
Ada User Journal Volume 23, Number 2, June 2002

ADA
USER
JOURNAL

Volume 23
Number 2
June 2002

Contents
page

Editorial Policy for Ada User Journal 66

Editorial 67

News 69

Conference Calendar 83

Forthcoming Events 91

Announcements

 Pascal Leroy
“Call for APIs” 96

Articles

 John Barnes
“Some Impressions from IRTAW 11” 97

 Ingmar Ögren
“Using Ada's Syntax and Semantics for Understandable Systems Engineering” 100

 Bo I. Sandén
“Real-time Programming Safety in Java and Ada” 105

 Jeff Cousins
“Transition of a Large Project from Ada 83 to Ada 95” 114

Ada UK 2002 Sponsors 119

Ada-Europe Associate Members (National Ada Organizations) Inside Back Cover

66

Volume 23, Number 2, June 2002 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal – The Journal for the
international Ada Community – is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the first of the
month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited licence
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication
elsewhere.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.

A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the editor. Electronic
submission is preferred – typed
manuscripts will only be accepted by
the Editor by prior arrangement.

Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.

Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 67

Ada User Journal Volume 23, Number 2, June 2002

Editorial
Once again there is much interesting Ada related news to report. The first news article refers to the Ada
Rapporteur Group (ARG) and its call for APIs for the 2005 revision of Ada. This is also covered in a
separate announcement later in the issue.
Thanks are due to John Barnes, who was able to edit the news for this issue in the absence of regular
news editor, Dirk Craeynest.
Finally, this issue marks the end of my tenure as Editor-in-Chief. I am pleased to announce that Tullio
Vardanega will be taking over the position for the next issue and wish him well.

Neil Audsley
York

June 2002
Email: Neil.Audsley@cs.york.ac.uk

 69

Ada User Journal Volume 23, Number 2, June 2002

News
Dirk Craeynest (ed)
Offis nv/sa and K U Leuven. Email Dirk.Craeynest@offis.be

Contents
 page
Ada-related Organizations 5
Ada Semantic Interface

Specification (ASIS) 6
Ada-related Resources 6
Ada-related Tools 6
Ada-related Products 10
Ada and CORBA 12
Ada and Microsoft 12
References to Publications 13
Java 14
Ada Inside 15
Ada in Context 15

Ada-related
Organizations
ARG calls for proposals
From owner-team-ada@ACM.ORG
Date: Fri May 24 14:10:31 2002
Subject: ARG asks Ada Community for API

Proposals.
To: TEAM-ADA@ACM.ORG
The Ada Rapporteur Group (ARG) is the
technical committee in charge of
proposing amendments to the language to
WG9, the ISO working group on Ada.
The ARG has begun work on the next
revision of Ada, planned for 2005. As
part of this revision, there has been a lot
of interest in the Ada community for the
standardization of reusable components
and APIs to existing services.
While the ARG will conduct (based on
input from the Ada community) the
revision of the core language and
annexes, it doesn't have the resources to
develop proposals itself for the
standardization of reusable components
or APIs. Standardization of components
or APIs often will best be accomplished
with secondary standards rather than part
of the core language standard. The ARG
will oversee the development of such
secondary standards, but this is best
accomplished by cooperating with
external groups developing the substance
of such standards.
Therefore, the ARG would like to ask the
Ada community to submit proposals for
the standardization of APIs. Proposals
must include (at least) a set of Ada
specifications, and a semi-formal
description of the semantics of each
declaration, such as can be found in the
annexes of the Reference Manual.

Developing such proposals usually will
require the formation of formal or
informal working groups.
The ARG will evaluate these proposals
using a variety of criteria. For a more
detailed version of this announcement,
including a (partial) list of evaluation
criteria, please see:
http://www.adaic.org/news/call4apis.html
Randall Brukardt Editor, ISO/IEC JTC1
SC22 WG9 ARG
[and here are the details -- jb]

ISO Working Group asks
Ada Community for
Candidate APIs for
Standardization
From Pascal Leroy, Principal Software

Engineer, Rational Software Corp.,
Chair, Ada Rapporteur Group

[Please also see page 96 in this edition of
the AUJ – Editor]
As part of the next revision of Ada,
planned for 2005, there has been a lot of
interest in the Ada community for the
standardization of reusable components
and APIs to existing services. It is felt
that such standardizations would improve
the marketability of the language as well
as day-to-day programmer productivity.
For most of these APIs, the proper
standardization vehicle is a secondary
standard (that is, a standard referencing
the Ada standard, but standardized as a
separate process). For relatively small
APIs, inclusion in an existing annex is
also an option, although this might delay
the language standardization process.
The Ada Rapporteur Group (ARG) is the
technical committee in charge of
proposing amendments to the language to
WG9, the ISO working group on Ada.
While the ARG will conduct (based on
input from the Ada community) the
revision of the core language and
annexes, it doesn't have the resources to
develop proposals itself for the
standardization of reusable components
or APIs. The ARG will oversee the
development of secondary standards, but
this is best accomplished by cooperating
with external groups developing the
substance of such standards.
We would like to ask the Ada community
to submit proposals for the
standardization of APIs. Proposals should
be sent to ada-comment@ada-auth.org,

and should preferably have the form of an
amendment AI (see http://www.ada-
auth.org/cgi-bin/cvsweb.cgi/AIs/
AI-00248.TXT for an example). While
all input will be carefully reviewed, the
ARG will act as a filter to retain only
those proposals that have a sufficient
level of maturity and usefulness, and will
provide feedback to the authors. Criteria
that will be used for evaluating the
proposals include:
* Benefits of the standardization.

Presumably the advantage of
standardization is that it brings
uniformity and portability among
implementations. However, there is a
significant overhead associated with a
formal standardization process, so in
some cases a de facto standard may
bring practically the same benefits at a
much lower cost.

* Usefulness of the API. APIs which
have been conjured up solely for the
purpose of writing a proposal, or which
have been used by a very small group
of users, are less likely to be generally
useful than APIs which have been
available for years and have benefited
from feedback from a large user base.

* Quality and precision of the proposal.
At a minimum, the proposal must
include a set of Ada specifications, and
a semi-formal description of the
semantics of each declaration, such as
can be found in the annexes of the
Reference Manual. A rationale
showing examples of use, explaining
the choices that were made, the
alternatives that were considered, and
why they were discarded, would also
be much appreciated.

* Community consensus for the proposal.
Proposals with a substantial consensus
of the Ada community or the
appropriate subcommunity are
preferred over proposals made by an
individual or small group. This is not
to say that a proposal primarily
authored by an individual is necessarily
bad (indeed, it is likely to provide a
more consistent proposal), but to
encourage authors to seek
input/approval from as many potential
users of the API as possible.

* Portability and language usage. The
definition of the API must not depend
on implementation-defined
characteristics of a particular compiler,
although it is acceptable to require the
compiler to support some Specialized

70 News – Ada-related Tools

Volume 23, Number 2, June 2002 Ada User Journal

Needs Annex (or part thereof). As much
as possible, the API should only use
the features of Ada 95 (as opposed to
those that are under consideration for
the 200Y amendment) although we
realize that this may not be practical in
some cases.

* Implementation. A publicly available
reference implementation would be
useful, although this is not a strict
requirement, as in some cases that may
cause intellectual property issues.

* Test suite. A test suite ensuring
conformity to the specification should
be provided at some point during the
standardization process. This is
especially important for standards for
which no publicly available reference
implementation will be available. This
doesn't necessarily mean that there will
be a formal conformity assessment
process like there is for compilers, but
it will help implementers ensure that
they comply with the standard.

It is anticipated that the groups
submitting proposals will keep ownership
of the standard during the entire
standardization process, although the
ARG will provide guidance regarding
that process and continuous feedback on
the contents of the proposal.

Ada Semantic Interface
Specification (ASIS)
Ada Browse
From: Clyde Roby <roby@ida.org>
Date: Tue, 12 Mar 2002 07:13:32 -0500
Subject: New ASIS product: AdaBrowse - a

javadoc for Ada 95
To: SIGADA-ASIS@ACM.ORG
As you all know, on our web page at:
http://www.acm.org/sigada/wg/asiswg/
asiswg.html
we list several ASIS-based products, with
detailed descriptions on
http://www.acm.org/sigada/wg/asiswg/
ASIS_Clients.html
Dr. Thomas Wolf (twolf@acm.org and
http://home.tiscalinet.ch/t_wolf/) has
developed his own, free (GPLed) utility
called AdaBrowse; I've added it to these
lists. Here is a succinct description of
AdaBrowse. I invite you all to visit our
web page to see the full description and
to download the program.
AdaBrowse is an HTML generator for
Ada 95 library unit specs. It generates
structured and fully cross-referenced
HTML documentation from Ada 95
sources, similar to what javadoc does for
Java.
AdaBrowse is an ASIS application: it
uses ASIS to produce precise cross-
references in the generated HTML, and to
extract semantic information to structure

the generated HTML and to generate e.g.
a type index containing also the
primitive operations of the types.
It works with both GNAT 3.13p and
3.14p and possibly with other ASIS
implementations, too. It runs on
Windows NT/2000, and also (hopefully; I
don't have a Unix-box!) on Unix-like
systems.
AdaBrowse is available at the URL:
http://home.tiscalinet.ch/t_wolf/tw/ada95/
adabrowse/
in source and executable (for GNAT
3.14p on Win NT/2000) form. A brief
description of AdaBrowse is in the
appendix. Visit the ASISWG website and
see more about AdaBrowse!
Clyde Roby, ASISWG Webmaster
From: Thomas Wolf

<t_wolf@angelfire.com>
Date: Tue, 7 May 2002 11:36:34 +0200
Subject: ANN: AdaBrowse 2.0
Newsgroups: comp.lang.ada
AdaBrowse is a HTML documentation
generator for Ada 95 library unit
specifications. It is distributed under the
GPL and is available at the URL:
http://home.tiscalinet.ch/t_wolf/tw/
ada95/adabrowse/
It is available as both a pre-built
executable (for Win NT/2k and GNAT
3.14p), and the sources.
AdaBrowse builds and runs without
further ado on both Win NT/2k and Unix
systems, and shouldn't be too hard to port
to other ASIS implementations than
ASIS-for-GNAT.
For those who have never heard of
AdaBrowse yet: it is like a javadoc for
Ada 95, but much more versatile and
powerful than javadoc for Java.
The distribution comes with a
comprehensive user's guide including
examples and instructions on how and
where to submit bug reports.
AdaBrowse differs from gnathtml in
several ways:
- AdaBrowse is a stand-alone executable;

gnathtml is a perl script.
- AdaBrowse is more flexible, and can be

customized to a much greater extent.
- AdaBrowse produces structured HTML

output including formatted
descriptions; gnathtml basically just
encloses the source in <PRE></PRE>
tags and adds cross-references.

- AdaBrowse uses ASIS to collect cross-
reference information, whereas
gnathtml relies on the GNAT-specific
cross-reference info in the ALI files.

- AdaBrowse uses ASIS to gather
semantic information about library
units and makes use of it, e.g. to find
all the primitive operations of a type.

- AdaBrowse can call e.g. a compiler if
no ASIS information is found, whereas

gnathtml doesn't generate cross-
references if no ALI file is found.

- AdaBrowse does some limited form of
pretty-printing, such as using
identifiers as cased in their definition
everywhere.

V2.0 is a major upgrade over the last
announced version 1.5:
- Some more work-arounds for bugs in

ASIS-for-GNAT 3.14p.
- It now supports user-defineable HTML

elements. AdaBrowse macro-replaces
such user-defined elements; recursive
definitions give an error. User-defined
HTML elements are specified through
keys in configuration files.

- Configuration files can include other
configuration files. Recursive inclusion
is detected and gives an error message.

- On some keys in configuration files,
AdaBrowse now does environment
variable substitution (using the bash
syntax).

Thomas Wolf

Ada-related Resources
Updated Ada Conformity
Asessment Test Suite
From: "Technical Webmaster"

<Webmaster@adaic.com>
To: <Announce@adaic.com>
Date: Tue, 2 Apr 2002 19:17:41 -0600
Subject: [AdaIC] ACATS 2.5 Released
The ACAA has released an update to the
Ada Conformity Assessment Test Suite
(ACATS). The new version, version 2.5,
includes new tests and modifications
from the last year. The new tests increase
the coverage of the test suite to include a
larger portion of the changes in Technical
Corrigendum 1, the recently published
corrections to the Ada standard.
ACATS 2.5 is available from the AdaIC
web site at
http://www.adaic.org/compilers/
testing.html

Ada-related Tools
Simple Graphics
From: Michael Gonzalez

<mgh@unican.es>
Date: Wed, 20 Mar 2002 11:29:55 +0100
Organization: Universidad de Cantabria
To: "Dirk Craeynest (Ada Belgium)"

<Dirk.Craeynest@cs.kuleuven.ac.be>
Subject: Win_IO
Dirk: You may find this product
interesting for the Ada news in AUJ.
Michael.
Win_IO is a set of packages for graphical
input and output. It is designed specially

News – Ada-related Tools 71

Ada User Journal Volume 23, Number 2, June 2002

for students or Ada users who do not
want to spend their time learning a
complex graphical user interface, but
who are "tired" of the old-fashioned text-
oriented input and output. Win_IO has
the same goals as JEWL (John English
Windows Library,
http://www.it.bton.ac.uk/staff/je/jewl/),
but is simpler (and less powerful) and is
portable within Unix, Linux and
Windows platforms. JEWL is currently
only provided for Windows.
Win_IO is free software; you can
redistribute it and/or modify it under the
terms of the GNU General Public License
as published by the Free Software
Foundation. It is based on GtkAda and
Gnat.
Win_IO is composed of the following
modules:
* Input_Windows: Provides a simple

window with I/O capabilities for data
of the types Integer, Float, and String.
Several data can be displayed and/or
retrieved on the same window.

* Output_Windows: Provides a simple
window with Output capabilities for
data of the types Integer, Float, and
String. Several data can be displayed
on the same window.

* Message_Windows: Provides a simple
window for displaying a short
message. It provides an OK button for
closing the window.

* Menu_Windows: Provides a simple
window with several buttons that
enable the user to select from a number
of options. It is a generic package that
must be instantiated with an
enumeration type. One button will be
created for each value in this type.

* Graphics_Windows: Provides a simple
window with drawing capabilities.

* Plot_Windows Provides a simple
window for drawing two-dimensional
graphs from sets of points.

You can find Win_IO in:
http://ctrpc17.ctr.unican.es/win_io/
Michael Gonzalez Harbour, Dpto. de
Electronica y Computadores, Universidad
de Cantabria, Avda. de los Castros s/n, E-
39005 Santander, SPAIN, Phone: +34-
942-201483, Fax: +34-942-201402

Ada Web Server
From: Pascal Obry <p.obry@wanadoo.fr>
Date: 29 Apr 2002 18:45:43 +0200
Subject: ANNOUNCE: AWS 1.2
Newsgroups: comp.lang.ada
Dmitriy Anisimkov and I are very happy
to announce the availability of the AWS
1.2 release. The API could change
slightly at this stage but should be fairly
stable now.
AWS stand for Ada Web Server. It is not
a real Web Server like Apache. It is a

small yet powerful HTTP component to
embedded in any applications. It means
that you can communicate with your
application using a standard Web browser
and this without the need for a Web
Server. AWS is fully developed in Ada
with GNAT.
AWS support SOAP, Server Push,
HTTPS/SSL, client HTTP, hotplug
modules. We have worked very hard to
make this release as stable as possible.
Note that Hotplug modules are very nice
but have a potentially security hole as it
is implemented today. A new secure
implementation will be proposed in a
future version.
The SOAP implementation has been
validated on:
http://validator.soapware.org/
Here are the main changes:
- You need GNAT 3.14 to build AWS 1.2

(GNAT 3.13 is not supported
anymore).

- Add a main procedure termination
controller (AWS.Server.Wait)

- Fix some memory leak in AWS.
Response.Data and AWS.Server.
Protocol_Handler for binary data.

- In AWS.URL, function URI was not
correctly named. It has been renamed
Pathname. This is a backward
compatibility problem. Path and File
function has been added into
AWS.URL.

- Fix bug to close a connection when
server is heavy loaded.

- Add AWS.Services.Page_Server
service. This service is a straight
forward implementation of a simple
static web page server. See WPS demo.
It supports two template files:
404.thtml and aws_directory.thtml.

- Fix race condition in AWS.Server
implementation. This was a very nasty
bug, sockets could be handled in two
different slots. If you are experiencing
bug with heavy loaded servers you
should plan to upgrade as soon as
possible.

- Add dispatchers facilities which is more
general than the callback procedure
(access to procedure) for example it
can transport user's data. This is the
base of a general framework for high
level services.

- Add three high level Dispatcher
facilities (AWS.Services.Dispatchers):
1) on URI, 2) on request method, 3) on
Host name (also called virtual hosting)

- Add AWS.Templates (renaming of
Templates_Parser) as this component
is a very important one for Web
development.

- AWS can now have servers binded to
different IP addresses if the computer

has more than on IP addresses. See
AWS.Config.Server_Host.

- New version of libssl32.dll and
libeay32.dll based on OpenSSL 0.9.6c.

- Client handle properly the HTTP
continue response message.

- Templates_Parser now integrated into
AWS.Templates package. This version
has a cache fully is thread safe.

- Session cookie was set for first path
(and sub path) used, it means that it
was possible to have multiple session
for a Web site. This behavior was the
result of a bug. Now a single session is
created for the whole site (starting at /).

- Fix timeouts for client keep-alive
connection.

- SOAP handle properly zero length
array.

- SOAP handle properly Array of Record.
- Boolean types are now directly handled

on sessions.
- Now always install AWS under

directory AWS, INSTALL make
variable must point to the AWS parent
directory.

- Plus many small fixes, enhancements
and documentation work.

You can have a look at docs/TODO file
to see what are the topics that we will
probably implement in future releases.
NOTE: Since we have switched to the
.PNG file format we have found that
Netscape Navigator is not able to display
the PNG transparent layer properly!
At this stage we feel that AWS is ready to
build small to medium Web servers.
AWS has been reported to work on
Windows NT/XP, Linux and FreeBSD
4.1.
With this new version you'll need at least
version 1.0 of the Socket binding >from
ENST. See pointers below.
The OpenSSL libraries (optional)
distributed are for Windows only. On
UNIX you'll have to build the libraries
from sources, it is quite easy to do so.
This has been tested under Linux without
trouble.
See documentation for build information.
AWS User's Mailing List:
http://lists.act-europe.fr/mailman/listinfo/
aws
AWS Home Page (sources and
documentation):
http://libre.act-europe.fr/
Templates_Parser sources: Templates_
Parser module (sources and
documentation) is provided with AWS
distribution. Latest version of this module
and the documentation can be found at:
http://perso.wanadoo.fr/pascal.obry/
contrib.html and http://perso.wanadoo.fr/
pascal.obry/templates_parser.html

72 News – Ada-related Tools

Volume 23, Number 2, June 2002 Ada User Journal

Templates_Parser is a useful add-on for
AWS. You should have a look at it if you
plan to develop a Web service. It
Templates_Parser permits the separation
of the HTML design from the Ada code.
Some other Templates engine are
WebMacro, FreeMarker, PHP, ASP, JSP
and Velocity. All of them are based on
explicit iterators (#foreach with a
variable) where Templates_Parser is
based on implicit ones (you use a more
intuitive table iterator). Be sure to check
the documentation. Only the Velocity
project has the goal to support complete
separation of HTML design and code.
GNU/Ada - GNAT You need at least
version 3.14 to use AWS 1.2:
ftp://cs.nyu.edu/pub/gnat/
XMLada (optional): You need this library
only if you want to use AWS SOAP
feature. You need at least XMLada 0.7.1:
http://libre.act-europe.fr/
Socket binding: Since AWS 1.2 you need
at least version 1.0 of the Socket binding.
for Win32:
http://perso.wanadoo.fr/pascal.obry/
contrib.html
http://vagul.tripod.com/adasockets.tgz
for UNIX:
http://www.rfc1149.net/devel/adasockets
POSIX Binding (optional). For Win32:
http://perso.wanadoo.fr/pascal.obry/
contrib.html
for UNIX:
http://www.cs.fsu.edu/~baker/florist.html
OpenSSL library (optional). Sources for
UNIX or Win32:
http://www.openssl.org
Binaries for Win32: included with the
main AWS distribution (win32
directory).
Note that we have used and we distribute
(for Win32 platform) OpenSSL version
0.9.6c with this AWS release. OpenSSL
have been built with GCC version 2.95.3
with -O3 optimization level.
See OpenSSL license
(docs/openssl.license).
Windows Services API (optional):
To build the runme demo as a Windows
NT/2000 services you must download the
services API made by Ted Dennison for
his SETI@Home project:
http://www.telepath.com/dennison/Ted/S
ETI/SETI_Service.html
You can report bugs to:
Dmitriy Anisimkov
(anisimkov@yahoo.com) or Pascal
Obry(p.obry@wanadoo.fr)
It would be nice if you could also sent us
a note if you are using AWS just to know
if it is used at all or not :) And if you are
ok, we'll add an entry for your project in
the next section.
 AWS User's Mailing List:

A good way to keep informed of AWS
news and to share experiences with other
AWS users is to register to the AWS
dedicated mailing list. See:
http://lists.act-
europe.fr/mailman/listinfo/aws
 AWS uses
- SETI@Home from Ted Dennison.
AWS is used as a "plugable" GUI to
retrieve different program status.
- DOCWEBSERVER from Wiljan Derks
In our department we keep our
documents in a directory tree. These
documents are all project related and
have a certain naming convention to be
able to find the right document. In the
past I already wrote a program that
searches though this directory and then
converts the found documents into fixed
html pages. With AWS I was able to get
a much nicer setup. I have now a server
that can do the following: - browse
through the projects in explorer style. The
html contains info about the document
like date and title. - one can check in
documents through the web interface - it
shows our download page as I have send
you in the example - we have now all our
documentation in small pieces of html as
is needed to build .chm (w2k compiled
help) files. For these we use a content
file, that is also stored in the document
archive.
The docwebserver gives by reading all
this stuff the direct view on this
documentation. On the other hand I can
run some tool and automatically generate
the .chm files.
- OESM Server (OESM=Overall
Equipment Status Monitoring) from
Wiljan Derks
I am working on a project now for our
factories. ITEC mainly delivers
equipment for discrete semiconductor
assembly. Almost all of that equipment is
now controlled by a similar Ada 95 based
code with having a lot of code in
common. One of the common things, is
the way we log errors and state changes
of our equipment.
The OESM Server is an application
which copies all this information
continuously to its local pc by opening
the proper files on the remote equipment.
That data copied is also stored in local
files. The web server component of the
application can then, making use of that
data, give reports that show things like
the amount of products produced in a
certain period, error paretos of
equipment, mtbf, %time in production
and of course many other things.
The cool thing of course is that this
information can easily be charted (I am
use kavachart) and it allows simple
navigation through different groups of
equipments and different views on the
equipment.

