

Ada User Journal Volume 26, Number 4, December 2005

ADA
USER
JOURNAL

Volume 26
Number 4

December 2005

Contents
Page

Editorial Policy for Ada User Journal 226

Editorial 227

News 229

Conference Calendar 253

Forthcoming Events 260

Articles
 John Barnes

“Rationale for Ada 2005: 6 Predefined library” 265
 John Barnes

“Rationale for Ada 2005: 6a Containers” 282
 Per Sandberg, Rei Stråhle

“Living in towers – the story of multi project system builds” 306
 Jean-Pierre Rosen

“On the benefits for Industrials of sponsoring free software developments” 308

Ada-Europe 2005 Sponsors 312

Ada-Europe Associate Members (National Ada Organizations) Inside Back Cover

226

Volume 26, Number 4, December 2005 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal – The Journal for the
international Ada Community – is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the first of the
month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 227

Ada User Journal Volume 26, Number 4, December 2005

Editorial

The attentive reader will remember that, exactly one year ago, issue 25-4 of the journal featured the first instalment of the
Rationale for Ada 2005, written by John Barnes and published as a primer by the Ada User Journal out a project funded by
Ada-Europe. The journal issue I am very proud to close with this editorial contains the last two instalments of the project, of
course along with other worthwhile material.

In December 2004 I was an easy prophet when I anticipated that the year 2005 would be gratifyingly rich with Ada-related
events. In fact it surely was. And the Ada User Journal has happily ridden on this wealth by bringing to you 66 more pages
worth of material in News, Calendars, Forthcoming Events and technical articles – including a full Rationale! I hope you did
enjoy reading as much as I did working on the issues behind the scenes.

In addition to the Rationale instalments, this issue continues to draw from the Industrial session at the Ada-Europe conference
2005 in York. The two short articles we publish this time are from Per Sandberg and Rei Stråhle of Saab Systems, and from
Jean-Pierre Rosen from Adalog. We have more such articles in store for the new year. We wish the organizers of the 2006
conference to be at least as successful with the level of participation and contributions, so that it can continue to richly feed
the journal.

Before closing this editorial, I wish to gratefully acknowledge the precious contribution of the News editor, Santiago Urueña,
the Calendar section and Forthcoming events editor, Dirk Craeynest (who wears many other hats as well, too many to
mention ☺) and of the team in charge of printing and dispatching, headed by Michael Gonzalez-Harbour. It has been a
pleasure to work with them and it will continue to be so in the future.

At this point it is in order to me to extend my very best personal wishes for New Year to our whole readership, our fellow
members of Ada-Europe, its Board and its sibling national organisations.

Tullio Vardanega
Padova

December 2005
Email: tullio.vardanega@math.unipd.it

 229

Ada User Journal Volume 26, Number 4, December 2005

News
Santiago Urueña
Technical University of Madrid. Email: suruena@datsi.fi.upm.es

Contents

Ada-related Organizations 229
Ada-related Events 231
Ada-related Resources 233
Ada-related Tools 234
Ada-related Products 240
Ada and GNU/Linux 244
References to Publications 246
Ada Inside 247
Ada in Context 249

Ada-related
Organizations
ACM SIGAda — SIGAda
Awards Nominations
From: John McCormick

<mccormick@cs.uni.edu>
Date: 5 Oct 2005 07:30:13
Subject: Approaching Deadline for

Nominations for SIGAda Awards
Newsgroups: comp.lang.ada
Dear Members of the Ada Community:
On Wednesday, 16 November 2005, the
2005 SIGAda Awards will be presented in
a special morning plenary session at the
SIGAda 2005 conference in Atlanta,
Georgia. (See
http://www.acm.org/sigada/conf/sigada20
05 if you have somehow missed
announcements of this year's annual
SIGAda international conference.)
We welcome your nominations of
deserving recipients.
The ACM SIGAda Awards recognize
individuals and organizations who have
made outstanding contributions to the
Ada community and to SIGAda. The two
categories of awards are:
(1) Outstanding Ada Community
Contribution Award — For broad, lasting
contributions to Ada technology & usage.
(2) ACM SIGAda Distinguished Service
Award — For exceptional contributions
to SIGAda activities & products.
Please consider who should be nominated
this year. You may nominate a person for
either or both awards, and as many people
as you think worthy. One or more awards
will be made in both categories.
Please visit
http://www.acm.org/sigada/exec/awards/
awards.html#Recipients and peruse the

names of past winners. This may help
you think about the measure of
accomplishment that is appropriate. You
may be aware of people who have made
substantial contributions that have not yet
been acknowledged. Nominate them.
Consider what you believe to be the best
developments in the Ada community or
SIGAda in the last year; the last 5 years;
since Ada's inception. Who was
responsible? Nominate them.
Please note that anyone who has received
either of the two awards remains eligible
for the other. Perhaps there is an
outstanding SIGAda volunteer who has
won our Distinguished Service Award
and who has also made important
contributions to the advance of Ada
technology, or visa versa. Nominate him
or her!
The nomination form is available on the
SIGAda website at
http://www.acm.org/sigada/exec/awards/a
wards.html. (You need to visit this
website to see past award winners' names,
and also a picture of the statuette which is
the award among other things, so you
don't nominate someone who has already
won an award in a category.) Submit
your nomination as an e-mail attachment
to SIGAda-Award@acm.org. You may
also submit nominations on-line at:
http://www.acm.org/sigada/cgi-bin/ICRS-
Register.cgi?Awards
The ACM SIGAda Awards Committee,
comprised of volunteers who have
previously won an award, will determine
this year's recipients from your
nominations.
Call our attention to the people who are
most deserving, by nominating them.
And please nominate by OCTOBER 15!
Your participation in the nominations
process will help maintain the prestige
and honor of these awards.
Thank you,
John McCormick
Chair ACM SIGAda

AdaIC — Ada Usage Survey
http://www.adaic.com/news/survey-results.

html
Ada Market Entails at Least a $5.6 Billion
Investment, Say Ada Resource
Association-Sponsored Survey
Respondees

BELMONT, MASS. [Sept. 12, 2005]—
The Ada market is healthy, with a total
investment of at least $5.6 billion in
Europe and North America, according to
an industry survey sponsored by the Ada
Resource Association (ARA). The ARA,
an international nonprofit organization,
maintains the Ada Information
Clearinghouse and comprises principal
suppliers of Ada development
environments and tools: AdaCore, IBM
Rational Software, Polyspace
Technologies, Praxis Critical Systems,
and SofCheck.
The survey asked about both current Ada
usage and familiarity with or plans for
Ada 2005. Altogether, 188 responses
were returned on the ARA website during
May and early June this year, and
additional data were derived from
individual interviews. The survey was
completed by software developers from
North America, Australia, Korea, and
almost every country in Europe.
The main results on Ada usage, presented
at the Ada Europe conference in York,
England, in June, can be summarized as
follows:
* Around 322 million lines of Ada code
(LOAC) are in software that is either still
in development or has been completed,
representing a reported (and
conservatively-estimated) value of around
$5.6 billion.
* The prices for these systems also cover
a wide range. At one extreme, several
projects undertaken by volunteers or
hobbyists showed zero as their cost. And
at the other end of the spectrum, a
response for one of the major system
developments reported a cost of $2
billion.
* The projects represent a variety of
applications and stages of development.
(In the table below, the percentages add
up to more than 100% since some
respondents checked off more than one
category, such as "fielded" and
"maintenance"):
Project type
Embedded systems: 44 21%
Command & Control: 32 17%
Other Types: 32 17%
Tools: 30 16%
Simulation Projects: 30 16%
Graphics: 21 11%
Libraries: 11 6%
IT Projects: 7 4%

230 Ada-related Organizat ions

Volume 26, Number 4, December 2005 Ada User Journal

Project Stage
Planning: 8 4%
Development: 78 41%
Complete: 31 16%
Fielded: 54 29%
Maintenance: 56 30%
Other stage: 13 7%
Outside the Defense/Aerospace Box
Although Ada's traditional stronghold has
been in the defense/aerospace industry,
the responses to the survey show that the
language has a much broader appeal. This
is likely due to Ada's intrinsic merit in
helping produce reliable software, and to
the availability of quality Ada compilers
and tools. Some of the more interesting
application areas include:
* Accounting
* Banking & Finances
* Bible Studies
* Book Title Image Matching
* Commercial Imaging
* Court Workflow
* Currency Trading
* Database Tools
* DNA Analysis
* Electronic Voting Machine
* Industrial Control
* Interlingual Machine Translator
* Internet Security
* Medical Devices & Testing
* Neuroscience Research
* Photonic Materials Research
* Security Assessment
* Semiconductor Factory
* Small Office Applications
* Spellcheck
* Telecommunications
* Tension Structure Analysis
* Warehouse Management/Control
Understanding and Using the New Ada
Standard Features
Besides asking about ongoing projects,
the survey collected data about
respondents' acquaintance with, and usage
plans for, features that are being added to
the upcoming Ada standard. The survey
offered six possible answers for each
feature, from "Unaware" and "Do not
understand" to "Frequently use." The
following specific features were listed:
"limited with"; interfaces; scheduling
improvements; the container library;
nested extensions; prefixed views;
directories/environment/ calendar
packages; enhanced anonymous access
types; limited aggregates and functions;
overriding indicators; Ravenscar;
expanded Unicode support. A roughly one
line description was given of each.
Since tutorial or rationale material on Ada
2005 has only recently been made
available to the general Ada community,
and since most of the information
available has been instead very technical,
a high degree of familiarity with the new
features would have been somewhat
surprising. The actual results — on
average, about 34% of the respondents

said that they either were unaware of a
feature, didn't understand it, or didn't
answer the question — is probably better
than expected and reflects a high degree
of interest in the new language
New Ada Standard Features Likely to be
Used
The best understood new features were
the containers library and the other new
packages, while the least understood
feature was overriding indicators. The
description in the question didn't explain
their use, unlike most of the other
features, which might have explained
respondents' confusion.
Those features that respondents said they
would never use proved to be highly
specialized. Further, if a feature was
understood, it would tend to be used: on
average, more than 80% of the users who
understood a feature said that they would
use it at least occasionally. An interesting
counterexample was the Ravenscar
Profile: 32% of the respondents that
understood that feature said that they
would never use it. This may seem
surprising, since the Ravenscar profile is
generally regarded as one of Ada's major
strengths for high-integrity applications.
But most of the survey's respondents are
working on systems that, although
requiring high reliability, are not safety-
critical. The developers can thus use the
full Ada language rather than a
specialized subset.
The feature most likely to be used, by
developers who indicated an
understanding of the feature, is the new
standard packages (for directories
/environment variables/calendar),
followed by the containers library,
prefixed views, and overriding indicators.
In reviewing the survey data, Randy
Brukardt, editor of the new ISO Ada
standard and long-time member of the
Ada Rapporteur Group (ARG), observed:
"All-in-all, I would say these results
validate the ARG's effort in choosing how
to update the language. The survey
responses showed a higher degree of
familiarity with the features than we had
expected, and it is especially interesting
that the new libraries are perceived as the
most useful addition. With the
forthcoming Rationale and other articles,
the Ada community will be able to learn
more about what the new standard will
offer."
For those who did not get an opportunity
to fill it out, the survey is still available.
Updates from new surveys and individual
interviews will be posted in the future in a
news article and to the Ada News group,
which you can sign up for by emailing
listserv@adaic.com and putting
"Subscribe announce" in the subject line.
For more details, please see
http://www.adaic.org/site/newslist.html

AdaWorks Closing
From: <adaworks@sbcglobal.net>
Date: Sat, 22 Oct 2005 18:45:00 GMT
Subject: AdaWorks Closing
Newsgroups: comp.lang.ada
We started AdaWorks in 1987. Since
then we have had a good time doing
consulting, programming, and training in
the world of Ada. From time to time we
have branched out into other areas, but we
have stayed close to our core business,
that of helping to make Ada an attractive
alternative for software developers world-
wide.
I recently terminated our web site. It was
generating more spam than anything else.
Existing clients who want still want my
individual services know how to reach me
by telephone. They also have my private
email account, not published on any of the
public sites.
During the last five years, most of my
time has been devoted to teaching
software engineering topics at the Naval
Postgraduate School, where I continue to
promote Ada whenever I can. In two
weeks, I will start the Ada module of a
comparative programming class I teach
twice a year.
I am now on the threshold of my eighth
decade. The days of being away from
home for up to two weeks out of every
month, which is what my Ada consulting
required, is not fun anymore. I still enjoy
business-related traveling, but need to cut
back — a lot.
I have closed the AdaWorks web site.
The name, AdaWorks, will persist for a
while in other contexts. I will continue to
visit and contribute to this forum. I plan
to update Ada Distilled to the 2005
standard sometime next Spring. My
email address, richard@adaworks.com
will no longer work after today.
For those of you who know me, there is
no cause for worry. I am still in robust
health, continue to practice Judo two or
three evenings a week, love my teaching
duties at NPS, and hope to see some of
you from time to time at various
conferences and other meetings. I am still
an active member of GAP for NPS.
Richard Riehle
From: Adrian Hoe <abyhoe@gmail.com>
Date: 28 Oct 2005 19:47:29
Subject: Re: AdaWorks Closing
Newsgroups: comp.lang.ada
I join the others to wish you and your
family all the best. We have never met but
if you recall, we have exchanged some
ideas. I wish to meet you someday.
I'm using your Ada Distilled for reference
and to teach Ada. I love it! It is an
excellent book.

Ada-related Events 231

Ada User Journal Volume 26, Number 4, December 2005

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal. --
su]

Feb 25–26 — FOSDEM 2006
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Mon, 28 Nov 2005 10:43:27 +0100
Subject: Ada at FOSDEM 2006
Newsgroups: comp.lang.ada
The Free and Open-Source Developers'
Meeting (FOSDEM) is an annual event
held in Brussels, Belgium, in February.
The 2006 edition will take place on
Saturday the 25th and Sunday the 26th of
February, 2006. Ada-Belgium has
organised a series of presentations related
to Ada, to be held in a dedicated
developers' room, all day Sunday. Here is
the programme:
10:00h–11:00h Jean-Pierre Rosen:
Introduction to Ada
Jean-Pierre will put his well-known talent
to good use, introducing Ada to beginning
or experienced programmers alike.
11:00h–12:00h Jean-Pierre Rosen:
AdaControl
AdaControl is a tool that analyses Ada
source text and verifies compliance with
coding rules and guidelines. AdaControl
is free software written under contract
with Eurocontrol, and takes advantage of
ASIS, the standard interface that allows
Ada programs to analyse Ada source text.
Jean-Pierre will introduce AdaControl,
ASIS, and the business model that allows
one to make a living writing free
software.
12:00h–13:00h Philippe Waroquiers: Use
of free software in European
Air Traffic Flow Management
Philippe Waroquiers leads software
development of the ETFMS system at
Eurocontrol, the European air traffic
control agency with 34 member states.
Software on which millions of travellers'
lives each year depend is written in Ada
using AdaCore's Free Software Ada
compiler, GNAT Pro.
13:00h–14:00h lunch break
14:00h–15:00h Ludovic Brenta: Ada in
Debian
Ludovic Brenta will explain his work as
the main maintainer of Ada in Debian,
and the policy that unites all Ada
packages, thereby making Debian the best
free Ada development platform in the
world :) This will be an excellent

opportunity for a tour of existing free
software projects developed in Ada.
15:00h–16:00h AdaCore: Ada Academic
Initiative
AdaCore is the company that offers
technical support and consulting services
around GNAT, the GNU project's free
Ada compiler. AdaCore is also the main
developer of GNAT. The Ada Academic
Initiative aims to encourage universities
and other education institutions
worldwide to use and teach Ada, by
offering a broad range of services at no
cost to professors and students. If
possible, AdaCore will demonstrate the
latest GNAT Programming Studio with
GNAT GPL 2005 Edition.
16:00h–17:00h AdaCore: The PolyORB
schizophrenic middleware
An example of fruitful collaboration
between academia and industry, PolyORB
allows heterogeneous software
components to communicate with one
another by bridging various middleware
technologies such as CORBA, MOM and
the Ada Distributed Systems Annex
(annex E).
All presentations will be in English, but
all speakers also speak French. You may
ask questions on comp.lang.ada,
fr.comp.lang.ada, or join the
AdaFOSDEM mailing list (in English).
More information:
FOSDEM : http://www.fosdem.org
AdaCore : http://www.adacore.com
Free Software from AdaCore:
http://libre.adacore.com (includes, among
others, GNAT, GPS and PolyORB which
will be the focus of some talks)
Debian : http://www.debian.org
Eurocontrol : http://www.eurocontrol.int
Ada-Belgium :
http://www.cs.kuleuven.ac.be/~dirk/ada-
belgium/
AdaFOSDEM mailing list, operated by
Ada-Belgium:
http://listserv.cc.kuleuven.ac.be/archives/a
dafosdem.html
[See also "Feb 26-27 - Ada event at
FOSDEM 2005" in AUJ 25-4 (Dec 2004),
p.181 --su]

Jun 5–9 — Ada-Europe 2006
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Organization: Ada-Europe, c/o Dept. of

Computer Science, K.U.Leuven
Date: 16 Nov 2005 00:18:14 +0100
Subject: C.f.Industrial Pres., Reliable

Software Technologies, Ada-Europe
2006

Summary: Eight weeks until submission
deadline!

Keywords: Conference,tutorials,reliable
software,Ada,LNCS,Portugal

Newsgroups:
comp.lang.ada,fr.comp.lang.ada

Call for Industrial Presentations
11th International Conference on Reliable
Software Technologies - Ada-Europe
2006
5 - 9 June 2006, Porto, Portugal
http://www.ada-europe.org/conference
2006.html
Organised, on behalf of Ada-Europe, by
Instituto Superior de Engenharia do Porto
in cooperation with ACM SIGAda
(approval pending)
General Information
The 11th International Conference on
Reliable Software Technologies (Ada-
Europe 2006) will take place in Porto,
Portugal. Following the usual style, the
conference will span a full week,
including a three-day technical program
and vendor exhibitions from Tuesday to
Thursday, along with parallel workshops
and tutorials on Monday and Friday.
Call for Presentations
In addition to the usual call for papers,
and considering the success achieved in
the previous conference, we are having a
call for presentations primarily aimed at
industrialists who have valuable
experience to report but who do not wish
to write a complete paper.
This separate call for presentations is
made for Experience Reports from
Industrial Projects and/or Experiments,
Case Studies and Comparative
Assessments, Management Approaches,
Qualitative and Quantitative Metrics and
Experience Reports on Education and
Training Activities, with bearing on any
of the conference topics.
See below for further details.
Schedule
12 January 2006: Submission of
presentation proposals
20 January 2006: Notification to authors
28 April 2006: Presentation material
required
5-9 June 2006: Conference
Submission of Presentations
Presenters are invited to submit a one-
page overview of the proposed
presentation to Peter Dencker
(peter.dencker@aonix.de) by January
12th 2006. The Industrial Committee will
review the proposals.
The authors of selected presentations shall
prepare their final presentation, together
with a short abstract (max 10 lines), by
28th April 2006; they should aim at a 20
minutes talk. The authors of accepted
presentations will also be invited to derive
articles from them, for publication in the
Ada User Journal.

232 Ada and Educat ion

Volume 26, Number 4, December 2005 Ada User Journal

Exhibitions
Commercial exhibitions will span the
three days of the main conference.
Vendors and providers of software
products and services should contact the
Exhibition Chair José Ruiz as soon as
possible for further information and for
allowing suitable planning of the
exhibition space and time.
Conference Topics
In the last decade the conference has
established itself as an international forum
for providers and practitioners of, and
researchers into, reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development and maintenance of long-
lived, high-quality software systems for a
variety of application domains. The
program will allow ample time for
keynotes, Q&A sessions, panel
discussions and social events.
Participants will include practitioners and
researchers from industry, academia and
government organizations interested in
furthering the development of reliable
software technologies. To mark the
completion of the technical work for the
Ada language standard revision process,
contributions that present and discuss the
potential of the revised language are
particularly sought after.
For papers, tutorials, and workshop
proposals, the topics of interest include,
but are not limited to:
- Methods and Techniques for Software
Development and Maintenance:
Requirements Engineering, Object-
Oriented Technologies, Formal Methods,
Re-engineering and Reverse Engineering,
Reuse, Software Management Issues
- Software Architectures: Patterns for
Software Design and Composition,
Frameworks, Architecture-Centered
Development, Component and Class
Libraries, Component-Based Design
- Enabling Technology: CASE Tools,
Software Development Environments and
Project Browsers, Compilers, Debuggers
and Run-time Systems
- Software Quality: Quality Management
and Assurance, Risk Analysis, Program
Analysis, Verification, Validation,
Testing of Software Systems
- Critical Systems: Real-Time,
Distribution, Fault Tolerance, Information
Technology, Safety, Security
- Mainstream and Emerging Applications:
Multimedia and Communications,
Manufacturing, Robotics, Avionics,
Space, Health Care, Transportation
- Ada Language and Technology:
Programming Techniques, Object-
Oriented Programming, Concurrent
Programming, Distributed Programming,
Bindings and Libraries, Evaluation &

Comparative Assessments, Critical
Review of Language Enhancements,
Novel Support Technology, HW/SW
platforms
- Experience Reports: Experience
Reports, Case Studies and Comparative
Assessments, Management Approaches,
Qualitative and Quantitative Metrics,
Experience Reports on Education and
Training Activities with bearing on any of
the conference topics
Tutorials
Tutorials should address subjects that fall
within the thrust of the conference and
may be proposed as either half- or full-
day events. Proposals should include a
title, an abstract, a description of the
topic, a detailed outline of the
presentation, a description of the
presenter's lecturing expertise in general
and with the proposed topic in particular,
the proposed duration (half day or full
day), the intended level of the tutorial
(introductory, intermediate, or advanced),
the recommended audience experience
and background, and a statement of the
reasons for attending. Proposals should
be submitted by e-mail to the Tutorial
Chair Jorge Real. The providers of full-
day tutorials will receive a complimentary
conference registration as well as a fee for
every paying participant in excess of 5;
for half-day tutorials, these benefits will
accordingly be halved. The Ada User
Journal will offer space for the
publication of summaries of the accepted
tutorial in issues preceding and/or
following the conference.
Workshops
Workshops on themes within the
conference scope may be arranged to
discuss matters of immediate technical
interest as well as to foster action on
longer-term technical objectives.
Proposals may be submitted for half- or
full-day workshops, to be scheduled on
either ends of the main conference.
Workshop proposals should be submitted
by e-mail to the Conference Chair Luís
Miguel Pinho. The workshop organiser
shall also commit to preparing
proceedings for timely publication in the
Ada User Journal.
Organizing Committee
Conference Chair
Luís Miguel Pinho, Polytechnic Institute
of Porto, Portugal, lpinho@dei.isep.ipp.pt
Industrial Committee Co-Chairs
Peter Dencker, Aonix GmbH, Germany,
peter.dencker@aonix.de
Michael González Harbour, Universidad
de Cantabria, Spain, mgh@unican.es
Industrial Committee (preliminary list)
Rod Chapman, Praxis High Integrity
Systems
Chris Smith, GreenHills
Franco Gasperoni, AdaCore

Jacques Brygier, Aonix
Ian Gilchrist, IPL
Pascal Leroy, IBM Rational
Rei Stråhle, Saab Systems
Francis Thom, Artisan Software
Tony Elliston, TNI Europe
Luís Miguel Pinho, Conference Chair
Dirk Craeynest, Ada-Europe (Vice
President)
Erhard Plödereder, Ada-Europe
(President)
Conference Organization
Conference Chair
Luís Miguel Pinho, Polytechnic Institute
of Porto, Portugal, lpinho@dei.isep.ipp.pt
Program Co-Chairs
Luís Miguel Pinho, Polytechnic Institute
of Porto, Portugal, lpinho@dei.isep.ipp.pt
Michael González Harbour, Universidad
de Cantabria, Spain, mgh@unican.es
Tutorial Chair
Jorge Real, U. P. Valencia, Spain,
jorge@disca.upv.es
Exhibition Chair
José Ruiz, AdaCore, France,
ruiz@adacore.com
Publicity Chair
Dirk Craeynest, Aubay Belgium &
K.U.Leuven, Belgium,
Dirk.Craeynest@cs.kuleuven.be
Local Chair
Sandra Almeida, Polytechnic Institute of
Porto, Portugal, salmeida@dei.isep.ipp.pt
Ada-Europe Conference Liaison
Laurent Pautet, Telecom Paris, France,
pautet@enst.fr

Ada and Education
SPARK Training
http://www.praxis-his.com/sparkada/

training.asp
Public Course Dates for 2006 - UK
Course 1 – "Software Engineering with
SPARK"
6th - 9th March 2006 at the Praxis High
Integrity Offices in Bath.
Course 2 – "Black-Belt SPARK"
21st - 23rd March 2006 at the Praxis High
Integrity Offices in Bath.
Course 3 – "High-Integrity Concurrent
Software Design with RavenSPARK"
10th March 2006 at the Praxis High
Integrity Offices in Bath.
Course 4 – "UML to SPARK"
10th March 2006 at the Praxis High
Integrity Offices in Bath.
[See also "SPARK Training" in AUJ 26-2
(Jun 2005), p.72 --su]

Ada-related Resources 233

Ada User Journal Volume 26, Number 4, December 2005

Ada-related Resources
Contributors for the Ada
Programming Wikibook
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Wed, 14 Sep 2005 20:11:50 +0200
Subject: "Ada Programming" need some

help form ObjectAda and APEX users.
Newsgroups: comp.lang.ada
We the Authors of "Ada Programming"
have a little problem: We have only
access to the GNAT compiler. It would be
nice also to provide project files for other
Ada compilers.
And for that we need the help from Ada
users which have access to the other Ada
tool chains.
If you have some time and access to a non
GNAT compiler do go to
http://en.wikibooks.org/wiki/Ada_Progra
mming/Building
and help us out.
See also "Ada Wikibook is 'Book of the
month'" in AUJ 26-3 (Sep 2005) p.151
and "Ada at Wikipedia & Wikibooks" in
AUJ 26-1 (Mar 2005) p.8 --su]

Updated Ada Resources
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Wed, 05 Oct 2005 08:54:39 +0200
Subject: Re: Investigating Ada
Newsgroups: comp.lang.ada
> I have been looking into Ada as a new

language to pick up. I tend to use C for
most projects, but I enjoy learning new
things. I'm already sold on the value of
the language itself from a technical
point of view, but my concern is that it
might have a rather small userbase,
especially without the Ada Mandate. I
am having trouble finding recent FAQs
or usage information. It's easy to come
across something from like 1994, but
that's over ten years ago ;)

Ahh yes, the old pages have a better
Google rating - no one knows why. Here
some pages with newer dates:
September 29, 2005, at 08:12 AM:
http://ada.krischik.com/
15:05, 1 October 2005 203.197.76.86:
http://en.wikibooks.org/wiki/Ada_Progra
mming
Tuesday October 4th, 2005
http://www.adaworld.com/
From: Jeff Creem <jcreem@yahoo.com>
Subject: Sad Day for Ada - Update your

links
Newsgroups: comp.lang.ada
Date: Thu, 08 Sep 2005 18:31:08 -0400

Oh well. It was time for my annual (or at
least bi-annual) trip to the whois database
to watch to see if the ada home dot com
domain was going to expire (not written
as a URL to avoid giving googlebot more
links to the site than it already has).
Ada home dot com was once a great site
for up to date Ada information but about 6
years ago it stopped getting updated at all
(other than the automated headline script
at the left side of the page that shows the
date).
Unfortunately it is still highly ranked in
the search engines and its horribly stale
content (some of which is still relevant of
course) lends to the perception of a dead
language.
Well… The reason it is a sad day is that
today when I checked it had been
renewed again but this time until 2010..
Created: September 12, 1996
Modified: September 8, 2005
Expires: September 10, 2010
So consider this a reminder for those that
have Ada websites that any links to Ada
home dot com should be removed to
reduce the page rank.
I am not sure we will ever get it off the
first page but it would feel good to see
"Ada programming" or "Ada language"
drop this page down a few pegs.
Be sure to add links to:
http://www.adapower.com - General Ada
and Ada programming information
http://www.adaworld.com - General Ada
and Ada programming information
http://en.wikipedia.org/wiki/Ada_program
ming_language
and of course the award winning
http://en.wikibooks.org/wiki/Ada_Progra
mming
From: David Trudgett

<wpower@zeta.org.au>
Date: Fri, 09 Sep 2005 10:43:08 +1000
Subject: Re: Sad Day for Ada - Update your

links
Newsgroups: comp.lang.ada
About six years ago [Magnus Kempe
claimed] to be happy to have a competent
volunteer maintain his FAQ (why does an
individual "own" the FAQ for Ada?)
Has Magnus disappeared off the face of
the earth or something? Is it true that in
six years no one has been interested
enough to create another FAQ which is
up-to-date and not controlled by an
individual?
From: Jeff Creem <jcreem@yahoo.com>
Date: Thu, 08 Sep 2005 22:26:19 -0400
Subject: Re: Sad Day for Ada - Update your

links
Newsgroups: comp.lang.ada
Not sure what came of that but both
David and I have tried to contact Magnus

several times over the past few years
about transfer of the entire site/domain
and he was not interested. I never saw or
heard of an offer to have someone else
maintain the site until that repost (which
was just for the FAQ as near as I could
tell)
And the reason the FAQ is "owned" by a
person is it is copyrighted and therefore
can not be copied to another site.
(See the bottom of the page: This FAQ is
Copyright 1994-1996 by Magnus
Kempe.) Of course in the US even
without an explicit statement it would
have likely been protected by copyright.
It does have fairly liberal terms for re-
distribution but the part that says "as long
as it is completely unmodified" sort of
causes some issues. Of course most of the
FAQ and answers really originally came
from other people so technically the
individual items are actually not
copyright'd by Magnus but by the original
authors.
The fun part of his response is where he
claims David is mistaken that Magnus no
longer wants to actively work on the
website… but then the site is never
updated once after that…
In any case, it is (was) of course a
volunteer effort and he is under no
obligation to do anything… so to some
extent I was needlessly venting.
From: David Trudgett

<wpower@zeta.org.au>
Date: Fri, 09 Sep 2005 18:08:00 +1000
Subject: Re: Sad Day for Ada - Update your

links
Newsgroups: comp.lang.ada
I knew about the copyright issue, but my
"why" was asking a deeper question.
What thought processes would lead a
person to take other people's contributions
from comp.lang.ada, incorporate them
into a FAQ, and then claim exclusive
ownership over it? It seems like an
inappropriate, selfish and controlling act
to me. But I do not know the
circumstances, hence the question. The
corollary (another aspect of my original
question) is, "Why was he allowed to do
it?" (i.e., I didn't notice any controversy
about it in c.l.a archives, though it's
possible I could have missed it).
Maybe he feels he is preserving an
important piece of history… but why
insist on camping on the domain name?
The real problem, though, doesn't seem to
be Magnus Kempe or adahome, but rather
the fact that Google lists it right up the top
of the search results (when *I* tried it, at
least). As you know, this must have to do
with how many sites link to it. Why do
they link to it if it's out of date? Perhaps it
still has content that can't be found
elsewhere? If so, why is that after six
years?

234 Ada-related Tools

Volume 26, Number 4, December 2005 Ada User Journal

…and it's too bad about the American
Dental Association, too! ;-)
From: Björn Persson

<rombo.bjorn.persson@sverige.nu>
Date: Fri, 09 Sep 2005 20:39:14 GMT
Subject: Re: Sad Day for Ada - Update your

links
Newsgroups: comp.lang.ada
Strictly speaking, that statement only says
that he's never *expressed* that he isn't
working on the website. It doesn't really
say that he's actually working on it, and it
certainly doesn't say anything about what
he *wants* to do.
I bet he's been wanting to get back to Ada
Home all this time, and he's probably
constantly thinking he'll soon find some
time for it. I can understand that situation.
Myself I have many unfinished projects
that I've never consciously abandoned.
They've just slipped away while other
things kept me busy. (None of them are as
public as Ada Home though.) Don't you
have some of those too?
The only thing about Magnus Kempe that
seems strange to me is that he doesn't
want to let anyone else update Ada Home,
if that is indeed the case.
> As you know, this must have to do with

how many sites link to it. Why do they
link to it if it's out of date?

Because they're outdated too?
From: Tom Moran <tmoran@acm.org>
Date: Fri, 09 Sep 2005 01:15:27
Subject: Re: Sad Day for Ada - Update your

links
Newsgroups: comp.lang.ada
He apparently isn't the only FAQ-non-
maintainer: look at
www.faqs.org/faqs/computer
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Sat, 10 Sep 2005 19:32:41 +0200
Subject: Re: Sad Day for Ada - Update your

links
Newsgroups: comp.lang.ada
That's one of the reasons I changed all my
web-sites to wiki technology - so anybody
can make a fix if I have not time.
Currently WikiSpam is not a real problem
so I don't even have a password in place.
From: Larry Kilgallen

<Kilgallen@SpamCop.net>
Date: 8 Sep 2005 20:01:10 -0500
Subject: Re: Sad Day for Ada - Update your

links
Newsgroups: comp.lang.ada
Why post a general request like that rather
than going to the 167 people involved?
http://www.google.com/search?as_lq=ww
w.adahome.com

How to Compile GNAT 2005
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Sun, 25 Sep 2005 10:26:51 +0200

Subject: GNAT/GPL DIY update.
Newsgroups: comp.lang.ada
I finally managed to compile GNAT/GPL
myself. Had to copy two files from the
GPS source tree into the GCC tree.
Current status as always on:
http://ada.krischik.com/index.php/Articles
/CompileGNATGPL
It's a wiki so do add your own experiences
to it. Ask for the upload password I you
have specialised build batches to
contribute.
[See also "How to compile GCC 3.4" in
AUJ 25-3 (Sep 2004), p.120 --su]

Ada-related Tools
Implementation of new Ada
2005 packages
From: Afraid of Software

<info@afraidof.co.uk>
Date: 17 Oct 2005 15:04:40 -0700
Subject: [ANN] Ada.Environment_Variables
Newsgroups: comp.lang.ada
Following the recent discussion on the
new standard package
Ada.Environment_Variables, we have
decided to release our implementations of
this package for Windows-based
compilers.
Ada 95 - For GNAT and ObjectAda
Ada 200Y - For GNAT only
They are released under the terms of the
GNAT-Modified GPL and come with
GPS and ObjectAda project files, ready to
build.
Please see http://www.afraidof.co.uk/ to
download.

SPARK and the GNAT
Programming Studio (GPS)
From: Zheng Wang <zw@cs.man.ac.uk>
Date: 30 Nov 2005 08:24:36 -0800
Subject: Spark in Gnat Programming

System (GPS)
Newsgroups: comp.lang.ada
In the 2005 version of GPS, SPARK tools
has been ported to GPS. I found it is very
useful and helpful to program
Ada/SPARK in GPS, because it has
sophisticated IDE and is a really good
compilation and debugging environment.
Also it has free versions for both software
developer and academia. So, I would like
to recommend SPARK users in academic
to have a try on GPS.
[See also "GNAT GPL 2005 Edition" in
AUJ 26-3 (Sep 2005), p.153–154 --su]

Archive of old GNAT public
versions
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Organization: Ada-Belgium, c/o Dept. of

Computer Science, K.U.Leuven
Date: 12 Oct 2005 22:02:38 +0200
Subject: Re: 3.15p is disappearing! (but not

everywhere…)
Summary: Still available on the Ada-

Belgium archive.
Newsgroups: comp.lang.ada
Jean-Pierre Rosen wrote:
> I just checked: 3.15p is no more on

cs.nyu.edu, nor on its mirrors (at least
the french one).

The GNAT distribution on cs.nyu.edu
was removed between Tuesday August 09
at 05:30 GMT+2 and Wednesday August
10 at 05:30 GMT+2.
I noticed, because for over a decade each
day at that time the automatic mirror
script for the Ada-Belgium ftp archive
runs. After some checking what was
going on, I have ensured that the mirror
script no longer tries to update our GNAT
mirror.
The full GNAT 3.15p distribution, as was
on cs.nyu.edu up to Aug 09, is and will
remain available on the Ada-Belgium ftp
archive at
<ftp://ftp.cs.kuleuven.be/pub/Ada-
Belgium/mirrors/gnu-ada>.
In addition, the "OLD" directory contains
other binary distributions that were at
some time on cs.nyu.edu (e.g. for Solaris,
HP-UX, AIX, etc.), as well as the
compiler source distributions from 3.10p
on.
If there are other compiler/tools
distributions that should be mirrored feel
free to contact me and I'll see what we can
do.
[See also "ACT - New Public Release
GNAT 3.15p" in AUJ 24-1 (Mar 2003),
p.17 --su]
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Organization: Ada-Belgium, c/o Dept. of

Computer Science, K.U.Leuven
Date: 17 Oct 2005 19:32:51 +0200
Subject: Re: 3.15p is disappearing!
Summary: … but mirrors remain …
Newsgroups: comp.lang.ada
Simon Clubley wrote:
> It's not just 3.15p that's gone. They

appear to have pulled the kits for other
operating systems, regardless of
version, as well. For example, an old
version, 3.12p, was available for VMS
Alpha at:
ftp://ftp.cs.nyu.edu/pub/gnat/private/old
/openvms/ That directory no longer
exists.

A copy is and will remain available on the
Ada-Belgium ftp archive at

Ada-related Tools 235

Ada User Journal Volume 26, Number 4, December 2005

<ftp://ftp.cs.kuleuven.be/pub/Ada-
Belgium/mirrors/gnu-
ada/OLD/3.12p/openvms/>

About the GNAT GPL 2005
License
From: Olivier Issaly <kiad@free.fr>
Subject: Re: GNAT GPL 2005 Edition is

now available
Newsgroups: fr.comp.lang.ada
Date: Fri, 21 Oct 2005 10:43:20 +0200
Ludovic Brenta wrote [translated from
French – su]:
> This post has degenerated into an

interesting discussion on the next Ada
compilation system for Debian. I
calling on those interested to post their
viewpoints on comp.lang.ada.

A little summary would help those who
arrived late to this thread and do not dare
read through 200 posts …
That’s the summary that I can make out
after reading the top layers:
* AdaCore distribute their GNAT version
only under the GNU General Public
License (GPL), while previously the
licence in force was GNAT Modified
GPL (GMGPL), which permitted the
creation of non-libre software using
GNAT.
 * The consequence is then that those
software products that use GNAT should
be placed under GPL, which no longer
permits the use of other licences.
 * One still could use the official GCC
distributions, which continue to include
the special clause from GMGPL.
 * AdaCore work primarily on the
development version of GCC and does
not feed back to the older stable versions
of GCC other than security patches.
Consequently, the GMGPL version that
we had has suddently stopped being
maintained.
 * One can of course continue to work
with the CVS version of GCC at her own
risk though.
 * Those who most suffer from this string
of events are the SME that do not develop
libre software but do not have the
financial means to pay what AdaCore
charge for GNAT Pro.
 * This policy change on the part of
AdaCore has spawned lots of
misunderstandings (has there been any
official statement from them in this
respect yet ?).
[See also "GNAT GPL 2005 Edition" in
AUJ 26-3 (Sep 2005), p.153–154 --su]
From: Marc A. Criley <mc@mckae.com>
Date: Tue, 04 Oct 2005 15:15:03 -0500
Subject: GNAT GPL Edition Maintenance

and Upgrades
Newsgroups: comp.lang.ada

I wrote to AdaCore to ask them what their
maintenance and upgrade intentions were
for the GNAT GPL Edition.
I received a quite timely response that
said their intent is to "[keep] this version
roughly in sync with the latest GNAT Pro
releases" and "in fact the latest GPL
edition is more recent than the latest
GNAT Pro official release, it corresponds
to the more recent GNAT Pro Ada 2005
Beta".
Maybe Ludovic should rerun his Debian
survey? Declining to include a
maintained Ada development
environment on a Linux distribution may
be unwise…
[See also "Next Debian Ada Compiler" in
this issue --su]
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: 5 Oct 2005 04:10:19 -0700
Subject: Re: GNAT GPL Edition

Maintenance and Upgrades
Newsgroups: comp.lang.ada
> I think that this [change of license of

GNAT's run-time system from GMGPL
to GPL] goes *against* the spirit of
free software. As far as I can
understand, the basis of free software is
"you can do anything with this
software, *except* deny to others the
rights you have received". Anything,
including proprietary software.

With the GMGPL, you receive the right to
see and modify the source code of the
GNAT run-time; but you can also deny
others this same right. The GPL is more
"free" than the GMGPL, since with it you
cannot deny others this right anymore.
This is the "free" spirit as defined by
[Richard M.] Stallman and the [Free
Software Foundation (FSF)]. The BSD
license does allow you to deny rights to
others, and has a different definition of
"free".
> The GPL edition is a big mistake made

by AdaCore, both from a marketing and
a popularity point of view. If the
community clearly refuses this edition
(and not having it in Debian is quite a
strong indication), maybe AdaCore will
revise its policy.

