

Ada User Journal Volume 26, Number 2, June 2005

ADA
USER
JOURNAL

Volume 26
Number 2
June 2005

Contents
Page

Editorial Policy for Ada User Journal 66

Editorial 67

News 69

Conference Calendar 93

Forthcoming Events 101

Articles
 John Barnes

“Rationale for Ada 2005: 2 Access Types” 104
 John Barnes

“Rationale for Ada 2005: 3 Structure and Visibility” 120
 Muthu Ramachandran

“Ada Reuse Guidelines” 135

Ada-Europe 2005 Sponsors 144

Ada-Europe Associate Members (National Ada Organizations) Inside Back Cover

66

Volume 26, Number 2, June 2005 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal – The Journal for the
international Ada Community – is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the first of the
month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 67

Ada User Journal Volume 26, Number 2, June 2005

Editorial

As our readership know, June is a very busy month for Ada. Every June in fact for over two decades now sees the celebration
of the Ada-Europe annual conference, which important meetings are often attached to. This year, an important meeting of the
WG9, the ISO body in charge of the maintenance of the Ada language standard, was convened to decide among other
subjects on the vernacular name to be given to the new revision of the language. This decision was of course less technically
momentous than the approval of the wealth of features that the revision process had defined, yet it was felt as genuinely
important by lots of people, especially those who linger outside the revision process itself. Since it is our great pleasure and
honour to host in this journal since issue 25-4 the advance version of the Rationale for the revised language standard, we
withheld the closing of this particular issue until we would hear final word from WG9 about the “official” vernacular name of
the language, so that we would align to it. WG9 have spoken and deliberated that the vernacular name be “Ada 2005”. So
please go and use and spread this name, since the meaning it aims to convey is that the language revision will definitely be
technically complete within the year 2005. Which is a jolly good news, I’d say.

This issue is especially rich. First and foremost, it carries two successive instalments of the Rationale for Ada 2005 edited by
John Barnes: one illustrates the very important improvements made by the revision process on the access types; the other
discusses the various improvements operated in the areas of program structure and visibility control. Lots of good stuff to
read and educate oneself about! Then we are pleased to host a paper by Muthu Ramachandran, from the Leeds Metropolitan
University, which illustrates a development that facilitates the production of reusable Ada components. The rest of the issue
contains the usual wealth of Ada-related news and of significant conference events worldwide. It is often the case that some
threads captured by the News section discuss the health of Ada as seen from various angles. From the editor’s standpoint, I
can most definitely assure you that Ada is more alive and kicking than ever. So long live Ada, especially now that it has to
compete in open field with very powerful contenders without (at long last if I am allowed to say!) the very important financial
backup that accompanied it until 1995. And of course enjoy the reading.

Tullio Vardanega
Padova

June 2005
Email: tullio.vardanega@math.unipd.it

 69

Ada User Journal Volume 26, Number 2, June 2005

News
Santiago Urueña
Technical University of Madrid. Email: suruena@datsi.fi.upm.es

Contents

Ada-related Events 69
Ada-related Organizations 71
Ada-related Tools 72
Ada-related Products 77
Ada and GNU/Linux 81
References to Publications 82
Ada Inside 83
Ada in Context 85

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
-- su]

Apr 11 - Ada-Belgium
General Assembly
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Subject: Ada Web Services & Eclipse Plug-

in, Mon 11 Apr 20:00, Ada-Belgium
Date: 6 Apr 2005 22:35:35
Organization: Ada-Belgium, c/o Dept. of

Computer Science, K.U.Leuven
Ada-Belgium will hold its 12th annual
General Assembly on Monday, April 11,
2005, at the U.L.B., Department of
Computer Science, Boulevard du
Triomphe / Triomflaan, B-1050 Brussels,
at 19:00. The official convocation is
distributed separately to members and is
also available on the Ada-Belgium web-
server.
There will be refreshments and pizza for
Ada-Belgium members at 18:15. Please
notify us if you are a current or new
member and intend to participate at this
informal "pre-meeting".
At 20:00 the General Assembly will be
followed by a short product
announcement of an "Eclipse plug-in for
Ada (ObjectAda or GNAT)", by Patricia
Langle from Aonix France, and at 20:15
by a technical presentation on "Web-
enabling Ada Applications with AWS",
by Jean-Pierre Rosen from AdaLog,
France.
Everyone interested is welcome: you don't
have to be a member to attend.
20:00-20:15 - Eclipse plug-in for Ada
(ObjectAda or GNAT)

Abstract
The Eclipse platform is a generic and
open architecture for building integrated
development environments (IDEs).
Written in Java and available on a wide
range of OS, it permits to manage user's
workspace, providing navigation view,
text editor, outline view, ... It's built on
mechanisms for discovering, integrating,
and running modules called plug-ins. A
tool provider integrates tools in Eclipse by
writing separate plug-ins that operate on
files in the workspace.
The Eclipse platform, by itself is not
dedicated to any language. The Java
Development Tooling (JDT) is a set of
plug-ins which add Java program
development capabilities to the Platform.
A C Development Tooling (CDT) does
the same for C program development.
Aonix is working today on an ADT (Ada
Development Tooling) that will permit
Ada developers to access that full-
featured IDE.
Speaker
Patricia Langle, South Europe Presales
Manager, Aonix France
More information
See the press release at
http://www.aonix.com/pr_07.26.04.html
and the article in ADT Magazine at
http://www.adtmag.com/article.asp?id=95
83.
20:15-21:45 - Web-enabling Ada
Applications with AWS
Abstract
This presentation describes AWS, the Ada
Web Server, and how to use it for the
development of web applications. It
describes the principles of AWS, from the
most basic functionalities to the more
advanced ones (Authentication, SOAP
interface, session management, hot plugs,
multi-server applications, etc.) The talk
emphasizes practical usage of AWS, and
presents design patterns that have proved
effective for developing existing
applications. It compares the development
process with AWS to other techniques.
The presentation provides attendees with
the information needed to assess whether
AWS is appropriate to their needs, and the
necessary knowledge to start writing full-
scale Web applications. Attendees should
have some knowledge of Ada
programming. No previous knowledge of
Web programming or HTML is required.
AWS is a free (GMGPL) software
component written by Pascal Obry and
Dmitriy Anisimkov that allows

developing Web applications in Ada.
Unlike other methods that require a
dedicated server (like Apache), AWS
provides services to develop applications
that act as autonomous Web servers,
using the Ada language for the semantic
part of the application instead of scripting
languages like Perl or Python. This allows
AWS to be used for regular Web servers
as well as for writing applications that
offer a Web interface to control more
traditional processing functions. AWS is a
mature product that has been used in
many professional applications.
Speaker
J-P. Rosen graduated from ENST (Ecole
Nationale Supérieure des
Télécommunications) in 1975, and
obtained PhD in 1986. He started as a
software engineer at the computing centre
of ENST. After a Sabbatical at New York
University on the Ada/ED Project, he
worked as Professor at ENST, where he
was responsible for the teaching of
Operating Systems, Software
Engineering, Compilation and Ada. He
created ENST's master's degree in
Software Engineering. He has now
formed Adalog, a company specialized in
high level training, consultancy, and
software development in the fields of
Ada, OOD, and associated technologies.
J-P. Rosen has written "HOOD: an
Industrial Approach for Software
Design", the tutorial book for the HOOD
4 method. This was undertaken on behalf
and under control of the HOOD User
Group. This book is currently the only
official tutorial book for the HOOD
method; details can be obtained from
http://www.adalog.fr/hoodbook.htm Other
book publications by J-P. Rosen include
the translation in French of Booch's
"Software Engineering with Ada", and a
book called "Méthodes de Génie Logiciel
avec Ada 95" (Software Engineering
Methods with Ada 95). He can be reached
via email at rosen at adalog.fr
More information
AWS, a complete Web development
framework, is available on the Libre Site
for Free Software Developers at
http://libre.adacore.com/aws/
Participation
Everyone interested is welcome at either
or both parts of this meeting. As usual, the
event is free and presentations are in
English.
If you plan to attend the General
Assembly or the technical presentation,

70 Ada-related Events

Volume 26, Number 2, June 2005 Ada User Journal

we would appreciate it if you could
inform us by e-mail at the address below
(please also specify if you intend to
participate at the informal "pre-meeting").
Although no formal registration is
required, this helps our preparations.
For more information and directions see
the web page mentioned above.
Looking forward to meet many of you in
Brussels!
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Date: 16 Apr 2005 13:26:47
Organization: Ada-Belgium, c/o Dept. of

Computer Science, K.U.Leuven
Subject: Ada-Belgium updates: Ada Web

Services, Eclipse Plug-in, Ada 2005
The Ada-Belgium evening event earlier
this week featured a short product
announcement of an "Eclipse plug-in for
Ada (ObjectAda or GNAT)", by Patricia
Langle from Aonix France, and a
technical presentation on "Web-enabling
Ada Applications with AWS", by Jean-
Pierre Rosen from Adalog, France.
We are pleased to announce that the slides
of these presentations are now available
on-line on the Ada-Belgium web pages.
Finally, a long overdue update. A special
"Ada 2005 Panel" was organized at the
SIGAda'2004 conference in Atlanta.
Several members of the ISO Ada
Rapporteur Group presented a number of
mini-briefings on the improvements that
were already approved for inclusion in the
Ada 2005 Amendment. By agreement
with the ARG chairman, and as follow-up
of his previous presentations at Ada-
Belgium and Ada-Europe events, the
slides of those mini-briefings are now
available on-line on our site as well.
For easy access, check out "What's new
on the Ada-Belgium web-pages?" at URL
<http://www.cs.kuleuven.ac.be/~dirk/ada-
belgium/whatsnew.html> if you're
interested.

Apr 25 - XIII Technical Day
of Ada-Spain
From: José Javier Gutiérrez

<gutierjj@unican.es>
Date: Wed, 15 Jun 2005 13:52:24
Organization: Ada-Spain
Subject: Meeting Report of the XIII

Technical Day of Ada-Spain
The Technical Day of Ada-Spain is a
yearly meeting devoted to presenting and
discussing the results of research and
development projects related to the Ada
language and reliable software
technologies.
This year, the meeting was held on April
25th at the Telecommunications
Engineering School of the Technical
University of Madrid, and it consisted of
two invited talks and seven technical
presentations.

The invited talks were:
* Moving Forward with Ada 2005 - New
Real-Time Features and other Goodies, by
Alan Burns, from the Real-Time Systems
Research Group, Department of
Computer Science, University of York
(UK), and member of the ARG (Ada
Rapporteur Group) of the standardization
committee ISO/IEC JTC1/SC22/WG9.
Alan gave a very interesting talk that
revealed the current state of the new real-
time services being added to the Ada
language. The audience was pleased to
hear that many services have been
approved for the new standard, including
the Ravenscar profile, execution time
budgeting, timing events, dynamic
priority ceilings, and new scheduling
policies (round robin, EDF, non-
preemptive) that can be used by
themselves or in a mixed fashion.
* Current State of the Ada 2005
Implementation in Gnat, by Javier
Miranda, from the Instituto Universitario
de Microelectrónica Aplicada, University
of Las Palmas de Gran Canaria, and
member of the Gnat development team.
Javier collaborates with AdaCore, one of
the main developers of Ada compilers, in
the implementation of the changes being
introduced for the new version of the
language. He gave a clear view of these
changes and their implementation state
and plans. The audience was very
interested in particular with the important
changes related to the object-oriented
features. As these changes are
implemented, they will be made available
to interested users under the GNAT
Academic Program.
The technical programme had the
following presentations:
* "Integration of application schedulers
with the new scheduling policies defined
for Ada tasks", by Mario Aldea, from the
University of Cantabria
* "Efficient techniques for reducing
context switches in the implementation of
real-time schedulers", by Sergio Sáez,
from the Technical University of Valencia
* "ORK and Ada 2005", by Juan Antonio
de la Puente, from the Technical
University of Madrid
* "Interchangeable scheduling policies in
RT-GLADE", by Juan López Campos,
from the University of Cantabria
* "Distributing Criticality Across Ada
Partitions", by Miguel Masmano, from the
Technical University of Valencia
* "Ada and GNAT for high-integrity
systems", by José Ruiz, from AdaCore,
Paris
* "GNAT Academic Program", by Louise
Arkwright, from AdaCore, Paris
Right after the finalization of the
Technical Day, the General Assembly of
Ada-Spain was celebrated. During the

assembly, the winners of the yearly Ada-
Spain Award to the best academic project
developed in Ada were announced. This
year, the project awarded with the first
prize was entitled "Distribution, Real-
Time and Ada" and was authored by Juan
López Campos from the University of
Cantabria. The second prize was awarded
to the project "Robot force control: design
of an experimental platform and
comparative analysis of different
techniques changing the sampling rate",
authored by Ángel Llosá Guillén from the
Technical University of Valencia.
 [Cf. the "Call for Contributions" of the
XIII Technical Day of Ada-Spain in AUJ
26-1 (Mar 2005), p.29. -- su]

Jun 20-24 - Ada-Europe
2005 Conference
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Date: 12 Jun 2005 12:11:23
Subject: Press Release - Reliable Software

Technologies, Ada-Europe 2005
Organization: Ada-Europe, c/o Dept. of

Computer Science, K.U.Leuven
Final Call for Participation - UPDATED
Program Summary
10th International Conference on Reliable
Software Technologies - Ada-Europe
2005 20 - 24 June 2005, York, UK
http://www.ada-europe.org/conference
2005.html
Full Program available on conference web
site - Check out the tutorial program! -
Printed proceedings available.
Press release
Conference on Reliable Software
Technologies in York
York, UK (12 June 2005 12:00) - The
University of York, sponsored by Ada-
Europe and in cooperation with ACM's
Special Interest Group in Ada, organizes
this year the "10th International
Conference on Reliable Software
Technologies - Ada-Europe 2005" from
20 to 24 June in York.
The conference offers nine tutorials,
including a look at Ada 2005, a full
technical program of refereed papers, a
collection of industrial presentations
reflecting current practice and challenges,
three eminent invited speakers, an
exhibition, and a social program.
The 9 excellent tutorials cover a broad
range of topics, including: developing
web-aware applications in Ada,
correctness by construction, real-time
Java, architecture analysis and design,
Ravenscar and SPARK, containers in Ada
2005, software fault tolerance,
requirements engineering for dependable
Systems, and a half day tutorial (at a
reduced rate) on the new features of Ada
2005, presented by four of its designers:

Ada-related Organizat ions 71

Ada User Journal Volume 26, Number 2, June 2005

John Barnes, Alan Burns, Pascal Leroy
and Tucker Taft.
Technical Program. 21 fully refereed and
carefully selected papers on the latest
research on Ada-related issues, including
new tools, applications and industrial
practice and experience. A collection of
10 industrial presentations reflecting
current practice and challenges. Springer
Verlag publishes the proceedings of the
conference, as LNCS Vol. 3555.
Keynote Speakers. John McDermid
discusses model-based development of
safety-critical software. Martyn Thomas
presents "Extreme Hubris" in which the
principles of Extreme Programming are
examined and shown to be misguided and
dangerous, and in which an alternative
Manifesto for Reliable Software is
proposed. Bev Littlewood talks about
assessing the dependability of software-
based systems.
The exhibition opens in the mid-morning
break on Tuesday and runs continuously
until the end of the afternoon break on
Thursday. The exhibitors include the
following vendors: AdaCore, Aonix,
ARTiSAN Software, Esterel
Technologies, Green Hills Software, I-
Logix, LDRA Software Technology,
PolySpace Technologies, Praxis High
Integrity Systems, Silver Software, TNI
Europe.
York is a beautiful and historical (small)
city in the north of the UK. It has a first
class university with one of the best
Computer Science departments in the
world. The Department has been involved
with the development of programming
languages for a number of years (indeed it
ran the first series of technical meetings
on Ada in the 1970s). It is pleased to host
this meeting on reliable software
technology.
York can be reached easily by train from
London (approximately 2.3 hours),
Manchester airport (2 hours),
Leeds/Bradford Airport (1 hour). The
conference is held at the Royal York
Hotel which is adjacent to the York train
station a few minutes from the centre of
York and the Minster (Cathedral).
The conference's social program includes
a wine and buffet reception on Tuesday
evening at Bedern Hall, a 14th century
hall which was used as a refectory of the
vicars of York Minster, and the
conference banquet on Wednesday
evening at the National Railway Museum.
This York-based Museum is the largest
railway museum in the world, responsible
for the conservation and interpretation of
the British national collection of
historically significant railway vehicles
and other artifacts. The Museum contains
an unrivalled collection of locomotives,
rolling stock, railway equipment,
documents and records.
Latest updates:

- The full "Advance Program" is available
on the conference web site
<http://www.ada-europe.org/
conference2005.html> and directly at
<http://www.cs.york.ac.uk/rts/adaeurope/
advprogram.pdf> (pdf, 1.7M).
- Check out the 9 tutorials in the advance
program and at
<http://www.cs.york.ac.uk/rts/adaeurope/t
utorials.html>.
- The proceedings, published by Springer
Verlag as Lecture Notes in Computer
Science Vol. 3555, are ready and will be
distributed at the conference. More info is
available at
<http://www.springeronline.com/3-540-
26286-5>.
Abstracts can be checked out at
<http://springerlink.metapress.com/link.as
p?id=xpm9f7atnwaw>
[…]
- For the latest information consult the
conference web site. <http://www.ada-
europe.org/conference2005.html>
[Cf. same topic in AUJ 26-1 (Mar 2005),
p.5. -- su]

Ada-related
Organizations
PolySpace Technologies
Joins the ARA
URL: http://www.adaic.org/news/polyspc.

html
Specialist in Embedded Analysis Tools
Looks for "Unique Platform" in ARA
BELMONT, Mass. [April 21, 2005] - The
Ada Resource Association (ARA)
announced today the addition of a new
member, PolySpace Technologies.
Headquartered in Woburn, Mass., and
maintaining over a dozen international
offices and distributors, PolySpace
specializes in tools that statically analyze
the internal dynamics of embedded
applications.
"The ARA is pleased to welcome
PolySpace as a new member," said Ben
Brosgol, ARA President. "One of our
goals is to have Ada widely understood as
the best choice for high-reliability
applications. PolySpace is a well-known
provider of static analysis tools in this
domain, and their joining the ARA will
help us get our message across."
PolySpace, Inc., President Chris Hote
explained his decision to join the ARA:
"The ARA offers a unique platform
through which to support the ongoing
development of the Ada standard, to help
shape the Ada market, and to contribute to
the Ada community," he said. "We want
to be part of the future of Ada, and know
we can do that best through the ARA."

PolySpace Technologies provides a
variety of bug-detection products that
help increase software development
productivity and quality. Its static analysis
tools have been chosen by more than 250
customers from the defense, airborne,
space, automotive, ground transportation,
and medical devices industries.
The Ada Resource Association
(http://www.adaresource.com) is an
international trade group comprising the
principal vendors of Ada-related
technology. The ARA promotes and
publicizes Ada technology usage
(http://www.adaic.org), and sponsors the
ongoing development and maintenance of
the Ada language standard and associated
infrastructure.
The ARA's current members are
AdaCore, Aonix, IBM Rational,
Polyspace Technologies, Praxis Critical
Systems, and SofCheck.

ARA Survey Launched
URL: http://www.adaic.org/news/survey-

05.html
Ada Trade Group to Present Data at Ada
Europe 2005
BELMONT, Mass. [May 3, 2005] - The
Ada Resource Association (ARA), an
international trade group comprising key
vendors of Ada development
environments and tools, today announced
the availability of an on-line survey of
Ada language usage. The survey is
designed to quantify the global Ada
software market.
Ben Brosgol, ARA president, encourages
Ada developers to complete the survey.
He addressed the community's possible
concerns over privacy. "Data will be
reported in aggregate and not associated
with specific users who fill out the
survey," Brosgol said. "The ARA member
companies will not have access to any
individual surveys."
The survey asks about individual Ada
projects: their number of lines of Ada and
other computer programming languages,
whether they are in development or being
fielded, and how they will be used. The
results of the survey will be presented at
Ada Europe this June in York, England,
and subsequently published on the Ada
News website.
The ARA members, Ada software
engineers, and Ada users are all interested
in seeing a "big picture" of the Ada
market, according to Brosgol. "People I've
met at conferences have been asking for
this for years," he said. "The ARA survey
should help answer some of their
questions."
The Ada Resource Association promotes
and publicizes Ada technology usage
through the Ada News website, and
sponsors the ongoing development and

72 Ada-related Tools

Volume 26, Number 2, June 2005 Ada User Journal

maintenance of the Ada language
standard and associated infrastructure.
The ARA's current members are
AdaCore, Aonix, IBM Rational,
Polyspace Technologies, Praxis Critical
Systems, and SofCheck.

Ada Semantic Interface
Specification (ASIS)
ASIS for GCC 4.0
From: Martin Krischik

<martin@krischik.com>
Date: Fri, 04 Feb 2005 11:23:43
Subject: ASIS for gcc 4.0.0 20050203

released
Newsgroups: comp.lang.ada
I have prepared an ASIS release.
This time I had a try with 4.0.0 - HEAD
release - but remember that the source
release contains the needed files for gnat-
3.4.0, gnat-3.4.1, gnat-3.4.3, gnat-3.4.4,
gnat-3.5.0 and gnat-4.0.0 - so the version
number is only important for the binary
releases.
Binary releases are available for SuSE
Linux9.2i686 and Linuxx86_64.
For convenience AdaBrowse 1.02 and the
semtools 1.3 are included in both binary
and the source releases.
See http://gnat-asis.sourceforge.net for
details.
From: Martin Krischik

<martin@krischik.com>
Date: Mon, 07 Feb 2005 16:25:58
Subject: ASIS for GNAT homepage updated
Newsgroups: comp.lang.ada
I have updated the ASIS for GNAT
homepage:
http://gnat-asis.sourceforge.net
I hope the installation procedure is now
easier to understand.
[Cf. "ASIS for GNAT: New Project and
First Versions" in AUJ 25-2 (Jun 2004),
p.56. -- su]

ASIS for MinGW
From: Fionn mac Cuimhaill
Date: Sat, 12 Feb 2005 04:08:14 GMT
Subject: ASIS for MinGW GNAT
Newsgroups: comp.lang.ada
Has anybody successfully installed Martin
Krischik's ASIS for use by the latest
MinGW GNAT (3.4.2)?
I presume that this is a non-trivial project.
Otherwise, it could reasonable expected to
be already be a part of MinGW.
Also, could somebody explain why ASIS
is so sensitive to compiler versions?
From: Stephen Leake

<stephen_leake@acm.org>
Date: 12 Feb 2005 03:58:25 -0500
Subject: Re: ASIS for MinGW GNAT

Newsgroups: comp.lang.ada
Strictly speaking, "ASIS" is a standard
that doesn't change (well, it changes when
the Ada standard changes). What is
sensitive to compiler versions is the
application library commonly called
"ASIS-for-GNAT", which implements
ASIS for the GNAT compiler.
In short, ASIS works by querying the
compiler's internal data structures. In the
case of GNAT (and probably most
compilers), those data structures change (I
hope only slightly !) for each release of
the compiler.
The input to ASIS-for-GNAT is the "tree"
file dumped by the compiler. That tree file
is a serialization of the compiler's internal
data structures. Since the data structures
change, the format of the tree file
changes, and ASIS-for-GNAT must
change.
From: Fionn mac Cuimhaill
Date: Sat, 12 Feb 2005 18:05:43 GMT
Subject: Re: ASIS for MinGW GNAT
Newsgroups: comp.lang.ada
Martin Krischik wrote:
> Fionn mac Cuimhaill wrote:
>> I presume that this is a non-trivial

project. Otherwise, it could reasonable
expected to be already be a part of
MinGW.

> I am unsure if the MinGW maintainers
are interested in ASIS. However, if you
are successful I make you a maintainer
and you can make binary releases at
sourceforge

It turned out to be simpler than I
expected. I built ASIS on my Windows
XP development computer.
I downloaded the MinGW Ada source,
(which is v 3.4.2,) and your newest ASIS.
After extracting both, I found that ASIS
already had the relevant parts of the
GNAT Ada compiler extracted into
various subdirectories, one for each of
several versions of the compiler. 3.4.2
was missing. I created the appropriate
subdirectory, and, using one of the other
directories as a model, I copied all of the
appropriate GNAT source files into the
ASIS 3.4.2 subdirectory . [...]

SPARK Training
[This information is included as examples
of public Ada training courses: many are
being organized regularly. For more, see
also pointers in several previous AUJ
issues. -- su]
URL: http://www.praxis-his.com/sparkada/

training.asp
March 2005 - New dates for public
SPARK courses
Dates for the next public Black Belt and
UML to SPARK courses are available on
the training page

Public Course Dates for 2005 - UK
Course 1 - "Software Engineering with
SPARK" - 12th-15th September 2005, to
be held at our offices in Bath.
The UML and RavenSPARK courses will
be running on the day after this SPARK
course. Both courses may be taken
together in the same week.
Course 2 - "Black-Belt SPARK"
20th-22nd September 2005, to be held at
our offices in Bath.
Course 3 - "High-Integrity Concurrent
Software Design with RavenSPARK"
16th September 2005, to be held at our
offices in Bath.
Note that this course directly follows
Course 1 above. Both courses may be
taken together in the same week.
Course 4 - "UML to SPARK" - Course
Flyer (PDF).
16th September 2005, to be held at our
offices in Bath.
Note that this course directly follows
Course 1 above. Both courses may be
taken together in the same week.
Courses in the USA
Praxis Critical Systems can run training
courses at a customer's facilities as
required. Training in the USA is also
available from our partner company
Pyrrhus Software.

Ada-related Tools
Most Up to Date AI302
Implementation
From: Alex R. Mosteo

<alejandro@mosteo.com>
Date: Wed, 16 Feb 2005 18:50:10
Subject: Most up to date AI302

implementation?
Newsgroups: comp.lang.ada
Hello, I'm trying to get the subject thing
and I'm a bit confused. At
charles.tigris.org I'm directed to Mr
Heaney website. There's a zip file almost
a year old.
Files inside are named ai302.blah... but I
detect some differences with the ones
used in, for example, AWS, which I have
around.
In AWS:
AI302.Indefinite_Hashed_Maps;
In Heaney's website:
AI302.Hashed_Indefinite_Maps;
Finally, in the CVS of tigris I see the files
have the name:
Ada.Containers.Indefinite_Hashed_Maps;
So I'm a bit puzzled. My first intention
was to use the zip at Mr Heaney site, but
now I don't know.

Ada-related Products 73

Ada User Journal Volume 26, Number 2, June 2005

Or maybe the best option is to export the
CVS version?
From: Matthew Heaney

<mheaney@on2.com>
Date: 16 Feb 2005 09:54:54 -0800
Subject: Re: Most up to date AI302

implementation?
Newsgroups: comp.lang.ada
The latest version is always here:
http://charles.tigris.org/source/browse/cha
rles/src/ai302/
This is a CVS repository, so I recommend
using your favourite front end to get the
latest sources.
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Thu, 17 Feb 2005 17:26:18
Subject: Re: Most up to date AI302

implementation?
Newsgroups: comp.lang.ada
Preben Randhol wrote:
> Which would you recommend one use

AI302 or charles? How is the status of
AI302? Keep up the excellent work

AI302 - is going forward for approval to
WG9 for Ada 2005. If you have an Ada
2005 compiler, then uses Matt's version at
http://charles.tigris.org/
If you have a plain old Ada 95, then there
is an upward compatible version at
http://www.martin.dowie.btinternet.co.uk/

Simple Components
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 21 Feb 2005 21:22:41
Subject: Simple components v 1.9
Newsgroups: comp.lang.ada
Version 1.9 is here:
http://www.dmitry-kazakov.de/ada/
components.htm
1. Minor changes made in Generic_Set to
support handling classes of equivalence;
2. A minor bug fix in the Ada expression
parser example;
3. Changes in the documentation.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 16 Apr 2005 18:29:52
Subject: Simple components v 1.10
Newsgroups: comp.lang.ada
The new version is here:
http://www.dmitry-kazakov.de/ada/
components.htm
Changes:
Support for implied infix operators as in
2x + 3y;
Get_Text procedure is added to help
creation of simple recursively descending
parsers;
Ada expression parser bug fix (in numeric
literals parsing).
[Cf. same topic in AUJ 26-1 (Mar 2005),
pp.9-10. -- su]

Strings Edit
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 13 Mar 2005 20:45:04
Subject: Strings edit for Ada, UTF-8

support.
Newsgroups: comp.lang.ada
The new 1.6 version of the library
provides:
1. Generic UTF-8 support;
2. Conversions between Ada and UTF-8
strings;
3. Sub- and superscript integer I/O in
UTF-8.
http://www.dmitry-kazakov.de/ada/
strings_edit.htm

Booch Components
From: Simon Wright

<simon@pushface.org>
Date: 21 Apr 2005 20:48:07
Subject: Booch Components move, new

release
Newsgroups: comp.lang.ada
The Booch Components have moved to
SourceForge,
<http://booch95.sourceforge.net/>.
The new 20050420 release has the
following (fairly minor) features:
Interface changes
 BC.Containers.Trees.AVL supports
Container iteration.
 BC.Containers.Trees.Multiway.Append
reworked.
A new package
BC.Support.Synchronization.Debug
reports the use of semaphores and
monitors.
Implementation changes
The support hash table packages on which
Bags, Maps and Sets rely used default
subprogram parameters, which would fail
if compiled in the presence of (for
example) an enumeration type named
Location.
BC.Support.High_Resolution_Time now
includes support for PowerPC G4 (e.g.,
Apple PowerBook).
[Cf. same topic in AUJ 25-1 (Mar 2004),
p.7. -- su]

AdaControl
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Wed, 13 Apr 2005 16:26:31
Organization: Adalog
Subject: AdaRC: the Ada Rule Checker
Newsgroups: comp.lang.ada
Adalog is pleased to announce the
availability of AdaRC, a tool that checks
style and programming rules in Ada
programs.
But AdaRC is more than a set of rules: it
is a complete framework, intended to be

easily extensible. If your favorite rule is
not here, you can add it yourself! And of
course, we intend to extend the number of
rules in the future.
The development of AdaRC was funded
by Eurocontrol. It is a mature tool that has
been used to check Eurocontrol's Ada
software, over 1_100_000 SLOCs.
For a complete description of AdaRC, and
download, please go to Adalog's
components page at
http://www.adalog.fr/compo2.htm
AdaRC is distributed under the GMGPL:
you are free to use it for any purpose, or
to reuse any part of it in any free or
proprietary software.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Wed, 13 Apr 2005 18:20:29
Organization: Adalog
Subject: AdaRC: the Ada Rule Checker
Newsgroups: comp.lang.ada
> Is it related to the tool of the same name

made by RainCode?
Not at all, and if it is the same name, this
is unfortunate.
It seems from their web site that
Raincode's is called Ada Checker. If you
are sure that their product is called adarc,
let me know and I'll change the name.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Fri, 15 Apr 2005 11:25:18
Organization: Adalog
Subject: AdaRC renamed to AdaControl
Newsgroups: comp.lang.ada
Due to the clash in names with the tool
provided by RainCode, I changed the
name of the program to AdaControl
(adactl for the command name).
BTW, it is a reminder that it has been
developed by Adalog and Eurocontrol :-)
Please discard any version that you have
downloaded, and get the fresh one from
http://www.adalog.fr/compo2.htm
Sorry for the inconvenience.

GCC 4.0
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Sat, 23 Apr 2005 12:53:07
Subject: gcc 4.0.0 released
Newsgroups: comp.lang.ada
gcc 4.0.0 has been released and here the
good news for Ada users:
=== ACATS support ===
Generating support files... done.
Compiling support files... done.
=== ACATS tests ===
Running chapter a ...
Running chapter c2 ...
[…]
Running chapter c9 ...
Running chapter ca ...
[---]

74 Ada-related Tools

Volume 26, Number 2, June 2005 Ada User Journal

Running chapter ce ...
Running chapter CVS ...
Running chapter cxa ...
[…]
Running chapter cxh ...
Running chapter cz ...
Running chapter d ...
Running chapter e ...
Running chapter gcc ...
Running chapter l ...
=== ACATS Summary ===
of expected passes 2320
of unexpected failures 0
From: Jeff C <jcreem@yahoo.com>
Date: Sat, 23 Apr 2005 16:43:46 -0400
Subject: Re: gcc 4.0.0 released
Newsgroups: comp.lang.ada
Steve wrote:
> Now if there were just pre-built binaries

for various platforms at a nice central
place... kind of like the old AdaCore
public distributions.

While I agree it would be nice, things are
starting to settle down. Ada is now
included in the distribution media of most
of the major Linux distributions...
Solaris (sparc at least) users can visit
blastwave.org which has prebuilt gcc's
that include Ada support.
Windows users can go the mingw.org
route..
In some ways this is not as nice as the old
public GNAT releases (one stop Ada
shopping). The biggest problem for
Windows users has been the lack of a
good gdb that worked with modern Ada
and mingw.
There were slightly painful ways around it
but things are getting better.
Maybe all we need is a nice index/wiki
write-up with links for each of the
recommended solutions.

Mathpaqs
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Thu, 03 Feb 2005 22:20:58
Subject: mathpaqs re(up)loaded
Newsgroups: comp.lang.ada
Just a word to announce a severe dust-
removing of my freeware Ada math
toolbox (contains: algebra, matrices,
probabilities, ODEs, PDEs, finite
elements, fractals, multi-precision
integers, ...). Description below.
http://www.mysunrise.ch/users/gdm/gsoft
.htm#mathpaqs
(A) Mathematical, 100% portable,
packages in Ada.
If you see "Ada 83" it also naturally
compiles on Ada (95+) compilers. The list
of packages below is sorted by topics.
Each topic has a subdirectory. Of course
there are interactions, like between Multi-

precision numbers and Algebra
(Euclidean_Ring_Tools).
>> Algebra <<
Euclidean_Ring_Tools: Generic package:
given a type with the properties of an
euclidean ring (like integers or
polynomials, with 0,1,+,* and integral
division), it gives the Greatest Common
Divisor and the Bezout factors.
Frac: Generic package: given a type with
the properties of a ring, it gives the
fractions of it, with operators.
Frac.Order: Supplement of generic
package 'Frac': provides an order relation
from one of the ring
Frac_Euclid: Generic package: given a
type with the properties of an *Euclidean*
ring (with division), it gives the fractions
field of it, with operators *and* reduction.
Frac_Euclid.Order: Supplement of
generic package 'Frac_Euclid': provides
an order relation from one of the ring
Polynomials: Generic package, creates
polynomials on a field.
 >Float_Polynomials: = Polynomials(
float, 0.0,1.0, "-",...);
 >Rationals.Polynomials: = Polynomials(
rational, frac_0, frac_1, "-",...);
Rationals: Package for manipulation of
rational numbers. = Frac_Euclid(integer,
0,1, "-","+","-","*","/");
 >Rationals_Order: = Rationals.Order
("<");
>> Numerics <<
G_Matrices: Generic simple matrix
package, with matrix-matrix, matrix-
vector, vector operations
G_FEK: Parts of the Finite Element
Kernel from M. Bercovier (original in
Fortran);
Computes values and derivatives of
elementary functions given the element's
geometry.
Available so far:
1D: L2 (linear)
2D: Q4 (linear), Q9 (quadratic)
3D: B27 (quadratic)
Generic -> can be instantiated for any
precision!
ConjGrad: Fast (Bi)Conjugate Gradient
iterative methods for solving Ax=b.
Generic -> applies to the matrix storage of
your choice (e.g. sparse) !
>> Multi-precision integers <<
Multi_precision_integers: Multiple
precision integers package
Pure Ada 83 (compiles on both DEC Ada
and GNAT)
Multi_precision_integers_IO: Text_IO,
for multi-precision integers
**>> (Pseudo-) Random number
generation <<**

Box_Muller: Pseudo-random number
generation with normal distribution, by
the Box-Muller method
F_Random: Simple random generator
package
(Pure Ada [.adb] and DEC/Compaq/HP
[.dec] Ada 83 bodies)
Finite_distributed_random: random
generation on any discrete, finite, type
U_Rand: Standalone random generator
(Pure Ada 83)
>> Sparse matrices <<
Sparse: Sparse matrix package (Pure Ada
83); uses SparseB
SparseB: Low-level vector operations for
Sparse package
(Pure Ada 83 [.adb] body and a
DEC/Compaq/HP [.dec] body mapped to
BLAS)

(B): Programs, tests, demos using the
previously cited packages

______Linear Algebra:
Test_Sparse: Test of Sparse and
ConjGrad packages.
_________________ODE:
Phases.adb: Phase diagram and vector
fields for oscillators (2)
Champ_Vt.adb: Vector fields drawing
(1)
_________________PDE:
Diffchal.adb: Solution of heat equation by
finite differences ()
____________Fractals:
Biomorph.adb: <<biomorphe>> fractals
(cow skin) (1)
FracDesi.adb: Fractal lines design (2)
Koch_Haar.adb: Koch flake, Haar
wavelet and others 1D fractals (1)
Henon.adb: Hénon orbitals (fractal
strange attractors) (1)
__Random simulations:
Sim_Alea.adb: Simulation of random
variables ()
Porscher.adb: Probability "paradox" (in
French) ()
EDS_1.adb: Simulation of solutions of
stochastic (1)
differential equations (SDE)
TestURan.adb: Test of U_Rand
standalone random generator ()
_____Multi-precision:
Test_Int.adb: Test of
Multi_precision_integers package ()

() Yes, it's standalone Ada !
(1) uses Graph package
(WINGRAPH.ZIP or DOSGRAPH.ZIP)
See page:
http://www.mysunrise.ch/users/gdm/grap
h.htm

Ada-related Products 75

Ada User Journal Volume 26, Number 2, June 2005

(2) uses DOS-Graph, Mouse packages
(DOSGRAPH.ZIP, DOS_PAQS.ZIP)
See list:
http://www.mysunrise.ch/users/gdm/locau
x.htm

FFT Ada implementations
From: Jeff C <jcreem@yahoo.com>
Date: Wed, 13 Apr 2005 07:22:29 -0400
Subject: Re: FFT
Newsgroups: comp.lang.ada
> Do we have a good FFT (Fast Fourier

Transform) implementation in Ada ?
I don't know of any great publicly
available ones. There is a binding to
FFTW
http://privatewww.essex.ac.uk/~sjs/fftw_a
da/fftwa.html but the binding is released
as pure GPL (not GMGPL) which would
be somewhat ok since I think FFTW itself
is also pure GPL. However, I believe you
can buy a proprietary license for the
FFTW library from MIT.
I don't think you can buy a non-pure GPL
license for the Ada binding.
Documentation claims it is Copyright
Stephen J. Sangwine but I suspect this is
one of those things that is encumbered by
some sort of university interest in it as
well. If this is the same university as
PNG_IO then I'd look elsewhere if you
need something non GPL. Several years
ago we tried to purchase a license for
PNG_IO and after several months our
purchasing department still was unable to
get the office that dealt with this stuff to
complete the deal. Eventually the
schedule moved far enough along that we
had to come up with an alternate
approach.
The FFTW library itself is pretty nice and
complete so if you have no issues with the
use of a GPL library/binding take a look.
From: Tom Moran <tmoran@acm.org>
Date: Wed, 13 Apr 2005 13:16:52 -0500
Subject: Re: FFT
Newsgroups: comp.lang.ada
In addition to FFTW, there's also
http://cr.yp.to/djbfft.html which doesn't
appear to have any restrictions. It appears
to be for very fast computation of powers
of two FFTs. It's in very nasty C, though.
I have here a package fft_pack with
Glassman's algorithm for arbitrary N, but
I can't seem to track its provenance. If
speed isn't an issue, it's quite convenient.
Numerical Recipes in Fortran (etc) has
source and discussion of various FFT
situations.