- WORM from Pascal Obry see:
http://www.ada-france.org/
ADHERENTS/101100/05-obry.pdf
A Web server to share bookmarks, this
server was using a standard CGI design.
To keep session information we were
using a GLADE partition. With AWS the
design has been really simplified, there is
no need for a session partition, there is no
need to build all CGI as partitions too.
GLADE is now used only to handle
distributed objects. Indeed WORM is a
multi-server system (using RACW) with
a register/unregister mechanism.
Also the server seems to be fastest, there
is no more CGI to spawn.
- Internet Currency Trading System by:
Dmitriy Anisimkov at
http://www.actforex.com
This is a server is used to keep historical
data about currency trading to build
charts of currency prices. The charts
viewer part is written in Java and loaded
through AWS. This server can be reach
on the Internet.
Ongoing work is done to based this
development on AWS framework only
and to remove all the Java layers. It is
also interesting to note that this is an
heavy loaded server, it handle something
like 40 to 50 requests per seconds on a
Windows 2000 Server.
- http://www.forexcoach.com site is
powered by AWS. This site has been
done by Dmitriy Anisimkov.
Thanks to all who have reported bugs and
have sent us patches.
Dmitriy & Pascal.
--| Pascal Obry (Team-Ada Member) 45,
rue Gabriel Peri - 78114 Magny Les
Hameaux FRANCE
From: anisimkov@yahoo.com (Dmitriy

Anisimkov)
Date: 20 Apr 2002 19:08:20 -0700

Subject: Ada95 e-Business
Newsgroups: comp.lang.ada

I want to show the Ada95 usage in the
public e-Business solution.
On the Site:
http://www.actforex.com/frames.html
In the left menu choose "Demo", then in
the top of the page choose "Registration"
The registration form will be handled by
the HTTP Server written in Ada95
(information about the Ada Web Server
is http://libre.act-europe.fr/aws/).
You are going to receive the email with
login_id and password for the access to
the forex demo system.
If you don't want to register, i.e. betray
your email address. you can use
Demo Username: ttest Demo Password:
348

74 News – Ada-related Tools

Volume 23, Number 2, June 2002 Ada User Journal

On the top of the page with registration
success message choose "Demo Login".
Choose the language for login. Enter the
name and password received by email.
The client application is using the Sun
JAVA Plug-in 1.3, if it is not already
installed, it is going to install during first
applet loading. In the applet menu you
can choose the Help/About You can see
the http server version over there. It is
Ada Web Server. You can choose the
File/Reports from applet menu, and see
reports dynamically generated in the
RDBMS and published by AWS.
You can choose the View/Charts from
applet menu, and see the Forex charts.
Data for the charts generated in the
RDBMS, published by AWS, and
displayed by Java applet. Other usage of
the AWS is the complete site
http://www.forexcoach.com
If you don't want to register, you can use
the login id : Dima password: aws

Motif Binding
From: vgodunko@vipmail.ru (Vadim

Godunko)
Date: 7 Mar 2002 13:45:44 -0800
Subject: Announce: AdaBindX 0.7.2

released
Newsgroups: comp.lang.ada
New version of Ada/X/Motif bindings
named adabindx you may find at:
http://home.arcor.de/hfvogt/
programming.html

Win32POSIX
From: Pascal Obry <p.obry@wanadoo.fr>
Date: 09 Mar 2002 15:15:53 +0100
Subject: Win32POSIX v1.12b
Newsgroups: comp.lang.ada,

fr.comp.lang.ada
I have just uploaded a new version of
Win32POSIX. A POSIX implementation
for Windows based system. This is just a
partial implementation since Windows is
really far to be POSIX compliant :)
Thanks a lot to Jean-Pierre.Rosen ;) for
his contributions. Jean-Pierre as
continued the foolish project to have a
POSIX interface on native (read non
Cygwin based) Windows :) and we can
tell you that it is quite difficult! Win32
API is just plain amazing sometimes :)
Anyway you'll find v1.12b on my
homepage. A direct access to the
Win32POSIX page is:
http://perso.wanadoo.fr/pascal.obry/
archive/w32posix.html
Here are the main changes since 1.11b
* POSIX API should be thread safe. In

many places this was not true before.
* POSIX.Process_Primitives It is

possible to launch .com and .exe (not
only .exe as before).

* POSIX.Calendar Handle milliseconds.

* POSIX.Files Is_Symbolic_Link added.
Is_Socket added. Both always return
False on Win32. For_Every_Directory
Entry, check for pathname with
directory separator.

* POSIX.File_Status Get_File_Status
new version should be better than
before. Do not handle devices as this
seems to be impossible on Win32.

* POSIX.Process_Environment
Environment_Value_Of correctly
return Undefined if variable not found.

Pascal.

AdaSockets binding
From: Pascal Obry <p.obry@wanadoo.fr>
Date: 09 Mar 2002 15:20:57 +0100
Subject: [ANNOUNCE] Adasocket v1.0

port to Win32
Newsgroups:

comp.lang.ada,fr.comp.lang.ada
Dmitriy Anisimkov has ported to Win32
the latest version of the AdaSockets
binding (v1.0). You can download it
from:
http://vagul.tripod.com/adasockets.tgz
http://perso.wanadoo.fr/
~pascal.obry/contrib.html
Next AWS version (v1.3) will need this
AdaSockets version.
Pascal.

Interfacing to Prolog
From: Dale Stanbrough

<dstanbro@bigpond.net.au>
Date: Fri, 12 Apr 2002 14:03:10 GMT
Subject: Re: How to interface to Prolog?
Newsgroups: comp.lang.ada
> Adrian Hoe wrote: I would like to call

a procedure written in Prolog from Ada
or another way round. I Could not find
any information on this. One way to
resolve this is to write a C-wrapper but
I want to do it pure Ada-Prolog if
possible. Any ideas, anyone?

There is a Prolog interpreter written in
Ada from the Anna (Ada annotation
language) toolset written at Stanford (?)
many years ago, that I made more Ada95
like quite some time ago.
It was for a project that never really got
off the ground, so although the packages
seem to work a bit, I can't guarentee how
thoroughly it would work.
I attempted to contact the copyright
holders when I got a copy of it, but could
never make raise them from the dead.
The source code can be found at
http://goanna.cs.rmit.edu.au/~dale/
software/index.html
Dale
From: Anatoly Chernyshev

<rhezusfactor@yahoo.com>
Subject: Re: How to interface to Prolog?
Newsgroups: comp.lang.ada

There is very good yet freely available
Prolog package at www.amzi.com, which
includes dll-libraries and several samples
of how to interface Amzi Prolog with
other languages (C, Java, VB...) You may
wish to peep into these samples and adapt
the library for Ada. I was planning this
for myself a while ago, but had no time
yet.
Regards, Anatoly

Database system in Ada
From: mkudvin@atlas.cz (Matthew

Goodwin)
Date: 22 Feb 2002 13:32:55 -0800
Subject: GPL Enterprise Database System

in Ada
Newsgroups: comp.lang.ada
I have just released a GPL Enterprise
(Accounting, Order Entry, Shipping,
Inventory) database system (aka Zephyr
Basecamp). It is written in Ada, uses the
Postgresql database and Gtk. It, thanks to
Ada, works on both Windows and Linux.
Relevant comments would be greatly
appreciated.
Matthew Goodwin

Ada-related Products
ACT announces GPS
URL: http://www.gnat.com/texts/news/

news_gps.htm
Ada Core Technologies announces GPS:
a new developer-friendly programming
Environment
A customizable, multi-platform system
with advanced navigation support
New York, N.Y., April 30, 2002, 9:00
a.m. - Ada Core Technologies, Inc., the
leader in GNAT and Ada 95 technology,
today announced Q4 availability of GPS,
the GNAT Programming System. GPS is
a developer-friendly Ada, C, and C++
graphical programming system for native
and embedded software development.
GPS is easy to learn and use, yet it allows
programmers to develop, build, and
maintain large complex systems.
"The GPS IDE reflects the move towards
less centralized software project
organization and allows for maximum
flexibility without compromising
reliability or commonality of style", said
Robert Dewar, President of Ada Core.
"GPS was designed by programmers for
programmers", added GPS project leader
Arnaud Charlet. GPS offers a compelling
graphical interface that integrates a
syntax-oriented editor, a source-level
debugger, source code navigation,
dependency and unit hierarchy browsers,
call graphs, a project configuration
manager, project dependency graphs, unit
testing, and version control support,
among other tools. GPS can be tailored

News – Ada-related Products 75

Ada User Journal Volume 23, Number 2, June 2002

by users to integrate their preferred tools,
such as editors, use their favorite
configuration management, add
additional tools such as change tracking,
or add support for additional
programming languages.
Combined with the GNAT Pro Ada 95
and C tool suites, GPS offers a
sophisticated environment for native
development on GNU/Linux, UNIX, and
Windows, or embedded development for
VxWorks and LynxOS.
For additional product information please
visit the Ada Core website at
http://www.gnat.com
or contact sales@gnat.com.
or contact Nancy Cruz Ada Core
Technologies, Inc. (212) 620-7300 Ext.
117 cruz@gnat.com

ACT and Compaq
URL: http://www.gnat.com/texts/

news/news_compaq.htm
Ada Core Technologies awarded Compaq
contract for porting Ada Toolset to
Compaq OpenVMS for Itanium
Processor Family
GNAT Pro Ada 95 Toolset and Compaq's
OpenVMS Provide Solid Foundation for
Software Development
New York, N.Y., April 30, 2002, 9:00
a.m. - Ada Core Technologies, the leader
in GNAT and Ada 95 technology is
pleased to announce that it has been
awarded a contract by Compaq Computer
Corporation to implement the GNAT Pro
Ada 95 Tool Suite on the Compaq
OpenVMS operating system for the
Itanium Processor Family.
This contract involves the provision of an
Ada 95 compiler, an accompanying
toolset integrated into the OpenVMS
development platform, and project
support.
"Ada on OpenVMS is an excellent
match", observed Ada Core's President
and CEO Robert Dewar, "Over the years,
both Ada and Compaq's OpenVMS
operating system have enjoyed well-
deserved reputations for reliability, and
we expect that the port of GNAT to the
new Compaq OpenVMS on Itanium
platform will give users a solid
foundation for software development."
The port of GNAT Pro Ada 95 is
expected to play a key role in the port of
Compaq OpenVMS to the Itanium
Processor Family. This port is expected
to be upwards compatible with both
Compaq Ada (Ada 83), and the existing
port of GNAT Pro for OpenVMS on
Compaq AlphaServer systems. It will
provide 100% full Ada 95 functionality
including relevant special needs annex
support..
"We are pleased to have such a respected
industry leader as Ada Core Technologies

working with us, "states Mark Gorham,
vice president of Compaq's OpenVMS
Systems Group. "With their expertise, we
expect to be well positioned to continue
our commitment to our key government
and private sector customers."
For additional product information please
visit the Ada Core website at
http://www.gnat.com
or contact sales@gnat.com.
or contact Nancy Cruz Ada Core
Technologies, Inc. (212) 620-7300 Ext.
117 cruz@gnat.com

ACT announces GNAT
3.15a
From: "Cyrille Comar" <comar@ACT-

Europe.FR>
Date: Mon, 25 Feb 2002 13:12:17 +0100
Subject: [9610-004] Release 3.15 is

available on 7 native platforms
We are happy to announce the immediate
availability of the candidate GNAT 3.15a
release for the following platforms:
alpha-tru64 pa-hpux ppc-aix mips-irix
sparc-solaris x86-linux x86-solaris (other
major platforms will follow shortly) The
distributions can be found in
ftp://ftp.gnat.com/gnatpro/3.15
The release represents a large step
forward in GNAT technology. The
release incorporates over 180
documented problem corrections and 126
documented enhancements,
optimizations, new pragmas, tools and
compiler warnings. The project facility
has improved substantially, thanks to the
very successful beta program carried on
in version 3.14. This facility is now
integrated into the 3.15 release, and
documented in the GNAT User's guide.
Debugging capabilities have improved
significantly thanks to new versions of
gdb & gvd, as well as compilation
features such as the new -gnatVf switch,
which in combination with the pragma
initialize_Scalar improves substantially
the detection of uninitialized variables.
We are looking forward to hearing from
you about this new release.
With Best Regards,
ACT Europe and Ada Core Technologies

I-Logix Launches Rhapsody
in Ada
URL: http://www.ilogix.com/news/

press_detail.cfm?pressrelease=
2002_02_19_055040_36053pr.cfm

I-Logix Launches Rhapsody in Ada
UML-Compliant Visual Development
Platform For Ada Speeds Development
of Embedded Military/Aerospace
Applications
February 19, 2002 - Embedded Systems,
Nürnberg, Germany - I-Logix Inc., the
premier provider of enterprise solutions

for embedded applications development,
has launched Rhapsody(r) in Ada^(r), the
latest member of I-Logix' award-winning
Rhapsody product family and the first
visual application development platform
for Ada programmers based on the
standard Unified Modeling Language®
(UML).
Designed and optimized for the
development of embedded applications in
the military, aerospace and transportation
industries where the Ada language is
used extensively, Rhapsody in Ada
generates fully traceable and
customizable production quality code that
is readily deployable. I-Logix is working
with leading military and aerospace
suppliers to streamline the integration of
Rhapsody in Ada into the development
process for mission critical real-time
embedded applications. Rhapsody in Ada
enables programmers to work quickly,
easily and efficiently in a visual
environment that has been fine-tuned to
their needs. By shifting the focus of work
from coding and debugging to design,
increasing the opportunity for design re-
use, and simplifying communication
among design team members, Rhapsody
in Ada can save over 30% in
development cycle time and dramatically
improve time-to-market for delivering
real-time embedded applications
targeting the Ada language.
Rhapsody in Ada employs a standard
UML modeling environment that is well
understood by the real-time embedded
software engineering community, but
unlike developers using other languages,
Ada programmers need a high level of
code customization flexibility in order to
deal with conformance requirements such
as safety, verification and certification
issues. Rhapsody in Ada has been
architected to enable end-users to
customize the style of the generated Ada
code. This enables them to conform with
the often strict and well-defined
development standards associated with
military and aerospace applications.
Through full integration with DOORS ®,
Rhapsody in Ada also addresses the
important issue of requirements
traceability that the size and complexity
of Ada software development projects
invariably present. DOORS provides the
ability to describe system functionality in
a textual format and integration with
Rhapsody in Ada ensures that, at any
point in the design cycle, the
requirements can be traced directly into
the UML design models and ultimately
into the source code.
Rhapsody is a visual application
development platform designed to meet
the challenges of real-time embedded
software development. It allows real-time
embedded software engineers to analyze,
design, implement, and test UML-based
applications graphically. Production-

76 News – Ada-related Products

Volume 23, Number 2, June 2002 Ada User Journal

quality code is automatically generated as
the design evolves and graphical
animation allows design diagrams on the
development host to be debugged before
testing the software on the target. This
capability enables reuse at the design
level and compresses the overall
development cycle. Rhapsody has an
open architecture that enables interfacing
to leading requirements traceability,
configuration management, and testing
tools. Rhapsody in Ada can also import
system models from the I-Logix
Statemate MAGNUMTM system design
solution. In addition, Rhapsody includes
an adaptable real-time framework that
enables target code deployment to
virtually any Real-Time Operating
System (RTOS).
Commenting on the launch of Rhapsody
in Ada, Neeraj Chandra, Senior VP of
Marketing & Corporate Development
said: "Our decision to develop an Ada
version of Rhapsody has been driven
entirely by customers who want an easier,
friendlier and quicker way to generate
Ada code and manage their Ada projects.
In short Ada developers have been crying
out for Rhapsody. By delivering
Rhapsody in Ada we are the first in the
industry to provide them with a
production quality code generation
strategy from standard UML."
About I-Logix
Founded in 1987, I-Logix is a pre-IPO
software company that provides
enterprise solutions for real-time
embedded applications development in
the growing pervasive computing market.
I-Logix' solutions significantly compress
systems and software development cycles
while improving product quality. These
products allow engineers to graphically
model the behavior and functionality of
their embedded systems, analyze and
validate the system and automatically
generate production quality code in a
variety of languages. I-Logix uniquely
integrates and associates the entire design
flow from concept to code across an
enterprise using both conventional and
collaborative Web-enabled technology.
I-Logix is a member of the Object
Management Group® (OMG), the
Bluetooth SIG, the International Council
of Systems Engineers (INCOSE), a
founding member of the Embedded
Linux Consortium and a co-author of the
Unified Modeling Language® (UML). I-
Logix is backed by Phillips Ventures BV,
Needham Capital Partners, ABS
Ventures, Commonwealth Capital
Ventures, Gilde Investments, One Liberty
Ventures and North Bridge Venture
Partners. The company is headquartered
in Andover, Mass., and has sales offices
and distributors throughout the USA,
Europe and the Far East. I-Logix can be
found on the Internet at
http://www.ilogix.com.

[…]
Contacts: Carrie Kirby Public Relations
Coordinator I-Logix 978-682-2100
carrie@ilogix.com Keith Mason Harvard
Public Relations +44 (0) 20 8759 0005
keith@harvard.co.uk
* Editors notes: Rhapsody and Statemate
are registered trademarks of I-Logix Inc.
Rhapsody in MicroC, Statemate
MAGNUM and ROPES are trademarks
of I-Logix Inc. OMG marks and logos are
trademarks or registered trademarks,
service marks and/or certification marks
of Object Management Group, Inc.
registered in the United States.
(c)2001 I-Logix Inc. All rights reserved.
Three Riverside Drive Andover,
Ma.01810 Tel: +1-978-682-2100

Ada and CORBA
GNACK and ORBit
From: okellogg@freenet.de (Oliver

Kellogg)
Date: 18 Feb 2002 10:40:24 -0800
Subject: [announce] GNU Ada CORBA Kit

version 1.0 released
Newsgroups: comp.lang.ada
Coinciding with the release of GNACK
version 1.0, the ORBit-Ada project is
happy to take its new home at
SourceForge:
http://orbitada.sourceforge.net
Besides numerous bug fixes, the main
addition in GNACK 1.0 is FATFIFI, a
generator for Formatted Ada Text I/O
From IDL. FATFIFI is a general purpose
tool that can also be used without a
CORBA ORB.
Furthermore, it is now possible to use
Ada tasking in ORBit programs. This has
been achieved by ORBit-GT, a version of
ORBit-MT:
http://orbit-mt.sourceforge.net
that uses GNAT threads.
Both GNACK and ORBit-GT are
available in the downloads section at
http://sourceforge.net/projects/orbitada/

Ada and Microsoft
AdaGIDE 6.52 - Ada GUI
IDE for Windows
From: "Gautier Write-only-address"

<gautier_niouzes@hotmail.com>
Date: Sat, 30 Mar 2002 07:23:43 +0000
Subject: AdaGIDE 6.52 release (Ada GUI

IDE for Windows 9x/NT/...)
Newsgroups: comp.lang.ada
Hi - just some news about latest release
of AdaGIDE.
* Main improvements in AdaGIDE 6.52

compared to version 6.43.1

 User definable colours and colour
schemes

 Parenthesis matching
 Auto reformat on enter (can be

disabled in Tools/Options)
 Jumps to first error
 Navigation among errors and warnings
 Better working "Goto declaration"

(Ctrl-G) XRef function
 URL: http://www.usafa.af.mil/
dfcs/bios/mcc_html/adagide.html
See sources and "About" box for
contributions and contributors. Enjoy!
* Main improvements in AdaGIDE

6.43.1 compared to version 6.26 which
comes with GNAT 3.13p:

 Spell-checker
 Automatic suggestion of filename on

save
 Support for multiple debuggers
 Drag-and-drop for files
 Updated options dialog
Gautier
http://www.mysunrise.ch/users/gdm/
index.htm#Ada

CLAW now under GMGPL
From: "Randy Brukardt"

<randy@rrsoftware.com>
Date: Mon, 22 Apr 2002 16:46:29 -0500
Subject: ANN: Claw Introductory Version

Bindings now licensed under the
GMGPL

Newsgroups: comp.lang.ada
Various people have suggested that the
Claw Introductory Version would be
more useful if it was licensed under a
variant of the GPL. After lengthy
deliberation, we have decided to make
the Claw Introductory Version Bindings
available under the GMGPL.
It will be a while before the download
area of our website will be updated to
reflect this change, most likely not until a
new Introductory Version is released.
Rest assured that we will enforce the
license as if it is the GMGPL.
The license for other Editions of Claw,
and for all versions of Claw GUI Builder,
are unchanged for now. Thank you for
your support of Ada.
Randy Brukardt President, R.R.
Software, Inc
From: "David Botton"

<David@Botton.com>
Date: Sun, 28 Apr 2002 01:03:05 -0400
Subject: ANN: GMGPL Claw Page
Newsgroups: comp.lang.ada
I've added a new page to AdaPower
called the GMGPL Claw page.
http://www.adapower.com/claw
(AdaPower has and always will be an
open forum for all Ada projects

News – Ada and Microsoft 77

Ada User Journal Volume 23, Number 2, June 2002

regardless of my own projects and
views.)
The GClaw project page is to create a
central place for community work on the
GMGPL version of Claw and to post
various additions, examples and tools for
all versions of CLAW
There are a number of examples for using
Claw that were previous sent in by Tom
Moran
I hope to put up some additions of my
own to CLAW tomorrow.
I encourage others to submit examples,
patches, and tools they may have written
or will write in the future.
(No, this does not mean I am giving up
GWindows. In fact there is even a new
beta version up and I should have a
number of updates ready within the
week:-)
David Botton

References to
Publications
Crosstalk articles
From: Richard Riehle

<richard@adaworks.com>
Date: Wed, 06 Feb 2002 23:18:25 -0800
Subject: Ada Article in Crosstalk
Newsgroups: comp.lang.ada
There is an excellent article about a
project completed in Ada in the February
2002 issue of Crosstalk. The web
address is:
http://www.stsc.hill.af.mil/crosstalk/
crosstalk.html
[or maybe http://www.stsc.hill.af.mil/
CrossTalk/2002/feb/feb02ind.asp -- jb]
The article is on page 25, titled:
"U.S. Army Develops High Quality,
Extremely Low Cost Digital Message
Parser" by Edgar Dalrymple.
Richard Riehle
From: Nielson Mark