This is a possibility.
From: Steve <steved94@comcast.net>
Date: Thu, 13 Oct 2005 18:41:01 -0700
Subject: GNAT GPL Edition - on the plus

side
Newsgroups: comp.lang.ada
My experience:
GNAT GPL Edition includes the first
version of GPS I have run on Windows
that I haven't removed after a few days of
frustration.
The compiler seems to just plain work (as
usual).
I do find that the pretty-printer gets
confused with Ada 2005 code.

IMHO the folks at AdaCore have done a
great job.
[See also "AdaCore — GPS 3.0" in AUJ
26.2 (Jun 2005), p.77 --su]
From: Hyman Rosen

<hyman.rosen@gmail.com>
Date: 6 Oct 2005 12:20:15 -0700
Subject: Re: GNAT GPL Edition

Maintenance and Upgrades
Newsgroups: comp.lang.ada
Jeffrey R. Carter wrote:
> But if I create an application using my

GMGPL code and the GNAT GPL
compiler, my program (and all of its
source code) must become GPL, and I
am not allowed to [let others add my
GMGPL code to a propietary
application].

That's not true. When you distribute your
sources along with your binary, there is
nothing stopping you from adding that
special exemption to the license for your
own code. Then the people to whom you
have distributed can build an executable
using your code and distribute it to others
without giving them the source to your
code, just as you would like them to be
able to do. It just means that they can't do
it using the GNAT GPL compiler.
> Thus, I find the GNAT GPL compiler

unsuitable for my purposes. I consider
it inappropriate for any compiler to take
such choices from me, and for any OS
to supply such a compiler.

It's unsuitable for people who want to
build programs not bound by the GPL.
But it's fine if they want to build such
programs and grant additional exemptions
on their own code.
From: Simon Wright

<simon@pushface.org>
Date: Fri, 07 Oct 2005 06:54:35 +0100
Subject: Re: GNAT GPL Edition

Maintenance and Upgrades
Newsgroups: comp.lang.ada
Jeffrey R. Carter wrote:
> The GPL is quite clear that a program

that uses GPL code in any way falls
under the GPL. If the run-time library is
GPL code, then any program that uses
the run-time library is GPL.

No, it is not GPL, it must be released
under the terms of the GPL. I suppose
there might be an argument that a person
who distributes a binary that mixes GPL
code and the Booch Components (which
are GMGPL) would have to make
available the BC sources under GPL
terms, but the recipient could always
come back to me and ask for a fresh copy
under GMGPL. Or indeed any other terms
(they would fail, probably, because it's not
just my copyright in there, the other
authors would have to agree too). I just
think this is all FUD.

236 Ada-related Tools

Volume 26, Number 4, December 2005 Ada User Journal

From the Libre site:
«Q. I would like to release my software
under the XYZ license, which is a Free
Software license according to the FSF,
but is incompatible with the GPL. What
should I do?
A. The GNAT GPL Edition doesn't limit
in any way the license you use on your
sources. If you are distributing sources
only, no issue with respect to the license
of GNAT GPL Edition arises. You or
anyone who wants to build a binary can
do so freely from these sources, using
either the GNAT GPL compiler or any
other suitable Ada compiler. If you want
to *distribute* a binary of your program
compiled with the compiler in the GNAT
GPL Edition then *today* the binary must
be licensed under the GPL. Note that you
can still license a copy of your sources
under the XYZ Free Software license of
your choosing. It is AdaCore's intention
to work with the FSF to modify the
licensing of the GNAT GPL Edition to
allow the use of other Free Software
licenses for binaries produced with the
compiler inside the GNAT GPL Edition.
Meanwhile, you can distribute in source
form only.»
From: Marc A. Criley <mc@mckae.com>
Date: Fri, 14 Oct 2005 11:10:39 -0500
Subject: Re: Licences
Newsgroups: comp.lang.ada
The GPL doesn't stop you from selling
your product. And for as much money as
you want to ask and can get.
The GPL doesn't forbid you from
requesting that your customer not
redistribute your product (though all you
can do is make the request, you can't
legally stop them from doing so, all you
can do is let them know you will refuse to
support them or provide updates if they
do).
If your customer doesn't actually link your
product into their code, i.e. you're
building an application rather than a
library or such, that customer is not
required to GPL their code.
If your product does need to be linked in,
then it depends on whether the customer
must use GPL GNAT to utilize it, or can
they build and link using a differently
licensed compiler/runtime? If it's
"vanilla" Ada, even GNAT Ada, then you
can develop your code with GPL GNAT
and release it under any license you want.
(The key thing is whether someone could
utilize your product with a GNAT
compiler other than GPL GNAT, if so,
you're in the clear.)
The GPL does allow your customer to
redistribute your product, though as
mentioned above you can request they not
do so. (Ref: GNAT GAP and GNAT
Pro.)
The GPL does require that you provide
access to your product's source code.

(But if you were going to use the GMGPL
you were going to do that anyway, right?)
For help on understanding what the GPL
makes you do, and also allows you NOT
to do, see the GPL FAQ at
http://www.gnu.org/licenses/gpl-faq.html.
IANAL
From: Jeff Creem <jcreem@yahoo.com>
Subject: Re: Licences
Date: Sat, 15 Oct 2005 10:12:49 -0400
Newsgroups: comp.lang.ada
Lucretia wrote:
> Why do people keep pretending that

AdaCore's removal of the GMGPL
license exception from their runtime
isn't a really big change for the Ada
community? It really does make a
difference to a lot of individual
programmers (and thus to Ada).
Programmers who cannot afford to pay
AdaCore (or who choose not to) now
must rely on significantly out of date
versions of compilers and tools in order
to "make money" on a program they
wrote.

No. Not exactly. Programmers who
cannot afford to pay AdaCore (or who
choose not to) must either rely on
significantly out of date versions of the
compilers. Or they must rely on versions
from the FSF tree. Or they must rely on
non-free but still relatively cheap
offerings from RRSoftware (or perhaps
Aonix)
> I believe this will produce a code fork

in the FSF tree and people like me will
continue to use that version of GNAT,
unless another free compiler becomes
available.

I am not sure why a fork is needed.
AdaCore appears to still be contributing
to the FSF tree and there has been no
discussion at all in the FSF GCC groups
about a license change. AdaCore goes
through quite a bit of work to package and
test and "put their name" on a particular
GNAT version and they have decided
(right or wrong..for them and us) that it is
best for their business if they cause some
limiting of the use of their freely
distributed versions.
The FSF tree does exist. It does continue
to be maintained and it is (probably) in
the best interest of AdaCore to keep
working within that tree to some extent.
I find it interesting when people talk of
wanting a $0 dollar Aonix build when a
big reason given for why the FSF tree is
not acceptable is the lack of the
distributed systems annex and ASIS. Are
those things available from Aonix? (I
honestly do not know).
I am not trying to say that I am happy
with the situation. I just don't think that
the FSF tree approach is really all that
bad. There are of course quality issues
with the FSF tree at times but more and

more non-ada GCC developers appear to
at least be enabling Ada during their
bootstraps.
The quality will probably never get where
we'd like it as long as the state of Ada in
the tree is not a consideration for the
release criteria. I am not sure if this will
ever change but if a few people stepped
up to the plate and became GCC
developers supporting the Ada tree it
would not hurt.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 14 Oct 2005 18:59:31 +0200
Subject: Re: Licences
Newsgroups: comp.lang.ada
> So, I can continue to use FSF GNAT (I

think). Is GCC 4.x going to get the GPL
treatment as well?

I am aware of no plans to change the
license in the FSF tree. In any case,
AdaCore cannot make such a change by
themselves; only the FSF can do that.
AdaCore made a license change only on
their own internal sources, by applying a
clause of the GPL.
> Also, using the current GCC, if I

distribute a binary, do I have to link it
to a shared libada (or whatever it's
called)?

You don't have to use libgnat, you can use
pragma No_Run_Time, but then most of
the benefits of using Ada vanish.
Whether you link statically or
dynamically makes no difference from a
licensing point of view; it is a purely
technical decision. In any case, if you use
the GMGPL libgnat, you must provide the
sources of libgnat, or point your
customers to gcc.gnu.org where they can
obtain the sources for themselves. You
do not have to provide the sources for
your program.
If you use a libgnat under GPL, then you
must provide the sources for you
program, too. But you can still sell your
program (and services surrounding your
program: hint, hint) for money.
From: Brian May

<bam@snoopy.apana.org.au>
Date: Sat, 15 Oct 2005 20:18:22 +1000
Subject: Re: Licences
Newsgroups: comp.lang.ada
Steve Whalen wrote:
> I know of at least one programmer who

wrote and sold a program after I got
him interested in Ada via the GNAT
compilers. That cannot happen
anymore because a binary only
program cannot be "sold" from the
AdaCore GPL compiler (the program
that was sold that I'm referring to here
did NOT generate enough money to
pay for an AdaCore support contract,
though it did pay for a few presents for
the wife to make up for late nights
spent on the computer). It is now much

Ada-related Tools 237

Ada User Journal Volume 26, Number 4, December 2005

harder to get these kinds of Ada
converts without a free Ada compiler.

It would appear AdaCore has forgotten
the "proprietary programs written by
individuals or small companies that
cannot afford and do not want to pay for
an expensive support contract" market. As
well as open source programs that do not
use a GPL compatible license (for any
number of reasons - personally like others
I like using current versions of GPL in my
own code).
I could understand this if Ada was more
popular.
In a way, the goal of the license is similar
to the free version BitKeeper - free for
open source but paid (at high rates geared
at big projects IRC) for closed source
software. At one time I believe the code
was "open source" (but restrictive
license). Then it changed to free binary +
restrictive license. I think the situation has
now changed, I don't think they support a
free version anymore - lets hope AdaCore
doesn't revoke the free version in the
same manner (I got the impression at
LCA2005 that this was a bitter dispute
with various parties throwing insults and
accusations at each other - I think on the
linux-kernel mailing lists).
Fortunately, I believe in this case, FSF
holds the copyright, so presumably
AdaCore can't restrict access any more
then making it GPL.
However, I think the people AdaCore
"forgot" will use the GCC GNAT
compiler now instead. This in turn
hopefully will lead to my development
with this compiler.
I suspect the end result is that people will
end up continuing to use the compiler
they are most familiar with - even when
the project justifies paying the $$$ for the
AdaCore supported compiler.
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Organization: Tidorum Ltd
Date: Fri, 28 Oct 2005 13:20:35 +0300
Subject: Re: GNAT GPL Edition

Maintenance and Upgrades
Newsgroups: comp.lang.ada
> I'm curious. Do you actually know of

any commercial software written in
Ada? That is, a program written in Ada
which is sold as a non-customized,
shrink-wrapped product to multiple
customers? Do any of them show up
here in c.l.a? Are they complaining?

I am not the original poster, but in part
answer to your question, I am writing
software in Ada that is meant to be sold
mainly as a non-customized product to
multiple customers.
I did "complain" about GNAT GPL 2005
in the sense that I voted for some other
GNAT (that is, a GMGPL GNAT) to be
the Debian Ada compiler. But I see that
GNAT GPL 2005 has many advantages,

perhaps most importantly less work for
the Debian Ada team. I am prepared to
use some of my own effort and money to
have a non-GPL compiler, for example
the FSF GNAT. I am also experimenting
with the Janus/Ada compiler. The price of
the Aonix compiler would be a significant
hurdle for me and GNAT Pro is beyond
my ceiling at this time.
So, that's one data-point for you. As I
recall, some of the others who voted for a
GMGPL Debian compiler were in the
same position.

Fuzzy sets for Ada
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 12 Sep 2005 22:30:12 +0200
Subject: ANN: Fuzzy sets for Ada v4.1
Newsgroups: comp.lang.ada
It is here:
http://www.dmitry-kazakov.de/ada/
fuzzy.htm
Changes to version 4.0:
1. Multiplication and division between a
fuzzy number from one side and a
dimensioned number or interval from
another yielding a dimensioned fuzzy
number were added;
2. Multiplication and division between a
linguistic variable and a dimensioned
number yielding a dimensioned variable
were added;
3. Multiplication and division of linguistic
variables were defined to work with
negative multiplicands and divisors;
4. To_Variable_Measure with Variable
argument was added;
5. Empirical defuzzification methods of
linguistic variables: center of area, center
of gravity, leftmost maximum, rightmost
maximum;
6. Bug fix in implementation of
operations on linguistic variables.
[See also same topic in AUJ 26-2 (Jun
2005), p.75 --su]

Multiprecision Numbers
From: jtg <jtg77@poczta.onet.pl>
Date: Thu, 15 Sep 2005 19:06:52 +0200
Subject: What about big integers in Ada

2005?
Newsgroups: comp.lang.ada
When I started to learn Ada, one of the
most interesting features for me was the
possibility to declare integer type of the
specified range. I imagined that the
integer type may be of any size. However,
several years later I needed big integers
and I was disappointed - Ada 95 does not
support integers of ANY size, it can
support only those integers that are
supported by the processor, or smaller.
Does Ada 2005 support big integers?
Where can I learn how to use them?

From: gdemont@hotmail.com
Date: 16 Sep 2005 07:33:26 -0700
Subject: Re: What about big integers in Ada

2005?
Newsgroups: comp.lang.ada
Big integers are special beasts that have to
be treated differently than "normal"
integers because they can have an
arbitrary size in memory and require a
specific handling not foreseen in "normal"
processors.
However big integers are doable and
available in every Ada version; on the
following site you'll find a bunch of
downloadable packages:
http://www.chez.com/bignumber
BTW, the freshest version of my multi-
precision integers are in mathpaqs.zip on
my Ada page below.
From: Craig Carey <research@ijs.co.nz>
Newsgroups: comp.lang.ada
Subject: Re: What about big integers in Ada

2005?
Date: 16 Sep 2005 20:43:15 -0700
That web page is out of date since not
referring to my Ada bindings to the GNU
GMP big numbers package:
http://tope.tigris.org/source/browse/tope/s
rc/Gmp/gmp_2k4.ads?view=markup
My code replaces the GMP Ada bindings
named at the chez.com website.
GMP did compile well with GCC 2.8.1
(which was needed since combining
GNAT 2.8.1 with a GCC C (not C++) of a
different version, in Windows, led to
botched parameter passing.
There was a message about C/C++ to
Ada. A way to get that running is to have
two Ada YACC (AdaGOOP) parsers in
series. Maybe Mr de Montmollin can
produce a program to convert C body files
into faulty Ada.
[See also same topic in 25.2 --su]

QtAda binding
From: Pascal Obry <pascal@obry.net>
Date: Mon, 14 Nov 2005 08:13:21 +0100
Subject: [ANNOUNCE] QtAda binding from

Leonid Dulman
Newsgroups: comp.lang.ada
Leonid Dulman (developer of VAD, the
Visual Ada Developer) ask me to post this
as he does not have write access to
comp.lang.ada at the moment. He has
done a QtAda binding, the work can be
found there:
http://www.websamba.com/guibuilder
This has been tested with Qt 3.3.
From: Preben Randhol

<randhol@bacchus.pvv.ntnu.no>
Organization: Norwegian university of

science and technology
Date: Mon, 14 Nov 2005 13:09:07
Subject: Re: [ANNOUNCE] QtAda binding

from Leonid Dulman

238 Ada-related Tools

Volume 26, Number 4, December 2005 Ada User Journal

Newsgroups: comp.lang.ada
Great. Pity it is GPL and not GMGPL, but
still it is nice. Seems to be a thin binding?

Cheddar - Real-Time
Scheduling Simulator
From: Singhoff <singhoff@fraise.univ-

brest.fr>
Organization: Universite de Bretagne

Occidentale
Date: 8 Nov 2005 11:06:48
Subject: Ann. : new release of Cheddar, a

free real time scheduling analyzer
Newsgroups: comp.lang.ada
The LYSIC team is pleased to announce a
new release of Cheddar.
Cheddar is a free real time scheduling
tool. Cheddar is designed for checking
task temporal constraints and buffer sizes
of a real time application/system. It can
also help you for quick prototyping of real
time schedulers. Finally, it can be used for
educational purposes.
Cheddar is developed and maintained by
the LYSIC Team, University of Brest.
Cheddar is composed of two independent
parts: an editor used to describe a real
time application/system, and a
framework. The editor allows you to
describe systems composed of several
processors which own tasks, shared
resources, buffers and which exchange
messages. The framework includes many
feasibility tests and simulation tools.
Feasibility tests can be applied to check
that task response times are met and that
buffers have bounded size. When
feasibility tests can not be applied, the
studied application can be analyzed with
scheduling and buffer simulations.
Cheddar provides a way to quickly define
"user-defined schedulers" to model
scheduling of ad-hoc applications/systems
(ex: ARINC 653).
Cheddar is written in Ada. The graphical
editor is made with GtkAda. Cheddar runs
on Solaris, Linux and win32 boxes and
should run on every GNAT/GtkAda
supported platforms
The current release is now 1.3p5. If you
are a regular Cheddar's user, we strongly
advice you to switch to the 1.3p5 release
due to the large amount of 1.3p3 bugs that
we fixed.
Cheddar is distributed under the GNU
GPL license. It's a free software, and you
are welcome to redistribute it under
certain conditions; See the GNU General
Public License for details. Source code,
binaries and documentations can be freely
downloaded from http://beru.univ-
brest.fr/~singhoff/cheddar
1) Summary of features:
- Do scheduling simulations with classical
real time schedulers (Rate Monotonic,
Deadline Monotonic, Least Laxity First,
Earliest Deadline First, POSIX queueing

policies: SCHED_OTHERS,
SCHED_FIFO and SCHED_RR) with
different type of tasks (aperiodic,
periodic, task activated with a Poisson
process law,…)
- Extract information from scheduling
simulation (buffer utilization factor, task
response times, task missed deadlines,
number of preemption,…)
- Apply feasibility tests on tasks and
buffers (without scheduling simulation):
 + Compute task response time bounds.
 + Apply processor utilization tests.
 + Compute bound on buffer size (when
buffers are shared by periodic tasks)
 + Shared resources support (scheduling
and blocking time analysis). Supported
protocols: PIP, PCP.
- Tools to express and do
simulations/feasibility tests with task
precedences:
 + Schedule tasks according to task
precedences
 + Compute Tindell end to end response
time.
 + Apply Chetto and Blazewicz
algorithms.
- Tools to run scheduling simulation in
the case of multiprocessors systems
- Do simulation when tasks are randomly
activated.
- Can run scheduling simulation on user-
defined scheduler and task arrival
patterns.
- Run user-defined analysis on scheduling
simulation.
- …
2) Most of new features provided by
1.3p5:
- Fix many bugs of the previous release
(see BUGS file)
- Add AADL import and export. This
feature is based on the Ocarina AADL
parser distributed by the ENST (F.
Singhoff)
- Perform several optimization in order to
increase global performance. (ex:
decrease memory footprint)
- Add round robin and time sharing built-
in schedulers (F. Singhoff)
- Add FreeBSD Makefile.vars (C.P.
Gloster)
- Feasibility tests can be called by users
processor by processor and feasibility test
by feasibility test. (see customized
feasibility tests) (F. Singhoff)
- Refactoring of some basic widgets (H.
Lapinoja, F. Singhoff)
- Improve text displayed in the main root
window when response time and
feasibility tests are performed on a project
(F. Singhoff)

- Extend the data model of cheddar to
include the abstraction of address spaces
(F. Singhoff)
- Some parametric variable can be set into
the parametric code (F. Singhoff)
- Provide extended buffer analysis tools:
simulation and feasibility tests in cases of
periodic and randomly activated tasks (J.
Legrand, F. Singhoff)
- Users can tune which events the
simulator engine will generate at
simulation time (see
Tools/Scheduling/Options) Warning:
"task_activation" and "running_task" can
not be ungenerated since they are needed
by many analysis tools (F. Singhoff)
Thanks to H. Lapinoja, J. Legrand, T.
Vergnaud, T. Ren, K. Bryan, C.P.
Gloster, J. Stemerdink and F. R. De la
Rocha for their help on this new release
(tests, bug reports or new features)
3) Work in progress:
For the next year, we plan to improve the
tool with the following features:
- Provide a global memory analysis (task
stack, text/data segments,…)
- Add Hierarchical schedulers support.
- Updated the graphical editor in order to
take into account GtkAda 2.2
- Update the user's guide according to the
new provided features
- Improvement of message scheduling
with:
 + End to end response time with
message scheduling.
 + Allowing message sending at any
time of a task capacity
 + Providing a way to user-defined
message delay communication by
specification of user-defined message
scheduling (as user-defined scheduler)
- Fix a buggy service which should detect
deadlock from simulation.
[See also same topic in AUJ 25-4 (Dec
2005), p.191–192 --su]

Ada Support in Eclipse
From: Jeff Creem <jcreem@yahoo.com>
Date: Wed, 16 Nov 2005 22:18:55 -0500
Subject: Eclipse Ada Support - FYI
Newsgroups: comp.lang.ada
While poking around I see that AdaCore
has announced (perhaps not yet released)
support for a GNAT Pro Eclipse plug-in
(primarily targeting wind river's
workbench which is Eclipse based).
http://www.gnat.com/pressroom_27.php
There are now three Ada vendors with
Eclipse support in some fashion (DDC-I,
Aonix and AdaCore).
Still none that are publicly available.

Ada-related Tools 239

Ada User Journal Volume 26, Number 4, December 2005

There were some discussions a few
months back on the Eclipse CDT mailing
lists that some on the the CDT group were
interested in supporting Ada but I have
not heard a lot since then.
From: Jeff Creem <jcreem@yahoo.com>
Subject: Re: Eclipse Ada Support - FYI
Date: Sat, 26 Nov 2005 17:20:02 -0500
Newsgroups: comp.lang.ada
Alex Xela wrote:
> I would like to comment on one

assertion: "Still none that are publically
available". It is not true as the Aonix
plug-in has been available now for 2
months, is available on Linux and
Windows, and is used on actual
projects.
It is free when used with ObjectAda
and one version for GNAT is also
available. Even if the plug-in is
enhanced every day, the current
versions are of industrial quality and
perfectly usable for real Ada
developments.

Yes. I did not choose my words carefully
enough. I meant publically available in
terms to imply that all people on this list
could just go and download it for free. (or
simply type in a credit card and pay for it
for that matter).
ObjectAda is like many other products
targeted at the giants. If you are a home
user, even if you have the money to
spend, you can't figure out how to spend it
(or what the cost is) without dealing with
some sales staff. Not really a knock on
Aonix. It is pretty standard for all things
targeting "the enterpruse" that even the
people who make the product
recommendations can't get a reasonable
story on cost, availability, licensing, etc
without talking to someone.
Of course I could be missing the point of
your e-mail. If there is a URL for a
version that can either be downloaded for
free or for which I can type in a credit
card and buy it, it would be nice to know
as this is one of the better kept secrets in
the world of Ada as far as I can tell.
[See also "Ada Plugin for Eclipse" in AUJ
26-3 (Sep 2005), pp.154–155 --su]

AdaControl
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Thu, 22 Sep 2005 13:54:20 +0200
Subject: AdaControl V1.4 released
Newsgroups: comp.lang.ada
Organization: Adalog
Adalog is pleased to announce a new
release of AdaControl, the free rules
checker for Ada.
Main new features:
Interactive mode, with new commands to
check rules interactively and/or try
command files.

Better support of attributes
New rule type: count, allowing
AdaControl to be used as a measuring
tool.
Improvements to the framework
Small improvements, bug fixes, etc.
New rules:
Declarations
Exception_Propagation
Naming_Convention
Real_Operators
Representation_Clauses
Side_Effect_Parameters
Simplifiable_Expressions
Specification_Objects
Statements
When_Others_Null
AdaControl is available from Adalog's
component page at
http://www.adalog.fr/compo2.htm (for
detailed information, the user guide and
programmer manual are directly
accessible too).
AdaControl is a professional product,
extensively tested on Eurocontrol's
software (thanks to P. Waroquiers).
Adalog can provide support and
maintenance for AdaControl.
AdaControl is fully GMGPL, which
means that you can use it for any purpose
and even reuse any part of it in any
software. ASIS users: there are some
general-purpose utilities that can be very
helpful!
[See also same topic in AUJ 26-2 (Jun
2005), p.73 --su]
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Organization: Adalog
Date: Tue, 04 Oct 2005 10:29:27 +0200
Subject: New release of AdaControl 1.4
Newsgroups: comp.lang.ada
This is a minor release (1.4r20) that just
fixes a bug and improves performance for
the rule Local_Hiding.
No change in functionality.

Scout — Ada utility for
Google Earth & NASA
World Wind
From: Tom Moran <tmoran@acm.org>
Date: Tue, 29 Nov 2005 17:27:38 -0600
Subject: Ann: AdaWorld posting
Newsgroups: comp.lang.ada
Stephane Richard has kindly posted to
www.adaworld.com an application,
"Scout" that reads/writes/converts
latitude&longitude (preserving precision),
Metes&Bounds ("thence N 12d 34' 56" E
78.9 ft" style), State Plane Coordinates,
and path files for Google Earth and
NASA WorldWind. Includes both Ada
source code and Windows executable.
[See also same topic in AUJ 26-3 (Sep
2005), p.155 --su]

From: Marc A. Criley <mc@mckae.com>
Date: Wed, 30 Nov 2005 08:44:14 -0600
Subject: Re: Ann: AdaWorld posting
Newsgroups: comp.lang.ada
Tom was also good enough to incorporate
a feature whereby Scout will accept as
input the Tab Separated Value (TSV)
output from the Garmin GPS MapSource
application. One simply needs to cut out
everything but the Trackpoint lines from
the file, either before or after loading it
into Scout, and can then convert those
points into whatever formats it supports.
This has worked great for me when taking
my GPS along on an ATV ride through
the hills around my place, exporting the
track log, running it through Scout to get
a Google Earth kml file that I can overlay
onto the terrain and do flyovers--
impressed the heck out of my neighbor :-)
Ada rocks! :-)

High Seas Battleship -
Network Game
From: David Trudgett

<wpower@zeta.org.au>
Date: Tue, 08 Nov 2005 21:19:26 +1100
Subject: New Ada ANSI console/X terminal

game
Newsgroups: comp.lang.ada
For those who may be interested, I've just
posted to my website a first release
(version 0.99) of my "High Seas
Battleship" network game. You can find
the source code for it at:
http://www.zeta.org.au/~wpower/dkt/prog
rams/high-seas-battleship.tar.gz
It's a full-screen colour text-based
application written for Linux console or
xterm, but should work on most ANSI
compatible terminal devices. My program
makes use of Samuel Tardieu's
AdaSockets, which I doubt works on
Windows (the manual seems to mention
only Unix and OpenVMS), so I likewise
doubt that High Seas will work as it is
under Windows, even assuming that there
is a suitable ANSI terminal available for
Windows. It should be easy, however, to
adapt the comms layer to use a different
sockets library, if desired.
For non-GNAT users, I should probably
mention that the program uses a GNAT
specific library (in the main procedure,
battleship.adb) to access environment
variables, so you'll probably want to
replace this with the relevant vendor-
specific library, or perhaps
Ada.Command_Line.Environment (I
didn't use it myself because GNAT
warned me that this is an internal GNAT
package that therefore shouldn't be used).
Besides AdaSockets and GNAT.OS_Lib
just referred to, there are no other
dependencies except that you'll probably
want a C compiler to compile a couple of

240 Ada-related Products

Volume 26, Number 4, December 2005 Ada User Journal

utility routines (which could probably be
omitted, though).
To compile under Linux/Unix, assuming
you have GNAT and libadasockets
installed, you will probably just need to
edit the Makefile and run make.
The project was pursued simply as an Ada
learning exercise, so comments would be
appreciated, if you have any.
From: Pascal Obry <pascal@obry.net>
Date: Tue, 08 Nov 2005 18:38:14 +0100
Subject: Re: New Ada ANSI console/X

terminal game
Newsgroups: comp.lang.ada
No problem. AdaSockets does work on
Windows we have been using it for AWS.
From: David Trudgett

<wpower@zeta.org.au>
Date: Sat, 12 Nov 2005 20:05:47 +1100
Subject: Re: New Ada ANSI console/X

terminal game
Newsgroups: comp.lang.ada
Those who have downloaded the initial
release may like to know that I have
posted a small bugfix to my High Seas
Battleship game. The updated version is
at:
http://www.zeta.org.au/~wpower/dkt/prog
rams/high-seas-battleship_v0.99a.tar.gz
This fixes a bug whereby it was possible
to change the position of one's fleet mid-
game by typing the caret symbol. Oops…
☺

Ada-related Products
AdaCore — GNAT Pro
AltiVec Support
AdaCore Brings Ada to AltiVec Support For

Leading Weapons Company
New York, October 3, 2005
AdaCore, the leader in Ada solutions,
today announced GNAT Pro Ada
development tool suite support for
Freescale Semiconductor, Inc.'s high-
performance AltiVec™ instruction set.
The ability to access AltiVec instructions
from Ada was initiated by MBDA, a
world leading, global missile systems
company. MBDA wanted to combine the
potential power of AltiVec with the
'formality' of Ada. By adopting Ada, the
programming language best suited for
safety-critical, high-reliability
applications, MBDA is supporting its own
stated priority to "deliver the highest
product reliability while developing
innovative customized solutions."
"Using Ada with AltiVec gives MBDA
the ability to reliably extract the
maximum performance from the smallest
number of processors," said Rod White,
Technologist, MBDA, at the recent Ada-
Europe conference in June 2005. "The
result is lower system costs and reduced

power consumption, plus Ada’s rigorous
structuring ensures long-term code
maintainability."
MBDA was attracted to Ada as a
"strongly typed" programming language,
a characteristic that is key to application
reliability and security. AltiVec access
from Ada allows MBDA to concentrate
on operations, letting Ada datatypes solve
data alignment issues, and achieving very
low overheads. MBDA's choice of
AdaCore to bring Ada to AltiVec is
consistent with the company’s strategy "to
pursue and reinforce the development of
strong, mutually beneficial links with
industry leaders worldwide."
"Missile systems clearly require a high-
integrity, safety-critical programming
language," said AdaCore president,
Robert Dewar. "Ada’s uncompromising
emphasis on sound software engineering,
structure, and formality lets MBDA
exploit the advanced performance of
AltiVec while still ensuring the absolute
reliability and integrity of the weapons
systems."
About AltiVec
AltiVec technology expands the
capabilities of PowerPC microprocessors
by providing excellent general-purpose
processing performance, while
concurrently addressing high-bandwidth
data processing and algorithmic-intensive
computations. Using Ada to access the
SIMD (Single Instruction Multiple Data –
sometimes referred to as vector
processing) AltiVec instruction set allows
programmers to capitalize on the parallel
processing features increasingly common
on modern processors. AltiVec’s adds 162
"vector" instructions to versions of the
PowerPC including Motorola's G4 and
IBM's G5 processors.
AdaCore's newly released integrated
development environment (IDE), called
the GNAT Programming Studio (GPS),
will be included as part of the AdaCore
solution for AltiVec.
Pricing and Availability
AdaCore’s solution for AltiVec is
available today.
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial, open-source
software solutions for Ada, a modern
programming language designed for
large, long-lived applications where
reliability, efficiency and safety are
absolutely critical. AdaCore's flagship
product is GNAT Pro, the commercial-
grade open-source Ada development
environment, which comes with expert
online support and is available on more
platforms than any other Ada technology.
AdaCore has customers worldwide; see
http://www.adacore.com/customers.php
for more information.

Use of Ada and GNAT Pro continues to
grow in high-integrity and safety-critical
applications, including commercial and
defense aircraft avionics, air traffic
control, railroad systems, financial
services and medical devices. AdaCore
has North American headquarters in New
York and European headquarters in Paris.
www.adacore.com

AdaCore — Support for
VxWorks 6
AdaCore Announces Support for Wind

River’s VxWorks 6
New York, November 7, 2005
AdaCore, a Wind River leading Ada
technology supplier, today announced that
its industry-leading GNAT Pro Ada
development environment will support
version 6 of Wind River's VxWorks®
RTOS. Developed in conjunction with
Wind River, AdaCore's GNAT Pro for
VxWorks 6 is targeted to the Wind
River® General Purpose Platform on the
PowerPC, from Windows, GNU/Linux
and Solaris host environments.
GNAT Pro is a well-established and
widely used product on Wind River
platforms, with several hundred
customers supplied with GNAT Pro for
VxWorks to date. GNAT Pro for
VxWorks 6 will offer many new
enhancements, including memory
protection models and plug-in support for
the Wind River Workbench development
suite to provide a fully-integrated Ada
solution.
"With such a large body of customers
already using GNAT Pro with VxWorks,
AdaCore clearly has the field-proven
experience to deliver one of the most
solid Ada implementations to real-time
systems developers," said Rob Hoffman,
Senior Director, Aerospace and Defense
at Wind River Systems. "The new version
is perfect for safety-critical and real-time
embedded situations where reliability,
performance and portability are absolutely
required."
"As a complete Ada implementation with
real-time performance and functionality,
GNAT Pro continues to be the natural
Ada solution for the evolving capabilities
of VxWorks," said Robert Dewar,
President of AdaCore. "This new version
marks the continuation of a successful and
longstanding partnership between
AdaCore and Wind River, and the most
meaningful resulting benefit is the high
quality and performance we jointly bring
to embedded software developers."
GNAT Pro for VxWorks 6 includes the
following features:
 * Implementation of all versions of
Ada: Ada 2005, Ada 95, Ada 83
 * Support for VxWorks 6 Kernel
Modules and Real-Time Processes

Ada-related Products 241

Ada User Journal Volume 26, Number 4, December 2005

 * Mixed-language support, allowing
composition of applications comprising
Ada, C, and C++
 * Full source-level debugger
 * Extensive GNAT library
 * Ada unit testing framework (AUnit)
 * Full source code for GNAT Pro
 * Dependable support from AdaCore

AdaCore — GNAT Pro
Support for Wind River
Workbench Development
Suite
AdaCore Brings the Power of GNAT Pro to

Wind River’s Workbench Environment
New York, November 7, 2005
AdaCore, a Wind River leading Ada
technology supplier, today announced a
GNAT Pro plug-in developed specifically
for the Wind River® Workbench
development suite. Especially suited for
large, embedded, real-time applications
running VxWorks® RTOS, AdaCore’s
GNATbench solution combines the
reliability of Ada development and
compilation technology with Wind
River's popular Eclipse-based, open
device software development framework.
The result is a fully integrated Ada toolset
that enhances Workbench to facilitate
multi-language development,
sophisticated editing, browsing,
debugging, and comprehensive
compilation for advanced VxWorks
systems creation.
GNATbench draws its strength from
AdaCore's GNAT Pro, a robust and
flexible Ada development environment
based on GNU GCC compiler technology.
GNATbench extends the Workbench text
editor to support sophisticated Ada-aware
editing and browsing, adds code
generation for building systems in Ada or
in combination with any of the other
languages supported by the Wind River
Workbench development suite, and
supports Ada-aware debugging with the
Wind River Workbench debugger.
GNATbench utilizes the GNAT Pro
compiler and tool-suite for the VxWorks
platform, the same comprehensive Ada
compiler that Wind River has offered to
customers for many years. GNATbench is
supported on Windows, Linux and Solaris
and is planned for release Q1, 2006.
"Wind River and AdaCore have
collaborated for more than seven years to
bring Ada’s safety critical features and
VxWorks RTOS capabilities to hundreds
of customers worldwide," said Rob
McCammon, Director, Product
Management at Wind River Systems.
"Our continued success demonstrates the
value that dedicated partnerships bring to
the development of faster, more reliable,
and cost-effective device software."

"With one simple plug-in, GNATbench
lets Workbench users access the benefits
of GNAT Pro Ada," said Robert Dewar,
President of AdaCore. "Our new tools
seamlessly integrate into the Wind River
Workbench development suite to facilitate
ease of use, and deliver the power of
GNAT Pro's leading-edge compiler and
tools to provide more reliable applications
with fast, predictable performance."
[See also "SCORE Support for Wind
River Workbench Development Suite" in
this issue --su]

Aonix — ObjectAda 8.2 for
Linux
Aonix® ObjectAda 8.2 Boasts More

Language Support and Dynamic Debug
Capabilities

Linux® support delivered to meet
customer demand
http://www.aonix.com/pr_09.12.05c.html
Embedded Systems Conference, Boston,
MA, September 12, 2005
Aonix®, a provider of solutions for
safety- and mission-critical applications,
released the latest version of the
ObjectAda development environment,
targeting Linux as the first supported
operating system. In addition to
supporting an Eclipse-based development
environment targeting mission-critical
software solutions, ObjectAda 8.2
integrates a number of product
enhancements. With a newly developed
capability to attach the symbolic debugger
to a running Ada application, ObjectAda
has become especially useful for
situations in which programming errors
do not surface until after the test and
debug phase of development has been
completed.
ObjectAda 8.2 is the first ObjectAda
release where developers can choose
between the traditional Aonix IDE for
development and the new AonixADT™
Eclipse plug-in. AonixADT incorporates
Ada-project awareness, an Ada-language
sensitive editor, Ada-language compile
and build capabilities, and a complete
Ada debugger interface, enabling Ada
developers to enjoy state-of-the-art
interface capabilities geared to maximize
developer ease and efficiency. By
delivering the powerful combination of
Eclipse and best-of-class Ada technology,
Aonix provides a modern and robust
development environment that increases
developer productivity. Since AonixADT
is based on Eclipse, this same integrated
development environment also supports
development with the Java, C, and C++
languages.
“Aonix has a long-standing reputation of
supplying high-quality development tools
based on industry accepted standards,”
said Jacques Brygier, VP Marketing of
Aonix. “Increasingly, our Ada

development customers require large-
team access to broad ranges of integrated
development tool technologies. By basing
AonixADT on the popular open-source
Eclipse development environment, Aonix
maximizes the ease with which the
various best-of-breed technologies can be
integrated.
ObjectAda® for Linux comes with both a
graphical and command-line interface,
integrated language-sensitive editor,
lightweight source-based library model,
and industry leading compilation speed.
The ObjectAda for Linux compilation
system is composed of the editor, source-
code browser, compiler, debugger, and
full library manager.
In addition to the basic compiler
development package, the ObjectAda
Project Pack contains the Ada-ASSURED
advanced editor that provides additional
language-sensitive features and style-
guideline conformance checking.
ObjectAda Project Pack also contains the
AdaNav™ toolset, which provides
complete system HTML source-
navigation capabilities as well as call- and
unit-tree graphical reporting and
automatic data dictionary generation. To
improve program performance, the
AdaNav profiler provides run-time
performance reporting to identify
application hot spots.
The ObjectAda 8.2 family has many other
products currently in development.
Scheduled for release over the next
several months are ObjectAda for
Windows®, ObjectAda Windows for
Intel®x86/ETS™, ObjectAda Linux for
PPC/LynxOS®, ObjectAda Solaris™ for
PPC/LynxOS, ObjectAda Windows for
PPC/RAVEN™, ObjectAda Solaris for
PPC/RAVEN and ObjectAda Windows
for PPC/VxWorks®.
Shipping and Availability
ObjectAda for Linux is available
immediately for Red Hat Enterprise
Version 4 and Fedora Core Version 4. For
more information about this product,
please visit
www.aonix.com/objectada.html
About Aonix
Aonix offers mission- and safety-critical
solutions primarily to the military and
aerospace, telecommunications and
transportation-related industries. Aonix
delivers the leading high-reliability, real-
time embedded virtual machine solution
for running Java™ programs deployed
today and has the largest number of
certified Ada applications at the highest
level of criticality. Our unique modeling
solution features UML™ 2.0 profiles and
MDA™ tailored for the mission- and
safety-critical space. Aonix products
include PERC®, RAVEN™, and
Ameos™. Headquartered in San Diego,
CA and Paris, France, Aonix operates
sales offices throughout North America

242 Ada-related Products

Volume 26, Number 4, December 2005 Ada User Journal

and Europe in addition to offering a
network of international distributors. For
more information, visit www.aonix.com.

