

Ada User Journal Volume 27, Number 1, March 2006

ADA
USER
JOURNAL

Volume 27
Number 1

March 2006

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

News 5

Conference Calendar 35

Forthcoming Events 43

Articles
 John Barnes

“Rationale for Ada 2005: Epilogue” 46
 Muthu Ramachandran

“Generating and improving Ada components for reuse” 56

Ada-Europe 2005 Sponsors 64

Ada-Europe Associate Members (National Ada Organizations) Inside Back Cover

2

Volume 27, Number 1, March 2006 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal – The Journal for the
international Ada Community – is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the first of the
month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 3

Ada User Journal Volume 27, Number 1, March 2006

Editorial

In my tenure of the editorship I have come to learn that the March issue of the Ada User Journal always lies in a kind of in
between old and new business. This particular issue adds evidence to this observation. By publishing the epilogue of John
Barnes’ Rationale for Ada 2005 we do close an important business indeed, which accompanied us for 6 issues, ever since
December 2004. That was a jolly good time, I have to say, owing to both the enthusiasm for seeing Ada 2005 materialise and
the writing art of the author, which was particularly enjoyable. As for new business, well, the yearly Ada-Europe conference
looms on the horizon, which will be the source of inspiration for the Ada community and of contents for a numerous future
issues of the journal. We all look forward to it. In addition to John Barnes’ closing epilogue of the Rationale and the usual
wealth of information off the News and Calendar sections, we host an article by Muthu Ramachandran (an author we hosted
already in issue 26-2) from the University of Leeds, where we are happy to have some friends of Ada. Happy reading!

Tullio Vardanega
Padova

March 2006
Email: tullio.vardanega@math.unipd.it

 5

Ada User Journal Volume 27, Number 1, March 2006

News
Santiago Urueña
Technical University of Madrid (UPM). Email: suruena@datsi.fi.upm.es

Contents

Ada-related Organizations 5
Ada-related Events 5
Ada-related Tools 7
Ada-related Products 10
Ada and GNU/Linux 16
Ada and Microsoft 16
References to Publications 17
Ada Inside 17
Ada in Context 19

Ada-related
Organizations
ARA – Ada 2005 Rationale
Available
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Sat, 25 Feb 2006 18:57:37 -0600
Subject: Complete Rationale for Ada 2005

available on AdaIC
Newsgroups: comp.lang.ada
The ARA is proud to announce that the
complete Ada 2005 Rationale is now
available on its website at
http://www.adaic.com/standards/
rationale05.html.
The Rationale for Ada 2005 provides an
overview of Ada 2005 features, examples
of their use, compatibility with Ada 95,
and more. It was written by John Barnes,
and was sponsored in part by the Ada
Resource Association
[and by Ada-Europe – su].
It is available in HTML and PDF formats.
It is currently available only on-line (not
for download), as there is an overall revi-
sion planned to convert it into a single
book format.
Randy Brukardt
Technical Webmaster, Adaic.org/.com

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you at-
tended one please consider writing a small
report for the Ada User Journal. -- su]

February 2 – Ada GPS/UML
Webinar
From: Marc A. Criley <mc@mckae.com>
Date: Tue, 24 Jan 2006 13:12:20 -0600
Subject: Ada GPS/UML Webinar
Newsgroups: comp.lang.ada
I am just passing this info on as an FYI,
since I am on Artisan’s mailing list:
Presented by ARTiSAN and AdaCore, the
leading developer of Ada technology, this
webinar will provide an overview of Ada
2005 and how AdaCore’s development
environment, “GNAT Programming
Studio” (GPS) and ARTiSAN Studio can
be used as a workable tool-chain.
Areas of demonstration will include:
Introduction to the new features contained
within Ada 2005 (AdaCore)
The GPS Development Environment
(AdaCore)
Reverse Engineering Ada 95 (ARTiSAN)
Forward Generating Ada 2005
(ARTiSAN)
The Webinar lasts for about an hour and
will run at the following times:
Thursday 2nd February -- 10am EST / 3pm
GMT / 4pm CET
Thursday 2nd February -- 1pm EST / 6pm
GMT / 7pm CET
To register for this Webinar, click here:
http://www.artisansw.com/seminars/UML
webinar_USreg2.asp
Joining instructions will be emailed
through to you separately. There is no
charge for people dialing in from the US,
UK and France.