Units of Measurement
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 19 Mar 2005 11:23:38
Subject: Units of measurement for Ada v1.7
Newsgroups: comp.lang.ada

The new version is here:
http://www.dmitry-kazakov.de/ada/
units.htm
Changes:
1. An unshifted dimensionless measure
can now be mixed with a shifted one in *
and /;
2. UTF-8 encoding support;
3. Minor bug fix in units converter
examples: Unit_Error is now caught;
4. The package Units has the new child
Units.Edit. The function Image is moved
there;
5. Units converter for GTK is now
statically linked for i686 target;
6. Units converter for Windows supports
Unicode.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 23 Apr 2005 21:19:16
Subject: Units of measurement v 1.8
Newsgroups: comp.lang.ada
Here it is:
http://www.dmitry-kazakov.de/ada/
units.htm
Changes made:
Get_Unit procedure was added for input
pure measurement units (expression
terms) rather than measures (arbitrary
dimensioned expression), which can be
useful for building customized parsers;
To_Measure was added for explicit
number to measure conversion; Some
documentation bugs were fixed.
[Cf. "Physical Units Checking in Ada" in
AUJ 25-2 (Jun 2004), pp.47-48. -- su]

Fuzzy Sets for Ada
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 16 Apr 2005 18:33:59
Subject: Fuzzy sets for Ada v 3.9
Newsgroups: comp.lang.ada
The new version is here:
http://www.dmitry-kazakov.de/ada/
fuzzy.htm
Changes made:
1. Linguistic variable conversions to
number and interval were added;
2. Bug fix in implementation of binary
operations on fuzzy variables;
3. Improved documentation;
4. Based on the version 1.10 of simple
components.
[Cf. same topic in AUJ 25.4 (Dec 2004),
p.186. -- su]

OpenALada
From: Aurele <aurele.vitali@gmail.com>
Date: 4 Mar 2005 06:56:35 -0800
Subject: OpenALada
Newsgroups: comp.lang.ada
OpenALada and OpenALdemo v1.1 have
been updated and tested with ObjectAda
v7.2.2 and GNAT v3.15p.
www.OpenALada.com

[Cf. "Bindings for OpenAL (Open Audio
Library)" in AUJ 26-1 (Mar 2005), p.11.
-- su]

asound - Ada Sound
Environment
From: Adrian Knoth <adi@thur.de>
Date: 12 Mar 2005 21:46:49 GMT
Subject: Announce: asound - Ada sound

environment
Newsgroups: comp.lang.ada
I'm glad to release the first version of
asound, the generic Ada environment for
audio-related tasks.
The idea of asound arose some years ago
and perhaps Preben Randhol did
something on his own, I don't know...
Currently, asound isn't a generic audio
library at all, but it could be one ;)
The original intention was to write a
binding to Ogg/Vorbis and Preben
proposed to start with libao. I haven't
thought about it for years, but last week I
decided to implement it.
Actually asound is only a binding to libao,
and not even a complete one. It can play
samples and this is more than I need,
because I don't need it ;)
Perhaps someone is interested in
extending it. I do not think that I'll have
the time for great improvements within
the next N*six months, so whoever wants
to go on coding, please do it ;)
You can download it here:
http://adi.thur.de/?show=asound

Drawplex
From: Marius Amado Alves

<amado.alves@netcabo.pt>
Date: Mon, 14 Mar 2005 15:52:44
Subject: Announce: Drawplex
Newsgroups: comp.lang.ada
I'm pleased to announce the first release
of Drawplex, a 100% Ada library for
drawing on the complex plane.
http://softdevelcoop.org/software/drawplex

AdaGPGME 1.0.2 - Binding
to "GNUPG Made Easy"
From: Andreas Almroth

<andreas@almroth.com>
Newsgroups: comp.lang.ada
Subject: Update to AdaGPGME and libgpg-

error
Date: Tue, 29 Mar 2005 19:25:19
For those of you interested, I have
updated the Ada 95 bindings to:
* GPGME 1.0.2 (GnuPG Made Easy C
API)
* libgpg-error 1.0 (common error message
library for GnuPG components)
A few of the test programs have been
ported to Ada 95 to verify that the
bindings work, or at least partly. Change

76 Ada-related Tools

Volume 26, Number 2, June 2005 Ada User Journal

the makefile to correspond to your
environment.
The bindings are tested with GCC 3.4.3
on Solaris, but it should be possible to
compile them on other platforms.
You will, obviously, need to install
GnuPG 1.2.2+, libgpg-error 1.0 and
gpgme 1.0.2 first.
The bindings can be found at:
AdaGPGME -
http://www.almroth.com/gpgme/index.html
libgpg-error -
http://www.almroth.com/libgpgerror.html
Any suggestions, comments and bugs are
welcome and should be sent to andreas at
almroth dot com.
For more information on GPGME and
libgpg-error, please visit:
http://www.gnupg.org/
[Cf. "AdaGPGME 0.4.1 - Binding to
GNUPG Made Easy" in AUJ 24-3 (Sep
2003), p.143. -- su]
From: Andreas Almroth

<andreas@almroth.com>
Date: Wed, 30 Mar 2005 08:13:22
Subject: Re: Update to AdaGPGME and

libgpg-error
Newsgroups: comp.lang.ada
> One note. While I am a big fan of the

GMGPL approach, it is not really clear
that it is entirely helpful in this case
since GNUPG itself appears to be GPL
without exception...Not suggesting you
need to change the license binding but
people using it (as always) need to
understand all of the license issues that
are involved.

Regarding the license, yes, it may not be
entirely clear, I agree fully. GnuPG is
GPL only, GPGME is LGPL as its design
is not limited to GnuPG, and in the future
may include other backends that may use
other licenses. I believe that could have
been a reason why they choose LGPL. I
use GMGPL for most of my work that I
publish. I like the GMGPL, it is an
approved license, and is based on GPL
with the exception that any code
instantiating generics or using parts does
not necessarily make the final product
GPL/GMGPL. However copyrights are
still in place. GMGPL differs from LGPL,
but to my understanding, not so much in
reality.
In this specific scenario, it is hard to say
where to draw the line, as GPGME,
AFAIK, does not link to GnuPG, but
merely calls the executable with the
necessary arguments. AdaGPGME is then
linking to GPGME and any resulting
products would be based on LGPL, which
means they can have other (even non-
free) licenses. The GMGPL would not be
in the way really.
Well, I'm not a legal eagle, but I don't see
that GMGPL in any way is
limiting/infringing LGPL.

Perhaps I should add a note to the
README file...

Player/Stage Ada binding
From: Alex R. Mosteo

<alejandro@mosteo.com>
Newsgroups: comp.lang.ada
Subject: Ada binding for Player
Date: Wed, 30 Mar 2005 11:34:26
I'm developing a partial binding to the
libplayerc library for use in Ada
programs. At present it includes
interfacing to the connection, position,
laser, localize, planner and blobfinder
facilities.
It's available for download at
http://ada-player.sf.net
Player/Stage/Gazebo is a control /
simulation platform for robotics. It allows
you to develop and test control algorithms
over simulated and real robots using the
same interface. Find more about it at
http://playerstage.sf.net

AdaSQLBase
From: Andreas Almroth

<andreas@almroth.com>
Date: Tue, 01 Feb 2005 21:45:55
Subject: AdaSQLBase binding
Newsgroups: comp.lang.ada
AdaSQLBase is a thin binding to the C
API for Gupta's SQLBase database
engine. SQLBase is a relational database
that can be embedded with applications
on Windows and Linux* platforms.
The binding is released under GMGPL.
The binding package can be found at:
http://www.almroth.com/adasqlbase.html
As this is only a thin binding, please find
more information on SQLBase at:
http://www.guptaworldwide.com/Product
s/SQLBase.aspx
A simple test suite program is provided to
test functionality, but also in a basic way
show how to use the binding.
* This binding has been tested with
GNAT 3.15p and GCC 3.4.2 (MINGW)
on the Windows platform. Linux platform
should theoretically be easy to port to, as
it most likely only necessary to change
the pragma import from STDCALL to C.

Packages for Text Filtering
From: Martin Krischik

<martin@krischik.com>
Date: Fri, 11 Feb 2005 14:21:57
Subject: Re: Package for text filtering?
Newsgroups: comp.lang.ada
> I need to filter a resultfile produced by a

program (only executable available) so
I can get the different results I'm
interested in. I need to do it in Ada (so
no hints about python, perl etc ;-)) but I
thought that there must be some

packages (besides the GNAT packages)
available to ease the filtering.

AdaCL (http://adacl.sourceforge.net) has
a powerfully - yet easy to use - text filter
library. And it's a class library - if what
you need is missing you can extend it.
Look at the sarDO source to see how it
works:
http://adacl.sourceforge.net/html/sarDo-
CommandLine__adb.htm
From: Martin Krischik

<martin@krischik.com>
Date: Fri, 11 Feb 2005 15:25:08
Subject: Re: Package for text filtering?
Newsgroups: comp.lang.ada
I forgot to mention: the I/O modules are
also classes and can be replaced with
specialised versions.
Currently available:
Textfile_1 => Textfile_2 where both files
can be the same.
Textfile => Standart_Output as part of the
CGI package.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 11 Feb 2005 14:25:41
Subject: Re: Package for text filtering?
Newsgroups: comp.lang.ada
OK, besides GNAT's spitbol:
http://www.dmitry-kazakov.de/ada/
components.htm
- this project contains parsers for
elaborated infix expressions of any kind
(in case your output has something like
2+5*(3-6))
http://www.dmitry-kazakov.de/ada/
strings_edit.htm
- this is a set of simple tools for parsing
and formatting strings
http://www.dmitry-kazakov.de/match/
match.htm
- this is pattern matching, though written
in K&R/ANSI C, it has Ada interface.
From: Marius Amado Alves

<amado.alves@netcabo.pt>
Date: Fri, 11 Feb 2005 11:56:38
Subject: Re: Package for text filtering?
Newsgroups: comp.lang.ada
GNAT includes nice string pattern
matching packages. The best for me is
GNAT.Spitbol.
There is also Open_Token out there.
 (I should start collecting referral
commissions :-)
From: Jeffrey Carter <jrcarter@acm.org>
Date: Sat, 12 Feb 2005 00:51:45 GMT
Subject: Re: Package for text filtering?
Newsgroups: comp.lang.ada
The PragmAda Reusable Components
include regular expression matching.
There's an example program, strmsub,
that's a stream editor and was pretty easy
to create.
http://home.earthlink.net/~jrcarter010/
pragmarc.htm

Ada-related Products 77

Ada User Journal Volume 26, Number 2, June 2005

From: Steve <steved94@comcast.net>
Date: Sat, 12 Feb 2005 17:35:20 -0800
Subject: Re: Package for text filtering?
Newsgroups: comp.lang.ada
I have used Aflex and Ayacc. I had an old
Ada 83 version I had to doctor up to work
with GNAT (several years ago). It looks
like there are versions available on
AdaPower:
http://www.adapower.com/index.php?Co
mmand=Class&ClassID=Utilities&Title=
Ada+Utilities
There is a little bit of a learning curve, but
they are powerful tools.

Ada-related Products
AdaCore - GPS 3.0
URL: http://www.adacore.com/
pressroom_19.php

AdaCore Revs Up IDE
Powerful, Simple-to-use GNAT
Programming Studio Streamlines
Software Development, Supports Wide
Range of Operating Systems
New York - May 23, 2005
AdaCore today introduced GPS 3.0, a
highly upgraded version of the company's
advanced Integrated Development
Environment (IDE) that is already the
IDE of choice for GNAT Pro and Ada
developers. GPS (GNAT Programming
Studio) 3.0 is aimed at streamlining Ada
and multi-language software development
from the initial coding stage through
testing, debugging, system integration,
and maintenance.
GPS 3.0 offers advanced features, such as
multi-language support (including Ada, C,
and C++), and support on a wide range of
host environments for both native and
cross-development platforms, including
UNIX, Windows and GNU/Linux. An
intuitive, unified visual interface, identical
across all platforms, serves as a control
panel to access tools from AdaCore's
GNAT Pro Ada development
environment as well as from third parties,
easing both development and
maintenance. As a result, GPS 3.0 is
particularly suited for large, complex
systems requiring tool chain integration,
ease of use, user customization, and code
navigation/analysis tools.
"Most embedded IDEs are targeted to one
operating system platform, which limits
both extensibility and adaptability," said
Robert Dewar, president of AdaCore.
"GPS 3.0 not only supports a wide variety
of commercial platforms, but also is
adaptable enough to be used with
proprietary operating systems. Our
platform-independent visual interface is
also very easy to learn and use, which
increases programmer productivity and
ultimately speeds time-to-market."

GPS 3.0 provides many new
improvements from previous releases,
including:
* Automatic documentation generation
from Ada sources
* Support for remote debugging /
compilation
* Support for inter-process
communication between GPS and
external tools
* New visual comparison tool
* Visualization of Ada metrics
* Outline view, dynamically showing the
code structure in the current editor
* Improved project editing, including
support for library projects
As with all GNAT Pro components, GPS
3.0 is distributed with full source code
and is backed by AdaCore’s rapid and
expert online support.
About GPS
GPS is a powerful IDE written in Ada,
based on the GtkAda toolkit. GPS's
extensive source-code navigation and
analysis tools can generate a broad range
of useful information, including call
graphs, source dependencies, project
organization, and complexity metrics. It
also provides support for configuration
management through an interface to third-
party Version Control Systems, and
supports a variety of platforms, including
Alpha Tru64, Altix Linux, MIPS-IRIX,
PA-RISC HP-UX, SPARC Solaris, x86
GNU Linux, x86 Solaris, and x86
Windows. GPS is highly extensible; a
simple scripting approach enables
additional tool integration. It is also
tailorable, allowing programmers to
specialize various aspects of the
program's appearance in the editor for a
user-specified look and feel.
Pricing and Availability
GPS 3.0 is part of the GNAT Pro toolset
available today from AdaCore. Please
contact AdaCore for the latest information
on pricing and supported configurations.
(sales@adacore.com)
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial, open-source
software solutions for Ada, a modern
programming language designed for
large, long-lived applications where
reliability, efficiency and safety are
absolutely critical. AdaCore's flagship
product is GNAT Pro, the commercial-
grade open-source Ada development
environment, which comes with expert
online support and is available on more
platforms than any other Ada technology.
AdaCore has customers worldwide; see
http://www.adacore.com/customers.php
for more information.
Use of Ada and GNAT Pro continues to
grow in high-integrity and safety-critical
applications, including commercial and
defence aircraft avionics, air traffic
control, railroad systems, financial

services and medical devices. AdaCore
has North American headquarters in New
York and European headquarters in Paris.
[Cf. "Public Release of GNAT
Programming System IDE (GPS)" in AUJ
26-1 (Mar 2005), p.13 and "AdaCore -
GPS 2.1.0" in AUJ 25-4 (Dec 2004),
pp.193-194. -- su]

AdaCore - Ada Answers
URL: http://www.adacore.com/
pressroom_18.php

AdaCore Shines Spotlight on Ada for
Broad Range of Leading-Edge
Applications
Salt Lake City, Systems & Software
Technology Conference - April 18th,
2005
AdaCore today introduced Ada Answers,
a web portal aimed at providing managers
and software developers with a
comprehensive knowledge base about
Ada, the programming language most
often used to implement high-integrity,
safety-critical and real-time systems.
The Ada Answers web portal is dedicated
to keeping developers and project
managers informed about Ada and its
forthcoming Ada 2005 revision,
showcasing the strengths and benefits of
this extremely powerful programming
language. The site includes examples of
companies and organizations that are
successfully using Ada, highlighting some
of these companies in a growing
collection of video interviews. Also on
video is a series of university lectures and
conference presentations given by some
of the foremost experts on the language,
as well as an up-to-date list of Ada
materials, resources and web links.
"As the need for robust and reliable
software systems rapidly expands, Ada
continues to prove itself an excellent
answer for many of today's largest and
most complex programming challenges,"
said AdaCore president Robert Dewar.
"Ada Answers helps explain Ada's
distinct qualities and technical features
and how they can translate into bottom-
line business benefits."
More than any other language, Ada was
specifically designed to address issues of
testing, quality assurance, functionality
upgrades, platform portability, multi-
language support, and similar "back end"
activities. Its consistent software
engineering principles make Ada, the
world's first object-oriented programming
language, intuitive and easy to learn. Its
expressive features and strong checking
make Ada a "think first, code later"
discipline that translates into fewer bugs
and higher productivity.
"Ada has always been an attractive choice
where reliability has been the overriding
requirement," says Dewar. "Historically
this has been in the defence and aerospace

78 Ada-related Products

Volume 26, Number 2, June 2005 Ada User Journal

industry, but Ada is also increasingly used
commercially in fields like avionics,
power plants, transportation systems,
communications, medical instruments,
and finance. Ada includes numerous built-
in features specifically optimized for
financial data."
AdaCore will showcase videos from Ada
Answers at SSTC, Booth 431. The
companies and applications to be
highlighted include:
* JEOL - Nuclear magnetic resonance for
analysis of molecular structures
* New Trade Research - Automated
securities trading systems
* Philips Semiconductor (ITEC Division)
- Equipment used in the assembly of
discrete semiconductors
* Vienna University, Austria -
Astrophysics applications involving
massively parallel computing
[Cf. same topic in AUJ 25-4 (Dec 2004),
p.193. -- su]

AdaCore - G++/GNAT Pro
Joint Edition
URL: http://www.adacore.com/
pressroom_17.php

AdaCore and CodeSourcery Join Forces
to Create Open-Source Integrated Ada
and C++ Development System
Salt Lake City, Systems & Software
Technology Conference - April 18th,
2005
AdaCore (New York) and CodeSourcery
(Granite Bay, CA) have partnered to
create the G++/GNAT Pro Joint Edition,
the first open-source development
environment for native and embedded
applications that use both Ada and C++
programming languages. The G++/GNAT
Pro Joint Edition is based on a
combination of several GNU-based, open-
source technologies - AdaCore's GNAT
Pro Ada toolsuite, and CodeSourcery's
G++ Pro compiler. The result is a full-
featured, modern IDE that includes source
editors, configuration management
facilities, source-level debuggers, source
navigation and queries, and user
extensibility. It is ideal for complex,
mission-critical systems that must
efficiently unite software developed in
Ada and C++.
"Over the past decade, modern defense
systems have created large and
sophisticated bodies of software in a
variety of high-level languages, including
Ada and C++," said Robert Dewar,
president of AdaCore. "The partnership
between AdaCore and CodeSourcery
provides defence contractors with an
open-source, feature-rich development
platform for a broad range of native and
cross-development scenarios."
The open-source principles that underlie
the G++/GNAT Pro Joint Edition allow

third-party and proprietary tools to be
used from within the IDE framework,
while maintaining compliance with
recognized industry standards. As a result,
it is particularly well- suited for long-term
defence programs. The U.S. Army's
Future Combat System (FCS) and the
U.S. Navy's DD(X) System have publicly
recognized the advantages of, and are
committed to, using open-source
software.
"Today's announcement reaffirms our
commitment to the continued
development of GNU, Ada, and C++,"
said Mark Mitchell, founder and chief
sourcerer of CodeSourcery. "By entering
into strategic partnerships with dedicated
language and toolset experts, such as
AdaCore, we can provide our customers
with the highest quality support, and can
reduce compiler and development risks
throughout a program's entire lifecycle."
About CodeSourcery
CodeSourcery, LLC was founded in 1997
to provide high-quality tools and
consulting services that improve the
productivity of software developers. The
company's uncompromising standards of
engineering excellence are the
fundamental framework behind its
software design, software engineering,
and open-source project management
products and services. CodeSourcery,
whose customers include Fortune 500
companies, the United States government,
and other leaders in the computer
industry, is a privately held company
registered in the state of California.
www.codesourcery.com

Aonix - ObjectAda for
PikeOS
URL: http://www.aonix.com/

pr_03.07.05b.html
Aonix Delivers Real-Time Java and Ada
Applications for PikeOS
Embedded Systems Conference, San
Francisco, CA, March 7, 2005
SYSGO and AONIX today announced a
cooperation to provide the PERC VM and
ObjectAda environments for PikeOS. The
implementation makes full use of PikeOS'
multi-OS capabilities, thus allowing real-
time Java, Ada and traditional Linux
applications to run reliably side by side in
different partitions.
Aonix, a provider of complete solutions
for safety- and mission-critical
applications, is well known for its Ada
and PERC products. PERC, a clean-room
Virtual Machine (VM), supports the
execution of Java platform applications in
embedded systems, without sacrificing
the integrity, performance, or real-time
benefits of legacy approaches.
PikeOS incorporates software
partitioning, enabling developers to run
multiple operating system APIs on top of

a microkernel, forming so-called "OS-
personalities." Aonix's PERC VM and
Ada run-time environments will add new
personalities to go along with Linux,
POSIX and OSEK personalities that
PikeOS already supports. The PERC
solution will be available Q2 2005 with
the Ada solution by the end of the year.
"We are proud to join forces with Aonix,"
states Detlev Schaadt, CTO of SYSGO.
"Their reputation in our market is
outstanding, and their Ada and PERC
implementations fit perfectly into our
technology. They have earned a solid
reputation for developing innovative and
proven solutions that matches our own
product approach."
"Both companies have considerable
expertise in developing safety-critical
software," comments Jacques Brygier,
Aonix' VP of Marketing. "SYSGO has a
long record of delivering quality solutions
and strong technical support to their
customers. By combining our
technologies, we offer some very solid
product offerings to our customers."
About SYSGO AG
SYSGO provides software solutions for
Industrial Systems and Embedded
Devices. The company's product and
service offerings focus on the most
important building blocks in any
successful project-the low-level system
software, such as Firmware, Operating
Systems, and Device Drivers. Founded in
1991, SYSGO became a leading company
for safety-critical system software and
Embedded Linux in Europe, growing to
70 employees in six offices in Europe.
SYSGO's new product-PikeOS-represents
the companies' experience with both
software certification and embedded
Linux. SYSGO boasts OEM customers
like Siemens, DaimlerChrysler,
Rockwell-Collins, EADS and Raytheon
and hardware vendors such as Motorola,
AMCC and Kontron.
About Aonix
Aonix offers mission- and safety-critical
solutions primarily to the military and
aerospace, telecommunications and
transportation-related industries. Aonix
delivers the leading high-reliability, real-
time embedded Java solution deployed
today and has the largest number of
certified Ada applications at the highest
level of criticality. Our unique modeling
solution features UML 2.0 profiles and
MDA tailored for the mission- and safety-
critical space. Aonix products include
PERC®, RAVEN, and Ameos.
Headquartered in San Diego, CA and
Paris, France, Aonix operates sales offices
throughout North America and Europe in
addition to offering a network of
international distributors. For more
information, visit www.aonix.com.

Ada-related Products 79

Ada User Journal Volume 26, Number 2, June 2005

Green Hills Software - Ada,
Ravenscar Ada and SPARK
for INTEGRITY 178B
RTOS
URL: http://www.ghs.com/news/

20050502_embedded.html
Green Hills Software Announces
Embedded C++ for the INTEGRITY-
178B Safety Critical Operating System
SANTA BARBARA, CA, - May 3, 2005
-Green Hills Software, Inc., the
technology leader in embedded software
development tools and real-time operating
systems (RTOS), today announced the
availability of DO-178B Level A
certifiable Embedded C++ (EC++) for its
safety-critical INTEGRITY 178B RTOS.
Green Hills Software is first to offer
safety critical developers a choice of C,
C++ and Ada, all developed and
supported by a single vendor and
integrated into a single, multiple language
development environment-Green Hills
Software's MULTI. Additionally, Green
Hills Software supports specialized
versions of these languages for safety
critical development-MISRA C,
Embedded C++, SPARK Ada and
Ravenscar Ada.
"The addition of EC++ to the languages
already supported for the INTEGRITY-
178B operating system provides a
powerful new capability for the
development of safety-critical
applications," said Greg Gicca, director of
product marketing for safety critical
products at Green Hills Software.
"INTEGRITY-178B now supports the
development of a single system with a
mix of several languages. This allows
developers to select the language best
suited for their application development
needs and designated safety level."
Multiple applications can now be
developed in different languages and
deployed in separate INTEGRITY-178B
partitions running on the same computer.
A high-integrity DO-178B Level A
application might be developed using
EC++. An application with lower
criticality might be developed using full
Ada and deployed in its own separate
partition.
With EC++, object oriented programming
capabilities benefit from improved
efficiency over full ANSI C++. EC++
removes ANSI C++ features that are not
typically used in embedded or safety
critical systems development, thereby
generating much smaller and faster
programs. EC++ improvements range
from 30-50 percent in code size and run-
time efficiency over full ANSI C++.
About INTEGRITY-178B
INTEGRITY-178B is a powerful, safety-
critical, DO-178B Level A certified
RTOS. It offers full time and memory

partitioning as well as an ARINC-653-1
APEX interface. Three programming
languages are now available to safety-
critical developers supporting their
development needs, and INTEGRITY-
178B provides the protection between
applications with its full partitioning
support.
Availability
DO-178B Level A certifiable EC++
support for the INTEGRITY-178B RTOS
is available now.
About Green Hills Software
Founded in 1982, Green Hills Software,
Inc. is the technology leader for real-time
operating systems and software
development tools for 32- and 64-bit
embedded systems. Our royalty-free
INTEGRITY® RTOS, velOSity
microkernel, compilers, MULTI® and
AdaMULTI Integrated Development
Environments and TimeMachine
debugger offer a complete development
solution that addresses both deeply
embedded and high-reliability
applications. Green Hills Software is
headquartered in Santa Barbara, CA, with
European headquarters in the United
Kingdom. Visit Green Hills Software on
the web at www.ghs.com.

RainCode - RainCode
Engine free of charge
URL: http://www.raincode.com/
newslfeb05.html

February 2005 - Major Change in License
Agreement
As from February 2005, the RainCode
Engine for Ada, C, and COBOL under
Win9X, NT, and Unixes are available
FREE of charge.
These tools are used to perform automatic
source code analysis or transformation
tasks, such as:
* implementation of coding guidelines;
* development of specific code
transformations and restructuring;
* source code migrations;
* Etc.
These freely available tools are FULLY
FUNCTIONAL and offered freely
WITHOUT ANY LIMITATIONS. All is
needed to start using the RainCode
Engine is to go through a no-nonsense
license agreement.
Various forms of maintenance contracts
are available to support you in your
RainCode projects, but the financial
aspect of the license itself has turned to a
non-issue.
The ambition of RainCode's new strategy
to offer free licenses of its main product is
to distribute the RainCode Engine more
widely, and to give a much wider base of
users the opportunity to benefit from
RainCode's very fine code-analysis
capability and great ability to manipulate

and transform source code in an
intelligent way.
To get your free RaiCode Engine License
Log on RainCode Online:
http://www.raincode.com/online
On the home page, choose: "RainCode
product line". Then click on "Downloads"
to find the RainCode Engine of your
choice.
URL: http://www.raincode.com/
adaengine.html

RainCode parses Ada 83 and Ada 95
sources. Typical uses of RainCode
include:
* Quality assessment for outsourced
work. When a project is submitted to an
external company, precise coding
guidelines can be defined formally as part
of the assignment. Such guidelines can
then be checked continuously or at
delivery time on the entire source code,
rather than relying on random sampling.
Besides, an exhaustive analysis provides a
number of metrics that quantify the
degree of compliance, which gives you a
precise estimation of the amount of work
required to achieve full compliance, rather
than a binary answer.
* In a migration project, performing large
amounts of updates automatically,
identifying the places that must be
updated manually, predicting the total
effort required for this manual update, and
monitoring the progress of the entire
migration. Examples of such migrations
cover the replacement of a compiler by
another, the change of platforms, TP
monitor or database.
* Integration in a compilation chain to
ensure that every source code is compliant
before it can even be tested. The standard
language within an organisation or a
project moves from plain Ada to Ada
restricted by the coding guidelines.
* Implementation of a complete metrics
and quality strategy. This includes
monitoring the quality and maintainability
of all components continuously,
predicting maintenance costs, detecting
abnormal entropy within systems before it
becomes a maintenance issue. Metrics,
such as cyclomatic complexity of
functions, can be performed on a daily
basis.

SofCheck - European
distribution of SofCheck's
technology
URL: http://www.sofcheck.com/news/

praxispressrelease.html
SofCheck Expands International Reach
Through Distribution Agreement with
Praxis High Integrity Systems
Praxis HIS to bring SofCheck's
technology to safety critical markets in
the U.K. and Europe.

80 Ada-related Products

Volume 26, Number 2, June 2005 Ada User Journal

BURLINGTON, Mass. (March 28, 2005)
- SofCheck, Inc., an independent provider
of software analysis and verification
technology, has signed a software
distribution license agreement with Praxis
High Integrity Systems (Praxis HIS), a
provider of high integrity systems
engineering solutions. Under the
agreement, Praxis HIS will offer
SofCheck's technology to clients in the
U.K. and Europe, across a range of safety
critical markets, including, aerospace and
defense, automotive, rail, nuclear,
telecommunications and finance.
"We were looking for a distribution
partner that could not only expand our
reach, but that also shared our market
focus and dedication to quality," said
Stephen F. Clairmont, senior vice
president, Sales & Strategic Alliances,
SofCheck. "Praxis HIS has earned a
reputation as a provider of the highest
quality IT consulting and engineering
solutions to the safety critical markets that
can benefit from SofCheck technology.
We are very pleased to be working with
them, and anticipate a rewarding
relationship."
"Our goal is always to deliver the right
solution at the right quality," said Rod
Chapman, Products Manager at Praxis
High Integrity Systems. "We are
delighted to be adding SofCheck's
technology to the range of tools we can
apply to our client solutions."
About Praxis HIS
Praxis High Integrity Systems is part of
the Altran Group, a recognized global
leader in innovative engineering. Praxis
HIS leads the High Technology
Engineering service line for Altran's U.S.
and European business. The company
delivers expertise into client projects, as
well as Intellectual Property in the form
of software products, training courses and
tool templates. Praxis HIS has industry-
leading expertise and capability in
Software Engineering, Systems
Engineering (including Requirements
Engineering), Project/Operational Risk
Management, Programme Delivery
Management, Safety Engineering,
Security Engineering and Human Factors.
Visit www.praxis-his.com for more
information about the company and its
range of services.
About SofCheck
Founded in 2002, SofCheck develops
technology that enables software
developers and IT organizations to detect
and eliminate bugs that can cause crashes
or numeric overflows earlier in the
development cycle, improving overall
software quality and reducing time-to-
market. SofCheck's flagship product,
SofCheck Inspector, is a complement to
traditional runtime testing tools,
employing advanced static error detection
technology and pushbutton convenience
to find lurking defects in software.

SofCheck is a privately held company
whose clients include: Raytheon,
Northrop Grumman and United
Technologies. To learn more, visit
www.sofcheck.com, or contact SofCheck
by phone +1 (781) 750-8068, Fax +1
(781) 750-8064 or E-mail
info@sofcheck.com.

McKae Technologies -
DTraq
From: Marc A. Criley <mc@mckae.com>
Subject: Announce: DTraq 0.986a now

Available
Date: Mon, 18 Apr 2005 15:22:35 -0500
Newsgroups: comp.lang.ada
McKae Technologies announces the
release of version 0.986a of DTraq, an
Ada 95 data logging and review tool.
DTraq is a data logging and playback
debugging tool providing near realtime
data logging and analysis to aid
debugging and validation. Captured, or
'tapped' data from a program can be
viewed live while the program is running
or, since it is being logged to a file,
played back or printed out later for off-
line review and analysis.
DTraq differs from other logging and
playback tools in that no data layout maps
or byte interpretations or "data dumpers"
need to be manually created. Nor is the
application responsible for converting the
raw binary data to text form before
logging it. DTraq handles all conversion
automatically by scanning the
application's source code, identifying
tapped data items, and extracting the
information it needs to properly convert
and display the logged items-simple
scalar items as well as arrays and records.
When the layout of data items change,
rescanning automatically picks up the
changes.
DTraq requires GNAT 3.15p due to its
reliance on the Ada Semantic Interface
Specification (ASIS) and has been
validated on Red Hat 9 Linux.
Source and executables are available on
the DTraq home page:
http://www.mckae.com/dtraq.html, along
with the comprehensive and up-to-date
user manual --
http://www.mckae.com/dtq_common/
DTraq.pdf.
DTraq usage is described, and screenshots
provided, starting at
http://www.mckae.com/dtq_usage/tapping
.html.
Updates to DTraq 0.986a (versus 0.986):
- Added a Data Item Reviewing capability
to live data monitoring to permit quick
reviewing of recently logged and
displayed data items. This eliminates the
need to stow the current logfile, suspend
logging, and go into playback mode to
just look back at a recently received item.

- Reverted the DTraq.Tap tap ID type
back to the standard Positive type.
- Cleaned up version handling.
[Cf. same topic in AUJ 25-4 (Dec 2004),
p.196. -- su]

McKae Technologies -
XPath In Ada (XIA)
From: Marc A. Criley <mc@mckae.com>
Date: Sun, 06 Mar 2005 13:38:28 GMT
Subject: Announce: XIA 1.00 Now Available
Newsgroups: comp.lang.ada
Version 1.00 of XIA (XPath In Ada) is
now available on the McKae
Technologies website at
www.mckae.com/xia.html.
This version of XIA completes the initial
Ada implementation and release of the
XPath 1.0 specification.
Bug reports and suggestions for
improvement are welcome, with
optimizations and improvements to be
incorporated into subsequent releases.
Please see the XIA page at mckae.com for
contact information.
An example driver, test_xpath, and a test
script that submits over 160 queries
accompanies the distribution in the 'test'
subdirectory.
From: Marc A. Criley <mc@mckae.com>
Date: Thu, 10 Mar 2005 08:24:42 -0600
Subject: Re: Announce: XIA 1.00 Now

Available
Newsgroups: comp.lang.ada
Okay, so you now have a native Ada
implementation for XPath querying, so
what?
Well, Ada programmers in general like to
work with software written in Ada so they
can look at it and more easily see what's
going on, hence writing XIA in Ada.
What does XPath buy me?
If you're working with XML documents,
there are two standard approaches for
interacting with such documents, SAX
and DOM.
SAX is oriented towards stream-oriented
processing, meaning that you process the
contents of a document as it streams
through your application, there's no innate
retention of the content once it's been
processed. This is good for doing things
like transformations and especially when
working with documents of very large
size.
DOM is tree-oriented access to the
document, where the entire XML
document is loaded into an in-memory
tree, and can now be walked through,
randomly accessed, manipulated, and
even easily written back out to a
document.
Thanks for the info, but what does XPath
buy me?

Ada and GNU/Linux 81

Ada User Journal Volume 26, Number 2, June 2005

XPath is a standard approach for selecting
nodes out of an XML document. Instead
of you having to write your own code to
go and search for nodes (elements and/or
attributes) of interest, you write an XPath
query and bang it up against the
document--and back comes a list of nodes
that meet the query's criteria.
XPath can work with both DOM and
SAX approaches to XML document
processing, but SAX, being a 1-way
stream oriented mechanism, means that
you either have to restrict yourself to an
XPath subset (eliminating queries that
involve elements that would have already
gone past), or do some gnarly query
preprocessing, along with maintenance
and pruning of lists of potential node
matches, etc.
Due to the latter complications of dealing
with SAX interaction, XIA works strictly
with the DOM model of XML document
access.
[Cf. "XIA - XPath In Ada" in AUJ 26-1
(Mar 2005), p.11. -- su]

McKae Technologies - XML
EZ Out
From: Marc A. Criley <mc@mckae.com>
Date: Fri, 08 Apr 2005 13:57:01 -0500
Subject: XML EZ Out 1.00
Newsgroups: comp.lang.ada
XML EZ_Out is a small set of packages
intended to aid the creation of XML-
formatted output from within Ada
programs. It basically wraps the tags and
data provided to it with XML syntax and
writes them to a user-supplied medium.
This medium can be any sort of writable
entity, such as a file, a memory buffer, or
even a communications link, such as a
socket. The only functionality required of
the medium is that it supply a meaningful
"Put" (for writing a string) and
"New_Line" procedure.
XML EZ Out is available at
http://www.mckae.com/xml_ezout.html.
The key facilitator of making XML
EZ_Out usage readable when generating
XML documentation is the overloading of
a number of variations of the "="
function. By doing this, a simple XML
element having no content, such as:
<player lastName="Cuddyer"
firstName="Michael" team="Twins"/>
can be generated as:
Output_Tag
 (F, "player",
 ("lastName" = "Cuddyer",
 "firstName" = "Michael",
 "team" = "Twins"));

To simplify the specification of the
attributes, variations of "=" are provided.
Given these declarations:
Batting_Average : Float;
At_Bats : Natural;

One can directly reference the variables:
Output_Tag
(F, "stats",
 ("battingAvg" = Batting_Average,
 "atBats" = At_Bats));

From: Marc A. Criley <mc@mckae.com>
Newsgroups: comp.lang.ada
Subject: XML EZ_Out 1.01 Update
Date: Wed, 13 Apr 2005 14:04:59 -0500
Organization: UseNetServer.com
XML EZ_Out is a small set of packages
intended to aid the creation of XML-
formatted output from within Ada
programs. It basically wraps the tags and
data provided to it with XML syntax and
writes them to a user-supplied medium.
This medium can be any sort of writable
entity, such as a file, a memory buffer, or
even a communications link, such as a
socket. The only functionality required of
the medium is that it supply a meaningful
"Put" (for writing a string) and
"New_Line" procedure.
XML EZ Out is available at
http://www.mckae.com/xml_ezout.html.
Revision History
Changes since 1.00:
- Fixed problem with attributes being
given negative numeric values. The minus
sign was being dropped.
- If an attribute value is an empty string
("") or Null_Unbounded_String, then
generation of that attribute specification is
skipped.
From: Marc A. Criley <mc@mckae.com>
Date: Mon, 02 May 2005 08:49:37 -0500
Subject: XML EZ_Out 1.02 Available
Newsgroups: comp.lang.ada
XML EZ_Out is a small set of packages
intended to aid the creation of XML-
formatted output from within Ada
programs. It basically wraps the tags and
data provided to it with XML syntax and
writes them to a user-supplied medium.
XML EZ Out is available at
http://www.mckae.com/xml_ezout.html.
McKae Technologies "eats its own dog
food", meaning that the utilities and tools
that are distributed are actually used
internally. Hence XML EZ Out 1.02 :-)
This version simply adds attribute
assignment ("=") functions for directly
handling single character attribute values.
It was thought to also add similar
functions for Long_Float and
Long_Integer, but this introduces
ambiguities when assigning attribute
values that are numeric literals, e.g., is
"0.0" a Float or a Long_Float?
While this would be dealt with using
Qualification -- Long_Float'(0.0) -- the
initial addition of such functions would
break existing code, so they were omitted.
If the need for such values as attribute
values is needed, simply take the 'Image
of the value (or invoke "Put" from a

suitably instantiated IO package) and use
the result as the attribute value.