Aonix — ObjectAda 8.2 for
Windows
ObjectAda 8.2 for Windows Delivers .NET

Compatibility and Dramatic
Performance Improvements

Addresses emerging requirements for
coordination with Java and .NET
components
Birmingham, UK, October 19, 2005
http://www.aonix.com/pr_10.19.05.html
Aonix®, a provider of solutions for
safety- and mission-critical applications,
released the latest version of ObjectAda
for the Windows development
environment. In addition to supporting an
Eclipse-based development environment
targeting mission-critical software
solutions, ObjectAda for Windows
integrates current Microsoft platform
improvements, ensuring full compatibility
with Microsoft Visual Studio .NET, faster
linking times, as well as other platform
enhancements. In preparation for market
trends, ObjectAda for Windows includes
a Java-call interface, enabling Java
applications to be called from an Ada
program.
The Aonix ObjectAda for Windows
brings the improvements of ObjectAda
8.2 to the Windows development
platform. In integrating current Windows
improvements with the Aonix Ada 95
compiler, Aonix has delivered
enhancements to the object code and
symbolic debugging information
generation and provided full compatibility
with the Microsoft Visual Studio .NET
2003 development tools. Recognizing the
growing number of large-scale Ada
projects, ObjectAda 8.2 for Windows
offers dramatic performance
improvements for developers linking
executable files or initiating debugging
sessions for large programs.
“The increased number of large-team
projects requires simplified, platform
access,”” noted Jacques Brygier, vice
president of marketing at Aonix. “By
providing a Windows- and Eclipse-
compatible technology for Aonix
customers, we ensure that they have
access to the broadest range of integrated
development tool technologies, reducing
cost and improving project flexibility. Our
ObjectAda for Windows enables
developers to take advantage of Eclipse-
based resources as well as enjoy seamless
integration within the Microsoft
environment.”
ObjectAda for Windows 8.2 includes the
comprehensive Ada libraries needed for
calling Windows Win32 and the Visual
C++ .NET 2003 MFC interfaces from
application source code written in Ada. In

ObjectAda for Windows, these Ada
binding libraries are fully compatible with
the Microsoft Visual Studio .NET 2003
tools and libraries.
In addition to the basic compiler
development package, ObjectAda Project
Pack contains AdaJNI, an interface to call
Java™ programs from Ada and the
AdaNav™ toolset, which provides
complete system HTML source-
navigation capabilities as well as call- and
unit-tree graphical reporting and
automatic data dictionary generation. The
AdaNav profiler also provides run-time
performance reporting to identify
application hot spots. The ObjectAda
Pinnacle contains the Ada-ASSURED
advanced editor that provides additional
language-sensitive features and style-
guideline conformance checking.
As part of the ObjectAda 8.2 family,
ObjectAda for Windows allows
developers to choose between the
traditional Aonix IDE for development
and the new AonixADT™ Eclipse plug-
in. AonixADT incorporates Ada-project
awareness, an Ada-language sensitive
editor, Ada-language compile and build
capabilities, and a complete Ada debugger
interface, enabling Ada developers to
enjoy state-of-the-art interface capabilities
geared to maximize developer ease and
efficiency.
Shipping and Availability
ObjectAda for Windows is available
immediately for Windows 2000 and XP
platforms. For more information about
ObjectAda 8.2 for Windows, please visit:
www.aonix.com/objectada.html.

DDC-I — SCORE Support
for Wind River Workbench
Development Suite
DDC-I Announces State-of-the-Art Ada

Support for Eclipse Based Wind River®
Workbench Development Suite

Proven code generation with all the
features and middleware of the
VxWorks® RTOS
October 3, 2005 – DDC-I, a global leader
in safety critical software tools for
embedded applications today announced a
new plug-in for the Wind River Eclipse-
based Workbench development suite.
This new plug-in provides multi-language
support (Ada, C and Embedded C++),
targeting the VxWorks RTOS on Intel
80x86 (including VxSim) and PowerPC
603 & 604 core processors.
DDC-I’s SCORE® development tools
(including compiler, linker, disassembler,
library management and object dumper),
are seamlessly integrated into the Wind
River Workbench development suite and
do not open another unique window.
Through the project management view of
the Workbench tools, the user has the

ability to compile, link and build both
downloadable kernel modules, and real-
time processes with mixed language code
including Ada 95, C, Embedded C++, and
Assembler. DDC-I’s build process for
Ada files automatically determines a
correct compilation order when building
or compiling multiple files. SCORE® is
also integrated with the Wind River
debugger and enables source-level
debugging of Ada 95 code, C code, and
Embedded C++ code, switching
seamlessly between the languages.
"This is a true integration," states Bob
Morris, President and CEO at DDC-I, Inc.
"No more launching one tool from
another; the entire edit, build, and debug
activities are all controlled from within
Workbench - the industry leading, Wind
River development suite."
"Industry partners like DDC-I help
provide quality software tools needed for
device software applications," states Rob
Hoffman, Senior Director Aerospace &
Defense at Wind River Systems. "We are
pleased that this seamless integration is
now available for our safety critical
customers and look forward to working
with them in the future."
SCORE® adds the following features to
the Wind River Workbench development
suite:
Hierarchical setting of compilation
options through property editors.
Context sensitive actions to compile,
link, build and disassemble Ada 95 source
code.
A view for detailed compiler output,
also showing exactly what compilation
options are set on each file as it is being
compiled.
Automated building of Ada 95 and
mixed language projects - in the
background.
Selective Linking to eliminate unused
code portions from each object file.
Powerful error reporting back to the
Workbench tools.
About DDC-I, Inc.
DDC-I, Inc. is a global supplier of
software development tools, custom
software development services, and
legacy software system modernization.
DDC-I's customer base is an impressive
"who's who" in the commercial, military,
aerospace, and safety-critical industries.
Tools include compiler systems and run-
time systems for C, Embedded C++, Ada,
JOVIAL and Fortran application
development. For more information
regarding DDC-I products, contact DDC-I
at: 400 North Fifth Street, Phoenix,
Arizona 85004; phone (602) 275-7172;
fax (602) 252-6054; e-mail
sales@ddci.com; or visit www.ddci.com.

Ada-related Products 243

Ada User Journal Volume 26, Number 4, December 2005

[See also "AdaCore — GNAT Pro
Support for Wind River Workbench
Development Suite" in this issue --su]

DDC-I — Migration
Assessment Package to Ada
Customer Loyalty Brings New Opportunities

for DDC-I
Phoenix, Arizona -- November 1, 2005 --
DDC-I today announced that the
company's initiative to help companies
migrate legacy code to new hardware and
programming languages is winning
support from some of the industry leading
defense contractors. Numerous existing
customers are asking for assistance in
tossing out the old and bringing in the
new. Last August, the company
announced project-specific Migration
Assessment Packages for programs facing
this daunting task. Today, customers
making this move are seeing successful
results for many reasons.
Development tools on outdated hardware
can be migrated to newer technology and
can drastically improve productivity and
future flexibility. For example, SCORE®
from DDC-I can instantly offer mixed
language, multi-target capability,
allowing for easier integration of older
programming languages with newer
languages, such as Ada83 and C++.
"Our customers know the value of our
tool suites and services, and they
appreciate how our #1 in Customer Care
policy produces customer service which is
unmatched in the industry" stated Bob
Morris, President and CEO, DDC-I, Inc.
DDC-I's Migration Assessment Package
begins with on-site migration needs
assessment and
application/data/infrastructure evaluation
culminating in a complete migration
assessment report. Once the assessment is
complete, the customer can make an
informed choice of how to move forward.
They can also choose to do the work
themselves, or let DDC-I handle it for
them with significant time and costs
savings.

Green Hills Software and I-
Logix — Unified Integrated
Development Environment
Green Hills Software and I-Logix Redefine

“Integrated Development Environment”
with First Single Source Solution
Addressing All Phases of Embedded
Systems Development

Complete Standards-Based Approach
from UML 2.0 for Design through POSIX
for Deployment with Eclipse for
Enterprise-Wide Integration
SANTA BARBARA, CA and
ANDOVER, MA—October 3, 2005—
Green Hills Software and I Logix
announced today a new strategic

partnership resulting in the first single
source, fully standards-based Integrated
Development Environment (IDE) that
addresses all phases of embedded systems
development, from requirements
specification through deployment. Under
the agreement, Green Hills Software will
distribute and support I Logix Rhapsody,
the award winning Model-Driven
Development (MDD) environment based
on the Unified Modeling Language
(UML) 2.0 standard, together with Green
Hills Software’s MULTI and AdaMULTI
development environments and the
certified POSIX conformant INTEGRITY
real-time operating system (RTOS). The
products are seamlessly integrated to
enable a unique bi-directional workflow
between modeling and implementation.
The companies are also collaborating on
future integrated features and capabilities,
including integration with the Eclipse
platform.
Traditionally, system designers and
developers have used separate
environments for different aspects of
development: one for requirements
analysis through design, often paper-
based, and another for implementation
through deployment. This approach is
very inefficient, since the design has to be
re-created in the implementation and any
changes to the design or implementation
must be manually reflected in the other
view. In contrast, the unified solution
developed by Green Hills Software and I-
Logix accelerates time-to-market by
generating the implementation in C, C++
or Ada source code directly from the
UML model. The model is then
automatically updated to reflect any
changes made to the code. The
combination of Rhapsody and MULTI
also helps ensure that a final product
satisfies its design objectives by providing
traceability between the source code and
requirements.
“The Green Hills Software and I-Logix
partnership is a harbinger of a dramatic
change in the way embedded systems are
developed,” commented Dr. Jerry
Krasner, Principal Analyst at Embedded
Market Forecasters. “Our year-over-year
research results consistently show that
Model-Driven Development reduces
development time and risk while also
improving the alignment between pre-
design expectations and final products. By
providing a single-source, integrated
solution for analysis, modeling,
simulation, coding, debugging and
deployment, Green Hills Software and
I‑Logix are not only bringing MDD into
the mainstream by significantly
improving its usability and accessibility,
but are uniquely addressing the emerging
requirements being set forth for new
Aero/Defense, Automotive and Telecom
markets in particular.”
“As long-term users of Rhapsody,
MULTI, and INTEGRITY, we are

encouraged by this strategic partnership,”
said Bob Greene, Software Process
Improvement Manager for L-3COM,
makers of real-time embedded
communications products for the US
Government. “With this tightly integrated
solution we now have a single cohesive
development environment that enables us
to analyze, model, design, implement and
test our embedded software applications.
The strengthening of the relationship and
the continued enhancement to the
integration of these tools should help to
improve our workflow and the
productivity of our staff.”
“The I-Logix and Green Hills Software
partnership is a powerful combination of
market leaders, both of whom are the
fastest growing suppliers in their
respective market segments,” commented
Chris Lanfear, Practice Director for
Embedded Software at Venture
Development Corporation (VDC). “In
addition to their complementary
technology, both companies have
momentum in fast growing markets
including aerospace, defense and
communications equipment.”
Integrated Solution Addresses All Phases
of Development
The combination of Rhapsody, MULTI
and INTEGRITY provides an integrated
solution that addresses all phases of
embedded systems development.
* Requirements analysis and design—
using UML with Rhapsody.
* Validation—Application behavior can
be simulated in Rhapsody based on the
UML model.
* Implementation—Rhapsody can
automatically generate C, C++ and Ada
source code for input to Green Hills
C/C++ and Ada compilers. In addition,
source code changes made in the MULTI
editor are synchronized back in the
Rhapsody model.
* Debugging and optimization—The
MULTI source-level debugger is fully
synchronized with the Rhapsody UML
models. Execution breakpoints can be set
and visualized at both the model and
source-code levels. The application can
also be simulated using the MULTI
instruction set simulator if target
hardware is unavailable.
* Testing—Rhapsody can automatically
generate test vectors from the model that
can be executed on the target hardware or
MULTI simulator.
* Deployment—Rhapsody generates all
of the source code and configuration files
necessary to run a final application on
Green Hills Software’s royalty-free and
POSIX conformant INTEGRITY RTOS.
In addition, for resource-constrained and
cost-sensitive devices, Green Hills
Software’s small, fast and royalty-free
velOSity microkernel is also supported.

244 Ada and GNU/Linux

Volume 26, Number 4, December 2005 Ada User Journal

Executive Comments
“By partnering with I-Logix, Green Hills
Software is the first to provide a highly
integrated requirements-to-deployment
solution for embedded systems
developers, based on the widely
established UML 2.0 and POSIX industry
standards. Rhapsody provides the most
comprehensive Model-Driven
Development solution available in the
embedded market today. The combination
of Rhapsody with our development tools,
royalty-free operating systems and
middleware gives our customers an end-
to-end solution for optimizing the time-to-
market and reliability of their devices.”
Dan O’Dowd, Founder and Chief
Executive Officer, Green Hills Software
“Green Hills Software offers the
industry’s most comprehensive IDE and
RTOS solutions. When these are
combined with our award winning
Rhapsody systems design and software
development family of products, our two
companies, each the fastest growing and
most successful in our respective fields,
provide a truly synergistic solution. This
not only benefits our mutual customers,
but also sets a new standard within the
embedded systems market by not just
integrating products but by also
integrating the manner in which these
products get to the end-user.”
Gene Robinson, President and Chief
Executive Officer, I-Logix
Availability
Rhapsody for MULTI is available today
from Green Hills Software.
About I-Logix
Founded in 1987, I-Logix is the
worldwide leading provider of
collaborative Model-Driven Development
(MDD) solutions for systems design
through software development focused on
real-time embedded applications. These
solutions allow engineers, operating in
either small or very large teams, to
graphically model the requirements,
behavior, and functionality of embedded
systems. The design is iteratively
analyzed, validated, and tested throughout
the development process while
automatically generated production
quality code can be output in a variety of
languages. I-Logix facilitates team
collaboration through unique project and
task management capabilities integrated
into its UML based MDD solutions,
enabling design review and inter-team
participation from concept-to-code,
regardless of where team members are
located. I-Logix is headquartered in
Andover, Massachusetts and has sales and
support centers throughout North
America, Europe and the Far East.
About Green Hills Software
Founded in 1982, Green Hills Software,
Inc. is the technology leader in Real-Time

Operating Systems (RTOS) and Device
Software Optimization (DSO) for 32- and
64-bit embedded systems. Our royalty-
free INTEGRITY® RTOS, velOSity™
microkernel, compilers, MULTI® and
AdaMULTI™ Integrated Development
Environments and TimeMachine™
debugger offer a complete development
solution that addresses both deeply
embedded and high-reliability
applications. Green Hills Software is
headquartered in Santa Barbara, CA, with
European headquarters in the United
Kingdom. Visit Green Hills Software on
the web at www.ghs.com.

I-Logix — I-Logix Lands
$1,045,000 Aerospace /
Defense Order
World’s Largest Aerospace / Defense

Manufacturer Selects Rhapsody by I-
Logix To Push Quality and Productivity
Improvements

Nov 18, 2005 - Andover, MA — I-Logix,
the leading worldwide Unified Modeling
Language (UML™) based Model-Driven
Development (MDD) solution provider,
announced today that the company landed
a $1,045,000 order from one of the
world’s largest aerospace / defense
manufacturers. The aerospace / defense
company purchased I-Logix’s award
winning Rhapsody product family to
maximize quality and productivity.
“Every now and then, the planets align
and great timing intersects with an
extremely competitive product to create a
record smashing success like we’ve had in
2005. And, with this $1M plus order
from one of the world’s largest military /
aerospace companies, the hits just keep on
rolling in! Some of our users are focused
on time-to-market challenges and
Rhapsody clearly saves the day for them.
Others, like this company, are more
focused on harnessing the energy of
thousands of very talented developers
with a zero defect quality standard and
Rhapsody clearly delivers for them, too.
The range of solutions Rhapsody provides
is fantastic. This is a great time to be us!”
Gene Robinson, CEO I-Logix said.
I-Logix won the contract based on the
merits of the company’s flagship
development environment, Rhapsody.
Rhapsody enables engineers to effectively
address requirements, design, verification,
implementation and test at a higher level
of abstraction using a Model-Driven
Development (MDD) process versus a
textual one. Rhapsody’s well recognized
key enabling technologies, in addition to
its recent expansion to incorporate the
Systems Modeling Design Language
(SysML) standard and its unique
approach to “over-complying” with the
Department of Defense Architecture
Framework (DoDAF) coupled with the
industry’s most extensive implementation

of UML 2.0 combine to enable teams of
all sizes to effectively work together,
making for smooth critical design
reviews. These benefits, and the ability to
generate the full application in C, C++,
Ada or Java drastically reduce time to
market. Design for testability enables
simulation of the design at the earliest
stages while providing requirements
based testing and the ability to generate
tests that provide 100% model coverage,
thereby ensuring higher quality designs.
The leading aerospace / defense
manufacturer recognized that these
capabilities all come together in
Rhapsody’s best in class tool suite, and
since their initial roll out, they have
realized a 10X improvement in
productivity and a major improvement in
quality assurance.
Owing to the success of Rhapsody the
aerospace / defense manufacturer has
extended its use to other major projects
including tactical systems, core
processing systems, radar, unmanned
vehicles and many more at locations
throughout the United States.
About I-Logix
Founded in 1987, I-Logix is the
worldwide leading provider of
Collaborative Model-Driven
Development (MDD) solutions for
systems design through software
development focused on real-time
embedded applications. These solutions
allow engineers, operating in either small
or very large teams, to graphically model
the requirements, behavior, and
functionality of embedded systems. The
design is iteratively analyzed, validated,
and tested throughout the development
process while automatically generated
production quality code can be output in a
variety of languages. I-Logix facilitates
team collaboration through unique project
and task management capabilities
integrated into its UML based MDD
solutions, enabling design review and
inter-team participation from concept-to-
code, regardless of where team members
are located. I-Logix is headquartered in
Andover, Massachusetts and has sales and
support centers throughout North
America, Europe and the Far East.

Ada and GNU/Linux
Next Debian Ada Compiler
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: GNAT GPL Edition

Maintenance and Upgrades
Date: 5 Oct 2005 08:02:54 -0700
Newsgroups: comp.lang.ada
[See also "About the GNAT GPL 2005
License" in this issue --su]
> In short, if I were Ludovic and were

faced with a maintenance task, I'd leave

Ada and GNU/Linux 245

Ada User Journal Volume 26, Number 4, December 2005

3.15p as it is, as the Ada 95 choice; the
GPL version as experimental 0Y with
full toolkits, and would aim to replace it
in the future with the GMGPL GCC
one when it starts to settle and the 0Y
feature set is complete.

I'm actually planning to do something
close to that. Debian Sarge is the current
stable version, and its default Ada
compiler is gnat 3.15p. Sarge will remain
the current stable version until around
December 2006, when Etch is released
(the date is tentative: as always, Etch will
be released "when it is ready").
I think we will probably end up with GCC
4.1 as the default Ada compiler in Etch.
GCC 4.1 may not be perfect WRT Ada
2005, but it will support Ada 95 on more
hardware platforms than does GNAT
3.15p; this is a big plus. Also, GCC 4.1 is
likely to become the default compiler for
C and C++ as well, meaning that it will
receive good support on many targets.
I suppose (but this is outside of my
control) that GCC 4.1 will first appear in
the "experimental" distribution of Debian,
which is just designed for such purposes.
For those who don't know how Debian
works, "experimental" contains a small
number of packages that must be installed
on top of Sid (unstable). Packages do not
migrate from experimental to Sid
automatically, but only at their
maintainer's explicit request.
Currently, I'm waiting to see how things
turn out upstream (i.e. on gcc.gnu.org). I
also scan the gcc and gcc-patches lists for
Ada- related things. I will announce the
beginning of the transition on this forum.
As I have said before, I don't have enough
manpower to handle both GNAT GPL
and GCC; it is one or the other. The vote
that took place earlier means that I will go
for GCC and ignore GNAT GPL
completely. Unless, of course, there is a
landslide of votes in the opposite
direction, but this seems unlikely. (I've
counted your vote and Marc's).
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: 5 Oct 2005 04:10:19 -0700
Subject: Re: GNAT GPL Edition

Maintenance and Upgrades
Newsgroups: comp.lang.ada
> I find it quite logical for Debian to just

use the standard GCC tree.
Well, latest /= greatest, that's why I kept
gnat 3.15p in Debian for so long instead
of moving to GCC. Also, GCC is not
"standard" by any measure (Ada is not a
release criterion for GCC). In contrast,
GNAT GPL is "standard" by two
measures: it has been blessed by
AdaCore, and is known to build ASIS,
GLADE, GPS etc. correctly.
> The whole issue is about packaging, not

the compiler. I even think that it would
be OK to take the GPL edition, replace

the offending packages from the
version in the GCC tree, and release the
whole stuff under GMGPL. But then,
someone has to do the packaging…

I contemplated this idea, but when I saw
the size of the diff, I backed out. I did
"diff -I^-- gcc/gcc/ada gnat-gpl-2005-
src/src/ada" (note: ignoring comments and
therefore the change of license) and
found:
GCC 3.4.4 to GPL: 16.0 megabytes
GCC 4.0.1 to GPL: 11.0 megabytes
GCC HEAD to GPL: 7.1 megabytes
Even with 4.1, the difference is huge.
And note that this is only the Ada part of
GCC.
[See also "How to Compile GNAT 2005"
in this issue --su]

Ada in SuSE Linux
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Fri, 07 Oct 2005 11:11:57 +0200
Subject: SuSE 10.0
Newsgroups: comp.lang.ada
Yesterday I got my new SuSE 10.0. Nice
thing about SuSE is that it always comes
with an Ada compiler. This time they
made a rather big version number jump:
~ Linux root@linux2 Fr Oct 07
10:59:31 standard
> gnat
GNAT 4.0.2 20050901 (prerelease)
(SUSE Linux)
Copyright 1996-2005 Free Software
Foundation, Inc.
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Sun, 09 Oct 2005 17:29:09 +0200
Subject: Re: SuSE 10.0
Newsgroups: comp.lang.ada
>> Nice thing about SuSE is that it

always comes with an Ada compiler.
> Out of curiosity, what was the version

of GCC in the previous version of
SuSE?

SuSE 9.x uses GCC 3.3.x.
ASIS and GLADE - Were included in 9.3
but not included in 10.0 any more.
GPS - also no! Which is actually sad.
GDB - yes indeed.
To be honest: I don't think we will get an
GMGPL ASIS or GLADE without having
access to GNAT/Pro. Recent changes
where just to large for the old version to
work.
This is why I consider to import the
GNAT/GPL sources into the SourceForge
projects.

Linuxulator runs GNAT
From: Craig Carey <research@ijs.co.nz>
Date: 2 Sep 2005 09:02:16 -0700

Subject: FreeBSD Linuxulator runs GNAT
Newsgroups: comp.lang.ada
Getting Ada programs compiled inside of
the FreeBSD Linuxulator
The FreeBSD Ada Port seems to not run
or install or something.
Here is how to compile a Linux gnatmake
inside of FreeBSD and have it run under
the Linux emulator.
The main trick here is to add this to the
compiler options:
 -largs -static -Wl,
 --sysroot=/usr/compat/linux

Linux GNAT programs seem to run
correctly in the FreeBSD Linuxulator.
(4) In FreeBSD, after the following steps
are done:
To get gnatmake to run, this can be added
 -bargs -E -p -we -s -F

 -largs -v -v -static –Wl,
 --sysroot=/usr/compat/linux –Wl,
 --verbose

gnatmake myprog.adb ….. # >| xx
2>&1

brandelf -t Linux myprog # Failed
to eliminate the use of brandelf
The -Wl,--verbose seems useful. It lists all
/lib files that are used. Use of any
FreeBSD *.a file can ruin the executable.
(1) In FreeBSD
** Install a Linux emulator. That involves
getting the kernel configured
appropriately.
** Install ports/archives/rpm2cpio
** Get the development libc file that
matches the other Linuxulator files, to
supply libpthread.a.
E.g. download the next from rmpfind.net:
glibc-devel-2.3.2-27.9.7.i386.rpm
** If the Linux rpm was used then the
command might look like this:
rpm -i --ignoreos --root
/usr/compat/linux --dbpath
/var/lib/rpm $@

 (That install would copy over too much
documentation or fail since Linux kernel
headers are missing.)
rpm2cpio < glibc-devel-2.3.2-
27.9.7.i386.rpm >| xx

cpio -idm < xx # create
directories with original time
stamps

The "cp -pv" files into
/usr/compat/linux/usr/lib/
(2) In Linux, build FSF gcc
Download gcc:
http://gcc.gnu.org/install/download.html
export CVS_RSH=ssh

246 References to Publ icat ions

Volume 26, Number 4, December 2005 Ada User Journal

export
CVSROOT=:ext:anoncvs@savannah.gnu
.org:/cvsroot/gcc

cvs -z9 checkout -P gcc

 Compile up GCC. It seems that version
4.1.0 has bugs and it is not expected to
run correctly, so GCC 3.4.4 can be used.
export PATH=/lxg/gcc1/bin:$PATH

cd obj

/fu/@gcc/344/gcc/configure \
 --prefix=/lxg/gcc344 \
 --enable-languages="c,c++,ada" \
 --enable-libada \
 --with-gcc --with-gnu-ld --with-
gnu-as \
 --enable-threads=posix \
 --disable-shared \
 --with-system-zlib \
 --disable-nls \
 --disable-multilib \
 --disable-libssp

nice make STAGE1_CFLAGS='-O0'
BOOT_CFLAGS='-O0' bootstrap

make -C gcc gnatlib_and_tools #
try this?

make -C gcc/ada gnatlib #
try this?

make install

(3) In Linux, build Redhat binutils. A
version new enough to have the --sysroot
feature, is needed.
http://sourceware.org/binutils/
export
CVSROOT=:pserver:anoncvs@sourcewa
re.org:/cvs/src

Password is "anoncvs", "anonymous"?
cvs -z9 login

cvs -z9 co binutils

cd / ; ln -s / lxsys

/lxsys is not used again so
presumably "/" could be used
instead

export
PATH=/lxg/gcc344/bin:$PATH_SAVED

export
LD_LIBRARY_PATH=/lxg/gcc344/lib:$
LD_LIBRARY_PATH

the build modifies the source
directory so it might be copied.

cd obj

lxg/@redhat/src/configure \
 --prefix=/lxg/gcc344 \
 --with-build-sysroot=/lxsys \
 --with-sysroot=/lxsys \
 --enable-static=yes \
 --enable-languages=c,c++,ada \
 --enable-libada \
 --with-gcc --with-gnu-ld --
with-gnu-as \
 --enable-threads=posix \
 --disable-shared \
 --with-system-zlib \
 --disable-nls \

 --disable-multilib \
 --disable-libssp
Then maybe the SuSE GVD or whatever,
might be used as the debugger. In
Windows, the Gdb debuger of GNAT
3.15p can't handle some Cygwin paths
and ver "gdb-5.3" of http://libre.act-
europe.fr/GDB/ can fix that (AdaCore
names only 6.3, and maybe that is not
better)
The above message could have gone to
these mailing lists:
GNATLIST:
http://hermes.gwu.edu/archives/gnatlist.ht
ml
GCC-Help: http://gcc.gnu.org/lists.html
The ARG (run from St Quentin France) is
apparently still lacking the thrusting
power to get its "arg@ada-auth.org"
mailing list to lift off into the night sky of
real-time dissemination of information in
accordance with deadlines for delays that
are under 1.5 minutes…
Here is promotion for running FreeBSD
inside of some Windows OS, e.g. from
P2P:
NAT connection and the VMware
filesharing, FreeBSD guest:
http://www.ijs.co.nz/unix.htm
http://www.ijs.co.nz/code/unix-etc-files.
zip
Here are my notes on how to create a
defective native FreeBSD cross compiler
that targets Linux:
http://www.ijs.co.nz/code/ada95-freebsd-
to-linux-cross-compiler.txt

References to
Publications
DDC-I Online News
[Extracts from the table of contents. See
elsewhere in this news section for selected
items. -- su]
From: jc <jcus@ddci.com>
To: 32D September 2005 Online News US

<jcus@ddci.com>
Date: Fri, 2 Sep 2005 2:18:01
Organization: DDC-I
Subject: Real-Time Industry Updates - News

from DDC-I
DDC-I Online News - Real-Time Industry
Updates - September 2005, Volume 6,
Number 8 -
[http://www.ddci.com/news_vol6num8.sh
tml] A monthly news update dedicated to
DDC-I customers & registered
subscribers.
* For Immediate Release
DDC-I Names Bob Morris as
President/CEO Joins DDC-I after 5 years
as VP Sales & Marketing with
LynuxWorks

* For Immediate Release
Upgrade Release for TADS Windows
V.6.2.0 Now Available for M68K and
1750A Targets
* Tech Talk
SCORE(R) Gives State-of-the-Art Ada
Support to VxWorks
* In The News
Costly Mistakes …Updating the FBI's IT
Infrastructure A Look at Three Classic
Mistakes from the Agile Software
Development Point of View
* Something To Think About: Listen
Each Other to a Better Place
The Power of Listening - It Can Improve
Life in Many Areas
From: jc <jcus@ddci.com>
To: 33D October 2005 Online News US

<jcus@ddci.com>
Date: Mon, 3 Oct 2005 21:45:01
Organization: DDC-I
Subject: Real-Time Industry Updates - News

from DDC-I
DDC-I Online News
Real-Time Industry Updates - News from
DDC-I
October 2005, Volume 6, Number 9 -
http://www.ddci.com/news_vol6num9.sht
ml
A monthly news update dedicated to
DDC-I customers & registered
subscribers.
* For Immediate Release - State-of-the-
Art Ada Support for Wind River
Workbench
Seamless Integration - No More
Launching One Tool From Another
* Tech Talk
Using Debugger Scripts in SCORE(R)
Multi-Language Debugger
* In The News - Ada in Use on Military
Aircraft
Better Language for Robust, Long-
Standing, Safety-Critical Applications
* Something To Think About: The Frame
That Refreshes
It's Not What You Say, It's How You Say
It
From: jc <jcus@ddci.com>
To: 34D November 2005 Online News US

<jcus@ddci.com>
Date: Wed, 2 Nov 2005 23:18:15
Organization: DDC-I
Subject: Real-Time Industry Updates - News

from DDC-I
DDC-I Online News
Real-Time Industry Updates - News from
DDC-I
November 2005, Volume 6, Number 10 -
http://www.ddci.com/news_vol6num10.s
html

Ada Inside 247

Ada User Journal Volume 26, Number 4, December 2005

A monthly news update dedicated to
DDC-I customers & registered
subscribers.
* For Immediate Release
Customer Loyalty Brings New
Opportunities for DDC-I
* Tech Talk
Optional Arguments of Pragma Import
and Export
* In The News
Old Drives Fade Away
* Something To Think About
Humans: The Helpful Species - Working
Together as a Team Will Produce
Powerful Results

SPARK team newsletter
SPARK news - November 2005
Recent highlights from the SPARK
team….
SPARK training
Public course dates for March 2006 are
now set. Please see here for details.
We're also in the early stages of planning
a public course in Australia - any
takers?!?
Ada Europe 2006 Industrial Track Call
for Presenters
Ada Europe 2006 will once again include
an "industrial track" where you can
present your work and projects without
the commitment and effort of having to
produce a full blown paper.
This is an ideal opportunity for you real
users to present some of the amazing
work you've been doing with SPARK - I
hope that many of you will consider
submitting a proposal.
Spreading the word - recent conferences
Rod took part in the NIST SSATTM
workshop in Long Beach, California in
November. This is a security-related
workshop looking at common security
vulnerabilities and how static analysis can
be used to prevent or detect such things.
On his trip "out west", Rod also visited
Microsoft Research, SRI, NASA Ames
and the Naval Postgraduate School in
Monterey.
Rod attended the "Verified Software:
Theories, Tools, and Experiments"
workshop in Zurich in October. This was
a veritable "who's who" of the program
verification community, including none
other than Niklaus Wirth as the after-
dinner speaker. (If you thinking "who?"
then go straight to the back of the class!)
Politeness forbids me from passing on
what Wirth had to say about the design of
C++… :-)
Spreading the word - coming soon

Watch out for SPARK team at the
following events:
SPARK team will be presenting a paper
about SPARK and SCADE at the
Embedded Real Time Software
Conference in Toulouse.
SPARK team will be attending the First
IEEE International Symposium on Secure
Software Engineering (ISSSE) in March
2006 in Washington DC. This looks like
being a significant event for high-
assurance and security-critical software.
We have submitted one technical paper
(exciting new results that we're not
allowed to talk about just yet!) and
several tutorial proposals.
AdaUK Day, March 28th 2006 in
Manchester. SPARK Team will be
sponsoring, speaking and exhibiting at
this event. Our presentation will include
highlights of the forthcoming release 7.3
of the SPARK tools, and some material
on how we plan to re-introduce generics
into the language.
[See also same topic in AUJ 26-2 (Jun
2005), p.82–83 --su]

Ada in the Press
http://www.adacore.com
- Ada Gets First Makeover in a Decade
(Software Development Times)
- Ada and the Language Renaissance, by
Shannon Cochran. BYTE.com
(September 19, 2005)
- Ada used for key systems on military
aircraft, by John McHale. Military &
Aerospace Electronics (September, 2005)
- Open systems, reliability, and security
are primary drivers in software
development environments, by John
Keller. Military & Aerospace Electronics
(November, 2005)

CrossTalk Journal features
SPARK again
http://www.praxis-his.com/sparkada
Correctness by Construction in CrossTalk
Journal
A new Praxis paper on Correctness by
Construction has been published in the
December edition of the US CrossTalk
Journal.
http://www.stsc.hill.af.mil/crosstalk/2005/
12/
[See also "SPARK in IEEE Spectrum
Magazine" in AUJ 26-3 (Sep 2005), p.164
--su]

Ada Inside
Swiss — Swiss PostFinance
From: Martin Krischik

<krischik@users.sourceforge.net>

Date: Fri, 07 Oct 2005 08:48:28 +0200
Subject: Re: What about big integers in Ada

2005?
Newsgroups: comp.lang.ada
Adrian Hoe wrote:
> I thought Swiss Bank is using some

software developed in Ada. If I recall
correctly, Paranor was the developer.
How did they do that if IS Annex falls
short?

Well, it's the Swiss PostFinance. But there
is not much interfacing with COBOL - it's
all done Ada.

Europe — European Space
Agency Ada Usage
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Organization: Tidorum Ltd
Date: Wed, 09 Nov 2005 20:32:39 +0200
Subject: Re: New Ada space project
Newsgroups: comp.lang.ada
> Good to see that the ESA are still using

Ada!
[See also "Aonix Tools Selected for
European Satellite Launcher" in AUJ 26-2
(Jun 2005) p.84 and "2.2 Billion Miles
and Counting: Riding High with Cassini-
Huygens" in AUJ 26-1 (Mar 2005) p.63
for to recent examples of Ada usage
within ESA --su]
Well, some people within ESA favour
Ada, others not. For example, some argue
for using Java in the Galileo navigation
system.
In my experience (from an earlier life up
to about 2003), ESA nowadays accepts
the programming language that the prime
contractor -- usually one of the larger
European space companies such as EADS
or Alcatel-Alenia -- chooses for a project.
The incidence of C seems to be
increasing, for all the usual (poor)
reasons.
The last project I worked on had
application SW in Ada and low-level I/O
drivers in C, "because bit manipulation
would be much harder in Ada" according
to the subcontractor for the computer HW
and driver SW. The next project from the
same prime contractor was to be all in C
"because this is our strategic decision"
according to the prime. I quit. (OK, I had
other reasons too.)
> Does anyone have any idea whether it

would be easy for a U.S. citizen with
five years Ada experience to get a job
at the ESA? I'm thinking along the
lines of one of the Holland branches
(are there others?), but English is my
only language.

If you want to write spacecraft software in
Ada for ESA projects, you don't want a
job with ESA, but with a European space
software company, either one of the large
"prime" contractors or a smaller
subcontractor specialized in software

248 Ada Inside

Volume 26, Number 4, December 2005 Ada User Journal

development. ESA itself does very little
SW development, as far as I know. They
define and oversee projects but the
projects are implemented by contractors.
Companies that do SW work for ESA
projects exist in many if not all of the
ESA member states; I know of companies
in Britain, Ireland, Belgium, Denmark,
Norway, the Netherlands, France, Spain,
Italy, Germany, Sweden, Finland,
Portugal, Austria (listed in no particular
order). Pick your place. Most of these
companies also do other SW work, few
are exclusively space-oriented.
I can't say if U.S. citizenship would
usually be an obstacle, but I guess this
would depend on whether the company or
division also does defence or airplane
work, which is more likely for the larger
companies. The small company that I
worked at (Space Systems Finland Ltd,
www.ssf.fi) would not have any problem
with U.S. citizens, I believe.
For the language, all ESA project are run
in English; all the documentation etc. is in
English. Of course, your colleagues may
prefer to speak their native language
socially. Occasionally you may run into
national space projects that merge with or
become ESA projects, and then a
knowledge of the original national
language may be very useful. In one case,
I received a SW requirements document
that was originally in French, from a
French space project, and was now being
translated and updated for reusing the SW
in an ESA project. At that point in time,
the original requirements were in French
and the changes were in English,
sometimes mixing languages (and
acronyms!) in the same sentence, which
was a bit confusing (although it meant
that change markers were not needed :-)
Eventually the doc was translated
completely into English, I believe -- I was
no longer involved then.
But beware that although English is a
certainty, Ada is not. Your first or next
ESA project may be Ada, C, Java or who-
knows-what.

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. -- su]
(…) Engineering company expert
industrial, scientific and technical
software, active in the aeronautic,
transportation, automotive, space and
avionic domains recruits for new projects.
Joined to your respective sector, your
mission will include:
- conception and realization of real-time
distributed systems in industrial
embedded environments (Ada, C)
- development of software components

- conception and realization of
development support tools
- participation in integration and fine-
tuning activities.
High education in engineering is required,
with a minumum of 1 year of previous
experience in a similar function.
Knowledge of Ada required and
experience with real-time operating
systems (VxWorks, QNX, pSOS, RT
Linux, …), processors (Power PC, ARM,
ST10, …), and language and methods
(UML, CVS, RTRT, …). Good
knowledge of TCL/TK will constitute a
plus.
(…) Engineer to be responsible for full
life-cycle development of embedded
Command Control Communications real-
time application. All development is done
in Ada on a Unix platform. BS Computer
Science or other related field.
Required Skills
* Must be able to work independently
with very minimal supervision.
* Minimum of 5 years of development
experience with Ada.
* Minimum of 7 + years of experience in
software development.
* Development work with Ada 83 is
required.
* Good Object Oriented Skills
* Experience on POSIX.1c or LynxOS or
VxWorks or other RTOS preferred.
* Multi-threaded development.
Desired Skills
* Embedded systems development
desired.
* Ada 95 is preferred, but not required.
* Experience with communication
protocols is a plus.
* Experience with CORBA
* Experience with ClearCase
(…) Responsibilities: Designs, develops,
operates, and maintains software
components and computing systems
software to be applied to and integrated
with engineering, scientific, and
manufacturing requirements. Applies the
appropriate standards, processes,
procedures, and tools throughout the
system development life cycle to support
the generation of such engineering
applications and products such as
laboratory simulation systems, airplane
flight control and display systems,
avionics, mechanical and electrical
systems, weapons armament, commercial
and military aircraft systems, mobile and
ground-based defense systems, space
systems, and other systems and
applications of this nature. Interfaces with
customers, suppliers, application users,
and other technical and support personnel.
Required skills:

Provide software development of
embedded real-time location and
electronic warfare systems; Ada83/95;
Object-oriented development; VxWorks;
Security Clearance; excellent
communications, teamwork and
interpersonal skills. (…)
Job Responsibilities:
Be responsible for: Design, code and test
of real-time embedded software used in
various flight critical Engine and Flight
control systems.
Required Skills:
Familiar with VAX/VMS and/or Unix
based software development tools and
debuggers, C/C++, or ADA83/95 and
Assembly language skills. Must have real-
time embedded experience.
Desired Skills:
* ability to work under tight schedules
and meet established deadlines
* excellent oral and written
communication skills
* ability to interface effectively with the
client and co-workers
* detail oriented, excellent organizational
and multi-tasking skills
(…) Job Responsibilities:
(3 positions available; depending upon
level of experience with ADA83 and
embedded systems. Minimum 3yr –
maximum – 7+ yrs) Real time, embedded,
avionics Software Engineer needed.
Would be responsible for design,
development and testing code using Ada
software language.
Required Skills:
Ada 83 software development experience
and Embedded avionics systems
experience
Desired Skills:
* 1553, ARINC 429
* VxWorks
* Link 16
* COM, NAV and/or Controls and
Displays
(…) Job Responsibilities:
(2 positions available; Minimum 3yrs of
related experience) Position will support
development of software for instructional
systems, to include graphic user interface
(GUI). Determine functional requirements
and design, develop, code, integrate and
test software to meet those requirements.
Required Skills:
BS in Engineering, Computer Science or
equivalent experience in an engineering
discipline. Programming knowledge
preferred include C, C++, FORTRAN,
Ada, Java, and XML with the ability to
apply this knowledge in a real-time
Unix/Linux environment. Must have good
oral and written communication skills.

Ada in Context 249

Ada User Journal Volume 26, Number 4, December 2005

Ability to work independently or in a
team environment.
Desired Skills:
Experience with avionics devices, and/or
simulators is preferred.

About Ada jobs
From: Phoebe
Date: Fri, 07 Oct 2005 05:17:35 GMT
Subject: How does one find an Ada job?
Newsgroups: comp.lang.ada
Ada seems like such an elegant, pleasant
language to use, but I get the impression
that actually getting to use it at work is a
distant dream. Should I just not bother
actively trying, and relegate it to personal
projects?
From: Harald Korneliussen

<vintermann@gmail.com>
Date: 19 Oct 2005 01:44:15 -0700
Subject: Re: How does one find an Ada job?
Newsgroups: comp.lang.ada
Robert Klungle wrote:
> All Aerospace companies are looking

for Ada software developers
desperately Examples are: Raytheon,
Boeing, Lockheed Martin, Ball. I know
for a fact that Raytheon hires new
graduates. Especially if they had a good
background in several languages.