February 26 – FOSDEM
2006 Presentations Available
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Date: 20 Feb 2006 21:30:10 +0100
Organization: Ada-Belgium, c/o Dept. of

Computer Science, K.U.Leuven
Subject: FOSDEM 2006 - Ada "Developers

Room", Sun 26 Feb 2006, Brussels
Newsgroups:

comp.lang.ada,fr.comp.lang.ada
Next Sunday Ada-Belgium organizes a
full-day Ada “Developers Room” at
FOSDEM 2006, the Free and Open
Source Developers’ European Meeting in
Brussels.
An updated version of the program is
attached; HTML and PDF versions are
available on the Ada-Belgium web site for
further distribution.

We invite you to attend some or all of the
presentations; they will be given in
English. Attendance to FOSDEM is free
and no registration is necessary.
Dirk Craeynest, President Ada-Belgium,
Dirk.Craeynest@cs.kuleuven.be
Ada-Belgium is pleased to announce its

A d a “D e v e l o p e r s R o o m”
at

F O S D E M 2 0 0 6
 (Free and Open-Source Software
 Developers’ European Meeting)

Sunday, February 26, 2006, 10:00-17:00
Universitè Libre de Bruxelles
 (U.L.B.), Solbosch Campus

Avenue Franklin D. Roosevelt Laan 50,
B-1050 Brussels

http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/06/

060225-fosdem.html
The Free and Open-Source Developers’
Meeting (FOSDEM) is an annual event
held in Brussels, Belgium, in February.
The 2006 edition will take place on
Saturday the 25th and Sunday the 26th of
February, 2006. Ada-Belgium has
organized a series of presentations related
to Ada, to be held in a dedicated
developers’ room, all day Sunday. Here is
the program:
10:00 - 11:00 Jean-Pierre Rosen:
Introduction to Ada
Jean-Pierre will put his well-known talent
to good use, introducing Ada to beginning
or experienced programmers alike.
11:00 - 12:00 Jean-Pierre Rosen:
AdaControl
AdaControl is a tool that analyses Ada
source text and verifies compliance with
coding rules and guidelines. AdaControl
is Free Software written under contract
with Eurocontrol, and takes advantage of
ASIS, the standard interface that allows
Ada programs to analyze Ada source text.
Jean-Pierre will introduce AdaControl,
ASIS, and the business model that allows
one to make a living writing Free
Software.
12:00 - 13:00 Philippe Waroquiers: Use
of Free Software in European Air Traffic
Flow Management
Philippe Waroquiers leads software
development of the ETFMS system at
Eurocontrol, the European air traffic
control agency with 34 member states.
Software on which millions of travelers’
lives each year depend is written in Ada
using AdaCore’s Free Software Ada
compiler, GNAT Pro.
13:00 - 14:00 lunch break

6 Ada-related Events

Volume 27, Number 1, March 2006 Ada User Journal

14:00 - 15:00 Ludovic Brenta: Ada in
Debian
Ludovic Brenta will explain his work as
the main maintainer of Ada in Debian,
and the policy that unites all Ada
packages, thereby making Debian the best
free Ada development platform in the
world :) This will be an excellent
opportunity for a tour of existing Free
Software projects developed in Ada.
15:00 - 16:00 Robert Dewar, AdaCore:
Ada Academic Initiative
AdaCore is the company that offers
technical support and consulting services
around GNAT Pro, the professional
version of the GNU project’s Free
Software Ada compiler. AdaCore is also
the main developer of GNAT. The Ada
Academic Initiative aims to encourage
universities and other education
institutions worldwide to use and teach
Ada, by offering a broad range of services
at no cost to professors and students. If
possible, AdaCore will demonstrate the
latest GNAT Programming Studio
available with the GNAT GPL 2005
Edition.
16:00 - 17:00 Thomas Quinot, AdaCore:
The PolyORB schizophrenic middleware
An example of fruitful collaboration
between academia and industry, PolyORB
allows heterogeneous software
components to communicate with one
another by bridging various middleware
technologies such as CORBA, MOM and
the Ada Distributed Systems Annex
(annex E).
All presentations will be in English, but
most speakers also speak French. You
may ask questions on comp.lang.ada,
fr.comp.lang.ada, or join the
AdaFOSDEM mailing list (in English).
Attendance to FOSDEM is free, and no
registration is necessary.
More information:
* FOSDEM: http://www.fosdem.org
* AdaCore: http://www.adacore.com
* Free Software from AdaCore:
http://libre.adacore.com (includes, among
others, GNAT, GPS and PolyORB which
will be the focus of some talks)
* Free Software from Adalog:
http://www.adalog.fr/compo1.htm
(includes, among others, AdaControl)
* Debian: http://www.debian.org
* Eurocontrol: http://www.eurocontrol.int
* Ada-Belgium:
http://www.cs.kuleuven.be/~dirk/ada-
belgium/
* AdaFOSDEM mailing list, operated by
Ada-Belgium:
http://listserv.cc.kuleuven.be/archives/ada
fosdem.html
[See also “FOSDEM 2006” in AUJ 26-4
(Dec 2005), p.231. -- su]
All presentations at the Ada Developers
Room, held at FOSDEM 2006 in Brussels