Ada and GNU/Linux
Ada Usage in Debian
From: Ludovic Brenta

<ludovic.brenta@insalien.org>
Date: Thu, 24 Feb 2005 22:15:21
Subject: Re: Source code of large programs

wanted
Newsgroups: comp.lang.ada
Here is a site that I just stumbled upon the
other day:
http://libresoft.dat.escet.urjc.es/debian-
counting/
This guy must be nuts, he set out to
measure the SLOC count of the last four
stable releases of *Debian*, perhaps the
largest single collection of programs in
the world. The total for Sarge is roughly
218 million lines!
And I am happy to report that Ada is
doing rather well in Sarge, as the count
went from 0.5 million to 2.5 million lines
of source text (I hate to call it "code"),
and that Ada is now the 9th most used
language in Debian (*up* two places
since Woody).
If anyone feels like packaging even more
Ada software for Debian, *please* do!
There must be a way to beat Fortran and
become #8, we need a mere 256 kSLOC.
Anyone for PolyORB? That's 115 kSLOC
by itself. Or Dtraq? 30 kSLOC. Or
Adagio? 32 kSLOC. These fine programs,
and others, deserve to be spread to the
world.
I also noticed that on the Linux counter
(http://counter.li.org), Debian now
exceeds 21% of the installed base, now
surpassing Red Hat and Fedora Core
combined and becoming the #1
distribution!
From: Ludovic Brenta

<ludovic.brenta@insalien.org>
Date: Thu, 24 Feb 2005 22:30:24
Subject: Re: Source code of large programs

wanted
Newsgroups: comp.lang.ada
Florian Weimer wrote:
> Debian unstable/experimental contains

four additional copies of GNAT (with
400 kSLOC each), which accounts for
1.6 million lines of code. 8-/

The experimental packages won't go into
Sarge, by definition. And, GCC also
contains lots of C, C++, Java and Fortran.
So this is unlikely to change the ranking.
From: Ludovic Brenta

<ludovic.brenta@insalien.org>
Date: Thu, 24 Feb 2005 22:33:35
Subject: Re: Source code of large programs

wanted
Newsgroups: comp.lang.ada

82 References to Publ icat ions

Volume 26, Number 2, June 2005 Ada User Journal

Not to mention that I consider this
cheating ☺ it's easy to package N versions
of the same thing to swell the SLOC
count, but there is little pride to be gained
from that. For example, I could have kept
libgtkada1 and gvd but decided not to,
now there's libgtkada2 and gnat-gps
instead.
[Cf. "Debian Policy for Ada" in AUJ 25-3
(Sep 2004), p.126. -- su]

References to
Publications
DDC-I Online News
[Extracts from the table of contents. See
elsewhere in this news section for selected
items. -- su]
From: jc <jcus@ddci.com>
To: 22 February 2005 Online News US

<jcus@ddci.com>
Date: Tue, 1 Feb 2005 17:35:30
Organization: DDC-I
Subject: Real-Time Industry Updates
DDC-I Online News, Real-Time Industry
Updates - February 2005, Volume 6, Nr 2
[http://www.ddci.com/news_vol6num2.sh
tml] A monthly news update dedicated to
DDC-I customers & registered
subscribers.
This Month:
* 2.2 Billion Miles & Counting -- Riding
High With Cassini-Huygens Software
Coded With DDC-I Tools is Successfully
Orbiting Saturn
* Precision Customer Service for Swiss
Developers Legacy System DACS-8086
Ported from Solaris to Windows
* Italian Distributor -- ARTiSAN
Software Tools Srl -- Relocates New
Location Meets the Demands of
Continued Growth
* Tech Talk: Saving and Restoring State
A Nice Feature in the SCORE(R)
Debugger
* Unusual Solutions - Part 1
Learn From the Past. It's the Best Way to
Grow
From: jc <jcus@ddci.com>
To: 23 March 2005 Online News US

<jcus@ddci.com>
Date: Tue, 1 Mar 2005 16:46:07
Organization: DDC-I
Subject: Real-Time Industry Updates
DDC-I Online News - Real-Time Industry
Updates - March 2005, Volume 6,
Number 3 -
[http://www.ddci.com/news_vol6num3.sh
tml] A monthly news update dedicated to
DDC-I customers & registered
subscribers.
This Month:
* Secure C ... Not A Moment Too Soon
Perhaps the world of C is finally ready to
listen!
* Upgrading DACS' Microsoft Visual

Studio Support
Addressing issues that customers
experience when using a combination of
tools hosted on Windows
* DDC-I In Action
S/H-92 Helicopter Leading the Charge in
Safety and Standardization
* Thoughts From Thorkil
Floating Point Concepts and the 80x86
Implementation (2)
* Unusual Solutions - Part 2
Never doubt that a small, committed
group of people will change the world!
From: jc <jcus@ddci.com>
To: 26 April 2005 Online News US

<jcus@ddci.com>
Date: Mon, 4 Apr 2005 14:36:45
Organization: DDC-I
Subject: Real-Time Industry Updates
DDC-I Online News - Real-Time Industry
Updates - April 2005, Volume 6, Nr 4
[http://www.ddci.com/news_vol6num4.sh
tml] A monthly news update dedicated to
DDC-I customers & registered
subscribers.
This Month:
* Partner Update - Wind River
Unite with DDC-I & Your Peers at The
Wind River 2005 Worldwide User
Conference
* In The News
Will 64 Bit Embedded Systems Soon
Become Common Place?
* C>Prompt
Routine Maintenance YOU Can Do
* Tech Talk
Migration of DACS Source to SCORE(R)
With the Ada 83 Switch
* Something To Think About
Great Idea! And... It's The Best Way To
Learn

SPARK team newsletter
SPARK news - May 2005
Please find below the latest instalment of
SPARK-related news and information
from the SPARK team here at Praxis.
Ada community award
SPARK Team was awarded the 2004
ACM SIGAda award for outstanding
contribution to the Ada community. At
the SPARK User Group meeting, the
award was dedicated to Professor Bernard
Carré - the founder of Program Validation
Limited and principal designer of
SPARK.
Ada Usage Survey 2005
The Ada Resource Association is
attempting to quantify the global market
for Ada. We'd like to encourage people to
fill in their Ada usage survey. This is
important to show the outside world that
people really are still using Ada, and that
SPARK forms a significant share of that
market! We hope you can fill the survey
in for your projects. The results will be
presented at Ada Europe 2005 in York.

GPS Pro 3.0.0 and SPARK
The recent release of GPS Pro 3.0.0,
AdaCore's free multi-language IDE,
includes a SPARK customization file.
This creates a SPARK menu, and allows
users to run their SPARK tools from
inside GPS - a help to anyone who prefers
their life a little more GUI-fied.
UML and SPARK
A joint development effort between I-
Logix and Praxis now enables the
generation of SPARK Ada code directly
from UML models. This involves a new
capability to I-Logix' UML Model-Driven
Development (MDD) product, Rhapsody,
that facilitates the development of fully
SPARK compliant Ada applications.
This development complements the
existing support of SPARK in the
ARTiSAN Real-Time Studio product line.
A new one-day "UML to SPARK" course
has been designed for customers wishing
to take advantage of these developments.
The first public "UML to SPARK" course
will take place in September in Bath.
SPARK black belt training
The new SPARK Black Belt course -
designed for advanced users and focusing
on proof - has been very successful.
Feedback has been overwhelmingly
positive.
The next public SPARK and black belt
courses are scheduled for September -
book now to guarantee your place.
Spreading the word
In April, Praxis hosted a highly successful
one-day seminar for senior managers and
senior engineers to describe the
Correctness by Construction approach.
This took place in the National
Cryptological Museum in Maryland,
USA, and featured guest speaker Randy
Johnson from the NSA.
Forthcoming conferences include
AdaEurope, where SPARK team will be
giving two tutorials, presenting a paper
and exhibiting. We will also be giving a
tutorial at Formal Methods '05 in the UK
in July.
Academic developments
In October, Praxis announced a joint
academic initiative with AdaCore, as part
of our ongoing attempt to promote
SPARK within universities.
The primary objective of AdaCore's Ada
Academic Initiative is to provide a
collaborative platform where educational
materials, knowledge, resources and fresh
ideas can be developed and shared. This is
perfectly complemented by Praxis' offer
of a fully supported professional SPARK
toolset offered free-of-charge to
university faculty members for teaching
and/or research.
Release 7.2
Release 7.2 went out to customers in
January this year. Hopefully everyone is
now using this upgrade and enjoying the

Ada Inside 83

Ada User Journal Volume 26, Number 2, June 2005

enhancements, particularly in the
Simplifier. Upgrades for the "book" demo
toolset to release 7.2 are also available
Team news
The SPARK team has been joined for 6
months by research student Bill Ellis. Bill
is exploiting research from a previous
project (called NuSPADE) to extend the
proof capabilities of the SPARK toolset.
Emphasis is being placed on addressing
the practicalities of an industrial system,
rather than discovering new proof
strategies.
Carys Ottner has joined the team from
within Praxis. Carys is mainly working on
support, marketing, training and porting
the Proof Checker to a new PROLOG
compiler.

New Publications
February 2005 - New Paper now available
Peter Amey's invited keynote address
"Dear Sir, Yours Faithfully: an Everyday
Story of Formality" from the 2004 Safety
Critical Systems Symposium is now
available on the Publications page.
[http://www.praxis-his.com/sparkada/
pdfs/dear_sir.pdf -- su]
New York - May 23, 2005 - Dynamic
Plug-in Loading with Ada - Paper
Available
Maintenance of high-availability systems
(e.g., servers) requires the ability to
modify, enhance, or correct parts of the
application without needing to shut down
and re-link the entire system. This is
relatively straightforward in an interpreted
or virtual-machine based language such as
Java, in which new code is loaded upon
demand. In a language with static
executable images this capability can be
realized though dynamically loaded /
linked libraries ("DLLs"). However, in
practice this causes problems, because the
protocol for invoking subprograms in a
DLL is very low-level and sacrifices type
safety.
Object-oriented programming makes this
approach practical by using dynamic
dispatching to invoke dynamically loaded
functions with a more robust, high-level
protocol. In an OO paradigm, a “plug-in”
contains new classes that enrich the class
set of the original application. Calls to
subprograms in the shared library (plug-
in) are done implicitly through dynamic
dispatching which is much simpler, more
transparent to the programmer, more type-
safe, and thus much safer. A paper by
Cyrille Comar and Pat Rogers shows how
Ada, a statically-typed, statically-built,
object-oriented language, can fully
implement dynamic plug-ins as in Java,
but without needing to rely on a
comparatively inefficient virtual machine.
This paper, which will be available on the
AdaCore website, shows how to use
GNAT Pro to build an extensible

application and illustrates adding new
functionality at run time through plug-ins,
without needing to shut down the
program.
Download the paper at
[http://www.adacore.com/multimedia/pdf
s/dynamic_plugin_loading_with_ada.pdf
-- su]

Ada Wikibook in the Top 3
From: Martin Krischik

<martin@krischik.com>
Date: Wed, 16 Feb 2005 14:07:40
Subject:

Wikibooks:Top_active/Listing_January_
2005

Newsgroups: comp.lang.ada
After all gloomy statistics here something
good.
Provided that you only count books which
start with "Programming:" then Ada has
made it to place 3 on the
Wikibooks:Top_active list:
http://en.wikibooks.org/wiki/Wikibooks:T
op_active/Listing_January_2005
Since the statistic is based on the count of
different users contributing I consider it
quite good. However don't trust a statistic
you have not falsified yourself - do read
my discussion entry as well.
[Cf. "Ada at Wikipedia & Wikibooks" in
AUJ 26-1 (Mar 2005), p.8. -- su]

Ada Inside
Eurofighter selects Ada
URL: http://www.ghs.com/news/

20050307_eurofighter.html
Eurofighter Selects Green Hills Software's
INTEGRITY Real-Time Operating
System
Key to mission-critical systems
SAN FRANCISCO, CA - March 7, 2005
Green Hills Software, Inc., the technology
leader in embedded software development
tools and real-time operating systems,
today announced that its INTEGRITY
Real-Time Operating System (RTOS) and
AdaMULTI Integrated Development
Environment (IDE) are being used in the
development and implementation of
mission-critical systems deployed in the
latest Eurofighter Typhoon aircraft. The
INTEGRITY RTOS is being incorporated
as a critical component in a number of the
aircraft's "line-replaceable" items.
David Smith, Software Manager, of
Eurofighter GmbH, the consortium
managing Eurofighter's development and
production, said, "The INTEGRITY
RTOS is an essential element in
delivering the levels of system availability
and reliability that are required by a
number of computers being developed for
Eurofighter Typhoon."

"We are confident that the decision to use
Green Hills Software's RTOS and tools
will contribute to the success of the
second stage of the Eurofighter program,"
commented Jon Williams, European
Director of Safety Critical Business for
Green Hills Software. "This evolution,
which includes a move to PowerPC
devices, greatly benefits from the use of
the INTEGRITY RTOS, which
maximizes security and reliability and
leverages the hardware memory
protection facilities of the PowerPC
processor. In addition, the AdaMULTI
IDE provides an intuitive tool for testing
during both software design and
production."
About INTEGRITY
The royalty-free INTEGRITY RTOS is a
scalable, ROMable, and memory-
protected RTOS. Leveraging the
hardware memory protection facilities of
the PowerPC processor's Memory
Management Unit (MMU), the
INTEGRITY RTOS maximizes security
and reliability by building a firewall
between the kernel and user tasks. This
prevents errant or malicious tasks from
corrupting user data, the kernel,
interprocess communications, device
drivers, and other user tasks. In addition,
the INTEGRITY RTOS guarantees the
availability of system resources like the
CPU and memory to application
processes, making it far more secure and
deterministic than conventional embedded
operating systems.
About AdaMULTI
The AdaMULTI IDE is a complete,
integrated set of tools for the development
of embedded applications using Ada 95,
C, C++, Embedded C++, and FORTRAN.
The AdaMULTI IDE runs on Windows,
Linux, and UNIX hosts and supports
cross-debugging to a variety of target
environments. The AdaMULTI IDE
contains all of the tools needed to debug
and deploy major programming project
including: source level debugger, project
builder, event analyzer, performance
profiler, run-time error checker, and non-
intrusive field debugging.
About Eurofighter Typhoon
Eurofighter Typhoon is the world's most
capable and dynamic swing-role combat
aircraft. Developed by Germany, Italy,
Spain and the UK, the Eurofighter
Typhoon will fulfil European Air Force
requirements well into the mid-21st
Century. The aircraft is in full production
and has been in service with all partner
Air Forces since 2004. 638 aircraft are
under contract for the four Nations and
Austria, the first export customer.

84 Ada Inside

Volume 26, Number 2, June 2005 Ada User Journal

Aonix Tools Selected for
European Satellite Launcher

Vega project chooses Aonix Ada
development tools and real-time
executive

Nuremberg, Germany, February 22, 2005
Aonix, a provider of complete safety- and
mission-critical solutions, announces the
selection of its tools by the European
Space Agency's (ESA) Vega Programme,
a satellite launcher for satellites weighing
one ton or less that are used for scientific
Earth observation, telecommunications,
and technology applications in low-Earth
orbits. Aonix tools have been selected for
Ada application development along with
its highly reliable real-time executive.
The Vega Programme came into being in
the early 1990s when several European
countries began to investigate the
possibility of complementing the Ariane
launchers' family with a capability for
smaller payloads. These preparatory
activities concluded in 1998, and in 2000,
the member countries approved the
launcher's full development phase. Aonix
COTS products were selected as the
mission-critical software phase of the
project opened up. The AdaWorld Solaris
to ERC-32 product implements the board
segment software that controls and
monitors all phases of the launcher's take
off and flight until the satellite is in orbit.
"Thanks to a long history of certifiable
applications, Aonix's tools have been
selected for application development and
real-time control of the Vega launcher,"
said Jacques Brygier, VP of Marketing at
Aonix. "We are honoured to develop a
launcher specifically designed for
scientific and low-orbit missions and to
work with prestigious companies like
ELV, EADS Space Transportation, and
Saab Ericsson Space who also value high
standards of real-time safety-critical
development."
"Aonix has built a strong reputation
within the Space industry," noted
Maurizio Porfiri, System Software
Architect at ELV, main contractor of the
Vega project. "We were impressed by the
quality and robustness of their
environment and appreciated the high
level of expertise Aonix developed with
space technology. Aonix expertise and
experience are key factors in the future
success of the Vega project."
"Aonix has played an instrumental role in
major space projects such as the Ariane 5
launcher and the Automated Transfer
Vehicle (ATV)," said Christophe Goarin,
On Board Software Integration Manager
at EADS Space Transportation. "Aonix
products have always satisfied our
demanding requirements and met the
high-quality standards we expect from our
suppliers."

To reduce costs, the Vega Programme
uses a flexible modular approach that
employs advanced low-cost technologies
and takes advantage of existing
production facilities used for Ariane
launchers. Aonix provides COTS
products for onboard software
development, based on technology
already proven in previous Ariane
launchers. The first qualification launch
for Vega is planned in 2006 from the
French Guiana Space Center. Following
this, there will be an average of three to
four launches each year.

Utilizing Ada in the Airbus
A380
URL: http://www.vectors.com/pdf/

nord_micro_vector_testimonial_final.pdf
NORD-MICRO USES VECTOR
SOFTWARE'S VECTORCAST FOR
TESTING OF A380 CABIN PRESSURE
CONTROL SYSTEM
North Kingstown, RI June 1, 2005 Vector
Software, a leading provider of software
test tools for embedded systems, today
announced that Nord-Micro has used its
VectorCAST test solution on the flight
software for the A380-Cabin Pressure
Control System project currently
undergoing certification. VectorCAST
was used for module and SW-integration
testing as required by DO-178B for levels
B and C. The software tested with
VectorCAST was written in Ada utilizing
the AdaCore GNAT Pro HIE (High-
Integrity Edition) compiler, the JTAG
interface, and debugger from Abatron.
According to Bill McCaffrey, Director of
Sales for Vector Software, Inc., We are
extremely proud of our role as a
technology supplier to Nord-Micro.
Vector is pleased that VectorCAST has
been chosen by Nord-Micro as a critical
component for their software
development and testing. About Nord-
Micro's Cabin Pressure Control System
(CPCS) Hamilton Sundstrand's Nord-
Micro business unit in Frankfurt,
Germany is a leading designer and
manufacturer of cabin pressure control
systems (CPCS) and ventilation system
components for commercial aircraft.
Nord-Micro supplies CPCS systems for
the majority of the Airbus fleet, including
all models of the A320 and A330/340
family. Nord-Micro has also been the
supplier for the Boeing 737 CPCS for
many years and is now working with
Boeing to define and develop the CPCS
for the Boeing 787 aircraft. About Vector
Software Vector Software, Inc. is a
leading independent provider of
automated test tools for software
developers. Established in 1989 as a
consulting and service organization,
Vector's product focus is to empower
software professionals to deliver the
highest quality software in the least

amount of time. Vector's "VectorCAST"
line of products, reduce the burden placed
on individual developers by automating
and standardizing application component
level testing. This innovative technology
developed by Vector represents the "next
generation" of intelligent embedded
software test tools. The tools support Ada
83/95, C/C++ and Embedded C++
(EC++). The market focus of Vector is on
companies performing embedded systems
development for aerospace, military,
medical, telecom, and process control
related projects. Vector Software s
Product Family VectorCAST/Ada
VectorCAST/C VectorCAST/RSP
VectorCAST/Cover MC/DC add-on
capabilities DO-178B Qualification
Packages

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. -- su]
Date: Tue, 08 Mar 2005 18:00:00
Job Summary: Position requires
performance of all duties related to the
RSA products transitioning to the Range
and of RSA product sustainment activities
after transition.
* Review, preparation and presentation of
various technical documents and formal
briefings for delivery to the Government
and SLRSC management.
* Familiarization and compliance with the
established SLRSC Policies and
Procedures, always exercising initiative,
good judgment and discretion.
Qualifications: BS degree in a technical
field plus 5 years of applicable
experience. Must have:
* Five years of experience with
UNIX/AIX/Linux/VxWorks systems
throughout the project life cycle.
* Experience with Ada, C, C++, as well
as an understanding of Object Oriented
design and development.
* Knowledge of and experience with
Range Systems and the Space and Missile
Systems Center Organizations.
* An understanding of system
specifications and requirements
allocations.
* Strong analytical skills and an
understanding of component interaction
and sub-system hardware and software
functionalities.
Date: Wed, 16 Mar 2005, 14:00:00
[...] candidate must have a solid
background in simulation software
development. Experience with ground
force gunnery simulation would be a plus.
Skill Set: Ada, Ada 95, Simulation
software experience, B.S. Computer
Science.

Ada in Context 85

Ada User Journal Volume 26, Number 2, June 2005

For immediate consideration.
Date: Tue, 12 Apr 2005, 12:00:00
Praxis High Integrity Systems have
vacancies in the UK in Bath,
Loughborough and London.
The prime requirements are:
* a passionate desire to put engineering
into software engineering;
* a willingness to learn; and
* flexibility in the kind of work done
which may range from software
development through to process
consultancy.
We are interested in people with a broad
understanding of engineering discipline
and familiarity with entire development
lifecycles. We are not simply looking for
"Ada programmers"; however, the likely
jobs have a software bias and those who
appreciate the benefits of Ada are likely
to be the kind of people we want.
Date: Tue, April 21 2005, 14:00:00
[...] Senior Software Engineer position
developing in Ada. The position will
involve the design, development and test
of software utilized by the U.S. military
and other customers for tactical
communications. These are long term
projects that have been ongoing for
several years. A solid background in
programming in the Ada language is
required. Development experience using
Rational APEX environment is preferred.
The position also requires experience in
the full software lifecycle.
Responsibilities will also include
measuring and evaluating product defects,
applying rigor in design and coding
practices, evaluating risks, evaluation of
project metrics, and interfacing with
Systems Engineering and Program
Management in the discussion/resolution
of issues and the management of
interdependencies. Effective
communications skills are necessary.
Secret clearance will be required. Though
the position will be primarily Ada
development, there will be some C++
development as well. So the following
will also be considered in the evaluation
of candidates: C++, XML, Rational Rose,
MS Visual Studio, MFC, Windows
NT/XP, OOA/D. Usually requires 8-12
years experience in the following: Ada,
C++, Object Oriented Analysis, Object
Oriented Design, Secret Clearance,
SEI/CMM, Software Engineer, Visual
C++, VxWorks and XML.

Ada in Context
Language Portability
From: Lionel Draghi

<Lionel.Draghi@Ada-France.org>
Date: Fri, 29 Apr 2005 23:23:30

Subject: Re: Ada.Text_IO and protected
objects (Was: [newbie question] tasks
and protected types)

Newsgroups: comp.lang.ada
> I think it actually does work in

Janus/Ada and in GNAT, but (in our
case at least), we aren't making any
promises that that will remain the case.
And its always bad practice to write
code that will work only on a few
compilers, especially something as hard
to track down as this would be.

I fully agree with you, […] but it's quite
difficult to ensure that no compiler
dependant behaviour is used in the code,
because no compiler I am aware of is kind
enough to put a warning on all
compiler/platform dependencies.
When porting, some problems will be
caught at compilation time (for example
representation clause that do not compile
with another compiler). Some will be
caught early at run time (for example
elaboration order issue). But some, like
this one, may not be noticed before
delivery, and will be really difficult to
track down, as you said.
And here is the limit of Ada portability
Myth. OK, Ada is probably the most
portable industrial compiled language.
OK, porting an Ada code is much faster
than any other compiled language. But the
situation is not perfect. Ada is just 99.5%
portable :-)
Those "inaccuracies" in the Ada
semantics are possibly inevitable,
precisely because of portability across
platform, and maybe also to preserve
different compiler implementation
options.
So, the only way I see to ensure that an
general Ada code is fully portable is an
ASIS tools that will warn about all risky
code. A kind of portability lint.
From: Lionel Draghi

<Lionel.Draghi@Ada-France.org>
Date: Sat, 30 Apr 2005 09:21:08
Subject: Re: Ada.Text_IO and protected

objects (Was: […])
Newsgroups: comp.lang.ada
> Isn't there in GCC/GNAT any options

like "-pedantic" and "-ansi" in order to
reject all programs that do not strictly
follow the standard?

But non-portable programs follow the
standard, that's my point. (Fortunately, in
the Ada world, not following the standard
is not an option).
That's why you may write code that
perfectly run with GNAT, unaware that it
won't run that fine with another one.

Multicore CPUs vs.
Hyperthreading
From: Bini <fracttcarf@yahoo.co.kr>
Date: 31 Mar 2005 17:54:47 -0800
Subject: ada and multicore

Newsgroups: comp.lang.ada
What is a special benefit than C or C++
on multicore CPUs? Will Ada be a little
more popular language? I used Ada 3
years, and I like Ada more than any other
programming language...
From: Tom Moran <tmoran@acm.org>
Date: Fri, 01 Apr 2005 02:56:36 -0600
Subject: Re: ada and multicore
Newsgroups: comp.lang.ada
Ada has robust multitasking built in,
which makes it simpler and more natural
to write programs that take advantage of
multiple processors. Ada programmers
are thus also more likely to be
comfortable with writing for multitasking.
In another thread here, some Ada versions
of a simple word counting benchmark
were compared to C versions. But a
multitasking Ada version, a simple
modification of the straightforward single
tasking version, was shown to run about
50% faster on a dual CPU system.
From: Marin David Condic
Subject: Re: ada and multicore
Date: Fri, 01 Apr 2005 13:19:34
Newsgroups: comp.lang.ada
Of course, the caveat has to be that the
compiler and possibly the underlying OS
(if there is one - the RTK if not) has to
have adequate support for multi-threaded
applications or you're not going to realize
a performance advantage. Naturally, this
is also true for any other language that has
some kind of multi-threading capability.
If one is truly interested in getting the
advantages Ada can offer in terms of
performance via multitasking, be sure to
do adequate research up front and make
sure you REALLY understand tasking &
its possible implications. I've seen
programs that have numerous tasks in
them designed by people who probably
didn't really understand what they were
doing and they don't get a performance
gain - or they take a performance hit.
Check the compiler & OS first. Start with
simple uses of multitasking. Learn and
understand what it does before trying to
use it in critical applications.
From: Tom Moran <tmoran@acm.org>
Date: Fri, 25 Mar 2005 18:28:23 -0600
Subject: Gnat 3.15p & Windows &

Hyperthreading Q
Newsgroups: comp.lang.ada
I'm told that a multitask program
compiled with Gnat 3.15p and run under
Windows XP Pro on a hyperthreaded
machine, runs in the same total time as
the same program using a single task.
OTOH, when compiled with GNAT
5.02a1 and run on a dual-processor 400
MHz Celeron running Mandrake Linux
8.2, it runs about 50% faster with two
rather than one tasks. Is the problem
"hyperthreading", Windows, or Gnat
3.15p?

86 Ada in Context

Volume 26, Number 2, June 2005 Ada User Journal

From: Steve <steved94@comcast.net>
Date: Fri, 25 Mar 2005 20:45:41 -0800
Subject: Re: Gnat 3.15p & Windows &

Hyperthreading Q
Newsgroups: comp.lang.ada
Another data point, but not one you asked
for...
I have seen Gnat 3.15p take advantage of
dual Xeons on a W2k machine. So I don't
think there is anything wrong in general
with Gnat 3.15p on dual processors.
From: Wiljan Derks

<Wiljan.Derks@zonnet.nl>
Date: Tue, 29 Mar 2005 20:33:05
Subject: Re: Gnat 3.15p & Windows &

Hyperthreading Q
Newsgroups: comp.lang.ada
I did some performance tests on XP
professional with hyperthreading on a
2.8Ghz P4. For that I used some code that
checks the CPU performance. I did this by
making some compute procedure and
check how often it is calculated.
In my program I did make multiple tasks
to check the functioning of hyper
threaded.
It turns out that hyper threading does not
help at all with the total performance that
is available.
My conclusions where as follows:
* When hyperthreading is turned of, the
system can do X computations.
* When hyperthreading is turned on and
both threads are loaded, each of them can
typically do less then X/2 computations.
Thus turning on hyper threading gives
basically two CPU which are both half
speed when being used. When one of the
CPU's is free, the other is faster. So it
looks like one CPU is multiplexed in time
(but very fast).
The only advantage that hyper threading
has, is that the system might be more
responsive.
Thus when accidentally locking one CPU
at high priority, one can still break into
the system (using the other CPU).
From: Adrien Plisson <aplisson-

news@stochastique.net>
Newsgroups: comp.lang.ada
Subject: Re: Gnat 3.15p & Windows &

Hyperthreading Q
Date: Wed, 30 Mar 2005 10:48:50
OK, let's release some misconceptions
about HyperThreading: A
HyperThreading enabled processor DOES
NOT have 2 cores.
It's not clear at all when you look at Intel's
overview of HyperThreading. They really
like to tell it runs as if it were 2
processors. This may look like true for
simple office tasks, which are not
computationally intensive. Unfortunately,
for software developers used to
multitasking and trying to get the most of
their system, it is evident that it is NOT 2
processors.

Actually, an HT processor has one core,
which makes it no faster than a single
processor. What's different is that it has 2
sets of "states", allowing for more
efficient context switches. As noted by
Wiljan, this makes the system more
responsive.

Recompilation of Large
Projects
From: Ludovic Brenta

<ludovic.brenta@insalien.org>
Date: Thu, 17 Mar 2005 20:47:20
Subject: Re: How to cache output of the

compiler aka ccache
Newsgroups: comp.lang.ada
> I have a 1mio LOC project and it takes

multiple hours to build and rebuild. The
C/C++ world has nice tools (ccache is
well known here) which cache the
output of the compiler. This especially
speeds up the time for a "make
clean;make".
Is there such a thing for Ada in general
and gcc's gnat specially? Any other
way to speed up the compilation?

ccache does not work with GNAT (I tried
it). However, "make clean" is seldom
necessary where I work, and "gnatmake -
m" does minimal recompilation. This
really speeds things up.
From: Simon Wright

<simon@pushface.org>
Date: 18 Mar 2005 19:22:00
Subject: Re: How to cache output of the

compiler aka ccache
Newsgroups: comp.lang.ada
We absolutely rely on ["gnatmake -m"];
the handwritten code is in separate proper
bodies, 99% of specs and package bodies
are generated, and the only way to change
them is to change the model and re-
generate.
One thing to watch out for is that when
deciding whether a unit needs to be
recompiled GNAT first checks the
timestamp of each dependency; it the
timestamp is different it checks the
contents of the dependency and only
recompiles if there's a semantic
difference.
So recreating lots of identical source will
mean that the dependencies have to be at
least parsed. This can take quite a time (I
think mainly the overhead of
opening/closing the files).
We had an interesting bug with 3.16a1 on
Windows where compilations ran slower
if the compiler had been installed in the
winter months (outside daylight saving
time) -- a feature involving the Windows
installer, I think; the timestamps in the
library were all one hour out.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: 17 Mar 2005 14:40:48 -0500

Subject: Re: How to cache output of the
compiler aka ccache

Newsgroups: comp.lang.ada
Well, I had never heard of ccache before,
so I just went and read about it. I am
rather mystified by the *point* of it. I
mean, if I don't want to recompile stuff
that hasn't changed, I just don't type
"make clean". If for some reason I want to
rebuild everything from scratch, I type
"make clean" (or rm -rf build_area or
whatever) -- but then ccache *defeats*
that, and does *not* rebuild everything
from scratch. I don't see the point of that.
It seems like a contradiction -- I want to
rebuild everything from scratch while
avoiding rebuilding everything!
The only thing I can think of is that if
your makefile is buggy (missing
dependences) it won't rebuild some things
that depend on some .h files, and you'll
get mysterious bugs. So rebuilding from
scratch is more reliable. And ccache
actually decides whether to run the
compiler *reliably* (whereas 'make' does
not). Is *that* why people use ccache?
Don't people automatically generate the
make-file dependences for C code these
days? It seems crazy to try to keep the
make file in synch with the #includes by
hand!
Anyway, the buggy make file problem
does not happen with Ada. All Ada
compilers come with a build tool that
reliably decides what needs to be
recompiled, and does it. In AdaMagic, it's
called adabuild. In GNAT it's called
gnatmake. Also, if you try to link an Ada
program where the parts are
inconsistently compiled you will get an
error at link time. You never need to
invoke the compiler directly -- just use the
build tool.
If you're writing a make file for an Ada
program, you should *not* put in
dependencies for the Ada code! Instead,
use a .PHONY rule to unconditionally
invoke the build tool. Don't type "make
clean" (except perhaps in your nightly test
script, where you don't have to wait for
it), but trust the builder to decide what
needs recompiling and to keep things
consistent.
You don't even need to use 'make' with
Ada at all, if all you want to do is rebuild.
But it's convenient to have make-file
targets like "rebuild if necessary and run
the regression tests".
From: Ludovic Brenta

<ludovic.brenta@insalien.org>
Date: Thu, 17 Mar 2005 21:04:56
Subject: Re: How to cache output of the

compiler aka ccache
Newsgroups: comp.lang.ada
Yes, Ada defines separate compilation
cleanly. C does not, and Makefiles were
created to make up for it. Makefiles can
become very complex in the presence of
preprocessors or rules that build a

Ada in Context 87

Ada User Journal Volume 26, Number 2, June 2005

program that generates code which is
compiled later on (this happens e.g. in the
GCC bootstrap process).
It takes a lot of care to get these Makefiles
right, and even then they tend to be very
brittle. ccache was created to make up for
that.
The Ada model is indeed clean, simple
and reliable. Sometimes, it is necessary to
supplement it to provide pre-processing
facilities, or to select the units to be
compiled from a CM system. Simple
scripts or minimalist makefiles can do
that.
From: i-google-iasuhdkajsh@rf.risimo.net
Date: 17 Mar 2005 22:58:18 -0800
Subject: Re: How to cache output of the

compiler aka ccache
Newsgroups: comp.lang.ada
There are two main gains scenarios where
a cache helps.
1) make clean;make
You think that there are no reason for this.
However I disagree. There are cases you
need to rerun configure and afterwards the
make clean;make idiom. Reasons for this
could be:
 - you have changed the version/flags of
tools you use
 - you have changed the configuration
somehow (adding sound support for
example)
 - poor/bad make files for non-Ada code
In my project are multiple compiler
generators and C/C++ and Java source
code. So there is a configure and make
clean;make is a good way to make sure
you have a good build.
2) Sharing between trees
I also want to give here two examples.
The first is when a group of local
developers share such a cache. If now an
external CVS change comes in only one
developer has to wait. In the best case you
could do a background cache filling based
on new CVS code with cron and co.
The second case for sharing is multiple
trees. Let me give you an example:
 $ cd tree.clean
 $ make
 $ cd ..; cp -a tree.clean tree.patched; cd
tree.patched
 $ patch -p1 <....
 $ make
 # nothing gained so far. Two days later
however there
 # is an external CVS change.
 $ cd ../tree.clean
 $ cvs up; make
 # testing ... ok. Let's test the patched
version
 $ cd ../tree.patched
 $ cvs up
 $ make
 # The last make should really be sped up.
So you see there are more or less valid
reasons for a compile cache.

Thanks for the -m switch hint. I will try it.
From: Martin Krischik

<martin@krischik.com>
Date: Fri, 18 Mar 2005 09:07:17
Subject: Re: How to cache output of the

compiler aka ccache
Newsgroups: comp.lang.ada
Tools like ccache or precompiled header
files usually optimise "#include" which is
indeed the main performance killer in
C/C++ compilations - however Ada does
not have "#include" - the with command
works differently.
That much for a general comment - for
more specific help we would need to
know which compiler you are using.
From: Ludovic Brenta

<ludovic.brenta@insalien.org>
Subject: Re: How to cache output of the

compiler aka ccache
Date: Fri, 18 Mar 2005 02:24:28
Newsgroups: comp.lang.ada
>> The Ada model is indeed clean, simple

and reliable. Sometimes, it is necessary
to supplement it to provide
preprocessing facilities, or to select the
units to be compiled from a CM
system. Simple scripts or minimalistic
makefiles can do that.

> Yeah. And nowadays makefiles is
mostly used as an output language from
Configure. Write-only makefiles.
Completely unreadable and
unmantainable. And in my experience,
more often than not these makefiles
don't work. For example, building
Graphviz, or ZLib on a Mac OS X. I
end up studying the macrostructure of
the code (the C units, which ones are
libraries, which ones are programs) and
then compiling by hand, or writing a
small, readable makefile by hand, and
eventually using Libtool (and
sometimes Ranlib, another idiotic tool).
For me Configure was a waste of time.
Its 72-page manual is in the bin.

Hehe... C had separate compilation, but
no dependency management. To
overcome this limitation, Makefiles were
created, but they were not portable
enough. To overcome this limitation,
configure scripts were created. At first
simple, they had to take into account the
idiosyncrasies of more and more host and
target platforms and became unwieldy
and fragile. To overcome this limitation,
autoconf was created, but it still cannot
possibly know everything about every
host and target platform. To overcome
this limitation, automake was created.
Now, autoconf and automake work hand
in hand, each using a mix of several
cryptic languages. They have become so
fiendishly difficult to maintain that few
people if any at all understand how they
work. To overcome this limitation, ...
This isn’t the Tao of Programming ☺

Who Will Champion Ada?
From: Michael Card

<thehouseofcards@mac.com>
Date: Thu, 10 Mar 2005 02:33:15 GMT
Subject: NOACE- End of the road for Ada?
Newsgroups: comp.lang.ada
It seems that everywhere I look, I see
articles about the DoD world being
anxious to purge Ada from all their
systems in favor of C++ and Java. For
example, see:
http://www.cotsjournalonline.com/home/a
rticle.php?id=100149
This article references the Navy Open
Architecture Computing Environment
(NOACE -love that acronym) which
specifically calls for a move away from
Ada and requires all new software to be
done in C++ or Java ("the C++
mandate"?)
My question is this: why are so many in
the DoD itself and the contractors world
opposed to Ada? The projects I have been
on that used Ada got good results out of it
in terms of system performance and
development schedule. In both of these
regards, the results were generally better
than comparable C/C++ projects. So, was
my experience unique? Were there great
Ada failures (huge cost over-runs, bad
performance, etc) that left such a bad taste
in people's mouths that even nice products
like modern Ada 95 compilers are
unwelcome?
Also, as Ada is being abandoned in the
aerospace industry, is there evidence that
it is being picked up elsewhere?
From: Michael Card

<thehouseofcards@mac.com>
Date: Thu, 10 Mar 2005 13:42:34 GMT
Subject: NOACE- End of the road for Ada?
Newsgroups: comp.lang.ada
Whenever I have searched for the
justification for these decisions, what you
hear is stuff like "we want to use what
everyone in the commercial world is
using because it's easier to find
programmers." It's rather a fad-chasing
mentality, which seems strange given
what we're talking about building. I find it
hard to believe the use of C/C++ actually
saves money vs. Ada no matter how many
C++ programmers are on monster.com.
Does anyone know of any actual cost data
that supports the "fad-du-jour language X
is cheaper than Ada due to availability of
programmers" argument?
From: <svaa@ciberpiula.net>
Date: 12 Mar 2005 11:08:11 -0800
Subject: NOACE- End of the road for Ada?
Newsgroups: comp.lang.ada
Yes, Ada is still running because of
inertia, and because of inertia it still will
run for a long time. But it's a fact that
there are very little people interested in
Ada (companies, professional
programmers, students or just curious).