I'd like to work with Ada, too, but not for
any price. I don't want to work in the arms
industry. Are there any other major niches
where Ada (or perhaps SPARK or
Ravenscar profiles) are used?
I'm taking a course on real-time
programming now, and we use the Java
RTSJ (well, we would, if we had an
implementation. Actually, we just write
regular threaded apps :-). I mention it
because one of the authors of the RTSJ
has written our textbook (Andy Wellings),
and he writes in it that RTSJ isn't good
enough for safety-critical real-time apps -
he recommends the Ravenscar profile as
the only option.
So, is it true that for the things Ravenscar
are used for, there are no good
alternatives?
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Wed, 19 Oct 2005 19:55:14 GMT
Subject: Re: How does one find an Ada job?
Newsgroups: comp.lang.ada
Boeing and Airbus both use Ada for their
commercial airliners' avionics SW.
Raytheon uses Ada for air traffic control
SW.
As for arms, they're going to exist
whether you work on them or not, and
they're going to be controlled by SW. So
the important thing, it seems to me, is
how reliable that SW is. Do you want to
be involved in ensuring the safety of
yourself and those you care about, or are
you willing to leave that to someone else?

Concurrency in Java is quite low level
and error prone, including the RTSJ. Ada
is much better, and Ravenscar better still,
but for the most critical RT SW, you
might want to look at RavenSPARK.
Unfortunately, the lack of good
alternatives rarely stops people from
using poor alternatives.
From: Anonymous Coward
Date: Wed, 09 Nov 2005 03:33:00 GMT
Subject: Re: How does one find an Ada job?
Newsgroups: comp.lang.ada
The market for Ada is small as it is.
Cutting out weapons really shrinks it
down. But I would like to think that they
are using Ada for safety critical medical
hardware (like radiation devices, lasers,
etc).
From: Larry Kilgallen

<Kilgallen@SpamCop.net>
Newsgroups: comp.lang.ada
Subject: Re: How does one find an Ada job?
Date: 9 Oct 2005 17:22:28 -0500
Organization: LJK Software
Marc A. Criley wrote:
> Identify a market niche.

Conceive a product that can profitably
exploit that niche.
Develop it in Ada.
Voila! An Ada job!
(Then be successful and hire other like-
minded individuals.)

But fewer than if you had chosen another
language.
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: Fri, 07 Oct 2005 10:24:33 +0200
Subject: Re: How does one find an Ada job?
Newsgroups: comp.lang.ada
I get to use it at work. The reason is
probably that I am hired to do research,
not to develop software. This means that
management doesn't interfere with my
choices in how I do my work (except
when they cost money).
It looks like there are Ada jobs around.
But they appear to be in a limited supply -
like most interesting jobs.
It probably depends on what you want to
do. If you want to do full-time software
development in Ada, it will probably be
harder, than if you just want a job, where
your main task isn't software
development, but you are free to write the
software you need in Ada.
From: Martin Dowie

<martin.dowie@baesystems.com>
Organization: BAE SYSTEMS
Date: Fri, 7 Oct 2005 12:06:40 +0100
Subject: Re: How does one find an Ada job?
Newsgroups: comp.lang.ada
Have you tried:
http://www.adaic.org/jobs/jobs.html?

Ada in Context
Ada 2005 Standarization
Status
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Newsgroups: fr.comp.lang.ada
Subject: Last news on Ada 2005
Date: Mon, 21 Nov 2005 18:13:59 +0100
Organization: Adalog
At their latest meeting this week-end
completed the discussion of all of the last-
remaining technical issues. We can thus
now regard Ada 2005 as a fully
completed language.
A document on it will be circulated real
soon. For those who cannot wait, then the
current version is at:
http://www.adaic.com/standards/ada05.
html
Modulo few corrections to be still made
by the ARG authority, that’s the future
reference manual for Ada 2005.
[See also "Ada 2005 Language Reference
Manual" in AUJ 26-3 (Sep 2005), p.166 --
su]

Ada Advantages
From: Jim Rogers

<jimmaureenrogers@att.net>
Date: Fri, 07 Oct 2005 04:38:26 GMT
Subject: Re: Investigating Ada
Newsgroups: comp.lang.ada
> I have been looking into Ada as a new

language to pick up. I tend to use C for
most projects, but I enjoy learning new
things. I'm already sold on the value of
the language itself from a technical
point of view, but my concern is that it
might have a rather small userbase,
especially without the Ada Mandate. I
am having trouble finding recent FAQs
or usage information. It's easy to come
across something from like 1994, but
that's over ten years ago ;) I'm going to
learn it anyway, but I'm just hoping that
people could comment on its
popularity, and also how it has kept up
against the other languages which
surely must have incorporated a lot of
its advantages by now. Thanks

Interestingly, very few languages have
incorporated a lot of Ada's advantages by
now.
I do not know of any language with as
robust and powerful capabilities in
concurrency as Ada.
Very few languages allow you to define
your own numeric types without also
requiring you to explicitly define all the
operators for that type.
Very few languages require complete
coverage of all values in a case statement.

250 Ada in Context

Volume 26, Number 4, December 2005 Ada User Journal

Very few languages support run-time
polymorphism without requiring the use
of pointers or references.
Generic programming is common in C++,
but introduces a new syntax to the
language. Ada's generic capabilities are
implemented using standard Ada syntax.
Very few languages provide the
automatically defined capabilities of Ada
attributes.
Very few languages provide the fine
degree of control over data representation
provided by Ada.
From: <adaworks@sbcglobal.net>
Date: Sat, 08 Oct 2005 01:49:29 GMT
Subject: Re: Investigating Ada
Newsgroups: comp.lang.ada
Nice list of Ada's benefits in your post. It
seems that most programmers are more
interested in convenience during
development than they are the long-term
health of a software product. The latter
concern should be a management issue,
but not many managers are prepared to
understand the problem well enough to
choose Ada.
I am currently teaching a graduate
seminar titled "Software Evolution." We
are examining the issues related to the life
cycle of a software system, including how
to plan for its continued adaptability to
new user requirements, new
environments, and new hardware.
Sometimes this is thought of as
maintenance.
Planning for software evolution, which
manifests itself in many forms and
technical demands, is becoming more and
more essential. One approach is to
simply plan to rewrite the code every so
often. This is currently a popular choice
among those who write software in
HTML, XML, scripting languages, etc.
However, rewrite is not a good choice for
the majority of software systems.
As we examine the language alternatives,
Ada comes through as a sound choice. It
is becoming increasing clear that, while
extensible software can be written in most
contemporary languages, the very design
of those languages discourages this kind
of planned evolution. Java and Eiffel are
fairly good. C++, as currently practiced
and programmed, is horrible. I suppose
C++ is not to blame, but its practitioners
seemed determined to prevent anyone
from understanding their code well-
enough to extend it.
So, as we study the problem of software
evolution, Ada is clearly a good choice.
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Wed, 05 Oct 2005 08:54:39 +0200
Subject: Re: Investigating Ada
Newsgroups: comp.lang.ada

Now that PC become more powerful and
therefore can better handle feature rich
languages Ada has a little revival.
Mind you: when saying feature rich one
take into account the C ISO standard is
only a few pages shorter then the Ada ISO
standard and C++ has a wooping 200
pages more. The former slim languages
have caught up (but they have put on a lot
of "backward compatibility fat" instead of
"feature muscles").

Commenting Ada Code
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Newsgroups: comp.lang.ada
Subject: Re: Request for comments on

simple Ada program
Date: Wed, 16 Nov 2005 19:08:50 +0200
> The optimal comment/code ratio is zero
On a philosophical level, I agree with you
-- writing "comments" is an extra burden,
and one risks contradictions between the
comments and the code (I recall an article
long ago in SIGPLAN Notices with the
title "Comments considered harmful" :-)
An ideal language should be expressive
and readable enough to stand on its own.
Unfortunately, Ada -- or, to be fair, the
way I use Ada -- is still too low-level for
that. Perhaps some future aspect-oriented
language…
> My reason for mentioning what I

believe is the optimal comment/code
ratio, is actually due to an article in
ACM Queue, where the authors used a
code quality metric, which equalled
more comments with higher code
quality.

I agree that such a metric can be very
misleading, because then you should
measure the quality of the comments, too,
which is impossible to automate. But I
think anyone who has tried to reuse two
code packages, one with (good)
comments and the other without, must
feel that there is *some* truth in the
metric.
> But I don't put the rationale in the

source code. The rationale is kept in a
separate file. What I still do put in the
source code - and don't like putting
there - is the abstracts for the
subprograms and packages. But how
can I easily cross-link the
documentation (with the abstracts) and
the code (with the implementations)?
Should I cite the package name/full
subprogram specification in the
documentation to create the cross-link?
Or can somebody come up with a more
elegant solution?

There are some IDE-like commercial
tools -- if memory serves, some sort of
souped-up requirements databases +
design tools + code generatorts with
"automatic" document generation
functions -- that claim to keep these cross-

links for you. But burying my code in that
sort of a monster machine makes me very
nervous, and they aren't cheap either.
The conversation seems to be drifting
towards Knuth's "literate programming". I
think it is or was a good idea, but gave
more benefit for Pascal than it would give
for Ada, which can be more literate in
itself. Perhaps the time is ripe for
something like "checkable literate
programming", modelled on SPARK,
where the annotations/comments are
readable and informative but also
checkable?
From: Samuel Tardieu <sam@rfc1149.net>
Newsgroups: comp.lang.ada
Subject: Re: Request for comments on

simple Ada program
Date: 15 Nov 2005 22:53:34 +0100
It depends. Sometimes (particularily when
doing embedded stuff), you do have to
comment the tricks you resort to. When I
do some low-level Ada or Forth
programming for microcontrollers, some
of the words (that I need to optimize for
performance) really need comments. If
not for me (the author of the code), at
least for others.
What I do in general is reread every code
I write one week later. Each time I ask
myself "why did I do this?", even for one
second, I add a comment. My experience
shows that even when I go through the
code one year later, I have no question
that are not already answered in the
comments.
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Organization: Tidorum Ltd
Newsgroups: comp.lang.ada
Subject: Re: Request for comments on

simple Ada program
Date: Wed, 16 Nov 2005 11:03:12 +0200
> Writing the function of the procedure in

a comment is OK, although I would
like to keep all the non-checkable stuff
outside the source file.

People differ. In my Ada code, the
"comments" average 33% of non-blank
lines (59% for package specs, 23% for
package bodies, and note that I never
repeat comments from specs in bodies). I
still occasionally find it hard to *fully*
understand code from a couple of years
back. It's not the details -- I know what N
:= N + 1 means by itself -- but the
background assumptions, intentions,
limitations, usage rules, interactions.
I put "comments" in quotes above,
because I think that this is a bad case of
mis-naming in programming language
terminology. The word "comment"
implies something skimpy, an addition, a
note; in my view, what is needed is a
rationale, description or motivation that is
mainly written *before* the code itself.
As for keeping such text in separate
design documents, I would do it if a

Ada in Context 251

Ada User Journal Volume 26, Number 4, December 2005

customer demanded it, but I think it
would be much harder to manage
changes, versions and configurations
accurately. Still, some very high-level
descriptions are nice to keep apart from
the source-code, if they are not outdated
by day-to-day code changes.
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Newsgroups: comp.lang.ada
Subject: Re: Request for comments on

simple Ada program
Date: Wed, 16 Nov 2005 15:21:06 +0100
My numbers are 33% in specs and 18% in
bodies (22% in total), but I consider them
to be too high.
My reason for mentioning what I believe
is the optimal comment/code ratio, is
actually due to an article in ACM Queue,
where the authors used a code quality
metric, which equalled more comments
with higher code quality.
> I still occasionally find it hard to *fully*

understand code from a couple of years
back. It's not the details -- I know what
N := N + 1 means by itself -- but the
background assumptions, intentions,
limitations, usage rules, interactions.

That can happen to me too - and to almost
any other programmer too, I suppose.

> I put "comments" in quotes above,
because I think that this is a bad case of
mis-naming in programming language
terminology. The word "comment"
implies something skimpy, an addition,
a note; in my view, what is needed is a
rationale, description or motivation that
is mainly written *before* the code
itself.

But I don't put the rationale in the source
code. The rationale is kept in a separate
file. What I still do put in the source code
- and don't like putting there - is the
abstracts for the subprograms and
packages. But how can I easily cross-link
the documentation (with the abstracts)
and the code (with the implementations)?
Should I cite the package name/full
subprogram specification in the
documentation to create the cross-link?
Or can somebody come up with a more
elegant solution?
> As for keeping such text in separate

design documents, I would do it if a
customer demanded it, but I think it
would be much harder to manage
changes, versions and configurations
accurately. Still, some very high-level
descriptions are nice to keep apart from
the source-code, if they are not
outdated by day-to-day code changes.

I always keep the design documents
separate (when they exist ;-), but I must
admit that programming for research
purposes is a bit different from
commercial software development.
From: Anders Wirzenius

<anders@no.email.thanks.invalid>
Subject: Re: Request for comments on

simple Ada program
Date: Wed, 16 Nov 2005 09:10:44 GMT
Newsgroups: comp.lang.ada
Samuel Tardieu wrote:
> What I do in general is reread every

code I write one week later. Each time I
ask myself "why did I do this?", even
for one second, I add a comment. My
experience shows that even when I go
through the code one year later, I have
no question that are not already
answered in the comments.

Excellent way of working!
Once upon a time (early eighties) when I
was a Fortran programmer, my colleague
and I used to start coding by writing a
pseudo code. The syntax for the pseudo
code was Ada. Much of the Ada code was
left in the Fortran code as comments.

Conference Calendar 253

Ada User Journal Volume 26, Number 4, December 2005

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺denote events with close relation to Ada.
The information in this section is extracted from the on-line Conference announcements for the international Ada community
at: http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2006

January 04-07 Software Technology Track of the 39th Hawaii International Conference on System Sciences

(HICSS-39), Kauai, Haway, USA. Includes mini-tracks on: Strategic Software Engineering; Adaptive
and Evolvable Software Systems; etc.

January 09-10 ACM SIGPLAN 2006 Symposium on Partial Evaluation and Program Manipulation
(PEPM'2006), Charleston, South Carolina, USA

January 11-13 33rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL'2006), Charleston, South Carolina, USA. Topics include: fundamental principles and
important innovations in the design, definition, analysis, transformation, implementation and
verification of programming languages, programming systems, and programming abstractions.

January 14 2006 International Workshop on Foundations and Developments of Object-Oriented Languages
(FOOL/WOOD'2006), Charleston, South Carolina, USA. Following POPL'2006. Topics include:
language semantics, type systems, program analysis and verification, concurrent and distributed
languages, language-based security, etc.

February 13-17 5th International Conference on COTS-Based Software Systems (ICCBSS'2006), Orlando, Florida,
USA. Theme: "Pushing the COTS Envelope"

♦ February 25-26 Free and Open-Source Software Developers' European Meeting
(FOSDEM'2006), Brussels, Belgium. Includes a full-day Ada track on Sunday,
February 26, 2006, organized by Ada-Belgium.

March 01-05 37th ACM Technical Symposium on Computer Science Education (SIGCSE'2006) Houston, TX,
USA

March 06-10 3rd International Conference on High Performance Scientific Computing (HPSC'2006), Hanoi,
Vietnam. Topics include: parallel computing (architectures, tools, environments, ...), software
development, etc.

☺ March 13-15 International Symposium on Secure Software Engineering (ISSSE'2006), McLean, VA, USA
(near Washington, DC). Topics include: Formal specification, designs, policies, and proofs; Coding
practices; Static analysis and other automated support; Processes for producing secure software;
Certification and accreditation; Relationships among software correctness, reliability, safety, and
security; Lessons learned; Technology transfer; etc.

March 20-24 5th International Conference on Aspect-Oriented Software Development (AOSD'2006), Bonn,
Germany. Deadline for submissions: January 23, 2006 (student extravaganza)

March 25-04/02 European Joint Conferences on Theory and Practice of Software (ETAPS'2006), Vienna, Austria

March 25-26 5th Workshop on Software Composition (SC'2006)

Mar 25-Apr 02 14th European Symposium on Programming (ESOP'2006). Topics include: design
of programming languages and calculi and their formal properties; techniques,
methods, and tools for their implementation; exploitation of programming styles
within different programming paradigms; automatic and manual methods for
generating and reasoning about programs; the design and invention of systems and
tools to assist in exploitation of the languages

254 Conference Calendar

Volume 26, Number 4, December 2005 Ada User Journal

March 27-29 9th International Conference on Fundamental Approaches to Software
Engineering (FASE'2006). Topics include: Implementation concepts and
technologies (distributed and embedded applications), Software evolution
(refactoring, reverse and re-engineering, etc.), Software quality (validation and
verification of software using theorem proving, testing, analysis, metrics, etc.),
Application of formal methods to software development, etc.

April 01-02 4th Workshop on Quantitative Aspects of Programming Languages (QAPL'2006).
Topics include: design of probabilistic and real-time languages; methodologies for the
analysis of probabilistic and timing properties (e.g. security, safety, schedulability);
applications to safety-critical systems; etc. Deadline for submissions: February 5,
2006 (extended abstracts)

March 27-30 13th Annual IEEE International Conference and Workshop on the Engineering of Computer
Based Systems (ECBS'2006), Potsdam, Germany. Theme: Mastering the Complexity of Computer-
Based Systems Topics include: Component-Based System Design; Design Evolution; Distributed
Systems Design; ECBS Infrastructure (Tools, Environments); Education & Training; Embedded
RealTime Software Systems; Formal Methods; Integration Engineering; Modeling and Analysis of
Complex Systems; Open Systems; Reliability, Safety, Dependability, Security; Standards;
Verification & Validation; etc.

♦ March 28 Ada Conference 2006 UK, Manchester, UK

April 02-06 4th Symposium on Design, Analysis, and Simulation of Distributed Systems (DASD'2006),
Huntsville, Alabama, USA

☺ April 04-07 12th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'2006),
San Jose, CA, USA. Topics include: programming languages and software engineering for real-time
or embedded systems; middleware for real-time or embedded systems; assessments of real-time and
embedded technologies for particular application domains; technology transition lessons learned; etc.
Deadline for submissions: January 16, 2006 (work in progress papers)

☺ April 10-11 10th International Conference on Empirical Assessment in Software Engineering (EASE'2006),
Keele University, Staffordshire, UK. Topics include: any aspect of product and process evaluation
and assessment, both qualitative and quantitative. Deadline for submissions: January 9, 2006

April 17-19 13th Annual European Concurrent Engineering Conference (ECEC'2006), Athens, Greece. Topics
include: Engineering of embedded systems, system development process, specification languages;
Diagnostics and maintenance, Automated inspection and quality control; Architectures for building
CE systems, CE languages and tools, Distributed computing environments; etc. Deadline for
submissions: January 20, 2006

☺ April 18-21 1st EuroSys Conference (EuroSys'2006), Leuven, Belgium. Topics include: Systems aspects of
Programming language support, Distributed algorithms, Middleware, Parallel and concurrent
computing, Embedded computers, Real-time computing, Dependable computing, etc. This should be
of interest to the European languages community. Deadline for submissions: January 15, 2006 (Roger
Needham award)

April 18-21 17th Australian Software Engineering Conference (ASWEC'2006), Sydney, Australia. Topics
include: Software Design and Patterns; Object-Oriented Software Engineering; Testing, Analysis and
Verification; Formal Methods; Software Security, Safety and Reliability; Software Reuse,
Components, and Product Line Development; Software Maintenance; Software Engineering Tools;
Measurement, Metrics, Experimentation; Technology Transfer, Education; Standards and Legal
Issues; etc. Deadline for submissions: February 17, 2006 (industry experience reports)

April 19 19th Conference on Software Engineering Education and Training (CSEET'2006), Oahu, Hawaii,
USA

☺ April 18 Workshop on Secure Software Engineering Education & Training
(WSSEET'2006). Topics include: experience, current situation, and future of
education and training in software engineering of (more) secure software

April 23-27 21st ACM Symposium on Applied Computing (SAC'2006), Dijon, France. Includes tracks on:
Software Engineering, etc.

Conference Calendar 255

Ada User Journal Volume 26, Number 4, December 2005

☺ April 23-27 Track on Programming Languages (PL'2006). Topics include: Compiling
Techniques, Formal Semantics and Syntax, Language Design and Implementation,
New Programming Language Ideas and Concepts, Practical Experiences with
Programming Languages, Program Analysis and Verification, Program Generation
and Transformation, Programming Languages from All Paradigms, etc.

☺ April 23-27 Track on Object-Oriented Programming Languages and Systems (OOPS'2006).
Topics include: Programming abstractions; Advanced type mechanisms and type
safety; Multi-paradigm features; Language features in support of open systems;
Program structuring, modularity, generative programming; Distributed Objects and
Concurrency; Applications of Distributed Object Computing; etc.

☺ April 24-26 9th IEEE International Symposium on Object and component-oriented Real-time distributed
Computing (ISORC'2006), Gyeongju, Korea. Topics include: Programming and system engineering
(ORC paradigms, languages, RT Corba, UML, application programming interface (API),
specification, design, verification, validation, testing, maintenance, system of systems, etc.); System
software (real-time kernels, middleware support for ORC, extensibility, scheduling, security, etc.);
Applications (embedded systems (automotive, avionics, consumer electronics, etc), real-time object-
oriented simulations, etc.); System evaluation (worst-case execution time, dependability, fault
detection and recovery time, etc.); ...

April 24-28 30th Annual IEEE/NASA Software Engineering Workshop (SEW-30), Columbia, MD, USA.
Topics include: Metrics and experience reports; Software quality assurance; Formal methods and
formal approaches to software development; Real-time Software Engineering; Software maintenance,
reuse, and legacy systems; etc. Deadline for submissions: January 8, 2006

☺ April 25-29 20th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2006), Rhodes
Island, Greece. Topics include: all areas of parallel and distributed processing; including the
development of experimental or commercial systems; applications of parallel and distributed
computing; parallel and distributed software, including parallel programming languages and
compilers, runtime systems, middleware, libraries, programming environments and tools, etc.

☺ April 25-26 14th International Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS'2006). Topics include: Applications, benchmark, and tools; Distributed
real-time and embedded middleware; Fault-tolerance and security in real-time
systems; Resource management and real-time scheduling; Programming languages
and environments; Specification, modeling, and analysis of real-time systems; etc.

May 01-04 Systems and Software Technology Conference (SSTC'2006), Salt Lake City, Utah, USA

May 01-05 International Conference on Practical Software Quality and Testing (PSQT'2006 West), Las
Vegas, NV, USA

May 03-05 6th International SPICE Conference on Software Process Improvement and Capability
dEtermination (SPICE'2006), Luxembourg, Luxembourg

☺ May 20-28 28th International Conference on Software Engineering (ICSE'2006), Shanghai, China

☺ May 22-25 DAta Systems In Aerospace (DASIA'2006), Berlin, Germany

May 25-27 International Conference on Dependability of Computer Systems (DepCos'2006), Szklarska
Poreba, Poland. Topics include: General aspects of dependability; Survivable systems; Coding and
dependability; Fault tolerant computing; Software dependability; Software testing, validation and
verification; etc.

May 28-31 6th International Conference on Computational Science (ICCS'2006), Reading, UK

June 05-09 11th International Conference on Reliable Software Technologies - Ada-
Europe'2006, Porto, Portugal. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda (approval pending). Deadline for submissions: January 12, 2006 (industrial
presentations)

256 Conference Calendar

Volume 26, Number 4, December 2005 Ada User Journal

☺ June 06-09 New Technologies for Distributed Systems (NOTERE'2006), Toulouse, France. Topics include:
software components, distributed architectures, models and tools, semi-formal and formal techniques,
verification, etc. Deadline for submissions: January 3, 2006 (short and full papers)

June 08-10 2nd International Conference on Open Source Systems (OSS'2006), Como, Italy. Topics include:
Software engineering perspectives on OSS development, Studies of OSS deployment, etc. Deadline
for submissions: January 9, 2006 (research papers, extended abstracts), January 23, 2006 (tutorials,
workshops, panels, demonstrations)

☺ June 11-13 5th IFIP Working Conference on Distributed and Parallel Embedded Systems (DIPES'2006),
Braga, Portugal. Topics include: Design methodology for distributed and parallel embedded systems,
Formal verification of embedded systems, Novel programming techniques for distributed real-time
systems, Specific (parallel) architectures for distributed embedded systems, Dependability and fault
tolerance of distributed embedded systems, Case studies of distributed embedded systems, etc.
Deadline for submissions: February 10, 2006

June 12-14 7th International Conference on Product Focused Software Process Improvement
(PROFES'2006), Amsterdam, The Netherlands. Topics include: Systems and Software Quality,
Embedded Systems related Security and Safety, Measurement, SPI in different Software
Development Areas, Empirical Studies, Industrial Experiences and Case Studies, Best Practices,
Lessons Learned, etc. Deadline for submissions: January 30, 2006 (panels, workshops, tutorials)

June 12-15 9th International Conference on Software Reuse (ICSR-9), Torino, Italy. Topics include: Processes
to identify and select OTS components; Integration and evolution problems; Reliability and security
of OTS components and legal issues; Software generators and domain-specific languages; Evolution
of component-based software systems; Benefit and risk analysis of reuse investments; Generation of
non-code artefacts; Quality aspects of reuse, e.g. security and reliability; Success and failure stories of
reuse approaches from industrial context; etc. Deadline for submissions: January 31, 2006 (full
papers)

June 13-16 6th IFIP WG 6.1 International Conference on Distributed Applications and Interoperable
Systems (DAIS'2006), Bologna, Italy. Co-located with FMOODS'2006 and Coordination'2006.
Deadline for submissions: January 10, 2006 (abstracts), January 17, 2006 (full papers), January 31,
2006 (work-in-progress papers), February 28, 2006 (workshop papers)

June 14-16 8th IFIP International Conference on Formal Methods for Open Object-based Distributed
Systems (FMOODS'2006), Bologna, Italy. Topics include: Semantics and implementation of object-
oriented programming and (visual) modelling languages; Formal techniques for specification, design,
analysis, verification, validation and testing; Model checking, theorem proving and deductive
verification; Model transformations and refactorings; Software architectures; Component-based
design; Experience report on best practices and tools; Deadline for submissions: January 10, 2006
(abstracts), January 17, 2006 (papers)

June 19-23 15th IEEE International Symposium on High-Performance Distributed Computing (HPDC-15),
Paris, France. Topics include: Software environments, programming frameworks &
language/compiler support; Fault tolerance, reliability and availability for HPDC applications; etc.
Deadline for submissions: January 9, 2006 (abstracts), January 16, 2006 (papers)

June 25-28 2006 International Conference on Dependable Systems and Networks (DSN'2006), Philadelphia,
PA, USA. Topics include: Dependability Measurement and Analysis; Fault-Tolerance in Distributed
and Real-Time Systems; Safety-Critical Systems; Software Reliability; Software Testing, Validation,
and Verification; etc. Deadline for submissions: January 14, 2006 (tutorials), April 1, 2006 (student
forum, fast abstracts), May 1, 2006 (demonstrations)

☺ June 27 Workshop on Architecting Dependable Systems (WADS'2006). Topics include:
dependability modeling in software architectures; run-time checks of architectural
models; dependability evaluation in software architectures; architectural patterns for
dependable systems; exception handling in software architectures; dependable
architectures and implementation; etc. Deadline for submissions: March 7, 2006

June 26-28 11th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2006), Bologna, Italy

Conference Calendar 257

Ada User Journal Volume 26, Number 4, December 2005

June 26-29 The 2006 World Congress in Computer Science, Computer Engineering, and Applied
Computing (WORLDCOMP'2006), Las Vegas, Nevada, USA

☺ June 26-29 International Conference on Programming Languages and Compilers
(PLC'2006). Topics include: Design and processing of domain specific languages;
Implementation of languages features; Language support for security and safety;
Compiler construction techniques for modern systems; Program representation &
Program analysis; Program optimizations and transformations techniques; Interaction
between compilers and architectures; Compilation for distributed, concurrent, and
heterogeneous systems; Languages and compilers for high performance computing;
Object oriented programming techniques; Object-oriented languages; Run-time
environment and storage management techniques; Compilation and interpretation
techniques; Code generation and code optimization techniques for modern
programming languages; Compilation techniques for embedded code; Security and
safety techniques at compiler level; Design of novel language constructs and tool
supports; etc. Deadline for submissions: February 20, 2006 (papers)

June 27-30 6th International Conference on Application of Concurrency to System Design (ACSD'2006),
Turku, Finland. Topics include: design of complex concurrent systems, correct-by-construction
design methods and integration of verification techniques with the design process, etc. Deadline for
submissions: March 1, 2006 (tool demonstrations)

☺ July 03-07 20th European Conference on Object-Oriented Programming (ECOOP'2006), Nantes, France.
Topics include: Patterns, Modularity, Adaptability, Separation of Concerns, Components,
Frameworks, Concurrency, Real-time, Embedded, Distribution, Domain Specific Languages,
Language Workbenches, Multi-paradigm Languages, Language Innovations, Compilation,
Methodology, Practices, Metrics, Formal methods, Tools, etc.

☺ July 05-07 18th Euromicro Conference on Real-Time Systems (ECRTS'2006), Dresden, Germany. Topics
include: all aspects of real-time systems; special focus on industrial applications of real-time
technology; compiler support; component-based approaches; middleware and distribution
technologies; programming languages; real-time operating systems; model-driven development of
embedded RT systems; formal methods; reliability, security and survivability in RT systems;
scheduling and schedulability analysis; worst-case execution time analysis; validation techniques; etc.

July 09-16 33rd International Colloquium on Automata, Languages and Programming (ICALP'2006),
Venice, Italy. Topics include: Principles of Programming Languages, Formal Methods, Models of
Concurrent and Distributed Systems, Program Analysis and Transformation, etc. Deadline for
submissions: February 10, 2006

☺ July 12-15 12th International Conference on Parallel and Distributed Systems (ICPADS'2006), Minneapolis,
Minnesota, USA. Topics include: Parallel and Distributed Applications and Algorithms; Reliable and
Fault-Tolerant Computing; Real-Time Systems; Tools, and Evaluation; etc. Deadline for submissions:
January 15, 2006 (papers)

☺ July 23-26 25th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2006), Denver, Colorado, USA. Topics include: Concurrent programming, Distributed
systems and middleware platforms, Correctness and verification of distributed and parallel
programming, etc. Deadline for submissions: February 1, 2006

☺ August 14-18 35th International Conference on Parallel Processing (ICPP'2006), Columbus, Ohio, USA. Topics
include: findings in any aspects of parallel and distributed computing; such as Compilers and
Languages, Systems Support for Parallel and Distributed Applications, etc. Deadline for paper
submissions: February 1, 2006

August 21-27 14th International Symposium of Formal Methods Europe (FM'2006), Hamilton, Canada. Topics
include: Tools for formal methods (tool support and software engineering, environments for formal
methods), Formal methods in practice (experience with introducing formal methods in industry, case
studies), etc. Deadline for submissions: February 24, 2006 (technical papers, workshops, tutorials),
May 26, 2006 (posters, tools, doctoral symposium)

☺ August 29-09/01 12th International Conference on Parallel and Distributed Computing (Euro-Par'2006), Dresden,
Germany. Topics include: the promotion and advancement of parallel computing; Support Tools and

258 Conference Calendar

Volume 26, Number 4, December 2005 Ada User Journal

Environments; Distributed Systems and Algorithms; Parallel Programming: Models, Methods, and
Languages; Embedded Parallel Systems; etc. Deadline for submissions: January 31, 2006 (full papers)

☺ September 16-20 Parallel Computing Technologies (PaCT'2006), Seattle, Washington. USA. Topics include:
Compilers and tools for parallel computer systems, Parallel programming languages and applications,
Run time system support for parallel systems, Parallel processing in type safe languages, Support for
correctnes in hardware and software (esp. with concurrency), etc. Deadline for submissions: March
27, 2006 (abstracts), April 3, 2006 (papers)

October 25-27 5th International Conference on Software Methodologies Tools, and Techniques (SoMeT'2006),
Quebec, Canada. Topics include: Software methodologies, and tools for robust, reliable, non-fragile
software design; Automatic software generation versus reuse, and legacy systems, source code
analysis and manipulation; Software evolution techniques; Formal methods for software design; Static
and dynamic analysis, and software maintenance; Formal techniques for software representation,
software testing and validation; Software reliability, and software diagnosis systems; etc. Deadline for
submissions: May 15, 2006

November 12-16 2006 ACM SIGAda Annual International Conference (SIGAda'2006),
Albuquerque, New Mexico, USA. Sponsored by ACM SIGAda (ACM approval
pending). Topics include: reliability needs and styles; safety and high integrity
issues; analysis, testing, and validation; standards; use of ASIS for new Ada tool
development; mixed-language development; Ada in XML and .NET environments;
quality assurance; Ada & software engineering education; commercial Ada
applications: what Ada means to the bottom line; static and dynamic code analysis;
software architecture and design; etc.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2007

June 12th Annual Conference on Innovation and Technology in Computer Science Education

(ITiCSE'2007), Dundee, Scotland, UK

June 09-16 3rd History of Programming Languages Conference (HOPL-III), San Diego, CA, USA. Co-located
with FCRC'2007. Deadline for submissions: August 2006 (reworked full papers)

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2008

June 13th Annual Conference on Innovation and Technology in Computer Science Education

(ITiCSE'2008), Madrid, Spain

 265

Ada User Journal Volume 26, Number 4, December 2005

Rationale for Ada 2005: 6 Predefined library
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract
This paper describes various improvements to the
predefined library in Ada 2005.
There are a number of important new core packages
in Ada 2005. These include a number of packages for
the manipulation of various types of containers,
packages for directory operations and packages
providing access to environment variables.
The entire ISO/IEC 10646:2003 character repertoire
is now supported. Program text may now include
other alphabets (such as Cyrillic and Greek) and
wide-wide characters and strings are supported at
run-time. There are also some improvements to the
existing character, string and text input–output
packages.
The Numerics annex now includes vector and matrix
operations including those previously found in the
secondary standard ISO/IEC 13813.
Keywords: rationale, Ada 2005.

1 Overview of changes
The WG9 guidance document [1] says

"The main purpose of the Amendment is to address
identified problems in Ada that are interfering with Ada's
usage or adoption, especially in its major application areas
(such as high-reliability, long-lived real-time and/or
embedded applications and very large complex systems).
The resulting changes may range from relatively minor, to
more substantial."

Certainly one of the stated advantages of languages such as
Java is that they come with a huge predefined library. By
contrast the Ada library is somewhat Spartan and
extensions to it should make Ada more accessible.

The guidance document also warns about secondary
standards. Its essence is don't use secondary standards if
you can get the material into the RM itself. And please put
the stuff on vectors and matrices from ISO/IEC 13813 [2]
into the RM. The reason for this exhortation is that
secondary standards have proved themselves to be almost
invisible and hence virtually useless.

We have already discussed the additional library packages
in the area of tasking and real time in a previous paper. The
following Ada issues cover the relevant changes in other
areas and are described in detail in this paper:

161 Preelaborable initialization

248 Directory operations

270 Stream item size control

273 Use of PCS should not be normative

285 Support for 16-bit and 32-bit characters

296 Vector and matrix operations

301 Operations on language-defined strings

302 Container library

328 Non-generic version of Complex_IO

351 Time operations

362 Some predefined packages should be recategorized

366 More liberal rules for Pure units

370 Add standard interface for environment variables

388 Add Greek pi to Ada.Numerics

395 Clarifications concerning 16- and 32-bit characters

400 Wide and wide-wide images

418 Vector norm

427 Default parameters and Calendar operations

428 Input–output for bounded strings

441 Null streams

These changes can be grouped as follows.

First the container library is rather extensive and merits a
whole paper alone (302). We only refer to it here for
completeness.

New child packages of Calendar provide extra facilities for
manipulating times and dates (351, 427).

There are additional packages in the core library providing
access to aspects of the operational environment. These
concern directory operations (248) and environment
variables (370).

There are changes concerning characters both for writing
program text itself and for handling characters and strings
at run time. There is now support for 16- and 32-bit
characters (285, 388, 395, 400), and there are additional
operations in the string packages (301, 428).

The Numerics annex is enhanced by the addition of the
vector and matrix material previously in ISO/IEC 13813
plus some commonly required linear algebra algorithms
(296, 418) and a trivial addition concerning complex input–
output (328).

266 Rat ionale for Ada 2005: 6 Predefined l ibrary

Volume 26, Number 4, December 2005 Ada User Journal

The categorization of various predefined units has been
changed in order to remove unnecessary restrictions on
their use in distributed systems and similar applications
(362, 366). The new pragma Preelaborable_Initialization is
introduced as well for similar reasons (161). We can also
group a minor change to the Distributed Systems annex
here (273).

Finally there is new attribute Stream_Size in order to
increase the portability of streams (270) and the parameter
Stream of Read, Write etc now has a null exclusion (441).

2 The container library
This is a huge addition to the language and is described in a
separate paper for convenience.

3 Times and dates
The first change to note is that the subtype Year_Number in
the package Ada.Calendar in Ada 2005 is

subtype Year_Number is Integer range 1901 .. 2399;

In Ada 95 (and in Ada 83) the range is 1901 .. 2099. This
avoids the leap year complexity caused by the 400 year rule
at the expense of the use of dates in the far future. But, the
end of the 21st century is perhaps not so far into the future,
so it was decided that the 2.1k problem should be solved
now rather than later. However, it was decided not to
change the lower bound because some systems are known
to have used that as a time datum. The upper bound was
chosen in order to avoid difficulties for implementations.
For example, with one nanosecond for Duration'Small, the
type Time can just be squeezed into 64 bits.

Having grasped the nettle of doing leap years properly Ada
2005 dives in and deals with leap seconds, time zones and
other such matters in pitiless detail.

There are three new child packages Calendar.Time_Zones,
Calendar.Arithmetic and Calendar.Formatting. We will look
at these in turn.

The specification of the first is

package Ada.Calendar.Time_Zones is

 -- Time zone manipulation:
 type Time_Offset is range –28*60 .. 28*60;
 Unknown_Zone_Error: exception;

 function UTC_Time_Offset(Date: Time := Clock)
 return Time_Offset;
end Ada.Calendar.Time_Zones;

Time zones are described in terms of the number of
minutes different from UTC (which curiously is short for
Coordinated Universal Time); this is close to but not quite
the same as Greenwich Mean Time (GMT) and similarly
does not suffer from leaping about in spring and falling
about in the autumn. It might have seemed more natural to
use hours but some places (for example India) have time
zones which are not an integral number of hours different
from UTC.

Time is an extraordinarily complex subject. The difference
between GMT and UTC is never more than one second but
at the moment of writing there is a difference of about
0.577 seconds. The BBC broadcast timesignals based on
UTC but call them GMT and with digital broadcasting they
turn up late anyway. The chronophile might find the
website www.merlyn.demon.co.uk/misctime.htm#GMT of
interest.

So the function UTC_Time_Offset applied in an Ada
program in Paris to a value of type Time in summer should
return a time offset of 120 (one hour for European Central
Time plus one hour for daylight saving or heure d’été).
Remember that the type Calendar.Time incorporates the
date. To find the offset now (that is, at the time of the
function call) we simply write

Offset := UTC_Time_Offset;

and then Clock is called by default.

To find what the offset was on Christmas Day 2000 we
write

Offset := UTC_Time_Offset(Time_Of(2000, 12, 25));

and this should return 60 in Paris. So the poor function has
to remember the whole history of local time changes since
1901 and predict them forward to 2399 – these Ada
systems are pretty smart! In reality the intent is to use
whatever the underlying operating system provides. If the
information is not known then it can raise
Unknown_Zone_Error.

Note that we are assuming that the package Calendar is set
to the local civil (or wall clock) time. It doesn't have to be
but one expects that to be the normal situation. Of course it
is possible for an Ada system running in California to have
Calendar set to the local time in New Zealand but that
would be unusual. Equally, Calendar doesn't have to adjust
with daylight saving but we expect that it will. (No wonder
that Ada.Real_Time was introduced for vital missions such
as boiling an egg.)

A useful fact is that

Clock – Duration(UTC_Time_Offset*60)

gives UTC time – provided we don't do this just as daylight
saving comes into effect in which case the call of Clock and
that of UTC_Time_Offset might not be compatible.

More generally the type Time_Offset can be used to
represent the difference between two time zones. If we
want to work with the difference between New York and
Paris then we could say

NY_Paris: Time_Offset := –360;

The time offset between two different places can be greater
than 24 hours for two reasons. One is that the International
Date Line weaves about somewhat and the other is that
daylight saving time can extend the difference as well.
Differences of 26 hours can easily occur and 27 hours is
possible. Accordingly the range of the type Time_Offset
allows for a generous 28 hours.

John Barnes 267

Ada User Journal Volume 26, Number 4, December 2005

The package Calendar.Arithmetic provides some awkward
arithmetic operations and also covers leap seconds. Its
specification is

package Ada.Calendar.Arithmetic is

 -- Arithmetic on days:
 type Day_Count is range
 –366*(1+Year_Number'Last – Year_Number'First)
 ..
 +366*(1+Year_Number'Last – Year_Number'First);

 subtype Leap_Seconds_Count is
 Integer range –2047 .. 2047;

 procedure Difference(Left, Right: in Time;
 Days: out Day_Count; Seconds: out Duration;
 Leap_Seconds: out Leap_Seconds_Count);

 function "+" (Left: Time; Right: Day_Count)
 return Time;
 function "+" (Left: Day_Count; Right: Time)
 return Time;
 function "–" (Left: Time; Right: Day_Count)
 return Time;
 function "–" (Left, Right: Time) return Day_Count;

end Ada.Calendar.Arithmetic;

The range for Leap_Seconds_Count is generous. It allows
for a leap second at least four time a year for the
foreseeable future – the somewhat arbitrary range chosen
allows the value to be accommodated in 12 bits. And the
366 in Day_Count is also a bit generous – but the true
expression would be very unpleasant.