on Sunday February 26, 2006, are
available online on the Ada-Belgium
web-site, both in the original format
(ODP or PPT) and in PDF:
http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/06/
060226-fosdem.html

June 5-9 – Ada-Europe 2006
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Date: 31 Dec 2005 17:49:03 +0100
Organization: Ada-Europe, c/o Dept. of

Computer Science, K.U.Leuven
Subject: 2nd CfIP, Conference Reliable

Software Technologies, Ada-Europe
2006

Newsgroups:
comp.lang.ada,fr.comp.lang.ada

This call for industrial presentations is
specifically targeted to those of you who
either work in industrial (Ada-related)
projects where reliable software
technologies are important, or know
people working in such projects.
Please think for a moment what others
might learn from the experience gained in
those projects, and consider (or convince
them) to submit a one-page presentation
overview by January 12th, 1.5 weeks
from now.
Many projects could report a lot of
valuable experience: sharing it with others
benefits the whole community and might
provide useful feedback as well.
We’re looking forward to receive many
interesting presentations.
Best wishes for the new year,
Dirk Craeynest, Ada-Europe’2006
Publicity Chair

2nd Call for Industrial Presentations
11th International Conference on
Reliable Software Technologies

Ada-Europe 2006
 5-9 June 2006, Porto, Portugal
 http://www.ada-europe.org/

conference2006.html
Organized, on behalf of Ada-Europe, by
Instituto Superior de Engenharia do Porto
in cooperation with ACM SIGAda
*** CfIP in HTML/PDF on web site ***

DEADLINE Thursday 12 Jan. 2006
General Information
The 11th International Conference on
Reliable Software Technologies (Ada-
Europe 2006) will take place in Porto,
Portugal. Following the usual style, the
conference will span a full week,
including a three-day technical program
and vendor exhibitions from Tuesday to
Thursday, along with parallel workshops
and tutorials on Monday and Friday.
Call for Presentations
In addition to the usual call for papers,
and considering the success achieved in

the previous conference, we are having a
call for presentations primarily aimed at
industrialists who have valuable
experience to report but who do not wish
to write a complete paper.
This separate call for presentations is
made for Experience Reports from
Industrial Projects and/or Experiments,
Case Studies and
See below for further details.
Schedule
12 January 2006: Submission of
presentation proposals
20 January 2006: Notification to authors
28 April 2006: Presentation material
required
5-9 June 2006: Conference
Submission of Presentations
Presenters are invited to submit a one-
page overview of the proposed
presentation to Peter Dencker
(peter.dencker@aonix.de) by January
12th 2006. The Industrial Committee will
review the proposals.
The authors of selected presentations shall
prepare their final presentation, together
with a short abstract (max 10 lines), by
28th April 2006; they should aim at a 20
minutes talk. The authors of accepted
presentations will also be invited to derive
articles from them, for publication in the
Ada User Journal.
Exhibitions
Commercial exhibitions will span the
three days of the main conference.
Vendors and providers of software
products and services should contact the
Exhibition Chair José Ruiz as soon as
possible for further information and for
allowing suitable planning of the
exhibition space and time.
Conference Topics
In the last decade the conference has
established itself as an international forum
for providers and practitioners of, and
researchers into, reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development and maintenance of long-
lived, high-quality software systems for a
variety of application domains. The
program will allow ample time for
keynotes, Q&A sessions, panel
discussions and social events. Participants
will include practitioners and researchers
from industry, academia and government
organizations interested in furthering the
development of reliable software
technologies. To mark the completion of
the technical work for the Ada language
standard revision process, contributions
that present and discuss the potential of
the revised language are particularly
sought after.

