementation stage as well because it will statically
detect many errors that the compiler cannot detect. Indeed,
SPARK reaches parts of the program that other tools do not
reach.

Levels of use
One of the beauties of SPARK is that it can be used at
different levels according to the requirements of the project.
The simplest level just requires visibility annotations such
as global and own annotations. These alone enable the
Examiner to detect a great many errors that cannot be found
by the compiler and thus have to be found by the tedious
process known as testing often at a later stage in the
development process and thus both more expensive to find
and to fix.

We know that a key strength of Ada is its strong typing
which reveals errors that in a pathetic language such as C
have to be found by testing. SPARK extends this capability
of Ada by finding even more errors without testing.

At the lowest level of annotation, flow analysis detects
many typical errors such as uninitialized variables (those
read before being given a value), ineffective parameters
(whose value has no effect on the outcome), overwritten
values (values that are overwritten before being used),
nonterminating loops, aliasing, and so on. In addition many
of the errors that can be made in Ada (such as inadvertently

using the wrong variable because a later declaration hides
it) cannot occur in SPARK because of stricter naming rules.

The introduction of the derives annotation will give more
detail of the interactions between components and analysis
will then often reveal surprising cross-coupling indicative
of poor design or coding errors.

Proof may be appropriate for algorithmic applications.
Proof can be applied at several levels as well. This paper
has described proof whereby the user is required to add
proof annotations. Another option is to check for the
absence of runtime errors such as those that arise from
violating a bound of an array. Since the Examiner knows
about the type model it can generate verification conditions
which show the absence of such runtime errors without the
user having to supply any annotations at all. Proof can be
performed with or without the derives annotations so in fact
there are really many levels at which SPARK can be used.

These different levels can be mixed up within a single
program. The computational leaves of a system might be
subject to proof, the derives annotation might be useful for
intermediate subcomponents whereas the outermost part of
the system might well have the lowest level of annotation.
This is a big strength of SPARK; it can be seen as several
tools rolled into one each appropriate to a different part of a
project.

Conclusion
Abstraction has been the main theme of this paper. Good
abstraction is about revealing relevant detail and hiding
irrelevant detail. Plain Ada programs typically do not reveal
all the relevant detail. But SPARK with its refinement
capability can be used to reveal the detail that matters while
keeping the irrelevant detail hidden.

The reader should be aware that this paper has only
surveyed some of the capabilities of SPARK. Much has been
omitted such as how to interface to external parts of a
system. Further details will be found in [1] from which
many of the examples given here have been taken and
which includes a CD containing demonstration versions of
the SPARK tools plus full documentation.

Finally it should be noted that SPARK is well-established
and has been successfully used on many projects in a
variety of application areas; see for example [2, 3].

References
[1] J. G. P. Barnes (1997), High Integrity Ada - The SPARK

Approach, Addison-Wesley.

[2] R. C. Chapman (2000), Industrial Experience with
SPARK, Proceedings of SIGAda 2000.

[3] M. Croxford and J. Sutton (1996), Breaking Through
the V and V Bottleneck, Proceedings of Ada in Europe
Conference 1995, Lecture Notes in Computer Science
1031, Springer-Verlag.

255

Ada User Journal Volume 22, Number 4, December 2001

Ada-Europe Associate Members
(National Ada Organizations)

Ada-Belgium
attn. Dirk Craeynest
c/o Offis nv/sa
Weiveldlaan 41/B32
B-1930 Zaventem
Belgium

Phone: +32-2-725-40-25
Fax: +32-2-725-40-12
Email: Dirk.Craeynest@offis.be
URL: www.cs.kuleuven.ac.be/~dirk/ada-belgium

Ada in Denmark
attn. Jorgen Bundgaard
c/o DDC-I
Gl. Lundtoftevej 1B
DK-2800 Lyngby
Denmark

Phone: +45-45-871144
Fax: +45-45-872217
Email: jb@ddci.dk

Ada-Deutschland
attn. Dr. Peter Dencker
Aonix GmbH
Durlacher Allee 95
D-76137 Karlsruhe
Deutschland

Phone: +49-721-98653-22
Fax: +49-721-98653-98
Email: dencker@aonix.de
URL: ada-deutschland.de

Ada-France
chez Fabrice Kordon
48 rue Vergniaud
F-75013 Paris
France

Phone: +33-1-44 27 61 89
Fax: +33-1-44 27 62 86
Email: bureau@ada-france.org
URL: www.ada-france.org

Ada-Spain
attn. Francisco Perez-Zarza
P.O. Box 50.403
E-28080 Madrid
Spain

Phone: +34-1-627-8247
Fax: +34-1-309-3685
Email: fperez@ceselsa.es
URL: www.adaspain.org

Ada in Sweden
Ada I Sverige
c/o Mariadata
Box 1085
SE-141 22 Huddinge
Sweden

Phone: +46-08-779-88-30
Fax: +46-08-774-37-93
Email: info@ada-i-sverige.se
URL: www.ada-i-sverige.se

Ada in Switzerland
attn. Alfred Strohmeier
Software Engineering Laboratory
Swiss Federal Institute of Technology Lausanne
CH-1015 Lausanne EPFL
Switzerland

Phone: +41 21 693 4231
Fax +41 21 693 5079
Email: alfred.strohmeier@epfl.ch
URL: http://lglwww.epfl.ch/Ada-in-Switzerland