One of the problems with the old planet is that it is slowing
down and a day as measured by the Earth's rotation is now
a bit longer than 86,400 seconds. Naturally enough we have
to keep the seconds uniform and so in order to keep
worldly clocks synchronized with the natural day, an odd
leap second has to be added from time to time. This is
always added at midnight UTC (which means it can pop up
in the middle of the day in other time zones). The existence
of leap seconds makes calculations with times somewhat
tricky.

The basic trouble is that we want to have our cake and eat
it. We want to have the invariant that a day has 86,400
seconds but unfortunately this is not always the case.

The procedure Difference operates on two values of type
Time and gives the result in three parts, the number of days
(an integer), the number of seconds as a Duration and the
number of leap seconds (an integer). If Left is later then
Right then all three numbers will be nonnegative; if earlier,
then nonpositive.

Remember that Difference like all these other operations
always works on local time as defined by the clock in
Calendar (unless stated otherwise).

Suppose we wanted to find the difference between noon on
June 1st 1982 and 2pm on July 1st 1985 according to a
system set to UTC. We might write

Days: Day_Count;
Secs: Duration;
Leaps: Leap_Seconds_Count;
...
Difference(Time_Of(1985, 7, 1, 14*3600.0),
 Time_Of(1982, 6, 1, 12*3600.0),
 Days, Secs, Leaps);

The results should be

Days = 365+366+365+30 = 1126,
Secs = 7200.0,
Leaps = 2.

There were leap seconds on 30 June 1983 and 30 June
1985.

The functions "+" and "–" apply to values of type Time and
Day_Count (whereas those in the parent Calendar apply
only to Time and Duration and thus only work for intervals
of a day or so). Note that the function "–" between two
values of type Time in this child package produces the same
value for the number of days as the corresponding call of
the function Difference – leap seconds are completely
ignored. Leap seconds are in fact ignored in all the
operations "+" and "–" in the child package.

However, it should be noted that Calendar."–" counts the
true seconds and so the expression

Calendar."–" (Time_Of(1985, 7, 1, 1*3600.0),
 Time_Of(1985, 6, 30, 23*3600.0))

has the Duration value 7201.0 and not 7200.0 because of
the leap second at midnight that night. (We are assuming
that our Ada system is running at UTC.) The same
calculation in New York will produce 7200.0 because the
leap second doesn't occur until 4 am in EST (with daylight
saving).

Note also that

Calendar."–" (Time_Of(1985, 7, 1, 0.0),
 Time_Of(1985, 6, 30, 0.0))

in Paris where the leap second occurs at 10pm returns
86401.0 whereas the same calculation in New York will
return 86400.0.

The third child package Calendar.Formatting has a variety
of functions. Its specification is

with Ada.Calendar.Time_Zones;
use Ada.Calendar.Time_Zones;
package Ada.Calendar.Formatting is

 -- Day of the week:
 type Day_Name is (Monday, Tuesday, Wednesday,
 Thursday, Friday, Saturday, Sunday);

 function Day_Of_Week(Date: Time) return Day_Name;

 -- Hours:Minutes:Seconds access:
 subtype Hour_Number is Natural range 0 .. 23;
 subtype Minute_Number is Natural range 0 .. 59;
 subtype Second_Number is Natural range 0 .. 59;

268 Rat ionale for Ada 2005: 6 Predefined l ibrary

Volume 26, Number 4, December 2005 Ada User Journal

 subtype Second_Duration is Day_Duration
 range 0.0 .. 1.0;

 function Year(Date: Time;
 Time_Zone: Time_Offset := 0)
 return Year_Number;

 -- similarly functions Month, Day, Hour, Minute

 function Second(Date: Time) return Second_Number;

 function Sub_Second(Date: Time)
 return Second_Duration;

 function Seconds_Of(Hour: Hour_Number;
 Minute: Minute_Number;
 Second: Second_Number := 0;
 Sub_Second: Second_Duration := 0.0)
 return Day_Duration;

 procedure Split(Seconds: in Day_Duration; -- (1)
 Hour: out Hour_Number;
 Minute: out Minute_Number;
 Second: out Second_Number;
 Sub_Second: out Second_Duration);

 procedure Split(Date: in Time; -- (2)
 Year: out Year_Number;
 Month: out Month_Number;
 Day: out Day_Number;
 Hour: out Hour_Number;
 Minute: out Minute_Number;
 Second: out Second_Number;
 Sub_Second: out Second_Duration;
 Time_Zone: in Time_Offset := 0);

 function Time_Of(Year: Year_Number;
 Month: Month_Number;
 Day: Day_Number;
 Hour: Hour_Number;
 Minute: Minute_Number;
 Second: Second_Number;
 Sub_Second: Second_Duration := 0.0;
 Leap_Second: Boolean := False;
 Time_Zone: Time_Offset := 0)
 return Time;

 function Time_Of(Year: Year_Number;
 Month: Month_Number;
 Day: Day_Number;
 Seconds: Day_Duration;
 Leap_Second: Boolean := False;
 Time_Zone: Time_Offset := 0)
 return Time;

 procedure Split(Date: in Time; -- (3)
 ... -- as (2) but with additional parameter
 Leap_Second: out Boolean;
 Time_Zone: in Time_Offset := 0);

 procedure Split(Date: in Time; -- (4)
 ... -- as Calendar.Split
 ... -- but with additional parameter
 Leap_Second: out Boolean;
 Time_Zone: in Time_Offset := 0);

 -- Simple image and value:
 function Image(Date: Time;
 Include_Time_Fraction: Boolean := False;
 Time_Zone: Time_Offset := 0)
 return String;

 function Value(Date: String;
 Time_Zone: Time_Offset := 0)
 return Time;

 function Image (Elapsed_Time: Duration;
 Include_Time_Fraction: Boolean := False)
 return String;

 function Value(Elapsed_Time: String) return Duration;

end Ada.Calendar.Formatting;

The function Day_Of_Week will be much appreciated. It is
a nasty calculation.

Then there are functions Year, Month, Day, Hour, Minute,
Second and Sub_Second which return the corresponding
parts of a Time taking account of the time zone given as
necessary. It is unfortunate that functions returning the
parts of a time (as opposed to the parts of a date) were not
provided in Calendar originally. All that Calendar provides
is Seconds which gives the number of seconds from
midnight and leaves users to chop it up for themselves.
Note that Calendar.Second returns a Duration whereas the
function in this child package is Seconds which returns an
Integer. The fraction of a second is returned by
Sub_Second.

Most of these functions have an optional parameter which
is a time zone offset. Wherever in the world we are
running, if we want to know the hour according to UTC
then we write

Hour(Clock, UTC_Time_Offset)

If we are in New York and want to know the hour in Paris
then we write

Hour(Clock, –360)

since New York is 6 hours (360 minutes) behind Paris.

Note that Second and Sub_Second do not have the
optional Time_Offset parameter because offsets are an
integral number of minutes and so the number of seconds
does not depend upon the time zone.

The package also generously provides four procedures Split
and two procedures Time_Of. These have the same general
purpose as those in Calendar. There is also a function
Seconds_Of. We will consider them in the order of
declaration in the package specification above.

The function Seconds_Of creates a value of type Duration
from components Hour, Minute, Second and Sub_Second.
Note that we can use this together with Calendar.Time_Of
to create a value of type Time. For example

T := Time_Of(2005, 4, 2, Seconds_Of(22, 4, 10, 0.5));

makes the time of the instant when I typed that last
semicolon.

John Barnes 269

Ada User Journal Volume 26, Number 4, December 2005

The first procedure Split is the reverse of Seconds_Of. It
decomposes a value of type Duration into Hour, Minute,
Second and Sub_Second. It is useful with the function
Calendar.Split thus

Split(Some_Time, Y, M, D, Secs); -- split time
Split(Secs, H, M, S, SS); -- split secs

The next procedure Split (no 2) takes a Time and a
Time_Offset (optional) and decomposes the time into its
seven components. Note that the optional parameter is last
for convenience. The normal rule for parameters of
predefined procedures is that parameters of mode in are
first and parameters of mode out are last. But this is a
nuisance if parameters of mode in have defaults since this
forces named notation if the default is used.

There are then two functions Time_Of which compose a
Time from its various constituents and the Time_Offset
(optional). One takes seven components (with individual
Hour, Minute etc) whereas the other takes just four
components (with Seconds in the whole day). An
interesting feature of these two functions is that they also
have a Boolean parameter Leap_Second which by default
is False.

The purpose of this parameter needs to be understood
carefully. Making up a typical time will have this parameter
as False. But suppose we need to compose the time
midway through the leap second that occurred on 30 June
1985 and assign it to a variable Magic_Moment. We will
assume that our Calendar is in New York and set to EST
with daylight saving (and so midnight UTC is 8pm in New
York). We would write

Magic_Moment: Time :=
 Time_Of(1985, 6, 30, 19, 59, 59, 0.5, True);

In a sense there were two 19:59:59 that day in New York.
The proper one and then the leap one; the parameter
distinguishes them. So the moment one second earlier is
given by

Normal_Moment: Time :=
 Time_Of(1985, 6, 30, 19, 59, 59, 0.5, False);

We could have followed ISO and used 23:59:60 UTC and
so have subtype Second_Number is Natural range 0 .. 60;
but this would have produced an incompatibility with Ada
95.

Note that if the parameter Leap_Second is True and the
other parameters do not identify a time of a leap second
then Time_Error is raised.

There are then two corresponding procedures Split (nos 3
and 4) with an out parameter Leap_Second. One produces
seven components and the other just four. The difference
between this seven-component procedure Split (no 3) and
the earlier Split (no 2) is that this one has the out parameter
Leap_Second whereas the other does not. Writing

Split(Magic_Moment, 0, Y, M, D, H, M, S, SS, Leap);

results in Leap being True whereas

Split(Normal_Moment, 0, Y, M, D, H, M, S, SS, Leap);

results in Leap being False but gives all the other out
parameters (Y, ... , SS) exactly the same values.

On the other hand calling the version of Split (no 2) without
the parameter Leap_Second thus

Split(Magic_Moment, 0, Y, M, D, H, M, S, SS);
Split(Normal_Moment, 0, Y, M, D, H, M, S, SS);

produces exactly the same results.

The reader might wonder why there are two Splits on Time
with Leap_Second but only one without. This is because
the parent package Calendar already has the other one
(although without the time zone parameter). Another point
is that in the case of Time_Of, we can default the Leap
parameter being of mode in but in the case of Split the
parameter has mode out and cannot be omitted. It would be
bad practice to encourage the use of a dummy parameter
which is ignored and hence there have to be additional
versions of Split.

Finally, there are two pairs of functions Image and Value.
The first pair works with values of type Time. A call of
Image returns a date and time value in the standard ISO
8601 format. Thus taking the Normal_Moment above

Image(Normal_Moment)

returns the following string

"1985-06-30 19:59:59" -- in New York

If we set the optional parameter Include_Time_Fraction to
True thus

Image(Normal_Moment, True)

then we get

"1985-06-30 19:59:59.50"

There is also the usual optional Time_Zone parameter so
we could produce the time in Paris (from the program in
New York) thus

Image(Normal_Moment, True, –360)

giving

"1985-07-01 02:59:59.50" -- in Paris

The matching Value function works in reverse as expected.

We would expect to get exactly the same results with
Magic_Moment. However, since some implementations
might have an ISO function available in their operating
system it is also allowed to produce

"1985-06-30 19:59:60" -- in New York

The other Image and Value pair work on values of type
Duration thus

Image(10_000.0) -- "02:46:40"

with the optional parameter Include_Time_Fraction as
before. Again the corresponding function Value works in
reverse.

270 Rat ionale for Ada 2005: 6 Predefined l ibrary

Volume 26, Number 4, December 2005 Ada User Journal

4 Operational environment
Two new packages are added to Ada 2005 in order to aid
communication with the operational environment. They are
Ada.Environment_Variables and Ada.Directories.

The package Ada.Environment_Variables has the following
specification

package Ada.Environment_Variables is
 pragma Preelaborate(Environment_Variables);

 function Value(Name: String) return String;
 function Exists(Name: String) return Boolean;
 procedure Set(Name: in String; Value: in String);

 procedure Clear(Name: in String);
 procedure Clear;

 procedure Iterate(Process: not null
 access procedure (Name, Value: in String));

end Ada.Environment_Variables;

This package provides access to environment variables by
name. What this means and whether it is supported depends
upon the implementation. But most operating systems have
environment variables of some sort. And if not, the
implementation is encouraged to simulate them.

The values of the variable are also implementation defined
and so simply represented by strings.

The behaviour is straightforward. We might check to see if
there is a variable with the name "Ada" and then read and
print her value and set it to 2005 if it is not, thus

if not Exists("Ada") then
 raise Horror; -- quel dommage!
end if;

Put("Current value of Ada is "); Put_Line(Value("Ada"));

if Value("Ada") /= "2005" then
 Put_Line("Revitalizing Ada now");
 Set("Ada", "2005");
end if;

The procedure Clear with a parameter deletes the variable
concerned. Thus Clear("Ada") eliminates her completely so
that a subsequent call Exists("Ada") will return False. Note
that Set actually clears the variable concerned and then
defines a new one with the given name and value. The
procedure Clear without a parameter clears all variables.

We can iterate over the variables using the procedure
Iterate. For example we can print out the current state by

procedure Print_One(Name, Value: in String) is
begin
 Put_Line(Name & "=" & Value);
end Print_One;
...
Iterate(Print_One'Access);

The procedure Print_One prints the name and value of the
variable passed as parameters. We then pass an access to

this procedure as a parameter to the procedure Iterate and
Iterate then calls Print_One for each variable in turn.

Note that the slave procedure has both Name and Value as
parameters. It might be thought that this was unnecessary
since the user can always call the function Value. However,
real operating systems can sometimes have several
variables with the same name; providing two parameters
ensures that the name/value pairs are correctly matched.

Attempting to misuse the environment package such as
reading a variable that doesn't exist raises Constraint_Error
or Program_Error.

There are big dangers of race conditions because the
environment variables are really globally shared. Moreover,
they might be shared with the operating system itself as
well as programs written in other languages.

A particular point is that we must not call the procedures
Set or Clear within a procedure passed as a parameter to
Iterate.

The other environment package is Ada.Directories. Its
specification is

with Ada.IO_Exceptions;
with Ada.Calendar;
package Ada.Directories is

 -- Directory and file operations:
 function Current_Directory return String;
 procedure Set_Directory(Directory: in String);
 procedure Create_Directory(New_Directory: in String;
 Form: in String := "");
 procedure Delete_Directory(Directory: in String);
 procedure Create_Path(New_Directory: in String;
 Form: in String := "");
 procedure Delete_Tree(Directory: in String);
 procedure Delete_File(Name: in String);
 procedure Rename(Old_Name: in String;
 New_Name: in String);
 procedure Copy_File(Source_Name: in String;
 Target_Name: in String; Form: in String := "");

 -- File and directory name operations:
 function Full_Name(Name: String) return String;
 function Simple_Name(Name: String) return String;
 function Containing_Directory(Name: String)
 return String;
 function Extension(Name: String) return String;
 function Base_Name(Name: String) return String;
 function Compose(Containing_Directory: String := "";
 Name: String; Extension: String := "") return String;

 -- File and directory queries:
 type File_Kind is
 (Directory, Ordinary_File, Special_File);
 type File_Size is range 0 .. implementation_defined;
 function Exists(Name: String) return Boolean;
 function Kind(Name: String) return File_Kind;
 function Size(Name: String) return File_Size;
 function Modification_Time(Name: String)
 return Ada.Calendar.Time;

John Barnes 271

Ada User Journal Volume 26, Number 4, December 2005

 -- Directory searching:
 type Directory_Entry_Type is limited private;
 type Filter_Type is array (File_Kind) of Boolean;
 type Search_Type is limited private;
 procedure Start_Search(Search: in out Search_Type;
 Directory: in String; Pattern: in String;
 Filter: in Filter_Type := (others => True));
 procedure End_Search(Search: in out Search_Type);
 function More_Entries(Search: Search_Type)
 return Boolean;
 procedure Get_Next_Entry
 (Search: in out Search_Type;
 Directory_Entry: out Directory_Entry_Type);
 procedure Search(Directory: in String;
 Pattern: in String;
 Filter: in Filter_Type := (others => True);
 Process: not null access procedure
 (Directory_Entry: in Directory_Entry_Type));

 -- Operations on Directory Entries:
 function Simple_Name(Directory_Entry:
 Directory_Entry_Type) return String;
 function Full_Name(Directory_Entry:
 Directory_Entry_Type) return String;
 function Kind(Directory_Entry: Directory_Entry_Type)
 return File_Kind;
 function Size(Directory_Entry: Directory_Entry_Type)
 return File_Size;
 function Modification_Time(Directory_Entry:
 Directory_Entry_Type) return Ada.Calendar.Time;

 Status_Error: exception renames
 Ada.IO_Exceptions.Status_Error;
 Name_Error: exception renames
 Ada.IO_Exceptions.Name_Error;
 Use_Error: exception renames
 Ada.IO_Exceptions.Use_Error;
 Device_Error: exception renames
 Ada.IO_Exceptions.Device_Error;
private
 -- Not specified by the language
end Ada.Directories;

Most operating systems have some sort of tree-structured
filing system. The general idea of this package is that it
allows the manipulation of file and directory names as far
as is possible in a unified manner which is not too
dependent on the implementation and operating system.

Files are classified as directories, special files and ordinary
files. Special files are things like devices on Windows and
soft links on Unix; these cannot be created or read by the
predefined Ada input–output packages.

Files and directories are identified by strings in the usual
way. The interpretation is implementation defined.

The full name of a file is a string such as

"c:\adastuff\rat\library.doc"

and the simple name is

"library.doc"

At least that is in good old DOS. In Windows XP it is
something like

"C:\Documents and Settings\john.JBI3\
 My Documents\adastuff\rat\library.doc"

For the sake of illustration we will continue with the simple
DOS example. The current directory is that set by the "cd"
command. So assuming we have done

c:\>cd adastuff
c:\adastuff>

then the function Current_Directory will return the string
"c:\adastuff". The procedure Set_Directory sets the current
default directory. The procedures Create_Directory and
Delete_Directory create and delete a single directory. We
can either give the full name or just the part starting from
the current default. Thus

Create_Directory("c:\adastuff\history");
Delete_Directory("history");

will cancel out.

The procedure Create_Path creates several nested
directories as necessary. Thus starting from the situation
above, if we write

Create_Path("c:\adastuff\books\old");

then it will first create a directory "books" in "c:\adastuff"
and then a directory "old" in "books". On the other hand if
we wrote Create_Path("c:\adastuff\rat"); then it would do
nothing since the path already exists. The procedure
Delete_Tree deletes a whole tree including subdirectories
and files.

The procedures Delete_File, Rename and Copy_File behave
as expected. Note in particular that Copy_File can be used
to copy any file that could be copied using a normal input–
output package such as Text_IO. For example, it is really
tedious to use Text_IO to copy a file intact including all line
and page terminators. It is a trivial matter using Copy_File.

Note also that the procedures Create_Directory,
Create_Path and Copy_File have an optional Form
parameter. Like similar parameters in the predefined input–
output packages the meaning is implementation defined.

The next group of six functions, Full_Name, Simple_Name,
Containing_Directory, Extension, Base_Name and
Compose just manipulate strings representing file names
and do not in any way interact with the actual external file
system. Moreover, of these, only the behaviour of
Full_Name depends upon the current directory.

The function Full_Name returns the full name of a file.
Thus assuming the current directory is still "c:\adastuff"

Full_Name("rat\library.doc")

returns "c:\adastuff\rat\library.doc" and

Full_Name("library.doc")

returns "c:\adastuff\library.doc". The fact that such a file
does not exist is irrelevant. We might be making up the

272 Rat ionale for Ada 2005: 6 Predefined l ibrary

Volume 26, Number 4, December 2005 Ada User Journal

name so that we can then create the file. If the string were
malformed in some way (such as "66##77") so that the
corresponding full name if returned would be nonsense
then Name_Error is raised. But Name_Error is never raised
just because the file does not exist.

On the other hand

Simple_Name("c:\adastuff\rat\library.doc")

returns "library.doc" and not "rat\library.doc". We can also
apply Simple_Name to a string that does not go back to the
root. Thus

Simple_Name("rat\library.doc");

is allowed and also returns "library.doc".

The function Containing_Directory_Name removes the
simple name part of the parameter. We can even write

Containing_Directory_Name("..\rat\library.doc")

and this returns "..\rat"; note that it also removes the
separator "\".

The functions Extension and Base_Name return the
corresponding parts of a file name thus

Base_Name("rat\library.doc") -- "library"
Extension("rat\library.doc") -- "doc"

Note that they can be applied to a simple name or to a full
name or, as here, to something midway between.

The function Compose can be used to put the various bits
together, thus

Compose("rat", "library", "doc")

returns "rat\library.doc". The default parameters enable bits
to be omitted. In fact if the third parameter is omitted then
the second parameter is treated as a simple name rather
than a base name. So we could equally write

Compose("rat","library.doc")

The next group of functions, Exists, Kind, Size and
Modification_Time act on a file name (that is the name of a
real external file) and return the obvious result. (The size is
measured in stream elements – usually bytes.)

Various types and subprograms are provided to support
searching over a directory structure for entities with
appropriate properties. This can be done in two ways, either
as a loop under the direct control of the programmer
(sometimes called an active iterator) or via an access to
subprogram parameter (often called a passive iterator). We
will look at the active iterator approach first.

The procedures Start_Search, End_Search and Get_Next_
Entry and the function More_Entries control the search
loop. The general pattern is

Start_Search(...);
while More_Entries(...) loop
 Get_Next_Entry(...);
 ... -- do something with the entry found

end loop;
End_Search(...);

Three types are involved. The type Directory_Entry_Type is
limited private and acts as a sort of handle to the entries
found. Valid values of this type can only be created by a
call of Get_Next_Entry whose second parameter is an out
parameter of the type Directory_Entry_Type. The type
Search_Type is also limited private and contains the state
of the search. The type Filter_Type provides a simple means
of identifying the kinds of file to be found. It has three
components corresponding to the three values of the
enumeration type File_Kind and is used by the procedure
Start_Search.

Suppose we want to look for all ordinary files with
extension "doc" in the directory "c:\adastuff\rat". We could
write

Rat_Search: Search_Type;
Item: Directory_Entry_Type;
Filter: Filter_Type := (Ordinary_File => True,
 others => False);
...
Start_Search(Rat_Search, "c:\adastuff\rat", "*.doc", Filter);
while More_Entries(Rat_Search) loop
 Get_Next_Entry(Rat_Search, Item);
 ... -- do something with Item
end loop;
End_Search(Rat_Search);

The third parameter of Start_Search (which is "*.doc" in the
above example) represents a pattern for matching names
and thus provides further filtering of the search. The
interpretation is implementation defined except that a null
string means match everything. However, we would expect
that writing "*.doc" would mean search only for files with
the extension "doc".

The alternative mechanism using a passive iterator is as
follows. We first declare a subprogram such as

procedure Do_It(Item: in Directory_Entry_Type) is
begin
 ... -- do something with item
end Do_It;

and then declare a filter and call the procedure Search thus

Filter: Filter_Type := (Ordinary_File => True,
 others => False);
...
Search("c:\adastuff\rat", "*.doc", Filter, Do_It'Access);

The parameters of Search are the same as those of
Start_Search except that the first parameter of type
Search_Type is omitted and a final parameter which
identifies the procedure Do_It is added. The variable Item
which we declared in the active iterator is now the
parameter Item of the procedure Do_It.

Each approach has its advantages. The passive iterator has
the merit that we cannot make mistakes such as forget to
call End_Search. But some find the active iterator easier to
understand and it can be easier to use for parallel searches.

John Barnes 273

Ada User Journal Volume 26, Number 4, December 2005

The final group of functions enables us to do useful things
with the results of our search. Thus Simple_Name and
Full_Name convert a value of Directory_Entry_Type to the
corresponding simple or full file name. Having obtained the
file name we can do everything we want but for
convenience the functions Kind, Size and Modification_Time
are provided which also directly take a parameter of
Directory_Entry_Type.

So to complete this example we might print out a table of
the files found giving their simple name, size and
modification time. Using the active approach the loop
might then become

while More_Entries(Rat_Search) loop
 Get_Next_Entry(Rat_Search, Item);
 Put(Simple_Name(Item)); Set_Col(15);
 Put(Size(Item/1000)); Put(" KB"); Set_Col(25);
 Put_Line(Image(Modification_Time(Item)));
end loop;

This might produce a table such as

access.doc 152 KB 2005-04-05 09:03:10
containers.doc 372 KB 2005-06-14 21:39:05
general.doc 181 KB 2005-03-03 08:43:15
intro.doc 173 KB 2004-11-25 15:52:20
library.doc 149 KB 2005-04-08 13:50:05
oop.doc 179 KB 2005-02-25 18:34:55
structure.doc 151 KB 2005-04-05 09:09:25
tasking.doc 174 KB 2005-03-31 11:16:40

Note that the function Image is from the package
Ada.Calendar.Formatting discussed in the previous section.

Observe that the search is carried out on the directory given
and does not look at subdirectories. If we want to do that
then we can use the function Kind to identify subdirectories
and then search recursively.

It has to be emphasized that the package Ada.Directories is
very implementation dependent and indeed might not be
supported by some implementations at all. Implementations
are advised to provide any additional useful functions
concerning retrieving other information about files (such as
name of the owner or the original creation date) in a child
package Ada.Directories.Information.

Finally, note that misuse of the various operations will raise
one of the exceptions Status_Error, Name_Error, Use_Error
or Device_Error from the package IO_Exceptions.

5 Characters and strings
An important improvement in Ada 2005 is the ability to
deal with 16-and 32-bit characters both in the program text
and in the executing program.

The fine detail of the changes to the program text are
perhaps for the language lawyer. The purpose is to permit
the use of all relevant characters of the entire ISO/IEC
10646:2003 repertoire. The most important effect is that we
can write programs using Cyrillic, Greek and other
character sets.

A good example is provided by the addition of the constant

π: constant := Pi;

to the package Ada.Numerics. This enables us to write
mathematical programs in a more natural notation thus

Circumference: Float := 2.0 * π * Radius;

Other examples might be for describing polar coordinates
thus

R: Float := Sqrt(X*X + Y*Y);
θ: Angle := Arctan(Y, X);

and of course in France we can now declare a decent set of
ingredients for breakfast

type Breakfast_Stuff is (Croissant, Café, Œuf, Beurre);

Curiously, although the ligature æ is in Latin-1 and thus
available in Ada 95 in identifiers, the ligature œ is not (for
reasons we need not go into). However, in Ada 95, œ is a
character of the type Wide_Character and so even in Ada
95 one can order breakfast thus

Put("Deux œufs easy-over avec jambon"); -- wide string

In order to manipulate 32-bit characters, Ada 2005 includes
types Wide_Wide_Character and Wide_Wide_String in the
package Standard and the appropriate operations to
manipulate them in packages such as

Ada.Strings.Wide_Wide_Bounded
Ada.Strings.Wide_Wide_Fixed
Ada.Strings.Wide_Wide_Maps
Ada.Strings.Wide_Wide_Maps.Wide_Wide_Constants
Ada.Strings.Wide_Wide_Unbounded
Ada.Wide_Wide_Text_IO
Ada.Wide_Wide_Text_IO.Text_Streams
Ada.Wide_Wide_Text_IO.Complex_IO
Ada.Wide_Wide_Text_IO.Editing

There are also new attributes Wide_Wide_Image,
Wide_Wide_Value and Wide_Wide_Width and so on.

The addition of wide-wide characters and strings introduces
many additional possibilities for conversions. Just adding
these directly to the existing package
Ada.Characters.Handling could cause ambiguities in
existing programs when using literals. So a new package
Ada.Characters.Conversions has been added. This contains
conversions in all combinations between Character,
Wide_Character and Wide_Wide_Character and similarly
for strings. The existing functions from Is_Character to
To_Wide_String in Ada.Characters.Handling have been
banished to Annex J.

The introduction of more complex writing systems makes
the definition of the case insensitivity of identifiers, (the
equivalence between upper and lower case), much more
complicated.

In some systems, such as the ideographic system used by
Chinese, Japanese and Korean, there is only one case, so
things are easy. But in other systems, like the Latin, Greek
and Cyrillic alphabets, upper and lower case characters
have to be considered. Their equivalence is usually

274 Rat ionale for Ada 2005: 6 Predefined l ibrary

Volume 26, Number 4, December 2005 Ada User Journal

straightforward but there are some interesting exceptions
such as

▪ Greek has two forms for lower case sigma (the normal
form σ and the final form ς which is used at the end of a
word). These both convert to the one upper case letter Σ.

▪ German has the lower case letter ß whose upper case
form is made of two letters, namely SS.

▪ Slovenian has a grapheme LJ which is considered a
single letter and has three forms: LJ, Lj and lj.

The Greek situation used to apply in English where the
long s was used in the middle of words (where it looked
like an f but without a cross stroke) and the familiar short s
only at the end. To modern eyes this makes poetic lines
such as "Where the bee sucks, there suck I" somewhat
dubious. (This is sung by Ariel in Act V Scene I of The
Tempest by William Shakespeare.)

The definition chosen for Ada 2005 closely follows those
provided by ISO/IEC 10646:2003 and by the Unicode
Consortium; this hopefully means that all users should find
that the case insensitivity of identifiers works as expected
in their own language.

Of interest to all users whatever their language is the
addition of a few more subprograms in the string handling
packages. As explained in the Introduction, Ada 95 requires
rather too many conversions between bounded and
unbounded strings and the raw type String and, moreover,
multiple searching is inconvenient.

The additional subprograms in the packages are as follows.

In the package Ada.Strings.Fixed (assuming use Maps; for
brevity)

function Index(Source: String; Pattern: String;
 From: Positive; Going: Direction := Forward;
 Mapping: Character_Mapping := Identity)
 return Natural;

function Index(Source: String; Pattern: String;
 From: Positive; Going: Direction := Forward;
 Mapping: Character_Mapping_Function)
 return Natural;

function Index(Source: String; Set: Character_Set;
 From: Positive; Test: Membership := Inside;
 Going: Direction := Forward) return Natural;

function Index_Non_Blank(Source: String;
 From: Positive; Going: Direction := Forward)
 return Natural;

The difference between these and the existing functions is
that these have an additional parameter From. This makes it
much easier to search for all the occurrences of some
pattern in a string.

Similar functions are also added to the packages
Ada.Strings.Bounded and Ada.Strings.Unbounded.

Thus suppose we want to find all the occurrences of "bar"
in the string "barbara barnes" held in the variable BS of
type Bounded_String. (I have put my wife into lower case
for convenience.) There are 3 of course. The existing
function Count can be used to determine this fact quite
easily

N := Count(BS, "bar") -- is 3

But we really need to know where they are; we want the
corresponding index values. The first is easy in Ada 95

I := Index(BS, "bar") -- is 1

But to find the next one in Ada 95 we have to do something
such as take a slice by removing the first three characters
and then search again. This would destroy the original
string so we need to make a copy of at least part of it thus

Part := Delete(BS, I, I+2); -- 2 is length "bar" – 1
I := Index(Part, "bar") + 3; -- is 4

and so on in the not-so-obvious loop. (There are other ways
such as making a complete copy first, this could either be in
another bounded string or perhaps it is simplest just to copy
it into a normal String first; but whatever we do it is
messy.) In Ada 2005, having found the index of the first in
I, we can find the second by writing

I := Index(BS, "bar", From => I+3);

and so on. This is clearly much easier.

The following are also added to Ada.Strings.Bounded

procedure Set_Bounded_String
 (Target: out Bounded_String;
 Source: in String; Drop: in Truncation := Error);

function Bounded_Slice(Source: Bounded_String;
 Low: Positive; High: Natural)
 return Bounded_String;

procedure Bounded_Slice(Source: in Bounded_String;
 Target: out Bounded_String;
 Low: in Positive; High: in Natural);

The procedure Set_Bounded_String is similar to the
existing function To_Bounded_String. Thus rather than

BS := To_Bounded_String("A Bounded String");

we can equally write

Set_Bounded_String(BS, "A Bounded String");

The slice subprograms avoid conversion to and from the
type String. Thus to extract the characters from 3 to 9 we
can write

BS := Bounded_Slice(BS, 3, 9); -- "Bounded"

whereas in Ada 95 we have to write something like

BS := To_Bounded(Slice(BS, 3, 9));

Similar subprograms are added to Ada.Strings.Unbounded.
These are even more valuable because unbounded strings
are typically implemented with controlled types and the use
of a procedure such as Set_Unbounded_String is much

John Barnes 275

Ada User Journal Volume 26, Number 4, December 2005

more efficient than the function To_Unbounded_String
because it avoids assignment and thus calls of Adjust.

Input and output of bounded and unbounded strings in Ada
95 can only be done by converting to or from the type
String. This is both slow and untidy. This problem is
particularly acute with unbounded strings and so Ada 2005
provides the following additional package (we have added
a use clause for brevity as usual)

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Ada.Text_IO.Unbounded_IO is

 procedure Put(File: in File_Type;
 Item: in Unbounded_String);
 procedure Put(Item: in Unbounded_String);

 procedure Put_Line(File: in File_Type;
 Item: in Unbounded_String);
 procedure Put_Line(Item: in Unbounded_String);

 function Get_Line(File: File_Type)
 return Unbounded_String;
 function Get_Line return Unbounded_String;

 procedure Get_Line(File: in File_Type;
 Item: out Unbounded_String);
 procedure Get_Line(Item: out Unbounded_String);

end Ada.Text_IO.Unbounded_IO;

The behaviour is as expected.

There is a similar package for bounded strings but it is
generic. It has to be generic because the package
Generic_Bounded_Length within Strings.Bounded is itself
generic and has to be instantiated with the maximum string
size. So the specification is

with Ada.Strings.Bounded; use Ada.Strings.Bounded;
generic
 with package Bounded is new
 Generic_Bounded_Length(<>);
 use Bounded;
package Ada.Text_IO.Bounded_IO is

 procedure Put(File: in File_Type;
 Item: in Bounded_String);
 procedure Put(Item: in Bounded_String);

... -- etc as for Unbounded_IO

end Ada.Text_IO.Bounded_IO;

It will be noticed that these packages include functions
Get_Line as well as procedures Put_Line and Get_Line
corresponding to those in Text_IO. The reason is that
procedures Get_Line are not entirely satisfactory.

If we do successive calls of the procedure
Text_IO.Get_Line using a string of length 80 on a series of
lines of length 80 (we are reading a nice old deck of
punched cards), then it does not work as expected.
Alternate calls return a line of characters and a null string
(the history of this behaviour goes back to early Ada 83
days and is best left dormant).

Ada 2005 accordingly adds corresponding functions
Get_Line to the package Ada.Text_IO itself thus

function Get_Line(File: File_Type) return String;
function Get_Line return String;

Successive calls of a function Get_Line then neatly return
the text on the cards one by one without bother.

6 Numerics annex
When Ada 95 was being designed, the Numerics
Rapporteur Group pontificated at length over what features
should be included in Ada 95 itself, what should be placed
in secondary standards, and what should be left to the
creativeness of the user community.

A number of secondary standards had been developed for
Ada 83. They were

11430 Generic package of elementary functions for Ada,

11729 Generic package of primitive functions for Ada,

13813 Generic package of real and complex type
declarations and basic operations for Ada (including
vector and matrix types),

13814 Generic package of complex elementary functions
for Ada.

The first two, 11430 and 11729, were incorporated into the
Ada 95 core language. The elementary functions, 11430,
(Sqrt, Sin, Cos etc) became the package Ada.Numerics.
Generic_Elementary_Functions in A.5.1, and the primitive
functions, 11729, became the various attributes such as
Floor, Ceiling, Exponent and Fraction in A.5.3. The original
standards were withdrawn long ago.

The other two standards, although originally developed as
Ada 83 standards did not become finally approved until
1998.

In the case of 13814, the functionality was all incorporated
into the Numerics annex of Ada 95 as the package
Ada.Numerics.Generic_Complex_Elementary_Functions in
G.1.2. Accordingly the original standard has now lapsed.

However, the situation regarding 13813 was not so clear. It
covered four areas

1 a complex types package including various complex
arithmetic operations,

2 a real arrays package covering both vectors and
matrices,

3 a complex arrays package covering both vectors and
matrices, and

4 a complex input–output package.

The first of these was incorporated into the Numerics annex
of Ada 95 as the package Ada.Numerics.Generic_Complex_
Types in G.1.1 and the last similarly became the package
Ada.Text_IO.Complex_IO in G.1.3. However, the array
packages, both real and complex, were not incorporated
into Ada 95.

276 Rat ionale for Ada 2005: 6 Predefined l ibrary

Volume 26, Number 4, December 2005 Ada User Journal

The reason for this omission is explained in Section G.1.1
of the rationale for Ada 95 [3] which says

 A decision was made to abbreviate the Ada 95 packages
by omitting the vector and matrix types and operations.
One reason was that such types and operations were
largely self-evident, so that little real help would be
provided by defining them in the language. Another
reason was that a future version of Ada might add
enhancements for array manipulation and so it would be
inappropriate to lock in such operations permanently.

The sort of enhancements that perhaps were being
anticipated were facilities for manipulating arbitrary
subpartitions of arrays such as were provided in Algol 68.
These rather specialized facilities have not been added to
Ada 2005 and indeed it seems most unlikely that they
would ever be added. The second justification for omitting
the vector and matrix facilities of 13813 thus disappears.

In order to overcome the objection that everything is self-
evident we have taken the approach that we should further
add some basic facilities that are commonly required, not
completely trivial to implement, but on the other hand are
mathematically well understood.

So the outcome is that Ada 2005 includes almost
everything from 13813 plus subprograms for

▪ finding the norm of a vector,

▪ solving sets of linear equations,

▪ finding the inverse and determinant of a matrix,

▪ finding the eigenvalues and eigenvectors of a symmetric
real or Hermitian matrix.

A small number of operations that were not related to linear
algebra were removed (such as raising all elements of a
matrix to a given power).

So Ada 2005 includes two new packages which are
Ada.Numerics.Generic_Real_Arrays and Ada.Numerics.
Generic_Complex_Arrays. It would take too much space to
give the specifications of both in full so we give just an
abbreviated form of the real package in which the
specifications of the usual operators are omitted thus

generic
 type Real is digits <>;
package Ada.Numerics.Generic_Real_Arrays is
 pragma Pure(Generic_Real_Arrays);

 -- Types
 type Real_Vector is array (Integer range <>)
 of Real'Base;
 type Real_Matrix is array (Integer range <>,
 Integer range <>) of Real'Base;

 -- Real_Vector arithmetic operations
 ... -- unary and binary "+" and "–" giving a vector
 ... -- also inner product and two versions of "abs" – one
 ... -- returns a vector and the other a value of Real'Base

 -- Real_Vector scaling operations
 ... -- operations "*" and "/" to multiply a vector by a
 ... -- scalar and divide a vector by a scalar

 -- Other Real_Vector operations
 function Unit_Vector(Index: Integer; Order: Positive;
 First: Integer := 1) return Real_Vector;

 -- Real_Matrix arithmetic operations
 ... -- unary "+", "–", "abs", binary "+", "–" giving a matrix
 ... -- "*" on two matrices giving a matrix, on a vector
 ... -- and a matrix giving a vector, outer product of two
 ... -- vectors giving a matrix, and of course
 function Transpose(X: Real_Matrix)
 return Real_Matrix;

 -- Real_Matrix scaling operations
 ... -- operations "*" and "/" to multiply a matrix by a
 ... -- scalar and divide a matrix by a scalar

 -- Real_Matrix inversion and related operations
 function Solve(A: Real_Matrix; X: Real_Vector)
 return Real_Vector;
 function Solve(A, X: Real_Matrix) return Real_Matrix;
 function Inverse(A: Real_Matrix) return Real_Matrix;
 function Determinant(A: Real_Matrix)
 return Real'Base;

 -- Eigenvalues and vectors of a real symmetric matrix
 function Eigenvalues(A: Real_Matrix)
 return Real_Vector;
 procedure Eigensystem(A: in Real_Matrix;
 Values: out Real_Vector; Vectors: out Real_Matrix);

 -- Other Real_Matrix operations
 function Unit_Matrix(Order: Positive;
 First_1, First_2: Integer := 1) return Real_Matrix;

end Ada.Numerics.Generic_Real_Arrays;

Many of these operations are quite self-evident. The
general idea as far as the usual arithmetic operations are
concerned is that we just write an expression in the normal
way as illustrated in the Introduction. But the following
points should be noted.

There are two operations "abs" applying to a Real_Vector
thus

function "abs"(Right: Real_Vector) return Real_Vector;
function "abs"(Right: Real_Vector) return Real'Base;

One returns a vector each of whose elements is the absolute
value of the corresponding element of the parameter (rather
boring) and the other returns a scalar which is the so-called
L2-norm of the vector. This is the square root of the inner
product of the vector with itself or √(Σxixi) – or just √(xixi)
using the summation convention (which will be familiar to
those who dabble in the relative world of tensors). This is
provided as a distinct operation in order to avoid any
intermediate overflow that might occur if the user were to
compute it directly using the inner product "*".