<Mark.Nielson@HILL.af.mil>
Date: Tue, 26 Feb 2002 16:51:09 -0700
Subject: The March 2002 Issue of

CrossTalk is now available on-line.
The March 2002 issue of CrossTalk, The
Journal of Defense Software Engineering
is now available on our Web site at:
http://www.stsc.hill.af.mil
Our theme this month is "Software by
Numbers." We all know examples of real
numbers from actual projects on their
processes, quality, and return on
investment are highly sought after but
seldom seen. So in this issue we delve as
deeply as we can into rounding up
numbers and examples to share with you.
We begin by sharing real numbers from
historical information collected by
Donald J. Reifer from his collection of

numerous projects. In Let the Numbers
Do the Talking, he provides software cost
and productivity benchmarks that you can
use to determine how your organization
ranks compared with industry averages.
You will also be able to use his
benchmarks to determine whether your
software estimates are reasonable. Most
importantly, he tells how not to abuse his
information Our theme articles continue
with How CMM Impacts Quality,
Productivity, Rework, and the Bottom
Line. Authors Michael Diaz and Jeff
King share actual process improvement
numbers from their company that are
very useful for providing justification for
process improvement and potential return
on investment. Next, Walt Lipke shares
one way his organization uses and
benefits from their numbers in his article,
Statistical Process Control of Project
Performance.
As mentioned last month, we carried over
until this issue Suzanne Garcia's article,
Are You Prepared for CMMI? She talks
about how applying technology adoption
concepts can smooth the CMMI adoption
process considerably.
Next, learn how one avionics project was
able to achieve four-fold productivity and
10-fold quality improvements by
adopting unambiguous programming
languages that focus on preventing bugs
in our article Correctness by
Construction: Better Can Also be
Cheaper by Peter Amey.
We end with an article by Frank Richey,
Modeling and Simulation CMMI: A
Conceptual View, which proposes
enhancing the Capability Maturity Model
Integration to include guidance for
modeling and simulation.
I hope you enjoy our March 2002 issue
on "Software by Numbers" and take away
some actual basis for comparing and
making improvements to your own
software development processes.
Tracy L. Stauder Publisher
Contact the STSC Customer Service if
you have any questions regarding your
CrossTalk subscription or for additional
STSC information: Software Technology
Support Center Ogden ALC/TISE Attn:
Customer Service 7278 4th Street Hill
AFB, Utah 84056-5205
E-mail: karen.rasmussen@hill.af.mil
Voice: 801-775-5555, DSN 775-5555
Fax: 801-777-8069, DSN 777-8069
From: rod@praxis-cs.co.uk (Rod

Chapman)
Date: 11 Mar 2002 08:38:19 -0800
Subject: (Another) Ada success story in

CrossTalk magazine
Newsgroups: comp.lang.ada
There's a good Ada (and SPARK...)
success story in the March 2002 issue of
CrossTalk magazine - the title is
"Correctness by Construction: Better can

also be Cheaper" by Peter Amey of
Praxis Critical Systems.
PDF is available from either the
CrossTalk website (www.stsc.hill.af.mil)
or from www.sparkada.com
- Rod Chapman, SPARK Team, Praxis
Critical Systems
Abstract
For safety and mission critical
systems,verification and validation
activities frequently dominate
development costs,accounting for as
much as 80 percent in some cases. There
is now compelling evidence that
development methods that focus on bug
prevention rather than bug detection can
both raise quality and save time and
money. A recent, large avionics project
reported a four-fold productivity and 10-
fold quality improvement by adopting
such methods. A key ingredient of
correctness by construction is the use of
unambiguous programming languages
that allow rigorous analysis very early in
the development process.

Consolidated Ada Reference
Manual
From: "Technical Webmaster"

<Webmaster@adaic.com>
Date: Fri, 1 Mar 2002 00:19:22 -0600
Subject: [AdaIC] Consolidated Ada

Reference Manual now available from
Springer-Verlag

Springer-Verlag has published the
Consolidated Ada Reference Manual.
The new book merges the Ada 95
Reference Manual and the corrections
and clarifications in the Technical
Corrigendum that are now also part of the
Ada standard. Though not an ISO
publication, the Consolidated Ada LRM
reflects a best effort to merge the two
ISO documents.
The Consolidated Ada Reference Manual
can be ordered directly from Springer-
Verlag at
http://www.springerny.com/detail.tpl?isb
n=3540430385
or at
http://www.springer.de/cgi-bin/
search_book.pl?isbn=3-540-63143-7",
or from fine booksellers.
For more information, see
http://www.adaic.org/news/
cons-lrm.html.
To download a digital copy of the
Consolidated Ada Reference Manual, see
the Accessing the Ada Reference Manual
page at
http://www.adaic.org/standards/articles/
lrm.html.

Ada Books Online
From: "Technical Webmaster"

<Webmaster@adaic.com>
Date: Thu, 21 Feb 2002 20:09:32 -0600

78 News – References to Publ icat ions

Volume 23, Number 2, June 2002 Ada User Journal

Subject: [AdaIC] New versions of two on-
line books have been posted.

New versions of two on-line Ada 95
books have been posted at the AdaIC.
A new version of Ada Distilled by
Richard Riehle has been posted. This
version corrects errors pointed out by
many reviewers, and adds some new
material. The book is aimed at
experienced programmers who want to
learn Ada at the programming level. Find
"Ada Distilled" at:
http://www.adaic.org/docs/distilled/
adadistilled.pdf.
A minor update to John English's book,
Ada95: The Craft of Object Oriented
Programming has been posted. This
version has minor corrections: the British
usage of "full stop" instead of "period"
confused some American readers, so
"semicolon" has been substituted
throughout to keep things language-
independent. To browse the book, look at
http://www.adaic.org/docs/craft/html/
contents.htm.
To see all of the on-line textbooks see:
http://www.adaic.org/free/freebook.html.
Randy Brukardt, Technical Webmaster
http://www.adaic.org

A New Book in French
From: "Jean-Pierre Rosen"

<rosen@adalog.fr>
Date: Thu, 2 May 2002 18:39:03 +0200
Subject: Nouveau livre
Newsgroups: fr.comp.lang.ada
La fine équipe de l'EIVD (programmation
séquentielle/concurrente avec Ada 95)
vient de sortir un nouveau livre:
"Algorithmes et structures de données
avec Ada, C++ et Java".
On y retrouve la même clarté et le même
soin pédagogique que dans les précédents
ouvrages. Les techniques classiques de
tri, listes, graphes, tables et arbres y sont
expliqués, avec implémentation dans les
trois langages titre. A noter que les
implémentations sont suffisemment
proches pour permettre de comparer les
langages, mais pas nécessairement
identiques (on utilise plus l'héritage en
Java qu'en Ada, par exemple).
Un excellent ouvrage de référence. En
plus, on peut le donner à des
programmeurs C++ pour leur faire
découvrir Ada "par la bande"... :-)
J-P. Rosen (rosen@adalog.fr)

DDC-I Online News
From: JC <jcdk@ddci.com>
Date: Thu, 28 Feb 2002 12:40:19 -0700
Subject: Real-Time Industry Updates -

News from DDC-I
DDC-I Online News February 2002,
Volume 3, Number 2 - A monthly news

update dedicated to DDC-I customers &
registered subscribers.
This Month:
* Third Party Update: FAA DO-178B

Training from Enea TekSci Learn more
about Enea TekSci's FAA DO-178B
training. Mention DDC-I and receive
50% off the next 2 day course,
scheduled for April 18-19, 2002.

* On the Front Lines Meet Thomas E.
Hansen, DDC-I A/S Support Manager

* Run and Debug Your Embedded
80x86/Pentium Code on a Plain PC in
Real-Time Explore how this tool can
reduce risk and offer substantial
savings to your next development
project.

* Customer Interaction and Software
Development This article shares
proven techniques including the link
between customer interaction and the
software development process.

* Tech Talk: Using Ada Library
Information at the UNIX Command-
line This tech note describes how the
SCORE command-line tools for
extracting Ada library information can
be used for various tasks.

[...]
For the complete newsletter, go to
http://www.ddci.com/
news_vol3num2.shtml
From: JC <jcdk@ddci.com>
Date: Thu, 28 Mar 2002 16:05:09 -0700
Subject: Real-Time Industry Updates -

News from DDC-I
DDC-I Online News March 2002,
Volume 3, Number 3 - A monthly news
update dedicated to DDC-I customers &
registered subscribers.
This Month:
* Software Reuse This article discusses

how reusing software saves you money
by avoiding costly rewrites.

* On the Front Lines Meet Richard Frost
- DDC-I, Inc. Assistant DACS Product
Champion

* Third Party Update: ARTiSAN brings
UML to the Ada Community Learn
more about ARTiSAN's Ada code
generator and their commitment to
safety related projects.

* Tech Talk: Debugging SCORE UCC's
on PowerPC This tech note offers
proven time saving tips on debugging
UCC's
http://www.ddci.com/news_vol3num3.

* Introducing New Technology in the
Workplace Implementing change in the
workplace can be challenging. This
article offers tips on how to get things
going.

For the complete newsletter, go to http://
www.ddci.com/news_vol3num3.shtml

From: JC <jcdk@ddci.com>
Date: Wed, 24 Apr 2002 12:13:11 -0700
Subject: Real-Time Industry Updates -
News from DDC-I
DDC-I Online News April 2002, Volume
3, Number 4 - A monthly news update
dedicated to DDC-I customers &
registered subscribers.
This Month:
* Leaping out of Legacy Land Explore

modernization upgrade options for
your legacy program

* On the Front Lines Meet Thorkil
Rasmussen - DDC-I A/S DACS
Product Champion and valued
employee for over 20 years!

* Third Party Update: AdaPower.com
Ada developer resources & tools - A
valuable resource for all Ada
developers.

* Tech Talk: Handling of Normal and
Fast Interrupts This note outlines
features in DACS-80x86 systems and
offers proven "good practice" ideas to
ensure success.

* Lean Construction Every metaphor has
it's limitations... an interesting
comparison of software development
to the construction industry.

 For the complete newsletter, go to
http://www.ddci.com/
news_vol3num4.shtml

Java
Ada on the Palm
From: dewar@gnat.com (Robert Dewar)
Date: 22 Mar 2002 19:28:58 -0800
Subject: Re: Ada for Palm ?
Newsgroups: comp.lang.ada
> Is there an Ada for PalmOS handheld

devices? I just like programmming
while on the go (even in the swimming
pool!) :-)

One approach is to fiddle with a JVM and
JGNAT on the palm. We actually got an
Ada program working on the Palm using
this approach, but it was just a demo for
fun, we did not follow it up further.
From: "D De Villiers"

<~ddevilliers99@lando.co.za>
Date: Sun, 24 Mar 2002 17:20:13 +0200
Subject: Re: Ada for Palm ?
Newsgroups: comp.lang.ada
> I think there's a JVM for the Palm, so

an Ada-to-Jcode compiler might be an
option.

Yes! There is a JVM for Palm :) Visit
www.palmos.com for info. on PalmOS
development.
Lennie De Villiers

News – Java 79

Ada User Journal Volume 23, Number 2, June 2002

From: Jacob Sparre Andersen
<sparre@nbi.dk>Date: Sat, 27 Apr
2002 16:16:31 +0200

Subject: Re: Ada for PalmOS?
Newsgroups: comp.lang.ada
> I have a program written in Ada that I

would like to port to palmOS. Are
there any compilers available for this?
I don't think there are, so does anyone
have suggestions how I might get this
into a compiler for C/C++? I've never
considered this kind of situation, so I'm
not really sure where to go with it. If
anyone has suggestions, I would really
appreciate it!

GCC 3 can as far as I know be used as a
cross-compiler targeting PalmOS, so it is
"just" a matter of including the Ada front-
end, when you compile GCC 3 in this
configuration. I think you will have to
manage without the GNAT run-time (no
tasking) and use the PalmOS libraries for
I/O.
Jacob

Ada Inside
Envisat1 Launched OK
From: "Jean-Pierre Rosen"

<rosen@adalog.fr>
Date: Fri, 1 Mar 2002 15:46:36 +0100
Subject: Ada rocket launches Ada satellite
Newsgroups: comp.lang.ada
Tonight, Ariane 511 (whose flight control
systems are in Ada) launched the
Envisat1 satellite (with lots of Ada
inside), a huge environmental survey
satellite. This was a real challenge:
- Envisat1 is the biggest satellite ever

built in Europe, and the biggest
environment survey satellite ever
launched: 10m long (26m deployed),
for a weight of 8211Kg)

- Since it is a sun-synchronous satellite,
the launch window was 0 (i.e. it had to
be launched at the exact second).

- It was the first time an Ariane5
launched a polar satellite (i.e. towards
north instead of East).

- It was the first time the long cap was
used

- and more....
Thanks to new fuel-saving algorithms, it
was possible to turn off the engine when
the exact orbit was reached (with more
than 3 seconds remaining fuel - quite a
lot for such a rocket). Here is the result:
Requirement vs Achieved:
Req: Altitude: 7152.4km ± 7.5km.
Ach: 7152.4km
Req: Orbital position: 70.3 degrees ± 1.9.
Ach: 69.8
Req: Inclination: 98.5 degrees ± 1.1.
Ach: 98.5

All details available from
http://www.arianespace.com/
-- J-P. Rosen (rosen@adalog.fr)
Subject: ARA News Release: Ada Flies

Envisat Accurately
URL:

http://www.adaic.org/news/envisat.html
BURLINGTON, MASS (MARCH 8,
2002)
The Ada Resource Association (ARA)
announced another Ada success story
today with the Ariane 511's launch of the
Envisat 1 within the one-second tolerance
allowed for the Sun-synchronized
spacecraft. As the biggest satellite ever
built in Europe, Envisat 1 also boasts
being the largest environment survey
satellite ever launched.
"The extraordinary accuracy of the
Ariane's launch once again validates Ada
for realtime use," said S. Tucker Taft,
President of the ARA.
With flight control systems in Ada, the
Ariane 511 for the first time succeeded in
launching a "polar" satellite; i.e., towards
the North instead of the traditional
easterly direction. The Envisat 1 also
depends on many Ada realtime software
subsystems, including the radar altimeter.
The Envisat mission plan set a series of
very specific and narrow windows for the
launch and orbit. For example, the time
for the Kourou, French Guiana, launch
was 22:07 and 59 seconds, and Ada made
sure that Flight 145 lifted off at one
second before 22:08. Also, fuel-saving
algorithms in Ada allowed the engine to
turn off when the Envisat 1 reached its
precise orbit three seconds before the
scheduled time. It began orbiting within
the right 100 meters where tolerance was
7.5 kilometers. As a result, the 26-meter
long (when deployed), 8211-kilogram
rocket carries a minimum of fuel.
For the next five years, the satellite will
record data on how humans are affecting
Earth's health, including through patterns
of land use and its effect on soil moisture
and fertility; the quantity and size of ice
flows; and the amount of ozone and other
chemicals in the atmosphere observed on
the planet's "limb" or edge.
Developed in a European Space Agency
program, the satellite will be operated
from ESA's European Space Operations
Center (ESOC) in Darmstadt, Germany.
Europe's Astrium led an industry
consortium of 50 companies to produce
the Envisat spacecraft.
For more information on Ada and the
Envisat, please write to Ann Brandon,
Communications Director Ada Resource
Assoc. abrandon@sover.net

Ada Survey
From: clanfear@yahoo.com (cal)
Date: 6 Feb 2002 09:51:31 -0800

Subject: Ada research survey
Newsgroups: comp.lang.ada
VDC is conducting the first
comprehensive market study of the Ada
language. As part of this research we are
looking for developers to complete a
short survey about their experiences with
Ada. Your opinions will help tools
vendors to design better tools and
understand your needs.
There will be a prize drawing at the end
of the research.
The survey is at
http://www.vdc-corp.com/testada
> Do you mean here that the survey data

will be public?
The survey data will be used in research
report which is being subscribe to by
leading tools vendors. VDC regularly
publishes white papers on top embedded
websites and in print publications that
contain research highlights.
I would even publish the white paper here
if enough folks helped us out. The white
paper would be of interest to many
people on this list.
Ada is an under covered topic and the
more input the better.
The folks on this list care about Ada so
help me tell the tools vendors what you
want and need.
Thanks

Ada in Context
On Buffer Overflow
From: Nick Roberts <nickroberts@

ADAOS.WORLDONLINE.CO.UK>
Date: Wed, 6 Feb 2002 18:29:06 -0000
Subject: Re: Buffer Overflow Propensity as

a Function of Programming Language
To: TEAM-ADA@ACM.ORG
"Thomas A. Panfil" <t.panfil@gte.net>

wrote:
 > Hi All, I'd like to be able to cite a
good paper on why Buffer Overflow
susceptibility is common in software
written in some popular language(s),
and rare or relatively easy to prevent
when using other languages. Advice,
anyone?

Some hopefully relevant points.
For a buffer overflow vulnerability to be
actually exploitable, it is necessary for:
(a) the underlying operating system or
execution environment to fail to provide
or deploy protection against the execution
of code that lies in an area of memory
which is read-write [1];
(b) the underlying operating system or
networking software configuration to fail
to isolate the executional environment of
the (TCP) service application to the
maximum extent feasible [2];

80 News – Ada in Context

Volume 23, Number 2, June 2002 Ada User Journal

(c) the service application to have a twofold combined kind of bug, whereby
 the client is able to write binary data into
a certain area of the service application's
memory, and then cause somehow the
service application to start the execution
of instructions somewhere within that
area of memory [3].
[1] The C or C++ language often prevents
the use of such protection, even when it is
available (at no executional cost) on the
architecture. While some forms of
protection can be used, others cannot
(because of C's need for a 'flat' address
space). Ada does not require a flat
address space (but typically suffers from
the limitation of having to interface to C
software to be able to use operating
system specific functions, of course).
[2] This especially pertains to running the
service application as a normal user
(rather than root), and ensuring that user
has the minimal (file) permissions
necessary to do its job. A typical situation
on most UNIX-based operating systems,
unless the system administrator is very
sophisticated, and an even more typical
situation on Windows NT (with IIS), is
that such elementary precautions are not
taken.
[3] This is a theoretically extremely
unlikely bug, that nevertheless
demonstrably tends to crop up within
(large) C and C++ software, and to my
knowledge never in software written in
any other language.
The thing that is most deadly about a
successful buffer overrun exploit attack
(and similar types of attack), is that the
attacker gets to run his own code, often
with root privileges, and can thus truly
"do anything he likes" from that point on.
Typically the host computer is totally
compromised; this in turn (if the attacker
is skilled and persistent) can lead to
whole networks being compromised.
I believe there is a negligible likelihood
of a TCP or UDP service application
written in Ada, especially with most or
all checks left on, suffering from a buffer
overrun vulnerability, or any
vulnerability that permits the client to
cause it to execute arbitrary code. This is
regardless of the compiler, the host
machine (architecture), and the host
operating system. (Note however that this
is not to be confused with the case of an
Ada main program using substantial
library code written in C.)
A good starting point for more
information may be the US DoE
Computer Incident Advisory Capacity
(CIAC) at: http://www.ciac.org/ciac
I believe that with a bit of digging you
will find much fodder for your research.
Happy hunting!
-- Nick Roberts

From: "John McCormick"
<mccormic@CS.UNI.EDU>

Date: Wednesday, February 06, 2002 10:11
Subject: Re: Buffer Overflow Propensity as

a Function of Programming Language
I recall from my analysis of the data used
by Mark Eisenstadt to classify really
difficult bugs that there were a good
number of bugs resulting from array
bounds errors. Errors that Ada and Java
would have caught.
Mark's article is Eisenstadt, M. (1997).
My Hairiest Bug War Stories.
Communications of the ACM, 40, 30-37.
While he didn't give all the data on the
bugs, he will make it available on
request.
John W. McCormick, Computer Science
Department, University of Northern
Iowa, Cedar Falls, IA 50614-0507,
http://www.cs.uni.edu/~mccormic/
From: Roger Gariépy
<rgariepy@ROCLER.QC.CA>
Subject: Re: Buffer Overflow Propensity
as a Function of Programming Language
You can find a link to the paper of M.
Eisenstadt at: http://www.adahome.com/
articles/1997-05/am_bugs.html
Roger Gariépy, rgariepy@rocler.qc.ca

In and out of Oblivion
From: Volkert.Barr@freenet.de (Volkert)
Date: 30 Jan 2002 15:09:04 -0800
Subject: Ada's Slide To Oblivion ...
Newsgroups: comp.lang.ada
Found at Embedded Systems
Programming:
>Ada is the only language designed to

significantly reduce and maybe even
eliminate dumb programming errors.
Did it fall into disuse because we're
intellectually lazy?

read more:
http://www.embedded.com/story/
OEG20020125S0098
Volkert
From: "Marin David Condic"

<dont.bother.mcondic.auntie.spam@
acm.org>

Date: Wed, 30 Jan 2002 18:57:41 -0500
Subject: Re: Ada's Slide To Oblivion ...
Newsgroups: comp.lang.ada
An interesting article. One could argue
about the accuracy of the survey, but it
probably isn't that far off from reality.
What I liked about it was that it was fair
and balanced. It didn't smack of the usual
anti-Ada vitriol, nor was it filled with
misinformation. The criticism that Ada
doesn't have as many tools as C/C++ is
reasonably fair - I think it is a better
situation than the author seems to imply,
but let's face it: For just about any
embedded board, you can get a C

compiler thrown in with the development
kit & you won't find Ada riding along
with it as an alternate choice. (Although
Gnat merging with gcc stands to help
improve the situation - but still people
have to ask for it or nobody will bother.)
The question about programmers being
"intellectually lazy" may have a lot to do
with it. In order to do Ada development
in a way that maximizes the benefits and
minimizes the time fighting with the
compiler to get it right, requires that you
spend time up front thinking about the
organization of the system - what the
relevant data types are, what information
should be hidden, etc. Embedded
developers tend to be tinkerers who want
to start hacking some bootstrap code and
keep adding things to it until it works.
Weeks of planning and diagram drawing
and design meetings prior to writing any
code tends to not be the thing they got
into the business to do. Never mind that it
might save months/years of debugging
and produce a more reliable system that
improved customer satisfaction and
reduced liability - that's just not the mode
of thought that feels comfortable to your
average embedded/C developer.
The question at the end about the
government being to blame for not
sticking to its guns is another interesting
one. The government instituting "The
Mandate" (especially when compiler
technology just wasn't there) probably
raised a lot of hackles over being
"forced" to do something. (I still think
that had the government tried bribery
instead of extortion, it might have
worked. If you were the program
manager for some electronic whozits and
the government offered you a
$100,000.00 bonus if only you could find
a way to get the project done in Ada, do
you think your opposition to Ada would
be so strong?)
Anyway, having had The Mandate, then
abandoning it is worse than never having
The Mandate to begin with. Think about
it - the perception is that the government
was admitting it made a mistake by
mandating Ada, so the contractors started
abandoning it in droves. Standing there
saying "No! Really! I'm NOT saying Ada
is a bad thing!!!!" doesn't matter. Actions
speak louder than words and perception
often IS reality. ("Hey, the DoD dropped
Ada like a hot rock. We must have been
right all along. Ada really did suck!)
The good news is that if people are
writing thoughtful articles like this and
observing that Ada really does have
benefits (despite lack of use) maybe it
might generate some renewed interest.
The fact that they're writing about it at all
is a sign that Ada isn't a non-issue. IOW,
"I don't care what they say about Ada as
long as they capitalize its name right!" :-)

News – Ada in Context 81

Ada User Journal Volume 23, Number 2, June 2002

Marin David Condic, Senior Software
Engineer, Pace Micro Technology
Americas, www.pacemicro.com
From: Jim Rogers

<jimmaureenrogers@worldnet.att.net>
Date: Thu, 31 Jan 2002 02:37:52 GMT
Subject: Re: Ada's Slide To Oblivion ...
Newsgroups: comp.lang.ada
Comments and articles similar to this
appear occasionally.
I like to try to read between the lines and
understand the assumptions being made

by the author. In the case of this article I
find one assumption is that people know
Ada as well as C, and have made a
conscious decision toward C and away
from Ada. I do not believe this
assumption is even approximately true.
Most of the embedded programmers
currently working embedded software
engineers have only heard rumors about
Ada. Most have never used it. Many have
never seen it or heard about it.
C++ has grown because C programmers
were convinced it was really C with a

few unimportant differences. In other
words, C++ was designed to fool people
into adopting it. The same cannot be said
about Ada. My contention is that Ada
has never slid into oblivion. In fact, Ada
is slowly climbing out of the initial
oblivion into which it was born.
Jim Rogers, Colorado Springs, Colorado,
USA

 83

Ada User Journal Volume 23, Number 2, June 2002

Conference Calendar
This is a list of European and large world-wide events that may be of interest to the Ada community. More information on
items marked ♦ is available elsewhere in the Journal. The information here is extracted from the online Conference
announcements for the international Ada community at http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/events/list.html on
the Ada-Belgium webserver. These pages contain full announcements, calls for papers, calls for participation, programmes,
URLs etc and are updated regularly.