Ada-related Tools 7

Ada User Journal Volume 27, Number 1, March 2006

For papers, tutorials, and workshop
proposals, the topics of interest include,
but are not limited to:
- Methods and Techniques for Software
Development and Maintenance:
Requirements Engineering, Object-
Oriented Technologies, Formal Methods,
Re-engineering and Reverse Engineering,
Reuse, Software Management Issues
- Software Architectures: Patterns for
Software Design and Composition,
Frameworks, Architecture-Centered
Development, Component and Class
Libraries, Component-Based Design
- Enabling Technology: CASE Tools,
Software Development Environments and
Project Browsers, Compilers, Debuggers
and Run-time Systems
- Software Quality: Quality Management
and Assurance, Risk Analysis, Program
Analysis, Verification, Validation,
Testing of Software Systems
- Critical Systems: Real-Time,
Distribution, Fault Tolerance, Information
Technology, Safety, Security
- Mainstream and Emerging Applications:
Multimedia and Communications,
Manufacturing, Robotics, Avionics,
Space, Health Care, Transportation
- Ada Language and Technology:
Programming Techniques, Object-
Oriented Programming, Concurrent
Programming, Distributed Programming,
Bindings and Libraries, Evaluation &
Comparative Assessments, Critical
Review of Language Enhancements,
Novel Support Technology, HW/SW
platforms
- Experience Reports: Experience
Reports, Case Studies and Comparative
Assessments, Management Approaches,
Qualitative and Quantitative Metrics,
Experience Reports on Education and
Training Activities with bearing on any of
the conference topics
Tutorials
Tutorials should address subjects that fall
within the thrust of the conference and
may be proposed as either half- or full-
day events. Proposals should include a
title, an abstract, a description of the
topic, a detailed outline of the
presentation, a description of the
presenter’s lecturing expertise in general
and with the proposed topic in particular,
the proposed duration (half day or full
day), the intended level of the tutorial
(introductory, intermediate, or advanced),
the recommended audience experience
and background, and a statement of the
reasons for attending. Proposals should be
submitted by e-mail to the Tutorial Chair
Jorge Real. The providers of full-day
tutorials will receive a complimentary
conference registration as well as a fee for
every paying participant in excess of 5;
for half-day tutorials, these benefits will
accordingly be halved. The Ada User

Journal will offer space for the
publication of summaries of the accepted
tutorial in issues preceding and/or
following the conference.
Organizing Committee
Conference Chair
Luís Miguel Pinho, Polytechnic Institute
of Porto, Portugal, lpinho@dei.isep.ipp.pt
Industrial Committee Co-Chairs
Peter Dencker, Aonix GmbH, Germany,
peter.dencker@aonix.de
Michael González Harbour, Universidad
de Cantabria, Spain, mgh@unican.es
Industrial Committee
Rod Chapman, Praxis High Integrity
Systems
Christopher Smith, Green Hills
Franco Gasperoni, AdaCore
Jacques Brygier, Aonix
Ian Gilchrist, IPL
Pascal Leroy, IBM Rational
Rei Strahle, Saab Systems
Francis Thom, Artisan Software
Tony Elliston, TNI Europe
Amar Bouali, Esterel Technologies
Luís Miguel Pinho, Conference Chair
Dirk Craeynest, Ada-Europe (Vice
President)
Erhard Ploedereder, Ada-Europe
(President)
[See also same topic in AUJ 26-4 (Jun
2004), pp.231-232. -- su]

March 28 – Ada Conference
UK 2006

Ada Conference UK 2006
Building better, safer software
28 March 2006 -- Lowry Hotel

Manchester, UK
Ada answers.