88 Ada in Context

Volume 26, Number 2, June 2005 Ada User Journal

The DoD is moving to other languages,
and there are a few big projects out of
DoD, but they eventually will move into
other popular languages.
You shouldn't need to read this article to
realize that Ada is almost irrelevant, and
that's the trend.
Why? How Ada has reach that point of
irrelevance? What can be done to change
the trend?
Those are common threads in this forum.
Just search.
From: Stephen Leake

<stephen_leake@acm.org>
Date: Sat, 12 Mar 2005 20:59:10 -0500
Subject: NOACE- End of the road for Ada?
Newsgroups: comp.lang.ada
I was just at a talk by Rod Chapman of
Praxis Critical Systems; they sell SPARK
and services using SPARK. They are
growing, and several other tool vendors
are starting to support SPARK; Ilogix, for
one.
SPARK is a statically analyzable subset
of Ada; the safety and security critical
fields are beginning to realize that can
save them money. AdaCore is also
growing.
Hmm. Perhaps _you_ need to read some
other articles ☺
Pay attention to what's really going on.
From: <svaa@ciberpiula.net>
Subject: NOACE- End of the road for Ada?
Date: 13 Mar 2005 04:44:28 -0800
Newsgroups: comp.lang.ada
Denying reality is not a way to solve
problems.
Borland is [also growing], so Sun does, so
C++ does, so Java does, so others do.
The fact that AdaCore is growing may
only mean that AdaCore is collecting all
potential Ada customers that don't have
any other company. Perhaps AdaCore is
growing not because a new Ada golden
age, but at expenses of companies that
don't work with Ada anymore. The
market of Ada is so small the there is only
room for a few companies. When a
company stops developing with Ada, the
rest of companies, that still use Ada, grow
a little.
You live in bubble. You should read
another articles too. Not only those that
tell that Ada is lingering, but those about
Java, about C++, about C, about PHP
about Perl, about Ruby, about Python...
This look like Esperanto. I played a little
with Esperanto. Thanks to the Internet
Esperanto is growing. So what?. If you
live inside esperanto movement, the
Esperanto has a lot of associations,
literature etc. You see esperanto
everywhere, and you conclude that
esperanto is quite alive. If you look
esperanto from outside, esperanto is
irrelevant.

If you program most of time with Ada,
work on a company/organization that
works with Ada, you read articles that
support Ada, you go to conferences about
Ada, accept good news about Ada, but
filter bad news about Ada. You will
conclude that Ada is quite alive.
If you look Ada from outside, you see that
Ada is lingering, that it's difficult to find a
job for Ada, and if you find it, 99% will
be to support legacy systems, and
probably until they move to another
language. You can find a thousand tools
and libraries for any language and choose.
For Ada you must go to half a dozen
sites/companies and take what you find
there.
NOACE movement is a good show of
what's going on related to Ada. For each
new project in Ada with a big hype in
Ada related conferences, congresses, and
websites, you can find 100 projects that
are giving up Ada silently. In
demography, more deaths than births is
called negative growth.
From: Stephen Leake

<stephen_leake@acm.org>
Date: Sun, 13 Mar 2005 09:22:26 -0500
Subject: NOACE- End of the road for Ada?
Newsgroups: comp.lang.ada
I did not deny anything, I merely pointed
out some sources of information that you
appeared to be unaware of.
Rod Chapman made an interesting point.
Ada has less than 0.1% of the
programmer market. BMW has less than
0.1% of the car market. Is BMW a failure,
or a successful niche player? Ada is a
successful niche player.
The market for high-end cars is also
small. Hmm. Does "irrelevant" mean
"dead"? I don't think so.
If you don't want to join us in our Ada
"bubble", fine. But have the grace to leave
us alone ☺
"A job for Ada"? Do you mean "a job that
requires Ada knowledge"?
Any problem that requires programming
is potentially "a job for Ada"; those are
certainly not hard to find.
Any job that requires a particular
programming language is not one I'm
interested in; I'm interested in using the
best tool for the job.
If that means I'm in a "bubble", fine.
If that statistic were true for the last
several years, no Ada company would be
in business now, since no company can
lose 99% of its business several years in a
row and survive. That is demonstrably
false; just look at the AdaIC list of Ada
compiler companies; it has been stable for
the last several years.
So I conclude your statistic is not true.
From: Dr. Adrian Wrigley

<amtw@linuxchip.demon.co.uk.uk.uk>

Date: Sun, 13 Mar 2005 23:20:32 GMT
Subject: NOACE- End of the road for Ada?
Newsgroups: comp.lang.ada
If there had been 1,000 projects, losing
100 projects silently, and gaining one
project (with fan boy fanfare) gives 901
projects remaining. This could last all of...
ten years before annihilation. It's even
plausible, if you count projects (e.g.) >5M
SLOC. But it is not a 99% loss each year.
Curiously, in the world of hardware/chip
design, the same debate about VHDL
(with Ada's discipline/syntax) vs. Verilog
takes place. But VHDL has a large (not
majority) base. Nobody seems to worry
much about VHDL being a DoD
language. And its fanaticism for precision
and reliability isn't seen as useless,
redundant or lacking "power". But the
"new" upstart in hardware design
(amazingly) is "C" (subsetted, tweaked).
(The hope is you can get programmers to
design hardware!)
I've always thought that Ada would
benefit by being much more closely
associated (even merged) with VHDL.
But (AFAICT) few VHDL users have
ever used Ada, and vice-versa. Given that
they are nearly identical, why are no
synergies found?
The [debate of the thread "Teaching new
tricks to an old dog (C++ -->Ada)"]
shows how amazingly ill-informed people
are about the Ada language features.
(people say "do not think it supports
generic programming", '"manually added
checks" in C++ would be identically
eliminated to the automatic checks in
Ada', 'what's the use of rep. specs, except
to restrict portability(?)' etc.)
Clearly the beliefs and reputation are a
major part in language choice.
The three ways you can make a popular
language are:
1) Extend a popular language (C++, F77)
2) Start from scratch with big budget
(Java, C#)
3) Fill a big market vacuum with
something that works (Fortran, C, Cobol,
PostScript, Perl <at various times>)
I'm not aware of any popular languages
that came about in any other way. Ada
tried to be 2, 3. But the market vacuum
was in the eyes of the DoD, not the
users/contractors. Ada has failed to
become a popular language (in terms of
users), and now none of these three
possibilities can be used to rectify the
situation.
Any language designer/advocate who
wants to promote the Ada ideals would be
best trying again (don't start from here!).
For example:
- find a popular language and transplant
Ada features (C99 with tasks, arrays,
generics etc? (a real bastard)(too late?)
takes us back to the infamous "Ada syntax
turns people off!)

Ada in Context 89

Ada User Journal Volume 26, Number 2, June 2005

- get a big backer to force a new Ada-
inspired language into the market (too late
for C# or Java, but they could easily have
taken much more from Ada, if enough of
the right persons had been there!)
- think up something radical and new in
programming, and infuse it with Ada
principles. (we had 4GL and Fifth
Generation, what next? 6GL? Wikipedia
doesn't yet have "Sixth-Generation
languages" entry!) (my personal view is
that a decent "visual programming
language" could find a market vacuum
sometime in the next thirty years, and is
ready to be invented. Nothing so far has
been terribly useful or general, so the field
has been written off.) (any more ideas on
this topic?)
back to the original topic... NOACE does
seem to be a real step backwards. It looks
a lot like a "Java Mandate", but
acknowledges that there will be many
exceptions, which C++ would probably
meet. I think it's very risky, since newer
languages tend to have a shorter lifespan
and change faster than mature languages.
It clearly is motivated by much more than
the technical merits of the language. But
if colleges switch to teaching "C2#" or
"Guam" a decade from now, they might
be stuck with a poor technical solution,
serviced by a declining programmer base.
And if they have to have specialized
variants of Java for their high reliability,
sub-microsecond real-time applications,
they risk having a total "language isolate"
on their hands.
Interesting that Boeing doesn't like Ada or
C++. It'd be interesting to understand why
each of these fails to meet their needs.
Particularly since both languages'
advocates usually say they are much more
suitable than Java for almost any
application!
From: Michael Card

<thehouseofcards@mac.com>
Date: Mon, 14 Mar 2005 00:25:49 GMT
Subject: NOACE- End of the road for Ada?
Newsgroups: comp.lang.ada
Good post, my experience has been
consistent with the experiences cited by
Richard Riehle in his post on this thread.
The only rationale I can come up with to
explain the DoD's anti-Ada bias is that
some high-up folks in the Pentagon didn't
like it, maybe because it was from DISA
(I get the feeling DISA is one of the
lesser-loved branches of the DoD). This
distaste for Ada by the services
themselves (USN, USA, USMC, USAF)
would certainly be quickly mirrored by
the contractors, since the services are the
ones paying them, not DISA. So, a dislike
for DISA mandates on behalf of the
armed services ends up being reflected in
their contractors, who want to "suck up"
(not in the bad sense) to their customers
as much as possible to win contracts.

This is the only explanation I can come up
with, because I have never seen a study
that says "we did this multi-million line
job in C++ and boy are we glad we did;
we saved so much $ vs. past similar jobs
we have done in Ada". In fact, the studies
out there that I am aware of say just the
opposite.
I am wide open to receiving a C++ cost
savings study, however; I just haven't
been able to find it. If someone can send
me link I'd be happy to read it and be
educated about it. My experience with
C/C++ on large DoD style projects
suggests the usual culprits [memory
corruption and concurrency problems]
make it a more expensive choice than Ada
because it takes longer to get the bugs out.
From: Ed Falis <falis@verizon.net>
Date: Mon, 14 Mar 2005 02:11:33 GMT
Subject: NOACE- End of the road for Ada?
Newsgroups: comp.lang.ada
From the COTS Journal article:
"The Navy, for example, has crafted its
Navy Open Architecture Computing
Environment (NOACE) to be the standard
for all future software systems on Navy
warships. That includes shipboard
weapon systems, such as anti-aircraft
cannon controls as well as avionics
systems aboard naval aircraft. The
standard calls for all new software to
develop in either C++ or Java, and makes
specific mention of moving away from
Ada. They plan to continue to use Ada
only as required to support legacy systems
that have already been developed."
I've heard that the NOACE document has
not yet been released - that what COTS
Journal has been making such a big deal
about was a leaked draft and not the final
statement of policy.
Perhaps it's better to wait for the final
document to be published?
From: Dr. Adrian Wrigley

<amtw@linuxchip.demon.co.uk.uk.uk>
Subject: NOACE- End of the road for Ada?
Date: Mon, 14 Mar 2005 02:29:53 GMT
On the contrary! One of the reasons for
leaks is to allow outsiders to comment on
plans before they are committed to. If a
document is officially released, changing
it may be politically sensitive and/or slow.
Much more convenient to listen to the
backlash from a leaked draft, deny the
plans, fix them and release the "final"
document with the bugs fixed. This makes
commenting on leaked drafts a good idea!
Here in Britain, deliberate leaks seem to
be a major part of government
policymaking. With NOACE however, I
think we'd be whistling in the wind.
From: Peter C. Chapin

<pchapin@sover.net>
Date: Sun, 13 Mar 2005 19:58:43 GMT
Subject: NOACE- End of the road for Ada?
Newsgroups: comp.lang.ada

I noted with interest that the recent release
of KDevelop offers Ada support (no
doubt due to gnat being a part of gcc). Is
Ada gaining favor in the open source
community? I should think that the
availability of a good quality, free
compiler would be attractive to open
source developers.
Some people I talk to say things like,
"Ada is that DoD language, and I'm not
into military stuff." It seems like Ada's
association with the DoD has not helped
it... at least not lately. However, if Ada
attracts the attention of students and
hackers (I'm using the positive meaning of
"hacker" here), that might be very good
for its long-term future.
Peter (who is a student thinking about
using Ada in a class project)
From: Pascal Obry <pascal@obry.org>
Date: 13 Mar 2005 21:14:50
Subject: NOACE- End of the road for Ada?
Newsgroups: comp.lang.ada
I hope so too. It seems to be right. Despite
what can be read here and there I found
that Ada is used more and more these
days. The traffic here in comp.lang.ada is
bigger than what it used to be (5 or 10
years ago). And we have some great Open
Source projects around... All this led me
to think that Ada is on the right tracks...
From: Richard Riehle

<adaworks@sbcglobal.net>
Date: Sun, 13 Mar 2005 18:42:35 GMT
Subject: NOACE- End of the road for Ada?
Newsgroups: comp.lang.ada
The move toward Java has nothing to do
with whether Java is superior to Ada. It's
not. Is it easier to learn than Ada? No. Is it
more efficient than Ada? Certainly not. Is
it easier to code than Ada? Not at all.
Does it produce better executables? Not at
all.
So why is it taking over the programming
landscape like kudzu or crabgrass on an
Alabama lawn?
I attended a seminar presented by a U.S.
Navy Admiral a couple of years ago on
the subject of software in the Navy. He
droned on for a while about his view on
this subject and finally came to Ada. His
opening remarks to this topic, "And then
there was the Ada fiasco!" In his
comments he noted that Ada was hard to
learn, even after hiring the best teachers
the Navy could find, there were no good
tools available for development and
maintenance, all the programmers hated
it, no one wanted to support it, everything
they did related to Ada created more
trouble than it was worth.
This perception of Ada throughout much
of the Navy, and throughout much of the
DoD persists. I work daily with DoD
people who believe Ada was one of the
most idiotic initiatives the DoD ever
pursued. At the school where I teach, Ada
was once required. Now it is hardly

90 Ada in Context

Volume 26, Number 2, June 2005 Ada User Journal

mentioned (except in some of my
classes). Sometimes, when I visit the
office of one of my colleagues, I see old
copies of Ada books (most Ada 83) on the
bookshelves. The only two languages
most people want to acknowledge are
Java and C++, and of those, Java gets the
larger share of attention.
Java, for all its faults, is the current
darling of decision-makers and
academics. Many of my students find Ada
easier to learn after they have learned
Java. Most of them hate C++, but the
have to learn it to successfully complete
their required class in computer graphics.
There are almost no circumstances where
they must use Ada, let alone know
anything about it.
I continue to believe that Ada is as good,
often better, as a programming language
than either Java or C++. But that is not a
widespread belief throughout the DoD.
Rather, the more dominant view is that
Ada is now an old-fashioned language,
more in the category of PL/I, COBOL,
old versions of Fortran, etc. It is seen as
old, in part because it is regarded as a
language of the early 1980's. Java is the
language of now. Ada is the language of
then. For many, C++ is also the language
of then.
There is no large company currently
pushing Ada. There are no substantial
financial resources behind it. Even the
companies that publish Ada compilers,
with the exception of AdaCore, RR
Software, and Irvine Compiler, are
focusing their attention and their
advertising dollars on other products.
One Navy official said to me a couple of
years ago, "In five years you won't be able
to find anyone supporting Ada." That was
nearly five years ago, and he was wrong.
But how wrong was he? Does IBM take
its (Rational) Ada compiler seriously
anymore?
Ada certainly does not deserve the
reputation it has among DoD officials.
But, as long as the majority of
promotional dollars are devoted to touting
the (dubious) benefits of technologies,
even as those technologies are inferior to
Ada for military software, Ada will suffer.
Who will champion Ada? Currently, no
one with influence or power will come
forward to encourage the use of Ada.
Sometimes I speak with developers who
prefer Ada and still choose C++, not
because they prefer it but because it is the
easiest choice to make. Courage is not a
common characteristic of DoD
developers. To preach too openly the
benefits of Ada in the halls of a
contractor's office or the corridors of a
DoD facility is to risk being branded
"some kind of nut." I have been called an
"Ada bigot," more times than I can count -
- this, in spite of my continual assertion
that we should pick the right tools for the

right job -- and the right tool is often, but
not always, Ada.
From: Jared
Date: Mon, 14 Mar 2005 05:13:22 GMT
Subject: NOACE- End of the road for Ada?
Newsgroups: comp.lang.ada
This is wrong. I'm sorry. I like Ada. I
want to believe it is right, but it isn't. I
could be wrong about all of this. I often
am.
Sun is behind Java. They've been hyping
it. They've been pushing it. They've been
doing everything they can to keep it in the
press. That's great, and it gives Java a
chance to succeed, but that's all it gives it.
Java really is better, in a marketing sense,
and sort of better in a conceptual sense.
Rant abstract: Java is more popular
because its syntax better represents OO. If
you're bored of that argument, there is
another, much shorter one, at the first
separator. If you're bored of that one,
there's a third one, but it isn't very
constructive.
Java, as has been pointed out elsewhere
on this group, is basically C++ with all
the bad parts removed and with garbage
collection added. Java is comfortable to
all the C people, because of its syntax,
because of its culture, and because it
pretends to share the C++ idioms. Nobody
is going to switch to a language that feels
uncomfortable unless it has some really
neat gimmick. (For example, Oz and
Piccola have really neat gimmicks.) In a
market sense, even without the hype, this
makes Java better.
It's worse than that, though. Java got
namespaces mostly right. It got packaging
mostly right. A package isn't a
namespace. It's really tempting to identify
them, but the real namespaces are the
variables.
Why do you think Object.Method syntax
is so popular? What was the big deal with
the 'use type' clause? And what are all
those Smalltalk people yammering about
when they talk about sending messages to
objects? The variable is the namespace.
The method exists within it. It isn't in the
package. The package isn't really a real
thing; it's a variable of anonymous type.
The reason that Object.Method and
Package.Method are indistinguishable it
that they are indistinct.
So, for example, suppose I have:
package Thing is
 A : Integer := 0;
 procedure Do_Something;
end Thing;
....
type Thing_Type is tagged
 record
 A : Integer := 0;
 end record;
procedure Do_Something
 (T : in out Thing);
Thing : Thing_Type;

There's not much difference when I
declare it, except that the latter is much
more verbose and has to be embedded in a
package. There's no difference at all when
I use it. There is a difference when I try to
extend it, but was anyone paying attention
when Dmitry suggested that 'use' be
transitive?
What I mean by getting packaging mostly
right should be clear by now. The type
(class, or whatever one wants to call it) is
the natural unit of packaging. Consider
the following common idiom:
package Shoes is
 type Shoe is tagged record
 with private;
 ...
end Shoes;

With no other types declared in the
package. Wouldn't it just be easier to let
the type be a package? That's about all I
have to say about that.
So, in conclusion, Java represents a
cleaner presentation of OO than Ada.
But that's all it is. Java's model is not
really any better from Ada's; it just looks
better, or rather, it's presented in a way
that people prefer. It's just presentation,
but presentation is critical. Many
industries exist almost entirely on
presentation, with substance coming in a
distant second.
Yes, I know Ada was meant to be legible.
But it has a low signal to noise ratio.
Want Ada to be more popular? Write an
alternate syntax. Play up objects. Make
them the focus. Read up on the pi
calculus, and compare with protected
types and streams. Above all, if
something doesn't need to be said more
than once, it shouldn't be. [...]
Actually, I do have one argument besides
the old "the syntax sucks" dead horse.
Think about Perl.
Perl was created to solve a problem. It
thrives because it filled a niche, and did it
well. Ada didn't have that kind of focus.
The ARG needs to find new niches and
fill them well. It needs to defend hard
real-time and do so quickly, because that's
being lost to Java. A garbage collected
language! For real-time systems!
Government contracting isn't a niche. It's
a hog trough; a place to become bloated
and lazy.
And that's about all I have to say, unless
somebody needs a clarification. That quite
likely; I doubt the previous made much
more sense than it did the first time I tried
to formulate it.
Now, you don't have to buy into any of
that. So here's an alternate theory, based
on the grass analogy. From an article in a
university newspaper:
"One of the more common questions I'm
asked is how to control Bermuda grass in
the lawn. My standard reply is 'asphalt',"

Ada in Context 91

Ada User Journal Volume 26, Number 2, June 2005

says Jerry Goodspeed, Utah State
University Extension horticulturist.
Unfortunately, Bermuda grass can grow
through asphalt and really thrive.
There you go. Java is the weed that won't
die and Sun (pun not intended) is making
sure it stays that way.
Myopically focusing on Java and C++ is a
good way to ensure that Ada is never
more than marginally better than either.
There's a lot of research going on out
there.
Much of this research is geared at making
functional and denotational languages
more efficient. I have full confidence that
the Mozart/Oz people will screw up their
chance to become the Next Big Thing.
But somebody won't, and that could
happen tomorrow.
Where are the big bucks behind, say,
Ruby? What is Ruby's growth rate,
compared to Ada's? What can be learned
here?
Who will champion Ada? AWS. APQ,
maybe. The other projects. You. Maybe
me. We don't need big companies. We
don't need money. We need, if you'll
forgive me for putting it this way, the
coolness factor.
Step 2: ???
Step 3: Profit!
I'm still working on step 2.
From: Marin David Condic
Date: Sun, 13 Mar 2005 17:23:52 GMT
Subject: NOACE- End of the road for Ada?
Newsgroups: comp.lang.ada
I personally think your criticism is well
thought out and makes some valid points.
Irrational exuberance and rose coloured
glasses will not save Ada or make it more
relevant. I work in a DoD related field
and I can see the customers I have
packing their bags and moving on to other
languages. I can try to influence that
decision towards Ada, but they are not in
a position to spit into the wind and utilize
a language without much following in the
general computing world unless there is
some compelling reason. It is difficult to
find compelling reasons to offer them
when all the economics tend to get
stacked against Ada.
That said, let me offer this: It doesn't help
to be negative about it, nor does it help to
spend hours worrying about whether or
not someone likes you. If one gets stuck
in a rut of saying "Its all hopeless!!!" then
ipso facto, it becomes hopeless. If one sits
around all day thinking "Why doesn't
anyone like me? What can I do to get
people to like me?" it is similarly self
defeating. You'll never get everyone to
like you and trying will only expend your
efforts in a bunch of futile dodges. While
we're at it, being a Pollyanna about it
("Everything with Ada is WONDERFUL
in my little pastel coloured, unicorn
infested, rainbow, gumdrop world!")

doesn't help either. One denies the
obvious problems and refuses to take
action to make it better.
Some suggestions that might actually
help:
1) Do things in Ada that you want to do
and ignore those who keep saying its
going to hell in a handcart. Make as much
Ada code as possible. Make it as useful as
possible. Make it as available as possible.
The more Ada there is out there, the more
likely Ada has a sound future.
2) Quit thinking about making more
software technology or remaking things
that already exist in other languages.
Dream up things to make out of Ada that
aren't already done and that address some
bigger need. We keep thinking in terms of
"Here's this cool app someone wrote in C.
Let me rewrite it in Ada..." Hint:
NOBODY CARES THAT IT IS
WRITTEN IN ADA OR ANYTHING
ELSE. They care that it does some job.
Reinventing network tools or software
development tools or any other batch of
stuff that programmer-geeks like to build
doesn't really help if there are thousands
of them out there already and you have
nothing new & innovative to offer. Its
also a small market compared to the wider
world of general computer users. Think
about it this way: Build a better
mousetrap. What about a better office
suite? What about a better accounting
package? What about a better statistics
tool? What about a better structural
analysis tool? What about a better
"Simulink"? (I'd like to see one - and one
that generates Ada instead of C) Make
some better mousetrap that has usefulness
beyond the interest of a few programmer-
geeks.
3) Think about starting a business that
makes some useful product with Ada as
part of its technology. If Ada has so many
advantages, it ought to be a competitive
edge. If you build some sort of
commercial software or embedded system
or other useful product with Ada as a
component, then you create a market for
Ada tool vendors and a job market for
Ada programmers. The people who
program in C or C++ generally are not so
concerned about the language, per se.
They're busy building some cable TV
network or computational fluid dynamics
analysis tool or automotive control &
diagnostic computer. They sell that stuff
and hence have money to spend on stuff
like compilers and programmers.
4) Don't worry if the DoD guys want to
abandon Ada. Their motivation is one of
economics (primarily). Make Ada
economical and they'll come back. It was
and is a mistake to rely on them to create
the market for Ada. Ada has to have a
utilization in the greater world and not
just rely on the DoD. If the DoD
contractors find that some commercial
sector that is doing something similar to

what they want to do are using Ada as
part of their toolset, they'll follow.
Think about this for a minute: Say I'm a
DoD contractor and I have an application
that involves graphics in some regard.
They look at what guys in the private
sector are using - the GUI building tools,
the graphics libraries, etc., and they go do
the same. Why? Because they can readily
get the tools and readily get the people
who know how to use them and since it is
technology out there in the field, it is low
risk to their project. If Ada had the same
tools and libraries & skilled people out
there in real-world projects, they'd go for
that. But their objective is not to use Ada,
but to get a graphics job done. If some
Ada fan(s) were building the world's
coolest video games in Ada and making
money doing so & employing people to
do it and generating/licensing the
technology, wouldn't DoD contractors go
follow suit?
In the world I live in, I see a bunch of
tools that are variations on Simulink for
designing plant models & control
systems. Pretty much across the board,
these tools are designed to work in a style
akin to 1960's era Fortran programs. They
pretty much suck stylistically in that they
don't support most of the software
engineering kinds of features we've
developed since the 1960's. But they
basically do a job: Someone can model a
plant and model a control and test it out
on a workstation. Then the pressure
becomes to use the C code (few if any
still output Ada) they generate to be the
actual control code. That has problems,
but hopefully you can understand that
pressure: the model already exists and it
already works and there is already a test
suite, so why not dump it into the control
& scab up some more C code around it to
run the real time control?
I can imagine a much superior design &
modeling tool that might utilize lots of
Ada concepts like packages & tasking and
sophisticated data types and all sorts of
stuff. I can imagine a much superior
simulation environment that would buy
numerous improvements in flowing the
design into the actual box & testing it
with greater efficiency. If such a system
got built in Ada and generated Ada and
was based on Ada concepts and if it
helped do someone’s job better than the
existing technology, it might worm its
way into the control software market.
Perhaps finding users in the automotive
and aerospace industries. It might secure a
niche for Ada. This would be an example
of something that was being built for
reasons other than just to use Ada or make
Ada popular. It would be getting built to
make a better mousetrap and might have
the beneficial side effect of promoting
more Ada use. That kind of thinking
might get Ada somewhere.

 93

Ada User Journal Volume 26, Number 2, June 2005

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺denote events with close relation to Ada.
The information in this section is extracted from the on-line Conference announcements for the international Ada community
at: http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2005

☺ July 06-08 17th Euromicro Conference on Real-Time Systems (ECRTS'2005), Palma de Mallorca, Spain

July 06-12 17th International Conference on Computer-Aided Verification (CAV'2005), Edinburgh, Scotland,
UK. Topics include: Algorithms and tools for verifying models and implementations, Program
analysis and software verification, Applications and case studies, Verification in industrial practice,
etc.

☺ July 11-14 OMG Annual Workshop on Distributed Object Computing for Real-time and Embedded
Systems, Washington, DC, USA. Topics include: Real-time systems; Embedded systems; Fault-
tolerant systems; High-availability systems; Safety-critical systems; Real-time middleware, including
real-time CORBA; Modelling notations (including Unified Modelling Language, UML); High-level
real-time programming models; etc.

July 11-15 32nd International Colloquium on Automata, Languages and Programming (ICALP'2005),
Lisbon, Portugal. Topics include: Parallel and Distributed Computing; Principles of Programming
Languages; Formal Methods; Program Analysis and Transformation; Specifications, Verifications
and Secure Programming; etc. Affiliated Workshops on July 9-10 and 16-17, 2005.

July 11-15 1st International Conference on Open Source Systems (OSS'2005), Genova, Italy. Topics include:
Introduction of OSS in companies and Public Administrations, Empirical analysis of OSS, Case
studies and experiments, etc.

July 11 Workshop on Evolution of Open-Source Code Bases (EVOSC'2005). Topics
include: evolving open-source code bases, without losing the benefit of a community
working on the same software, etc.

July 17-20 24th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2005), Las Vegas, Nevada, USA. Topics include: all areas of distributed systems; including:
Distributed applications; Specification, semantics, and verification; Distributed middleware
platforms; etc.

July 18-22 13th International Symposium of Formal Methods Europe (FM'2005), Newcastle upon Tyne, UK.
Topics include: introducing formal methods in industrial practice (technical, organizational, social,
psychological aspects); reports on practical use and case studies (reporting positive or negative
experiences); tool support and software engineering; environments for formal methods; etc.

July 18-19 3rd International Workshop on Formal Aspects in Security & Trust (FAST'2005)

☺ July 18 Grand Challenge 6 Workshop on Dependable Systems Evolution (GC6). Topics
include: the current state of the art in strong software engineering tool-sets, and their
application to systems that have been deployed in practice.

July 19 Workshop on Rigorous Engineering of Fault-Tolerant Systems (REFT'2005).
Topics include: Development and application of tools supporting rigorous design of
dependable systems; Case studies demonstrating rigorous development of fault
tolerant systems; etc.

July 20-29 Summer School on Reliable Computing, Eugene, Oregon, USA. Topics include: current research in
reliability of software systems ranging from foundational materials on type systems, program
analyses, and model checking to advanced applications of the techniques in practice.

94 Conference Calendar

Volume 26, Number 2, June 2005 Ada User Journal

July 25-28 29th Annual International Computer Software and Applications Conference (COMPSAC'2005),
Edinburgh, Scotland, UK. Theme: "High Assurance Software Systems". Topics include: Dependable
service provision, Trustworthy software, Software safety, Software fault tolerance, High performance
software, Component-based software, Design patterns, Software certification, Software standards,
Software engineering education, Embedded systems, Middleware systems, Automotive telematics,
etc.

☺ July 25-29 19th European Conference on Object-Oriented Programming (ECOOP'2005), Glasgow, Scotland,
UK. Topics include: Concurrent, real-time and parallel systems; Design patterns; Distributed systems;
Frameworks and software architectures; Language design and implementation; Programming
environments; Adaptability; Formal methods; Software evolution; etc.

☺ July 25 Workshop on Exception Handling in Object Oriented Systems (EHOOS'2005).
Topics include: Programming constructs for exception handling, Experience reports,
etc.

☺ July 25 9th Workshop on Pedagogies and Tools for the Teaching and Learning of Object
Oriented Concepts. Topics include: successfully used exercises, examples, and
metaphors; approaches and tools for teaching (basic) object-oriented concepts;
approaches and tools for teaching analysis and design; ordering of topics, in particular
when to teach analysis and design; teaching outside the CS curriculum; experiences
with innovative CS1 curricula and didactic concepts; etc.

☺ July 25 4th Workshop on Parallel/High-Performance Object-Oriented Scientific
Computing (POOSC'2005). Topics include: frameworks and tools for scientific
object-oriented computing; tried or proposed programming language alternatives to
C++; performance issues and their realized or proposed resolution; issues specific to
handling or abstracting parallelism; existing, developing, or proposed software; etc.

☺ July 26 Workshop on Practical Problems of Programming in the Large (PPPL'2005).
Topics include: The role of the software-architect in the phases requirements
engineering, software design and development; Negative results: what went wrong
although it should have worked according to software engineering folklore; Keeping
systems with large amounts of classes / objects / modules / components organised;
Refactoring, software evolution and migration; etc.

☺ July 26 2nd Workshop on Programming Languages and Operating Systems (PLOS'2005).
Topics include: type-safe languages for OS; domain-specific languages for OS
development; language support for OS verification, testing, and debugging; etc.

August 23-26 16th International Conference on Concurrency Theory (CONCUR'2005), San Francisco, CA,
USA.

Aug. 29-Sept. 02 13th IEEE International Requirements Engineering Conference (RE'2005), Paris, France.

August 30 4th International Workshop on Requirements for High Assurance Systems (RHAS'05).

☺ Aug. 30-Sept. 02 11th International Conference on Parallel and Distributed Computing (Euro-Par'2005), Lisboa,
Portugal. Topics include: Support Tools and Environments; Scheduling and Load Balancing;
Compilers for High Performance; Distributed Systems and Algorithms; Parallel Programming:
Models, Methods, and Languages; etc.

Aug. 30-Sept. 03 31st EUROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO'2005), Porto, Portugal. Topics include: Component-Based Software Engineering,
Software Process and Product Improvement, Component Models for Dependable Systems, Value-
based Software Engineering, etc.

☺ September 05-06 10th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2005),
Lisbon, Portugal. Topics include: Verification and validation of complex, distributed, real-time
systems and embedded systems; Verification and validation methods that aim at circumventing
shortcomings of existing methods in respect to their industrial applicability; Case studies and project
reports on formal methods related projects with industrial participation (e.g. safety critical systems,
mobile systems, object-based distributed systems); etc.

Conference Calendar 95

Ada User Journal Volume 26, Number 2, June 2005

September 05-09 5th joint meeting of the European Software Engineering Conference and the Foundations of
Software Engineering Conference (ESEC/FSE'2005), Lisbon, Portugal. Topics include: Software
Specification and Verification, Component-based Software Engineering, Software Engineering Tools
and Environments, Software Frameworks and Middleware, Software Engineering and Security,
Software Safety and Reliability Engineering, Reengineering and Software Maintenance, Generative
Programming and Techniques, Software Evolution and Change Management, Software Economics,
etc. Deadline for early registration: July 29, 2005.

Sept. 05-06 International Workshop on Principles of Software Evolution (IWPSE'2005).
Topics include: evolution of requirements and environments; architecture for
evolution, evolution of architecture; methodology for evolutional design and
development; validation and verification of evolution; experience reports and lessons
learned from evolutional software systems; etc.

September 07-09 3rd IEEE International Conference on Software Engineering and Formal Methods (SEFM'2005),
Koblenz, Germany. Topics include: software architectures and their description languages; software
specification, validation and verification; integration of formal and informal methods; integration of
different formal methods; formal aspects of security and mobility; program analysis; fault-tolerant,
real-time and hybrid systems; analysis of safety-critical systems; light-weight formal methods; CASE
tools and tool integration; application to industrial cases; socio-economic implications of the use of
formal methods; etc.

September 07-09 12th International Static Analysis Symposium (SAS'2005), London, UK.

September 08-09 2nd International Workshop on Rapid Integration of Software Engineering techniques
(RISE'2005), Heraklion, Crete, Greece. Topics include: Software reuse, Lightweight or practice-
oriented formal methods, Software processes and software metrics, Design patterns, Defensive
programming, Software entropy and software re-factoring, Programming languages, Software
dependability and trustworthiness, High-availability or mission-critical systems, Embedded systems
and applications, Development environments, Enterprise computing and applications, etc. Deadline
for submissions: July 5, 2005.

☺ September 11-14 Workshop on Language-Based Parallel Programming Models (WLPP'2005), Poznan, Poland.
Topics include: Language and library implementations; Proposals for, and evaluation of, language
extensions; Applications development experiences; Comparisons between programming models;
Compiler Implementation and Optimization; etc.

September 12-13 5th International Workshop on Automated Verification of Critical Systems (AVoCS'2005),
Warwick, UK. Deadline for paper submissions: July 25, 2005 (short presentation abstracts).

☺ September 12-14 18th International Conference on Parallel and Distributed Computing Systems (PDCS'2005), Las
Vegas, Nevada, USA. Topics include: Parallel and Distributed Systems Software; Languages,
Compilers and Operating Systems; Libraries and Programming Environments; Message Passing and
Distributed Shared Memory Paradigms; Software Development, Services, Support, and Tools;
Middleware for Parallel and Distributed Computing; Embedded Systems; Parallel and Distributed
Applications; etc.

September 12-16 International Conference on Practical Software Quality and Testing (PSQT'2005 North),
Minneapolis, Minnesota, USA. Theme: "Software Testing: From Art to Engineering"

☺ September 13-16 International Conference on Parallel Computing 2005 (ParCo2005), Malaga, Spain. Topics
include: applications; software engineering methodologies, methods and tools for developing and
maintaining parallel software, incl. parallel programming models and paradigms, development
environments, languages, compiling and run-time tools; etc. Deadline for submissions: July 31, 2005
(draft full papers).

September 14-16 10th European Symposium on Research in Computer Security (ESORICS'2005), Milan, Italy.
Topics include: dependability, formal methods in security, language-based security, etc.

September 18-21 6th conference on Communicating Process Architectures (CPA'2005), Eindhoven, The
Netherlands. Topics include: Concurrent design patterns and tools; Modelling concurrent software
architectures; Safety and security issues (race-hazards, deadlock, livelock, process starvation, ...);
Language issues; Applications; etc.

96 Conference Calendar

Volume 26, Number 2, June 2005 Ada User Journal

September 19-21 5th International Conference on Quality Software (QSIC'2005), Melbourne, Australia. Topics
include: Software quality (reliability, safety and security, ...); Methods and tools (design tools, quality
tools, ...); Evaluation of software products and components (static and dynamic analysis, validation
and verification); Formal methods (program analysis, ...); Applications (component-based systems,
distributed systems, embedded systems, enterprise applications, safety critical systems, ...); etc.

September 19-22 11th International Software Metrics Symposium (Metrics'2005), Como, Italy. Topics include:
Effort and cost estimation; Defect rate and reliability prediction; Quality Assurance; Empirical studies
of global software development projects, open source software projects, agile development projects;
etc.

September 19-23 9th IEEE International Enterprise Distributed Object Computing Conference (EDOC'2005),
Enschede, The Netherlands.

September 19-22 2nd International Workshop on Software Quality (SOQUA'2005), Erfurt, Germany. Topics
include: Communication of current trends related to software quality, Identification of future trends
and problems, Metrics for software quality, Formal methods, etc.

September 20-22 8th International Conference for Young Computer Scientists (ICYCS'2005), Beijing, China.
Topics include: Distributed and parallel processing, Fault-tolerance techniques, Software
methodology and engineering techniques, Software reuse, Object-oriented programming, Middleware
techniques, Robotics, etc.

September 25-30 21st IEEE International Conference on Software Maintenance (ICSM'2005), Budapest, Hungary.
Topics include: issues related to maintaining, modifying, enhancing, and testing operational systems,
and designing, building, testing, and evolving maintainable systems.