2002

07-10 August Metainformatics Symposium 2002 Esbjerg, Denmark. Topics include: software engineering,
object-oriented programming, design patterns, component-based systems, middleware,
programming environments, programming languages, development environments, etc.

18-21 August 2002 International Conference on Parallel Processing (ICPP'02) Vancouver, British Columbia,
Canada. Topics include: Programming Methodologies and Tools; Compilers and Languages;
Parallel/Distributed Algorithms; etc.

18-21 August 3rd International Workshop on Metacomputing Systems and Applications (MSA'2002)
Topics include: Programming Models; Programming Languages; etc.

18-22 August 2002 Rational Software User Conference (RUC'2002) Lake Buena Vista, Florida, USA. Topics
include: case studies featuring one or more Rational products, provide practical tips and techniques
geared towards intermediate or advanced users, etc.

19-22 August 2nd Software Product Line Conference (SPLC2) San Diego, California, USA

20-23 August 13th International Conference on Concurrency Theory (CONCUR'2002) Brno, Czech.
Repubic. Topics include: concurrency related aspects of: real-time systems, distributed
programming, object-oriented programming, case studies, tools and environments for
programming and verification, etc.

25-30 August 3rd Working IEEE/IFIP Conference on Software Architecture (WICSA'2002) Montreal,
Canada Co-located with 17th IFIP World Computer Conference (WCC)

26-28 August International Conference on Pervasive Computing (PERVASIVE'2002) Zurich, Switzerland.

26-29 August 26th Annual International Computer Software and Applications Conference
(COMPSAC'2002) Oxford, England. Theme: Prolonging Software Life: Development and
Redevelopment. Topics include: Component-based; Object-oriented technology; Quality
management; Safety and security; Software architecture, software development framework, and
design; Software evolution; Software fault tolerance; Software re-engineering; Software
reliability; Software reuse; Distributed systems; Embedded systems; Enterprise systems;
Middleware systems; etc.

27-30 August European conference on Parallel Processing (Euro-Par'2002) Paderborn, Germany. Topics
include: Support Tools and Environments; Performance Evaluation, Analysis and Optimization;
Distributed Systems and Algorithms; Parallel Programming: Models, Methods and Programming
Languages; etc.

02-05 September 8th International Conference on Object-Oriented Information Systems (OOIS'2002)
Montpellier, France. Topics: OO frameworks; OO components/COTS; OO patterns; OO middle-
ware; Reuse processes; Web-based Applications; OO distributed systems; OO built-in tests; etc.
Includes a.o. the following events:

02 September OOIS2002 - Workshop on MAnaging of SPEcialization/Generalization
HIerarchies (MASPEGHI) Deadline for paper submissions: May 6, 2002.

02 September OOIS2002 - Workshop on the planning and management of organisational
transition to Object Technology

02 September Workshop on Reuse in Object-Oriented Information Systems Design

84 Conference Calendar

Volume 23, Number 2, June 2002 Ada User Journal

03-06 September International Internet & Software Quality Week 2002 (QW'2002) San Francisco, California,
USA Theme: "The Wired World..." Topics: Application of Formal Methods; Software Reliability
Studies; Object Oriented Testing; Productivity and Quality Issues; Real-Time Software; Real-
World Experience; etc.

03-06 September IEEE Symposia on Human-Centric Computing Languages and Environments (HCC'02)
Arlington, VA, USA Topics: Design, formalization, implementation, and evaluation of computing
languages that are easier to learn, easier to use, and easier to understand by a broader group of
people.

04-06 September 3rd International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2002) Kanazawa, Japan. Topics include: Formal methods and programming
languages; Parallelizing compilers; Web technologies; Component-based and OO Technology;
Tools and environments for software development; etc.

04-06 September EUROMICRO Conference Dortmund, Germany.

04-06 September EUROMICRO Conference Track on Software Process and Product
Improvement

04-06 September EUROMICRO Conference Track on Component-based Software
Engineering Topics include: Components and Reuse; Component Specification;
Component Design, Implementation, Testing; Development Environment and
Tools; Components for Real-time systems; Component-based embedded
systems; Case Studies; etc.

04-06 September EUROMICRO Conference Track on Work in Progress Topics include:
Software Process and Product Improvement; Component-based Software
Engineering; etc.

09-10 September 8th International Workshop on Requirements Engineering: Foundation for Software
Quality (REFSQ'2002) Essen, Germany

09-12 September 7th International Symposium on Formal Techniques in Real-Time and Fault Tolerant
Systems (FTRTFT'2002) University of Oldenburg, Germany.

09-13: September 9th International Conference on Algebraic Methodology And Software Technology
(AMAST'2002) St. Gilles les Bains, Reunion Island, France

09-13 September IEEE Joint Conference on Requirements Engineering (RE'02) Essen, Germany.

09-13 September 3rd Argentine Symposium in Software Engineering (ASSE'2002) Santa Fe, Argentina Topics
include: Software Quality; Distributed Objects; Reuse and Components; Design Patterns; Practice
of object-oriented technology and its application in industrial environments; Education in software
engineering; etc.

09-13 September International Conference on Practical Software Quality Techniques & Testing Techniques
(PSQT/PSTT'2002 North) St. Paul, Minnesota, USA.

10-13 September 21st International Conference on Computer Safety, Reliability and Security (Safecomp'2002)
Catania, Italy. Focuses on safety-critical computer applications.

15-18: September Conference on Communicating Process Architectures 2002 (CPA'2002) Reading, UK Topics
include: concurrent design patterns and tools; safety and security issues (race-hazards, deadlock,
livelock, process starvation, ...); language issues; applications: scientific (including graphics and
GUIs), engineering (including embedded, real-time and safety-critical), business (including mobile
and e-commerce) and home (including entertainment); etc.

17-20 September 9th International Static Analysis Symposium (SAS'2002) Madrid, Spain Topics include:
abstract interpretation; data flow analysis; verification systems; optimizing compilers; etc.

17-20 September 6th International Enterprise Distributed Object Computing Conference (EDOC'2002)
Lausanne, Switzerland.

18-20 September European Software Process Improvement Conference (EuroSPI'2002) Nuremberg, Germany

Conference Calendar 85

Ada User Journal Volume 23, Number 2, June 2002

23-27 September 17th IEEE International Conference on Automated Software Engineering (ASE'2002)
Edinburgh, U.K.

24-27 September Forum on Specification and Design Languages (FDL'2002) Marseille, France

24-27 September 8th IEEE Real-Time Technology and Applications Symposium (RTAS'2002) San Jose,
California, USA. Topics include: Real-time applications in Linux; Real-time software
components; Embedded control applications; Secure real-time systems; Middleware support; etc.
Includes:

24 September Workshop on Embedded Systems Codesign (ESCODES'2002)

29 September – 2 Oct. 4th Austrian-Hungarian Workshop on Distributed and Parallel Systems (DAPSYS'2002)
Linz, Austria. Topics include: Parallel and Distributed Algorithms; Languages, Tools and
Environments; Applications; Distributed OO Systems; Middlewares; etc.

30 September – 04 Oct. 5th International Conference on UML - the Language and its Applications (UML'2002)
Dresden, Germany. Theme: "Model Engineering, Concepts and Tools"

01-04 October 2002 IASTED International Conference on Networks, Parallel and Distributed Processing,
and Applications (NPDPA'2002) Tsukuba Science City, Japan Topics include: Distributed
Processing, Distributed Real-time Systems, Parallel Processing, Parallel Programming, Parallel
Computing Systems, Heterogeneous Computing, Compilers, Real Time and Embedded Systems,
Applications, Fault Tolerance, Reusability, Reliability, etc.

02 October 8th IEEE Workshop on Empirical Studies of Software Maintenance (WESS'2002) Montreal,
Quebec, Canada.

03-04 October 2002 International Symposium on Empirical Software Engineering (ISESE'2002) Nara, Japan
Topics include: Evaluation of the readability of coding styles; Reports on the benefits derived from
using software development environments; Development of predictive models of defect rates and
reliability from real data; Industrial experience in process improvement; Quality measurement;
Experience management; etc.

03-06 October IEEE International Conference on Software Maintenance (ICSM'2002) Montreal, Canada.
Theme: Maintaining distributed heterogeneous systems. Topics include: Design for maintenance;
Formal methods; Software reusability; Empirical studies; Programming languages; Maintenance
and/or productivity metrics; Preventive maintenance; Tools and environments; Freeware and open
source applications; Internet and distributed systems; Source code analysis and manipulation;
Impact of new software practices; etc. Includes:

03-08 October Principles, Logics, and Implementations of high-level programming languages (PLI'2002)
Pittsburgh, USA

06-08 October 1st ACM SIGPLAN/SIGSOFT Conference on Generators and Components
(GCSE/SAIG'2002) Pittsburgh, PA, USA

06-10 October 10th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X) San Jose, California, USA. Topics include: Interaction of
operating systems, compilers,. programming languages, and architectures; Case studies of
hardware/software design in novel experimental systems; etc.

07-09 October 2nd Workshop on Embedded Software (EMSOFT'02) Grenoble, France. Topics include:
System design and integration methodologies, Programming languages and software eng., etc.

08-11 October International Conference on Compilers, Architectures and Synthesis for Embedded Systems
(CASES'2002) Grenoble, France Co-located with EMSOFT'2002 Topics include: Compilers and
Operating Systems (New optimizing compilers for embedded-domain constraints, Compiler
controlled memory hierarchy management and smart caches, ...); Architecture (Synergy between
extant parallel computing technologies, such as notations for expressing concurrency, and
instruction level parallel processing, ...); Tools and Methodologies (Automated design and
synthesis of application- or domain-specific processors, ...); Applications; etc.

13-16 October 21st Symposium on Reliable Distributed Systems (SRDS'2002) Osaka University, Suita,
Japan. Topics include: Distributed systems with reliability, availability, security, safety, and/or

86 Conference Calendar

Volume 23, Number 2, June 2002 Ada User Journal

real-time requirements; Distributed databases and transaction processing; Distributed objects and
middleware systems; Security and high confidence systems; Analytical or experimental
evaluations of reliable distributed systems; etc.

13 October SRDS2002 - International Workshop on Self-Repairing and Self-
Configurable Distributed Systems (RCDS'2002)

16-18 October 16th Brazilian Symposium on Software Engineering (SBES'2002) Gramado, Brazil Topics
include: Industrial applications of Software Engineering; Component-based Software Engineering;
Theoretical Foundations of Software Engineering: Formal specification, refinement, software
validation and verification; Methods, Techniques, Languages and Tools for Software Engineering;
Software Maintenance; Software Quality; Software Reuse; Software verification, validation and
testing; etc.

♦ 17 October Combined Ada UK / Embedded Systems Club Conference UK. Topics include: any topic
relevant to the embedded systems and/or Ada communities.

18-20 October Conference on Quality Engineering in Software Technology (CONQUEST'2002) Nuremberg,
Germany.

22-25 October 4th International Conference on Formal Engineering Methods (ICFEM'2002) Shanghai,
China

27-31 October 21st Digital Avionics Systems Conference (DASC'2002) Irvine, California, USA. Topics
include: avionics (flight critical systems, system engineering, open systems, software engineering,
etc.), Air Traffic Management, etc.

28-30 October 12th International Conference on Software Quality (ICSQ'2002) Ottawa, Ontario, Canada

28 October – 01 Nov 9th IEEE Working Conference on Reverse Engineering (WCRE'2002) Richmond, Virginia,
USA Topics include: Software maintenance and evolution; Program comprehension; Software
architecture extraction; Software migrations; Transitioning to product lines; Experience reports;
Preprocessing and parsing; Software components; Reverse engineering tool support; UML and
round trip engineering; Software metrics; etc.

28 October – 01 Nov. 4th International Symposium on Distributed Objects and Applications (DOA'2002) Irvine,
California, USA. Topics include: Design patterns for distributed object design; Interoperability-
supporting environments; Security, including authorisation and authentication; Reliable and fault
tolerant middlewares; Real-time/Reflective middlewares; Web Services and distributed objects,
including SOAP interoperability and service discovery; Reports on Best Practice; etc. Deadline for
paper submissions: May 31, 2002.

04-08 November 17th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA'2002) Seattle, WA, USA. Deadline for submissions:
July 19, 2002 (Posters, Demonstrations, Doctoral Symposium, and Student Volunteers).

11-14 Novermber International Conference on Formal Techniques for Networked and Distributed Systems
(FORTE'2002) Houston, Texas, USA Theme: "Formal Methods for Protocol Engineering and
Distributed Systems" Topics include: Formal approaches to concurrent/distributed Object-
Oriented systems; Real-time and probability aspects; Verification and validation; Relations
between informal and formal specification; Software tools and support environments; Practical
experience and case studies; Corporate strategic and financial consequences of using formal
methods; etc.

12-15 November 13th International Symposium on Software Reliability Engineering (ISSRE'2002) Annapolis,
Maryland, USA. Topics include: Software testing and verification; Secure software engineering;
Security testing and certification; Reliability of distributed systems; Standards and regulation; etc.
Deadline for submissions: May 1, 2002 (tutorials, panels), August 1, 2002 (student papers, fast
abstracts)

18-21 November 1nternational Conference on Software Process Improvement (ICSPI'2002) Washington DC
Area, USA

Conference Calendar 87

Ada User Journal Volume 23, Number 2, June 2002

18-22 November ACM SIGSOFT 2002 10th International Symposium on the Foundations of Software
Engineering (FSE-10) Charleston, South Carolina, USA. Topics include: Component-Based
Software Engineering; Empirical Studies of Software Tools and Methods; Feature Interaction and
Crosscutting Concerns; Generic Programming and Software Reuse; Software Engineering Tools
and Environments; Software Reliability Engineering; Software Safety; Specification and
Verification; etc. Deadline for submissions: August 15, 2002 (student posters).

02-04 December 8th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS'2002) Greenbelt, Maryland, USA. Topics include: technologies for developing complex
systems; means of avoiding, controlling, or coping with complexity; embedded real time complex
systems; distributed and network based complex software systems; design and analysis of complex
software systems; formal methods for complex systems; techniques for component-based software
development; etc. Deadline for submissions: May 3, 2002 (initial abstracts), May 10, 2002 (papers,
extended abstracts), June 7, 2002 (tutorials, panels and exhibits).

03-05 December 15th International Conference on Software & Systems Engineering and their Applications
(ICSSEA'2002) Paris, France

04-06 December 27th Annual Software Engineering Workshop (SEW27) Greenbelt, MD, USA Co-located with
ICECCS'2002 Topics include: Software quality assurance; Software engineering processes and
process improvement; Real-time Software Engineering; Software maintenance, reuse, and legacy
systems; etc.

04-06 December 9th Asia-Pacific Software Engineering Conference (APSEC'2002) Grand Mercure Broadbeach,
Gold Coast, Queensland, Australia

08 December 2nd Workshop on Industrial Experiences with Systems Software (WIESS'2002) Boston,
Massachusetts, USA. Topics include: Distributed Systems, Programming Environments and Tools,
Fault Tolerance and High Availability, Real Time and Quality of Service, Middleware, Embedded
Systems, etc.

♦ 08-12 December 2002 ACM SIGAda Annual International Conference (SIGAda'2002) Houston, Texas, USA.
Topics include: Reliability needs and styles; Safety and high integrity issues; Use of the Ada
Distributed Systems Annex; Process and quality metrics; Testing and validation; Standards; Use of
ASIS for new Ada tool development; Relationships between Ada and real-timeJava; Mixed-
language development; Ada in XML environments; Ada education; Use of Real-Time CORBA;
Real-time networking/quality of service guarantees; Fault tolerance and recovery; Distributed
system load balancing; Static and dynamic code analysis; Performance analysis; Debugging
complex systems; Integrating COTS software components; System Architecture & Design..

09-11 December 5th USENIX Symposium on Operating Systems Design and Implementation (OSDI'2002)
Boston, Massachusetts, USA. Topics include: distributed systems, parallel systems, embedded
systems, the influence of hardware development on systems and vice-versa, etc.

09-11 December 4th International Conference on Product Focused Software Process Improvement
(PROFES'2002) Rovaniemi (Arctic Circle), Finland Topics include: Software Quality; Methods
and Tools; Industrial Experiences and Case Studies; Best practices; Lessons Learned; Embedded
Systems; etc.

10 December Birthday of Lady Ada Lovelace, born in 1815 – Happy Programmers' Day!

16-18 December 2002 Pacific Rim International Symposium on Dependable Computing (PRDC'2002)
Tsukuba, Japan Topics include: Design for system dependability; Fault-tolerant systems and
software; Fault tolerance for parallel and distributed systems; Software and hardware reliability,
verification and testing; Tools for design and evaluation of dependable systems; Application-
specific dependable system (e.g., embedded systems, WWW servers, transaction processing); etc.

2003

06-09 January Software Technology Track of the 36th Hawaii International Conference on System Sciences
(HICSS-36) Big Island of Hawaii, USA. Includes mini-tracks on: Experimental Software
Engineering; Domain-Specific Languages; Distributed Object and Component-based Software

88 Conference Calendar

Volume 23, Number 2, June 2002 Ada User Journal

Systems (Design Patterns for Distributed Systems, Middleware, Programming Languages and
Environments for Distributed Object and Component Systems, ...); etc.

15-17 January 30th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL'2003) New Orleans, Louisiana, USA Topics include: design, definition,
analysis, and implementation of programming languages, programming systems, and
programming abstractions.

03-05 February 9th International Conference on Languages and Models with Objects (LMO'2003) Vannes,
France Topics include (in French): Programmation par objet et programmation par composant;
Programmation par objet et modélisation par objets; etc. Deadline for submissions: September 2,
2002

04-07 February Australasian Computer Science Conference (ACSC'2002) Adelaide, South Australia Topics
include: Compilers, Concurrency, Distributed Systems, Embedded Systems, Fault Tolerance,
Formal Methods, Object-Oriented Systems, Programming Languages, Real-time Systems,
Reliabiliity, Software Engineering, Trusted Systems, etc. Deadline for submissions: September 6,
2002

05-07 February 11th Euromicro Conference on Parallel Distributed and Network based Processing
(PDP'2003) Genoa, Italy. Topics include: Distributed Systems; Parallel Computer Systems;
Models and Tools for Parallel Programming Environments; Advanced Applications (numerical
applications with multi-level parallelism, real time distributed applications, distributed business
applications, ...); Languages, Compilers and Runtime Support Systems (task and data parallel
languages, object-oriented languages, scheduling and load balancing, task and object migration,
...), etc. Special sessions on: Advanced Tools for Parallel and Distributed Programming; Parallel
Realtime Systems; etc.

10-12 February 2nd International Conference on Commercial Off-The-Shelf (COTS)-Based Software
Systems (ICCBSS'2003) Ottawa, Canada Theme: "Multiple Paths, Multiple Solutions"

24-27 February 15th Annual Software Engineering Process Group Conference (SEPG'2003) Boston,
Massachusetts, USA Theme: "Assuring Stability in a Global Enterprise" Deadline for submissions:
Jul 01, 2002 (session proposals)

09-12 March 2003 ACM Symposium on Applied Computing (SAC'03) Melbourne, Florida, USA Includes
tracks on Embedded Systems: Applications, Solutions, and Techniques; Software Engineering:
Applications, Practices and Tools; etc. Deadline for submissions: April 15, 2002 (track proposals),
September 6, 2002 (papers and tutorials)

20-22 March 16th Conference on Software Engineering Education and Training (CSEET'2003) Madrid,
Spain Theme: "Software Engineering in Industry and University for the 21st Century" Deadline
for submissions: October 1, 2002

26-28 March 7th European Conference on Software Maintenance and Reengineering (CSMR'2003)
Benevento, Italy Topics include: experience reports, enabling technologies, etc. Deadline for
submissions: October 10, 2002

05-13 April European Joint Conferences on Theory and Practice of Software (ETAPS'2003) Warsaw,
Poland. Event includes: conferences from 7 to 11 April 2003, affiliated workshops on 5-6 and 12-
13 April, 2003.