There are two functions Solve for solving one and several
sets of linear equations respectively. Thus if we have the
single set of n equations

John Barnes 277

Ada User Journal Volume 26, Number 4, December 2005

Ax = y

then we might write

X, Y: Real_Vector(1 .. N);
A: Real_Matrix(1 .. N, 1 .. N);
...
Y := Solve(A, X);

and if we have m sets of n equations we might write

XX, YY: Real_Matrix(1 .. N, 1 .. M)
A: Real_Matrix(1 .. N, 1 .. N);
...
YY := Solve(A, XX);

The functions Inverse and Determinant are provided for
completeness although they should be used with care.
Remember that it is foolish to solve a set of equations by
writing

Y := Inverse(A)*X;

because it is both slow and prone to errors. The main
problem with Determinant is that it is liable to overflow or
underflow even for moderate sized matrices. Thus if the
elements are of the order of a thousand and the matrix has
order 10, then the magnitude of the determinant will be of
the order of 1030. The user may therefore have to scale the
data.

Two subprograms are provided for determining the
eigenvalues and eigenvectors of a symmetric matrix. These
are commonly required in many calculations in domains
such as elasticity, moments of inertia, confidence regions
and so on. The function Eigenvalues returns the
eigenvalues (which will be non-negative) as a vector with
them in decreasing order. The procedure Eigensystem
computes both eigenvalues and vectors; the parameter
Values is the same as that obtained by calling the function
Eigenvalues and the parameter Vectors is a matrix whose
columns are the corresponding eigenvectors in the same
order. The eigenvectors are mutually orthonormal (that is,
of unit length and mutually orthogonal) even when there
are repeated eigenvalues. These subprograms apply only to
symmetric matrices and if the matrix is not symmetric then
Argument_Error is raised.

Other errors such as the mismatch of array bounds raise
Constraint_Error by analogy with built-in array operations.

The reader will observe that the facilities provided here are
rather humble and presented in a simple black-box style. It
is important to appreciate that we do not see the Ada
predefined numerics library as being in any way in
competition with or as a substitute for professional libraries
such as the renowned BLAS (Basic Linear Algebra
Subprograms, see www.netlib.org/blas). Indeed our overall
goal is twofold

▪ to provide commonly required simple facilities for the
user who is not a numerical professional,

▪ to provide a baseline of types and operations that forms
a firm foundation for binding to more general facilities
such as the BLAS.

We do not expect users to apply the operations in our Ada
packages to the huge matrices that arise in areas such as
partial differential equations. Such matrices are often of a
special nature such as banded and need the facilities of a
comprehensive numerical library. We have instead striven
to provide easy to use facilities for the programmer who
has a small number of equations to solve such as might
arise in navigational applications.

Simplicity is evident in that functions such as Solve do not
reveal the almost inevitable underlying LU decomposition
or provide parameters controlling for example whether
additional iterations should be applied. However,
implementations are advised to apply an additional iteration
and should document whether they do or not.

Considerations of simplicity also led to the decision not to
provide automatic scaling for the determinant or to provide
functions for just the largest eigenvalue and so on.

Similarly we only provide for the eigensystems of
symmetric real matrices. These are the ones that commonly
arise and are well behaved. General nonsymmetric matrices
can be troublesome.

Appropriate accuracy requirements are specified for the
inner product and L2-norm operations. Accuracy
requirements for Solve, Inverse, Determinant, Eigenvalues
and Eigenvectors are implementation defined which means
that the implementation must document them.

The complex package is very similar and will not be
described in detail. However, the generic formal parameters
are interesting. They are

with Ada.Numerics.Generic_Real_Arrays,
 Ada.Numerics.Generic_Complex_Types;
generic
 with package Real_Arrays is
 new Ada.Numerics.Generic_Real_Arrays(<>);
 use Real_Arrays;
 with package Complex_Types is
 new Ada.Numerics.Generic_Complex_Types(Real);
 use Complex_Types;
package Ada.Numerics.Generic_Complex_Arrays is
 ...

Thus we see that it has two formal packages which are the
corresponding real array package and the existing Ada 95
complex types and operations package. The formal
parameter of the first is <> and that of the second is Real
which is exported from the first package and ensures that
both are instantiated with the same floating point type.

As well as the obvious array and matrix operations, the
complex package also has operations for composing
complex arrays from cartesian and polar real arrays, and
computing the conjugate array by analogy with scalar
operations in the complex types package. There are also
mixed real and complex array operations but not mixed
imaginary, real and complex array operations. Altogether
the complex array package declares some 80 subprograms
(there are around 30 in the real array package) and adding

278 Rat ionale for Ada 2005: 6 Predefined l ibrary

Volume 26, Number 4, December 2005 Ada User Journal

imaginary array operations would have made the package
unwieldy (and the reference manual too heavy).

By analogy with real symmetric matrices, the complex
package has subprograms for determining the eigensystems
of Hermitian matrices. A Hermitian matrix is one whose
complex conjugate equals its transpose; such matrices have
real eigenvalues and are well behaved.

We conclude this discussion of the Numerics annex by
mentioning one minute change regarding complex input–
output. Ada 2005 includes preinstantiated forms of
Ada.Text_IO.Complex_IO such as Ada.Complex_Text_IO
(for when the underlying real type is the type Float),
Ada.Long_Complex_Text_IO (for type Long_Float) and so
on. These are by analogy with Float_Text_IO,
Long_Float_Text_IO and their omission from Ada 95 was
probably an oversight.

7 Categorization of library units
It will be recalled that library units in Ada 95 are
categorized into a hierarchy by a number of pragmas thus

pragma Pure(...);
pragma Shared_Passive(...);
pragma Remote_Types(...);
pragma Remote_Call_Interface(...);

Each category imposes restrictions on what the unit can
contain. An important rule is that a unit can only depend on
units in the same or higher categories (the bodies of the last
two are not restricted).

The pragmas Shared_Passive, Remote_Types, and
Remote_Call_Interface concern distributed systems and
thus are rather specialized. A minor change made in the
2001 Corrigendum was that the pragma Remote_Types
was added to the package Ada.Finalization in order to
support the interchange of controlled types between
partitions in a distributed system.

Note that the pragma Preelaborate does not fit into this
hierarchy. In fact there is another hierarchy thus

pragma Pure(...);
pragma Preelaborate(...);

and again we have the same rule that a unit can only
depend upon units in the same or higher category. Thus a
pure unit can only depend upon other pure units and a
preelaborable unit can only depend upon other
preelaborable or pure units.

A consequence of this dual hierarchy is that a shared
passive unit cannot depend upon a preelaborable unit – the
units upon which it depends have to be pure or shared
passive and so on for the others. However, there is a
separate rule that a unit which is shared passive, remote
types or RCI must itself be preelaborable and so has to also
have the pragma Preelaborate.

The categorization of individual predefined units is
intended to make them as useful as possible. The stricter

the category the more useful the unit because it can be used
in more circumstances.

The categorization was unnecessarily weak in Ada 95 in
some cases and some changes are made in Ada 2005.

The following packages which had no categorization in
Ada 95 have pragma Preelaborate in Ada 2005

Ada.Asynchronous_Task_Control
Ada.Dynamic_Priorities
Ada.Exceptions
Ada.Synchronous_Task_Control
Ada.Tags
Ada.Task_Identification

The following which had pragma Preelaborate in Ada 1995
have been promoted to pragma Pure in Ada 2005

Ada.Characters.Handling
Ada.Strings.Maps
Ada.Strings.Maps.Constants
System
System.Storage_Elements

These changes mean that certain facilities such as the
ability to analyse exceptions are now available to
preelaborable units. Note however, that Wide_Maps and
Wide_Maps.Wide_Constants stay as preelaborable because
they may be implemented using access types.

Just for the record the following packages (and functions,
Hash is a function) which are new to Ada 2005 have the
pragma Pure

Ada.Assertions
Ada.Characters.Conversions
Ada.Containers
Ada.Containers.Generic_Array_Sort
Ada.Containers.Generic_Constrained_Array_Sort
Ada.Dispatching
Ada.Numerics.Generic_Real_Arrays
Ada.Numerics.Generic_Complex_Arrays
Ada.Strings.Hash

And the following new packages and functions have the
pragma Preelaborate

Ada.Containers.Doubly_Linked_Lists
Ada.Containers.Hashed_Maps
Ada.Containers.Hashed_Sets
Ada.Containers.Ordered_Maps
Ada.Containers.Ordered_Sets
Ada.Containers.Vectors
Ada.Environment_Variables
Ada.Strings.Unbounded_Hash
Ada.Strings.Wide_Wide_Maps
Ada.Strings.Wide_Wide_Maps.Wide_Wide_Constants
Ada.Tags.Generic_Dispatching_Constructor
Ada.Task_Termination

plus the indefinite containers as well.

A problem with preelaborable units in Ada 95 is that there
are restrictions on declaring default initialized objects in a
unit with the pragma Preelaborate. For example, we cannot

John Barnes 279

Ada User Journal Volume 26, Number 4, December 2005

declare objects of a private type at the library level in such
a unit. This is foolish for consider

package P is
 pragma Preelaborate(P);
 X: Integer := 7;
 B: Boolean := True;
end;

Clearly these declarations can be preelaborated and so the
package P can have the pragma Preelaborate. However,
now consider

package Q is
 pragma Preelaborate(Q); -- legal
 type T is private;
private
 type T is
 record
 X: Integer := 7;
 B: Boolean := True;
 end record;
end Q;

with Q;
package P is
 pragma Preelaborate(P); -- illegal
 Obj: Q.T;
end P;

The package Q is preelaborable because it does not declare
any objects. However, the package P is not preelaborable
because it declares an object of the private type T – the
theory being of course that since the type is private we do
not know that its default initial value is static.

This is overcome in Ada 2005 by the introduction of the
pragma Preelaborable_Initialization. Its syntax is

pragma Preelaborable_Initialization(direct_name);

We can now write

package Q is
 pragma Preelaborate(Q);
 type T is private;
 pragma Preelaborable_Initialization(T);
private
 type T is
 record
 X: Integer := 7;
 B: Boolean := True;
 end record;
end Q;

The pragma promises that the full type will have
preelaborable initialization and the declaration of the
package P above is now legal.

The following predefined private types which existed in
Ada 95 have the pragma Preelaborable_Initialization in Ada
2005

Ada.Exceptions.Exception_Id
Ada.Exceptions.Exception_Occurrence
Ada.Finalization.Controlled

Ada.Finalization.Limited_Controlled
Ada.Numerics.Generic_Complex_Types.Imaginary
Ada.Streams.Root_Stream_Type
Ada.Strings.Maps.Character_Mapping
Ada.Strings.Maps.Character_Set
Ada.Strings.Unbounded.Unbounded_String
Ada.Tags.Tag
Ada.Task_Identification.Task_Id
Interfaces.C.Strings.chars_ptr
System.Address
System.Storage_Pool.Root_Storage_Pool

Wide and wide-wide versions also have the pragma as
appropriate. Note that it was not possible to apply the
pragma to Ada.Strings.Bounded.Generic_Bounded_Length.
Bounded_String because it would have made it impossible
to instantiate Generic_Bounded_Length with a non-static
expression for the parameter Max.

The following private types which are new in Ada 2005
also have the pragma Preeleborable_Initialization

Ada.Containers.Vectors.Vector
Ada.Containers.Vectors.Cursor
Ada.Containers.Doubly_Linked_Lists.List
Ada.Containers.Doubly_Linked_Lists.Cursor
Ada.Containers.Hashed_Maps.Map
Ada.Containers.Hashed_Maps.Cursor
Ada.Containers.Ordered_Maps.Map
Ada.Containers.Ordered_Maps.Cursor
Ada.Containers.Hashed_Sets.Set
Ada.Containers.Hashed_Sets.Cursor
Ada.Containers.Ordered_Sets.Set
Ada.Containers.Ordered_Sets.Cursor

and similarly for the indefinite containers.

A related change concerns the definition of pure units. In
Ada 2005, pure units can now use access to subprogram
and access to object types provided that no storage pool is
created.

Finally, we mention a small but important change regarding
the partition communication subsystem System.RPC.
Implementations conforming to the Distributed Systems
annex are not required to support this predefined interface
if another interface would be more appropriate – to interact
with CORBA for example.

8 Streams
Important improvements to the control of streams were
described in the paper on the object oriented model where
we discussed the new package Ada.Tags.Generic_
Dispatching_Constructor and various changes to the parent
package Ada.Tags itself. In this section we mention two
other changes.

There is a problem with the existing stream attributes such
as (see RM 13.13.2)

procedure S'Write
 (Stream: access Root_Stream_Type'Class; Item: in T);

280 Rat ionale for Ada 2005: 6 Predefined l ibrary

Volume 26, Number 4, December 2005 Ada User Journal

where S is a subtype of T. Note that for the parameter Item,
its type T is in italic and so has to be interpreted according
to the kind of type. In the case of integer and enumeration
types it means that the parameter Item has type T'Base.

Given a declaration such as

type Index is range 1 .. 10;

different implementations might use different
representations for Index'Base – some might use 8 bits
others might use 32 bits and so on.

Now stream elements themselves are typically 8 bits and so
with an 8-bit base, there will be one value of Index per
stream element whereas with a 32-bit base each value of
Index will take 4 stream elements. Clearly a stream written
by the 8-bit implementation cannot be read by the 32-bit
one.

This problem is overcome in Ada 2005 by the introduction
of a new attribute Stream_Size. The universal integer value
S'Stream_Size gives the number of bits used in the stream
for values of the subtype S. We are guaranteed that it is a
multiple of Stream_Element'Size. So the number of stream
elements required will be

S'Stream_Size / Stream_Element'Size

We can set the attribute in the usual way provided that the
value given is a static multiple of Stream_Element'Size. So
in the case above we can write

for Index'Stream_Size use 8;

and portability is then assured. That is provided that
Stream_Element_Size is 8 anyway and that the
implementation accepts the attribute definition clause
(which it should).

A minor change is that the parameter Stream of the various
atttributes now has a null exclusion so that S'Write is in fact

procedure S'Write
 (Stream: not null access Root_Stream_Type'Class;
 Item: in T);

Perhaps surprisingly this does not introduce any
incompatibilities since in Ada 95 passing null raises
Constraint_Error anyway and so this change just clarifies
the situation.

On this dullish but important topic here endeth the
Rationale for Ada 2005 apart from various exciting
appendices and an extensive subpaper on containers.

References
[1] ISO/IEC JTC1/SC22/WG9 N412 (2002) Instructions

to the Ada Rapporteur Group from SC22/WG9 for
Preparation of the Amendment.

[2] ISO/IEC 13813:1997 (1997) Generic packages of real
and complex type declarations and basic operations for
Ada (including vector and matrix types).

[3] Ada 95 Rationale (1995) LNCS 1247, Springer-
Verlag.

[4] J. G. P. Barnes (1998) Programming in Ada 95, 2nd
ed., Addison-Wesley.

© 2005 John Barnes Informatics.

282

Volume 26, Number 4, December 2005 Ada User Journal

Rationale for Ada 2005: 6a Containers
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract
This paper describes the predefined container library
in Ada 2005.
Keywords: rationale, Ada 2005.

1 Organization of containers
A major enhancement to the predefined library in Ada 2005
is the addition of a container library. This is quite extensive
and merits this separate paper on its own. Other aspects of
the predefined library and the overall rationale for
extending the library were described in the previous paper.

The main packages in the container library can be grouped
in various ways. One set of packages concerns the
manipulation of objects of definite types and another,
essentially identical, set concerns indefinite types.
(Remember that an indefinite (sub)type is one for which we
cannot declare an object without giving a constraint.) The
reason for the duplication concerns efficiency. It is much
easier to manipulate definite types and although the
packages for indefinite types can be used for definite types,
this would be rather inefficient.

We will generally only consider the definite packages.
These in turn comprise two groups.

Sequence containers – these hold sequences of elements.
There are packages for manipulating vectors and for
manipulating linked lists. These two packages have
much in common. But they have different behaviours in
terms of efficiency according to the pattern of use. In
general (with some planning) it should be possible to
change from one to the other with little effort.

Associative containers – these associate a key with each
element and then store the elements in order of the keys.
There are packages for manipulating hashed maps,
ordered maps, hashed sets and ordered sets. These four
packages also have much in common and changing
between hashed and ordered versions is usually feasible.

There are also quite separate generic procedures for sorting
arrays which we will consider later.

The root package is

package Ada.Containers is
 pragma Pure(Containers);

 type Hash_Type is mod implementation-defined;
 type Count_Type is range 0 .. implementation-defined;

end Ada.Containers;

The type Hash_Type is used by the associative containers
and Count_Type is used by both kinds of containers
typically for the number of elements in a container. Note
that we talk about elements in a container rather than the
components in a container – components is the Ada term
for the items of an array or record as an Ada type and it is
convenient to use a different term since in the case of
containers the actual data structure is hidden.

Worst-case and average-case time complexity bounds are
given using the familiar O(...) notation. This encourages
implementations to use techniques that scale reasonably
well and avoid junk algorithms such as bubble sort.

Perhaps a remark about using containers from a
multitasking program would be helpful. The general rule is
given in paragraph 3 of Annex A which says "The
implementation shall ensure that each language defined
subprogram is reentrant in the sense that concurrent calls
on the same subprogram perform as specified, so long as all
parameters that could be passed by reference denote
nonoverlapping objects." So in other words we have to
protect ourselves by using the normal techniques such as
protected objects when container operations are invoked
concurrently on the same object from multiple tasks even if
the operations are only reading from the container.

2 Lists and vectors
We will first consider the list container since in some ways
it is the simplest. Here is its specification interspersed with
some explanation

generic
 type Element_Type is private;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Doubly_Linked_Lists is
 pragma Preelaborate(Doubly_Linked_Lists);

 type List is tagged private;
 pragma Preelaborable_Initialization(List);
 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);
 Empty_List: constant List;
 No_Element: constant Cursor;

The two generic parameters are the type of the elements in
the list and the definition of equality for comparing
elements. This equality relation must be such that x = y and
y = x always have the same value.

A list container is an object of the type List. It is tagged
since it will inevitably be implemented as a controlled type.

John Barnes 283

Ada User Journal Volume 26, Number 4, December 2005

The fact that it is visibly tagged means that all the
advantages of object oriented programming are available.
For one thing it enables the use of the prefixed notation so
that we can write operations such as

My_List.Append(Some_Value);

rather than

Append(My_List, Some_Value);

The type Cursor is an important concept. It provides the
means of access to individual elements in the container.
Not only does it contain a reference to an element but it
also identifies the container as well. This enables various
checks to be made to ensure that we don't accidentally
meddle with an element in the wrong container.

The constants Empty_List and No_Element are as expected
and also provide default values for objects of types List and
Cursor respectively.

function "=" (Left, Right: List) return Boolean;
function Length(Container: List) return Count_Type;
function Is_Empty(Container: List) return Boolean;
procedure Clear(Container: in out List);

The function "=" compares two lists. It only returns true if
both lists have the same number of elements and
corresponding elements have the same value as determined
by the generic parameter "=" for comparing elements. The
subprograms Length, Is_Empty and Clear are as expected.

Note that A_List = Empty_List, Is_Empty(A_List) and
Length(A_List) = 0 all have the same value.

function Element(Position: Cursor) return Element_Type;

procedure Replace_Element(Container: in out List;
 Position: in Cursor;
 New_Item: in Element_Type);

These are the first operations we have met that use a cursor.
The function Element takes a cursor and returns the value
of the corresponding element (remember that a cursor
identifies the list as well as the element itself). The
procedure Replace_Element replaces the value of the
element identified by the cursor by the value given; it
makes a copy of course.

Note carefully that Replace_Element has both the list and
cursor as parameters. There are two reasons for this
concerning correctness. One is to enable a check that the
cursor does indeed identify an element in the given list. The
other is to ensure that we do have write access to the
container (the parameter has mode in out). Otherwise it
would be possible to modify a container even though we
only had a constant view of it. So as a general principle any
operation that modifies a container must have the container
as a parameter whereas an operation that only reads it such
as the function Element does not.

procedure Query_Element(Position: in Cursor;
 Process: not null access procedure
 (Element: in Element_Type));

procedure Update_Element(Container: in out List;
 Position: in Cursor;
 Process: not null access procedure
 (Element: in out Element_Type));

These procedures provide in situ access to an element. One
parameter is the cursor identifying the element and another
is an access to a procedure to be called with that element as
parameter. In the case of Query_Element, we can only read
the element whereas in the case of Update_Element we can
change it as well since the parameter mode of the access
procedure is in out. Note that Update_Element also has the
container as a parameter for reasons just mentioned when
discussing Replace_Element.

The reader might wonder whether there is any difference
between calling the function Element to obtain the current
value of an element and using the seemingly elaborate
mechanism of Query_Element. The answer is that the
function Element makes a copy of the value whereas
Query_Element gives access to the value without making a
copy. (And similarly for Replace_Element and
Update_Element.) This wouldn't matter for a simple list of
integers but it would matter if the elements were large or of
a controlled type (maybe even lists themselves).

procedure Move(Target, Source: in out List);

This moves the list from the source to the target after first
clearing the target. It does not make copies of the elements
so that after the operation the source is empty and
Length(Source) is zero.

procedure Insert(Container: in out List;
 Before: in Cursor;
 New_Item: in Element_Type;
 Count: in Count_Type := 1);

procedure Insert(Container: in out List;
 Before: in Cursor;
 New_Item: in Element_Type;
 Position: out Cursor;
 Count: in Count_Type := 1);

procedure Insert(Container: in out List;
 Before: in Cursor;
 Position: out Cursor;
 Count: in Count_Type := 1);

These three procedures enable one or more identical
elements to be added anywhere in a list. The place is
indicated by the parameter Before – if this is No_Element,
then the new elements are added at the end. The second
procedure is similar to the first but also returns a cursor to
the first of the added elements. The third is like the second
but the new elements take their default values. Note the
default value of one for the number of elements.

procedure Prepend(Container: in out List;
 New_Item: in Element_Type;
 Count: in Count_Type := 1);

procedure Append(Container: in out List;
 New_Item: in Element_Type;
 Count: in Count_Type := 1);

284 Rat ionale for Ada 2005: 6a Containers

Volume 26, Number 4, December 2005 Ada User Journal

These add one or more new elements at the beginning or
end of a list respectively. Clearly these operations can be
done using Insert but they are sufficiently commonly
needed that it is convenient to provide them specially.

procedure Delete(Container: in out List;
 Position: in out Cursor;
 Count: in Count_Type := 1);

procedure Delete_First(Container: in out List;
 Count: in Count_Type := 1);

procedure Delete_Last(Container: in out List;
 Count: in Count_Type := 1);

These delete one or more elements at the appropriate
position. In the case of Delete, the parameter Position is set
to No_Element upon return. If there are not as many as
Count elements to be deleted at the appropriate place then it
just deletes as many as possible (this clearly results in the
container becoming empty in the case of Delete_First and
Delete_Last).

procedure Reverse_Elements(Container: in out List);

This does the obvious thing. It would have been nice to call
this procedure Reverse but sadly that is a reserved word.

procedure Swap(Container: in out List; I, J: in Cursor);

This handy procedure swaps the values in the two elements
denoted by the two cursors. The elements must be in the
given container otherwise Program_Error is raised. Note
that the cursors do not change.

procedure Swap_Links(Container: in out List;
 I, J: in Cursor);

This performs the low level operation of swapping the links
rather than the values which can be much faster if the
elements are large. There is no analogy in the vectors
package.

procedure Splice(Target: in out List;
 Before: in Cursor;
 Source in out List);

procedure Splice(Target: in out List;
 Before: in Cursor;
 Source: in out List;
 Position: in out Cursor);

procedure Splice(Container: in out List;
 Before: in Cursor;
 Position: in out Cursor);

These three procedures enable elements to be moved
(without copying). The place is indicated by the parameter
Before – if this is No_Element, then the elements are added
at the end. The first moves all the elements of Source into
Target at the position given by Before; as a consequence,
like the procedure Move, after the operation the source is
empty and Length(Source) is zero. The second moves a
single element at Position from the list Source to Target
and so the length of target is incremented whereas that of
source is decremented; Position is updated to its new
location in Target. The third moves a single element within

a list and so the length remains the same (note the formal
parameter is Container rather than Target in this case).
There are no corresponding operations in the vectors
package because, like Swap_Links, we are just moving the
links and not copying the elements.

function First(Container: List) return Cursor;
function First_Element(Container: List)
 return Element_Type;
function Last(Container: List) return Cursor;
function Last_Element(Container: List)
 return Element_Type;
function Next(Position: Cursor) return Cursor;
function Previous(Position: Cursor) return Cursor;
procedure Next(Position: in out Cursor);
procedure Previous(Position: in out Cursor);
function Find(Container: List;
 Item: Element_Type;
 Position: Cursor:= No_Element)
 return Cursor;
function Reverse_Find(Container: List;
 Item: Element_Type;
 Position: Cursor:= No_Element)
 return Cursor;
function Contains(Container: List;
 Item: Element_Type) return Boolean;

Hopefully the purpose of these is almost self-evident. The
function Find searches for an element with the given value
starting at the given cursor position (or at the beginning if
the position is No_Element); if no element is found then it
returns No_Element. Reverse_Find does the same but
backwards. Note that equality used for the comparison in
Find and Reverse_Find is that defined by the generic
parameter "=".

function Has_Element(Position: Cursor) return Boolean;

This returns False if the cursor does not identify an
element; for example if it is No_Element.

procedure Iterate(Container: in List;
 Process: not null access procedure
 (Position: in Cursor));

procedure Reverse_Iterate(Container: in List;
 Process: not null access procedure
 (Position: in Cursor));

These apply the procedure designated by the parameter
Process to each element of the container in turn in the
appropriate order.

generic
 with function "<" (Left, Right: Element_Type)
 return Boolean is <>;
package Generic_Sorting is
 function Is_Sorted(Container: List) return Boolean;
 procedure Sort(Container: in out List);
 procedure Merge(Target, Source: in out List);
end Generic_Sorting;

This generic package performs sort and merge operations
using the order specified by the generic formal parameter.

John Barnes 285

Ada User Journal Volume 26, Number 4, December 2005

Note that we use generics rather than access to subprogram
parameters when the formal process is given by an
operator. This is because the predefined operations have
convention Intrinsic and one cannot pass an intrinsic
operation as an access to subprogram parameter. The
function Is_Sorted returns True if the container is already
sorted. The procedure Sort arranges the elements into order
as necessary – note that no copying is involved since it is
only the links that are moved. The procedure Merge takes
the elements from Source and adds them to Target. After
the merge Length(Source) is zero. If both lists were sorted
before the merge then the result is also sorted.

And finally we have

private
 ... -- not specified by the language
end Ada.Containers.Doubly_Linked_Lists;

If the reader has got this far they have probably understood
how to use this package so extensive examples are
unnecessary. However, as a taste, here is a simple stack of
floating point numbers

package Stack is
 procedure Push(X: in Float);
 function Pop return Float;
 function Size return Integer;
 exception Stack_Empty;
end;

with Ada.Containers.Doubly_Linked_Lists;
use Ada.Containers;
package body Stack is

 package Float_Container is
 new Doubly_Linked_Lists(Float);
 use Float_Container;
 The_Stack: List;

 procedure Push(X: in Float) is
 begin
 Append(The_Stack, X); -- or The_Stack.Append(X);
 end Push;

 function Pop return Float is
 Result: Float;
 begin
 if Is_Empty(The_Stack) then
 raise Stack_Empty;
 end if;
 Result := Last_Element(The_Stack);
 Delete_Last(The_Stack);
 return Result;
 end Pop;

 function Size return Integer is
 begin
 return Integer(Length(The_Stack));
 end Size;
end Stack;

This barely needs any explanation. The lists package is
instantiated in the package Stack and the object The_Stack
is of course the list container. The rest is really

straightforward. We could of course use the prefixed
notation throughout as indicated in Push.

An important point should be mentioned concerning lists
(and containers in general). This is that attempts to do
foolish things typically result in Constraint_Error or
Program_Error being raised. This especially applies to the
procedures Process in Query_Element, Update_Element,
Iterate and Reverse_Iterate. The concepts of tampering
with cursors and elements are introduced in order to dignify
a general motto of "Thou shalt not violate thy container".

Tampering with cursors occurs when elements are added to
or deleted from a container (by calling Insert and so on)
whereas tampering with elements means replacing an
element (by calling Replace_Element for example).
Tampering with elements is a greater sin and includes
tampering with cursors. The procedure Process in
Query_Element and Update_Element must not tamper with
elements and the procedure Process in the other cases must
not tamper with cursors. The reader might think it rather
odd that Update_Element should not be allowed to tamper
with elements since the whole purpose is to update the
element; this comes back to the point mentioned earlier that
update element gives access to the existing element in situ
via the parameter of Process and that is allowed – calling
Replace_Element within Process would be tampering.
Tampering causes Program_Error to be raised.

We will now consider the vectors package. Its specification
starts

generic
 type Index_Type is range <>;
 type Element_Type is private;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Vectors is
 pragma Preelaborate(Vectors);

This is similar to the lists package except for the additional
generic parameter Index_Type (note that this is an integer
type and not a discrete type). This additional parameter
reflects the idea that a vector is essentially an array and we
can index directly into an array.

In fact the vectors package enables us to access elements
either by using an index or by using a cursor. Thus many
operations are duplicated such as

function Element(Container: Vector; Index: Index_Type)
 return Element_Type;
function Element(Position: Cursor) return Element_Type;
procedure Replace_Element(Container: in out Vector;
 Index: in Index_Type;
 New_Item: in Element_Type);
procedure Replace_Element(Container: in out Vector;
 Position: in Cursor;
 New_Item: in Element_Type);

If we use an index then there is always a distinct parameter
identifying the vector as well. If we use a cursor then the
vector parameter is omitted if the vector is unchanged as is
the case with the function Element. Remember that we

286 Rat ionale for Ada 2005: 6a Containers

Volume 26, Number 4, December 2005 Ada User Journal

stated earlier that a cursor identifies both an element and
the container but if the container is being changed as in the
case of Replace_Element then the container has to be
passed as well to ensure write access and to enable a check
that the cursor does identify an element in the correct
container.

There are also functions First_Index and Last_Index thus

function First_Index(Container: Vector)
 return Index_Type;
function Last_Index(Container: Vector)
 return Extended_Index;

These return the values of the index of the first and last
elements respectively. The function First_Index always
returns Index_Type'First whereas Last_Index will return
No_Index if the vector is empty. The function Length
returns Last_Index–First_Index+1 which is zero if the
vector is empty. Note that the irritating subtype
Extended_Index has to be introduced in order to cope with
end values. The constant No_Index has the value
Extended_Index'First which is equal to Index_Type'First–1.

There are operations to convert between an index and a
cursor thus

function To_Cursor(Container: Vector;
 Index: Extended_Index) return Cursor;
function To_Index(Position: Cursor)
 return Extended_Index;

It is perhaps slightly messier to use the index and vector
parameters because of questions concerning the range of
values of the index but probably slightly faster and maybe
more familiar. And sometimes of course using an index is
the whole essence of the problem. In the paper on access
types we showed a use of the procedure Update_Element to
double the values of those elements of a vector whose
index was in the range 5 to 10. This would be tedious with
cursors.

But an advantage of using cursors is that (provided certain
operations are avoided) it is easy to replace the use of
vectors by lists.

For example here is the stack package rewritten to use
vectors

with Ada.Containers.Vectors; -- changed
use Ada.Containers;
package body Stack is

 package Float_Container is
 new Vectors(Natural, Float); -- changed
 use Float_Container;
 The_Stack: Vector; -- changed

 procedure Push(X: in Float) is
 begin
 Append(The_Stack, X);
 end Push;

 -- etc exactly as before

end Stack;

So the changes are very few indeed and can be quickly
done with a simple edit.

Note that the index parameter has been given as Natural
rather than Integer. Using Integer will not work since
attempting to elaborate the subtype Extended_Index would
raise Constraint_Error when evaluating Integer'First–1. But
in any event it is more natural for the index range of the
container to start at 0 (or 1) rather than a large negative
value such as Integer'First.

There are other important properties of vectors that should
be mentioned. One is that there is a concept of capacity.
Vectors are adjustable and will extend if necessary when
new items are added. However, this might lead to lots of
extensions and copying and so we can set the capacity of a
container by calling

procedure Reserve_Capacity(Container: in out Vector;
 Capacity: in Count_Type);

There is also

function Capacity(Container: Vector) return Count_Type;

which naturally returns the current capacity. Note that
Length(V) cannot exceed Capacity(V) but might be much
less.

If we add items to a vector whose length and capacity are
the same then no harm is done. The capacity will be
expanded automatically by effectively calling
Reserve_Capacity internally. So the user does not need to
set the capacity although not doing so might result in
poorer performance.

There is also the concept of "empty elements". These are
elements whose values have not been set. There is no
corresponding concept with lists. It is a bounded error to
read an empty element. Empty elements arise if we declare
a vector by calling

function To_Vector(Length: Count_Type) return Vector;

as in

My_Vector: Vector := To_Vector(100);

There is also the much safer

function To_Vector(New_Item: Element_Type;
 Length: Count_Type) return Vector;

which sets all the elements to the value New_Item.

There is also a procedure

procedure Set_Length(Container: in out Vector;
 Length: in Count_Type);

This changes the length of a vector. This may require
elements to be deleted (from the end) or to be added (in
which case the new ones are empty).

The final way to get an empty element is by calling one of

procedure Insert_Space(Container: in out Vector;
 Before: in Extended_Index;
 Count: in Count_Type := 1);

John Barnes 287

Ada User Journal Volume 26, Number 4, December 2005

procedure Insert_Space(Container: in out Vector;
 Before: in Cursor;
 Position: out Cursor;
 Count: in Count_Type := 1);

These insert the number of empty elements given by Count
at the place indicated. Existing elements are slid along as
necessary. These should not be confused with the versions
of Insert which do not provide an explicit value for the
elements – in those cases the new elements take their
default values.

Care needs to be taken if we use empty elements. For
example we should not compare two vectors using "=" if
they have empty elements because this implies reading
them. But the big advantage of empty elements is that they
provide a quick way to make a large lump of space in a
vector which can then be filled in with appropriate values.
One big slide is a lot faster than lots of little ones.

For completeness, we briefly mention the remaining few
subprograms that are unique to the vectors package.

There are further versions of Insert thus

procedure Insert(Container: in out Vector;
 Before: in Extended_Index; New_Item: in Vector);

procedure Insert(Container: in out Vector;
 Before: in Cursor; New_Item: in Vector);

procedure Insert(Container: in out Vector;
 Before: in Cursor; New_Item: in Vector;
 Position: out Cursor);

These insert copies of a vector into another vector (rather
than just single elements).

There are also corresponding versions of Prepend and
Append thus

procedure Prepend(Container: in out Vector;
 New_Item: in Vector);

procedure Append(Container: in out Vector;
 New_Item: in Vector);

Finally, there are four functions "&" which concatenate
vectors and elements by analogy with those for the type
String. Their specifications are

function "&" (Left, Right: Vector) return Vector;
function "&" (Left: Vector; Right: Element_Type)
 return Vector;
function "&" (Left: Element_Type; Right: Vector)
 return Vector;
function "&" (Left, Right: Element_Type) return Vector;

Note the similarity between

Append(V1, V2);
V1 := V1 & V2;

The result is the same but using "&" is less efficient because
of the extra copying involved. But "&" is a familiar
operation and so is provided for convenience.

3 Maps
We will now turn to the maps and sets packages. We will
start by considering maps which are more exciting than sets
and begin with ordered maps which are a little simpler and
then consider hashed maps.

Remember that a map is just a means of getting from a
value of one type (the key) to another type (the element).
This is not a one-one relationship. Given a key there is a
unique element (if any), but several keys may correspond to
the same element. A simple example is an array. This is a
map from the index type to the component type. Thus if we
have

S: String := "animal";

then this provides a map from integers in the range 1 to 6 to
some values of the type Character. Given an integer such as
3 there is a unique character 'i' but given a character such as
'a' there might be several corresponding integers (in this
case both 1 and 5).

More interesting examples are where the set of used key
values is quite sparse. For example we might have a store
where various spare parts are held. The parts have a five-
digit part number and there are perhaps twenty racks where
they are held identified by a letter. However, only a handful
of the five digit numbers are in use so it would be very
wasteful to use an array with the part number as index.
What we want instead is a container which holds just the
pairs that matter such as (34618, 'F'), (27134, 'C') and so
on. We can do this using a map. We usually refer to the
pairs of values as nodes of the map.

There are two maps packages with much in common. One
keeps the keys in order and the other uses a hash function.
Here is the specification of the ordered maps package
generally showing just those facilities common to both.

generic
 type Key_Type is private;
 type Element_Type is private;
 with function "<" (Left, Right: Key_Type)
 return Boolean is <>;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Ordered_Maps is
 pragma Preelaborate(Ordered_Maps);

 function Equivalent_Keys(Left: Right: Key_Type)
 return Boolean;

The generic parameters include the ordering relationship
"<" on the keys and equality for the elements.

It is assumed that the ordering relationship is well behaved
in the sense that if x < y is true then y < x is false. We say
that two keys x and y are equivalent if both x < y and y < x
are false. In other words this defines an equivalence class
on keys. The relationship must also be transitive, that is, if
x < y and y < z are both true then x < z must also be true.

This concept of an equivalence relationship occurs
throughout the various maps and sets. Sometimes, as here,

288 Rat ionale for Ada 2005: 6a Containers

Volume 26, Number 4, December 2005 Ada User Journal

it is defined in terms of an order but in other cases, as we
shall see, it is defined by an equivalence function.

It is absolutely vital that the equivalence relations are
defined properly and meet the above requirements. It is not
possible for the container packages to check this and if the
operations are wrong then peculiar behaviour is almost
inevitable.

For the convenience of the user the function
Equivalent_Keys is declared explicitly. It is equivalent to

function Equivalent_Keys(Left, Right: Key_Type)
 return Boolean is
begin
 return not(Left < Right) and not(Right < Left);
end Equivalent_Keys;

The equality operation on elements is not so demanding. It
must be symmetric so that x = y and y = x are the same but
transitivity is not required (although cases where it would
not automatically be transitive are likely to be rare). The
operation is only used for the function "=" on the containers
as a whole.

Note that Find and similar operations for maps and sets
work in terms of the equivalence relationship rather than
equality as was the case with lists and vectors.

 type Map is tagged private;
 pragma Preelaborable_Initialization(Map);
 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);
 Empty_Map: constant Map;
 No_Element: constant Cursor;

The types Map and Cursor and constants Empty_Map and
No_Element are similar to the corresponding entities in the
lists and vectors containers.

function "=" (Left, Right: Map) return Boolean;
function Length(Container: Map) return Count_Type;
function Is_Empty(Container: Map) return Boolean;
procedure Clear(Container: in out Map);

These are again similar to the corresponding entities for
lists. Note that two maps are said to be equal if they have
the same number of nodes with equivalent keys (as defined
by "<") whose corresponding elements are equal (as defined
by "=").

function Key(Position: Cursor) return Key_Type;
function Element(Position: Cursor) return Element_Type;

procedure Replace_Element(Container: in out Map;
 Position: in Cursor;
 New_Item: in Element_Type);

procedure Query_Element(Position: in Cursor;
 Process: not null access procedure
 (Key: in Key_Type;
 Element: in Element_Type));

procedure Update_Element(Container: in out Map;
 Position: in Cursor;
 Process: not null access procedure

 (Key: in Key_Type;
 Element: in out Element_Type));

In this case there is a function Key as well as a function
Element. But there is no procedure Replace_Key since it
would not make sense to change a key without changing
the element as well and this really comes down to deleting
the whole node and then inserting a new one.

The procedures Query_Element and Update_Element are
slightly different in that the procedure Process also takes
the key as parameter as well as the element to be read or
updated. Note again that the key cannot be changed.
Nevertheless the value of the key is given since it might be
useful in deciding how the update should be performed.
Remember that we cannot get uniquely from an element to
a key but only from a key to an element.

procedure Move(Target, Source: in out Map);

This moves the map from the source to the target after first
clearing the target. It does not make copies of the nodes so
that after the operation the source is empty and
Length(Source) is zero.

procedure Insert(Container: in out Map;
 Key: in Key_Type;
 New_Item: in Element_Type;
 Position: out Cursor;
 Inserted: out Boolean);

procedure Insert(Container: in out Map;
 Key: in Key_Type;
 Position: out Cursor;
 Inserted: out Boolean);

procedure Insert(Container: in out Map;
 Key: in Key_Type;
 New_Item: in Element_Type);

These insert a new node into the map unless a node with an
equivalent key already exists. If it does exist then the first
two return with Inserted set to False and Position indicating
the node whereas the third raises Constraint_Error (the
element value is not changed). If a node with equivalent
key is not found then a new node is created with the given
key, the element value is set to New_Item when that is
given and otherwise it takes its default value (if any), and
Position is set when given.