Sept. 30-Oct. 01 5th IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM'2005). Topics include: program transformation, abstract
interpretation, program slicing, source level software metrics, decompilation, source
level testing and verification, source level optimization and program comprehension.

September 26-30 3rd World Conference for Software Quality (3WCSQ), Munich, Germany. Topics include:
Software Construction, Integration and Testing, Verification and Validation, Risk Management and
Problem resolution, Training and Education, Maintenance and Customer Support, Reliability
Engineering, Embedded Systems, Medical Devices, Automotive and Automation, Avionics and
Transportation Systems, etc.

Sept. 29-Oct. 01 4th International Conference on Generative Programming and Component Engineering
(GPCE'2005), Tallinn, Estonia. Topics include: Generative techniques for Product lines and
architectures, Embedded systems, etc.; Component-based software engineering (Reuse, distributed
platforms, distributed systems, evolution, analysis and design patterns, development methods, formal
methods); Integration of generative and component-based approaches; Industrial applications; etc.
Deadline for early registration: July 29, 2005

October 02-05 25th IFIP WG 6.1 International Conference on Formal Techniques for Networked and
Distributed Systems (FORTE'2005), Taiwan. Topics include: formal description techniques,
embedded systems, tool supports, case studies on industrial projects, etc.

October 02-07 8th International Conference on Model Driven Engineering Languages and Systems
(MoDELS'2005), Montego Bay, Jamaica. Formerly the UML series of conferences. Topics include:
Model-driven development methodologies, approaches, and languages; Empirical studies of modeling
and model-driven development; Tool support for any aspect of model-driven development or model
use; Semantics of modeling languages; etc.

October 03-07 19th Brazilian Symposium on Software Engineering (SBES'2005), Uberlândia, Brazil. Topics
include: Distributed Software Engineering; Generative Software Development; Multi-paradigm and
Multi-language Modelling and Programming; Object-oriented Techniques; Software Engineering for
Embedded and Real-time Software; Software Engineering Tools and Environments; Software
Maintenance; Software Quality; Software Reuse; Software Safety and Reliability; Software Security;
Software Verification, Validation and Inspection; etc.

Conference Calendar 97

Ada User Journal Volume 26, Number 2, June 2005

October 13-14 Workshop "Zuverlässigkeit in eingebetteten Systemen", Aachen, Germany.
Organized by Gesellshaft für Informatik e.V. Fachgruppe "Ada", and Gesellshaft
Mess- und Automatisierungstechnik Fachausschus 5.11 "Embedded Software".
Topics include (in German): Programmiersprache Ada und Profile (Raven, SPARK),
angeladene Hauptvorträge zu Real Time Scheduling und zu Ada0Y, etc. Deadline for
submissions: July 31, 2005 (position papers).

☺ October 13-14 3rd Workshop on Object-oriented Modeling of Embedded Real-Time Systems (OMER-3),
Paderborn, Germany. Topics include: Architectures/frameworks for platform independent, reusable
software components; Code-generation; Component interoperability; Formal verification at the model
and code level; Software components as products; Software quality; Standards and guidelines;
Respective trends in automotive software development; etc.

☺ October 16-20 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA'2005), San Diego, California, USA. Sponsored by ACM
SIGPLAN in cooperation with SIGSOFT.

☺ October 16 Workshop on Synchronization and Concurrency in Object-Oriented Languages
(SCOOL'2005). Topics include: Compiler transformations, Concurrent data structure
implementations, Expression of concurrency-related design intent, Languages and
semantics, Memory models for concurrent object-oriented languages, Synchronization
abstractions, etc. Deadline for submissions: July 29, 2005.

October 19-21 17th Nordic Workshop on Programming Theory (NWPT'2005), Copenhagen, Denmark. Topics
include: Program verification, Formal specification of programs, Real-Time and hybrid systems,
Modeling of concurrency, Programming methods, Tools for program construction and verification,
etc. Deadline for submissions: September 19, 2005.

October 25-26 International Conference on Software Testing (ICSTEST-E'2005), Bilbao, Spain. Topics include:
Transportation and Safety-Critical Systems, Industry real experiences, Verification and Validation,
Techniques for real time systems, Static and Dynamic analysis, Norms and standards, etc.

October 26-28 20th International Symposium on Computer and Information Sciences (ISCIS'2005), Istanbul,
Turkey. Topics include: Parallel and Distributed Computing, Programming Languages and
Algorithms, Software Engineering, etc.

October 27-28 6th International Workshop on Advanced Parallel Processing Technologies (APPT'2005), Hong
Kong, China. Topics include: Middleware, Software Tools and Environments, Parallelizing
Compilers, Software Engineering issues, Task Scheduling and Load Balancing, Fault tolerance and
dependability, etc.

Oct, 30-Nov. 03 24th Digital Avionics Systems Conference (DASC'2005), Washington D.C., USA. Theme: "Avionics
in a Changing Market Place - Safe and Secure?". Topics include: Software Engineering: Development
of large-scale, flight-critical software systems, including processes and formal methods for design,
testing and certification; Lean Avionics: Application of continuous improvement principles/practices
(lean, six sigma, TQM, CMM, CMMI) to the design, development and sustainment of mission critical
avionics systems; Flight Critical Systems: Methods, techniques, and tools for the design, verification,
integration, validation, and certification of complex and highly integrated flight critical systems; etc.

☺ Oct. 31-Nov. 04 7th International Symposium on Distributed Objects and Applications (DOA'2005), Agia Napa,
Cyprus. Topics include: Application case studies of distribution technologies; Design patterns for
distributed systems; Distribution technologies for embedded systems; Interoperability between object
systems and complementary technologies; Real-time solutions for distributed objects; Scalability for
distributed objects and object middleware; Security for distributed object systems; Specification and
enforcement of Quality of Service; Technologies for reliability and fault-tolerance; etc.

November 01-04 4th International Symposium on Formal Methods for Components and Objects (FMCO'2005),
Amsterdam, the Netherlands. Deadline for submissions: September 5, 2005 (title and short abstract),
February 28, 2006 (tutorial papers).

November 01-04 7th International Conference on Formal Engineering Methods (ICFEM'2005), Manchester, UK.
Topics include: all aspects of formal engineering methods, from theoretical work that promises
various benefits, to application to real production systems.

98 Conference Calendar

Volume 26, Number 2, June 2005 Ada User Journal

☺ November 02-05 3rd International Symposium on Parallel and Distributed Processing and Applications
(ISPA'2005), Nanjing, China. Topics include: Parallel/distributed system architectures; Tools and
environments for software development; Parallel/distributed algorithms; Parallel compilers; Parallel
programming languages; Distributed systems; Reliability, fault-tolerance, and security;
Parallel/distributed applications; etc.

November 08-11 16th IEEE International Symposium on Software Reliability Engineering (ISSRE'2005), Chicago,
Illinois, USA. Theme: "Developing High Reliability for Ubiquitous Mobile Applications". Topics
include: Software safety analysis, Formal reliability assurance methods, Software testing and
verification, Empirical reliability studies, Reliability measurement, Tools and automation, Fault-
tolerant and robust software, Security testing, Software certification, End-to-end dependability, etc.
Deadline for submissions: August 1, 2005 (industry practice presentations, student papers, fast
abstracts).

November 08-11 12th Working Conference on Reverse Engineering (WCRE'2005), Pittsburgh, PA, USA. Theme:
"Recovering and Reclaiming Architecture" Topics include: Software architecture recovery; Program
transformation and refactoring; Object and aspect identification; Preprocessing, parsing and fact
extraction; Reverse engineering tool support; Program slicing; Redocumenting legacy systems;
Program analysis; Reengineering patterns; etc. Deadline for submissions: September 2, 2005
(workshop papers, tool descriptions).

November 09-11 European Software Process Improvement and Innovation Conference (EuroSPI'2005), Budapest,
Hungary. Deadline for early registration: October 1, 2005.

♦ November 13-17 2005 ACM Annual SIGAda International Conference (SIGAda'2005), Atlanta,
Georgia, USA. Sponsored by ACM SIGAda; in cooperation with SIGAPP, SIGCAS,
SIGCSE, SIGPLAN, SIGSOFT, and Ada-Europe (ACM approval pending; Cooperation
approvals pending).

November 17-18 XP Day Benelux 2005, Rotterdam, The Netherlands. Deadline for submissions: July 11, 2005
(sessions).

Nov. 28-Dec. 02 ACM/IFIP/USENIX International Middleware Conference (Middleware'2005), Grenoble, France.
Deadline for submissions: August 26, 2005 (doctoral symposium).

Nov. 29-Dec. 01 18th International Conference on Software & Systems Engineering and their Applications
(ICSSEA'2005), Paris, France.

Nov. 29-Dec. 02 5th International Conference on Integrated Formal Methods (IFM'2005), Eindhoven, The
Netherlands.

☺ December 05-08 6th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2005), Dalian, China. Topics include: Formal methods and programming
Languages, Parallelizing compilers, Component-based and OO Technology, Tools and environments
for software development, etc.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

December 12-14 11th International Symposium Pacific Rim Dependable Computing (PRDC'2005), Changsha,
Hunan, China. Topics include: Software and hardware reliability, testing, verification and validation;
Dependability measurement, modeling and evaluation; Safety-critical systems and software; Tools for
design and evaluation of dependable systems; Dependability issues in distributed and parallel
systems; Dependability issues in real-time systems; etc.

December 15-17 12th Asia-Pacific Software Engineering Conference (APSEC'2005), Taipei, Taiwan. Topics
include: Software Formal Methods, Software Process Improvement, Cost Estimation, Risk
Management, Quality Management, Object-Oriented Technology, etc. Deadline for submissions:
August 15, 2005 (papers).

December 18-21 12th IEEE International Conference on High Performance Computing (HiPC'2005), Goa, India.
Topics include: Scientific/Engineering Applications, System Design for High Reliability, Parallel and
Distributed Computing, Heterogeneous Computing, Embedded Applications and Systems, Parallel
Languages and Programming Environments, Load Balancing and Scheduling, etc.

Conference Calendar 99

Ada User Journal Volume 26, Number 2, June 2005

2006

January 04-07 Software Technology Track of the 39th Hawaii International Conference on System Sciences

(HICSS-39), Kauai, Haway, USA. Includes mini-tracks on: Strategic Software Engineering; Adaptive
and Evolvable Software Systems; etc.

January 11-13 33rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL'2006), Charleston, South Carolina, USA. Topics include: fundamental principles and
important innovations in the design, definition, analysis, transformation, implementation and
verification of programming languages, programming systems, and programming abstractions.
Deadline for submissions: July 18, 2005.

January 14 2006 International Workshop on Foundations and Developments of Object-Oriented Languages
(FOOL/WOOD'2006), Charleston, South Carolina, USA. Following POPL'2006. Topics include:
language semantics, type systems, program analysis and verification, concurrent and distributed
languages, language-based security, etc. Deadline for submissions: October 3, 2005.

February 13-17 5th International Conference on COTS-Based Software Systems (ICCBSS'2006), Orlando, Florida,
USA. Theme: "Pushing the COTS Envelope". Deadline for submissions: July 15, 2005 (technical
papers, experience reports, panels, tutorials, workshops).

☺ April 18 Workshop on Secure Software Engineering Education & Training (WSSEET'2006), Oahu,
Hawaii, USA. Topics include: experience, current situation, and future of education and training in
software engineering of (more) secure software. Deadline for submissions: October 13, 2005 (position
papers, papers, panels).

April 23-27 21st ACM Symposium on Applied Computing (SAC'2006), Dijon, France. Includes tracks on:
Software Engineering, etc. Deadline for submissions: September 3, 2005 (software engineering track
papers).

♦ June 05-09 11th International Conference on Reliable Software Technologies - Ada-
Europe'2006, Porto, Portugal. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda (approval pending). Deadline for submissions: October 30, 2005 (papers,
tutorials, workshops).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2007

� June 09-16 3rd History of Programming Languages Conference (HOPL-III), San Diego,

CA, USA. Co-located with FCRC'2007. Deadline for submissions: July 8, 2005 (1
page abstract), August 15, 2005 (full papers), August 2006 (reworked full papers).

Forthcoming Events 101

Ada User Journal Volume 26, Number 2, June 2005

Call for Papers

11th International Conference on Reliable Software Technologies –
Ada-Europe 2006

5-9 June 2006, Porto, Portugal
http://www.ada-europe.org/conference2006.html

Conference Chair

Luís Miguel Pinho
Polytechnic Institute of Porto, Portugal
lpinho@dei.isep.ipp.pt

Program Co-Chairs

Luís Miguel Pinho
Polytechnic Institute of Porto, Portugal
lpinho@dei.isep.ipp.pt

Michael González Harbour
Universidad de Cantabria, Spain
mgh@unican.es

Tutorial Chair

Jorge Real
U. P. Valencia, Spain
jorge@disca.upv.es

Exhibition Chair

José Ruiz
AdaCore, France
ruiz@adacore.com

Publicity Chair

Dirk Craeynest
Aubay Belgium & K.U.Leuven, Belgium
Dirk.Craeynest@cs.kuleuven.be

Local Chair

Sandra Almeida
Polytechnic Institute of Porto, Portugal
salmeida@dei.isep.ipp.pt

Ada-Europe Conference Liaison

Laurent Pautet
Telecom Paris, France
pautet@enst.fr

In cooperation with

SIGAda
(approval pending)

General Information

The 11th International Conference on Reliable Software Technologies (Ada-Europe 2006)
will take place in Porto, Portugal. Following the usual style, the conference will span a full
week, including a three-day technical program and vendor exhibitions from Tuesday to
Thursday, along with parallel workshops and tutorials on Monday and Friday.

Schedule
30 October 2005 Submission of papers, workshop/tutorial proposals
20 January 2006 Notification to authors

20 February 2006 Camera-ready papers required
5-9 June 2006 Conference

Topics
In the last decade the conference has established itself as an international forum for providers
and practitioners of, and researchers into, reliable software technologies. The conference
presentations will illustrate current work in the theory and practice of the design, development
and maintenance of long-lived, high-quality software systems for a variety of application
domains. The program will allow ample time for keynotes, Q&A sessions, panel discussions
and social events. Participants will include practitioners and researchers from industry,
academia and government organizations interested in furthering the development of reliable
software technologies. To mark the completion of the technical work for the Ada language
standard revision process, contributions that present and discuss the potential of the revised
language are particularly sought after.

For papers, tutorials, and workshop proposals, the topics of interest include, but are not
limited to:

• Methods and Techniques for Software Development and Maintenance: Requirements
Engineering, Object-Oriented Technologies, Formal Methods, Re-engineering and
Reverse Engineering, Reuse, Software Management Issues

• Software Architectures: Patterns for Software Design and Composition, Frameworks,
Architecture-Centered Development, Component and Class Libraries, Component-
Based Design

• Enabling Technology: CASE Tools, Software Development Environments and Project
Browsers, Compilers, Debuggers, Run-time Systems

• Software Quality: Quality Management and Assurance, Risk Analysis, Program
Analysis, Verification, Validation, Testing of Software Systems

• Critical Systems: Real-Time, Distribution, Fault Tolerance, Information Technology,
Safety, Security

• Mainstream and Emerging Applications: Multimedia and Communications,
Manufacturing, Robotics, Avionics, Space, Health Care, Transportation

• Ada Language and Technology: Programming Techniques, Object-Oriented
Programming, Concurrent Programming, Distributed Programming, Bindings and
Libraries, Evaluation & Comparative Assessments, Critical Review of Language
Enhancements, Novel Support Technology, HW/SW platforms

• Experience Reports: Experience Reports, Case Studies and Comparative Assessments,
Management Approaches, Qualitative and Quantitative Metrics, Experience Reports
on Education and Training Activities with bearing on any of the conference topics

102 Forthcoming Events

Volume 26, Number 2, June 2005 Ada User Journal

Program Committee
(preliminary)

Alonso Alejandro, Universidad Politécnica de
Madrid, Spain

Asplund Lars, Mälardalens Högskola, Sweden
Barnes Janet, Praxis Critical Systems, UK
Bernat Guillem, University of York, UK
Blieberger Johann, Technische Universität Wien,

Austria
Brosgol Ben, AdaCore, USA
Burgstaller Bernd, University of Sidney, Australia
Burns Alan, University of York, UK
Cederling Ulf, Vaxjo University, Sweden
Craeynest Dirk, Aubay Belgium & K.U.Leuven,

Belgium
Crespo Alfons, Universidad Politécnica de

Valencia, Spain
Devillers Raymond, Université Libre de

Bruxelles, Belgium
González Harbour Michael, Universidad de

Cantabria, Spain
Gutiérrez José Javier, Universidad de Cantabria,

Spain
Hately Andrew, Eurocontrol, Hungary
Hommel Günter, Technischen Univesität Berlin,

Germany
Kauer Stefan, EADS Dornier, Germany
Keller Hubert, Institut für Angewandte

Informatik, Germany
Kermarrec Yvon, ENST Bretagne, France
Kienzle Jörg, McGill University, Canada
Kordon Fabrice, Université Pierre & Marie Curie,

France
LLamosi Albert, Universitat de les Illes Balears,

Spain
Mazzanti Franco, Istituto di Scienza e Tecnologie

dell'Informazione, Italy
McCormick John, University of Northern Iowa,

USA
Michell Stephen, Maurya Software, Canada
Miranda Javier, Universidad Las Palmas de Gran

Canaria, Spain
Pautet Laurent, Telecom Paris, France
Pinho Luís Miguel, Polytechnic Institute of Porto,

Portugal
Plödereder Erhard, Universität Stuttgart,

Germany
de la Puente Juan A., Universidad Politécnica de

Madrid, Spain
Real Jorge, Universidad Politécnica de Valencia,

Spain
Romanovsky Alexander, University of Newcastle

upon Tyne, UK
Rosen Jean-Pierre, Adalog, France
Ruiz José, AdaCore, France
Schonberg Edmond, New York University &

AdaCore, USA
Tokar Joyce, Pyrrhus Software, USA
Vardanega Tullio, Università di Padova, Italy
Wellings Andy, University of York, UK
Winkler Jürgen, Friedrich-Schiller-Universität,

Germany

Submissions

Authors are invited to submit original contributions. Paper submissions shall be in
English, should be complete and should not exceed 20 double-spaced pages in length.
Authors should submit their work via the Web submission system accessible from the
conference Home page. The preferred format for submission is PDF. Postscript can also be
accepted, as long as it was generated selecting the “optimize for portability” option in the
used printer driver. Submissions by other means and formats will not be accepted. If you
do not have easy access to the Internet, or you do not have an appropriate Web browser,
please contact the Program Co-Chair Luís Miguel Pinho, whose address details are on the
flip side of this call as well as on the conference Home page.

Proceedings

The authors of accepted papers shall prepare their camera-ready submissions in full
conformance with the LNCS style, not exceeding 12 pages and strictly by February 20,
2006. For format and style guidelines authors should refer to:
http://www.springer.de/comp/lncs/authors.html. Failure to comply will prevent the paper
from appearing in the conference proceedings. The conference proceedings including all
accepted papers will be published in the Lecture Notes in Computer Science (LNCS) series
by Springer Verlag, which will be available at the start of the conference.

Awards

Ada-Europe will offer honorary awards for the best paper and the best presentation, which
will be presented during the banquet and at the close of the conference respectively.

Call for Tutorials

Tutorials should address subjects that fall within the thrust of the conference and may be
proposed as either half- or a full-day events. Proposals should include a title, an abstract, a
description of the topic, a detailed outline of the presentation, a description of the
presenter's lecturing expertise in general and with the proposed topic in particular, the
proposed duration (half day or full day), the intended level of the tutorial (introductory,
intermediate, or advanced), the recommended audience experience and background, and a
statement of the reasons for attending. Proposals should be submitted by e-mail to the
Tutorial Chair Jorge Real. The providers of full-day tutorials will receive a complimentary
conference registration as well as a fee for every paying participant in excess of 5; for half-
day tutorials, these benefits will accordingly be halved. The Ada User Journal will offer
space for the publication of summaries of the accepted tutorial in issues preceding and/or
following the conference.

Call for Workshops

Workshops on themes within the conference scope may be arranged to discuss matters of
immediate technical interest as well as to foster action on longer-term technical objectives.
Proposals may be submitted for half- or full-day workshops, to be scheduled on either ends
of the main conference. Workshop proposals should be submitted by e-mail to the
Conference Chair Luís Miguel Pinho The workshop organiser shall also commit to
preparing proceedings for timely publication in the Ada User Journal.

Exhibition

Commercial exhibitions will span the three days of the main conference. Vendors and
providers of software products and services should contact the Exhibition Chair José Ruiz
as soon as possible for further information and for allowing suitable planning of the
exhibition space and time.

Reduced Fees for Students

A small number of grants are available for students who will (co-)author and present
papers at the conference. A reduction of 25% will be made to the conference fee. Contact
the Conference Chair Luís Miguel Pinho for details.

104

Volume 26, Number 2, June 2005 Ada User Journal

Rationale for Ada 2005: 2 Access Types
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract
This paper describes various improvements
concerning access types for Ada 2005.
Ada 2005 permits all access types to be access to
constant types and to indicate that null is not an
allowed value in all contexts. Anonymous access types
are permitted in more contexts than just as access
parameters and discriminants; they can also be used
for variables and all components of composite types.
This further use of access types is of considerable
value in object oriented programming by reducing the
need for (unnecessary) explicit type conversions.
A further major improvement concerns access to
subprogram types which are now allowed to be
anonymous in line with access to object types. This
permits so-called "downward closures" and allows
the flexible use of procedures as parameters of
subprograms and thereby avoids excessive use of
generic units.
Keywords: rationale, Ada 2005.

1 Overview of changes
The WG9 guidance document [1] does not specifically
mention access types as an area needing attention. Access
types are, of course, more of a tactical detail than a
strategic issue and so this is not surprising.

However, the guidance document strongly emphasizes
improvements to object oriented programming and the use
of access types figures highly in that area. Indeed one of the
motivations for changes was to reduce the number of
explicit access type conversions required for OOP.

The guidance document also asks for "improvements that
will remedy shortcomings in Ada". The introduction of
anonymous access-to-subprogram types comes into that
category in the minds of many users.

The following Ada issues cover the relevant changes and
are described in detail in this paper:

230 Generalized use of anonymous access types

231 Access to constant parameters, null-excluding types

254 Anonymous access to subprogram types

318 Limited and anonymous access return types

363 Eliminating access subtype problems

382 Current instance rule and anonymous access types

384 Discriminated type conversion rules

385 Stand-alone objects of anonymous access types

392 Prohibit unsafe array conversions

402 Access discriminants of nonlimited types

404 Not null and all in access parameters and types

406 Aliased permitted with anonymous access types

409 Conformance with access to subprogram types

416 Access results, accessibility and return statements

420 Resolution of universal operations in Standard

423 Renaming, null exclusion and formal objects

These changes can be grouped as follows.

First, there is a general orthogonalization of the rules
regarding whether the designated type is constant and
whether the access subtype includes null (231, part of 404,
part of 423).

A major change is the ability to use anonymous access
types more widely (230, part of 318, 385, 392, part of 404,
406, part of 416, part of 420). This was found to require
some redefinition of the rules regarding the use of a type
name within its own definition (382). Access discriminants
are now also permitted with nonlimited types (402).

The introduction of anonymous access-to-subprogram
types enables local subprograms to be passed as parameters
to other subprograms (254, 409). This has been a feature of
many other programming languages for over 40 years and
its omission from Ada has always been both surprising and
irritating and forced the excessive use of generics.

Finally there are some corrections to the rules regarding
changing discriminants which prevent attempting to access
components of variants that do not exist (363). There is
also a change to the rules concerning type conversions and
discriminants to make them symmetric (384).

2 Null exclusion and constant
In Ada 95, anonymous access types and named access
types have unnecessarily different properties. Furthermore
anonymous access types only occur as access parameters
and access discriminants.

Anonymous access types in Ada 95 never have null as a
value whereas named access types always have null as a
value. Suppose we have the following declarations

John Barnes 105

Ada User Journal Volume 26, Number 2, June 2005

type T is
 record
 Component: Integer;
 end record;

type Ref_T is access T;
T_Ptr: Ref_T;

Note that T_Ptr by default will have the value null. Now
suppose we have a procedure with an access parameter thus

procedure P(A: access T) is
 X: Integer;
begin
 X := A.Component; -- read a component of A
 -- no check for null in 95
 ...
end P;

In Ada 95 an access parameter such as A can never have the
value null and so there is no need to check for null when
doing a dereference such as reading the component
A.Component. This is assured by always performing a
check when P is called. So calling P with an actual
parameter whose value is null such as P(T_Ptr) causes
Constraint_Error to be raised at the point of call. The idea
was that within P we would have more efficient code for
dereferencing and dispatching at the cost of just one check
when the procedure is called. Such an access parameter we
now refer to as null-excluding.

Ada 2005 extends this idea of null-excluding access types
to named access types as well. Thus we can write

type Ref_NNT is not null access T;

In this case an object of the type Ref_NNT cannot have the
value null. An immediate consequence is that all such
objects should be explicitly initialized – they will otherwise
be initialized to null by default and this will raise
Constraint_Error.

Since the null excluding property can now be given
explicitly for named types, it was decided that for
uniformity, anonymous access types should follow the
same rule whenever possible. So, if we want an access
parameter such as A to be null excluding in Ada 2005 then
we have to indicate this in the same way

procedure PNN(A: not null access T) is
 X: Integer;
begin
 X := A.Component; -- read a component of A
 -- no check for null in 2005
 ...
end PNN;

This means of course that the original procedure

procedure P(A: access T) is
 X: Integer;
begin
 X := A.Component; -- read a component of A
 -- check for null in 2005

 ...
end P;

behaves slightly differently in Ada 2005 since A is no
longer of a null-excluding type. There now has to be a
check when accessing the component of the record because
null is now an allowed value of A. So in Ada 2005, calling
P with a null parameter results in Constraint_Error being
raised within P only when we attempt to do the
dereference, whereas in Ada 95 it is always raised at the
point of call.

This is of course technically an incompatibility of an
unfortunate kind. Here we have a program that is legal in
both Ada 95 and Ada 2005 but it behaves differently at
execution time in that Constraint_Error is raised at a
different place. But of course, in practice if such a program
does raise Constraint_Error in this way then it clearly has a
bug and so the difference does not really matter.

Various alternative approaches were considered in order to
eliminate this incompatibility but they all seemed to be
ugly and it was felt that it was best to do the proper thing
rather than have a permanent wart.

However the situation regarding controlling access
parameters is somewhat different. Remember that a
controlling parameter is a parameter of a tagged type where
the operation is primitive – that is declared alongside the
tagged type in a package specification (or inherited of
course). Thus consider

package PTT is
 type TT is tagged
 record
 Component: Integer;
 end record;

 procedure Op(X: access TT); -- primitive operation
 ...
end PTT;

The type TT is tagged and the procedure Op is a primitive
operation and so the access parameter X is a controlling
parameter.

In this case the anonymous access (sub)type is still null
excluding as in Ada 95 and null is not permitted as a
parameter. The reason is that controlling parameters
provide the tag for dispatching and null has no tag value.
Remember that all controlling parameters have to have the
same tag. We can add not null to the parameter
specification if we wish but to require it explicitly for all
controlling parameters was considered to be too much of an
incompatibility. But in newly written programs, we should
be encouraged to write not null explicitly in order to avoid
confusion during maintenance.

Another rule regarding null exclusion is that a type derived
from a null-excluding type is also null excluding. Thus
given

type Ref_NNT is not null access T;
type Another_Ref_NNT is new Ref_NNT;

106 Rat ionale for Ada 2005: 2 Access Types

Volume 26, Number 2, June 2005 Ada User Journal

then Another_Ref_NNT is also null excluding. On the other
hand if we start with an access type that is not null
excluding then a derived type can be null excluding or not
thus

type Ref_T is access T;
type Another_Ref_T is new Ref_T;
type ANN_Ref_T is new not null Ref_T;

then Another_Ref_T is not null excluding but ANN_Ref_T
is null excluding.

A technical point is that all access types including
anonymous access types in Ada 2005 have null as a value
whereas in Ada 95 the anonymous access types did not. It
is only subtypes in Ada 2005 that do not always have null
as a value. Remember that Ref_NNT is actually a first-
named subtype.

An important advantage of all access types having null as a
value is that it makes interfacing to C much easier. If a
parameter in C has type *t then the corresponding
parameter in Ada can have type access T and if the C
routine needs null passed sometimes then all is well – this
was a real pain in Ada 95.

An explicit null exclusion can also be used in object
declarations much like a constraint. Thus we can have

type Ref_Int is access Integer;
X: not null Ref_Int := Some_Integer'Access;

Note that we must initialize X otherwise the default
initialization with null will raise Constraint_Error.

In some ways null exclusions have much in common with
constraints. We should compare the above with

Y: Integer range 1 .. 10;
...
Y := 0;

Again Constraint_Error is raised because the value is not
permitted for the subtype of Y. A difference however is that
in the case of X the check is Access_Check whereas in the
case of Y it is Range_Check.

The fact that a null exclusion is not actually classified as a
constraint is seen by the syntax for subtype_indication
which in Ada 2005 is

subtype_indication ::=
 [null_exclusion] subtype_mark [constraint]

An explicit null exclusion can also be used in subprogram
declarations thus

function F(X: not null Ref_Int) return not null Ref_Int;
procedure P(X: in not null Ref_Int);
procedure Q(X: in out not null Ref_Int);

But a difference between null exclusions and constraints is
that although we can use a null exclusion in a parameter
specification we cannot use a constraint in a parameter
specification. Thus

procedure P(X: in not null Ref_Int); -- legal
procedure Q(X: in Integer range 1 .. N); -- illegal

But null exclusions are like constraints in that they are both
used in defining subtype conformance and static matching.

We can also use a null exclusion with access-to-
subprogram types including protected subprograms.

type F is access function (X: Float) return Float;
Fn: not null F := Sqrt'Access;

and so on.

A null exclusion can also be used in object and subprogram
renamings. We will consider subprogram renamings here
and object renamings in the next section when we discuss
anonymous access types. This is an area where there is a
significant difference between null exclusions and
constraints.

Remember that if an entity is renamed then any constraints
are unchanged. We might have

procedure P(X: Positive);
...
procedure Q(Y: Natural) renames P;
...
Q(0); -- raises Constraint_Error

The call of Q raises Constraint_Error because zero is not an
allowed value of Positive. The constraint Natural on the
renaming is completely ignored (Ada has been like that
since time immemorial).

We would have preferred that this sort of peculiar
behaviour did not extend to null exclusions. However, we
already have the problem that a controlling parameter is
always null excluding even if it does not say so. So the rule
adopted generally with null exclusions is that "null
exclusions never lie". In other words, if we give a null
exclusion then the entity must be null excluding; however,
if no null exclusion is given then the entity might
nevertheless be null excluding for other reasons (as in the
case of a controlling parameter).

So consider

procedure P(X: not null access T);
...
procedure Q(Y: access T) renames P; -- OK
...
Q(null); -- raises Constraint_Error

The call of Q raises Constraint_Error because the parameter
is null excluding even though there is no explicit null
exclusion in the renaming. On the other hand (we assume
that X is not a controlling parameter)

procedure P(X: access T);
...
procedure Q(Y: not null access T) renames P; -- NO

is illegal because the null exclusion in the renaming is a lie.

However, if P had been a primitive operation of T so that X
was a controlling parameter then the renaming with the null
exclusion would be permitted.

John Barnes 107

Ada User Journal Volume 26, Number 2, June 2005

Care needs to be taken when a renaming itself is used as a
primitive operation. Consider

package P is
 type T is tagged ...
 procedure One(X: access T); -- is null excl

 package Inner is
 procedure Deux(X: access T); -- not null excl
 procedure Trois(X: not null access T); -- null excl
 end Inner;

 use Inner;

 procedure Two(X: access T) renames Deux; -- NO
 procedure Three(X: access T) renames Trois; -- OK
 ...

The procedure One is a primitive operation of T and its
parameter X is therefore a controlling parameter and so is
null excluding even though this is not explicitly stated.
However, the declaration of Two is illegal. It is trying to be
a dispatching operation of T and therefore its controlling
parameter X has to be null excluding. But Two is a
renaming of Deux whose corresponding parameter is not
null excluding and so the renaming is illegal. On the other
hand the declaration of Three is permitted because the
parameter of Trois is null excluding.

The other area that needed unification concerned constant.
In Ada 95 a named access type can be an access to constant
type rather than an access to variable type thus

type Ref_CT is access constant T;

Remember that this means that we cannot change the value
of an object of type T via the access type.

Remember also that Ada 95 introduced more general access
types whereas in Ada 83 all access types were pool specific
and could only access values created by an allocator. An
access type in Ada 95 can also refer to any object marked
aliased provided that the access type is declared with all
thus

type Ref_VT is access all T;
X: aliased T;
R: Ref_VT := X'Access;

So in summary, Ada 95 has three kinds of named access
types

access T; -- pool specific only, read & write
access all T -- general, read & write
access constant T -- general, read only

But in Ada 95, the distinction between variable and
constant access parameters is not permitted. Ada 2005
rectifies this by permitting constant with access
parameters. So we can write

procedure P(X: access constant T); -- legal 2005
procedure P(X: access T);

Observe however, that all is not permitted with access
parameters. Ordinary objects can be constant or variable
thus

C: constant Integer := 99;
V: Integer;

and access parameters follow this pattern. It is named
access types that are anomalous because of the need to
distinguish pool specific types for compatibility with Ada
83 and the subsequent need to introduce all.

In summary, Ada 2005 access parameters can take the
following four forms

procedure P1(X: access T);
procedure P2(X: access constant T);
procedure P3(X: not null access T);
procedure P4(X: not null access constant T);

Moreover, as mentioned above, controlling parameters are
always null excluding even if this is not stated and so in
that case P1 and P3 are equivalent. Controlling parameters
can also be constant in which case P2 and P4 are
equivalent.

Similar rules apply to access discriminants; thus they can
be null excluding and/or access to constant.

3 Anonymous access types
As just mentioned, Ada 95 permits anonymous access types
only as access parameters and access discriminants. And in
the latter case only for limited types. Ada 2005 sweeps
away these restrictions and permits anonymous access
types quite freely.

The main motivation for this change concerns type
conversion. It often happens that we have a type T
somewhere in a program and later discover that we need an
access type referring to T in some other part of the
program. So we introduce

type Ref_T is access all T;

And then we find that we also need a similar access type
somewhere else and so declare another access type

type T_Ptr is access all T;

If the uses of these two access types overlap then we will
find that we have explicit type conversions all over the
place despite the fact that they are really the same type. Of
course one might argue that planning ahead would help a
lot but, as we know, programs often evolve in an unplanned
way.

A more important example of the curse of explicit type
conversion concerns object oriented programming. Access
types feature quite widely in many styles of OO
programming. We might have a hierarchy of geometrical
object types starting with a root abstract type Object thus

type Object is abstract;
type Circle is new Object with ...

type Polygon is new Object with ...
type Pentagon is new Polygon with ...

type Triangle is new Polygon with ...
type Equilateral_Triangle is new Triangle with ...

108 Rat ionale for Ada 2005: 2 Access Types

Volume 26, Number 2, June 2005 Ada User Journal

then we might well find ourselves declaring named access
types such as

type Ref_Object is access all Object'Class;
type Ref_Circle is access all Circle;
type Ref_Triangle is access all Triangle'Class;
type Ref_Equ_Triangle is access all Equilateral_Triangle;

Conversion between these clearly ought to be permitted in
many cases. In some cases it can never go wrong and in
others a run time check is required. Thus a conversion
between a Ref_Circle and a Ref_Object is always possible
because every value of Ref_Circle is also a value of
Ref_Object but the reverse is not the case. So we might
have

RC: Ref_Circle := A_Circle'Access;
RO: Ref_Object;
...
RO := Ref_Object(RC); --- explicit conversion, no check
...
RC := Ref_Circle(RO); -- needs a check

However, it is a rule of Ada 95 that type conversions
between these named access types have to be explicit and
give the type name. This is considered to be a nuisance by
many programmers because such conversions are allowed
without naming the type in other OO languages. It would
not be quite so bad if the explicit conversion were only
required in those cases where a run time check was
necessary.

Moreover, these are trivial (view) conversions since they
are all just pointers and no actual change of value takes
place anyway; all that has to be done is to check that the
value is a legal reference for the target type and in many
cases this is clear at compilation. So requiring the type
name is very annoying.

In fact the only conversions between named tagged types
(and named access types) that are allowed implicitly in Ada
are conversions to a class wide type when it is initialized or
when it is a parameter (which is really the same thing).

It would have been nice to have been able to relax the rules
in Ada 2005 perhaps by saying that a named conversion is
only required when a run time check is required. However,
such a change would have caused lots of existing programs
to become ambiguous.

So, rather than meddle with the conversion rules, it was
instead decided to permit the use of anonymous access
types in more contexts in Ada 2005. Anonymous access
types have the interesting property that they are anonymous
and so necessarily do not have a name that could be used in
a conversion. Thus we can have

RC: access Circle := A_Circle'Access;
RO: access Object'Class; -- default null
...
RO := RC; -- implicit conversion, no check

On the other hand we cannot write

RC := RO; -- implicit conversion, needs a check

because the general rule is that if a check is required then
the conversion must be explicit. So typically we will still
need to introduce named access types for some
conversions.

We can of course also use null exclusion with anonymous
access types thus

RC: not null access Circle := A_Circle'Access;
RO: not null access Object'Class; -- careful

The declaration of RO is unfortunate because no initial
value is given and the default of null is not permitted and so
it will raise Constraint_Error; a worthy compiler will detect
this during compilation and give us a friendly warning.

Note carefully that we never write all with anonymous
access types.

We can of course also use constant with anonymous
access types. Note carefully the difference between the
following

ACT: access constant T := T1'Access;
CAT: constant access T := T1'Access;

In the first case ACT is a variable and can be used to access
different objects T1 and T2 of type T. But it cannot be used
to change the value of those objects. In the second case
CAT is a constant and can only refer to the object given in
its initialization. But we can change the value of the object
that CAT refers to. So we have

ACT := T2'Access; -- legal, can assign
ACT.all := T2; -- illegal, constant view
CAT := T2'Access; -- illegal, cannot assign
CAT.all := T2; -- legal, variable view

At first sight this may seem confusing and consideration
was given to disallowing the use of constants such as CAT
(but permitting ACT which is probably more useful since it
protects the accessed value). But the lack of orthogonality
was considered very undesirable. Moreover Ada is a left to
right language and we are familiar with equivalent
constructions such as

type CT is access constant T;
ACT: CT;

and

type AT is access T;
CAT: constant AT;

(although the alert reader will note that the latter is illegal
because I have foolishly used the reserved word at as an
identifier).

We can of course also write

CACT: constant access constant T := T1'Access;

The object CACT is then a constant and provides read-only
access to the object T1 it refers to. It cannot be changed to
refer to another object such as T2 nor can the value of T1
be changed via CACT.