03-10 May International Conference on Software Engineering (ICSE'2003) Portland, Oregon, USA
Deadline for submissions: October 4, 2002 (Software Engineering Education Track)

♦ 16-20 June 8th International Conference on Reliable Software Technologies - Ada-Europe'2003
Toulouse, France Sponsored by Ada-Europe, in cooperation with ACM SIGAda (approval
pending). Deadline for submissions: October 31, 2002 (papers, extended abstracts, tutorials,
workshops)

Autumn Conference, 17th October 2002

www.AdaUK.org.uk

Hazel Lawton,

The Embedded Systems Club/Ada UK,
Adaxia Ltd, PO Box 376,
Chesterfield S42 7YB, UK
Fax +44 (0) 1246 567339

Email: Hazel@Adaxia.com

www.EmbeddedSystemsClub.com

Register Your Interest Now !

Attending as a delegate θ Giving a Tutorial θ
Presenting a case study, vendor
presentation or technical paper θ

Chairing a session θ
Submitting a delegate
position paper θ Organising a workshop or "BOF" θ

Name: __ Position: ________________________________

Company: ___

Address: __

________________________ Post Code: _______________________ Country: ______________________

Tel: __ Fax: ___________________________________

Email: __

We invite contributions on any topic relevant to the embedded systems and/or Ada communities. We are particularly
interested in receiving proposals for the following types of sessions:

 Case studies: presentations, typically 60 minutes in duration, reporting on experience of applying embedded
technologies in real-world applications.

 Tutorials: training sessions, typically half a day or one day in duration, with the emphasis on equipping
developers with new skills and techniques.

 Workshops / Birds-of-a-feather sessions (BOFs): BOFs give people with common interests the opportunity to
engage in substantive discussions, sharing lessons learned and establishing relationships that may continue
beyond the conference. Workshops are more formal and attendees are often chosen by submission of
appropriate position papers.

 Delegate position papers: a position paper is usually around 2 to 5 pages, although it can be longer if the
technical contribution demands it, in which you to present an opinion, viewpoint or experience relevant to the
community. Position papers are ideal for delegates who wish to encourage the conference to address specific
issues without the need to get up and speak to an audience.

 Vendor presentations: commercial presentations, typically 15 to 20 minutes in duration, describing new product
releases or product enhancements of interest to the community.

 Technical papers: presentations, typically 60 minutes in duration, covering a technical topic related to
embedded systems engineering.

If you are interested in submitting a paper or proposal for a session, please contact us immediately to register your
interest. We will then contact you to agree a timetable for submission.

92 Forthcoming Events

Volume 23, Number 2, June 2002 Ada User Journal

Preliminary Call for Participation – SIGAda 2002
8-12 December 2002, Houston, Texas, USA

Sponsored by ACM SIGAda
http://www.acm.org/sigada/conf/sigada2002

(Approval pending by ACM)

Constructing reliable software is an engineering challenge. The application of methods, tools, and languages interrelate to
make the challenge easier or more difficult. This conference focuses on the interaction between these three aspects of
software engineering, especially how features in a language such as Ada drive the tools, methods, and ultimately correctness,
reliability, and quality of the resulting software. Especially welcome are papers that analyze Ada with respect to these factors
or in comparison with other languages. This conference will gather industrial experts, educators, software engineers, and
researchers interested in developing and testing reliable software. Technical or theoretical papers as well as experience
reports with a focus on Ada are solicited. Possible topics include but are not limited to:

• Reliability needs and styles
• Safety and high integrity issues
• Use of the Ada Distributed Systems Annex
• Process and quality metrics
• Testing and validation
• Standards
• Use of ASIS for new Ada tool development
• Relationships between Ada and real-time Java
• Mixed-language development
• Ada in XML environments

• Ada education
• Use of Real-Time CORBA
• Real-time networking/quality of service

guarantees
• Fault tolerance and recovery
• Distributed system load balancing
• Static and dynamic code analysis
• Performance analysis
• Debugging complex systems
• Integrating COTS software components
• System Architecture & Design

How You Can Contribute
SIGAda 2002 is interested in receiving contributions in six major categories. Contributions from students are
actively solicited. Technical Articles present significant results in research, practice, or education. These papers
will be double-blind refereed and published in the Conference Proceedings. Papers should not exceed 5000 words
(equivalent to approximately 10 pages, typeset 10-point on 16-point spacing). Extended Abstracts discuss current
work for which early submission of a full paper may be premature. If your abstract is accepted, you will be
expected to produce a full paper, which will appear in the proceedings. Extended abstracts will be competitively
reviewed. Clearly state the contribution of the work being described, its relationship with previous work by you
and others (with bibliographic references), results to date, and future directions. Please do not exceed 2500 words
(equivalent to approximately 5 pages typeset 10-point on 16-point spacing). Experience Reports present timely
results on the application of Ada and related technologies to the design and implementation of applications such as
the following: avionics, aerospace, automobile, command and control, consumer electronics, process control,
transportation, trading systems, energy, medical systems, simulation, telecommunications, etc. Such reports will be
selected on the basis of the interest of the experience presented to the community of Ada practitioners. You are
invited to submit a 1-2 page description of the project and the key points of interest of project experiences.
Descriptions will be published in the final program or proceedings, but a paper will not be required. Workshops
are focused work sessions, which provide a forum for knowledgeable professionals to explore issues, exchange
views, and perhaps produce a report on a particular subject. A list of planned workshops and requirements for
participation will be published in the SIGAda 2002 Advance Program. Workshop proposals will be evaluated by
the Program Committee and selected based on their applicability to the conference and potential for attracting
participants. Proposals should state the problem or issue to be addressed, the coordinator(s), and criteria for
participant selection. Panel Sessions gather a group of experts on a particular topic who present their views and
then exchange views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying
the topic, coordinator, and potential panelists. Tutorials offer the flexibility to address a broad spectrum of topics
relevant to Ada, and those enabling technologies which make the engineering of Ada applications more effective.
Submissions will be evaluated based on relevance, suitability for presentation in tutorial format, presenter’s
expertise, and past performance. Tutorial proposals should include the expected level of experience of participants,
an abstract or outline, the qualifications of the instructor(s), and the length of the tutorial.

Please submit Technical Articles, Extended Abstracts, Experience Reports, Workshop proposals, and Panel
Sessions to the Program Chair, John McCormick <McCormick@cs.uni.edu> and Tutorial proposals to the
Tutorials Chair, David Cook <david.cook@hill.af.mil>. Please submit questions on the conference to the
Conference Chair, Salih Yurttas <yurttas@cs.tamu.edu>.

Deadline for Tutorial submissions: 6 May 2002; Deadline for other submissions: 3 June 2002
See SIGAda 2002 Home Page for details: http://www.acm.org/sigada/conf/sigada2002

 96

Volume 23, Number 2, June 2002 Ada User Journal

Call for APIs
Pascal Leroy (Chair, Ada Rapporteur Group)
Rational Software Corp.

As part of the next revision of Ada, planned for 2005, there
has been a lot of interest in the Ada community for the
standardization of reusable components and APIs to
existing services. It is felt that such standardizations would
improve the marketability of the language as well as day-
to-day programmer productivity.

For most of these APIs, the proper standardization vehicle
is a secondary standard (that is, a standard referencing the
Ada standard, but standardized as a separate process). For
relatively small APIs, inclusion in an existing annex is also
an option, although this might delay the language
standardization process.

The Ada Rapporteur Group (ARG) is the technical
committee in charge of proposing amendments to the
language to WG9, the ISO working group on Ada. While
the ARG will conduct (based on input from the Ada
community) the revision of the core language and annexes,
it doesn’t have the resources to develop proposals itself for
the standardization of reusable components or APIs. The
ARG will oversee the development of secondary standards,
but this is best accomplished by cooperating with external
groups developing the substance of such standards.

We would like to ask the Ada community to submit
proposals for the standardization of APIs. Proposals should
be sent to ada-comment@ada-auth.org, and should
preferably have the form of an amendment AI (see
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AIs/AI-
00248.TXT for an example). While all input will be
carefully reviewed, the ARG will act as a filter to retain
only those proposals that have a sufficient level of maturity
and usefulness, and will provide feedback to the authors.
Criteria that will be used for evaluating the proposals
include:

• Benefits of the standardization:
Presumably the advantage of standardization is that it
brings uniformity and portability among
implementations. However, there is a significant
overhead associated with a formal standardization
process, so in some cases a de facto standard may
bring practically the same benefits at a much lower
cost.

• Usefulness of the API:
APIs which have been conjured up solely for the
purpose of writing a proposal, or which have been used
by a very small group of users, are less likely to be
generally useful than APIs which have been available
for years and have benefited from feedback from a
large user base.

• Quality and precision of the proposal:
At a minimum, the proposal must include a set of Ada
specifications, and a semi-formal description of the
semantics of each declaration, such as can be found in
the annexes of the Reference Manual. A rationale
showing examples of use, explaining the choices that
were made, the alternatives that were considered, and
why they were discarded, would also be much
appreciated.

• Community consensus for the proposal:
Proposals with a substantial consensus of the Ada
community or the appropriate subcommunity are
preferred over proposals made by an individual or
small group. This is not to say that a proposal primarily
authored by an individual is necessarily bad (indeed, it
is likely to provide a more consistent proposal), but to
encourage authors to seek input/approval from as many
potential users of the API as possible.

• Portability and language usage:
The definition of the API must not depend on
implementation-defined characteristics of a particular
compiler, although it is acceptable to require the
compiler to support some Specialized Needs Annex (or
part thereof). As much as possible, the API should only
use the features of Ada 95 (as opposed to those that are
under consideration for the 200Y amendment)
although we realize that this may not be practical in
some cases.

• Implementation:
A publicly available reference implementation would
be useful, although this is not a strict requirement, as in
some cases that may cause intellectual property issues.

Test suite. A test suite ensuring conformity to the
specification should be provided at some point during the
standardization process. This is especially important for
standards for which no publicly available reference
implementation will be available. This doesn’t necessarily
mean that there will be a formal conformity assessment
process like there is for compilers, but it will help
implementers ensure that they comply with the standard.

It is anticipated that the groups submitting proposals will
keep ownership of the standard during the entire
standardization process, although the ARG will provide
guidance regarding that process and continuous feedback
on the contents of the proposal.

 97

Ada User Journal Volume 23, Number 2, June 2002

Some Impressions from IRTAW 11
John Barnes
11 Albert Road, Caversham, Reading RG4 7AN, UK.; Tel:+44 118 947 4125

Abstract
This paper gives a brief personal overview of some of
the deliberations and happenings at the 11th
International Real-Time Workshop held at Mont
Tremblant in Canada in April 2002. Observe that this
is a personal account; for the official version please
consult the references.
Keywords: Ada, real-time, safety-critical.

Background
The real-time workshops were started by Ada UK at the
suggestion of Mark Dowson who was then at Imperial
Software Technology and later moved to the Software
Productivity Consortium at which the Ada Quality and
Style Guides were developed. I seem to recall that Mark
having suggested the idea, I got lumbered with the job of
running the first one which was held in May 1987 at the
remote hamlet of Moretonhampstead on the edge of
Dartmoor.

The main theme of that workshop was to obtain feedback
from early experiences of the real-time features of Ada 83
with the twin aims of identifying workarounds and
alterations. In other words, firstly suggesting how the
existing features could best be used and, secondly,
suggesting how the language might be improved in any
revision.

The worries identified at that workshop included important
matters such as priority inversion, asynchronous transfer of
control, the initialization of task data and the need for a
low-level mechanism to complement the high-level
rendezvous. In due course these matters were fed into the
discussions which resulted in Ada 95.

That workshop must have been successful because a second
one was held at the same location the following year.

Incidentally, the structure established by those early
workshops has remained. Each day is divided into two
sessions with a long midday break so that the second
session works on into the evening. This has a number of
advantages. Attendees can take a long walk or do other
physical exercise in the afternoon – the theory being that
they can revitalise their mental powers by taking exercise
and perhaps ponder matters with colleagues as they do so.
It also means that by keeping on right up to dinner, there is
no risk of frittering away the time in the bar before dinner.
It has also been a tradition to hold the workshops in remote
places so that attendees are not tempted to skive off to local
museums or places of unhealthy entertainment.

Internationalization
Those early workshops in England had international
audiences but the international nature of the workshops was
subsequently strengthened by the third one being in the US
and the fourth in Scotland.

The fourth workshop which was held at Pitlochry in July
1990 in fact provided a forum for the first general debate
on what should be in Ada 95 concerning both tasking in
particular and overall abstraction facilities in general.

The sixth and eighth workshops were held at another
remote hamlet, namely, Ravenscar in Yorkshire; the dates
were September 1992 and April 1997 respectively. An
important outcome of the second of these was the
Ravenscar profile which identifies facilities suitable for
safety-critical and other high integrity systems.

I have omitted to mention the other workshops which I
believe were held in the US and Spain because I was
unable to attend them for various reasons. However, the
purpose in mention the series as a whole is to emphasize
that the workshops have been and continue to be an
important focal point for discussing the evolution of Ada.

And so the eleventh workshop continued the tradition of
being at a remote location, Mont Tremblant in Quebec.
And it continued the tradition of seeking improvements to
the Ada language with the prospect of a further revision in
around 2005.

Location, location
Before addressing some of the technical issues, I feel
obliged to make a few comments about the location which
matters so much in making an event successful.

It was my first significant trip to Canada. I left England in
glorious spring sunshine with the birds singing and the
spring flowers springing up. I arrived in Montreal after
wretched airline food to find grey skies, buckets of rain and
a general dismal look about the place. After some time in a
small bus looking at the continuing rain and lumps of snow
and some grinding uphill we arrived at Le Club Tremblant.

Things immediately got better. The accommodation was
excellent – and I also found it invigorating because it was
100++ steps up from the meeting and dining area to my
room. Things got even better when we tackled dinner. The
food was wonderful avec strong French influence. I think I
would go so far as to say that overall it was some of the
best food I have ever had in North America. We even
identified some excellent Canadian wine after a few false
starts. The weather got better as well.

98 Some Impressions from IRTAW 11

Volume 23, Number 2, June 2002 Ada User Journal

Amendment to Ada 95
My main interest in the workshops is the identification of
required changes to the language. I have observed that the
workshops can be in different moods; sometimes looking at
the current language in a reflective mood, sometimes
looking to the next revision in an expectant mood. In view
of the fact that the ARG is now in the process of
identifying potential amendments for the next revision, it
was appropriate for the workshop to be in an expectant
mood. Accordingly, the workshop started with a
presentation by Jim Moore, the convenor of WG9, on the
international standardization process. He covered the
structure of the various standards organizations and the way
in which a standard is progressed with particular emphasis
on the development of an Amendment rather than a
Revision.

The amendment process is driven by the mechanism of Ada
Issues (AIs). These are a well established route for dealing
with corrections to the language (as evidenced by the 2000
Corrigendum incorporated into the recently published
Consolidated Ada Reference Manual [1]). The
development of AIs is hence also being used as the means
for the production of the planned Amendment.

Existing Amendment Issues
The first issue to be discussed was that formalizing the
Ravenscar profile (AI-249); this was essentially done at
recent ARG meetings and the discussion was really just to
tidy a few loose ends.

A related issue was the identification of why a task had
terminated. It is a well known Ada curiosity that a task can
suffer a silent death because of an unhandled exception.
Ravenscar is silent on sequential aspects of the language in
general and exceptions in particular and although they
cannot arise for tasking reasons using the Ravenscar
profile, nevertheless they might arise from the malfunction
of other aspects of a system. In any event the problem
affects programs in general and not just those confined to
the Ravenscar profile. An AI addressing this issue through
so-called task groups had already been devised (AI-266).
This gives the programmer the ability to identify why a task
has terminated and to perform last wishes. The general idea
is that procedures are associated with various reasons for
termination such as unhandled exception, normal
termination, aborted and so on; these procedures are then
called automatically by the runtime system when a task is
terminated. Moreover, different procedures can be
associated with different tasks or groups of tasks.

However, the overall view of the workshop was that
although the objective of the existing AI was fine,
nevertheless the style of the AI was somewhat too heavy
and provided unnecessary flexibility (it was partly inspired
by Java thread groups and it was reported that these had not
been an uproarious success). The workshop accordingly
devised a simpler approach which is being submitted to the
ARG for consideration as an alternative.

Another AI which had originated from Ravenscar was AI-
265 on partition elaboration. The problem here is that there
are certification concerns regarding race conditions during
the elaboration of library-level tasks. The AI proposes a
partition elaboration policy which can be set by a pragma to
either Sequential or Concurrent with Concurrent being the
default and the existing behaviour. The workshop had
concern with the applicability of the AI to task elaboration
not at library level and it was agreed that some
simplification to the AI would be appropriate.

Some time ago, an AI had been drafted on the concept of
extended protected types (AI-250). The background is that
Ada permits the extension of tagged record types but does
not permit the extension of protected types. Superficially
this seems attractive with the idea of being able to add
further protected operations and so on. However, there are
difficulties in the details. It was the overall view of the
workshop that this was really not worth pursuing since no
user need had been identified.

The final existing AI discussed by the workshop concerned
exceptions as types (AI-264). The workshop revealed very
mixed views on this topic. Some members felt that the
existing proposal was an uncomfortable midway position,
neither fully object-oriented nor basic. This reflected a
range of views of user needs. Some applications forbid
exceptions completely; others permit top level handlers
only; yet others forbid propagation except on a "handle and
reraise" basis and so on. It was concluded that although the
workshop was sympathetic to the general objectives of the
AI, nevertheless the matter was not of urgent concern.

Scheduling Ada Issues
A number of position papers prepared for the workshop
were around the general theme of providing further
scheduling capabilities. Perhaps the best way to give a
flavour of the discussion is to outline some of the proposals
which it was thought merited being formulated as draft AIs
for consideration by the ARG.

There are situations where it is desirable to be able to
dynamically change the ceiling priority of a protected
object. However, such a change clearly has to be a
protected operation. The proposed mechanism is to
introduce a procedural attribute 'Set_Ceiling which takes
the new ceiling priority as a parameter and can only be
called in a protected procedure or protected entry of the
object. Thus we might envisage

protected type Some_Type is
 ...

 procedure Change_Ceiling(P: Priority) is
 begin
 Some_Type'Set_Ceiling(P);
 end;
end Some_Type;

Note that this would introduce another situation where the
type name (Some_Type in this case) is used inside the
declaration of the type itself. There is a general rule that in
such situations the type name refers to the current object.

Barnes 99

Ada User Journal Volume 23, Number 2, June 2002

Other examples like this include referring to the task type
name inside the declaration of a task type – again in such
circumstances the task type name refers to the current
object.

Another interesting proposal is to introduce timing events.
These would permit user-defined (protected) procedures to
be executed at specified times without the introduction of
tasks or delay statements. In the existing language a
protected procedure can be associated with an interrupt
event so being able to associate a protected procedure with
a timing event would be a natural extension.

The approach suggested is to introduce a child package of
Ada.Real_Time with specification

package Ada.Real_Time.Timing_Events is

 type Timing_Event is limited private;

 type Parameterless_Handler is
 access protected procedure;

 procedure Set_Handler(TE: in out Timing_Event;
 At_Time: Time;
 Handler: Parameterless_Handler);

 ...
end Ada.Real_Time.Timing_Events;

Another subprogram Set_Handler enables events to be set
for execution after a relative time rather than at an absolute
time. Note that times naturally use the real-time clock since
the package is a child of Ada.Real_Time. Other
subprograms enable the state of an event to be interrogated
and an event to be cancelled.

When the relevant time occurs, the protected procedure
passed as parameter is executed.

For some safety-critical applications very simple cyclic
executives are used and non-preemptive dispatching is
required. Accordingly, it is proposed that (optional) new
policies be introduced for task dispatching and locking so
that we can use the existing pragmas thus

pragma Task_Dispatching_Policy(
 Non_Preemptive_FIFO_Within_Priorities);

pragma Locking_Policy(Non_Preemptive_Locking);

These policies have to be used together and then give the
required non-preemptive dispatching.

Another scheduling topic which was discussed was CPU
budgeting. This had been excluded from Ada 95 (although
it was in the requirements) partly because of cost and partly
because operating systems did not provide the required
underlying support. However, using experience from
POSIX, it was felt that the subject should be revisited and
an AI would be drafted in the near future.

Other topics
The workshop covered many other general topics as well as
the specific Ada Issues outlined above. These included
fault-tolerance and distribution, experience with VXWorks,
using partitions for security, software-related accidents, the
revision of ARINC 653 and so on. However, in this brief
summary I have concentrated on the Ada Issues because of
their concrete nature and relevance to the planned
amendment.

For fuller details of all aspects of the workshop please
consult the Workshop Proceedings [2] which are being
published as a special issue of Ada Letters.

Future activity
The workshop concluded by drawing up a timed action
plan for revising existing AIs and generating new ones.
Those on Ravenscar and termination were the most urgent
and would be ready for the Vienna meeting of the ARG
with the remainder being fully drafted by September.

The next workshop will be held at a location near Porto,
Portugal in the week 15-19 September 2003. For details
please contact the Program Chair, Tullio Vardanega; email
tullio.vardanega@math.unipd.it.

Acknowledgements
I would like to take this opportunity to thank Stephen
Michell for all his efforts in organizing the workshop in
such an excellent location and with such good facilities.

Finally, I must thank Ada Language UK Ltd for their
support without which I would not have been able to attend
the workshop.

References
[1] S. Tucker Taft, Robert A. Duff, Randall L. Brukardt

and Erhard Ploedereder (eds) (2000), Consolidated
Ada Reference Manual; LNCS 2219, Springer-Verlag.

[2] Proceedings of the 11th International Real-Time Ada
Workshop, Ada Letters (2002) (to be published).

100

Volume 23, Number 2, June 2002 Ada User Journal

Using Ada's Syntax and Semantics for
Understandable Systems Engineering
Ingmar Ögren
Tofs corporation, Fridhem 2, SE 76040 Veddoe, Sweden Tel +46 176 54580; email: iog@toolforsystems.com

Abstract
Systems engineering is where you work with complete
systems where operators cooperate with software and
hardware modules to complete missions. This is of
increased interest to software engineers in order to
decrease the risk that the wrong software with the
wrong requirements is built.
The present trend is to extend the Unified Modelling
Language (UML) to cover not only software but also
systems. This may lead to a risk for problems with
understanding of system models because of many,
partly overlapping, diagrams being used.
A proven alterative, which decreases this risk, is to
use a few UML diagrams together with Ada 95 syntax,
modified for use in Systems Engineering.