Ada Language UK
attn. Helen Byard
P.O. Box 322
York YO10 3GY
UK

Phone: +44-(0)1904-412740
Fax: +44-(0)1904-426702
Email: admin@adauk.org.uk
URL: www.adauk.org.uk

256

Volume 22, Number 4, December 2001 Ada User Journal

Ada UK 2001 Sponsors
ACT Europe
Contact: Franco Gasperoni

8, Rue de Milan, 75009, Paris, France
Tel: +33-1-49-70-67-16 Fax: +33-1-49-70-05-52
Email: sales@act-europe.fr URL: www.act-europe.fr

Alenia Marconi Systems
Contact: Don Harvey

Eastwood House, Glebe Rd., Chelmsford, Essex, CM1 1QW, UK
Tel: +44-(0)1276-696901 Fax: +44-(0)1276-659842
Email: don.harvey@amsjv.com URL: www.aleniamarconisystems.com

Aonix Europe Ltd
Contact: Neil Michniak

Partridge House, Newtown Rd., Henley on Thames, Oxon, RG9 1HG, UK
Tel: +44-(0)14941-415000 Fax: +44-(0)14941-571866
Email info@aonix.co.uk URL: www.aonix.com

ARTiSAN Software Tools
Contact: Peter Kibble

Stamford House, Regent St., Cheltenham, Glos., GL50 1HN, UK
Tel: +44-(0)1242-229320 Fax: +44-(0)1242-229301
Email: peterk@artisansw.com URL: www.artisansw.com

BAE SYSTEMS
Contact: Paul McCormack

Warwick House, PO Box 87, Farnborough Aerospace Centre, Farnborough, Hants,
GU14 6YU, UK
Email: Paul.McCormack@baesystems.com URL: www.baesystems.com

Data Systems and Solutions
Contact: Dave Woodhall

SEAS Building, Sinfin Lane, Derby, DE24 8BJ, UK
Tel: +44-(0)1332-771700 Fax: +44-(0)1332-770921
Email: info@ds-s.com URL: www.ds-s.com

EDS
Contact: Lee Edwards

Hartley House, 15 Bartley Wood Business Park, Bartley Way, Hook, Hants.,
RG27 9XA, UK
Tel: +44-(0)1256-741122 Fax: +44-(0)1256-741132
Email: swep.sales@eds.com

First Matrix Ltd
Contact: Alan Barker

Old Lion Court, High St,. Marlborough, Wilts., SN8 1HQ., UK
Tel: +44-(0)1672-515510 Fax: +44-(0)1672-515514
Email: arb@ftmx.com

Green Hills Software Ltd
Contact: Jon Williams

Chancery Court, Lincoln Rd., High Wycombe, Bucks., HP12 3RE., UK
Tel: +44-(0)1844-267950 Fax: +44-(0)1844-267955
Email: sales-uk@ghs.com URL: www.ghs.com

IPL Information Processing
Ltd
Contact: Ian Gilchrist

Eveleigh House, Grove St., Bath, BA1 5R., UK
Tel: +44-(0)1225-475114 Fax: +44-(0)1225-444400
Email: ipl@iplbath.com URL: www.iplbath.com

LDRA Ltd
Contact: Jim Kelly

24 Newtown Rd., Newbury, Berks., RG14 7BN, UK
Tel: +44-(0)635-528828 Fax: +44-(0)635-528657
Email: sales@ldra.com URL: www.ldra.com

Objektum
Contact: Derek Russell or Ahmed Amin

Units 2/3 Cranleigh Works, The Common, Cranleigh, GU6 8SB, UK
Tel: +44-(0)1483-278178 Fax: +44-(0)1483-275384
Email: info@objektum.com URL: www.objektum.com

Praxis Critical Systems Ltd
Contact: Peter Amey

20 Manvers St., Bath, BA1 1PX, UK
Tel: +44-(0)1225-469991 Fax: +44-(0)1225-469006
Email: sparkinfo@praxis-cs.co.uk URL: www.praxis-cs.co.uk

Rational Software Ltd
Contact: Roger Bowser

Kingswood, Kings Ride, Ascot, Berks., SL5 8AJ, UK
Tel: +44-(0)1344-295000 Fax: +44-(0)1344-295001
Email: info@rational.com URL: www.rational.com

John Robinson & Associates
Contact: John Robinson

2 Currer St., Oakenshaw, Bradford, W. Yorks., BD12 7DP, UK
Tel: +44-(0)1274-691935 Fax: +44-(0)8700-558750
Email: John@jr-and-assoc.demon.co.uk URL: www.jr-and-assoc.demon.co.uk

Telelogic UK Ltd
Contact:

Chancery House, 8 Edward St., Birmingham, B1 2RX, UK
Tel: +44-(0)121-2346600 Fax: +44-(0)121-2346611
Email: info@telelogic.com URL: www.telelogic.com

TNI Europe Ltd
Contact: Tony Elliston

58a Mill St., Congleton, Cheshire, CW12 1AG, UK
Tel: +44-(0)1260-291449 Fax: +44-(0)1260-291449
Email: info@tni-europe.com URL: www.tni-europe.com

Wind River Systems UK Ltd
Contact: David Bew

Unit 5 & 6, 1st Floor, Ashted Lock Way, Aston Science Park, Birmingham,
B7 4AZ, UK
Tel: +44-(0)121-3590999 Fax: +44-(0)121-3804444
Email: inquiries-uk@windriver.com URL: www.windriver.com