John Barnes 109

Ada User Journal Volume 26, Number 2, June 2005

An object of an anonymous access type, like other objects,
can also be declared as aliased thus

X: aliased access T;

although such constructions are likely to be used rarely.

Anonymous access types can also be used as the
components of arrays and records. In the Introduction we
saw that rather than having to write

type Cell;
type Cell_Ptr is access Cell;

type Cell is
 record
 Next: Cell_Ptr;
 Value: Integer;
 end record;

we can simply write

type Cell is
 record
 Next: access Cell;
 Value: Integer;
 end record;

and this not only avoids have to declare the named access
type Cell_Ptr but it also avoids the need for the incomplete
type declaration of Cell.

Permitting this required some changes to a rule regarding
the use of a type name within its own declaration – the so-
called current instance rule.

The original current instance rule was that within a type
declaration the type name did not refer to the type itself but
to the current object of the type. The following task type
declaration illustrates both a legal and illegal use of the task
type name within its own declaration. It is essentially an
extract from a program in Section 18.10 of [2] which finds
prime numbers by a multitasking implementation of the
Sieve of Eratosthenes. Each task of the type is associated
with a prime number and is responsible for removing
multiples of that number and for creating the next task
when a new prime number is discovered. It is thus quite
natural that the task should need to make a clone of itself.

task type TT (P: Integer) is
 ...
end;

type ATT is access TT;

task body TT is
 function Make_Clone(N: Integer) return ATT is
 begin
 return new TT(N); -- illegal
 end Make_Clone;

 Ref_Clone: ATT;
 ...
begin
 ...
 Ref_Clone := Make_Clone(N);
 ...

 abort TT; -- legal
 ...
end TT;

The attempt to make a slave clone of the task in the
function Make_Clone is illegal because within the task type
its name refers to the current instance and not to the type.
However, the abort statement is permitted and will abort
the current instance of the task. In this example the solution
is simply to move the function Make_Clone outside the task
body.

However, this rule would have prevented the use of the
type name Cell to declare the component Next within the
type Cell and this would have been infuriating since the
linked list paradigm is very common.

In order to permit this the current instance rule has been
changed in Ada 2005 to allow the type name to denote the
type itself within an anonymous access type declaration
(but not a named access type declaration). So the type Cell
is permitted.

Note however that in Ada 2005, the task TT still cannot
contain the declaration of the function Make_Clone.
Although we no longer need to declare the named type ATT
since we can now declare Ref_Clone as

Ref_Clone: access TT;

and we can declare the function as

 function Make_Clone(N: Integer) return access TT is
 begin
 return new TT(N);
 end Make_Clone;

where we have an anonymous result type, nevertheless the
allocator new TT inside Make_Clone remains illegal if
Make_Clone is declared within the task body TT. But such
a use is unusual and declaring a distinct external function is
hardly a burden.

To be honest we can simply declare a subtype of a different
name outside the task

subtype XTT is TT;

and then we can write new XTT(N); in the function and
keep the function hidden inside the task. Indeed we don't
need the function anyway because we can just write

Ref_Clone := new XTT(N);

in the task body.

The introduction of the wider use of anonymous access
types requires some revision to the rules concerning type
comparisons and conversions. This is achieved by the
introduction of a type universal_access by analogy with the
types universal_integer and universal_real. Two new
equality operators are defined in the package Standard thus

function "=" (Left, Right: universal_access)
 return Boolean;
function "/=" (Left, Right: universal_access)
 return Boolean;

110 Rat ionale for Ada 2005: 2 Access Types

Volume 26, Number 2, June 2005 Ada User Journal

The literal null is now deemed to be of type
universal_access and appropriate conversions are defined
as well. These new operations are only applied when at
least one of the arguments is of an anonymous access types
(not counting null).

Interesting problems arise if we define our own equality
operation. For example, suppose we wish to do a deep
comparison on two lists defined by the type Cell. We might
decide to write a recursive function with specification

function "=" (L, R: access Cell) return Boolean;

Note that it is easier to use access parameters rather than
parameters of type Cell itself because it then caters
naturally for cases where null is used to represent an empty
list. We might attempt to write the body as

function "=" (L, R: access Cell) return Boolean is
begin
 if L = null or R = null then -- wrong =
 return L = R; -- wrong =
 elsif L.Value = R.Value then
 return L.Next = R.Next; -- recurses OK
 else
 return False;
 end if;
end "=" ;

But this doesn't work because the calls of "=" in the first
two lines recursively call the function being declared
whereas we want to call the predefined "=" in these cases.

The difficulty is overcome by writing Standard."=" thus

 if Standard."=" (L, null) or Standard."=" (R, null) then
 return Standard."=" (L, R);

The full rules regarding the use of the predefined equality
are that it cannot be used if there is a user-defined primitive
equality operation for either operand type unless we use the
prefix Standard. A similar rule applies to fixed point types
as we shall see in a later paper.

Another example of the use of the type Cell occurred in the
previous paper when we were discussing type extension at
nested levels. That example also illustrated that access
types have to be named in some circumstances such as
when they provide the full type for a private type. We had

package Lists is
 type List is limited private; -- private type
 ...
private
 type Cell is
 record
 Next: access Cell; -- anonymous type
 C: Colour;
 end record;

 type List is access Cell; -- full type
end;

package body Lists is
 procedure Iterate(IC: in Iterator'Class; L: in List) is
 This: access Cell := L; -- anonymous type

 begin
 while This /= null loop
 IC.Action(This.C); -- dispatches
 This := This.Next;
 end loop;
 end Iterate;
end Lists;

In this case we have to name the type List because it is a
private type. Nevertheless it is convenient to use an
anonymous access type to avoid an incomplete declaration
of Cell.

In the procedure Iterate the local variable This is also of an
anonymous type. It is interesting to observe that if This had
been declared to be of the named type List then we would
have needed an explicit conversion in

 This := List(This.Next); -- explicit conversion

Remember that we always need an explicit conversion
when converting to a named access type. There is clearly
an art in using anonymous types to best advantage.

The Introduction showed a number of other uses of
anonymous access types in arrays and records and as
function results when discussing Noah's Ark and other
animal situations. We will now turn to more weighty
matters.

An important matter in the case of access types is
accessibility. The accessibility rules are designed to prevent
dangling references. The basic rule is that we cannot create
an access value if the object referred to has a lesser lifetime
than the access type.

However there are circumstances where the rule is
unnecessarily severe and that was one reason for the
introduction of access parameters. Perhaps some
recapitulation of the problems would be helpful. Consider

type T is ...
Global: T;
type Ref_T is access all T;
Dodgy: Ref_T;

procedure P(Ptr: access T) is
begin
 ...
 Dodgy := Ref_T(Ptr); -- dynamic check
end P;

procedure Q(Ptr: Ref_T) is
begin
 ...
 Dodgy := Ptr; -- legal
end Q;
...
declare
 X: aliased T;
begin
 P(X'Access); -- legal
 Q(X'Access); -- illegal
end;

John Barnes 111

Ada User Journal Volume 26, Number 2, June 2005

Here we have an object X with a short lifetime and we must
not squirrel away an access referring to X in an object with
a longer lifetime such as Dodgy. Nevertheless we want to
manipulate X indirectly using a procedure such as P.

If the parameter were of a named type such as Ref_T as in
the case of the procedure Q then the call would be illegal
since within Q we could then assign to a variable such as
Dodgy which would then retain the "address" of X after X
had ceased to exist.

However, the procedure P which uses an access parameter
permits the call. The reason is that access parameters carry
dynamic accessibility information regarding the actual
parameter. This extra information enables checks to be
performed only if we attempt to do something foolish
within the procedure such as make an assignment to Dodgy.
The conversion to the type Ref_T in this assignment fails
dynamically and disaster is avoided.

But note that if we had called P with

P(Global'Access);

where Global is declared at the same level as Ref_T then
the assignment to Dodgy would be permitted.

The accessibility rules for the new uses of anonymous
access types are very simple. The accessibility level is
simply the level of the enclosing declaration and no
dynamic information is involved. (The possibility of
preserving dynamic information was considered but this
would have led to inefficiencies at the points of use.)

In the case of a stand-alone variable such as

V: access Integer;

then this is essentially equivalent to

type anon is access all Integer;
V: anon;

A similar situation applies in the case of a component of a
record or array type. Thus if we have

type R is
 record
 C: access Integer;
 ...
 end record;

then this is essentially equivalent to

type anon is access all Integer;
type R is
 record
 C: anon;
 ...
 end record;

Further if we now declare a derived type then there is no
new physical access definition, and the accessibility level is
that of the original declaration. Thus consider

procedure Proc is
 Local: aliased Integer;
 type D is new R;

 X: D := D'(C => Local'Access, ...); -- illegal
begin
 ...
end Proc;

In this example the accessibility level of the component C
of the derived type is the same as that of the parent type R
and so the aggregate is illegal. This somewhat surprising
rule is necessary to prevent some very strange problems
which we will not explore in this paper.

One consequence of which users should be aware is that if
we assign the value in an access parameter to a local
variable of an anonymous access type then the dynamic
accessibility of the actual parameter will not be held in the
local variable. Thus consider again the example of the
procedure P containing the assignment to Dodgy

procedure P(Ptr: access T) is
begin
 ...
 Dodgy := Ref_T(Ptr); -- dynamic check
end P;

and this variation in which we have introduced a local
variable of an anonymous access type

procedure P1(Ptr: access T) is
 Local_Ptr: access T;
begin
 ...
 Local_Ptr := Ptr; -- implicit conversion
 Dodgy := Ref_T(Local_Ptr); -- static check, illegal
end P1;

Here we have copied the value in the parameter to a local
variable before attempting the assignment to Dodgy.
(Actually it won't compile but let us analyze it in detail
anyway.)

The conversion in P using the access parameter Ptr is
dynamic and will only fail if the actual parameter has an
accessibility level greater than that of the type Ref_T. So it
will fail if the actual parameter is X and so raise
Program_Error but will pass if it has the same level as the
type Ref_T such as the variable Global.

In the case of P1, the assignment from Ptr to Local_Ptr
involves an implicit conversion and static check which
always passes. (Remember that implicit conversions are
never allowed if they involve a dynamic check.) However,
the conversion in the assignment to Dodgy in P1 is also
static and will always fail no matter whether X or Global is
passed as actual parameter.

So the effective behaviours of P and P1 are the same if the
actual parameter is X (they both fail, although one
dynamically and the other statically) but will be different if
the actual parameter has the same level as the type Ref_T
such as the variable Global. The assignment to Dodgy in P
will work in the case of Global but the assignment to Dodgy
in P1 never works.

This is perhaps surprising, an apparently innocuous
intermediate assignment has a significant effect because of

112 Rat ionale for Ada 2005: 2 Access Types

Volume 26, Number 2, June 2005 Ada User Journal

the implicit conversion and the consequent loss of the
accessibility information. In practice this is very unlikely to
be a problem. In any event programmers are aware that
access parameters are special and carry dynamic
information.

In this particular example the loss of the accessibility
information through the use of the intermediate stand-alone
variable is detected at compile time. More elaborate
examples can be constructed whereby the problem only
shows up at execution time. Thus suppose we introduce a
third procedure Agent and modify P and P1 so that we have

procedure Agent(A: access T) is
begin
 Dodgy := Ref_T(A); -- dynamic check
end Agent;

procedure P(Ptr: access T) is
begin
 Agent(Ptr); -- may be OK
end P;

procedure P1(Ptr: access T) is
 Local_Ptr: access T;
begin
 Local_Ptr := Ptr; -- implicit conversion
 Agent(Local_Ptr); -- never OK
end P1;

Now we find that P works much as before. The
accessibility level passed into P is passed to Agent which
then carries out the assignment to Dodgy. If the parameter
passed to P is the local X then Program_Error is raised in
Agent and propagated to P. If the parameter passed is
Global then all is well.

The procedure P1 now compiles whereas it did not before.
However, because the accessibility of the original
parameter is lost by the assignment to Local_Ptr, it is the
accessibility level of Local_Ptr that is passed to Agent and
this means that the assignment to Dodgy always fails and
raises Program_Error irrespective of whether P1 was called
with X or Global.

If we just want to use another name for some reason then
we can avoid the loss of the accessibility level by using
renaming. Thus we could have

procedure P2(Ptr: access T) is
 Local_Ptr: access T renames Ptr;
begin
 ...
 Dodgy := Ref_T(Local_Ptr); -- dynamic check
end P2;

and this will behave exactly as the original procedure P.

As usual a renaming just provides another view of the same
entity and thus preserves the accessibility information.

A renaming can also include not null thus

Local_Ptr: not null access T renames Ptr;

Remember that not null must never lie so this is only legal
if Ptr is indeed of a null excluding type (which it will be if
Ptr is a controlling access parameter of the procedure P2).

A renaming might be useful when the accessed type T has
components that we wish to refer to many times in the
procedure. For example the accessed type might be the type
Cell declared earlier in which case we might usefully have

Next: access Cell renames Ptr.Next;

and this will preserve the accessibility information.

Anonymous access types can also be used as the result of a
function. In the Introduction we had

function Mate_Of(A: access Animal'Class)
 return access Animal'Class;

The accessibility level of the result in this case is the same
as that of the declaration of the function itself.

We can also dispatch on the result of a function if the result
is an access to a tagged type. Consider

function Unit return access T;

We can suppose that T is a tagged type representing some
category of objects such as our geometrical objects and that
Unit is a function returning a unit object such as a circle of
unit radius or a triangle with unit side.

We might also have a function

function Is_Bigger(X, Y: access T) return Boolean;

and then

Thing: access T'Class := ... ;
...
Test: Boolean := Is_Bigger(Thing, Unit);

This will dispatch to the function Unit according to the tag
of Thing and then of course dispatch to the appropriate
function Is_Bigger.

The function Unit could also be used as a default value for a
parameter thus

function Is_Bigger(X: access T;
 Y: access T := Unit) return Boolean;

Remember that a default used in such a construction has to
be tag indeterminate.

Permitting anonymous access types as result types
eliminates the need to define the concept of a "return by
reference" type. This was a strange concept in Ada 95 and
primarily concerned limited types (including task and
protected types) which of course could not be copied.
Enabling us to write access explicitly and thereby tell the
truth removes much confusion. Limited types will be
discussed in detail in a later paper.

Access return types can be a convenient way of getting a
constant view of an object such as a table. We might have
an array in a package body (or private part) and a function
in the specification thus

John Barnes 113

Ada User Journal Volume 26, Number 2, June 2005

package P is
 type Vector is array (Integer range <>) of Float;

 function Read_Vec return access constant Vector;
 ...
private

end;

package body P is

 The_Vector: aliased Vector := ;

 function Read_Vec return access constant Vector is
 begin
 return The_Vector'Access;
 end;
 ...
end P;

We can now write

X := Read_Vec(7); -- read element of array

This is strictly short for

X := Read_Vec.all(7);

Note that we cannot write

Read_Vec(7) := Y; -- illegal

although we could do so if we removed constant from the
return type (in which case we should use a different name
for the function).

The last new use of anonymous access types concerns
discriminants. Remember that a discriminant can be of a
named access type or an anonymous access type.
Discriminants of an anonymous access type are known as
access discriminants. In Ada 95, access discriminants are
only allowed with limited types. Discriminants of a named
access type are just additional components with no special
properties. But access discriminants of limited types are
special. Since the type is limited, the object cannot be
changed by a whole record assignment and so the
discriminant cannot be changed even if it has defaults. Thus

type Minor is ...

type Major(M: access Minor) is limited
 record
 ...
 end record;

Small: aliased Minor;
Large: Major(Small'Access);

The objects Small and Large are now bound permanently
together.

In Ada 2005, access discriminants are also allowed for
nonlimited types. However, defaults are not permitted so
that the discriminant cannot be changed so again the
objects are bound permanently together. An interesting case
arises when the discriminant is provided by an allocator
thus

Larger: Major(new Minor(...));

In this case we say that the allocated object is a coextension
of Larger. Coextensions have the same lifetime as the major
object and so are finalized when it is finalized. There are
various accessibility and other rules concerning objects
which have coextensions which prevent difficulty when
returning such objects from functions.

4 Downward closures
This section is really about access to subprogram types in
general but the title downward closures has come to
epitomize the topic.

The requirements for Ada 83, (Strawman .. Steelman) were
strangely silent about whether parameters of subprograms
could themselves be subprograms as was the case in Algol
60 and Pascal. Remember that Pascal was one of the
languages on which the designs for the DoD language were
to be based.

The predictability aspects of the requirements were
interpreted as implying that all subprogram calls should be
identified at compilation time on the grounds that if you
didn't know what was being called than you couldn't know
what the program was going to do. This was a particularly
stupid attitude to take. The question of predictability
(presumably in some safety or security context) really
concerns the behaviour of particular programs rather than
the universe of all programs that can be constructed in a
language.

In any event the totality of subprograms that might be
called in a program is finite and closed. It simply consists
of the subprograms in the program. Languages such as Ada
are not able to construct totally new subprograms out of
lesser components in the way that they can create say
floating point values.

So the world had to use generics for many applications that
were natural for subprograms as parameters of other
subprograms. Thankfully many implementers avoided the
explosion that might occur with generics by clever code
sharing which in a sense hid the parameterization behind
the scenes.

The types of applications for which subprograms are
natural as parameters are any where one subroutine is
parameterized by another. They include many
mathematical applications such as integration and
maximization and more logical applications such as sorting
and searching and iterating.

As outlined in the Introduction, the matter was partly
improved in Ada 95 by the introduction of named access-
to-subprogram types. This was essentially done to allow
program call back to be implemented.

Program call back is when one program passes the
"address" of a subprogram within it to another program so
that this other program can later respond by calling back to
the first program using the subprogram address supplied.
This is often used for communication between an Ada
application program and some other software such as an

114 Rat ionale for Ada 2005: 2 Access Types

Volume 26, Number 2, June 2005 Ada User Journal

operating system which might even be written in another
language such as C.

Named access to subprogram types certainly work for call
back (especially with languages such as C that do not have
nested subprograms) but the accessibility rules which
followed those for general access to object types were
restrictive. For example, suppose we have a general library
level function for integration using a named access to
subprogram type to pass the function to be integrated thus

type Integrand is access function(X: Float) return Float;

function Integrate(Fn: Integrand; Lo, Hi: Float)
 return Float;

then we cannot even do the simplest integration of our own
function in a natural way. For example, suppose we wish to
integrate a function such as Exp(X**2). We can try

with Integrate;
procedure Main is
 function F(X: Float) return Float is
 begin
 return Exp(X**2);
 end F;

 Result, L, H: Float;
begin
 ... -- set bounds in L and H say
 Result := Integrate(F'Access, L, H); -- illegal in 95
 ...
end Main

But this is illegal because of the accessibility check
necessary to prevent us from writing something like

Evil: Integrand;
X: Float;
...
declare
 Y: Float;
 function F(X: Float) return Float is
 ...
 Y := X; --assign to variable in local block
 ...
 end F;
begin
 Evil := F'Access: -- illegal
end;
 X := Evil(X); -- call function out of context

Here we have attempted to assign an access to the local
function F in the global variable Evil. If this assignment had
been permitted then the call of Evil would indirectly have
called the function F when the context in which F was
declared no longer existed; F would then have attempted to
assign to the variable Y which no longer existed and whose
storage space might now be used for something else. We
can summarise this perhaps by saying that we are
attempting to call F when it no longer exists.

Ada 2005 overcomes the problem by introducing
anonymous access to subprogram types. This was actually
considered during the design of Ada 95 but it was not done

at the time for two main reasons. Firstly, the
implementation problems for those who were using
displays rather than static links were considered a hurdle.
And secondly, a crafty technique was available using the
newly introduced tagged types. And of course one could
continue to use generics. But further thought showed that
the implementation burden was not so great after all and
nobody understood the tagged type technique which was
really incredibly contorted. Moreover, the continued use of
generics when other languages forty years ago had included
a more natural mechanism was tiresome. So at long last
Ada 2005 includes anonymous access to subprogram types.

We rewrite the integration function much as follows

function Integrate(Fn: access function(X: Float) return Float;
 Lo, Hi: Float) return Float is
 Total: Float;
 N: constant Integer := ... ; -- no of subdivisions
 Step: Float := (Hi - Lo) / Float(N);
 X: Float := Lo; -- current point
begin
 Total := 0.5 * Fn(Lo); -- value at low bound
 for I in 1 .. N-1 loop
 X := X + Step; -- add values at
 Total := Total + Fn(X); -- intermediate points
 end loop;
 Total := Total + 0.5 * Fn(Hi); -- add final value
 return Total * Step; -- normalize
end Integrate;

The important thing to notice is the profile of Integrate in
which the parameter Fn is of an anonymous access to
subprogram type. We have also shown a simple body
which uses the trapezium/trapezoid method and so calls the
actual function corresponding to Fn at the two end points of
the range and at a number of equally spaced intermediate
points.

(NB It is time for a linguistic interlude. Roughly speaking
English English trapezium equals US English trapezoid.
They both originate from the Greek τραπεζα meaning a
table (literally with four feet). Both originally meant a
quadrilateral with no pairs of sides parallel. In the late 17th
century, trapezium came to mean having one pair of sides
parallel. In the 18th century trapezoid came to mean the
same as trapezium but promptly faded out of use in
England whereas in the US it continues in use. Meanwhile
in the US, trapezium reverted to its original meaning of
totally irregular. Trapezoid is rarely used in the UK but if
used has reverted to its original meaning of totally
irregular. A standard language would be useful. Anyway,
the integration is using quadrilateral strips with one pair of
sides parallel.)

With this new declaration of Integrate, the accessibility
problems are overcome and we are allowed to write
Integrate(F'Access, ...) just as we could write P(X'Access)
in the example in the previous section where we discussed
anonymous access to object types.

We still have to consider how a type conversion which
would permit an assignment to a global variable is

John Barnes 115

Ada User Journal Volume 26, Number 2, June 2005

prevented. The following text illustrates both access to
object and access to subprogram parameters.

type AOT is access all Integer;
type APT is access procedure (X: in out Float);

Evil_Obj: AOT;
Evil_Proc: APT;

procedure P(Objptr: access Integer;
 Procptr: access procedure (X: in out Float)) is
begin
 Evil_Obj := AOT(Objptr); -- fails at run time
 Evil_Proc := APT(Procptr); -- fails at compile time
end P;

declare
 An_Obj: aliased Integer;
 procedure A_Proc(X: in out Float) is
 begin ... end A_Proc;
begin
 P(An_Obj'Access, A_Proc'Access); -- legal
end;

Evil_Obj.all := 0; -- assign to nowhere
Evil_Proc.all(...); -- call nowhere

This repeats some of the structure of the previous section.
The procedure P has an access to object parameter Objptr
and an access to subprogram parameter Procptr; they are
both of anonymous type. The call of P in the local block
passes the addresses of a local object An_Obj and a local
procedure A_Proc to P. This is permitted. We now attempt
to assign the parameter values from within P to global
objects Evil_Obj and Evil_Proc with the intent of assigning
indirectly via Evil_Obj and calling indirectly via Evil_Proc
after the object and procedure referred to no longer exist.

Both of these wicked deeds are prevented by the
accessibility rules.

In the case of the object parameter Objptr it knows the
accessibility level of the actual An_Obj and this is seen to
be greater than that of the type AOT and so the conversion
is prevented at run time and in fact Program_Error is raised.
But if An_Obj had been declared at the same level as AOT
and not within an inner block then the conversion would
have been permitted.

However, somewhat different rules apply to anonymous
access to subprogram parameters. They do not carry an
indication of the accessibility level of the actual parameter
but simply treat it as if it were infinite (strictly – deeper
than anything else). This of course prevents the conversion
to the type APT and all is well; this is detected at compile
time. But note that if the procedure A_Proc had been
declared at the same level as APT then the conversion
would still have failed because the accessibility level is
treated as infinite.

There are a number of reasons for the different treatment of
anonymous access to subprogram types. A big problem is
that named access to subprogram types are implemented in
the same way as C *func in almost all compilers.
Permitting the conversion from anonymous access to

subprogram types to named ones would thus have caused
problems because that model does not work especially for
display based implementations. Carrying the accessibility
level around would not have prevented these conversions.
The key goal was simply to provide a facility
corresponding to that in Pascal and not to encourage too
much fooling about with access to subprogram types.
Recall that the attribute Unchecked_Access is permitted for
access to object types but was considered far too dangerous
for access to subprogram types for similar reasons.

The reader may be feeling both tired and that there are
other ways around the problems of accessibility anyway.
Thus the double integration presented in the Introduction
can easily be circumvented in many cases. We computed

⌠1⌠1
│ │ xy dy dx
⌡0⌡0

using the following program

with Integrate;
procedure Main is
 function G(X: Float) return Float is
 function F(Y: Float) return Float is
 begin
 return X*Y;
 end F;
 begin
 return Integrate(F'Access, 0.0, 1.0);
 end G;

 Result: Float;
begin
 Result:= Integrate(G'Access, 0.0, 1.0);
 ...
end Main;

The essence of the problem was that F had to be declared
inside G because it needed access to the parameter X of G.
But the astute reader will note that this example is not very
convincing because the integrals can be separated and the
functions both declared at library level thus

function F(Y: Float) return Float is
begin
 return Y;
end F;

function G(X: Float) return Float is
begin
 return X;
end G;

Result:= Integrate(F'Access, 0.0, 1.0) *
 Integrate(G'Access, 0.0, 1.0);

and so it all works using the Ada 95 version of Integrate
anyway.

However, if the two integrals had been more convoluted or
perhaps the region had not been square but triangular so
that the bound of the inner integral depended on the outer
variable as in

116 Rat ionale for Ada 2005: 2 Access Types

Volume 26, Number 2, June 2005 Ada User Journal

⌠1⌠x
│ │ xy dy dx
⌡0⌡0

then nested functions would be vital.

We will now consider a more elegant example which
illustrates how we might integrate an arbitrary function of
two variables F(x, y) over a rectangular region.

Assume that we have the function Integrate for one
dimension as before

function Integrate(Fn: access function(X: Float) return Float;
 Lo, Hi: Float) return Float;

Now consider

function Integrate(Fn: access function(X, Y: Float) return Float;
 LoX, HiX: Float
 LoY, HiY: Float) return Float is
 function FnX(X: Float) return Float is
 function FnY(Y: Float) return Float is
 begin
 return Fn(X, Y);
 end FnY;
 begin
 return Integrate(FnY'Access, LoY, HiY);
 end FnX;
begin
 Integrate(FnX'Access, LoX, HiX);
end integrate;

The new function Integrate for two dimensions overloads
and uses the function Integrate for one dimension (a good
example of overloading). With this generality it is again
impossible to arrange the structure in a manner which is
legal in Ada 95.

We might use the two-dimensional integration routine to
solve the original trivial problem as follows

function F(X, Y: Float) return Float is
begin
 return X*Y;
end F;
...

Result := Integrate(F'Access, 0.0, 1.0, 0.0, 1.0);

As an exercise the reader might like to rewrite the two
dimensional function to work on a non-rectangular domain.
The trick is to pass the bounds of the inner integral also as
functions. The profile then becomes

function Integrate(Fn: access function(X, Y: Float) return Float;
 LoX, HiX: Float
 LoY, HiY: access function(X: Float) return Float)
 return Float;

In case the reader should think that this topic is all too
mathematical it should be pointed out that anonymous
access to subprogram parameters are widely used in the
new container library thereby saving the unnecessary use of
generics.

For example the package Ada.Containers.Vectors declares
procedures such as

procedure Update_Element
 (Container: in Vector; Index: in Index_Type;
 Process: not null access
 procedure (Element: in out Element_Type));

This updates the element of the vector Container whose
index is Index by calling the procedure Process with that
element as parameter. Thus if we have a vector of integers
V and we need to double the value of those with index in
the range 5 to 10, then we would first declare a procedure
such as

procedure Double(E: in out Integer) is
begin
 E := 2 * E;
end Double ;

and then write

for I in 5 .. 10 loop
 Update_Element(V, I, Double'Access);
end loop;

Further details of the use of access to subprogram types
with containers will be found in a later paper.

Finally it should be noted that anonymous access to
subprogram types can also be used in all those places where
anonymous access to object types are allowed. That is as
stand-alone objects, as components of arrays and records,
as function results, in renamings, and in access
discriminants.

The reader who likes long sequences of reserved words
should realise by now that there is no limit in Ada 2005.
This is because a function without parameters can return an
access to function as its result and this in turn could be of a
similar kind. So we would have

type FF is access function return access function
 return access function ...

Attempts to compile such an access to function type will
inevitably lead to madness.

5 Access types and discriminants
This final topic concerns two matters. The first is about
accessing components of discriminated types that might
vanish or change mysteriously and the second is about type
conversions.

Recall that we can have a mutable variant record such as

type Gender is (Male, Female, Neuter);

type Mutant(Sex: Gender := Neuter) is
 record
 Birth: Date;
 case Sex is
 when Male =>
 Bearded: Boolean;
 when Female =>
 Children: Integer;

John Barnes 117

Ada User Journal Volume 26, Number 2, June 2005

 when Neuter =>
 null;
 end case;
 end record;

This represents a world in which there are three sexes,
males which can have beards, females which can bear
children, and neuters which are fairly useless. Note the
default value for the discriminant. This means that if we
declare an unconstrained object thus

The_Thing: Mutant;

then The_Thing is neuter by default but could have its sex
changed by a whole record assignment thus

The_Thing := (Male, The_Thing.Birth, True);

It now is Male and has a beard but the date of birth retains
its previous value.

The problem with this sort of object is that components can
disappear. If it were changed to be Female then the beard
would vanish and be replaced by children. Because of this
ghostly behaviour certain operations on mutable objects are
forbidden.

One obvious rule is that it is not permissible to rename
components which might vanish. So

Hairy: Boolean renames The_Thing.Bearded; -- illegal

is not permitted. This was an Ada 83 rule. It was probably
the case that the rules were watertight in Ada 83. However,
Ada 95 introduced many more possibilities. Objects and
components could be marked as aliased and the Access
attribute could be applied. Additional rules were then added
to prevent creating references to things that could vanish.

However, it was then discovered that the rules in Ada 95
regarding access types were not watertight. Accordingly
various attempts were made to fix them in a somewhat
piecemeal fashion. The problems are subtle and do not
seem worth describing in their entirety in this general
presentation. We will content ourselves with just a couple
of examples.

In Ada 95 we can declare types such as

type Mutant_Name is access all Mutant;
type Things_Name is access all Mutant(Neuter);

Naturally enough an object of type Things_Name can only
be permitted to reference a Mutant whose Sex is Neuter.

Some_Thing: aliased Mutant;
Thing_Ptr: Things_Name := Some_Thing'Access;

Things would now go wrong if we allowed Some_Thing to
have a sex change. Accordingly there is a rule in Ada 95
that says that an aliased object such as Some_Thing is
considered to be constrained. So that is quite safe.

However, matters get more difficult when a type such as
Mutant is used for a component of another type such as

type Monster is
 record

 Head: Mutant(Female);
 Tail: aliased Mutant;
 end record;

Here we are attempting to declare a nightmare monster
whose head is a female but whose tail is deceivingly
mutable. Those with a decent education might find that this
reminds them of the Sirens who tempted Odysseus by their
beautiful voices on his trip past the monster Scylla and the
whirlpool Charybdis. Those with an indecent education can
compare it to a pantomime theatre horse (or mare, maybe
indeed a nightmare). We could then write

M: Monster;
Thing_Ptr := Monster.Tail'Access;

However, there is an Ada 95 rule that says that the Tail has
to be constrained since it is aliased so the type Monster is
not allowed. So far so good.

But now consider the following very nasty example

generic
 type T is private;
 Before, After: T;
 type Name is access all T;
 A_Name: in out Name;
procedure Sex_Change;

procedure Sex_Change is
 type Single is array (1..1) of aliased T;
 X: Single := (1 => Before);
begin
 A_Name := X(1)'Access;
 X := (1 => After);
end Sex_Change;

and then

A_Neuter: Mutant_Name(Neuter); -- fixed neuter

procedure Surgery is new Sex_Change(
 T => Mutant,
 Before => (Sex => Neuter),
 After => (Sex => Male, Bearded, True),
 Name => Mutant_Name,
 A_Name => A_Neuter);

Surgery; -- call of Surgery makes A_Neuter hairy

The problem here is that there are loopholes in the checks
in the procedure Sex_Change. The object A_Name is
assigned an access to the single component of the array X
whose value is Before. When this is done there is a check
that the component of the array has the correct subtype.
However the subsequent assignment to the whole array
changes the value of the component to After and this can
change the subtype of X(1) surreptitiously and there is no
check concerning A_Name. The key point is that the
generic doesn't know that the type T is mutable; this
information is not part of the generic contract.

So when we call Surgery, the object A_Neuter suddenly
finds that it has grown a beard!

118 Rat ionale for Ada 2005: 2 Access Types

Volume 26, Number 2, June 2005 Ada User Journal

A similar difficulty occurs when private types are involved
because the partial view and full view might disagree about
whether the type is constrained or not. Consider

package Beings is
 type Mutant is private;
 type Mutant_Name is access Mutant;
 F, M: constant Mutant;
private
 type Mutant(Sex: Gender := Neuter) is
 record
 ... -- as above
 end record;

 F: constant Mutant := (Female, ...);
 M: constant Mutant := (Male, ...);
end Beings;

Now suppose some innocent user (who has not peeked at
the private part) writes

Chris: Mutant_Name := new Mutant'(F); --OK
...
Chris.all := M; -- raises Constraint_Error

This is very surprising. The user cannot see that the type
Mutant is mutable and in particular cannot see that M and F
are different in some way. From the outside they just look
like constants of the same type. The big trouble is that there
is a rule in Ada 95 that says that an object created by an
allocator is constrained. So the new object referred to by
Chris is permanently Female and therefore the attempt to
assign the value of M with its Bearded component to her is
doomed.

Attempting to fix these and related problems with a number
of minimal rules seemed fated not to succeed. In the end
the approach has been taken of getting to the root of the
matter in Ada 2005 and disallowing access subtypes for
general access types that have defaults for their
discriminants. So both the explicit Things_Name and also
Mutant_Name(Neuter) are forbidden in Ada 2005.

Moreover we cannot even have an access type such as
Mutant_Name when the access type completes a private
view that has no discriminants.

By removing these nasty access subtypes it is now possible
to say that heap objects are no longer considered
constrained in this situation.

The other change in this area concerns type conversions. A
variation on the gender theme is illustrated by the following

type Gender is (Male, Female);

type Person(Sex: Gender) is
 record
 Birth: Date;
 case Sex is

 when Male =>
 Bearded: Boolean;
 when Female =>
 Children: Integer;
 end case;
 end record;

Note that this type is not mutable so all persons are stuck
with their sex from birth.

We might now declare some access types

type Person_Name is access all Person;
type Mans_Name is access all Person(Male);
type Womans_Name is access all Person(Female);

so that we can manipulate various names of people. We
would naturally use Person_Name if we did not know the
sex of the person and otherwise use Mans_Name or
Womans_Name as appropriate. We might have

It: Person_Name := Chris'Access;
Him: Mans_Name := Jack'Access;
Her: Womans_Name := Jill'Access;

If we later discover that Chris is actually Christine then we
might like to assign the value in It to a more appropriate
variable such as Her. So we would like to write

Her := Womans_Name(It);

But curiously enough this is not permitted in Ada 95
although the reverse conversion

It := Person_Name(Her);

is permitted. The Ada 95 rule is that any constraints have to
statically match or the conversion has to be to an
unconstrained type. Presumably the reason was to avoid
checks at run time. But this lack of symmetry is unpleasant
and the rule has been changed in Ada 2005 to allow
conversion in both directions with a run time check as
necessary.

The above example is actually Exercise 19.8(1) in the
textbook [2]. The poor student was invited to solve an
impossible problem. But they will be successful in Ada
2005.

References
[1] ISO/IEC JTC1/SC22/WG9 N412 (2002) Instructions

to the Ada Rapporteur Group from SC22/WG9 for
Preparation of the Amendment.

[2] J. G. P. Barnes (1998) Programming in Ada 95, 2nd
ed., Addison-Wesley.

© 2005 John Barnes Informatics.

120

Volume 26, Number 2, June 2005 Ada User Journa

Rationale for Ada 2005: 3 Structure and visibility
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract
This paper describes various improvements in the
areas of structure and visibility for Ada 2005.
The most important improvement is perhaps the
introduction of limited with clauses which permit
types in two packages to refer to each other. A related
addition to context clauses is the private with clause
which just provides access from a private part.
There are also important improvements to limited
types which make them much more useful; these
include initialization with aggregates and
composition using a new form of return statement.
Keywords: rationale, Ada 2005.

1 Overview of changes
The WG9 guidance document [1] identifies the solution of
the problem of mutually dependent types as one of the two
specific issues that need to be addressed in devising Ada
2005.

Moreover the guidance document also emphasizes

 Improvements that will remedy shortcomings in Ada. It
cites in particular improvements in OO features,
including adding a Java-like interface feature and
improved interfacing to other OO languages.

OO is largely about structure and visibility and so further
improvements and in particular those that remedy
shortcomings are desirable.

The following Ada issues cover the relevant changes and
are described in detail in this paper:

217 Mutually recursive types – limited with

262 Access to private units in the private part

287 Limited aggregates allowed

318 Limited and anonymous access return types

326 Tagged incomplete types

412 Subtypes and renamings of incomplete entities

These changes can be grouped as follows.

First there is the important solution to the problem of
mutually dependent types across packages provided by the
introduction of limited with clauses (217). Related changes
are the introduction of tagged incomplete types (326) and
the ability to have subtypes and renamings of incomplete
views (412).

Another improvement to the visibility rules is the
introduction of private with clauses (262).

There are some changes to aggregates. These were
triggered by problems with limited types but apply to
aggregates in general (part of 287).

An important area is that of limited types which are
somewhat confused in Ada 95. There are two changes
which permit limited values to be built in situ. One is the
use of aggregates for initialization and the other is a more
elaborate return statement which enables the construction
of limited values when returning from a function (287,
318).

2 Mutually dependent types
For many programmers the solution of the problem of
mutually dependent types will be the single most important
improvement introduced in Ada 2005.

This topic was discussed in the Introduction using an
example of two mutually dependent types, Point and Line.
Each type needed to refer to the other in its declaration and
of course the solution to this problem is to use incomplete
types. In Ada 95 there are three stages. We first declare the
incomplete types

type Point; -- incomplete types
type Line;

Suppose for simplicity that we wish to study patterns of
points and lines such that each point has exactly three lines
through it and that each line has exactly three points on it.
(This is not so stupid. The two most fundamental theorems
of projective geometry, those of Pappus and Desargues,
concern such structures and so does the simplest of finite
geometries, the Fano plane.)