Unlike vectors and lists, we do not have to say where the
new node is to be inserted because of course this is an
ordered map and it just goes in the correct place according
to the order given by the generic parameter "<".

procedure Include(Container: in out Map;
 Key: in Key_Type;
 New_Item: in Element_Type);

This is somewhat like the last Insert except that if an
existing node with an equivalent key is found then it is
replaced (rather than raising Constraint_Error). Note that
both the key and the element are updated. This is because
equivalent keys might not be totally equal.

John Barnes 289

Ada User Journal Volume 26, Number 4, December 2005

For example the key part might be a record with part
number and year of introduction, thus

type Part_Key is
 record
 Part_Number: Integer;
 Year: Integer;
 end record;

and we might define the ordering relationship to be used as
the generic parameter simply in terms of the part number

function "<" (Left, Right: Part_Key) return Boolean is
begin
 return Left.Part_Number < Right.Part_Number;
end "<";

In this situation, the keys could match without the year
component being the same and so it would need to be
updated. In other words with this definition of the ordering
relation, two keys are equivalent provided just the part
numbers are the same.

procedure Replace(Container: in out Map;
 Key: in Key_Type;
 New_Item: in Element_Type);

In this case, Constraint_Error is raised if the node does not
already exist. On replacement both the key and the element
are updated as for Include.

Perhaps a better example of equivalent keys not being
totally equal is if the key were a string. We might decide
that the case of letter did not need to match in the test for
equivalence but nevertheless we would probably want to
update with the string as used in the parameter of Replace.

procedure Exclude(Container: in out Map;
 Key: in Key_Type);

If there is a node with an equivalent key then it is deleted.
If there is not then nothing happens.

procedure Delete(Container: in out Map;
 Key: in Key_Type);

procedure Delete(Container: in out Map;
 Position: in out Cursor);

These delete a node. In the first case if there is no such
equivalent key then Constraint_Error is raised (by contrast
to Exclude which remains silent in this case). In the second
case if the cursor is No_Element then again
Constraint_Error is raised – there is also a check to ensure
that the cursor otherwise does designate a node in the
correct map (remember that cursors designate both an
entity and the container); if this check fails then
Program_Error is raised.

Perhaps it is worth observing that Insert, Include, Replace,
Exclude and Delete form a sort of progression from an
operation that will insert something, through operations that
might insert, will neither insert nor delete, might delete, to
the final operation that will delete something. Note also that
Include, Replace and Exclude do not apply to lists and
vectors.

function First(Container: Map) return Cursor;
function Last(Container: Map) return Cursor;
function Next(Position: Cursor) return Cursor;
procedure Next(Position: in out Cursor);
function Find(Container: Map;
 Key: Key_Type) return Cursor;
function Element(Container: Map;
 Key: Key_Type) return Element;
function Contains(Container: Map;
 Key: Key_Type) return Boolean;

These should be self-evident. Unlike the operations on
vectors and lists, Find logically searches the whole map and
not just starting at some point (and since it searches the
whole map there is no point in having Reverse_Find). (In
implementation terms it won't actually search the whole
map because it will be structured in a way that makes this
unnecessary – as a balanced tree perhaps.) Moreover, Find
uses the equivalence relation based on the "<" parameter so
in the example it only has to match the part number and not
the year. The function call Element(My_Map, My_Key) is
equivalent to Element(Find(My_Map, My_Key)).

function Has_Element(Position: Cursor) return Boolean;

procedure Iterate(Container: in Map;
 Process: not null access procedure
 (Position: in Cursor));

These are also as for other containers.

And at last we have

private
 ... -- not specified by the language
end Ada.Containers.Ordered_Maps;

We have omitted to mention quite a few operations that
have no equivalent in hashed maps – we will come back to
these in a moment.

As an example we can make a container to hold the
information concerning spare parts. We can use the type
Part_Key and the function "<" as above. We can suppose
that the element type is

type Stock_Info is
 record
 Shelf: Character range 'A' .. 'T';
 Stock: Integer;
 end record;

This gives both the shelf letter and the number in stock.

We can then declare the container thus

package Store_Maps is
 new Ordered_Maps(Key_Type => Part_Key,
 Element_Type => Stock_Info,
 "<" => "<");

The_Store: Store_Maps.Map;

The last parameter could be omitted because the formal has
a <> default.

We can now add items to our store by calling

290 Rat ionale for Ada 2005: 6a Containers

Volume 26, Number 4, December 2005 Ada User Journal

The_Store.Insert((34618, 1998), ('F', 25));
The_Store.Insert((27134, 2004), ('C', 45));
...

We might now have a procedure which, given a part
number, checks to see if it exists and that the stock is not
zero, and if so returns the shelf letter and year number and
decrements the stock count.

procedure Request(Part: in Integer; OK: out Boolean;
 Year: out Integer; Shelf: out Character) is
 C: Cursor;
 K: Part_Key;
 E: Stock_Info;
begin
 C := The_Store.Find((Part, 0));
 if C = No_Element then
 OK := False; return; -- no such key
 end if;
 E := Element(C); K := Key(C);
 Year := K.Year; Shelf := E.Shelf;
 if E.Stock = 0 then
 OK := False; return; -- out of stock
 end if;
 Replace_Element(C, (Shelf, E.Stock–1));
 OK := True;
end Request;

Note that we had to put a dummy year number in the call of
Find. We could of course use the new <> notation for this

C := The_Store.Find((Part, others => <>));

The reader can improve this example at leisure – by using
Update_Element for example.

As another example suppose we wish to check all through
the stock looking for parts whose stock is low, perhaps less
than some given parameter. We can use Iterate for this as
follows

procedure Check_Stock(Low: in Integer) is

 procedure Check_It(C: in Cursor) is
 begin
 if Element(C).Stock < Low then
 -- print a message perhaps
 Put("Low stock of part ");
 Put_Line(Key(C).Part_Number);
 end if;
 end Check_It;

begin
 The_Store.Iterate(Check_It'Access);
end Check_Stock;

Note that this uses a so-called downward closure. The
procedure Check_It has to be declared locally to
Check_Stock in order to access the parameter Low. (Well
you could declare it outside and copy the parameter Low to
a global variable but that is just the sort of wicked thing one
has to do in lesser languages (such as even Ada 95). It is
not task safe for one thing.)

Another approach is to use First and Next and so on thus

procedure Check_Stock(Low: in Integer) is
 C: Cursor := The_Store.First;
begin
 loop
 exit when C = No_Element;
 if Element(C).Stock < Low then
 -- print a message perhaps
 Put("Low stock of part ");
 Put_Line(Key(C).Part_Number);
 end if;
 C := The_Store.Next(C);
 end loop;
end Check_Stock;

We will now consider hashed maps. The trouble with
ordered maps in general is that searching can be slow when
the map has many entries. Techniques such as a binary tree
can be used but even so the search time will increase at
least as the logarithm of the number of entries. A better
approach is to use a hash function. This will be familiar to
many readers (especially those who have written
compilers). The general idea is as follows.

We define a function which takes a key and returns some
value in a given range. In the case of the Ada containers it
has to return a value of the modular type Hash_Type which
is declared in the root package Ada.Containers. We could
then convert this value onto a range representing an index
into an array whose size corresponds to the capacity of the
map. This index value is the preferred place to store the
entry. If there already is an entry at this place (because
some other key has hashed to the same value) then a
number of approaches are possible. One way is to create a
list of entries with the same index value (often called
buckets); another way is simply to put it in the next
available slot. The details don't matter. But the overall
effect is that provided the map is not too full and the hash
function is good then we can find an entry almost
immediately more or less irrespective of the size of the
map.

So as users all we have to do is to define a suitable hash
function. It should give a good spread of values across the
range of Hash_Type for the population of keys, it should
avoid clustering and above all for a given key it must
always return the same hash value. A good discussion on
hash functions by Knuth will be found in [1].

Defining good hash functions needs care. In the case of the
part numbers we might multiply the part number by some
obscure prime number and then truncate the result down to
the modular type Hash_Type. The author hesitates to give
an example but perhaps

function Part_Hash(P: Part_Key) return Hash_Type is
 M31: constant := 2**31–1; -- a nice Mersenne prime
begin
 return Hash_Type(P.Part_Number) * M31;
end Part_Hash;

On reflection that's probably a very bad prime to use
because it is so close to half of 2**32 a typical value of
Hash_Type'Last+1. Of course it doesn't have to be prime

John Barnes 291

Ada User Journal Volume 26, Number 4, December 2005

but simply relatively prime to it such as 5**13. Knuth
suggests dividing the range by the golden number τ =
(√5+1)/2 = 1.618... and then taking the nearest number
relatively prime which is in fact simply the nearest odd
number (in this case it is 2654435769).

Here is a historic interlude. Marin Mersenne (1588-1648)
was a Franciscan monk who lived in Paris. He studied
numbers of the form Mp = 2p – 1 where p is prime. A lot of
these are themselves prime. Mersenne gave a list of those
upto 257 which he said were prime (namely 2, 3, 5, 7, 13,
17, 19, 31, 67, 127, 257). It was not until 1947 that it was
finally settled that he got some of them wrong (61, 89, and
107 are also prime but 67 and 257 are not). At the time of
writing there are 42 known Mersenne primes and the
largest which is also the largest known prime number is
M25964951 – see www.mersenne.org.

The specification of the hashed maps package is very
similar to that for ordered maps. It starts

generic
 type Key_Type is private;
 type Element_Type is private;
 with function Hash(Key: Key_Type) return Hash_Type;
 with function Equivalent_Keys(Left, Right: Key_Type)
 return Boolean;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Hashed_Maps is
 pragma Preelaborate(Hashed_Maps);

The differences from the ordered maps package are that
there is an extra generic parameter Hash giving the hash
function and the ordering parameter "<" has been replaced
by the function Equivalent_Keys. It is this function that
defines the equivalence relationship for hashed maps; it is
important that Equivalent_Keys(X, Y) is always the same as
Equivalent_Keys(Y, X). Moreover if X and Y are equivalent
and Y and Z are equivalent then X and Z must also be
equivalent.

Note that the function Equivalent_Keys in the ordered maps
package discussed above corresponds to the formal generic
parameter of the same name in this hashed maps package.
This should make it easier to convert between the two
forms of packages.

Returning to our example, if we now write

function Equivalent_Parts(Left, Right: Part_Key)
 return Boolean is
begin
 return Left.Part_Number = Right.Part_Number;
end Equivalent_Parts;

then we can instantiate the hashed maps package as follows

package Store_Maps is
 new Hashed_Maps(Key_Type => Part_Key,
 Element_Type => Stock_Info,
 Hash => Part_Hash,
 Equivalent_Keys => Equivalent_Parts);

The_Store: Store_Maps.Map;

and then the rest of our example will be exactly as before.
It is thus easy to convert from an ordered map to a hashed
map and vice versa provided of course that we only use the
facilities common to both.

We will finish this discussion of maps by briefly
considering the additional facilities in the two packages.

The ordered maps package has the following additional
subprograms

procedure Delete_First(Container: in out Map);
procedure Delete_Last(Container: in out Map);
function First_Element(Container: Map)
 return Element_Type;
function First_Key(Container: Map) return Key_Type;
function Last_Element(Container: Map)
 return Element_Type;
function Last_Key(Container: Map) return Key_Type;
function Previous(Position: Cursor) return Cursor;
procedure Previous(Position: in out Cursor);
function Floor(Container: Map;
 Key: Key_Type) return Cursor;
function Ceiling(Container: Map;
 Key: Key_Type) return Cursor;
function "<" (Left, Right: Cursor) return Boolean;
function ">" (Left, Right: Cursor) return Boolean;
function "<" (Left: Cursor; Right: Key_Type)
 return Boolean;
function ">" (Left: Cursor; Right: Key_Type)
 return Boolean;
function "<" (Left: Key_Type; Right: Cursor)
 return Boolean;
function ">" (Left: Key_Type; Right: Cursor)
 return Boolean;
procedure Reverse_Iterate(Container: in Map;
 Process: not null access procedure
 (Position: in Cursor));

These are again largely self-evident. The functions Floor
and Ceiling are interesting. Floor searches for the last node
whose key is not greater than Key and similarly Ceiling
searches for the first node whose key is not less than Key –
they return No_Element if there is no such element. The
subprograms Previous are of course the opposite of Next
and Reverse_Iterate is like Iterate only backwards.

The functions "<" and ">" are mostly for convenience. Thus
the first is equivalent to

function "<" (Left, Right: Cursor) return Boolean is
begin
 return Key(Left) < Key(Right);
end "<";

Clearly these additional operations must be avoided if we
wish to retain the option of converting to a hashed map
later.

Hashed maps have a very important facility not in ordered
maps which is the ability to specify a capacity as for the
vectors package. (Underneath their skin the hashed maps
are a bit like vectors whereas the ordered maps are a bit like
lists.) Thus we have

292 Rat ionale for Ada 2005: 6a Containers

Volume 26, Number 4, December 2005 Ada User Journal

procedure Reserve_Capacity(Container: in out Map;
 Capacity: in Count_Type);

function Capacity(Container: Map) return Count_Type;

The behaviour is much as for vectors. We don't have to set
the capacity ourselves since it will be automatically
extended as necessary but it might significantly improve
performance to do so. In the case of maps, increasing the
capacity requires the hashing to be redone which could be
quite time consuming, so if we know that our map is going
to be a big one, it is a good idea to set an appropriate
capacity right from the beginning. Note again that
Length(M) cannot exceed Capacity(M) but might be much
less.

The other additional subprograms for hashed maps are

function Equivalent_Keys(Left, Right: Cursor)
 return Boolean;
function Equivalent_Keys(Left: Cursor;
 Right: Key_Type) return Boolean;
function Equivalent_Keys(Left: Key_Type;
 Right: Cursor) return Boolean;

These (like the additional "<" and ">" for ordered maps) are
again mostly for convenience. The first is equivalent to

function Equivalent_Keys(Left, Right: Cursor)
 return Boolean is
begin
 return Equivalent_Keys(Key(Left), Key(Right));
end Equivalent_Keys;

Before moving on to sets it should be noticed that there are
also some useful functions in the string packages. The main
one is

with Ada.Containers;
function Ada.Strings.Hash(Key: String)
 return Containers.Hash_Type;
pragma Pure(Ada.Strings.Hash);

There is a similar function Ada.Strings.Unbounded.Hash
where the parameter Key has type Unbounded_String. It
simply converts the parameter to the type String and then
calls Ada.Strings.Hash. There is also a generic function for
bounded strings which again calls the basic function
Ada.Strings.Hash. For completeness the function
Ada.Strings.Fixed.Hash is a renaming of Ada.Strings.Hash.

These are provided because it is often the case that the key
is a string and they save the user from devising good hash
functions for strings which might cause a nasty headache.

We could for example save ourselves the worry of defining
a good hash function in the above example by making the
part number into a 5-character string. So we might write

function Part_Hash(P: Part_Key) return Hash_Type is
begin
 return Ada.Strings.Hash(P.Part_Number);
end Part_Hash;

and if this doesn't work well then we can blame the vendor.

4 Sets
Sets, like maps, come in two forms: hashed and ordered.
Sets are of course just collections of values and there is no
question of a key (we can perhaps think of the value as
being its own key). Thus in the case of an ordered set the
values are stored in order whereas in the case of a map, it is
the keys that are stored in order. As well as the usual
operations of inserting elements into a set and searching
and so on, there are also many operations on sets as a
whole that do not apply to the other containers – these are
the familiar set operations such as union and intersection.

Here is the specification of the ordered sets package giving
just those facilities that are common to both kinds of sets.

generic
 type Element_Type is private;
 with function "<" (Left, Right: Element_Type)
 return Boolean is <>;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Ordered_Sets is
 pragma Preelaborate(Ordered_Sets);

 function Equivalent_Elements(Left, Right:
 Element_Type) return Boolean;

 type Set is tagged private;
 pragma Preelaborable_Initialization(Set);
 type Cursor is private;
 pragma Preelaborable_Initialization(Cursor);
 Empty_Set: constant Set;
 No_Element: constant Cursor;

The only differences from the maps package (apart from
the identifiers) are that there is no key type and both "<" and
"=" apply to the element type (whereas in the case of maps,
the operation "<" applies to the key type). Thus the ordering
relationship "<" defined on elements defines equivalence
between the elements whereas "=" defines equality.

It is possible for two elements to be equivalent but not
equal. For example if they were strings then we might
decide that the ordering (and thus equivalence) ignored the
case of letters but that equality should take the case into
account. (They could also be equal but not equivalent but
that is perhaps less likely.)

And as in the case of the maps package, the equality
operation on elements is only used by the function "=" for
comparing two sets.

Again we have the usual rules as explained for maps. Thus
if x < y is true then y < x must be false; x < y and y < z must
imply x < z; and x = y and y = x must be the same.

For the convenience of the user the function Equivalent_
Elements is declared explicitly. It is equivalent to

function Equivalent_Elements(Left, Right:
 Element_Type) return Boolean is
begin
 return not(Left < Right) and not(Right < Left);
end Equivalent_Elements;

John Barnes 293

Ada User Journal Volume 26, Number 4, December 2005

This function Equivalent_Elements corresponds to the
formal generic parameter of the same name in the hashed
sets package discussed below. This should make it easier to
convert between the two forms of packages.

function "=" (Left, Right: Set) return Boolean;
function Equivalent_Sets(Left, Right: Set) return Boolean;
function To_Set(New_Item: Element_Type) return Set;
function Length(Container: Set) return Count_Type;
function Is_Empty(Container: Set) return Boolean;
procedure Clear(Container: in out Set);

Note the addition of Equivalent_Sets and To_Set. Two sets
are equivalent if they have the same number of elements
and the pairs of elements are equivalent. This contrasts with
the function "=" where the pairs of elements have to be
equal rather than equivalent. Remember that elements
might be equivalent but not equal (as in the example of a
string mentioned above). The function To_Set takes a
single element and creates a set. It is particularly
convenient when used in conjunction with operations such
as Union described below. The other subprograms are as in
the other containers.

function Element(Position: Cursor) return Element_Type;

procedure Replace_Element(Container: in out Set;
 Position: in Cursor;
 New_Item: in Element_Type);

procedure Query_Element(Position: in Cursor;
 Process: not null access procedure
 (Element: in Element_Type));

Again these are much as expected except that there is no
procedure Update_Element. This is because the elements
are arranged in terms of their own value (either by order or
through the hash function) and if we just change an element
in situ then it might become out of place (this problem does
not arise with the other containers). This also means that
Replace_Element has to ensure that the value New_Item is
not equivalent to an element in a different position; if it is
then Program_Error is raised. We will return to the problem
of the missing Update_Element later.

procedure Move(Target, Source: in out Set);

This is just as for the other containers.

procedure Insert(Container: in out Set;
 New_Item: in Element_Type;
 Position: out Cursor;
 Inserted: out Boolean);

procedure Insert(Container: in out Set;
 New_Item: in Element_Type);

These insert a new element into the set unless an equivalent
element already exists. If it does exist then the first one
returns with Inserted set to False and Position indicating
the element whereas the second raises Constraint_Error (the
element value is not changed). If an equivalent element is
not in the set then it is added and Position is set
accordingly.

procedure Include(Container: in out Set;
 New_Item: in Element_Type);

This is somewhat like the last Insert except that if an
equivalent element is already in the set then it is replaced
(rather than raising Constraint_Error).

procedure Replace(Container: in out Set;
 New_Item: in Element_Type);

In this case, Constraint_Error is raised if an equivalent
element does not already exist.

procedure Exclude(Container: in out Set;
 Item: in Element_Type);

If an element equivalent to Item is already in the set, then it
is deleted.

procedure Delete(Container: in out Set;
 Item: in Element_Type);

procedure Delete(Container: in out Set;
 Position: in out Cursor);

These delete an element. In the first case if there is no such
equivalent element then Constraint_Error is raised. In the
second case if the cursor is No_Element then again
Constraint_Error is also raised – there is also a check to
ensure that the cursor otherwise does designate an element
in the correct set (remember that cursors designate both an
entity and the container); if this check fails then
Program_Error is raised.

And now some new stuff, the usual set operations.

procedure Union(Target: in out Set;
 Source: in Set);
function Union(Left, Right: Set) return Set;
function "or" (Left, Right: Set) return Set
 renames Union;

procedure Intersection(Target: in out Set;
 Source: in Set);
function Intersection(Left, Right: Set) return Set;
function "and" (Left, Right: Set) return Set
 renames Intersection;

procedure Difference(Target: in out Set;
 Source: in Set);
function Difference(Left, Right: Set) return Set;
function "–" (Left, Right: Set) return Set
 renames Difference;

procedure Symmetric_Difference(Target: in out Set;
 Source: in Set);
function Symmetric_Difference (Left, Right: Set)
 return Set;
function "xor" (Left, Right: Set) return Set
 renames Symmetric_Difference;

These all do exactly what one would expect using the
equivalence relation on the elements.

function Overlap(Left, Right: Set) return Boolean;
function Is_Subset(Subset: Set; Of_Set: Set)
 return Boolean;

294 Rat ionale for Ada 2005: 6a Containers

Volume 26, Number 4, December 2005 Ada User Journal

These are self-evident as well.

function First(Container: Set) return Cursor;
function Last(Container: Set) return Cursor;
function Next(Position: Cursor) return Cursor;
procedure Next(Position: in out Cursor);
function Find(Container: Set;
 Item: Element_Type) return Cursor;
function Contains(Container: Set;
 Item: Element_Type) return Boolean;

These should be self-evident and are very similar to the
corresponding operations on maps. Again unlike the
operations on vectors and lists, Find logically searches the
whole set and not just starting at some point (there is also
no Reverse_Find). Moreover, Find uses the equivalence
relation based on the "<" parameter.

function Has_Element(Position: Cursor) return Boolean;

procedure Iterate(Container: in Set;
 Process: not null access procedure
 (Position: in Cursor));

These are also as for other containers.

The sets packages conclude with an internal generic
package called Generic_Keys. This package enables some
set operations to be performed in terms of keys where the
key is a function of the element. Note carefully that in the
case of a map, the element is defined in terms of the key
whereas here the situation is reversed. An equivalence
relationship is defined for these keys as well; this is defined
by a generic parameter "<" for ordered sets and
Equivalent_Keys for hashed sets.

In the case of ordered sets the formal parameters are

generic
 type Key_Type(<>) is private;
 with function Key(Element: Element_Type)
 return Key_Type;
 with function "<" (Left, Right: Key_Type)
 return Boolean is <>;
package Generic_Keys is

The following are then common to the package
Generic_Keys for both hashed and ordered sets.

function Key(Position: Cursor) return Key_Type;
function Element(Container: Set; Key: Key_Type)
 return Element_Type;

procedure Replace(Container: in out Set;
 Key: in Key_Type; New_Item: in Element_Type);
procedure Exclude(Container: in out Set;
 Key: in Key_Type);
procedure Delete(Container: in out Set;
 Key: in Key_Type);

function Find(Container: Set; Key: Key_Type)
 return Cursor;
function Contains(Container: Set; Key: Key_Type)
 return Boolean;

procedure Update_Element_Preserving_Key(
 Container: in out Set; Position: in Cursor;
 Process: not null access procedure
 (Element: in out Element_Type));

and then finally

end Generic_Keys;

private
 ... -- not specified by the language
end Ada.Containers.Ordered_Sets;

It is expected that most user of sets will use them in a
straightforward manner and that the operations specific to
sets such as Union and Intersection will be dominant.

However, sets can be used as sort of economy class maps
by using the inner package Generic_Keys. Although this is
certainly not for the novice we will illustrate how this
might be done by reconsidering the stock problem using
sets rather than maps. We declare

type Part_Type is
 record
 Part_Number: Integer;
 Year: Integer;
 Shelf: Character range 'A' .. 'T';
 Stock: Integer;
 end record;

Here we have put all the information in the one type.

We then declare "<" much as before

function "<" (Left, Right: Part_Type) return Boolean is
begin
 return Left.Part_Number < Right.Part_Number;
end "<";

and then instantiate the package thus

package Store_Sets is
 new Ordered_Sets(Element_Type => Part_Type);

The_Store: Store_Sets.Set;

We have used the default generic parameter mechanism for
"<" this time by way of illustration.

In this case we add items to the store by calling

The_Store.Insert((34618, 1998, 'F', 25));
The_Store.Insert((27134, 2004, 'C', 45));
...

The procedure for checking the stock could now become

procedure Request(Part: in Integer: OK: out Boolean;
 Year: out Integer; Shelf: out Character) is
 C: Cursor;
 E: Part_Type;
begin
 C := The_Store.Find((Part, others => <>));
 if C = No_Element then
 OK := False; return; -- no such item
 end if;
 E := Element(C);

John Barnes 295

Ada User Journal Volume 26, Number 4, December 2005

 Year := E.Year;
 Shelf := E.Shelf;
 if E.Stock = 0 then
 OK := False; return; -- out of stock
 end if;
 Replace_Element(C, (E.Part_Number, Year;
 Shelf, E.Stock–1));
 OK := True;
end Request;

This works but is somewhat unsatisfactory. For one thing
we have had to make up dummy components in the call of
Find (using <>) and moreover we have had to replace the
whole of the element although we only wanted to update
the Stock component. Moreover, we cannot use
Update_Element because it is not defined for sets at all.
Remember that this is because it might make things out of
order; that wouldn't be a problem in this case because we
don't want to change the part number and our ordering is
just by the part number.

A better approach is to use the part number as a key. We
define

type Part_Key is new Integer;

function Part_No(P: Part_Type) return Part_Key is
begin
 return Part_Key(P.Part_Number);
end Part_No;

and then

package Party is
 new Generic_Keys(Key_Type => Part_Key,
 Key => Part_No);
use Party;

Note that we do not have to define "<" on the type Part_Key
at all because it already exists since Part_Key is an integer
type. And the instantiation uses it by default.

And now we can rewrite the Request procedure as follows

procedure Request(Part: in Part_Key; OK: out Boolean;
 Year: out Integer; Shelf: out Character) is
 C: Cursor;
 E: Part_Type;
begin
 C := Find(The_Store, Part);
 if C = No_Element then
 OK := False; return; -- no such item
 end if;
 E := Element(C);
 Year := E.Year; Shelf := E.Shelf;
 if E.Stock = 0 then
 OK := False; return; -- out of stock
 end if;

 -- we are now going to update the stock level
 declare
 procedure Do_It(E: in out Part_Type) is
 begin
 E.Stock := E.Stock – 1;
 end Do_It;

 begin
 Update_Element_Preserving_Key(The_Store, C,
 Do_It'Access);
 end;
 OK := True;
end Request;

This seems hard work but has a number of advantages. The
first is that the call of Find is more natural and only
involves the part number (the key) – note that this is a call
of the function Find in the instantiation of Generic_Keys
and takes just the part number. And the other is that the
update only involves the component being changed. We
mentioned earlier that there was no Update_Element for
sets because of the danger of creating a value that was in
the wrong place. In the case of the richly named
Update_Element_Preserving_Key it also checks to ensure
that the element is indeed still in the correct place (by
checking that the key is still the same); if it isn't it removes
the element and raises Program_Error.

But the user is warned to take care when using the package
Generic_Keys. It is absolutely vital that the relational
operation and the function (Part_No) used to instantiate
Generic_Keys are compatible with the ordering used to
instantiate the parent package Containers.Ordered_Sets
itself. If this is not the case then the sky might fall in.

Incidentally, the procedure for checking the stock which
previously used the maps package now becomes

procedure Check_Stock(Low: in Integer) is

 procedure Check_It(C: in Cursor) is
 begin
 if Element(C).Stock < Low then
 -- print a message perhaps
 Put("Low stock of part ");
 Put_Line(Element(C).Part_Number); -- changed
 end if;
 end Check_It;

begin
 The_Store.Iterate(Check_It'Access);
end Check_Stock;

The only change is that the call of Key in

 Put_Line(Key(C).Part_Number);

when using the maps package has been replaced by
Element. A minor point is that we could avoid calling
Element twice by declaring a constant E in Check_It thus

E: constant Part_Type := Element(C);

and then writing E.Stock < Low and calling Put_Line with
E.Part_Number.

A more important point is that if we have instantiated the
Generic_Keys inner package as illustrated above then we
can leave Check_It unchanged to call Key. But it is
important to realise that we are then calling the function
Key internal to the instantiation of Generic_Keys
(flippantly called Party) and not that from the instantiation
of the parent ordered sets package (Store_Sets) because

296 Rat ionale for Ada 2005: 6a Containers

Volume 26, Number 4, December 2005 Ada User Journal

that has no such function. This illustrates the close affinity
between the sets and maps packages.

And finally there is a hashed sets package which has strong
similarities to both the ordered sets package and the hashed
maps package. We can introduce this much as for hashed
maps by giving the differences between the two sets
packages, the extra facilities in each and the impact on the
part number example.

The specification of the hashed sets package starts

generic
 type Element_Type is private;
 with function Hash(Element: Element_Type)
 return Hash_Type;
 with function Equivalent_Elements(Left, Right:
 Element_Type) return Boolean;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Hashed_Sets is
 pragma Preelaborate(Hashed_Sets);

The differences from the ordered sets package are that there
is an extra generic parameter Hash and the ordering
parameter "<" has been replaced by the function
Equivalent_Elements.

So if we have

function Equivalent_Parts(Left, Right: Part_Type)
 return Boolean is
begin
 return Left.Part_Number = Right.Part_Number;
end Equivalent_Parts;

function Part_Hash(P: Part_Type) return Hash_Type is
 M31: constant := 2**31–1; -- a nice Mersenne prime
begin
 return Hash_Type(P.Part_Number) * M31;
end Part_Hash;

(which are very similar to the hashed map example – the
only changes are to the parameter type name) then we can
instantiate the hashed sets package as follows

package Store_Sets is
 new Hashed_Sets(Element_Type => Part_Type,
 Hash => Part_Hash,
 Equivalent_Elements => Equivalent_Parts);

The_Store: Store_Sets.Set;

and then the rest of our example will be exactly as before.
It is thus easy to convert from an ordered set to a hashed set
and vice versa provided of course that we only use the
facilities common to both.

It should also be mentioned that the inner package
Generic_Keys for hashed sets has the following formal
parameters

generic
 type Key_Type(<>) is private;
 with function Key(Element: Element_Type)
 return Key_Type

 with function Hash(Key: Key_Type)
 return Hash_Type;
 with function Equivalent_Keys(Left, Right: Key_Type)
 return Boolean;
package Generic_Keys is

The differences from that for ordered sets are the addition
of the function Hash and the replacement of the
comparison operator "<" by Equivalent_Keys.

(Incidentally the package Generic_Keys for ordered sets
also exports a function Equivalent_Keys for uniformity
with the hashed sets package.)

Although our example itself is unchanged we do have to
change the instantiation of Generic_Keys thus

type Part_Key is new Integer;

function Part_No(P: Part_Type) return Part_Key is
begin
 return Part_Key(P.Part_Number);
end Part_No;

function Part_Hash(P: Part_Key) return Hash_Type is
 M31: constant := 2**31–1; -- a nice Mersenne prime
begin
 return Hash_Type(P) * M31;
end Part_Hash;

function Equivalent_Parts(Left: Right: Part_Key)
 return Boolean is
begin
 return Left = Right;
end Equivalent_Parts;

and then

package Party is
 new Generic_Key(Key_Type => Part_Key,
 Key => Part_No;
 Hash => Part_Hash
 Equivalent_Keys => Equivalent_Parts);
use Party;

The hash function is similar to that used with hashed maps.
The type Part_Key and function Part_No are the same as
for ordered sets. We don't really need to declare the
function Equivalent_Parts since we could use "=" as the
actual parameter for Equivalent_Keys.

We will finish this discussion of sets by briefly considering
the additional facilities in the two sets packages (and their
inner generic keys packages) just as we did for the two
maps packages (the discussion is almost identical).

The ordered sets package has the following additional
subprograms

procedure Delete_First(Container: in out Set);
procedure Delete_Last(Container: in out Set);
function First_Element(Container: Set)
 return Element_Type;
function Last_Element(Container: Set)
 return Element_Type;
function Previous(Position: Cursor) return Cursor;

John Barnes 297

Ada User Journal Volume 26, Number 4, December 2005

procedure Previous(Position: in out Cursor);
function Floor(Container: Set;
 Item: Element_Type) return Cursor;
function Ceiling(Container: Set;
 Item: Element_Type) return Cursor;
function "<" (Left, Right: Cursor) return Boolean;
function ">" (Left, Right: Cursor) return Boolean;
function "<" (Left: Cursor; Right: Element_Type)
 return Boolean;

function ">" (Left: Cursor; Right: Element_Type)
 return Boolean;
function "<" (Left: Element_Type; Right: Cursor)
 return Boolean;
function ">" (Left: Element_Type; Right: Cursor)
 return Boolean;
procedure Reverse_Iterate(Container: in Set;
 Process: not null access procedure
 (Position: in Cursor));

These are again largely self-evident. The functions Floor
and Ceiling are similar to those for ordered maps – Floor
searches for the last element which is not greater than Item
and Ceiling searches for the first element which is not less
than Item – they return No_Element if there is not one.

The functions "<" and ">" are very important for ordered
sets. The first is equivalent to

function "<" (Left, Right: Cursor) return Boolean is
begin
 return Element(Left) < Element(Right);
end "<";

There is a general philosophy that the container packages
should work efficiently even if the elements themselves are
very large – perhaps even other containers. We should
therefore avoid copying elements. (Passing them as
parameters is of course no problem since they will be
passed by reference if they are large structures.) So in this
case the built-in comparison is valuable because it can
avoid the copying which would occur if we wrote the
function ourselves with the explicit internal calls of the
function Element.

On the other hand, there is a general expectation that keys
will be small and so there is no corresponding problem with
copying keys. Thus such built-in functions are less
important for maps than sets but they are provided for maps
for uniformity.

The following are additional in the package Generic_Keys
for ordered sets

function Equivalent_Keys(Left, Right: Key_Type)
 return Boolean;

This corresponds to the formal generic parameter of the
same name in the package Generic_Keys for hashed sets as
mentioned earlier.

function Floor(Container: Set;
 Key: Key_Type) return Cursor;
function Ceiling(Container: Set;
 Key: Key_Type) return Cursor;

These are much as the corresponding functions in the
parent package except that they use the formal parameter
"<" of Generic_Keys for the search.

Hashed sets, like hashed maps also have the facility to
specify a capacity as for the vectors package. Thus we have

procedure Reserve_Capacity(Container: in out Set;
 Capacity: in Count_Type);

function Capacity(Container: Set) return Count_Type;

The behaviour is much as for vectors and hashed maps. We
don't have to set the capacity ourselves since it will be
automatically extended as necessary but it might
significantly improve performance to do so. Note again that
Length(S) cannot exceed Capacity(S) but might be much
less.

The other additional subprograms for hashed sets are

function Equivalent_Elements(Left, Right: Cursor)
 return Boolean;
function Equivalent_Elements(Left: Cursor;
 Right: Element_Type) return Boolean;
function Equivalent_Elements(Left: Element_Type;
 Right: Cursor) return Boolean;

Again, these are very important for sets. The first is
equivalent to

function Equivalent_Elements(Left, Right: Cursor)
 return Boolean is
begin
 return Equivalent_Elements(Element(Left),
 Element(Right));
end Equivalent_Elements;

and once more we see that the built-in functions can avoid
the copying of the type Element that would occur if we
wrote the functions ourselves.

5 Indefinite containers
There are versions of the six container packages we have
just been discussing for indefinite types.

As mentioned in Section 1, an indefinite (sub)type is one
for which we cannot declare an object without giving a
constraint (either explicitly or though an initial value).
Moreover we cannot have an array of an indefinite subtype.
The type String is a good example. Thus we cannot declare
an array of the type String because the components might
not all be the same size and indexing would be a pain.
Class wide types are also indefinite.

The specification of the indefinite container for lists starts

generic
 type Element_Type(<>) is private;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Indefinite_Doubly_Linked_Lists is
 pragma Preelaborate(Indefinite_Doubly_Linked_Lists);

where we see that the formal type Element_Type has
unknown discriminants and so permits the actual type to be

298 Rat ionale for Ada 2005: 6a Containers

Volume 26, Number 4, December 2005 Ada User Journal

any indefinite type (and indeed a definite type as well). So
if we want to manipulate lists of strings where the
individual strings can be of any length then we declare

package String_Lists is new
 Ada.Containers.Indefinite_Doubly_Linked_Lists(String);

In the case of ordered maps we have

generic
 type Key_Type(<>) is private;
 type Element_Type(<>) is private;
 with function "<" (Left, Right: Key_Type)
 return Boolean is <>;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Indefinite_Ordered_Maps is
 pragma Preelaborate(Indefinite_Ordered_Maps);

showing that both Element_Type and Key_Type can be
indefinite.

There are two other differences from the definite versions
which should be noted.

One is that the Insert procedures for Vectors, Lists and
Maps which insert an element with its default value are
omitted (because there is no way to create a default
initialized object of an indefinite type anyway).

The other is that the parameter Element of the access
procedure Process of Update_Element (or the garrulous
Update_Element_Preserving_Key in the case of sets) can
be constrained even if the type Element_Type is
unconstrained.

As an example of the use of an indefinite container
consider the problem of creating an index. For each word in
a text file we need a list of its occurrences. The individual
words can be represented as just objects of the type String.
It is perhaps convenient to consider strings to be the same
irrespective of the case of characters and so we define

function Same_Strings(S, T: String) return Boolean is
begin
 return To_Lower(S) = To_Lower(T);
end Same_Strings;

where the function To_Lower is from the package
Ada.Characters.Handling.

We can suppose that the positions of the words are
described by a type Place thus

type Place is
 record
 Page: Text_IO.Positive_Count;
 Line: Text_IO.Positive_Count;
 Col: Text_IO.Positive_Count;
 end record;

The index is essentially a map from the type String to a list
of values of type Place. We first create a definite list
container for handling the lists thus

package Places is new Doubly_Linked_Lists(Place);

We then create an indefinite map container from the type
String to the type List thus

package Indexes is new Indefinite_Hashed_Maps(
 Key_Type => String;
 Element_Type => Places.List;
 Hash => Ada.Strings.Hash;
 Equivalent_Keys => Same_Strings;
 "=" => Places."=");

The index is then declared by writing

The_Index: Indexes.Map;

Note that this example illustrates the use of nested
containers since the elements in the map are themselves
containers (lists).

It might be helpful for the index to contain information
saying which file it refers to. We can extend the type Map
thus (remember that container types are tagged)

type Text_Map is new Indexes.Map with
 record
 File_Ref: Text_IO.File_Access;
 end record;

and now we can more usefully declare

My_Index: Text_Map :=
 (Indexes.Empty_Map with My_File'Access);

We can now declare various subprograms to manipulate
our map. For example to add a new item we have first to
see whether the word is already in the index – if it is not
then we add the new word to the map and set its list to a
single element whereas if it is already in the index then we
add the new place entry to the corresponding list. Thus

procedure Add_Entry(Index: in out Text_Map;
 Word: String; P: Place) is
 M_Cursor: Indexes.Cursor;
 A_LIst: Places.List; -- empty list of places
begin
 M_Cursor := Index.Find(Word);
 if M_Cursor = Indexes.No_Element then
 -- it's a new word
 A_LIst.Append(P);
 Index.Insert(Word, A_List);
 else
 -- it's an old word
 A_LIst := Element(M_Cursor); -- get old list
 A_List.Append(P); -- add to it
 Index.Replace_Element(M_Cursor, A_LIst);
 end if;
end Add_Entry;

A number of points should be observed. The type
Text_Map being derived from Indexes.Map inherits all the
map operations and so we can write Index.Find(Word)
which uses the prefixed notation (or we can write
Indexes.Find(Index, Word)). On the other hand auxiliary
entities such as the type Cursor and the constant
No_Element are of course in the package Indexes and have
to be referred to as Indexes.Cursor and so on.

John Barnes 299

Ada User Journal Volume 26, Number 4, December 2005

A big problem with the procedure as written however is
that it uses Element and Replace_Element rather than
Update_Element. This means that it copies the whole of the
existing list, adds the new item to it, and then copies it
back. Here is an alternative version

procedure Add_Entry(Index: in out Text_Map;
 Word: String; P: Place) is
 M_Cursor: Indexes.Cursor;
 A_LIst: Places.List; -- empty list of places
begin
 M_Cursor := Index.Find(Word);
 if M_Cursor = Indexes.No_Element then
 -- it's a new word
 A_LIst.Append(P);
 Index.Insert(Word, A_List);
 else
 -- it's an old word
 declare
 -- this procedure adds to the list in situ
 procedure Add_It(The_Key: in String;
 The_List: in out Places.List) is
 begin
 The_List.Append(P);
 end Add_It;
 begin
 -- and here we call it via Update_Element
 Index.Update_Element(M_Cursor, Add_It'Access);
 end;
 end if;
end Add_Entry;

This is still somewhat untidy. In the case of a new word we
might as well make the new map entry with an empty list
and then update it thereby sharing the calls of Append. We
get

procedure Add_Entry(Index: in out Text_Map;
 Word: String; P: Place) is
 M_Cursor: Indexes.Cursor := Index.Find(Word);
 OK: Boolean;
begin
 if M_Cursor = Indexes.No_Element then
 -- it's a new word
 Index.Insert(Word, Places.Empty_List, M_Cursor, OK);
 -- M_Cursor now refers to new position
 -- and OK will be True
 end if;
 declare
 -- this procedure adds to the list in situ
 procedure Add_It(The_Key: in String;
 The_List: in out Places.List) is
 begin
 The_List.Append(P);
 end Add_It;
 begin
 -- and here we call it via Update_Element
 Index.Update_Element(M_Cursor, Add_It'Access);
 end;
end Add_Entry;

It will be recalled that there are various versions of Insert.
We have used that which has two out parameters being the
position where the node was inserted and a Boolean
parameter indicating whether a new node was inserted or
not. In this case we know that it will be inserted and so the
final parameter is a nuisance (but sadly we cannot default
out parameters). Note also that we need not give the
parameter Places.Empty_List because another version of
Insert will do that automatically since that is the default
value of a list anyway.