Keywords: Systems engineering, UML, Ada 95 .

1 Introduction
Systems engineering is the art of building systems where
people cooperate with software and hardware to complete
one or several missions.

Engineering of small systems is normally not a problem.
Can often be done "on the side" as part of a software
engineering effort. When systems are getting larger and the

information grows beyond what is humanly manageable the
situation gets different and the development group feels
like moving in a "dark three-dimensional space", where you
can only focus on a small part of the system at one time.

The three dimensions are (Figure 1):

• Activity, which defines what you do
• Object category, which defines what you are working

with
• System structure, which defines where in the system

structure you are working.

You may wonder what this has to do with software
engineering and Ada. In fact a lot and the two disciplines
depend on each other. Software engineering depends on
correctly completed systems engineering, prior to
programming, in order to ensure that you do not only
produce correct software, but that you also produce the
right software. This is extremely important since so much
software is produced to great cost and then never used.

On the other hand software engineering has been around for
a long time and systems engineering should benefit from
using much of the hard-won experience from software
engineering.

2 Requirements on a modelling language
for systems engineering
A key activity in systems engineering is modelling, where
you build a model of an existing or planned system. The
more or less completed model can then be used for
guidance of further work, including software development.
Modelling is done in one or several modelling languages.
Some of the key requirements on a modelling language are:

Understandability
The is the most important requirement since systems
engineering often involves several stakeholders with
each of these being an expert in her own field and with
little time to learn a modelling language. If the
stakeholders do not understand and review the system
model, someone will inevitably tell you after you
believed the system was completed: "this is no good".

Structure
Just like software, systems can be seen as a collection of
co-operating modules with dependencies between the
different modules. It is important that the modelling
language can define the dependencies and show how the

Figure 1: The Systems Engineering work space

Ögren 101

Ada User Journal Volume 23, Number 2, June 2002

different modules contribute to completion of the
system's mission(s).

Behaviour
Each module in a system, be it an operator role, a
software or a hardware module, has a behaviour space,
which defines its possible behaviour. Consequently
system understanding requires the modelling language
to be able to describe behaviour.

Communication
Communication and interfaces is a key issue, not only
for software, but also for systems work. Consequently a
systems modelling language must model both
"invocation style" communication and "message
passing style" communication (between concurrent
processes).

3 Today's solutions
Today various diagrammatic and textual languages are used
for system modelling purposes such as IDEF0, Structured
Analysis with Data Flow Diagrams, UML (Unified
Modelling Language[2, 3, 4, 8]), Entity-Relationship
diagrams and natural language.

These solutions all have their advantages, but also problems
with the main problem being understandability. What is
not always understood is the difference between teaching
some students a modelling language for use on a small
system and modelling a large and complex system and have
the stakeholders concerned understand it although they
have no time to learn the language used.

Today's trend is towards extended use of the UML, not
only for software modelling, but also for modelling of
systems. Several problems, with this extended use of the
UML, have been observed, one of the most important being
the language's difficulties to visualize "deep dependency
structures". The solution to the problems, which seems to
be most popular, is to introduce extensions to the UML. If
you consider the understandability problems already
present with the UML this may not be a possible road
towards a useful system modelling language.

4 Ada 95 developed into a modelling
language
When Ada was introduced in Swedish defence it was also
used as a vehicle for introduction of software engineering.
An Ada-based pseudo language the "Adel" (Ada Design
Language) was then developed. When later the need for
organized systems engineering was identified, Adel was
further developed into "Odel" (Object Design
Language[9]). Odel is still Ada-based, but compared to
Adel it is more formal and allows for objects, other than
software.

The Odel syntax is alphanumeric just like Ada 95 but it is
closely connected to two UML diagrams, the Component
diagram[1, 2] and the Message Sequence diagram [2].

The result is a modelling language which meets the
requirements listed above as follows:

Understandability
Understandability is ensured through a combination of
simplified Ada95 syntax (Formalized English) and
simplified UML Component diagrams (Object graphs),
drawn from the Odel descriptions.

Structure
The structure in the Odel descriptions is based on Ada's
"withing principles" developed into dependency
structures, including object (types) of categories
Mission, Operator, Software and Hardware. After an
idea from Håkan Lindegren of Örebro University the
"deep dependency structure" is visualized in "Tree
graphs".

Behaviour
Behaviour is modelled in a simplified and extended Ada
95 syntax, with the main modifications being:

• Procedures, Functions and Tasks are combined into
"Actions" after an idea from professor Vitalis S
Kaufman of Moscow State and Tammerfors
Universities.

• Concurrency between concurrently active actions is
described through a "concur" statement after an
idea from Ingalill Bratteby-Ribbing of the Swedish
Defense Material Administration.

Communication
Communication in system modelling is done basically
in two ways: through invocation, with parameter
passing, and through message passing between
concurrent processes. Invocation is no problem with
use of Ada's principles for parameter passing. Message
passing is different, but a solution was found, with
introduction of "messages", based on Ada's principles
for management of global variables and with
introduction of the reserved words send and receive.

The Odel language was defined in the style of the Ada 95
Language Reference Manual and primarily through
references to the Ada 95 LRM. The Odel Language
Definition is freely available to anyone interested. To
request it, send a mail to info@toolforsystems.com

3 An example
As an example consider a system called "Car window
control" (Figure 2) with the mission to control the windows
in an automobile and, besides the mission object,
containing objects of categories operator (Driver), Software
(Central window control and Local window control) and
Hardware (buttons and switches). Note further in the Tree
graph:

• Each object has a "little clock", which indicates its
development status

• A system is defined as a "Configuration Item" (CI), in
accordance with ISO/IEC 12207 standard[ref 6]. The
different system-related concepts in the ISO/IEC
15288 standard are all managed as CIs. In figure 2,
besides the current CI "Car window control", you can

102 Using Ada’s Syntax and Semant ics for Understandable Systems Engineer ing

Volume 23, Number 2, June 2002 Ada User Journal

see an attached CI "Door", representing an "enabling
system in the wording of the ISO/IEC 15288[7].

If you focus on the mission object "Car window control", it
can be expanded into a component diagram (Figure 3). For
simplicity reasons arrows are omitted and only two levels
are shown.

Note that this diagram also shows the offered and required
interface for the Car window control object:

• In the left hand "action box" is shown that the object
offers the action "Control car windows"

• Each support object shows action(s) in their "action
boxes". Together these constitute the required
interface for "Car window control".

If you go into the action description for the action "Control
Car windows" you find a "concur" statement, which defines
that the actions in the support objects shall be active
concurrently:

concur
 # Driver.Control_windows
 # Drivers_switch_bank.Switch_control
 # Childproof_button.Button_control
 # Local_window_control.Control_local_window
end concur

If you look at the component diagram for the "Local
window control" object (Figure 4), you can see how objects

from attached CIs are drawn "outside" in the tradition from
HOOD (Hierarchical Object Oriented Design) syntax [5].

In the example the two "window control" software objects
are active concurrently and communicate by way of
messages. The Odel fragment below shows how an action
for sending such messages can be described. In the other
software object a corresponding action will be found with
reception of the "up" and "down" messages.

Note that the Odel description is formal enough to be
analysable for correct syntax and to be useful to guide a
programmer. It may not be directly understood by all
stakeholders, but should be understood, after a short
introduction, because of its closeness to natural language.

action Window_command
 (direction_up : in Boolean,
 window_concerned : in seat_position) is

visibility: Offered

purpose: { Receive orders to control windows and
forward these by way of the CAN bus }

messages:

up_message, down_message

variables:

begin
 case direction_up is
 when true => send up_message(window_concerned)
 {send message to move window upwards to the local
 control software for the concerned window in the car,
 defined by seat position
 (driver, other_front, rear_left or rear_right)}
 when false =>
 send down_message(window_concerned)
 when others => null
 end case
end

3 Conclusions
The principles described above have been applied in
several industrial and defence project with the experience
that the combination of a few diagram types and Ada 95
based textual descriptions gives a system modelling
language, which is both understandable to stakeholders
concerned and useful as a formal basis for design of
software and hardware modules.

The main advantage, when compared with a completely
diagrammatic alternative, such as "extended UML" is the

Figure 2: Tree graph for "Car window control"

Figure 3: Top component diagram (object graph) for
"Car window control"

Figure 4 Component diagram with objects from an
attached CI

Ögren 103

Ada User Journal Volume 23, Number 2, June 2002

greater simplicity and the resulting better understandability.
This is important, since better understanding by
stakeholders should decrease the risk of building the wrong
software (which is never used).

Another advantage is that some formality is introduced,
through the coupling to Ada 95, without introduction of
"mathematical syntax", which may introduce new problems
to understand the descriptions.

References
[1] Booch, Grady, Software Engineering with Ada,

Benjamin Cummings 1983

[2] Fowler, Martin, UML Distilled, Addison Wesley 1999

[3] Ogren Ingmar, On Principles for Model-based Systems
Engineering, Systems Engineering, Vol 3, No 1, pp.
38-49, 2000

[4] Ogren, Ingmar, Possible Tailoring of the UML for
Systems Engineering Purposes. Systems Engineering,
Vol 3, No4, pp. 212-224, 2000

[5] Rosen, Jean-Pierre, HOOD An industrial approach for
Software Design, HOOD technical group 1997

[6] www.12207.com, the website that gives information
on the standard for Information Technology –Software
Life Cycle processes

[7] www.15288.com, the website that gives information
on the standard for Systems Engineering –System Life
Cycle processes

[8] www.omg.org, the web site where you find UML-
related document, including definition of the
"Component diagram"

[9] www.toolforsystems.com, the website which contains
a downloadable version of the present release of the
Tofs system modeling software, including an analyzer
for the Odel language

 105

Ada User Journal Volume 23, Number 2, June 2002

Real-time Programming Safety in
Java and Ada
Bo I. Sandén
Computer Science, Colorado Technical University, 4435 N. Chestnut St. , Colorado Springs, CO 80907-3896,
U.S.A. Email: bsanden@acm.org Phone: (719) 590-6733 http://iis-web.coloradotech.edu/bsanden

1. Introduction
Few industry-strength languages include multi-threading in
their syntax. Among contemporary languages, Ada [1, 2]
and Java [3-8] are the most prominent. The philosophy of
concurrency is similar in Java and Ada95 and is based on
the classic distinction between threads (tasks in Ada) on the
one hand, and shared objects on the other. This has been
the dominant paradigm for practical multi-threading for
decades, although other models exist, such as the
rendezvous paradigm of Ada83, which is still supported in
Ada95. (The Ada83 paradigm will not be further discussed
here.) In Ada, shared objects are declared “protected”. In
Java, they are instances of classes that have methods
marked “synchronized”.

Although the philosophy of concurrency is similar, the
attitude to safety and reliability is radically different in Ada
and Java. Java threading is adequate for its original
purpose: windows programming and applets. But Java is
now being fitted with real-time extensions and may be
applied to safety critical software. The language has many
potentially abusable constructs and programmer pitfalls.
This is certainly true for Java in general [9] but is
particularly important with concurrent software, which is
notoriously difficult to debug.

The Real-Time Specification for Java (RTSJ [10, 11]) does
nothing to remove the pitfalls. It intends to make Java
useful for real-time applications by circumventing the
garbage collector and providing interrupt handling, not to
make the language less error prone. The case that Ada95 is
a much safer language for real-time embedded applications
than Java can easily be made.

This paper is intended for Ada programmers, who may be
taking the Ada concurrency features for granted. The
purpose is to view those features against a backdrop of the
pitfalls of a more traditional concurrency implementation
without emphasis on safety. I point out a number of Java
threading pitfalls and note how they are prevented in Ada.
While I briefly summarize the Ada tasking model, the
reader is assumed to have an understanding of Ada tasking
and sufficient understanding of Java to be able to read
small program excerpts, but is not expected to know much
about Java multi-threading. For a comprehensive
comparison of concurrency features in the two languages,
see [12].

1.1. Forms of synchronization
The traditional concurrency model with threads on the one
hand and shared objects on the other relies on a distinction
between exclusion synchronization and condition
synchronization, described as follows.

Exclusion synchronization is used to stop two threads
from operating on the same object at the same time and
thereby jeopardizing the integrity of its data. Java
provides exclusion synchronization for any
synchronized method. Ada provides exclusion
synchronization for protected operations. A block of
code that is executed under exclusion synchronization
is called a critical section. It is bracketed by
instructions that acquire and release a lock on an
object.

Each thread is expected to maintain exclusive access
for a very short time, making it unlikely that a thread
will ever find an object locked. If it does find an object
locked, only a brief wait should be expected. It is even
more unlikely that two threads should attempt access
to the same object while its is locked. For this reason,
one need not be concerned with maintaining a orderly
queue of threads pending on an object lock.
Implementations of exclusion synchronization
typically let a thread that encounters a locked object
yield the processor in the hope that it will find the
object unlocked when next made running. If the object
is still locked, the thread again yields the processor.
With multiple processors, one often uses a spin lock,
that is, the thread enters a loop where it repeatedly
attempts access until it is successful. I shall use the
term “spin lock” for both the single processor and
multi-processor cases.

While a thread, l, is operating on a shared object O,
under exclusion synchronization, it may be preempted
by a higher-priority thread, h, which also needs
exclusive access to O. Unavoidably, h must wait for l
to exit the critical section. Such a situation where a
higher priority thread is waiting for a lower priority
thread is referred to as priority inversion. If l continues
executing at its normal priority, a thread, i, of
intermediate priority may preempt l. This leads to an
avoidable situation where h is waiting for two lower-
priority threads. To avoid it, l can be given a priority
boost. One possibility is to let l inherit h’s priority
once h tries to access O. The other possibility is to

106 Real- t ime Programming Safety in Java and Ada

Volume 23, Number 2, June 2002 Ada User Journal

define a ceiling priority for O, which is used by any
thread while it executes a synchronized method on O.
The ceiling priority must be as high as the priority of
any thread that ever operates on O.

Condition synchronization is when a thread cannot
proceed if a certain condition holds. A buffer, shared
by two or more threads provides a classic example. A
Buffer object has the operations put(), called by
producer threads, and get(), called by consumer
threads. A thread that calls put() must wait if the
buffer is full, and a thread calling get() must wait if it
is empty. There is no assumption that this wait will be
brief. Threads may spend considerable time waiting,
and must be queued, typically first-in-first-out per
priority. A thread conditionally waiting for an object
never holds the object locked and should not normally
hold other objects locked.

Condition synchronization must be used to control
access to any shared resource that is held long enough
for a queue of waiting threads to form. Examples of
resources of this nature range from a printer or a
database record to resources in the problem domain of
a control system such as railroad segments and
automated vehicles in a flexible manufacturing system.
Access to such a resource is handled by means of an
object with a Boolean variable busy, say, and
operations such as acquire() and release(). Once a
thread has successfully acquired the resource and set
busy to true, it releases the object lock, allowing other
threads to call acquire() and place themselves on
queue.

The term “condition synchronization” gives no hint that
condition synchronization is often used to control access to
domain resources and, in general, to resources held for a
long time. The terms “competition synchronization” and
“cooperation synchronization” for exclusion and condition
synchronization respectively are no better [13]. The
rationale here is that the producer and consumer threads
must cooperate to manage an empty and a full buffer but
compete over the access to the operations. Again, this
ignores the use of condition synchronization to control
exclusive access to a domain resource. An alternative way
to characterize synchronization is to distinguish between
exclusive access with short extent in time (exclusion
synchronization) and long extent (condition
synchronization) [14].

The distinction between exclusion and condition
synchronization is crucial in real-time concurrent
programming. While Ada and Java both support exclusion
and condition synchronization, Ada helps the novice
programmer by clearly separating the concepts
syntactically. Java does not, and some of the pitfalls result
from a confusion of them.

2. Ada concurrency model
Ada95 implements concurrency with two kinds of entities:
tasks and protected objects. You define a task type, which
is instantiated as any other type, or a singleton task.
Protected objects have monitor-like behavior. They can
have protected operations of three kinds: functions,
procedures and entries. These are declared in the
specification of the protected type1 as for example the
following:

protected type X is
 function F1() return Type1;

 procedure P1 ();

 entry E1 ();

 private

 - - Attribute variables

 - - Private operations including interrupt handlers

end X;
All protected operations have exclusion synchronization
built in. The differences between protected functions,
protected procedures and entries are as follows:

Protected functions are read-only. They are prohibited
from changing the attribute values of the protected
object and are subject to a read lock: Any number of
function calls on a given object are allowed
simultaneously, but not during a procedure or entry
call on the object.

Protected procedures are allowed to change attribute
values. They are subject to a write lock: Only one
procedure (or entry) call at a time is allowed on a given
object, and not during any function call.

Like procedures, entries are allowed to change
attribute variable values and are subject to the write
lock. In addition, an entry can provide condition
synchronization by means of a barrier condition, which
appears in the body of the protected type. An entry call
only proceeds when the condition is true. For example,
an entry Get, which is only allowed when the number
(Num) of items in a buffer is greater than zero, may be
declared as follows:

entry Get (...) when Num > 0 is

A task that calls Get when Num = 0 is put on a queue that
is FIFO per priority. Each protected object has one queue
per entry.

Any variables in the barrier condition are supposed to be
attribute variables of the protected object, on which the
entry operates. The values of those variables can only be
changed by calls to protected procedures and entries on that
object.

1 Ada also provides for singleton protected units.

Sandén 107

Ada User Journal Volume 23, Number 2, June 2002

At the end of each procedure or entry call on a given
object, its barriers are evaluated. If a barrier is found to be
true, the most eligible task in the corresponding queue is
activated and executes the entry body. Tasks that are
already in a queue have precedence over new callers
according to the principle of “internal progress first”.

3. Java concurrency model
In Java, any method in any class can be declared
synchronized. This is exclusion synchronization: A write
lock per object is applied, so that only one synchronized
method at a time can operate on a given object. A
synchronized method in Java is similar to a protected
procedure or entry in Ada in that it is implicitly bracketed
by instructions that acquire and release the object lock.

Condition synchronization in Java relies on explicit tests
programmed into the synchronized methods, as for
example:

while (0 == Num) {wait();}

If Num is zero, a calling thread calls wait() and thereby
enters the object’s wait set. There is one wait set per object,
not one per entry per object as in Ada. A thread, t, that
executes a synchronized method on an object may change
the truth value of a condition that may affect one or more
threads in the wait set. Before leaving the method, t must
explicitly notify any such threads. The call notifyAll()
reactivates all threads waiting for conditional access to an
object.

The Java thread model hides little from the programmer.
This makes it quite flexible for the old hand at concurrency.
Apart from the tie-in with object-orientation, the thread
model is in fact very similar to what I personally
encountered when manipulating threads provided by the
UNIVAC 494 operating system in assembler programs 30
years ago. In a sense, this makes Java more pedagogical
than Ada because it exposes the details of synchronization.
But by the same token, the Java model is much more error
prone. Very little protects Java programmers from the
consequences of their own mistakes. Unfortunately, many
programmers are not shy about trying things they don’t
fully understand and then testing the program to see if it
works. Many concurrency related bugs are subtle enough to
pass most tests. An Ada programmer cannot easily make
clerical errors with unintended effects on the program
behavior.

An advantage of the Java model is that it can be
implemented with less overhead than the Ada model, but
this issue appears to be losing much of its earlier
importance. Further, a Java class with synchronized
operations can be part of the inheritance hierarchy. In Ada,
this cannot be done directly. Although Ada 95 includes
object-oriented features including inheritance,
polymorphism and dynamic binding, these were not
extended to protected objects [15].

3.1 Real-time Java
The Real-Time Specification for Java (RTSJ) [10, 11] is an
effort to make Java useful for real-time programming. (An
alternative specification is given in [16].) One premise is
that a real-time program must be predictable so that the
programmer can determine a priori when certain events
will occur. This is not true for standard Java for a number
of reasons. First, the garbage collector, which can interrupt
any other processing, adds an element of randomness.
Second, different scheduling policies cannot be imposed in
standard Java. (Scheduling policies such as the rate-
monotonic algorithm allow you to prove that a set of
threads meet their specified deadlines.) Third, in standard
Java, threads placed in a wait set are reactivated in arbitrary
order, independent of when they attempted access; the wait
set is not a FIFO queue.

To deal with these problems, RTSJ introduces a number of
new classes, most of which are necessary for working
around the garbage collector. One such class is
NoHeapRealtimeThread (NHRT), which is a descendant of
Thread. NHRT threads have higher priority than the
garbage collector so are not subject to arbitrary delays. This
places many restrictions on the programmer, however. For
example, an NHRT thread cannot allocate objects on the
heap. Instead, RTSJ provides for various kinds of special
memory areas.

RTSJ also stipulates that threads in a wait set must be kept
in FIFO order within priorities. This means that notify()
reactivates the thread with the highest priority. If there are
more than one thread with that priority, the one that has
waited the longest is reactivated.

RTSJ uses priority inheritance as the default control policy
to address priority inversion. A priority ceiling protocol is
also specified. Finally, to further support real-time
programming, RTSJ allows the programmer to specify
interrupt handlers.

4. Java pitfalls and their Ada solutions
Apart from the extensions provided by RTSJ, real-time
Java relies on the threading and synchronization models of
standard Java. Next, I discuss in more detail some features
of these models from a real-time point of view, focusing on
the associated pitfalls. I also discuss how each pitfall is
prevented by the Ada95 syntax and semantics. Although
programming to RTSJ is in many respects quite involved, I
do not address any programming pitfalls that may appear
there.

4.1 Defining and starting threads
Java provides the abstract class Thread, whose method run(
) represents the logic that a thread performs. It corresponds
to the executable part of a task body. A standard way of
creating threads is to declare a new class, T, that extends
Thread and overrides run() with appropriate processing.
Each instance To of T has its own thread, which is
explicitly started by means of the call To.start(). Once
started, the thread executes T's run() method and has
access to To’s data.

108 Real- t ime Programming Safety in Java and Ada

Volume 23, Number 2, June 2002 Ada User Journal

Because Java has no multiple inheritance, an additional
mechanism is necessary for the case where a class, R, that
needs a thread, already extends another class, such as
Applet. For this situation, Java provides the interface
Runnable. The programmer makes R extend Applet and
implement Runnable. Instantiating R creates a runnable
object, Ro, say. To associate a thread with Ro, you submit
Ro as an argument to one of Thread's constructors and then
call start() on the resulting Thread instance. This is
typically done in a statement such as:

new Thread(Ro).start();

Java pitfalls. Once you have a class R that implements
Runnable, Java gives you two ways to create multiple
threads that execute R’s run() method. First, you can
instantiate R n times, and submit each instance once as a
parameter to one of Thread’s constructors. Now you have n
instances of R, each with a thread, so each thread has its
own set of instance variables. But Java also lets you submit
the same instance of R repeatedly to Thread’s constructor.
The result is a subtly different case where multiple threads
are tied to one object and share its instance variables. Two
(or more) of these threads can directly manipulate those
instance variables simultaneously, and possibly introduce
inconsistencies.