Using the incomplete types we can then declare

type Point_Ptr is access Point; -- use incomplete types
type Line_Ptr is access Line;

and finally we can complete the type declarations thus

type Point is -- complete the types
 record
 L, M, N: Line_Ptr;
 end record;

type Line is
 record
 P, Q, R: Point_Ptr;
 end record;

John Barnes 121

Ada User Journal Volume 26, Number 2, June 2005

Of course, in Ada 2005, as discussed in the previous paper,
we can use anonymous access types more freely so that the
second stage can be omitted in this example. As a
consequence the complete declarations are simply

type Point is -- complete the types
 record
 L, M, N: access Line;
 end record;

type Line is
 record
 P, Q, R: access Point;
 end record;

This has the important advantage that we do not have to
invent irritating identifiers such as Point_Ptr.

But we will stick to Ada 95 for the moment. In Ada 95
there are two rules

▪ the incomplete type can only be used in the definition of
access types;

▪ the complete type declaration must be in the same
declarative region as the incomplete type.

The first rule does actually permit

type T;
type A is access procedure (X: in out T);

Note that we are here using the incomplete type T for a
parameter. This is not normally allowed, but in this case the
procedure itself is being used in an access type. The
additional level of indirection means that the fact that the
parameter mechanism for T is not known yet does not
matter.

Apart from this, it is not possible to use an incomplete type
for a parameter in a subprogram in Ada 95 except in the
case of an access parameter. Thus we cannot have

function Is_Point_On_Line(P: Point; L: Line)
 return Boolean;

before the complete type declarations.

It is also worth pointing out that the problem of mutually
dependent types (within a single unit) can often be solved
by using private types thus

 type Point is private;
 type Point_Ptr is access Point;
 type Line is private;
 type Line_Ptr is access Line;
private

 type Point is
 record
 L, M, N: Line_Ptr;
 end record;

 type Line is
 record
 P, Q, R: Point_Ptr;
 end record;

But we need to use incomplete types if we want the user to
see the full view of a type so the situation is somewhat
different.

As an aside, remember that if an incomplete type is
declared in a private part then the complete type can be
deferred to the body (this is the so-called Taft Amendment
in Ada 83). In this case neither the user nor indeed the
compiler can see the complete type and this is the main
reason why we cannot have parameters of incomplete types
whereas we can for private types.

We will now introduce what has become a canonical
example for discussing this topic. This concerns employees
and the departments of the organization in which they
work. The information about employees needs to refer to
the departments and the departments need to refer to the
employees. We assume that the material regarding
employees and departments is quite large so that we
naturally wish to declare the two types in distinct packages
Employees and Departments. So we would like to say

with Departments; use Departments;
package Employees is
 type Employee is private;
 procedure Assign_Employee(E: in out Employee;
 D: in out Department);
 type Dept_Ptr is access all Department;
 function Current_Department(E: Employee)
 return Dept_Ptr;
 ...
end Employees;

with Employees; use Employees;
package Departments is
 type Department is private;
 procedure Choose_Manager(D: in out Department;
 M: in out Employee);
 ...
end Departments;

We cannot write this because each package has a with
clause for the other and they cannot both be declared (or
entered into the library) first.

We assume of course that the type Employee includes
information about the Department for whom the Employee
works and the type Department contains information
regarding the manager of the department and presumably a
list of the other employees as well – note that the manager
is naturally also an Employee.

So in Ada 95 we are forced to put everything into one
package thus

package Workplace is
 type Employee is private;
 type Department is private;
 procedure Assign_Employee(E: in out Employee;
 D: in out Department);
 type Dept_Ptr is access all Department;
 function Current_Department(E: Employee)
 return Dept_Ptr;
 procedure Choose_Manager(D: in out Department;

122 Rat ionale for Ada 2005: 3 Structure and Vis ib i l i ty

Volume 26, Number 2, June 2005 Ada User Journal

 M: in out Employee);
private
 ...
end Workplace;

Not only does this give rise to huge cumbersome packages
but it also prevents us from using the proper abstractions.
Thus the types Employee and Department have to be
declared in the same private part and so are not protected
from each others operations.

Ada 2005 solves this by introducing a variation of the with
clause – the limited with clause. A limited with clause
enables a library unit to have an incomplete view of all the
visible types in another package. We can now write

limited with Departments;
package Employees is
 type Employee is private;
 procedure Assign_Employee(E: in out Employee;
 D: access Departments.Department);
 type Dept_Ptr is access all Departments.Department;
 function Current_Department(E: Employee)
 return Dept_Ptr;
 ...
end Employees;

limited with Employees;
package Departments is
 type Department is private;
 procedure Choose_Manager(D: in out Department;
 M: access Employees.Employee);
 ...
end Departments;

It is important to understand that a limited with clause does
not impose a dependence. Thus if a package A has a limited
with clause for B, then A does not depend on B as it would
with a normal with clause, and so B does not have to be
compiled before A or placed into the library before A.

If we have a cycle of packages we only have to put limited
with on one package since that is sufficient to break the
cycle of dependences. However, for symmetry, in this
example we have made them both have a limited view of
each other.

Note the terminology: we say that we have a limited view
of a package if the view is provided through a limited with
clause. So a limited view of a package provides an
incomplete view of its visible types. And by an incomplete
view we mean as if they were incomplete types.

In the example, because an incomplete view of a type
cannot generally be used as a parameter, we have had to
change one parameter of each of Assign_Employee and
Choose_Manager to be an access parameter.

There are a number of rules necessary to avoid problems. A
natural one is that we cannot have both a limited with
clause and a normal with clause for the same package in the
same context clause (a normal with clause is now officially
referred to as a nonlimited with clause). An important and
perhaps unexpected rule is that we cannot have a use

package clause with a limited view because severe
surprises might happen.

To understand how this could be possible it is important to
realise that a limited with clause provides a very restricted
view of a package. It just makes visible

▪ the name of the package and packages nested within,

▪ an incomplete view of the types declared in the visible
parts of the packages.

Nothing else is visible at all. Now consider

package A is
 X: Integer := 99;
end A;

package B is
 X: Integer := 111;
end B;

limited with A, B;
package P is
 ... -- neither X visible here
end P;

Within package P we cannot access A.X or B.X because
they are not types but objects. But we could declare a child
package with its own with clause thus

with A;
package P.C is
 Y: Integer := A.X;
end P.C;

The nonlimited with clause on the child "overrides" the
limited with clause on the parent so that A.X is visible.

Now suppose we were allowed to add a use package clause
to the parent package; since a use clause on a parent applies
to a child this means that we could refer to A.X as just X
within the child so we would have

limited with A, B;
use A, B; -- illegal
package P is
 ... -- neither X visible here
end P;

with A;
package P.C is
 Y: Integer := X; -- A.X now visible as just X
end P.C;

If we were now to change the with clause on the child to
refer to B instead of A, then X would refer to B.X rather than
A.X. This would not be at all obvious because the use
clause that permits this is on the parent and we are not
changing the context clause of the parent at all. This would
clearly be unacceptable and so use package clauses are
forbidden if we only have a limited view of the package.

Here is a reasonably complete list of the rules designed to
prevent misadventure when using limited with clauses

▪ a use package clause cannot refer to a package with a
limited view as illustrated above,

John Barnes 123

Ada User Journal Volume 26, Number 2, June 2005

limited with P; use P; -- illegal
package Q is ...

 the rule also prevents

limited with P;
package Q is
 use P; -- illegal

▪ a limited with clause can only appear on a specification
– it cannot appear on a body or a subunit,

limited with P; -- illegal
package body Q is ...

▪ a limited with clause and a nonlimited with clause for
the same package may not appear in the same context
clause,

limited with P; with P; -- illegal

▪ a limited with clause and a use clause for the same
package or one of its children may not appear in the
same context clause,

limited with P; use P.C; -- illegal

▪ a limited with clause may not appear in the context
clause applying to itself,

limited with P; -- illegal
package P is ...

▪ a limited with clause may not appear on a child unit if a
nonlimited with clause for the same package applies to
its parent or grandparent etc,

with Q;
package P is ...

limited with Q; -- illegal
package P.C is ...

 but note that the reverse is allowed as mentioned above

limited with Q;
package P is ...

with Q; -- OK
package P.C is ...

▪ a limited with clause may not appear in the scope of a
use clause which names the unit or one of its children,

with A;
package P is
 package R renames A;
end P;

with P;
package Q is
 use P.R; -- applies to A
end Q;

limited with A; -- illegal
package Q.C is ...

 without this specific rule, the use clause in Q which
actually refers to A would clash with the limited with
clause for A.

Finally note that a limited with clause can only refer to a
package declaration and not to a subprogram, generic
declaration or instantiation, or to a package renaming.

We will now return to the rules for incomplete types. As
mentioned above the rules for incomplete types are quite
strict in Ada 95 and apart from the curious case of an
access to subprogram type it is not possible to use an
incomplete type for a parameter other than in an access
parameter.

Ada 2005 enables some relaxation of these rules by
introducing tagged incomplete types. We can write

type T is tagged;

and then the complete type must be a tagged type. Of
course the reverse does not hold. If we have just

type T;

then the complete type T might be tagged or not.

A curious feature of Ada 95 was mentioned in the
Introduction. In Ada 95 we can write

type T;
...
type T_Ptr is access all T'Class;

By using the attribute Class, this promises in a rather sly
way that the complete type T will be tagged. This is strictly
obsolescent in Ada 2005 and moved to Annex J. In Ada
2005 we should write

type T is tagged;
...
type T_Ptr is access all T'Class;

The big advantage of introducing tagged incomplete types
is that we know that tagged types are always passed by
reference and so we are allowed to use tagged incomplete
types for parameters.

This advantage extends to the incomplete view obtained
from a limited with clause. If a type in a package is visibly
tagged then the incomplete view obtained is tagged
incomplete and so the type can then be used for parameters.

Returning to the packages Employees and Departments it
probably makes sense to make both types tagged since it is
likely that the types Employee and Department form a
hierarchy. So we can write

limited with Departments;
package Employees is
 type Employee is tagged private;
 procedure Assign_Employee(E: in out Employee;
 D: in out Departments.Department'Class);
 type Dept_Ptr is
 access all Departments.Department'Class;
 function Current_Department(E: Employee)
 return Dept_Ptr;
 ...
end Employees;

124 Rat ionale for Ada 2005: 3 Structure and Vis ib i l i ty

Volume 26, Number 2, June 2005 Ada User Journal

limited with Employees;
package Departments is
 type Department is tagged private;
 procedure Choose_Manager(D: in out Department;
 M: in out Employees.Employee'Class);
 ...
end Departments;

The text is a bit cumbersome now with Class sprinkled
liberally around but we can introduce some subtypes in
order to shorten the names. We can also avoid the
introduction of the type Dept_Ptr since we can use an
anonymous access type for the function result as mentioned
in the previous paper. So we get

limited with Departments;
package Employees is
 type Employee is tagged private;
 subtype Dept is Departments.Department;
 procedure Assign_Employee(E: in out Employee;
 D: in out Dept'Class);
 function Current_Department(E: Employee)
 return access Dept'Class;
 ...
end Employees;

limited with Employees;
package Departments is
 type Department is tagged private;
 subtype Empl is Employees.Employee;
 procedure Choose_Manager(D: in out Department;
 M: in out Empl'Class);
 ...
end Departments;

Observe that in Ada 2005 we can use a simple subtype as
an abbreviation for an incomplete type thus

subtype Dept is Departments. Department;

but such a subtype cannot have a constraint or a null-
exclusion. In essence it is just a renaming. Remember that
we cannot have a use clause with a limited view. Moreover,
many projects forbid use clauses anyway but permit
renamings and subtypes for local abbreviations. It would be
a pain if such abbreviations were not also available when
using a limited with clause.

It's a pity we cannot also write

subtype A_Dept is Departments.Department'Class;

but then you cannot have everything in life.

A similar situation arises with the names of nested
packages. They can be renamed in order to provide an
abbreviation.

The mechanism for breaking cycles of dependences by
introducing limited with clauses does not mean that the
implementation does not check everything thoroughly in a
rigorous Ada way. It is just that some checks might have to
be deferred. The details depend upon the implementation.

For the human reader it is very helpful that use clauses are
not allowed in conjunction with limited with clauses since

it eliminates any doubt about the location of types involved.
It probably helps the poor compilers as well.

Readers might be interested to know that this topic was one
of the most difficult to solve satisfactorily in the design of
Ada 2005. Altogether seven different versions of AI-217
were developed. This chosen solution is on reflection by far
the best and was in fact number 6.

A number of loopholes in Ada 95 regarding incomplete
types are also closed in Ada 2005.

One such loophole is illustrated by the following (this is
Ada 95)

package P is
 ...
private
 type T; -- an incomplete type
 type ATC is access all T'Class; -- it must be tagged
 X: ATC;
 procedure Op(X: access T); -- primitive operation
 ...
end P;

The incomplete type T is declared in the private part of the
package P. The access type ACT is then declared and since
it is class wide this implies that the type T must be tagged
(the reader will recall from the discussion above that this
odd feature is banished to Annex J in Ada 2005). The full
type T is then declared in the body. We also declare a
primitive operation Op of the type T in the private part.

However, before the body of P is declared, nothing in Ada
95 prevents us from writing a private child thus

private package P.C is
 procedure Naughty;
end P.C;

package body P.C is
 procedure Naughty is
 begin
 Op(X); -- a dispatching call
 end Naughty;
end P.C;

and the procedure Naughty can call the dispatching
operation Op. The problem is that we are required to
compile this call before the type T is completed and thus
before the location of its tag is known.

This problem is prevented in Ada 2005 by a rule that if an
incomplete type declared in a private part has primitive
operations then the completion cannot be deferred to the
body.

Similar problems arise with access to subprogram types.
Thus, as mentioned above, Ada 95 permits

type T;
type A is access procedure (X: in out T);

In Ada 2005, the completion of T cannot be deferred to a
body. Nor can we declare such an access to subprogram

John Barnes 125

Ada User Journal Volume 26, Number 2, June 2005

type if we only have an incomplete view of T arising from a
limited with clause.

Another change in Ada 2005 can be illustrated by the
Departments and Employees example. We can write

limited with Departments;
package Employees is
 type Employee is tagged private;
 procedure Assign_Employee(E: in out Employee;
 D: in out Departments.Department'Class);
 type Dept_Ptr is
 access all Departments.Department'Class;
 ...
end Employees;

with Employees; use Employees;
procedure Recruit(D: Dept_Ptr; E: in out Employee) is
begin
 Assign_Employee(E, D.all);
end Recruit;

Ada 95 has a rule that says "thou shalt not dereference an
incomplete type". This would prevent the call of
Assign_Employee which is clearly harmless. It would be
odd to require Recruit to have a nonlimited with clause for
Departments to allow the call of Assign_Employee.
Accordingly the rule is changed in Ada 2005 so that
dereferencing an incomplete view is only forbidden when
used as a prefix as, for example, in D'Size.

3 Visibility from private parts
Ada 95 introduced public and private child packages in
order to enable subsystems to be decomposed in a
structured manner. The general idea is that

▪ public children enable the decomposition of the view of
a subsystem to the user of the subsystem,

▪ private children enable the decomposition of the
implementation of a subsystem.

In turn both public and private children can themselves
have children of both kinds. This has proved to work well
in most cases but a difficulty has arisen regarding private
parts.

Recall that the private part of a package really concerns the
implementation of the package rather than specifying the
facilities to the external user. Although it does not concern
algorithmic aspects of the implementation it does concern
the implementation of data abstraction. During the original
design of Ada some thought was given to the idea that a
package should truly be written and compiled as three
distinct parts. Perhaps like this

with ...
package P is
 ... -- visible specification
end;

with ...
package private P is -- just dreaming
 ... -- private part
end;

with ...
package body P is
 ... -- body
end;

Each part could even have had its own context clause as
shown.

However, it was clear that this would be an administrative
nightmare in many situations and so the two-part
specification and body emerged with the private part
lurking at the end of the visible part of the specification
(and sharing its context clause).

This was undoubtedly the right decision in general. The
division into just two parts supports separate compilation
well and although the private part is not part of the logical
interface to the user it does provide information about the
physical interface and that is needed by the compiler.

The problem that has emerged is that the private part of a
public package cannot access the information in private
child packages. Private children are of course not visible to
the user but there is no reason why they should not be
visible to the private part of a public package provided that
somehow the information does not leak out. Thus consider
a hierarchy

package App is
 ...
private
 ...
end App;

package App.Pub is
 ...
private
 ...
end App.Pub;

private package App.Priv is
 ...
private
 ...
end App.Priv;

There is no reason why the private parts of App and
App.Pub and the visible part of the specification of App.Priv
should not share visibility (the private part of App.Priv
logically belongs to the next layer of secrecy downwards).
But this sharing is not possible in Ada 95.

The public package App.Pub is not permitted to have a with
clause for the child package App.Priv since this would mean
that the visible part of App.Pub would also have visibility
of this information and by mechanisms such as renaming
could pass it on to the external user.

The specification of the parent package App is also not
permitted to have a with clause for App.Priv since this
would break the dependence rules anyway. Any child has a
dependence on its parent and so the parent specification has
to be compiled or entered into the program library first.

126 Rat ionale for Ada 2005: 3 Structure and Vis ib i l i ty

Volume 26, Number 2, June 2005 Ada User Journal

Note that the private part of the public child App.Pub does
automatically have visibility of the private part of the
parent App. But the reverse cannot be true again because of
the dependence rules.

Finally note that the private child App.Priv can have a with
clause for its public sibling App.Pub (it creates a
dependence of course) but that only gives the private child
visibility of the visible part of the public child.

So the only visibility sharing among the three regions in
Ada 95 is that the private part of the public child and the
visible part of the private child can see the private part of
the parent.

The practical consequence of this is that in large systems,
information which should really be lower down the
hierarchy has to be placed in the private part of the ultimate
parent. This tends to mean that the parent package becomes
very large thereby making maintenance more difficult and
forcing frequent recompilations of the parent and thus the
whole hierarchy of packages.

The situation is much alleviated in Ada 2005 by the
introduction of private with clauses.

If a package P has a private with clause for a package Q
thus

private with Q;
package P is ...

then the private part of P has visibility of the visible part of
the package Q, whereas the visible part of P does not have
visibility of Q and so visibility cannot be transmitted to a
user of P. It is rather as if the with clause were attached to
just the private part of P thus

package P is
 ...
with Q; -- we cannot write this
private
 ...
end P;

This echoes the three-part decomposition of a package
discussed above.

A private with clause can be placed wherever a normal with
clause for the units mentioned can be placed and in addition
a private with clause which mentions a private unit can be
placed on any of its parent's descendants.

So we can put a private with clause for App.Priv on
App.Pub thereby permitting visibility of the private child
from the private part of its public sibling. Thus

private with App.Priv;
package App.Pub is
 ... -- App.Priv not visible here
private
 ... -- App.Priv visible here
end App.Pub;

This works provided we don't run afoul of the dependence
rules. The private with clause means that the public child

has a dependence on the private child and therefore the
private child must be compiled or entered into the program
library first.

We might get a situation where there exists a mutual
dependence between the public and private sibling in that
each has a type that the other wants to access. In such a
case we can use a limited private with clause thus

limited private with App.Priv;
package App.Pub is
 ... -- App.Priv not visible here
private
 ... -- limited view of App.Priv here
end App.Pub;

The child packages are both dependent on the parent
package and so the parent cannot have with clauses for
them. But a parent can have a limited with clause for a
public child and a limited private with clause for a private
child thus

limited with App.Pub; limited private with App.Priv;
package App is
 ... -- limited view of App.Pub here
private
 ... -- limited view of App.Priv here
end App;

A simple example of the use of private with clauses was
given in the Introduction. Here it is somewhat extended

limited with App.User_View;
limited private with App.Secret_Details;
package App is
 ... -- limited view of type Outer visible here
private
 ... -- limited view of type Inner visible here
end App;

private package App.Secret_Details is
 type Inner is ...
 ... -- various operations on Inner etc
end App.Secret_Details;

private with App.Secret_Details;
package App.User_View is

 type Outer is private;
 ... -- various operations on Outer visible to the user

 -- type Inner is not visible here
private
 -- type Inner is visible here

 type Outer is
 record
 X: Secret_Details.Inner;
 ...
 end record;
 ...
end App.User_View;

In the previous section we observed that there were
problems with interactions between use clauses, nonlimited
with clauses, and limited with clauses. Those rules also

John Barnes 127

Ada User Journal Volume 26, Number 2, June 2005

apply to private with clauses where a private with clause is
treated as a nonlimited with clause and a limited private
with clause is treated as a limited with clause. In other
words private is ignored for the purpose of those rules.

Moreover, we cannot place a package use clause in the
same context clause as a private with clause (limited or
not). This is because we would then expect it to apply to the
visible part as well which would be wrong. However, we
can always put a use clause in the private part thus

private with Q;
package P is
 ... -- Q not visible here
private
 use Q;
 ... -- use visibility of Q here
end P;

At the risk of confusing the reader it might be worth
pointing out that strictly speaking the rules regarding
private with are treated as legality rules rather than
visibility rules. Here is an example which illustrates this
subtlety and the dangers it avoids

package P is
 function F return Integer;
end P;

function F return Integer;

with P;
private with F;
package Q is
 use P;
 X: Integer := F; -- illegal
 Y: Integer := P.F; -- legal
private
 Z: Integer := F; -- legal, calls the library F
end Q;

If we treated the rules regarding private with as pure
visibility rules then the call of F in the declaration of X in
the visible part would be a call of P.F. So moving the
declaration of X to the private part would silently change
the F being called – this would be nasty. We can always
write the call of F as P.F as shown in the declaration of Y.

So the rules regarding private with are written to make
entities visible but unmentionable in the visible part. In
practice programmers can just treat them as visibility rules
so that the entities are not visible at all which is how we
have described them above.

A useful consequence of the unmentionable rather than
invisible approach is that we can use the name of a package
mentioned in a private with clause in a pragma in the
context clause thus

private with P; pragma Elaborate(P);
package Q is ...

Private with clauses are in fact allowed on bodies as well,
in which case they just behave as a normal with clause.
Another minor point is that Ada has always permitted

several with clauses for the same unit in one context clause
thus

with P; with P; with P, P;
package Q is ...

To avoid complexity we similarly allow

with P; private with P;
package Q is

and then the private with is ignored.

We have introduced private with clauses in this section as
the solution to the problem of access to private children
from the private part of the parent or public sibling. But
they have other important uses. If we have

private with P;
package Q is ...

then we are assured that the package Q cannot inadvertently
access P in the visible part and, in particular, pass on access
to entities in P by renamings and so on. Thus writing
private with provides additional documentation
information which can be useful to both human reviewers
and program analysis tools. So if we have a situation where
a private with clause is all that is needed then we should
use it rather than a normal with clause.

In summary, whereas in Ada 95 there is just one form of
with clause, Ada 2005 provides four forms

with P; -- full view

limited with P; -- limited view

private with P; -- full view from private part

limited private with P; -- limited view from private part

Finally, note that if a private with clause is given on a
specification then it applies to the body as well as to the
private part.

4 Aggregates
There are important changes to aggregates in Ada 2005
which are very useful in a number of contexts. These were
triggered by the changes to the rules for limited types
which are described in the next section, but it is convenient
to first consider aggregates separately.

The main change is that the box notation <> is now
permitted as the value in a named aggregate. The meaning
is that the component of the aggregate takes the default
value if there is one.

So if we have a record type such as

type RT is
 record
 A: Integer := 7;
 B: access Integer;
 C: Float;
 end record;

then if we write

X: RT := (A => <>, B => <>, C => <>);

128 Rat ionale for Ada 2005: 3 Structure and Vis ib i l i ty

Volume 26, Number 2, June 2005 Ada User Journal

then X.A has the value 7, X.B has the value null and X.C is
undefined. So the default value is that given in the record
type declaration or, in the absence of such an explicit
default value, it is the default value for the type. If there is
no explicit default value and the type does not have one
either then the value is simply undefined as usual.

The above example could be abbreviated to

X: RT := (others => <>);

The obvious combinations are allowed

(A => <>, B => An_Integer'Access, C => 2.5)
(A => 3, others => <>)
(A => 3, B | C => <>)

The last two are the same. There is a rule in Ada 95 that if
several record components in an aggregate are given the
same expression using a | then they have to be of the same
type. This does not apply in the case of <> because no
typed expression is involved.

The <> notation is not permitted with positional notation.
So we cannot write

(3, <>, 2.5) -- illegal

But we can mix named and positional in a record aggregate
as usual provided the named components follow the
positional ones, so the following are permitted

(3, B => <>, C => 2.5)
(3, others => <>)

A minor but important rule is that we cannot use <> for a
component of an aggregate that is a discriminant if it does
not have a default. Otherwise we could end up with an
undefined discriminant.

The <> notation is also allowed with array aggregates. But
in this case the situation is much simpler because it is not
possible to give a default value for array components. Thus
we might have

P: array (1.. 1000) of Integer := (1 => 2, others => <>);

The array P has its first component set to 2 and the rest
undefined. (Maybe P is going to be used to hold the first
1000 prime numbers and we have a simple algorithm to
generate them which requires the first prime to be
provided.) The aggregate could also be written as

(2, others => <>)

Remember that others is permitted with a positional array
aggregate provided it is at the end. But otherwise <> is not
allowed with a positional array aggregate.

We can add others => <> even when there are no
components left. This applies to both arrays and records.

The box notation is also useful with tasks and protected
objects used as components. Consider

protected type Semaphore is ... ;

type PT is
 record

 Guard: Semaphore;
 Count: Integer;
 Finished: Boolean := False;
 end record;

As explained in the next section, we can now use an
aggregate to initialize an object of a limited type. Although
we cannot give an explicit initial value for a Semaphore we
would still like to use an aggregate to get a coverage check.
So we can write

X: PT := (Guard => <>, Count => 0, Finished => <>);

Note that although we can use <> to stand for the value of a
component of a protected type in a record we cannot use it
for a protected object standing alone.

Sema: Semaphore := <>; -- illegal

The reason is that there is no need since we have no
coverage check to concern us and there could be no other
reason for doing it anyway.

Similarly we can use <> with a component of a private type
as in

type Secret is private;

type Visible is
 record
 A: Integer;
 S: Secret;
 end record;

X: Visible := (A => 77; S => <>);

but not when standing alone

S: Secret := <>; -- illegal

It would not have any purpose because such a variable will
take any default value anyway.

We conclude by mentioning a small point for the language
lawyer. Consider

function F return Integer;

type T is
 record
 A: Integer := F;
 B: Integer := 3;
 end record;

Writing

X: T := (A => 5, others => <>); -- does not call F

is not quite the same as

X: T; -- calls F
...
X.A := 5; X.B := 3;

In the first case the function F is not called whereas in the
second case it is called when X is declared in order to
default initialize X.A. If it had a nasty side effect then this
could matter. But then programmers should not use nasty
side effects anyway.

John Barnes 129

Ada User Journal Volume 26, Number 2, June 2005

5 Limited types
The general idea of a limited type is to restrict the
operations that a user can do on the type to just those
provided by the author of the type and in particular to
prevent the user from doing assignment and thus making
copies of objects of the type.

However, limited types have always been a problem. In
Ada 83 the concept of limitedness was confused with that
of private types. Thus in Ada 83 we only had limited
private types (although task types were inherently limited).

Ada 95 brought significant improvement by two changes. It
allowed limitedness to be separated from privateness. It
also allowed the redefinition of equality for all types
whereas Ada 83 forbade this for limited types. In Ada 95,
the key property of a limited type is that assignment is not
predefined and cannot be defined (equality is not
predefined either but it can be defined). The general idea of
course is that there are some types for which it would be
wrong for the user to be able to make copies of objects.
This particularly applies to types involved in resource
control and types implemented using access types.

However, although Ada 95 greatly improved the situation
regarding limited types, nevertheless two major difficulties
have remained. One concerns the initialization of objects
and the other concerns the results of functions.

The first problem is that Ada 95 treats initialization as a
process of assigning the initial value to the object
concerned (hence the use of := unlike some Algol based
languages which use = for initialization and := for
assignment). And since initialization is treated as
assignment it is forbidden for limited types. This means
that we cannot initialize objects of a limited type nor can
we declare constants of a limited type. We cannot declare
constants because they have to be initialized and yet
initialization is forbidden. This is more annoying in Ada 95
since we can make a type limited but not private.

The following example was discussed in the Introduction

type T is limited
 record
 A: Integer;
 B: Boolean;
 C: Float;
 end record;

Note that this type is explicitly limited (but not private) but
its components are not limited. If we declare an object of
type T in Ada 95 then we have to initialize the components
(by assigning to them) individually thus

 X: T;
begin
 X.A := 10; X.B := True; X.C := 45.7;

Not only is this annoying but it is prone to errors as well. If
we add a further component D to the type T then we might
forget to initialize it. One of the advantages of aggregates is
that we have to supply all the components which
automatically provides full coverage analysis.

This problem did not arise in Ada 83 because we could not
make a type limited without making it also private and so
the individual components were not visible anyway.

Ada 2005 overcomes the difficulty by stating that
initialization by an aggregate is not actually assignment
even though depicted by the same symbol. This permits

 X: T := (A => 10, B => True, C => 45.7);

We should think of the individual components as being
initialized individually in situ – an actual aggregated value
is not created and then assigned.

The reader might recall that the same thing happens when
an aggregate is used to initialize a controlled type; this was
not as Ada 95 was originally defined but it was corrected in
AI-83 and consolidated in the 2001 Corrigendum [2].

We can now declare a constant of a limited type as
expected

 X: constant T := (A => 10, B => True, C => 45.7);

Limited aggregates can be used in a number of other
contexts as well

▪ as the default expression in a component declaration,

 so if we nest the type T inside some other type (which
itself then is always limited – it could be explicitly
limited but there is a general rule that a type is implicitly
limited if it has a limited component) we might have

type Twrapper is
 record
 Tcomp: T := (0, False, 0.0);
 end record;

▪ as an expression in a record aggregate,

 so again using the type Twrapper as in

XT: Twrapper := (Tcomp => (1, True, 1.0));

▪ as an expression in an array aggregate similarly,

 so we might have

type Tarr is array (1 .. 5) of T;

Xarr: Tarr := (1 .. 5 => (2, True, 2.0));

▪ as the expression for the ancestor part of an extension
aggregate,

 so if TT were tagged as in

type TT is tagged limited
 record
 A: Integer;
 B: Boolean;
 C: Float;
 end record;

type TTplus is new TT with
 record
 D: Integer;
 end record;

130 Rat ionale for Ada 2005: 3 Structure and Vis ib i l i ty

Volume 26, Number 2, June 2005 Ada User Journal

...
XTT: TTplus := ((1, True, 1.0) with 2);

▪ as the expression in an initialized allocator,

 so we might have

type T_Ptr is access T;
XT_Ptr: T_Ptr;
...
XT_Ptr := new T'(3, False, 3.0);

▪ as the actual parameter for a subprogram parameter of a
limited type of mode in

procedure P(X: in T);
...
P((4, True, 4.0));

▪ as the result in a return statement

function F(...) return T is
begin
 ...
 return (5, False, 5.0);
end F;

 this really concerns the other major change to limited
types which we shall return to in a moment.

▪ as the actual parameter for a generic formal limited
object parameter of mode in,

generic
 FT: in T;
package P is ...
...
package Q is new P(FT => (7, True, 7.0));

The last example is interesting. Limited generic parameters
were not allowed in Ada 95 at all because there was no way
of passing an actual parameter because the generic
parameter mechanism for an in parameter is considered to
be assignment. But now the actual parameter can be passed
as an aggregate. An aggregate can also be used as a default
value for the parameter thus

generic
 FT: in T := (0, False, 0.0);
package P is ...

Remember that there is a difference between subprogram
and generic parameters. Subprogram parameters were
always allowed to be of limited types since they are mostly
implemented by reference and no copying happens anyway.
The only exception to this is with limited private types
where the full type is an elementary type.

The change in Ada 2005 is that an aggregate can be used as
the actual parameter in the case of a subprogram parameter
of mode in whereas that was not possible in Ada 95.

Sometimes a limited type has components where an initial
value cannot be given as in

protected type Semaphore is ... ;

type PT is
 record
 Guard: Semaphore;
 Count: Integer;
 Finished: Boolean := False;
 end record;

Since a protected type is inherently limited the type PT is
also limited because a type with a limited component is
itself limited. Although we cannot give an explicit initial
value for a Semaphore, we would still like to use an
aggregate to get the coverage check. In such cases we can
use the box symbol <> as described in the previous section
to mean use the default value for the type (if any). So we
can write

X: PT := (Guard => <>, Count => 0, Finished => <>);

The major rule that must always be obeyed is that values of
limited types can never be copied. Consider nested limited
types

type Inner is limited
 record
 L: Integer;
 M: Float;
 end record;

type Outer is limited
 record
 X: Inner;
 Y: Integer;
end record;

If we declare an object of type Inner

An_Inner: Inner := (L => 2, M => 2.0);

then we could not use An_Inner in an aggregate of type
Outer

An_Outer: Outer := (X => An_Inner, Y => 3); -- illegal

This is illegal because we would be copying the value. But
we can use a nested aggregate as mentioned earlier

An_Outer: Outer := (X => (2, 2.0), Y => 3);

The other major change to limited types concerns returning
values from functions.

We have seen that the ability to initialize an object of a
limited type with an aggregate solves the problem of giving
an initial value to a limited type provided that the type is
not private.

Ada 2005 introduces a new approach to returning the
results from functions which can be used to solve this and
other problems.

We will first consider the case of a type that is limited such
as

John Barnes 131

Ada User Journal Volume 26, Number 2, June 2005

type T is limited
 record
 A: Integer;
 B: Boolean;
 C: Float;
 end record;

We can declare a function that returns a value of type T
provided that the return does not involve any copying. For
example we could have

function Init(X: Integer; Y: Boolean; Z: Float) return T is
begin
 return (X, Y, Z);
end Init;

This function builds the aggregate in place in the return
expression and delivers it to the location specified where
the function is called. Such a function can be called from
precisely those places listed above where an aggregate can
be used to build a limited value in place. For example

V: T := Init(2, True, 3.0);

So the function itself builds the value in the variable V
when constructing the returned value. Hence the address of
V is passed to the function as a sort of hidden parameter.

Of course if T is not private then this achieves no more than
simply writing

V: T := (2, True, 3.0);

But the function Init can be used even if the type is private.
It is in effect a constructor function for the type. Moreover,
the function Init could be used to do some general
calculation with the parameters before delivering the final
value and this brings considerable flexibility.

We noted that such a function can be called in all the places
where an aggregate can be used and this includes in a return
expression of a similar function or even itself

function Init_True(X: Integer; Z: Float) return T is
begin
 return Init(X, True, Z);
end Init_True;

It could also be used within an aggregate. Suppose we have
a function to return a value of the limited type Inner thus

function Make_Inner(X: Integer; Y: Float) return Inner is
begin
 return (X, Y);
end Make_Inner;

then not only could we use it to initialize an object of type
Inner but we could use it in a declaration of an object of
type Outer thus

An_Inner: Inner := Make_Inner(2, 2.0);
An_Outer: Outer := (X => Make_Inner(2, 2.0), Y => 3);

In the latter case the address of the component of An_Outer
is passed as the hidden parameter to the function
Make_Inner.

Being able to use a function in this way provides much
flexibility but sometimes even more flexibility is required.
New syntax permits the final returned object to be declared
and then manipulated in a general way before finally
returning from the function.

The basic structure is

function Make(...) return T is
begin
 ...
 return R: T do -- declare R to be returned
 -- here we can manipulate R in the usual way
 -- in a sequence of statements
 end return;
end Make;

The general idea is that the object R is declared and can
then be manipulated in an arbitrary way before being
finally returned. Note the use of the reserved word do to
introduce the statements in much the same way as in an
accept statement. The sequence ends with end return and
at this point the function passes control back to where it
was called. Note that if the function had been called in a
construction such as the initialization of an object X of a
limited type T thus

X: T := Make(...);

then the variable R inside the function is actually the
variable X being initialized. In other words the address of X
is passed as a hidden parameter to the function Make in
order to create the space for R. No copying is therefore ever
performed.

The sequence of statements could have an exception
handler

 return R: T do
 ... -- statements
 exception
 ... -- handlers
 end return;

If we need local variables within an extended return
statement then we can declare an inner block in the usual
way

 return R: T do
 declare
 ... -- local declarations
 begin
 ... -- statements
 end;
 ...
 end return;

The declaration of R could have an initial value

 return R: T := Init(...) do
 ...
 end return;

Observe that these extended return statements cannot be
nested but could have simple return statements inside

132 Rat ionale for Ada 2005: 3 Structure and Vis ib i l i ty

Volume 26, Number 2, June 2005 Ada User Journal

 return R: T := Init(...) do
 if ... then
 ...
 return; -- result is R
 end if;
 ...
 end return;

Note that return statements inside an extended return
statement do not have an expression since the result
returned is the object R declared in the extended return
statement itself.

Although extended return statements cannot be nested there
could nevertheless be several in a function, perhaps in
branches of an if statement or case statement. This would
be quite likely in the case of a type with discriminants

type Person(Sex: Gender) is ... ;

function F(...) return Person is
begin
 if ... then
 return R: Person(Sex => Male) do
 ...
 end return;
 else
 return R: Person(Sex => Female) do
 ...
 end return;
 end if;
end F;

This also illustrates the important point that although we
introduced these extended return statements in the context
of greater flexibility for limited types they can be used with
any types at all such as the nonlimited type Person. The
mechanism of passing a hidden parameter which is the
address for the returned object of course only applies to
limited types. In the case of nonlimited types, the result is
simply delivered in the usual way.

We can also rename the result of a function call – even if it
is limited.

The result type of a function can be constrained or
unconstrained as in the case of the type Person but of
course the actual object delivered must be of a definite
subtype. For example suppose we have

type UA is array (Integer range <>) of Float;
subtype CA is UA(1 .. 10);

Then the type UA is unconstrained but the subtype CA is
constrained. We can use both with extended return
statements.

In the constrained case the subtype in the extended return
statement has to statically match (typically it will be the
same textually but need not) thus

function Make(...) return CA is
begin
 ...
 return R: UA(1 .. 10) do -- statically matches

 ...
 end return;
end Make;

In the unconstrained case the result R has to be constrained
either by its subtype or by its initial value. Thus

function Make(...) return UA is
begin
 ...
 return R: UA(1 .. N) do
 ...
 end return;
end Make;

or

function Make(...) return UA is
begin
 ...
 return R: UA := (1 .. N => 0.0) do
 ...
 end return;
end Make;

The other important change to the result of functions which
was discussed in the previous paper is that the result type
can be of an anonymous access type. So we can write a
function such as

function Mate_Of(A: access Animal'Class)
 return access Animal'Class;

The introduction of explicit access types for the result
means that Ada 2005 is able to dispense with the notion of
returning by reference.