Yet another approach is not to use Find but just call Insert.
We can even use the defaulted version – if the word is
present then the node is not changed and the position
parameter indicates where it is, if the word is not present
then a new node is made with an empty list and again the
position parameter indicates where it is.

procedure Add_Entry(Index: in out Text_Map;
 Word: String; P: Place) is
 M_Cursor: Indexes.Cursor;
 Inserted: Boolean;
begin
 Index.Insert(Word, M_Cursor, Inserted);
 -- M_Cursor now refers to position of node
 -- and Inserted indicates whether it was added
 declare
 -- this procedure adds to the list in situ
 procedure Add_It(The_Key: in String;
 The_List: in out Places.List) is
 begin
 The_List.Append(P);
 end Add_It;
 begin
 -- and here we call it via Update_Element
 Index.Update_Element(M_Cursor, Add_It'Access);
 end;
end Add_Entry;

Curiously enough we do not need to use the value of
Inserted. We leave the reader to decide which of the
various approaches is best.

We can now do some queries on the index. For example we
might want to know how many different four-lettered
words there are in the text. We can either use Iterate or do it
ourselves with Next as follows

function Four_Letters(Index: Text_Map) return Integer is
 Count: Integer := 0;
 C: Indexes.Cursor := Index.First;
begin
 loop
 if Key(C)'Length = 4 then
 Count := Count + 1;
 end if;
 Indexes.Next(C);
 exit when C = Indexes.No_Element;
 end loop;
 return Count;
end Four_Letters;

300 Rat ionale for Ada 2005: 6a Containers

Volume 26, Number 4, December 2005 Ada User Journal

We might finally wish to know how many four-lettered
words there are on a particular page. (This is just an
exercise – it would clearly be simplest to search the original
text!) We use Iterate this time both to scan the map for the
words and then to scan each list for the page number

function Four_Letters_On_Page(Index: Text_Map;
 Page: Text_IO.Positive_Count) return Integer is
 Count: Integer := 0;

 procedure Do_It_Map(C: Indexes.Cursor) is

 procedure Do_It_List(C: Places.Cursor) is
 begin
 if Element(C).Page = Page then
 Count := Count + 1;
 end if;
 end Do_It_LIst;

 procedure Action(K: String; E: Places.List) is
 begin
 if K'Length = 4 then
 -- now scan list for instances of Page
 E.Iterate(Do_It_List'Access);
 end if;
 end Action;

 begin
 Indexes.Query_Element(C, Action'Access);
 end Do_It_Map;

begin
 Index.Iterate(Do_It_Map'Access);
 return Count;
end Four_Letters_On_Page;

We could of course have used First and Next to search the
list. But in any event the important point is that by using
Query_Element we do not have to copy the list in order to
scan it.

6 Sorting
The final facilities in the container library are generic
procedures for array sorting. There are two versions, one
for unconstrained arrays and one for constrained arrays.
Their specifications are

generic
 type Index_Type is (<>);
 type Element_Type is private;
 type Array_Type is
 array (Index_Type range <>) of Element_Type;
 with function "<" (Left, Right: Element_Type)
 return Boolean is <>;
procedure Ada.Containers.Generic_Array_Sort
 (Container: in out Array_Type);
pragma Pure(Ada.Containers.Generic_Array_Sort);

and

generic
 type Index_Type is (<>);
 type Element_Type is private;
 type Array_Type is
 array (Index_Type) of Element_Type;
 with function "<" (Left, Right: Element_Type)
 return Boolean is <>;
procedure Ada.Containers.
 Generic_Constrained_Array_Sort
 (Container: in out Array_Type);
pragma Pure(Ada.Containers.
 Generic_Constrained_Array_Sort);

These do the obvious thing. They sort the array Container
into order as defined by the generic parameter "<". The
emphasis is on speed.

7 Summary table
This paper concludes with an appendix showing at a glance
the various facilities in the six main containers.

References
[1] D. E. Knuth (1973). The Art of Computer

Programming, vol 3 – Searching and Sorting,
Addison-Wesley.

© 2005 John Barnes Informatics.

Appendix Container summary
In order to save space the following abbreviations are used in the table:

T container type eg Map H_T Hash_Type
C: T Container: container type I_T Index_Type
P: C Position: Cursor K_T Key_Type
L, R Left, Right Ex_Index Extended_Index
C_T Count_Type B Boolean
E_T Element_Type

also Index – means that another subprogram exists with similar parameters except that the first parameters are of type
Vector and Index_Type (or Extended_Index) rather than those involving cursors.

also Key and also Element similarly apply to maps and sets respectively.

John Barnes 301

Ada User Journal Volume 26, Number 4, December 2005

 vectors lists hashed
maps

ordered
maps

hashed sets ordered
sets

generic Y Y Y Y Y Y

 type Index_Type is range <>; Y

 type Key_Type is private; Y Y

 type Element_Type is private; Y Y Y Y Y Y

 with function Hash(...) return Hash_Type; on Key on Element

 with function Equivalent_...(L, R: ...) return Boolean; on Key on Element

 with function "<" (L, R: ...) return Boolean is <>; on Key on Element

 with function "=" (L, R: E_T) return B is <>; Y Y Y Y Y Y

package Ada.Containers.... is Vectors Doubly_
Linked_
Lists

Hashed_
Maps

Ordered_
Maps

Hashed_
Sets

Ordered_
Sets

pragma Preelaborate(...); Y Y Y Y Y Y

function Equivalent_...(L, R: ...) return Boolean; on Key on Element

subtype Extended_Index ...
No_Index: constant Ex_Ind := Ex_Ind'First;

Y

type T is tagged private;
pragma Preelaborable_Initialization(T);

Vector List Map Map Set Set

type Cursor is private;
pragma Preelaborable_Initialization(Cursor);

Y Y Y Y Y Y

Empty_T: constant T; Vector List Map Map Set Set

No_Element: constant Cursor; Y Y Y Y Y Y

function "=" (Left, Right: T) return Boolean; Y Y Y Y Y Y

function Equivalent_Sets(L, R: Set) return Boolean;
function To_Set(New_Item: E_T) return Set;

 Y Y

function To_Vector(Length: C_T) return Vector;
function To_Vector(New_Item: E_T;
 Length: C_T) return Vector;

Y

function "&" (L, R: Vector) return Vector;
function "&" (L: Vector; R: E_T) return Vector;
function "&" (L: E_T; R: Vector) return Vector;
function "&" (L, R: E_T) return Vector;

Y

function Capacity(C: T) return C_T;
procedure Reserve_Capacity(C: T; Capacity: C_T);

Y Y Y

function Length(C: T) return Count_Type; Y Y Y Y Y Y

procedure Set_Length(C: in out T; Length: in C_T); Y

function Is_Empty(C: T) return B;
procedure Clear(C: in out T);

Y Y Y Y Y Y

function To_Cursor(C: Vector; Index: Ex_Ind)
 return Cursor;
function To_Index(P: C) return Ex_Ind;

Y

function Key(P: C) return K_T; Y Y

function Element(P: C) return E_T; Y
also Index

Y Y Y Y Y

procedure Replace_Element(C: in out T; P: C;
 New_Item: E_T);

Y
also Index

Y Y Y Y Y

procedure Query_Element(P: C;
 Process: not null acc proc(...));

in Element
also Index

in Element in Key,
in Element

in Key,
in Element

in Element in Element

procedure Update_Element(C: in out T; P: C;
 Process: not null acc proc(...));

in out Elem
also Index

in out Elem in Key,
in out Elem

in Key,
in out Elem

procedure Move(Target, Source: in out T); Y Y Y Y Y Y

302 Rat ionale for Ada 2005: 6a Containers

Volume 26, Number 4, December 2005 Ada User Journal

 vectors lists hashed
maps

ordered
maps

hashed sets ordered
sets

procedure Insert(C: in out Vector; Before: Ex_Ind;
 New_Item: Vector);
procedure Insert(C: in out Vector; Before: Cursor;
 New_Item: Vector);
procedure Insert(C: in out Vector; Before: Cursor;
 New_Item: Vector; Position: out Cursor);

Y

procedure Insert(C: in out T; Before: C;
 New_Item: E_T; Count: C_T := 1);

Y
also Index

Y

procedure Insert(C: in out T; Before: C;
 New_Item: E_T; Position: out Cursor;
 Count: C_T := 1);

Y Y

procedure Insert(C: in out T; Before: C;
 Position: out Cursor; Count: C_T := 1);
element has default value

Y
also Index

Y

procedure Insert(C: in out T; Key: K_T;
 New_Item: E_T; Position: out Cursor;
 Inserted: out B);

 Y Y Y (no key) Y (no key)

procedure Insert(C: in out T; Key: K_T;
 Position: out Cursor; Inserted: out B);
element has default value

 Y Y

procedure Insert(C: in out T; Key: K_T;
 New_Item: E_T);

 Y Y Y (no key) Y (no key)

procedure Prepend(C: in out Vector;
 New_Item: Vector);

Y

procedure Prepend(C: in out T;
 New_Item: E_T; Count: C_T := 1);

Y Y

procedure Append(C: in out Vector;
 New_Item: Vector);

Y

procedure Append(C: in out T;
 New_Item: E_T; Count: C_T := 1);

Y Y

procedure Insert_Space(C: in out V; Before: Cursor;
 Position: out Cursor; Count: C_T := 1);

Y
also Index

procedure Include(C: in out T;
 Key: Key_Type; New_Item: E_T);

 Y Y Y (no key) Y (no key)

procedure Replace(C: in out T;
 Key: Key_Type; New_Item: E_T);

 Y Y Y (no key) Y (no key)

procedure Exclude(C: in out T;
 Key: Key_Type);

 Y Y Y (Item not
key)

Y (item not
key)

procedure Delete(C: in out T; P: in out C;
 Count: C_T := 1);

Y
also Index

Y Y (no count)
also Key

Y (no count)
also Key

Y (no count)
also
Element

Y (no count)
also
Element

procedure Delete_First(C: in out T; Count: C_T := 1);
procedure Delete_Last(C: in out T; Count: C_T := 1);

Y Y Y (no count) Y (no count)

procedure Reverse_Elements(C: in out T); Y Y

procedure Swap(C: in out T; I, J: Cursor); Y
also Index

Y

procedure Swap_Links(C: in out List; I, J: Cursor); Y

procedure Splice(Target: in out List; Before: Cursor;
 Source: in out List);
procedure Splice(Target: in out List; Before: Cursor;
 Source: in out List; Position: in out Cursor);
procedure Splice(Container: in out List; Before: Cursor;
 Position: in out Cursor);

 Y

procedure Union(Target: in out Set; Source: Set);
function Union(L, R: Set) return Set;
function "or" (L, R: Set) return Set renames Union;

 Y Y

John Barnes 303

Ada User Journal Volume 26, Number 4, December 2005

 vectors lists hashed
maps

ordered
maps

hashed sets ordered
sets

procedure Intersection(Target: in out Set;
 Source: Set);
function Intersection(L, R: Set) return Set;
function "and" (L, R: Set) return Set
 renames Intersection;

 Y Y

procedure Difference(Target: in out Set; Source: Set);
function Difference(L, R: Set) return Set;
function "–" (L, R: Set) return Set renames Difference;

 Y Y

procedure Symmetric_Difference(Target: in out Set;
 Source: Set);
function Symmetric_Difference (L, R: Set) return Set;
function "xor" (L, R: Set) return Set
 renames Symmetric_Difference;

 Y Y

function Overlap(L, R: Set) return Boolean;
function Is_Subset(Subset: Set; Of_Set: Set) return B;

 Y Y

function First_Index(C: T) return Index_Type; Y

function First(C: T) return Cursor; Y Y Y Y Y Y

function First_Element(C: T) return Element_Type; Y Y Y Y

function First_Key(C: T) return Key_Type; Y

function Last_Index(C: T) return Ex_Ind; Y

function Last(C: T) return Cursor; Y Y Y Y

function Last_Element(C: T) return Element_Type; Y Y Y Y

function Last_Key(C: T) return Key_Type; Y

function Next(P: C) return Cursor;
procedure Next(P: in out C);

Y Y Y Y Y Y

function Previous(P: C) return Cursor;
procedure Previous(P: in out C);

Y Y Y Y

function Find_Index(C: T; Item: E_T;
 Index: I_T := I_T'First) return Ex_Ind;

Y

function Find(C: T; ... ; P: C := No_Element)
 return Cursor;

Element Element Key (no
position)

Key (no
position)

Element (no
position)

Element (no
position)

function Element(C: T; Key: K_T) return E_T; Y Y

function Reverse_Find_Index(C: T; Item: E_T;
 Index: I_T := I_T'First) return Ex_Ind;

Y

function Reverse_Find(C: T; ... ; P: C := No_Element)
 return Cursor;

Element Element

function Floor(C: T; ...) return Cursor;
function Ceiling(C: T; ...) return Cursor;

 Key: K_T Item: E_T

function Contains(C: T; ...) return Boolean; Element Element Key Key Element Element

function Has_Element(P: C) return Boolean; Y Y Y Y Y Y

function Equivalent_... (L, R: Cursor) return Boolean;
function Equivalent_... (L: Cursor; R:...) return Boolean;
function Equivalent_... (L:...; R: Cursor) return Boolean;

 Keys Elements

function "<" (L, R: Cursor) return Boolean;
function ">" (L, R: Cursor) return Boolean;
function "<" (L, Cursor; R: ...) return Boolean;
function ">" (L, Cursor; R: ...) return Boolean;
function "<" (L:...; R: Cursor) return Boolean;
function ">" (L:...; R: Cursor) return Boolean;

 Key Element

procedure Iterate(C: in T;
 Process: not null acc proc (P: C));

Y Y Y Y Y Y

procedure Reverse_Iterate(C: in T;
 Process: not null acc proc (P: C));

Y Y Y Y

304 Rat ionale for Ada 2005: 6a Containers

Volume 26, Number 4, December 2005 Ada User Journal

 vectors lists hashed
maps

ordered
maps

hashed sets ordered
sets

generic
 with function "<" (Left, Right: E_T) return B is <>;
package Generic_Sorting is
 function Is_Sorted(C: T) return Boolean;
 procedure Sort(C: in out T);
 procedure Merge(Target, Source: in out T);
end Generic_Sorting;

Y Y

generic
 type Key_Type (<>) is private;

 Y Y

 with function Key(Element: E_T) return Key_Type; Y Y

 with function Hash(Key: K_T) return Hash_Type; Y

 with function Equivalent_Keys (L, R: Key_Type)
 return Boolean;

 Y

 with function "<" (L, R: Key_Type) return B is <>; Y

package Generic_Keys is Y Y

function Equivalent_Keys(L, R: Key_Type) return B; Y

function Key(P: C) return Key_Type; Y Y

function Element(C: T; Key: K_T) return Element_T; Y Y

procedure Replace(C: in out T; Key: Key_Type;
 New_Item: E_T);
procedure Exclude(C: in out T; Key: Key_Type);
procedure Delete(C: in out T; Key: Key_Type);

 Y Y

function Find(C: T; Key: K_T) return Cursor; Y Y

function Floor(C: T; Key: K_T) return Cursor;
function Ceiling(C: T; Key: K_T) return Cursor;

 Y

function Contains(C: T; Key: K_T) return Boolean; Y Y

procedure Update_Element_Preserving_Key
 (C: in out T; P: C;
 Process: not null acc proc (Element: in out E_T));

 Y Y

end Generic_Keys; Y Y

private
 ... -- not specified by the language
end Ada.Containers....;

Y Y Y Y Y Y

306

Volume 26, Number 4, December 2005 Ada User Journal

Living in towers –
The story of multi project system builds
Per Sandberg
SaabSystems, SE-17588 Järfälla, Sweden; Tel: +46 8 5808 4648; email: per.sandberg@saabsystems.se

Rei Stråhle
SaabSystems, S:t Olofsg 9A, SE-75321 Uppsala, Sweden; Tel: +46 8 5808 7124; email: rei.strahle@saabsystems.se

Abstract
Saab Systems has for a long period of time been
delivering embedded software systems for military
and civil usage. Starting 1985, an early migration to
Ada was initiated, and we still regard Ada as the main
language, though a mixed language environment with
COTS components has become necessary.
This paper will demonstrate our present way of
building the systems using an existing source library
where active development for several customer
projects is taking place. The library is comprised of
more then 600 system units (components) with some
variants. See also ref [1] and [2].
Keywords: embedded software, system build.

1 History
As mentioned earlier Saab Systems started in the mid
80:ies with Ada and at that point in time we where using
Rational/R1000 as host machines. We immediately started
to develop a methodology for building systems using
Towers (though we did not know it was towers by then). In
the beginning of the 90:ies we started to use APEX or
PowerAda under AIX. This was a great step forward, with
only 20 hours in build time compared to the earlier turn-
around of 3 weeks.
In the mid 90:ies we started to use Intel-class PCs, both as
host and target for new systems. We are still working with
the same configuration, but the build tools of today is
GNAT/GPS and the project facility fits like hand in a glove

for our definition of Towers.

Figure 1 Components, releases and variants

The version control systems have been changing over time
and been in the following sets: CMVC / SourceSafe / CVS
/ ClearCase. They are coexisting, and in some cases even
within the same project.

2 Some Questions
- How can such a library be maintained, coherent

and expanded?
- How can multiple development groups handle

integration of parallel variants?
- How are the applications and the MMI

components built together?
- How is the development of one system performed

on different continents and time zones and
different VC-systems?

- How come Ada05 is already used in the
development?

3 Our Answers for Better or Worse?
The intent of the answers is to give a high level view on
how we have solved the integration and maintenance
problems in our multi-project environment.

3.1 How can such a library be maintained,
coherent and expanded?
The key is that the interfaces between components are well
defined and when changed - the changes must be backward
compatible. If there are non-backward compatible changes
in the interface, then all the changes must be carefully
coordinated along with the projects and the components
depending on the changed component/components needs to
be upgraded within a short timeframe.

Applications and the MMI are built within a common
framework that provides several data distribution
mechanisms with different characteristics such as:

On high level:

- Reliability (with MMI interaction)
- Avoiding overload on the LAN with catch up if

data is lost (Track Data)
- Time critical own position and speed.

On low level:

- Reliable singlecast datagrams
- Singlecast (almost as reliable...)
- Multicast

P Sandberg and R Stråhle 307

Ada User Journal Volume 26, Number 4, December 2005

3.2 How can multiple development groups handle
integration of parallel variants?
This is achieved by separating the version control system
and the build system and by working with "Towers". A
Tower is local "sandbox" where selected versions of the
components are put. The selection of individual versions is
done with a meta tools aware of the release conventions on
component level. The selection list in text form may look
like this:
 comp_one.ss rev-1.2
 comp_two.ss rev-3.2
 comp_last.ss rev-6.2

The list looks a bit like the config.spec file in ClearCase but
is restricted to contain subsystems only. There is a local
working (sandbox) area where the developer/integrator
stores the selected set of releases. This is very similar to
the local working area where files are put from a VC
system. In a Tower however, we are working with
component-versions instead of file-version in order to get a
maintainable number of versioned objects, or in practice
versioned directories. The versioned directories
(subsystems) are the smallest code-objects that are handled
from a CM-point of view. A subsystem usually contains
typically between 20 and 500 Ada units.
This is a picture of several towers that a developer may
have in his/hers local work area. In reality the number of
components is somewhere in between 100 and 300. The
selection of the "active" tower is done using environment-
variables.

The integration team for each customer project is
responsible for the base configurations. However, a
developer may chose to use different versions of some
components to do pre-integration before the final releases
to the customer projects.

3.3 How are the applications and the MMI
components built together?
MMI and applications are connected with a formal
interfacing description file.
The MMI is built using several languages Ada / C++ / Own
languages. The sources from the different MMI-develop-
ment groups are fetched into their proper subsystems in the
tower and then compiled using the appropriate compiler.

3.4 How is the development of one system
performed on different continents and time zones?
Development on different sites using different VC-systems
requires a common transport format that must agree, and
with a release naming that is consistent between the sites.
Another key issue is that it is only possible to make
changes in one component at one site at any given point in
time; this has to be managed manually since different VC-
systems are used. (Not optimal, but just a minor issue.)

3.5 How come Ada05 is already used in the
development?
We owe this to the fact that the GNATPro "wavefront" is
gradually including Ada05-features a bit ahead of schedule.
This has so far not been a drawback, but merely a way of
introducing the new features for the developers. The risk
of misuse of the new possibilities is not really seen as a real
project risk, but instead much appreciated by the
developers. Progress means looking ahead!

Figure 2 Components and towers

Summary
Keep the interfaces well defined!
Keep the number of items per configuration view limited!
(By experience the maximum number is around 400 items.)

References
[1] Bass, Len; Clements, Paul; Kazman, Rick: "Software

Architecture in Practice", ISBN 0-201-19930-0,
Addison-Wesley, 1998.

[2] Källberg, Björn, Stråhle, Rei: "Ship System 2000, a
Stable Architecture under Continuous Evolution",
Ada-Europe 2001, ISBN 3-540-42123-8, Springer
Verlag.

Tower 1 Tower 2 Tower 3
comp_one.ss rev 1.2 rev 1.2 rev 1.2
comp_two.ss rev 5.2 rev 1.5 rev 5.3
comp_three.ss rev 1.2 rev 3.2 rev 3.2
comp_four.ss rev 6.1 rev 6.0 rev 6.1
aasa_code.ss rev 2.1

308

Volume 26, Number 4, December 2005 Ada User Journal

On the benefits for industrials of sponsoring free
software development
J-P. Rosen
Adalog, 19-21 rue du 8 mai 1945, 94110 ARCUEIL, France; Tel: +33 1 41 24 31 40; email: rosen@adalog.fr

Abstract
Adalog [1] has developed two tools recently, one for
an industrial client1 (AdaSubst/AdaDep), and one for
Eurocontrol (AdaControl). Although the programs
were custom-made after the requirements of the
clients, in both cases, they allowed the tools to be
released as free software after they were delivered to
them. In this presentation, we describe the clients'
needs, the tools that were produced, and more
importantly our experience that releasing the tools as
free software was indeed beneficial to the clients, to
Adalog, and to the community at large.
Keywords: free-software, industrial experience,
semantic tools, ASIS.

Introduction
When an industrial company develops a software tool, it
usually keeps it for itself. The rationale is simple: if the
company pays for the software, it owns the software. Why
would a company pay for the benefits of others, by making
it freely available?

First it should be noted that, contrary to a common
misunderstanding, releasing a tool as free software does not
mean that the company does not own it anymore: free
software is not public domain software. The company holds
the copyright, and can do whatever it wants with it,
including reusing it in part or in whole for proprietary
programs. Making software free never diminishes the rights
of the owner, including the right of not making new
releases free (unlike users of the software who must
continue to distribute it freely, at least when the software is
provided under the terms of the GPL).

However, releasing the tool freely outside the company
implies that anybody can use it, including the company's
competitors; this may create concerns. On the other hand,
this also means that anybody can contribute to it and
improve it. Therefore, taking the decision of releasing a
program as free software is really a matter of balancing
benefits and drawbacks.

In this paper, we describe two experiments where the
releasing of paid developments as free software was
beneficial to the industrials. We do not claim that this can
be done in every case, but we argue that "paying for free
software" can be cost effective for certain classes of tools.

1 Who didn't want to be disclosed

1 The case of AdaSubst/AdaDep
1.1 Context
An industrial client had developed over the years several
big libraries dealing with its problem domains. Since this
effort started long ago, the code and the structure of the
libraries were still compatible with Ada83. And, as is often
the case when a code has evolved over many years, it came
to a point where a major restructuring was needed.

Axlog [2], Adalog's mother company, won the contract for
reorganizing this software components base. This implied,
among other things, breaking big packages into a hierarchy
of child packages, and often changing the names of the
provided services. Of course, such changes would break all
existing code that used the libraries. Therefore, the contract
stipulated that a tool should be provided to migrate code to
the new library structure. The initial intent was to provide
some kind of ad-hoc Python program to do this.

1.2 Solution
Adalog proposed to develop instead a general tool
(AdaSubst), based on ASIS (Ada Semantic Interface
Specification [3]), which would not be specific to this
migration, but could be used for any similar needs. A
dictionary file describes, for each entity, its old name and
the place where it was declared, and its new mapping, i.e.,
its new name and the new package where it is now. Typical
entries in the dictionary look like this:

Old_Pack => New_Pack
Old_Pack.Proc1 => New_Pack.Proc2
Pack1.Func{integer return integer} => New_Func
Big_Pack => Parent, Parent.Child1, Parent.Child2
all Print => Put

The first line means that the package "Old_Pack" is now
called "New_Pack"; the second line means that the
procedure "Proc1" in package "Old_Pack" has been
renamed to "Proc2" in package "New_Pack". The third line
is an example of dealing with overloaded declarations: only
the function "Func" that takes an Integer parameter and
returns an Integer value is changed into "New_Func". In
the case of the fourth line, a package has been split into a
parent package and two child units. The last line means that
all procedures named "Print" are now called "Put",
irrespectively of where they are located. Note that if a
package name changes, it is not necessary to specify the
transformation for all its elements, as long as the names are
not changed; only changed elements need to be described.
The tool makes all the necessary transformations on the
code, taking all Ada rules into account; use clauses are

J-P. Rosen 309

Ada User Journal Volume 26, Number 4, December 2005

properly modified, overloading is taken into account; when
a name changes in a generic, the change is propagated to all
uses in all instances, etc. The only case that is not fully
automated is for elements declared in a package that has
been split (like "Big_Pack" above). "With" and "use"
clauses are transformed to name all new packages, but for
an element given in prefixed notation, it is not possible to
know in which unit it resides know. In this case, the
transformation prefixes the name by the various possible
packages, separated by '?'. Since this does not compile, it is
easy to edit the construct to choose the appropriate package
manually. In short, the tool goes far beyond what could be
done by text substitution, even with sophisticated pattern
matching tools such as those provided by Python.

In addition, the migration itself required a detailed analysis
of which elements from all "withed" packages were used.
Adalog developed a companion tool (AdaDep) to ease this
analysis. It gives, for a given unit, which elements from
each withed unit is used and how many times, together with
the nature of the element. For example, given:

package Pack is
 I : Integer;
 package Internal is
 V : Float;
 end Internal;
end Pack;

with Pack, Text_IO;
use Pack, Text_IO;
procedure Sample is
begin
 I := 1;
 Internal.V := 3.0;
 Put_Line (Integer'Image (I + Integer(Internal.V)));
end Sample;

Running AdaDep will produce:

SAMPLE (body) =>
=> from ADA.TEXT_IO
 PUT_LINE - A_Procedure_Declaration * 1
=> from PACK
 I - A_Variable_Declaration * 2
=> from PACK.INTERNAL
 V - A_Variable_Declaration * 2
=> from STANDARD
 INTEGER - An_Ordinary_Type_Declaration * 2

In agreement with the client, AdaSubst and AdaDep were
released as free software. The client, who is not in the
language tools business, had no interest in keeping them
proprietary.

1.3 Lessons learned
In the end, the provided tool was far more powerful than
initially required. Although the requirement was to simply
minimize manual adjustments, it turned out that AdaSubst
properly processed automatically several 100 000's SLOCs
without any correction (except for ambiguities).

As for any other contract, the tool was delivered to the
client with a warranty period. It happened that shortly after
the end of this warranty period, the client reported a bug.
Had the tool been developed under a conventional contract,
we would have asked for a contract extension to make a fix.
However, since at that time the tool was free software, we
reacted like any developer of free software: we said "thank
you for reporting this", and fixed the problem. This little
story shows that by allowing the tool to be released as free
software, the client eventually got better (and free) support
than under a regular contract.

Even after the end of the contract, the tool continued to
evolve and improve, thanks to the community feed-back.
The client now has a better and more general tool than if it
had kept it proprietary.

The approach was also beneficial to Adalog: the tools are
commonly used inside the company, and many parts of
them could be reused in other developments. For example,
Adalog helped one of its clients in a migration to a different
target; representation clauses from the original system were
no more appropriate. It was easy to adapt Adasubst to
provide a new functionality that commented out all
representation clauses from the original program.

2 The case of AdaControl
2.1 Context
Eurocontrol (European Organisation for the Safety of Air
Navigation) is developing programs to manage air traffic
all over Europe. These programs are not life-critical, in the
sense that a failure would not cause planes to crash,
however a break-down of the system would cause huge
delays for all airplanes flying over Europe; the software is
therefore highly business critical. The system is made of
very big programs (over 1.1 MSLOC), developed and
maintained by a big team. With a project of this scale, it is
not possible to rely on individual discipline to make sure
that programming rules are being followed; Eurocontrol
needed a tool to enforce programming rules and search for
occurrences of bad or arguable programming practices.
Thanks to the cooperation with AdaCore, some of these
checks were incorporated into the GNAT compiler.
However, many rules were deemed too specific to be put in
a compiler, and it was felt that an independent controller
program, allowing parameterizable rules, was necessary.

There can be many such rules, and it was expected that new
ones would appear as more experience was gained by using
the tool (and this expectation was verified quite rapidly).
Therefore, the contract called for a general framework,
where rules could be added at will with minimum effort,
with just a minimum number of rules to be implemented as
part of the original contract, to serve as a proof of concept.

The bid was granted to Adalog. It is interesting to note that
since AdaSubst was free software, Adalog could show it in
its response to the bid, as a show-case of its know-how in
ASIS development.

Like the first client, Eurocontrol is not in the business of
providing tools. On the other hand, such a tool was deemed

310 On the benef i ts for industr ia ls of sponsoring free software developments

Volume 26, Number 4, December 2005 Ada User Journal

useful to the community at large. Moreover, since the tool
is easily extendable, Eurocontrol felt that it would benefit
from the contributions of other users. Therefore, it was
decided right from the start that the program would
eventually be released as free software.

2.2 Solution
Like AdaSubst, AdaControl is based on ASIS. Actually, it
is a perfect example of the kind of application that ASIS
was intended for.

The structure of AdaControl has been designed to make the
addition of new rules as simple as possible. It provides a
general framework that hides all the internal machinery and
offers a number of utilities that make the writing of rules
easier: various services are provided to deal with complex
issues like overloading, scope management, etc. Rules are
plugged in a special module, and rule writers have to care
only with the ASIS requests necessary to the rule.

Actually, AdaControl implements a full language to
describe the checks that are to be performed. Utilities are
provided to the rules for easy parsing of the rules'
parameters. There is an interpreter for this language,
allowing AdaControl to be used interactively as well as in
batch mode. Rules just register themselves to the
interpreter, thus adding new "verbs" to the command
language, without needing to change the interpreter itself.

An important feature of AdaControl is that rules can be
locally disabled by means of special comments in the code.
This allows for local derogations to a rule, which is very
important since there are almost always cases where
general rules are not applied for good reasons. The
mechanism for this is hidden in the module that reports
errors, therefore the writer of a rule does not have to care
about it: it is fully automatic.

Finally, the framework provides facilities for debugging
rules. This is a great help since, given the complex
structures used by ASIS, it is difficult to understand the
origin of a problem under a debugger.

The overall structure of AdaControl is thus made of three
well identified and separated parts: the framework itself
(specific to AdaControl), general ASIS utilities (useful for
any ASIS application), and the rules, as pictured below:

Important modules from AdaSubst were reused in
AdaControl; this raised no copyright issue, since both
programs were free software. In proprietary development, it

is often the case that similar modules must be developed
again, since it is not possible to provide a client with a
module developed for another client!

2.3 Lessons learned
In addition to the framework, the initial bid required the
implementation of only four rules. Later, an extension to
the contract supported the development of three more rules.
But since Adalog had similar needs for controlling its own
programs, we developed other rules for our own benefit.
The result was that the tool was delivered with more rules
than contractually required, and the number of rules
continued to grow after the end of the contract. At the time
of writing (version 1.4), 25 rules are implemented (each
with various parameters that allow them to check many
things). It is expected that the number of rules will
continue to grow as the tool gets more and more used.

As mentioned above, several modules were reused from
Adasubst, especially those dealing with command line
options and the way of specifying which units are to be
processed (including integration with GNAT's ".adp"
project files). On top of the usual benefits of reuse (no need
to rewrite, test, debug), this brought two benefits that are
rarely mentioned:

Uniformity. Since the modules are the same, the user
instructions for using Adasubst and AdaControl are the
same.

Reuse of documentation. Similarly, part of the user
documentation for AdaControl was reused from the
documentation from AdaSubst.

Thanks to the continued cooperation with Eurocontrol, all
the rules were checked against Eurocontrol's software, thus
providing an extensive test bench that would not have been
available if Adalog had developed the product in-house.

2.4 The consortium effect
Since its initial release, the tool has raised interest in
several other companies, which are willing to sponsor
further development, including the development of more
rules. At this point, the story of AdaControl seems to open
the way to a new model of commercial free-software:
cooperative development. The situation is that several
companies, from totally different markets, needed a tool;
none of them was willing to pay for the full development,
and their interests were too different to even think of
gathering them all in a consortium, just for the sake of
developing the tool. This is however exactly what
happened in practice: one company put the initial stake,
other companies contribute in proportion of their particular
needs, and in the end everybody benefits from a much more
sophisticated tool than could have been developed (custom
or in-house) by each of the companies separately.

3 Adalog's point of view
As explained above, releasing the tools as free software had
a number of benefits for the client. But from a vendor's
point of view, isn't it better to have a product that can be
sold under a usual proprietary license?

Framework.

Framework.

Framework

Rules.Pragmas

Rules.Attributes

Rules

Thick Queries

Utilities

J-P. Rosen 311

Ada User Journal Volume 26, Number 4, December 2005

First, it should be noted that developing a tool with the
intent of selling it requires an important upfront investment.
Such tools require many months of work, before even
knowing if the tool will raise interest on the market place.
By having the development paid under contract, Adalog
could minimize the risk, and by having the tool released as
free software, Adalog continued to have the opportunity of
turning the development into a commercial product that can
be offered to others than the initial customer.

Building a successful product for a client is always good
for a company, but only the client knows about the quality
of the work. If the product is released as free software, then
anybody can assert the quality of the product. This makes
good publicity for the company… and also attracts the
sympathy of the community at large. It demonstrates
Adalog's know-how in the development of custom
language tools and its ability in ASIS development. The
tools now form a suite of Ada semantic utilities, and we
hope that they will attract new clients who need other
similar tools (and will hopefully accept that they be
released as free software too).

Since we consider these tools as fully commercial, Adalog
is selling support contracts for them, and develops (paying)
improvements on demand for clients with special needs.
All this means more business opportunities.

There is also a "business attracts business" effect. Adalog
has developed a custom analysis tool for a client, based on
the same technology as AdaControl. The availability of
AdaControl not only demonstrated the ability of Adalog for
designing semantic tools, but also gave the client the idea
of having a tool made to his own needs.

Finally, a side benefit is that the availability of these
programs on Adalog's web site [4] attracts many people to
visit us. Adalog uses a Web measurement service [5] to
measure the popularity of its site; among 269 sites in the
'"programming languages" category, Adalog ranks 9th,
which is a good indication of its own popularity… as well
as of the interest for Ada.

4 Difficulties
Sponsoring free software may create some difficulties,
because it goes against a number of established practices.
For example, all standard contracts stipulate that the
product becomes the property of the client. This in itself
does not preclude the software from being free, but in
practice, for free software to grow and flourish, it is
necessary to have a well identified, centralized entity to
which contributions can be sent. To most users, this will be
the name that appears in the copyright notice. It is therefore
more convenient if the company that made the initial
development keeps the copyright (possibly shared with the
client, as was done with Eurcontrol). This must be
negociated with the client.

The legal department of the client company may also on
occasions be unaware of what free software really means,
and raise concerns. It is then necessary to either educate the
lawyers, or find an arrangement that does not raise issues of
intellectual property. For example, it is possible to have a
contract by which the provider must "provide a tool"
(including a free one) to the client, and not state
contractually that the tool is actually developed for the
client. And of course, there is the issue of finding who, in
the client's company, is empowered to sign the letter
allowing the product to be released as free software…

Finally, it is clear that there are many tools whose nature is
not appropriate for this model of development; this can
work only for tools that are general enough to not require
any problem domain knowledge (which clearly belongs to
the client), and be usable in different application fields.

Conclusion
The story of AdaSubst/AdaDep and Adacontrol is another
example that it is possible to develop commercial, but free
software. Of course, Adalog is not the first company to take
this approach: obvious other examples are RedHat (and
others) with Linux distributions, MySQL for databases, and
AdaCore with the GNAT compiler. However, our approach
is different by using a business model that allows
sponsoring the developments by various, unrelated
companies, thus building a "virtual consortium".

In conclusion, releasing these tools as free software was
beneficial to the industrials, because they have tools that
are more powerful than if they had kept them proprietary.
Moreover, they benefit from continued maintenance and
improvements. But it is also beneficial to Adalog, as a
showcase of what the company can achieve, and because it
generates more business through custom improvements and
maintenance contracts. And last but not least, it is
beneficial to the Ada community at large, since anybody
can use the tool.

Web references
[1] http://www.adalog.fr:

Adalog's home page

[2] http://www.axlog.fr:
Axlog's home page

[3] http://www.sigada.org/wg/asiswg/asiswg.html:
ASIS working group.

[4] http://www.adalog.fr/compo2.htm:
Access to Adalog components, including AdaSubst,
AdaDep, and AdaControl.

[5] http://www.weborama.fr:
Web measurement service.

312

Volume 26, Number 4, December 2005 Ada User Journal

Ada-Europe 2005 Sponsors

8 Rue de Milan, F-75009 Paris, France AdaCore
Contact: Zépur Blot Tel: +33-1-49-70-67-16

Email: sales@adacore.com
Fax: +33-1-49-70-05-52
URL: www.adacore.com

66/68, Avenue Pierre Brossolette, 92247 Malakoff, France Aonix
Contact: Jacques Brygier Tel: +33-1-41-48-10-10

Email : info@aonix.fr
Fax: +33-1-41-48-10-20
URL : www.aonix.com

Suite 701, Eagle Tower, Montpellier Drive, Cheltenham, GL50 1TA, UK Artisan Software Tools Ltd
Contact: Emma Allen Tel: +44-1242-229300

Email : info.uk@artisansw.com
Fax: +44-1242-229301
URL : www.artisansw.com

PO Box 7995, Crowthorne, RG45 9AA, UK Esterel Technologies
Contact: Ian Hodgson Tel: +44-1344-780898

Email : sales@esterel-technologies.com
Fax: +44 1344 780898
URL : www.esterel-technologies.com

Dolphin House, St Peter Street, Winchester, Hampshire, SO23 8BW, UK Green Hills Software Ltd

Contact: Christopher Smith Tel: +44-1962-829820
Email :

Fax: +44-1962-890300
URL : www.ghs.com

1 Cornbrash Park, Bumpers Way, Chippenham, Wiltshire, SN14 6RA, UK I-Logix
Contact: Martin Stacey Tel: +44-1249-467-600

Email : info_euro@ilogix.com
Fax: +44-1249-467-610
URL : www.ilogix.com

24 Newtown Road, Newbury, Berkshire, RG14 7BN, UK LDRA Ltd
Contact: Brenda Pedryc Tel: +44-1635-528-828

Email: info@ldra.com
Fax: +44-1635-528-657
URL: www.ldra.com

20 Manvers Street, Bath, BA1 1PX, UK Praxis High Integrity
Systems Ltd
Contact: Rod Chapman

Tel: +44-1225-466-991
Email : sparkinfo@praxis-his.com

Fax: +44-1225-469-006
URL : www.sparkada.com

Riverside Buisness Park, Malmsebury, SN16 9RS, UK Silver Software
Contact: Steve Billet Tel: +44-1666-580-000

Email: enquiries@silver-software.com
Fax: +44-1666-580-001
URL: www.silver-software.com

Triad House, Mountbatten Court, Worrall Street, Congleton, CW12 1DT, UK TNI Europe Limited
Contact: Pam Flood Tel: +44-1260-29-14-49

Email: info@tni-europe.com
Fax: +44-1260-29-14-49
URL: www.tni-europe.com

	Contents
	Editorial
	News
	Conference Calendar
	Rationale for Ada 2005: 6 Predefined library
	Rationale for Ada 2005: 6a Containers
	Living in towers – The story of multi project system builds
	On the benefits for industrials of sponsoring free software development