Ada. Ada’s model for defining and starting tasks is cleaner.
You declare a task type, which is instantiated as any other
type, or a singleton task. The task is started automatically,
either when the first executable statement is reached after
the declarations, or, if a task type is dynamically
instantiated, immediately upon instantiation. Each task
instance has its own private data.

4.2 Synchronized objects
Java provides all objects with the potential for monitor-like
behavior, that is, approximately the behavior of a protected
object in Ada. Every object has a lock variable, which is
hidden from the programmer and cannot be accessed from
methods on the object. Exclusion synchronization is
accomplished by specifying a method as synchronized, as
in:

void synchronized m() ...

When a synchronized method is called on some object, O,
its code is implicitly bracketed by statements that acquire
and release the lock on O. That is, a thread calling O.m()
locks O as a whole, so that no other thread can perform any
synchronized method on O (or execute any block
synchronized with respect to O as discussed below). This
synchronization feature is built in, which guarantees that
the lock is always released when a thread leaves a
synchronized method, even if this happens by means of the
exception handling mechanism. I shall refer to any instance
of a class that has at least one synchronized method or
synchronized block as a synchronized object.

A Java programmer can choose to specify some but not all
the methods of a class as synchronized. This has some
useful applications. For example, a method that returns a

constant or the value of a single attribute need not be
synchronized.

Java pitfalls. The freedom to specify selected methods of a
class as synchronized opens the door for mistakes. In the
buffer example, the programmer may declare get()
synchronized and not put(). This allows different threads to
call put() simultaneously. These calls may also overlap
with a call to get(). This jeopardizes the integrity of the
buffer data structure. The program may still work much of
the time, but will produce occasional errors, especially
when run on a symmetric multi-processor providing true
parallelism. Such errors tend to be hard to find by testing –
although more easily by inspection by an experienced
thread programmer. Omitting the keyword synchronized
altogether, for put() as well as get() would further
exacerbate the situation.

A programmer must ensure that the instance variables that
the synchronized methods operate on are private so that
they cannot be directly accessed and changed by a method
operating on some other object. Even if they are private,
you must ensure that they are not changed by a static
method defined for the class.

Ada. All operations on a protected object require either a
read lock or a write lock. You cannot include a non-
protected operation in a protected object. A protected
function can be used to return constants, etc., as can an
unsynchronized method in an otherwise synchronized Java
class.

4.2.1 Synchronized blocks
In addition to synchronized methods, Java provides
synchronized blocks, which have no Ada counterpart. Any
block in any method can be synchronized with respect to an
object − not necessarily the current instance of the class
where the method appears − by means of the syntax:

synchronized (Expression) { /* Block B */ }

Expression must evaluate to a reference to some object, Vo
of class V, say. As for synchronized methods, exclusion
synchronization is implicit, so B’s code is bracketed by
statements to acquire and release the lock on Vo. A
synchronized method and a synchronized block are both
critical sections.

Consider first the case where B is part of some method, m(
), on class V and is synchronized with respect to the current
object as follows:

class V ...
{ void m()
 { synchronized (this)
 { /* Block B*/
 }
 }
}

This design is an alternative to making m() synchronized
and can be used if only parts of m() requires exclusive
access. That way, two or more threads can simultaneously
execute those parts of m() that are outside B, so

Sandén 109

Ada User Journal Volume 23, Number 2, June 2002

concurrency may be increased. An alternative design is to
make B into a separate, synchronized method called from
within m().

As mentioned, the block B in m() can be synchronized with
respect to any object, not only the current one. In the
following excerpt, B is synchronized with respect to object
Wo of class W. This means that before entering the block B,
the thread that called m() in order to operate on an object
of class V acquires the lock on object Wo of W.

class V ...
{ void m()
 { synchronized (Wo)
 { /* Block B*/
 }
 }
}

Synchronized blocks are useful when different threads need
exclusive access to some object in order to perform their
own, particular operations on it. Such an object is
sometimes a printer or a window to which many threads
write their own tailored outputs such as log entries as in the
following example:

synchronized (myPrinter)
{
 // series of statements producing output
}

In this case, it can be inconvenient to make every possible
combination of output statements into a method for the
printer class.

Java pitfalls. By synchronizing blocks with respect to
some object you effectively create “distributed” methods
that are not included with other instance methods in the
class definition. From looking at a class definition, you
cannot tell whether any blocks exist that are synchronized
with respect to its instances. A class without synchronized
methods in its definition may appear to a maintenance
programmer as an unsynchronized class.

Ada has no equivalent to synchronized blocks. All
operations on a protected object are specified in its
declaration.

4.3 Condition synchronization
The most common idiom for condition synchronization in
Java is the statement

while (cond) {wait();}

This statement makes the calling thread wait as long as
cond holds. I shall refer to the statement as a wait loop. If
cond is true, the thread calls wait() and thereby places
itself in the wait set of the current object, O, and releases O.
The wait set contains all threads waiting for conditional
access to O.

The wait loop syntax is somewhat complicated by the need
to handle an interrupted exception that can be caught by a
thread while it is in the wait set. This is possible because
this particular exception is thrown by a different thread

than the one that must catch it. Unless the exception is
propagated to an enclosing scope, a construct such as the
following is necessary:

while (cond) try {wait();}
 catch (InterruptedException e)
 { /* Take action or ignore the exception */
 }

Pitfalls. The wait loop is like an incantation that should
always be repeated in almost exactly that form. For
example, the variation

while (cond) {yield();}

stops the calling thread from proceeding against cond but
does not release the object. This means that other threads
that are supposed to change cond by calling synchronized
methods on the object cannot do so.
A more insidious mistake is to replace the wait loop with
the quite similar statement

if (cond) {wait();}

This statement makes the calling thread enter the wait set
and release the object, but only once. When reactivated, the
thread continues after the wait() call and proceeds in the
synchronized method even if cond is true [12]. This is
particularly dangerous, since notifyAll() must often be
used and relies on the wait loop. When notifyAll()
activates a thread that is not to proceed, the thread is
supposed to retest its condition and return to the wait set.
Substituting if for while leads to a typically transient error.
Under unlucky circumstances, it can remain undetected for
some time, perhaps until an additional thread is introduced.

Ada. Condition synchronization is achieved by means of
entry barriers, which are built into the syntax. Their format
is not susceptible to easy programming mistakes. One
possible mistake is to include in a barrier condition a
variable that is defined outside the protected object. In that
situation, it is possible to change the value of the condition
without notifying waiting threads.

4.3.1 Placement of the wait loop
The wait loop in Java most often appears at the very
beginning of a critical section and is reached immediately
after a thread locks the object. But it can be placed
anywhere within a synchronized method or block. As a
simple example of one or more statements separating the
wait loop from the beginning of a method, you could count
the number of calls to a method, m(), in an instance
variable CallCounter in the following way:

synchronized void m()
{
 CallCounter ++;
 while (cond) {wait();}

}

110 Real- t ime Programming Safety in Java and Ada

Volume 23, Number 2, June 2002 Ada User Journal

Here, CallCounter is incremented exactly once for each
call, no matter if the calling thread enters the wait set. Its
value equals the number or calls to m() including those
where the thread is still in the wait set. In a slightly more
sophisticated example, the statements before the wait loop
could maintain a list of the thread identities of the latest n
callers. One can also instrument the wait loop itself
similarly by including statements before and/or after the
wait() call.

The textbook case for placing the wait loop deeper inside a
critical section is when a method allocates resources to
calling threads. It may turn out that the request of a calling
thread, t, cannot be satisfied until additional resources
become available. In that situation, t can place itself in the
wait set, release the object and wait to be notified by a
thread that has released resources. Once notified, t
continues immediately after the wait() call with exclusion
synchronization in force. If a synchronized method has one
or more such wait() calls, a thread can effectively execute
it in segments separated by those calls, entering a new
segment each time it is successfully reactivated from the
wait set.

Java pitfalls. The syntactical freedom to place the wait
loop anywhere in a critical section allows certain errors.
Even if the wait loop is initially placed at the very
beginning of the critical section, a maintainer can
unintentionally insert statements between the beginning and
the wait loop. These statements are executed exactly once
by every thread that attempts access to the critical section
regardless of the condition. This may be even more
treacherous if there are already statements between the
beginning of the critical section and the wait loop, as in the
CallCounter example. The maintainer may not realize the
difference in status between statements placed before and
after the wait loop.

Ada. Because protected objects in Ada are syntactically
distinct, there is no easy way to include a statement such as
CallCounter := CallCounter + 1; in an entry in such a way
that it would be executed exactly once under exclusion
synchronization before the barrier has been passed. (Certain
elaborate maneuvers are possible if you include in the
barrier condition a function call with side effects.)

An Ada entry body cannot be broken into segments where a
task would execute a segment, then release the object, put
itself on queue and continue with the next segment upon
reactivation. In Ada, each such segment must be an entry.
A task that is executing an entry can call requeue and place
itself on the queue of the same or another entry [2].
Requeuing is sometimes considered an advanced Ada topic.
An intuitive example of requeuing when a resource turns
out to be unavailable is given in [17].

4.3.2 Notification of waiting threads
A Java thread that executes a synchronized method on O
and changes a condition that may affect one or more
threads in O's wait set must notify those threads. In standard
Java, O.notify() reactivates one arbitrarily chosen thread, t,
in O’s wait set. If the call is correctly placed within a wait

loop, this means that t reevaluates the condition and either
proceeds in the synchronized method or reenters the wait
set. In RTSJ, the most eligible thread is reactivated.

The call O.notifyAll() releases all threads waiting for
conditional access to O. This is useful when a condition has
changed so that multiple threads can proceed. But calling
notifyAll() instead of notify() is sometimes necessary even
though you want only a single thread to proceed. In
standard Java, this is the only way to give preference to the
highest priority thread. It is inefficient if there are many
threads in the wait set, since they must all attempt access,
and only one will succeed [18].

Because there is only one wait set per object, you must also
call notifyAll() instead of notify() if an object’s wait set
may include threads pending on different conditions. If you
change one of the conditions, you must activate all the
threads to make sure that a thread pending on that condition
is notified, if it is in the set. This is true in RTSJ as well as
in standard Java.

When a thread calls wait(), notify() or notifyAll() on an
object, it must have the object locked. The wait set is a
shared data structure that must be protected from
conflicting access, but has no lock of its own.

Java pitfalls. Unlike exclusion synchronization, condition
synchronization is not automatic; you have to explicitly
notify waiting threads. An obvious pitfall is to forget to
insert notify() calls at all the necessary places. This is
particularly treacherous if a method has unusual exits, as
via exception handlers. A related mistake is to call notify()
instead of notifyAll() when threads in the same wait set
may be pending on different conditions.

A way to reduce the risk of forgotten notifications is to
include a timeout parameter in every wait() call. After the
given time, the thread is activated, and if the wait() call is
placed inside a correct wait loop, the thread reevaluates the
condition and either proceeds or reenters the wait set.

Ada. As long as the entry barrier depends only on variables
local to the protected object, the most eligible, waiting
thread is automatically activated after a protected procedure
or entry call on the object has changed the truth value of the
condition. Waiting tasks are queued per entry, so precise
notification can be achieved: If a single condition is
changed, only a task waiting on that condition is activated.

4.3.3 Controlling access to domain resources
Condition synchronization is used to give one thread at a
time exclusive access to a shared resource in the problem
domain, such as a forklift truck in an automated factory
application [14, 19, 20]. In this example, jobs on the factory
floor that need the forklift are represented by Job threads in
the software. A forklift operation may continue for several
minutes and must be performed under condition
synchronization because we want waiting jobs to form a
FIFO queue per priority. The object controlling the forklift
– instance F of class Forklift, say – typically has an
attribute, busy, that reflects the availability of the forklift,

Sandén 111

Ada User Journal Volume 23, Number 2, June 2002

and the synchronized operations acquire() and release(),
where acquire() contains a wait loop such as the following:

 while (1 == busy) {wait();}

The corresponding notification call is in release().
Statement sequences where the forklift is operated are
bracketed by calls to acquire() and release() whether they
appear in Job’s run() method or in other unsynchronized
methods.

While one job is using the forklift, other Job threads can
call F.acquire() and place themselves in F’s wait set. The
variable busy serves as the lock on the physical forklift
while F’s hidden lock variable only serves to control the
access to the variable busy itself.

Explicitly calling acquire() and release() in this fashion is
similar to working with a semaphore, and may be
counterintuitive if you have been taught that semaphores
are a primitive way of controlling the access to a shared
resource. A synchronized method or block is a more
abstract representation that hides the semaphore operations.
But when controlling access to shared resources in the
problem domain in this fashion, we must invert the
abstraction by using a synchronized object to implement a
semaphore [20].

In the example with the shared printer, we can choose
whether to consider the wait to be of long or short extent.
In the solution in section 4.2.1, each thread’s operations on
the printer are enclosed in a synchronized block as follows:

synchronized (myPrinter)
{
 // series of statements producing output
}

This exclusion synchronization assumes that the printer
operations are quick. If other threads try to access the
printer during the exclusive access, they spin, waiting for
the lock. There is no direct way to ensure that they will
ultimately access the printer in a first-in-first-out fashion.

In an alternative solution based on condition
synchronization, you define acquire() and release()
methods in the Printer class (or another class),
introduce a variable such as busy, and bracket the
series of statements with calls to those methods:

myPrinter.acquire();
 // series of statements producing output
myPrinter.release();

Here, acquire() contains a wait loop, and threads that must
wait for the printer enter the wait set. A downside is that
this solution makes the programmer responsible for
inserting one or more release() calls to ensure that the
printer is released even if an exception is thrown while the
output is being produced.

Java pitfalls. By convention, all critical sections should be
programmed to minimize the time an object is held locked.
A thread that is waiting on a condition should release its
object locks and be placed in a wait set. But nothing stops a
programmer from making a thread hold an object lock for
an arbitrarily long time. A trivial way to do this is to call
sleep(...) inside a synchronized method. Two other cases
are described next.

Controlling domain resources. The confusion of long and
short waits may typically occur in real-time applications
that control resources in the problem domain. In the
automated factory domain, the forklift operation may be
implemented by means of the following synchronized
block within the run() method of the Job class:

synchronized (F)
{
 // Operate the forklift
}

This ensures mutual exclusion of jobs using the forklift and
may at first seem more elegant than the solution with
semaphores. But if the forklift operation continues for
minutes, Job threads that need the forklift are not put in a
wait set (and FIFO queued per priority in RTSJ) but spin
until they find F unlocked. Which Job thread gets to the
forklift next is then quite arbitrary. To avoid this, condition
synchronization must be used.

In RTSJ, exclusion synchronization invokes the control
policy to minimize the effect of priority inversion. Assume
first that the default policy, priority inheritance, is in effect.
If a job at priority l is currently operating the forklift and a
higher priority job, h, attempts to get the lock, l’s remaining
forklift operations will be executed at priority h. This skews
l’s priority relative to any jobs with priorities between that
of l and that of h. The ceiling priority protocol has an even
more fundamental effect in that all forklift operations will
always be carried out at the highest priority of any job.

Nested synchronized blocks. Another way of inadvertently
mixing long and short waits is with nested critical sections.
We can insert a wait loop in a nested synchronized block as
follows:

synchronized(r1)
{

 synchronized(r2)
 { while (cond) {r2.wait();}

 }
}

If cond is true, the calling thread enters r2’s wait set and
releases r2. But it keeps r1 locked, and lets other threads
that need access to r1 spin rather than wait in a wait set.
Incidentally, the following is also legal:

112 Real- t ime Programming Safety in Java and Ada

Volume 23, Number 2, June 2002 Ada User Journal

synchronized(r1)
{

 synchronized(r2)
 { while (cond) {r1.wait();}

 }
}

In this case, the calling thread enters r1’s wait set and
releases r1 while keeping r2 locked. On the other hand,
placing a wait loop in the outer synchronized block is
harmless as long as the block doesn’t represent some
lengthy operation such as the forklift operation discussed
earlier.

Ada. The Ada syntax is certainly clearer about the
distinction between exclusion and condition
synchronization. Any protected operation provides
exclusion synchronization automatically. Any “potentially
blocking operation”, that is, essentially anything that can
take time, is forbidden in a protected operation, ensuring
that the extent in time of mutual exclusion is kept short. For
example, you cannot call an entry of some protected object
r2 while you are executing a protected operation on the
object r1, which would be the Ada equivalent of nested
synchronized blocks.

Condition synchronization requires an entry with a barrier
condition. The only way to control access to a shared
domain object is by means of a semaphore object similar to
the Forklift class in Java. A Forklift protected object would
have an entry Acquire with a barrier such as “not busy” and
a procedure Release.

In the case of the printer, if it is undesirable to define
protected procedures for each different combination of
printer operations, a semaphore object is the only solution
permitted in Ada. It would be a protected object
My_Printer with the entry Acquire and the procedure
Release.

5. Conclusions
Java was not originally intended as a language for systems
with high reliability requirements, but its popularity has
prompted its use for ever wider sets of applications. The
Real-Time Specification for Java removes some of the
obstacles associated with garbage collection but retains
many pitfalls.

Java is adequate for many kinds of concurrent software, but
for critical real-time applications it remains a considerably
riskier choice than Ada, which was intended for such
applications. This is so because Java lacks safeguards
against programming errors that are easily committed by an
programmer without a sufficiently deep understanding of
concurrency issues. There is a trade off here where Java’s
popularity and the availability of Java programmers must
be weighed against the risk exposure caused by those
programmer mistakes the language readily allows.

References
[1] Barnes, J. G. P. (1998) Programming in Ada95, 2nd

Ed., Addison-Wesley.

[2] Burns, A. and Wellings, A. J. (1998) Concurrency in
Ada, 2nd Ed., Cambridge University Press.

[3] Lea, D. (2000) Concurrent Programming in Java, 2nd
Ed., Addison-Wesley.

[4] van der Linden, P. (2001) Just Java 2, 5th Ed., Prentice
Hall.

[5] Holub, A. I. (2000) Taming Java Threads, Apress.

[6] Hyde, P. (1999) Java Thread Programming, Sams
Publishing.

[7] Oaks, S. and Wong, H. (1997) Java Threads, O'Reilly.

[8] Brinch Hansen, P. (1999). Java’s insecure parallelism,
ACM SIGPLAN Notices 34/4, 38-45.

[9] Alexander, R. T. and Bieman, J. M. and Viega, J.
(2000) Coping with Java programming stress, IEEE
Computer 33/4, 30-38

[10] Bollella, G. and Gosling, J. (2000) The real-time
specification for Java. IEEE Computer 33/6, 47-54

[11] Bollella, G. and Gosling, J. and Dibble, B. P. and Furr,
S. and Turnbull, M. (2000) The Real-time Specification
for Java, Addison-Wesley.

[12] Brosgol, B. M. (1998) A comparison of the
concurrency features of Ada 95 and Java, Proc.
SIGAda '98, (Ada Letters XVIII/6,175-192).

[13] Sebesta, R. W. (2002) Concepts of Programming
Languages, 5th Ed., Addison-Wesley.

[14] Sandén, B. I. (1994). Software Systems Construction
with Examples in Ada. Prentice-Hall.

[15] Wellings, A. J. and Johnson, R. W. and Sandén, B. I.
and Kienzle, J. and Wolf, T. and Michell, S. (2000)
Integrating object-oriented programming and protected
objects in Ada 95. ACM TOPLAS 22/3, 506-539.
(Reprinted in Ada Letters XXII/2 (June 2002), 11-44.

[16] International J Consortium (2000), Specification,
Real-Time Core Extensions, Draft 1.0.14, 2 September
2002. http://www.j-consortium.org

[17] Sandén, B. I. (1996) Using tasks to capture problem
concurrency. Ada User Journal 17/1, 25-36.

[18] Vermeulen, A. and Ambler, S. W. and Bumgardner, G.
and Metz, E. and Misfeldt, T. and Shur, J. and
Thompson, P. (2000) The Elements of Java Style,
Cambridge University Press.

[19] Sandén, B. I. (1997) Modeling concurrent software.
IEEE Software 14/5, 93-100.

[20] Carter, J. R. and Sandén, B. I. (1998) Practical uses of
Ada-95 concurrency features. IEEE Concurrency 6/4,
47-56.

114

Volume 23, Number 2, June 2002 Ada User Journal

Transition of a Large Project from
Ada 83 to Ada 95
Jeff Cousins
BAE SYSTEMS (Combat and Radar Systems) Limited, Apex Tower, 7 High Street, New Malden, Surrey, KT3 4LH
E-mail: jeff.cousins@baesystems.com

Abstract
The Combat and Radar Systems sector of BAE
SYSTEMS has successfully produced several large
submarine Command and Control Systems for the
Royal Navy using Ada 83. Every major release has
been delivered on time for the last eight years.
As a prelude to porting these to Ada 95, extensive
investigations into Ada 83 to Ada 95 porting issues
were performed.
A minimum change approach was desired, with the
constraint that wherever possible changes should be
backward compatible with Ada 83. Some already
delivered systems use hardware that does not have an
Ada 95 compiler available, but will have to be
maintained for many years.
This paper describes which problems were the most
frequent, whether the changes were backward
compatible with Ada 83, and which problems had
been unexpected.
Most frequent was the long expected change whereby
Numeric_Error becomes a renaming of
Constraint_Error, followed by package bodies
becoming illegal if not required. Unexpected changes
included those due to the stricter implementation
advice for packed arrays and the stricter rules for
Unchecked_Conversion.
Despite the unexpected problems, we have
successfully ported systems containing over a million
lines of code.

1 Introduction
This article reports on the porting of large submarine
Command and Control systems from Ada 83 to Ada 95.

The initial investigation was performed by passing all of
the code of the Operational Trainer variant of a submarine
Command and Control system through an Ada 95 compiler.
The total source code came to over a million lines of Ada.

The "Ada Compatibility Guide" [1] describes many issues,
and has even been quoted in requirements specifications.
This tends to assume a starting point of pure Ada 83, as
subsequently clarified. More likely, the Ada 83 compiler
will have followed a face value interpretation of the
standard, with vendor extensions to handle the more

obvious deficiencies in Ada 83, such as interfacing to other
languages, maths library support and interrupt handling.