This does, however, introduce a noticeable incompatibility
between Ada 95 and Ada 2005. We might for example have
a pool of slave tasks acting as servers. Individual slave
tasks might be busy or idle. We might have a manager task
which allocates slave tasks to different jobs. The manager
might declare the tasks as an array

Slaves: array (1 .. 10) of TT; -- TT is some task type

and then have another array of properties of the tasks such
as

type Task_Data is
 record
 Active: Boolean := False;
 Job_Code: ... ;
 end record;

Slave_Data: array (1 .. 10) of Task_Data;

We now need a function to find an available slave. In Ada
95 we write

function Get_Slave return TT is
begin
 ... -- find index K of first idle slave
 return Slaves(K); -- in Ada 95, not in Ada 2005
end Get_Slave;

John Barnes 133

Ada User Journal Volume 26, Number 2, June 2005

This is not permitted in Ada 2005. If the result type is
limited (as in this case) then the expression in the return
statement has to be an aggregate or function call and not an
object such as Slaves(K). In Ada 2005 the function has to
be rewritten to honestly return an access value thus

function Get_Slave return access TT is
begin
 ... -- find index K of first idle slave
 return Slaves(K)'Access; -- in Ada 2005
end Get_Slave;

and all the calls of Get_Slave have to be changed to
correspond as well.

This is perhaps the most serious incompatibility between
Ada 95 and Ada 2005. But then, at the end of the day,
honesty is the best policy.

References
[1] ISO/IEC JTC1/SC22/WG9 N412 (2002) Instructions

to the Ada Rapporteur Group from SC22/WG9 for
Preparation of the Amendment.

[2] ISO/IEC 8652:1995/COR 1:2001, Ada Reference
Manual – Technical Corrigendum 1.

[3] J. G. P. Barnes (1998) Programming in Ada 95, 2nd
ed., Addison-Wesley.

© 2005 John Barnes Informatics.

 135

Ada User Journal Volume 26, Number 2, June 2005

Ada Reuse Guidelines
Muthu Ramachandran
School of Computing, Leeds Metropolitan University,The Headingley Campus, Beckett Park, Leeds LS6 3QS, UK;
Email: m.ramachandran@leedsmet.ac.uk

Abstract
In this paper, we discuss the general area of software
development for reuse and reuse guidelines. We
identify, in detail, language-oriented and domain-
oriented guidelines whose effective use affects
component reusability. We also discuss the
application domain of abstract data structures and
propose an alternative view of reusability to that of
Booch [3], whose work is well known in this area.
Our guidelines are used as an effective technique for
domain analysis. We have developed a prototype
software system which takes Ada components and
provides objective detailed advice on how to construct
reusable components.
Keywords Software reuse guidelines, domain
analysis, Ada reuse guidelines, reuse improvement

1. Introduction
Software component reuse is the key to significant gains in
productivity. However, to achieve its full potential, we need
to focus our attention on development for reuse, which is a
process of producing potentially reusable components. We
know clearly the difficulties that are faced when trying to
reuse a component that is not designed for reuse. Therefore,
the emphasis of the research described here is on
development for reuse rather than development with reuse,
which is a process of normal systems development (i.e.,
existing form of reuse). The process of developing
potentially reusable components depends solely on defining
their characteristics such as language features and domain
abstractions. Reuse guidelines can represent such
characteristics clearly. Therefore, we need to formulate
objective and automatable reuse guidelines.

There have been previous studies on reuse guidelines
[3,10,5, 8, 12, 13, &34], but these authors emphasise on
general advice including design, documentation and
management issues.

In this paper, we will explore the general area of
development for reuse and discuss how we can formulate
realisable and objective reuse guidelines. We will also
review some of these existing guidelines and present our
guidelines. Why do we need such objective and realisable
reuse guidelines? They are important for:

• Assessing the reusability of software components
against objective reuse guidelines.

• Providing reuse advice and analysis.

• Improving components for reuse which is the
process of modifying and adding reusability
attributes.

In our work, reuse guidelines fall into two classes:

Ada reuse guidelines: Most existing programming
languages including object-oriented languages provide
features that support reuse. However, simply writing code
in those languages doesn't promote reusability. Components
must be designed for reusability using those features. Such
features must be listed as a set of design techniques for
reusability before design takes place.

Domain-oriented reuse guidelines: Guidelines which
are relevant to a specific application domain. We discuss
more on this in a later section of this paper.

The language we have chosen for study is Ada, and the
application domain chosen is components of abstract data
structures (ADS). The main reason for choosing Ada is
because of its explicit technical support for reuse, features
such as the packaging mechanism, generics, support for
abstraction, exceptions, parameterisation, building blocks,
and information hiding. The reason for choosing ADS as
the application domain is partly because, as computer
scientists, we might be considered domain experts
ourselves in this area and partly because it has been
extensively studied and documented. These components are
the fundamental building blocks for many applications.

2. Development for reuse
We argue that reuse impacts the software development
process in two distinct ways (Sommerville and
Ramachandran [31]):

1. Development with reuse.

Software design takes place in an environment where a
significant number of potentially reusable components are
available. It is an existing form of software reuse practice.
An example of this kind is UNIX environment. The
objective is to produce a software product. During the past
years of active research on reuse, most emphasis has been
given to development with reuse. As a result, there is no
large body of components, except in specific domains such
as mathematical libraries, which have been generalised for
reuse.

2. Development for reuse.

An objective of the design process is to produce
components which are potentially reusable. These
components form building blocks for future development

136 Ada Reuse Guidel ines

Volume 26, Number 2, June 2005 Ada User Journal

(over the long term) and are applicable for various
situations and perhaps across application domains.

In development with reuse, reuse is desirable but there need
be no resources expended in creating new reusable
components. Development for reuse implies expending
resources specifically to increase the reusability of
components. In many cases, this process might follow
development with reuse where components generated
during normal system development are made more reusable
by generalisation and improvement.

Our notion of the development for reuse process is shown
in Figure (1), in which there are a number of stages to be
followed which start from identifying an application
domain, identify & classify reusable abstractions, domain-
oriented reuse, language-oriented reuse, design
components, assessment for reuse, improvement for reuse,
and deliver potentially reusable components. The idea is to
identify a number of frequently reusable domain-specific
abstractions (using classification or by interview with
domain experts) and then to apply domain-specific and
language-specific criteria that are defined by the reuse
guidelines.

The development for reuse process proceeds in a number of
stages.

1. Identify domain. Domain analysis has been identified as
essential for effective reuse. The first step is to identify a
specific application domain and define its boundary.

2. Identify and classify (frequently) reusable abstractions.
To identify potentially reusable components, the reuse
assessor must know what the important domain abstractions
are and how frequently these abstractions are used in
systems developed for that domain. There is not much point
in devoting a lot of effort in producing a reusable domain
abstraction if that abstraction is rarely used. Domain
classification helps to identify effective reusable
abstractions. This stage involves interviewing domain
experts, surveying domain literature and studying existing
systems.

3. Identify design/programming language constructs that
support reuse. Selecting an appropriate language is an
important part of development for reuse. We should be able
to express our reuse guidelines effectively using language
mechanisms.

4. Study and formulate language reuse guidelines (rules
concerning language support for reuse). This emphasises
the effective use of language features for reuse. This
process includes studies of existing techniques and
appropriate modifications to them.

5. Study and formulate domain reuse guidelines (rules
concerning the domain characteristics for reuse). This
emphasises the reusable domain abstractions that are
identified in the application domain. Guidelines should not
just be general advice but should be specific and verifiable
for creating potentially reusable components.
Design/redesign components based on these guidelines.

6. The next step, known as reuse assessment is a process of
assessing components based on the number of guidelines
satisfied against the total number of guidelines that are
applicable, and then produce an assessment report. This is
where we need to automate this process. The outcome of

this process is to make sure that the
components designed for reuse satisfy
some of the key characteristics.

7. The final step, known as reuse
improvement is a process of modifying
and improving these components for
reuse by adding attributes of an
abstraction for reuse. This process is
based on the assessment report produced
during the previous step. The reuse
improver must know what attributes of
an abstraction must be generalised to
make it reusable. Again, an automatic
reuse improvement is essential. Finally,
produce potentially reusable components.

8. Automate, where possible, these two
processes of assessing and improving components for
reuse.

It is unrealistic to expect reusable components to be
produced as a side-effect of normal systems development.
The reasons for this are partly technical and partly
managerial. Technically, the notion of what constitutes a
reusable component is not well-understood and engineers
working on a project cannot be expected to wrestle with
this problem while developing to a given set of
requirements. Furthermore, the requirements for a
particular project may be such that components have to be
very specific in order to satisfy them.

Furthermore, a project manager’s principal responsibility is
to deliver the required software system on time and within
budget. Creating reusable components requires additional
effort to be expended which is of no immediate benefit to
that project. The project manager cannot reasonably be

Language-oriented reuse

Identify & classify
reusable domain

abstractions

Reuse Improvement

Identify Domain

Reuse Assessment

Domain-oriented reuse

Potentially
reusable components

Starts

Language

Knowledge
Domain

Knowledge Design components

Figure 1 The process of development for reuse

Muthu Ramachandran 137

Ada User Journal Volume 26, Number 2, June 2005

expected to give reusable component production a high
priority.

Thus, we believe that the normal mode of production of
reusable components should be to take existing components
and to add reusability to them. This extra cost for reuse
must be an organisational rather than a project
responsibility. Reusability is an attribute which can be
added at any level from the specification through to the
implementation. In our work, we are principally concerned
with the reusability of compilable components. However,
we believe that the approach discussed is equally applicable
to formal specifications and software designs.

Design for reusable component is dependent on the
effective use of the programming language used to
implement the component and application domain
knowledge. Application domain knowledge allows the
abstractions in a domain to be identified and encoded as a
set of reusable components. The objective of our work is to
use language and domain knowledge to assess, with
automatic assistance, the reusability of a component and to
suggest to the software engineer how that component may
be made more reusable.

3. Reuse Guidelines
Development for reuse requires that the language features
must be used effectively. The objective of language-
oriented reusability is to exploit the use of language support
for reuse and to capture the domain knowledge efficiently.
There have been experiments conducted to show that
experienced programmers can reuse better than novices
(Soloway and Ehrlich 1984). The idea is to formulate a set
of verifiable reuse guidelines (derived from experts and
existing systems and literature, for example available Ada
reuse guidelines).

The major technical problems of development for reuse are:

• How to identify the characteristics of a reusable
component?

• How to assess and improve reusability attributes
of a component automatically?

• How to encode and analyse application domain
knowledge?

The work described here addresses these problems and
hence considers factors affecting reusability such as
language factors and domain factors. We believe objective
and realisable guidelines will help to solve these problems.
Existing studies on creating reusable components [12, 34,
10, 3, 8, &5] fall into the following classes:

1. Highly Conceptual studies which try to be language
independent but very abstract. For example, all such studies
say reusable components should be:

• Highly cohesive, meaning that they should
represent a single abstraction.

• Loosely coupled, meaning that they should be
largely independent of any other abstraction.

There are other three such criteria proposed by Gargaro and
Pappas [9] specifically for Ada programs. A reusable
program should be:

• Transportable
• An orthogonal (context-independent) composition,

and
• Independent of the runtime system.

More recently, Hollingsworth (1992) proposed a set of
discipline for constructing high-quality components:

• Correctness
• Composability
• Reusability
• Understandability

Again, this is interesting but these are general programming
principles rather than a discipline for reuse. Similarly,
Tracz [32] and Weide at al. [34] have proposed a
framework based on a highly abstract idea, known as the
3C model:

• Concept: a statement of what a piece of software

does, factoring out how it does it; abstract
specification of functional behaviour.

• Content: a statement of what a piece of software
achieves the behaviour defined in its concept; the
code to implement a functional specification.

• Context: aspects of the software environment
relevant to the definition of concept or content that
are explicitly part of the concept or content.

2. Language oriented studies which produce guidelines for
a specific programming language and suggest how features
of that language affect reusability. Gautier and Wallis [10]
have done extensive studies on Ada reuse guidelines.
However, some of their guidelines are interesting advice
rather than practical and realisable reuse guidelines. For
example, they say:

• Avoid taking a design decision that the reuser can
take later. Where possible allow the reuser to defer
decisions until runtime.

• Avoid implementing a package in such a way that
it maintains state in private variables.

Their guidelines on Ada generics say:

• Components should be generic, even if no
parameterisation is required.

• When generic components have many formal
parameters consider specifying the
components as a nested generic.

• Do not unnecessarily restrict generic formal types.
Limited private types provide for maximum reuse
potential.

Let us also review some of the existing guidelines on the
design of abstract data types. For example, studies by

138 Ada Reuse Guidel ines

Volume 26, Number 2, June 2005 Ada User Journal

Gautier and Wallis [10] and Braun and Goodenough [5]
say:

• Components should model a single abstraction.

• Develop models by generalising from real
problems [5].

These guidelines seem to contradict another of their own
guidelines, which says,

• Where possible make local abstractions separate
components.

• For a package that models an abstract data type,
instantiation of the package should be used in
preference to deriving the type representing the
abstract values.

Similarly, Hollingsworth [12] has proposed some forty
guidelines that are similar to the above guidelines. For
example:

Principle 1 - Make generic package the unit of modularity.

Principle 2 - Export a type so that abstract state is
maintained in variables of that type, not in package
instances.

Principle 13 - Parameterise the component by each ADT
that it manipulates but does not export.

Principle 16 - Formally specify the behaviour of each
component using a mathematical specification language.

As we can see these are clearly general programming
principles rather than a discipline for reuse. Like others, his
guidelines are also difficult to automate.

In general, existing guidelines do not address our real
problem of defining and identifying reusable attributes.
How would we generalise an abstraction? How do we
assess and add reusable attributes automatically? To
address all these problems, we need to formulate practical
and objective reuse guidelines.

Our work has taken these existing studies as a starting point
and has attempted to produce more detailed and practical
guidelines on the way in which language and domain
features affect reusability. Compared to these existing reuse
guidelines [12, 34, 10, 3,8, 5], our guidelines are, practical
and objective, domain-specific, comprehensive, classified,
support design for reuse, and have been implemented for
automated improvement for reuse.

In our work, we classify these into language-oriented and
domain-oriented reuse guidelines. Language-oriented
guidelines are further classified into language-independent
reuse guidelines that are realisable in all programming
languages and language-dependent reuse guidelines that are
specific to Ada. In the domain of abstract data structures
(ADS), reuse guidelines are classified into guidelines on
sequential and concurrent structures. Guidelines on
sequential structures are further classified into guidelines
on linear and non-linear structures which are further
classified into guidelines on static ADS and dynamic ADS.

4. Ada Reuse Guidelines as Knowledge
Representation
To support the process of development for reuse, we need
to represent reuse knowledge effectively. Objective reuse
guidelines represent the reuse characteristics of language
knowledge and domain knowledge. In our work, guidelines
are represented as rules because these are collected as
verifiable rules. In this section, we discuss some of these
knowledge guidelines for reuse.

Language-oriented reusability is a process in which the
language support for reuse is analysed. For example, recent
studies by Sommerville [30] show that C++ is being used
in a way which is very similar to C programming. As a
result, components are designed without using specific C++
features for reuse. In Ada, the effective use of generics and
the packaging mechanism support reusability.

1. Language-independent and Language-dependent reuse
guidelines (such as Ada Reuse Guidelines). Language-
independent guidelines are concerned with the effective
language features which are common across languages. For
example, one of our guidelines says, "Always provide a
means to discover the array size". The purpose of this
guideline is to ensure any previous values are not retained.
In C, this guideline can be implemented by passing a
parameter which is the array size.

In Ada, the same can be said:

• Always use the FIRST, LAST and RANGE attributes to
discover the lower bounds, the upper bounds and the size of
an array.

Ada's predefined attributes must be used to predict the array
size directly. The array structure is supported across the
programming languages and it is used across applications.

2. Ada reuse guidelines. Language-specific reuse guidelines
are concerned with the effective use of Ada's support for
reuse. Ada reuse guidelines emphasise rules concerning its
support for reuse. For this work we have used Ada 83
(mainly) and Ada 95 (some) mainly because of our
experience in using them. Here, we present only a sample
of our guidelines. In our work, Ada reuse guidelines fall
into a number of classes based on various Ada constructs:

 • Design of Ada packages

 • Design of Ada types

 • Design of Ada generics

 • Design of Subprogram interfaces

 • Design of Ada tasks

1. Ada packages. The packaging mechanism of Ada
supports the representation of abstract data types and reuse
of building blocks. Hence, it is important to formulate
guidelines and design components based on the knowledge
about abstract data types. One of our guidelines on the use
of Ada packages says:

• Always hide information by using access types for
detailed structural representation.

Muthu Ramachandran 139

Ada User Journal Volume 26, Number 2, June 2005

This guideline supports reuse of specification, abstract data
types, the principle of information hiding, and reuse of
building blocks. This allows reusers to modify and defer
detailed design decisions in the package body without
affecting its specification and other parts of the system.
This guideline must be satisfied if a component has to be
certified as reusable. It emphasises that access types should
be used to hide structural implementation. This can be done
by defining structure type as private in the visible part of
the Ada package and the detailed design information should
be defined in the package body.

2. Private and limited private types. Ada supports the use
of private types and limited private types to build abstract
data types. It is sometimes difficult to choose between these
and there are merits and demerits of both. A limited private
type can't be assigned but can provide automatic
initialisation and control of allocation of all objects whereas
a private type allows assignment of objects but can't
support automatic initialisation and allocation of all objects.
This selection depends on a design rationale which needs to
be addressed here.

Let us look at what some of the existing guidelines by
Gautier and Wallis 1990 [10] say on this design rationale
on selecting appropriate private types.

• A private type should be implemented either as an access
type or as a record type with a default component value
which enables an uninitialised object to be detected.

• Export abstract data types as limited private types.

These guidelines do not say clearly when to choose private
and limited private types. The first one provides advice
rather than a reuse guideline because Ada provides
automatic initialisation for all composite types. The last one
says to choose always 'limited private' which is not
practical for all structures. In Ada, choosing a particular
private type involves a heuristic design decision to be
made, so we need a precise design rationale.

For example, one of our Ada reuse guidelines says,

• Always select a private type for all objects which are
static structures and limited private type for all objects
which are dynamic structures.

This guideline provides a checkable design rationale for
choosing an appropriate private type. It says to choose a
private type for which the representation is static and to
choose a limited private type for which the representation is
dynamic. Ada's private types export an abstraction of a
component, reveal the properties of a component to be
reused, allow you to build a structure of a structure, and
adopt the information hiding principle. This guideline
emphasises that you should choose private type for static
structures because they allow you to assign objects
individually whereas for dynamic structures we would not
normally make such assignments. Hence you choose
limited private types for dynamic structures.

When a type is private then all the predefined operations
are available on the type outside the package to the reuser.

For this reason, a private type is preferred for static
structures which might require individual assignment and
manipulation using those operations. On the other hand, if
we choose a private type for dynamic structures then the
objects can't be controlled and it is unsafe because all the
predefined operations are available on the type outside the
package to the reuser. For this reason, a limited private type
is preferred for dynamic structures.

4.1 Guidelines on Abstract Data Structures
Domain classification is an important and difficult part of
modern domain engineering. It helps to identify effective
reusable abstractions and model the problem domain.
Booch [3] has proposed a classification scheme, known as
Booch's components. In his scheme, components are
classified into structures, tools, and subsystems. He has
characterised a structure as an ADT (abstract data type) or
ASM (abstract state machine). Most of the ADS are
considered as monolithic or polylithic components.
Monolithic components are stacks, strings, queues,
dequeues, rings, maps, sets, and bags. Polylithic
components are lists, trees, and graphs. Tools are utilities,
filters, pipes, sorting, searching, and pattern matching.
Again these are further classified into various forms of a
component, which represent variations on the theme of
components for differences on time and space
requirements. The forms are sequential, guarded,
concurrent, and multiple.

Booch's work [3] has been used as a starting point for
constructing reusable components. However, his notion of
forms represents only minor variations in implementation
and is cumbersome for the reuser to choose a particular
implementation because there are too many variants. For
example there are more than twenty-six variant forms of
stack components.

Our objective is to formulate realisable domain reuse
guidelines to represent the design of reusable components
of abstract data structures (ADS). These reuse guidelines
are kept as general as possible, and not specific to any
particular language, but specific to this domain of ADS.
The main purposes of these guidelines are firstly, to support
development for reuse in the application domain of ADS.
Secondly, to estimate the reuse potential of a program
automatically, and followed by this to improve components
for reuse by representing these guidelines within this
domain. Domain reuse guidelines are based on a proposed
classification scheme.

In our work, we have proposed a classification scheme for
the domain of abstract data structures (ADS) as shown in
Figure 2. In this scheme, ADS have been classified into
sequential and concurrent structures. The sequential
structure is further classified into linear, and non-linear
structures. An important further sub-classification is static
and dynamic abstractions which can be kept together as a
single abstraction. This classification is important for the
following reasons.

Guidelines that have been formulated refer to specific parts
of the classification structure, mainly sequential structures.

140 Ada Reuse Guidel ines

Volume 26, Number 2, June 2005 Ada User Journal

Sub-classification is limited to static and dynamic
structures which are single, generalised, and easy to reuse.

A single and generalised abstraction is more reusable than
an abstraction with several versions, which are called forms
in Booch's components [3].

The domain boundary is clearly defined which is important
to do domain analysis effectively, whereas one of the
Booch's sub-classification known as Subsystem is left
undefined.

Booch's sub-taxonomy needs further refinement and his
classification scheme is far too general (structures, tools,
and subsystems) which makes the domain boundary and
scope undefined and divergent. There are too many forms
in Booch's scheme whereas our scheme proposes only two
distinct forms namely static and dynamic, and it is based on
a specific application domain (the domain boundary is
clearly defined and limited) rather than general.

There are good reasons for keeping abstractions together
rather than having several versions (or forms) for each
minor variation. It may be difficult for the reuser to
understand each of these minor variations before reusing a
component. For example, Booch's has provided with a
notion of bounded and unbounded for monolithic
components and controlled and uncontrolled for concurrent
structures. These can lead to unmanageable components
with variations. We believe these should always be
designed as manageable. Similarly, variations for iterator
and noniterator, there is no need for noniterator. Our
conclusion is that most of these forms would never be
reused. In our work on domain analysis, support is provided
in identifying frequently reusable abstractions.

4.2 Knowledge representation
Probably there is no best and easy method of domain
representation. Research is underway on how to do domain
analysis, and on domain representation (Prieto-Diaz 1990).
In our work, the approach taken is rule-based
representation. Reuse guidelines are represented as rules.
An example of the rule is:

IF abstract structure is complex AND
all operations are independent of the type of the
structure element THEN
Component should be implemented as a generic
package with the element type
as a generic parameter;

END IF;

However, automating some of these guidelines breaches
this rule. For example, one of our guidelines on defining
the list of operations on object creation, termination, object
inquiry, and state change, involves more than one
interaction and transformations. Hence it breaches our
single if-then rule and depends on applying domain
knowledge for further transformations. This information is
modelled using a component template and the reusability is
assessed and improved by comparing the component with
that template.

Some of our guidelines are illustrated here:

1. Design of abstract data types. The notion of an

abstract data type allows you to express real world
2. Entities of an application domain. It allows you to

separate a specification from an internal
representation of a structure (principle of
information hiding). It means we are able to
specify an abstraction of a component in terms of
its actual interface descriptions together which is
useful to generalise that abstraction for reuse. It
allows the designer to view a system at a more
abstract level and to change the representation of
ADS without affecting their use in other parts of
the system.

One of our guidelines on ADS says,
• For all complex structures, provide two representations
such as static and dynamic structures for each domain
abstraction.

This guideline says, for each structure, provide two
abstractions such as static which is represented using an
array structure and dynamic which is represented using
dynamic structure (access/pointer). This provides a choice
and maximum flexibility for the reuser with improved reuse
potential. For example, in Ada, we can design two
packages for each structure implemented statically and
dynamically. If an abstraction is to be represented in Ada
then we can apply various Ada reuse guidelines. For
example, one on the rationale for choosing private types
say, choose limited private for complex and dynamic
structures, and choose private type for static structures.
However, the Ada library mechanism is inadequate in that
it rises naming conflict when there are two library units
with similar names which mean that the implementation of
similar components must have different names. This has
been solved in Ada 95 with the use of child packages.

Another important guideline (Braun and Goodenough
1985) on the design of abstract data structures emphasises
the need for providing methods for a list of operations such
as object creation, object termination, state change, state
inquiry, and input and output. They have not considered
operations on exceptions that deal with error conditions.
We believe that the operations on exceptions and handling
are significant for reusable and reliable components. In our
work we have extended this guideline to include operations
on exceptions handling.

Our extended guideline on ADS says,

• The components should be provided with the following
operations on ADS.

 • Creation

 • Termination

 • Conversion

 • State inquiry

 • State change

 • Input/ output representation, and

Muthu Ramachandran 141

Ada User Journal Volume 26, Number 2, June 2005

 • Exceptions

Creation involves both creating and initialising an object,
termination is a means of making the object inaccessible for
the remainder of its scope, conversion allows for the
change of representation from one type to another, state
inquiry functions allow the user to determine the state of
the object and boundary conditions, state change functions
allow modifying or changing the contents of the object,
input/ output representations are primarily useful for
debugging purposes, and exceptions deal with error
conditions and exception handling procedures. Each
operation emphasises one or more functionality so that the
services offered by the component are increased thus
leading to improved reusability. Sometimes components
which do not provide all these operations may well be
reused. In such cases, the component has to be measured
based on the degree of reusability.

2. Other guidelines. Our guidelines on the design of
reusable static and dynamic structures, and on space
management are essential, objective and realisable.
Complete set of guidelines can be found in Ramachandran
(1992). Some of our important domain guidelines are,

• Always define a constrained array structure to
represent a component of static structure.

Always select dynamic object representation for all
complex structures and hide detailed structural information.

If the abstract structure is complex and all operations are
independent of the type of the structure element then that
component should be implemented as a generic package
with the element type as a generic parameter.

• Always provide a procedure to record the maximum
size of the free list with a counter so that the user may
increase or decrease the size of the free list. when
decreasing the free list size, space in excess of the new
size is returned to the system.

Always provide a procedure to release the free list, so that
all space in the free list
is returned to the system
completely.

• For each exception,
provide an
exception handler.

In the following section
we will see how these
guidelines can be
implemented as a tool
for automated
improvement and
advisory system which
can take Ada code and
provides an assessment
and improvement for
reuse.

5. Automation
The guidelines discussed in this paper have been partially
or completely automated in our system for which a
prototype has been developed as shown in Figure 3. Some
of them involve straightforward transformation and others
might need user interaction and domain knowledge. This
system takes an Ada component, checks through various
reuse guidelines that are applicable, provides reuse advice
and analysis to the reuser, and generates that component
which is improved for reuse. Ada components are modelled
using component templates and reuse guidelines are
checked objectively against that template. Some of these
domain reuse guidelines have been represented and
analysed using component templates. For most of these
guidelines, automation depends on some user interactions
and domain knowledge.

One of the major objective of this system is to demonstrate,
how well-defined reuse guidelines can be used to automate
the process of reuse assessment by providing support for
language analysis and domain analysis. For example, this
system takes an Ada component specification, assesses it
through two analysis phases, estimates its reusability
according to how well it satisfies a set of reuse guidelines
and generates a component which is improved for reuse
The system interacts with the engineer to discover
information that can't be determined automatically. The
conclusion of this first pass is an estimate of how many
guidelines are applicable to the component and how many
of these have been breached. The report generator produces
a report with all the information that has been extracted
about that component and

changes that have been made for reuse.

The second pass involves applying domain knowledge to
the system. The component templates have been modelled
representing static and dynamic structures. Their reusability
is assessed by comparing the component with that template.
The support provided by the system ensures that the reuse

Abstract
Data Structures

Sequential
Dynamic

Static

Concurrent

Linear

Non-linear

Figure 2 Classification of Abstract Data Structures

Dynamic

Static

Mutual Exclusion

Message
Passing

Semaphores

Monitors

Ada Rendezvous
(CSPs)

Distributed
Processors

Data-oriented
synchronisation

Protected
objects

142 Ada Reuse Guidel ines

Volume 26, Number 2, June 2005 Ada User Journal

engineer carries out a systematic analysis of the component
according to the suggested guidelines. He or she need not
be a domain expert. Again, an analysis is produced which
allows the engineer to assess how much work is required to
improve system reusability.

For example, a scheme for automating one of our domain
guideline is shown algorithmically in Figure 4. This scheme
involves identification of procedures and domain related
information against a component template, and adds
operations automatically to those components with perhaps
some human assistance.

Guidelines for automation are represented in two distinct
ways:

• Wherever possible, a rule-based representation is
used so that it is clear when a guideline should be applied.
We have found that rule-based representations are mostly
applicable for language-oriented guidelines.

• For domain-oriented guidelines, we are mostly
concerned with checking that a component fits a model of a
reusable domain abstraction. In this case, we have
developed templates of these abstractions which represent
the reuse guidelines.

However, it remains to see how many numbers of
guidelines are significant for reuse, and further

investigation is underway to improve its limitations. We
find our approach interesting and the system has
demonstrated that it is possible to formulate and automate
practical and objective reuse guidelines supporting the
development of potentially reusable software components.

6. Conclusion
Reusable components can be produced and re-engineered
effectively in a large scale if we can formulate objective
and realisable guidelines and apply them systematically.
Existing guidelines are general advice and often not
checkable. Domain analysis can play a major role in

supporting devel-
opment for reuse in
the near future. Our
approach to the
production of reusable
components has
proved to be practical
and effective to that of
Booch's approach [3].

Our classification
scheme is domain
specific, and has well-
defined scope and
boundary. We have
taken an alternative
view to that of
existing studies on
reuse guidelines [12,
34, 10, 3, 5, 8], in
which we have

applied reuse guidelines to model and analyse domain-
oriented reusability and language-oriented reusability. In
our work, guidelines are also adopted for knowledge
representation. Our conclusion is that it is possible to
produce a set of objective and practical reuse guidelines
which can be applied systematically to improve reusability.
We also believe that our approach is applicable to other
languages, methods, tools, and application systems.

Acknowledgement
The author would like to thank Prof I Sommerville,
Department of Computing, University of Lancaster for his
valuable comments provided on this paper.

7. References
[3] Biggerstaff, T.J. and Perlis, A.J. (1984), "Foreword to

the special issue on software reusability", IEEE trans.
on software engineering, September.

[4] Biggerstaff, T.J. and Perlis, A.J. (Editors) (1989),
"Software Reusability: Concepts and Models", Vol.I &
II, ACM Press, Addison-Wesley.

Figure 4 Scheme for automating domain guidelines

For each ADS do
 Analyse abstractions and advice;

 Identify attributes for static and dynamic
 structures with user interactions;

 Identify procedures against Braun and
 Goodenough's list;
 Add operations that are missing;

 Follow further schemes for Static and/ or Dynamic
 Structures;
 Produce reports and potentially reusable
 components;

End loop;

Reuse
engineer

Component Language
analyzer

Domain
analyzer

Reuse
engineer

Language
knowledge

Domain
knowledge

Reusability
analysis

Reusability
advice

Figure 3 The reuse assessor and improver system

Modified
Component

Muthu Ramachandran 143

Ada User Journal Volume 26, Number 2, June 2005

[5] Booch, G. (1987), "Software Components with Ada",
Benjamin/Cummings.

[6] Bott, M.F. and Wallis, P.J.L. (1988), "Ada and
software reuse", Software Engineering Journal,
September.

[7] Braun, C.L. and Goodenough, J.B. (1985), "Ada
Reusability Guidelines", Report 3285-2-208/2, USAF.

[8] CAMP (1987), "Common Ada Missile Packages",
Final Technical Report, Vols. 1, 2 and 3. AD-B-102
654, 655, 656, Airforce Armament Laboratory, FL.

[9] Carter, J.R. (1990), "The Form of reusable Ada
Components for Concurrent Use", Ada Letters, vol.X,
No.1, Jan/Feb.

[10] Dennis, R.J.St. (1987), "Reusable Ada (R) software
guidelines", proc. of the 12th annual Hawaii
International conference on system sciences, pp.513-
520.

[11] Gargaro, A. and Pappas, T.L. (1987), "Reusability
issues and Ada", IEEE software, pp.43-51, July.

[12] Gautier, R.J. and Wallis, P.J.L. (Editors) (1990),
"Software Reuse with Ada", Peter Peregrinus Ltd for
IEE/BCS.

[13] Genillard, C., Ebel, N., and Strohmeier, A. (1989),
"Rational for the design of reusable abstract data types
implemented in Ada", Ada letters, vol.IX, No.2,
March/April.

[14] Hollingsworth, J (1992). Software components design
for reuse: a language independent discipline applied to
Ada, PhD thesis, Dept. of computing and Information,
Ohio State Univ., Columbus, December.

[15] Hooper, J. W. and Chester, R. O. (1991). Software
Reuse: Guidelines and Methods, Plenum Press.

[16] Keenan, P. (1987), "Reuse of Designs as a First Step
Towards the Introduction of Ada Component Reuse",
IEE Colloquium on Reusable Software Components,
May.

[17] Krueger, C (1992) Software Reuse, ACM Surveys,
Vol. 24, No. 2, June 1992.

[18] Latour, L. (1991), " A methodology for the design of
reuse engineered Ada components", Ada Letters,
spring.

[19] Lubars, M. (1991), Domain analysis and domain
engineering in IDeA, Prieto-Diaz, R and Arango, G
(ed) Domain Analysis and Software Systems
Modeling, IEEE Computer Society Press Tutorial.

[20] Maiden, N A M and Sutcliffe, A G (1992) Exploiting
reusable specifications through analogy,
Communications of the ACM 34(5), May, 1992.

[21] McCain, R. (1985), "Reusable Software Component
Construction: A Product Oriented Paradigm", In
Proceedings of the 5th AIAA/ACM/NASA/IEEE

Computers in Aerospace Conference, Long Beach,
CA, 125-135, October 21-23.

[22] Moore, J M and Bailin, S C 1991. Domain Analysis:
Framework for reuse, Prieto-Diaz, R and Arango, G
(ed) Domain Analysis and Software Systems
Modeling, IEEE Computer Society Press Tutorial.

[23] Neighbors, J.M. (1984), "The Draco Approach to
constructing Software from reusable components",
IEEE Trans. on Software Engineering, vol.SE-10,
No.5, pp.564-574, September.

[24] Prieto-Diaz, R and Frakes, W. B (1993) Advances in
software reuse, Proc. of the second international
workshop on software reusability (IWSR-II Lucca,
Italy, March 1993) IEEE Computer Society Press,
March 1993.

[25] Prieto-Diaz, R. (1990), "Domain Analysis: An
Introduction", ACM SIGSOFT, Software Engineering
Notes, vol 15, no.2, Page 47, April.

[26] Prieto-Diaz, R. and Arango, G (1991) Software
Modelling and Domain Analysis, IEEE Computer
Society Press Tutorial.

[27] Ramachandran, M. (1992) An Investigation into Tool
Support for the Development of Reusable Software,
PhD thesis, May, Lancaster University.

[28] Ramachandran, M. (1994) Knowledge-based support
for reuse, Proceedings of Intl. conf. on software
engineering and knowledge engineering (SEKE94),
Latvia, July.

[29] Schafer, W., Prieto-Diaz, R., and Matsumoto, M.
(1994). Software Reusability, Ellis Horwood.

[30] Simos, M. (1991), The growing of an Organon: A
hybrid knowledge-based technology and methodology
for software reuse, Prieto-Diaz, R and Arango, G (ed)
Domain Analysis and Software Systems Modeling,
IEEE Computer Society Press Tutorial.

[31] Soloway, E and Ehrlich, K. (1984), "Emprical studies
of programming knowledge", IEEE Transactions on
Software Engineering, Vol. SE-10, No.5, September.

[32] Sommerville, I. and Morrison, R. (1987), "Software
Development with Ada", Addison-Wesley.

[33] Sommerville, I. and Ramachandran, M. (1991), "Reuse
Assessment", First International Workshop on
Software Reuse, Dortmund, Germany, July.

[34] Tracz, W. (1990), "The 3 Cons of Software Reuse," in
the proceedings of the Third Annual Workshop on
Software Reuse, July, Syracuse, NY.

[35] Wartik S and Prieto-Diaz, R. (1992), Criteria for
comparing reuse-oriented domain analysis approaches,
Intl. J. of Soft. Eng. and knowledge Eng., Vol 2, No. 3.

Weide, B.W et al. (1991) Reusable software components,
Advances in Computers, Yovits, M. C (ed.), Vol. 33,
Academic Press.

144

Volume 26, Number 2, June 2005 Ada User Journal

Ada-Europe 2005 Sponsors

8 Rue de Milan, F-75009 Paris, France ACT Europe
Contact: Zépur Blot Tel: +33-1-49-70-67-16

Email: sales@act-eurpoe.fr
Fax: +33-1-49-70-05-52
URL: www.act-europe.fr

66/68, Avenue Pierre Brossolette, 92247 Malakoff, France Aonix
Contact: Jacques Brygier Tel: +33-1-41-48-10-10

Email : info@aonix.fr
Fax: +33-1-41-48-10-20
URL : www.aonix.com

Suite 701, Eagle Tower, Montpellier Drive, Cheltenham, GL50 1TA, UK Artisan Software Tools Ltd
Contact: Emma Allen Tel: +44-1242-229300

Email : info.uk@artisansw.com
Fax: +44-1242-229301
URL : www.artisansw.com

PO Box 7995, Crowthorne, RG45 9AA, UK Esterel Technologies
Contact: Ian Hodgson Tel: +44-1344-780898

Email : sales@esterel-technologies.com
Fax: +44 1344 780898
URL : www.esterel-technologies.com

Dolphin House, St Peter Street, Winchester, Hampshire, SO23 8BW, UK Green Hills Software Ltd

Contact: Christopher Smith Tel: +44-1962-829820
Email :

Fax: +44-1962-890300
URL : www.ghs.com

1 Cornbrash Park, Bumpers Way, Chippenham, Wiltshire, SN14 6RA, UK I-Logix
Contact: Martin Stacey Tel: +44-1249-467-600

Email : info_euro@ilogix.com
Fax: +44-1249-467-610
URL : www.ilogix.com

24 Newtown Road, Newbury, Berkshire, RG14 7BN, UK LDRA Ltd
Contact: Brenda Pedryc Tel: +44-1635-528-828

Email: info@ldra.com
Fax: +44-1635-528-657
URL: www.ldra.com

20 Manvers Street, Bath, BA1 1PX, UK Praxis High Integrity
Systems Ltd
Contact: Rod Chapman

Tel: +44-1225-466-991
Email : sparkinfo@praxis-his.com

Fax: +44-1225-469-006
URL : www.sparkada.com

Riverside Buisness Park, Malmsebury, SN16 9RS, UK Silver Software
Contact: Steve Billet Tel: +44-1666-580-000

Email: enquiries@silver-software.com
Fax: +44-1666-580-001
URL: www.silver-software.com

Triad House, Mountbatten Court, Worrall Street, Congleton, CW12 1DT, UK TNI Europe Limited
Contact: Pam Flood Tel: +44-1260-29-14-49

Email: info@tni-europe.com
Fax: +44-1260-29-14-49
URL: www.tni-europe.com

	Contents
	Editorial
	News
	Conference Calendar
	Rationale for Ada 2005: 2 Access Types
	Rationale for Ada 2005: 3 Structure and visibility
	Ada Reuse Guidelines