As the need for robust and reliable
software systems increases, Ada
continues to prove itself as the answer for
many of today’s most complex
programming challenges -- especially in
the areas of real time, embedded and
safety-critical applications.
Event focus: to promote awareness of the
Ada 2005 language revision, and to
highlight the increased relevance of Ada
in safety-critical programming.
Event outline: Plenary sessions by Robert
Dewar and John Barnes, plus a series of
technical talks by leading industrial
experts, plus a stream of vendor talks
running in parallel; also a broad range of
leading Ada product vendors will be
present in the exhibition atrium. Full
details of the event and programme can be
found at:
www.ada-uk-conference.co.uk
Event opportunities:
Meet members and colleagues from all
sectors of the Ada community; this high-
calibre event is expected to attract many

professional Ada users and reinforce links
between all sections of the Ada
community in the UK and beyond.
Examine an extensive range of
technologies from the leading Ada toolset
and service vendors.
Learn about the latest revision of the Ada
programming language and the
improvements it offers, notably:
- Comprehensive support for real-time
and high-reliability applications
- Enhanced Object-Orientated
Programming features and an abstraction
mechanism that combines OOP and
concurrency
- Generalised program structure and
visibility control
- Better access type facilities
Discuss innovative and challenging
experiences with the Ada language.
Event location: the conference venue is in
the heart of Manchester, at the award-
winning Lowry Hotel, with excellent
access by road, rail and air.
Registration and enquiries:
Joan.Atkinson@ncl.ac.uk
+44 191 221 2222
The not-to-be missed Ada event of 2006!!
Event lead sponsor and advocate:
AdaCore, www.adacore.com
Event sponsor: Green Hills Software, Inc.,
www.ghs.com
Event sponsor: Wind River,
www.windriver.com
Event operated by CSR, in cooperation
with the Safety-Critical Systems Club:
www.safety-club.org.uk

Ada-related Tools
PragmARC – PragmAda
Reusable Components
From: PragmAda Software Engineering

<pragmada@earthlink.net>
Date: Tue, 28 Feb 2006 20:48:34 GMT
Subject: New release of the PragmAda

Reusable Components
Newsgroups: comp.lang.ada
PragmAda Software Engineering is proud
to announce a new release of the
PragmAda Reusable Components. This
release includes a new component to
perform least-squares line fitting to a set
of data, and some improvements and
added functionality to existing
components.
You may download the PragmARCs
from:
http://home.earthlink.net/~jrcarter010/pra
gmarc.htm
Comments and error reports are welcome
from all users.

8 Ada-related Tools

Volume 27, Number 1, March 2006 Ada User Journal

If you'd like to receive such
announcements directly, send an email to
pragmada@earthlink.net. PragmAda
Software Engineering will not use your
contact information except to send you
the requested announcements, and will
not transfer your contact information to
another person or entity except as
required by law.
[See also same topic in AUJ 26-3 (Sep
2005), pp.152-153. -- su]

The GNU Ada Compiler
Project
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Fri, 16 Dec 2005 20:03:45 +0100
Subject: The GNU Ada compiler
Newsgroups: comp.lang.ada
I have finally managed to take over the
“The GNU Ada compiler” project. The
project will supply community compiled
binary packages of the GNAT compiler.
Currently there is only a very old GNAT
for DOS available. But as I type this the
first packages for Linux are uploaded.
A new homepage will follow soon and
until then you can just look at the project
page:
https://sourceforge.net/projects/gnuada
Of course I need help if this project is
really to take off. If you have an rpm
based Linux system you can just
download the RPM kit (as rpm or via
CVS) and you should have a rpm package
in no time.
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Sun, 18 Dec 2005 19:55:31 +0100
Subject: The GNU Ada: Homepage online.
Newsgroups: comp.lang.ada
I also got the homepage online today. The
first page added is about creating RPM
packages. As I said: this project can only
be a success if as many maintainers join
in to provide as many platforms as
possible.
There where lots of discussion about the
GNAT/GPL edition and that we need
GMGPL editions as well. And that a
community effort might help here. Now
here we are.
And while the compile takes several hours
typing “rpmbuild -ba” won’t take more
then a few seconds. So we should at least
get a good collection of rpm based
packages out of the door.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 21 Dec 2005 16:07:57 +0100
Subject: Re: The GNU Ada compiler
Newsgroups: comp.lang.ada
Steve Whalen wrote:
> In particular for proselytizing Ada,

stable GMGPL Ada compilers need to
be available for Windows (Ming and

Cygwin), Redhat, SUSE, Mandrake,
and Solaris.