Most problems were found by simply compiling vast
amounts of code.
Binding, linking and executing did reveal further problems,
but these were mainly portability problems with our code
rather than Ada 95 problems. For example, extra "pragma
Elaborate"s to ensure that the elaboration order was correct,
it being fortuitous that our previous compilers had
generated a valid elaboration order. Putting the code
through another compiler was a useful exercise in
improving code quality even if we had stuck with Ada 83.

Although by no means a trivial exercise, the problems that
occurred were small compared with a previous port
between big-endian and little-endian target processors.

Where changes were necessary, they were usually simple
changes that could be made in a way acceptable to both
Ada 83 and Ada 95. For example having a common
exception handler for both Numeric_Error and
Constraint_Error, or pragmas that are ignored if
unrecognised.

Two compilers were used, GNAT and Aonix ObjectAda.
All of the code was put through GNAT and 130000 lines
were put through ObjectAda for comparison.

Issues are presented in section 2, sorted so as to present the
issues that affected the most files first. Where possible,
issues identified are listed under the same headings as used
in the "Ada Compatibility Guide".

2 Ada 95 Porting Problems
2.1 Numeric_Error renames Constraint_Error
Numeric_Error is now just a renaming of Constraint_Error.
Therefore the exception handler for Numeric_Error was
removed and the exception handler for Constraint_Error
changed from:

when CONSTRAINT_ERROR =>

to:

when CONSTRAINT_ERROR | NUMERIC_ERROR
=>

This gave backward compatibility so that when compiled
with an Ada 83 compiler a Numeric_Error would be caught
by the Constraint_Error handler.

Cousins 115

Ada User Journal Volume 23, Number 2, June 2002

This change had long been anticipated, but until Ada 95
compilers started providing more than minimal
Exception_Information the loss of the distinction would
have been a hindrance to debugging.

258 files were affected.

2.2 Library Package Bodies Illegal if not
Required
Ada 95 reports an error if a body is provided but not
demanded by the spec. Initially, "pragma
Elaborate_Body" was added to the specs, which avoided
having to change the bodies.
Under LRM:10.2.1 this meant that the body was elaborated
immediately after its declaration though, and in one case
this resulted in an incorrect elaboration order.
It was thus decided that it was safer to add a dummy
procedure to the spec and body in all cases. For example:

package MY_PACKAGE is
 NUMBER_OF_CARDS_IN_NODE : NATURAL;
end MY_PACKAGE;

package body MY_PACKAGE is
begin
 NUMBER_OF_CARDS_IN_NODE :=
 SOME_FUNCTION_TO_INTERROGATE_
 NODE_CALLED_AT_STARTUP;
end MY_PACKAGE;

would have been changed to:

package MY_PACKAGE is
 NUMBER_OF_CARDS_IN_NODE : NATURAL;
 procedure DUMMY_PROC;
end MY_PACKAGE;

package body MY_PACKAGE is
 procedure DUMMY_PROC is
 begin
 null;
 end DUMMY_PROC;
begin
 NUMBER_OF_CARDS_IN_NODE :=
 SOME_FUNCTION_TO_INTERROGATE_
 NODE_CALLED_AT_STARTUP;
end MY_PACKAGE;

79 files were affected.

2.3 Stricter interpretation of implementation
advice re packed arrays
With our Ada 83 compilers a size clause can be used to
force packing of an array, indeed their manuals confirm this
behaviour. This was preferred to "pragma Pack" since a
compiler is at liberty to ignore a pragma, and different
compilers may pack differently.

But the Ada 95 LRM:13.3(53) says:

A Size clause on a composite subtype should not affect the
internal layout of components.

This could cause the compiler to warn that the size was too
small. Therefore a "pragma Pack" was inserted between
the array type declaration and the size clause. For example:

type BIT_ARRAY_INDEX_TYPE is range 1
 .. N;
type BIT_ARRAY_TYPE is array
 (BIT_ARRAY_INDEX_TYPE) of BOOLEAN;
for BIT_ARRAY_TYPE'Size use N;

would have been changed to:

type BIT_ARRAY_INDEX_TYPE is range 1
 .. N;
type BIT_ARRAY_TYPE is array
 (BIT_ARRAY_INDEX_TYPE) of BOOLEAN;
pragma PACK (BIT_ARRAY_TYPE);
for BIT_ARRAY_TYPE'Size use N;

In some cases the size clause had also to be amended to
round it up to a multiple of Storage_Unit, e.g.:

for BIT_ARRAY_TYPE'Size use (
 (BIT_ARRAY_INDEX_TYPE'Pos (
 BIT_ARRAY_INDEX_TYPE'Last) /
 System.Storage_Unit) + 1) *
 System.Storage_Unit;

71 files were affected.

2.4 Address clauses
The use of address (“at”) clauses to achieve overlays was
strictly regarded as erroneous by Ada 83 but never the less
worked. (Where overlays were used they were for low-
level interfacing to external devices). Ada 95 allows it, but
the use of an address clause can cause default initialisation
to overwrite the original data. This default initialisation
may be automatically generated by the compiler and not
obvious from the source code of the data types involved.

The Annotated Ada Reference Manual 13.3(12.c) states:

If the Address of an object is specified, any explicit or
implicit initialization takes place as usual, unless a
"pragma Import" is also specified for the object (in which
case any necessary initialization is presumably done in the
foreign language).

Therefore pragmas of the form "pragma Import (Ada,
Name_Of_Overlay)" were added.

36 files were affected.

2.5 Vendor-specific Pragmas Removed
1) "pragma Interface_Information" was no longer accepted
and was changed to "pragma Import".

23 files were affected.

2) "pragma Export" had a different definition and needed
changing to add the calling convention.

1 file was affected.

3) "pragma Preserve_Layout" to prevent record re-
ordering was no longer accepted and was removed since no

116 Transi t ion of a Large Project from Ada 83 to Ada 95

Volume 23, Number 2, June 2002 Ada User Journal

longer necessary with either of the two Ada 95 compilers
under investigation.

2 files were affected.

2.6 Obsolescent Features
The use of 'Storage_Size on task types, to control the stack
size of tasks, is now obsolescent, and may cause the
compiler to give a warning.

Instead "pragma Storage_Size" should be inserted within
the task specs, though this is not backwardly compatibility
with Ada 83.

25 files were affected.

2.7 Vendor-Specific Packages no longer provided
This was one of the few areas where the fixes for Ada 95
were not backwardly compatible with Ada 83, though
equivalent packages are now often defined by Ada 95,
which will improve portability in the long term and reduce
the need for such vendor-specific packages.

1) The vendor specific Math_Library was not provided so
the project's maths library was rewritten to make use of the
Ada 95 defined Numerics Package. In most cases similar
functions were provided, though not factorial, round or
truncate. Ada 95 does provide ‘Round and ‘Truncation
attributes.

The Ada 95 defined function Arctan raises an exception if
both parameters are zero, whereas the Ada 83 libraries had
all returned 0. A specific test was added to the project’s
maths library to check whether both parameters were zero
and if so to return zero.

8 files were affected.

2) The vendor specific package for controlling the mapping
of Ada tasks to operating system processes was not
provided. References were removed as the Ada 95
compiler provided a sensible default mapping.

1 file was affected.

3) The vendor specific package for defining the source of
an interrupt was replaced by Ada.Interrupts.

1 file was affected.

4) The vendor specific package for machine code inserts
was not provided. LRM Annex C section 1 provides an
alternative, where supported.

1 file was affected. (Where a machine code insert was used
it was for low-level interfacing to an external device).

5) A vendor specific Unix types package was not provided.
It proved easy to use other types with identical definitions.

6 files were affected.

6) The vendor specific pre-instantiation of
Text_IO.Integer_IO was not provided. The Ada 95
package Ada.Integer_Text_IO was used instead.

1 file was affected.

2.8 Stricter rules for Unchecked_Conversion
1) The Ada 95 LRM Section 13.9 (4)-(11) imposes
different and additional rules as to whether an
Unchecked_Conversion is valid than the Ada 83 LRM
Section 3.10.2 did.

Whereas the Ada 83 LRM Section 13.10.2 talks of "sizes of
objects of the source and target type", Ada 95 LRM
Section 13.9 (4) explicitly says "The size of the formal
parameter S in an instance of Unchecked_Conversion is
that of its subtype".

A number of different changes were needed to overcome
this problem:

In several places size clauses were applied to type
definitions to make the size of the type the same as the size
of objects of the type.

In some places the Unchecked_Conversions were
unnecessary, both the source and the target being derived
from the same type.

Some Unchecked_Conversions between scalars gave
unequal size warnings but were proven to give the intended
results, so they were left unchanged.

For one Unchecked_Conversion, explicitly converting the
source to the parent type, which was of the same length as
the target type, was necessary to obtain the intended results.

One Unchecked_Conversion was from a record and not a
sensible thing to do since potentially compilers can re-order
records; fortunately this was just for information of
secondary importance in a fault message that should never
occur.

One Unchecked_Conversion from a fixed-point type only
gave problems at the extremes of the range.

One Unchecked_Conversion was never used so was
deleted.

16 files were affected.

2.9 Real attributes removed
A number of Ada 83 real attributes are no longer provided
by Ada 95. In the absence of any readily available
guidance in this area, the following mapping was used:

 Ada 83 Ada 95 Ada 95 equivalent
also in Ada 83

 'Mantissa 'Machine_Mantissa Yes
 'Epsilon 'Model_Epsilon No
 'Large 'Last Yes
 'Safe_Small 'Model_Small No

13 files were affected.

Note that the GNAT compiler still provided the Ada 83 real
attributes even though it not in the Ada 95 LRM, but to
ensure portability with other Ada 95 compilers this should
not be relied on.

Cousins 117

Ada User Journal Volume 23, Number 2, June 2002

2.10 Bad Pragmas Illegal
Bad pragmas are now flagged as errors rather than ignored.
Some code had "pragma Inline" without saying what to
inline. The pragmas were removed as it was no longer
intended to inline the particular subprograms, though the
obvious alternative would have been to add the parameter
saying which subprogram to inline.

10 files were affected.

2.11 System address no longer equivalent to an
access type
1)

variable : System.Address := null;

was no longer accepted and was changed to

variable : System.Address :=
 System.Null_Address;

This was not backwardly compatible with Ada 83.

2 files were affected.

2) Data was passed to and from the lower level
communications mechanisms using a generalised data
pointer type, called Data_Ptr_Type, and
Unchecked_Conversion used to convert between this and
an access type pointing to the correct record structure.
This Data_Ptr_Type was defined in terms of
Our_System.Address, where package Our_System tried to
encapsulate the definition and operations upon Address.
Unfortunately Our_System.Address had been defined as
the biggest Integer (System.Min_Int .. System.Max_Int),
which is not necessary the same size as the target
processor's address range.

As all our target processors were 32 bits,
Our_System.Address was re-defined as "subtype
Our_Types.Integer_4", where Integer_4 had a number of
compiler specific definitions so as to always be a 4 byte
Integer. Renaming was used added to give visibility of the
operations.

Alternative solutions would be to use:

Type System.Storage_Elements.Integer_Address, and
conversion functions
System.Storage_Elements.To_Address and
System.Storage_Elements.To_Integer to convert between
this and System.Address. Future 64 bit systems will use
this.

Generic package
System.Address_To_Access_Conversions. This appeared
rather cumbersome though, and would have given a
proliferation of instantiations of the generic package.

2 files were affected.

2.12 Unconstrained Generic Actual Subtypes
A generic can no longer be instantiated with an
unconstrained actual subtype to meet a formal private type
unless the spec of the generic explicitly indicates that it is
allowed to be unconstrained.

The spec was of the form:

generic
 ... –- Some other declarations
 type TABLE_TYPE is limited private;
 type INDEX_TYPE is (<>);
 ... –- Some other declarations
package GEN_PACKAGE is

This was changed to:

generic
 ... –- Some other declarations
 type INDEX_TYPE is (<>);
 type ITEM_TYPE is limited private;
 type TABLE_TYPE is array (INDEX_TYPE
 range <>) of ITEM_TYPE;
 ... –- Some other declarations
package GEN_PACKAGE is

to be similar to the example in chapter 13.2 of Barnes [2].

3 files were affected.

2.13 Compatibility Checks at Compile-Time
When instantiating a generic, actual and formal array types
must both be constrained or both be unconstrained
(LRM:12.5.3(5)).
In our case the generic parameter was changed from an
unconstrained array to a constrained array, since the
package was only ever instantiated with constrained arrays.

2 files were affected.

2.14 Vendor-Specific System Extension Removed
1) Our Ada 83 compilers provided a "hook" in package
System that could be called from exception handlers to
force output of the call chain.
This is not in the Ada 95 LRM, resulting in an error.

In the short term, the call was commented out.

Subsequently GNAT provided the call chain as part of the
Exception_Information in package Ada.Exceptions. The
GNAT extension GNAT.Traceback.Symbolic was also
used to provide this information symbolically.
There was a problem though that Exception_Information
needed an Exception_Occurrence parameter, the
Exception_Occurrence being a label attached to the
exception handler, which was not backwardly compatible
with Ada 83.
The GNAT extension GNAT.Most_Recent_Exception was
used to provide similar functionality to the Ada 83 vendor
extension.

Although we have tried hard to avoid vendor extensions,
the GNAT extensions in the exception handling area were
regarded as indispensable.

1 file was affected.

3 Subsequent Development
Copies of the GNAT, Aonix and Rational Ada 95
compilers were received for evaluation. Only GNAT could
handle all of our code without failing with internal errors.

118 Transi t ion of a Large Project from Ada 83 to Ada 95

Volume 23, Number 2, June 2002 Ada User Journal

On the rare occasions where we had a problem with
GNAT, an acknowledgement would be received by return
of e-mail. A fix, or an explanation of what we were doing
wrong, would be received within a day or two.

This was a radically different relationship from that which
we had had with our Ada 83 compiler vendors. Previously
it would take from 3 to 6 months to receive an
acknowledgement for a bug report, and if a fix was really
important to us we might get it in the maintenance release
at the end of the following year.

A couple of surprises with GNAT were that numeric
overflow checking and stack overflow checking were not
provided by default, but required compiler switches to
enable them. A compiler switch was also required to
enable dynamic elaboration order checks, static elaboration
order checking was the default but would have required far
too many changes to our legacy code.

Level 2 optimisation was required to obtain code of
comparable efficiency to that which our Ada 83 compilers
had provided by default, and appears to be a de facto
standard amongst GNAT users. The image file sizes were
twice the size of those produced by our Ada 83 compilers
but the sizes resident in memory were similar.

New code had some opportunity to take advantage of the
new features of Ada 95, but these proved to be of only
limited value in practice. The biggest change of Ada 95
was probably the introduction of tagged types for object-
oriented programming. Although our design is quite
object-oriented, tagged types have only found local use,
within the latest release of our infrastructure or middle-
ware.

Our systems are distributed and heterogeneous, with
messages flying back and forth between over a hundred
processors. The message types are realised as the
discriminants of variant records, with representation
clauses being used to enforce a mutual understanding
across all the processors.

Run-time dispatching depending on the tag did initially
look attractive. Unfortunately tags are typically
implemented as the address of a jump table, so their values
do not have meaning on another processor with a different
address space, and cannot be controlled by representation
clauses. Tags can be inter-worked between processors by
converting to and from their "external tag", represented as a
string. This is the method adopted by GLADE (GNAT
Library for Ada Distributed Execution) [3], but the
overhead would have been unacceptable.

Some of the smaller changes have been beneficial for
interfacing. The access parameter mode maps well on to
the pointers of imported c routines, and allows the compiler
to check that the parameter accesses an object of the
expected type, rather than just passing a System.Address.

Modular types allow easier bit manipulation when
interfacing to hardware. Ada 83 on '80s or early '90s
processors in real-time systems almost invariably required
machine code inserts for performance reasons.

4 The future
Our "wish list" for what we would like to see in Ada 0Y is
quite modest:

1) A simple way of triggering the output of a symbolic
call-chain for the most recent exception.

2) We would like to be able to perform
Unchecked_Conversion between any objects of the same
size, even if their types are of different sizes.

3) Sometimes a generic body can meet the contract of its
spec but can only be legally instantiated at library level, not
at a lower level. This is because of the rules on downward
closure for access to subprogram types, to avoid dangling
pointers.
A solution to this is desirable, possibly by adding run-time
accessibility checks for access to subprogram types. This is
being investigated by WG9 under AI95-254.

4) It is a bounded error to invoke a potentially blocking
operation within a protected action. A Program_Error is
only raised if the bounded error is "detected". Currently a
compiler can avoid raising the Program_Error by the
vendor arguing that the bounded error is never detected,
even in the most obvious cases. The concept of detection
needs to be clarified.

5) It would be useful for the private part of a public
package to be able to “with” private siblings. This is being
investigated by WG9 under AI95-262.

References
[1] Bill Taylor (1995), Ada Compatibility Guide, Version

6.0, Transition Technology Limited.

[2] J G P Barnes (1994), Programming in Ada, Fourth
Edition, Addison-Wesley.

[3] Josef Aichorn (2000), Experimental Performance
Analysis of GLADE's Implementation of the
Distributed Ada95 Programming Model, Ada User
Journal, vol 21, no 3.

 119

Ada User Journal Volume 23, Number 2, June 2002

Ada UK 2002 Sponsors
ACT Europe
Contact: Franco Gasperoni

8, Rue de Milan, 75009, Paris, France
Tel: +33-1-49-70-67-16 Fax: +33-1-49-70-05-52
Email: sales@act-europe.fr URL: www.act-europe.fr

Alenia Marconi Systems
Contact: Don Harvey

Eastwood House, Glebe Rd., Chelmsford, Essex, CM1 1QW, UK
Tel: +44-(0)1276-696901 Fax: +44-(0)1276-659842
Email: don.harvey@amsjv.com URL: www.aleniamarconisystems.com

Aonix Europe Ltd
Contact: Neil Michniak

Partridge House, Newtown Rd., Henley on Thames, Oxon, RG9 1HG, UK
Tel: +44-(0)14941-415000 Fax: +44-(0)14941-571866
Email info@aonix.co.uk URL: www.aonix.com

ARTiSAN Software Tools
Contact: Peter Kibble

Stamford House, Regent St., Cheltenham, Glos., GL50 1HN, UK
Tel: +44-(0)1242-229320 Fax: +44-(0)1242-229301
Email: peterk@artisansw.com URL: www.artisansw.com

BAE SYSTEMS
Contact: Paul McCormack

Warwick House, PO Box 87, Farnborough Aerospace Centre, Farnborough, Hants,
GU14 6YU, UK
Email: Paul.McCormack@baesystems.com URL: www.baesystems.com

Data Systems and Solutions
Contact: Dave Woodhall

SEAS Building, Sinfin Lane, Derby, DE24 8BJ, UK
Tel: +44-(0)1332-771700 Fax: +44-(0)1332-770921
Email: info@ds-s.com URL: www.ds-s.com

EDS
Contact: Lee Edwards

Hartley House, 15 Bartley Wood Business Park, Bartley Way, Hook, Hants.,
RG27 9XA, UK
Tel: +44-(0)1256-741122 Fax: +44-(0)1256-741132
Email: swep.sales@eds.com

First Matrix Ltd
Contact: Alan Barker

Old Lion Court, High St,. Marlborough, Wilts., SN8 1HQ., UK
Tel: +44-(0)1672-515510 Fax: +44-(0)1672-515514
Email: arb@ftmx.com

Green Hills Software Ltd
Contact: Jon Williams

Goodsons Mews, Wellington Street, Thame, Oxon, OX9 3BX, UK
Tel: +44-(0)1844-267950 Fax: +44-(0)1844-267955
Email: sales-uk@ghs.com URL: www.ghs.com

IPL Information Processing
Ltd
Contact: Ian Gilchrist

Eveleigh House, Grove St., Bath, BA1 5R., UK
Tel: +44-(0)1225-475114 Fax: +44-(0)1225-444400
Email: ipl@iplbath.com URL: www.iplbath.com

LDRA Ltd
Contact: Jim Kelly

24 Newtown Rd., Newbury, Berks., RG14 7BN, UK
Tel: +44-(0)635-528828 Fax: +44-(0)635-528657
Email: sales@ldra.com URL: www.ldra.com

Objektum
Contact: Derek Russell or Ahmed Amin

Units 2/3 Cranleigh Works, The Common, Cranleigh, GU6 8SB, UK
Tel: +44-(0)1483-278178 Fax: +44-(0)1483-275384
Email: info@objektum.com URL: www.objektum.com

Praxis Critical Systems Ltd
Contact: Peter Amey

20 Manvers St., Bath, BA1 1PX, UK
Tel: +44-(0)1225-469991 Fax: +44-(0)1225-469006
Email: sparkinfo@praxis-cs.co.uk URL: www.praxis-cs.co.uk

Rational Software Ltd
Contact: Roger Bowser

Kingswood, Kings Ride, Ascot, Berks., SL5 8AJ, UK
Tel: +44-(0)1344-295000 Fax: +44-(0)1344-295001
Email: info@rational.com URL: www.rational.com

John Robinson & Associates
Contact: John Robinson

2 Currer St., Oakenshaw, Bradford, W. Yorks., BD12 7DP, UK
Tel: +44-(0)1274-691935 Fax: +44-(0)8700-558750
Email: John@jr-and-assoc.demon.co.uk URL: www.jr-and-assoc.demon.co.uk

Telelogic UK Ltd
Contact:

Chancery House, 8 Edward St., Birmingham, B1 2RX, UK
Tel: +44-(0)121-2346600 Fax: +44-(0)121-2346611
Email: info@telelogic.com URL: www.telelogic.com

TNI Europe Ltd
Contact: Tony Elliston

58a Mill St., Congleton, Cheshire, CW12 1AG, UK
Tel: +44-(0)1260-291449 Fax: +44-(0)1260-291449
Email: info@tni-europe.com URL: www.tni-europe.com

Wind River Systems UK Ltd
Contact: David Bew

Unit 5 & 6, 1st Floor, Ashted Lock Way, Aston Science Park, Birmingham,
B7 4AZ, UK
Tel: +44-(0)121-3590999 Fax: +44-(0)121-3804444
Email: inquiries-uk@windriver.com URL: www.windriver.com

	Contents
	Editorial
	News
	Conference Calendar
	Call for APIs
	Some Impressions from IRTAW 11
	Using Ada's Syntax and Semantics forUnderstandable Systems Engineering
	Real-time Programming Safety inJava and Ada
	Transition of a Large Project fromAda 83 to Ada 95