I agree wholeheartedly. For Windows,
there are already two binary distributions
of GNAT under GMGPL: AIDE[1], and
MinGW[2]. I have tried neither of them
(since I don’t have Windows) but it seems
to me that MinGW has the larger mind
share, and AIDE the better quality thanks
to the dedication of its maintainer,
Stéphane Riviére.
Solaris also has a binary distribution[3,4]
containing both GCC 3.4.4 and 4.0.1 with
Ada support; but I have never tried it and
I cannot assess its quality.
FreeBSD[5] seems not to be very active
WRT Ada, but there are ports for GNAT
3.15p, ASIS and GLADE. The ports for
GCC 3.4.4, 4.0.3, 4.1.0 and 4.2.0 (the
latter three being works in progress) lack
Ada support. I am quite confident that
FreeBSD’s GCC maintainer would
gratefully accept patches to enable Ada on
that platform.
[1] http://stephane.rochebrune.org/aide/
aide.html
[2] http://www.Mingw.org
[3] http://www.blastwave.org
[4] http://www.canoedissent.org.uk/ss/
type.jsp?c=prog
[5] http://www.freebsd.org
Now, it would be nice if Red Hat, SuSE
and Mandriva would improve their
support for Ada. The best way to make
this happen is to lobby them, join their
GCC maintenance teams, and contribute.
Martin’s project on SourceForge is a good
testing ground for patches. Well tested
patches and build scripts stand a good
chance of being accepted into these
distributions.
From: Steve Whalen

<SteveWhalen001@hotmail.com>
Date: 23 Dec 2005 16:28:34 -0800
Subject: Re: The GNU Ada compiler
Newsgroups: comp.lang.ada
Martin Krischik wrote:
> Currently I concentrate much on the

GNAT/GPL but I think that may
change when GCC 4.1 is out of the
door. Apart from that I monitor the
download stats to see what is
appreciated and what is wasted effort.
Interestingly enough currently source-
rpm are more in demand then actual
binaries.

[...] Actually, since NYU is _not_
mirroring 3.15p any more, it would be
helpful if you used SourceForge to house
all of the 3.15p versions, so we would
have a single place to send anyone
interested in Ada. Then as newer versions
became stable for each platform / OS
combination, you could push 3.15p down
into an “older version” status.

From: Martin Krischik
<krischik@users.sourceforge.net>

Date: Wed, 28 Dec 2005 20:30:50 +0100
Subject: [gnuada]
Newsgroups: comp.lang.ada
There are several new releases available
at the gnuada
(http://gnuada.sourceforge.net/) project.
Especially the GNU/3 section should be
fairly complete. Still if anybody knows
some more packages from the 3.15 area
which are missing I appreciate any hint.
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Sun, 18 Dec 2005 22:04:11 +0100
Subject: Re: The GNU Ada compiler
Newsgroups: comp.lang.ada
Bjorn Persson wrote:
> Do your packages for SuSE replace the

GNAT packages that SuSE provides, or
can they coexist?

I never ever would replace the SuSE
packages – you need them to compile the
kernel!
> In the latter case, how does the user

choose which compiler to use?
The classic way:
PATH=/opt/gnat/bin:${PATH}
> I’ve got the impression that when

interfacing to other languages all the
pieces need to be compiled with the
same version of GCC, so if these
releases only provide Ada I suppose
they shouldn’t be used for mixed-
language projects. Or am I
misinformed?

That is indeed true and I compile all
languages which with the packages so
there won’t be any problems. Of course
that makes the packages as large as they
are :-(.
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: 10 Jan 2006 10:47:54 -0800
Subject: [GNUADA] "R2" - Now you can

install GNAT/GPL and GNAT/GCC at
once.

Newsgroups: comp.lang.ada
This is the Release 2 of the GNAT
distribution. This Distribution will install
GNAT/GCC and GNAT/GPL in two
different directories so you can install
them both.
You can switch between them using a
new configuration Script.
The initial package consists “GNAT/GCC
4.0.2” and “GNAT/GPL 2005” for “SuSE
10.0 x86_64” and “SuSE 9.2 i586” with
all the libraries and tools we currently
distribute.
From: Bjorn Persson

<rombo.bjorn.persson@sverige.nu>
Date: Sat, 18 Mar 2006 15:56:46 GMT
Subject: Re: [gnuada] gcc 4.1.0 available
Newsgroups: comp.lang.ada

Ada-related Tools 9

Ada User Journal Volume 27, Number 1, March 2006

The first release for Fedora from the GNU
Ada Project is out. It is packaged for
Fedora Core 4 on i386, and includes GCC
4.1.0 and GNAT/GPL 2005 with ASIS,
the Booch components, GDB, GTK/Ada
and XML/Ada. For the GCC edition
Glade is also included.
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Sun, 12 Mar 2006 17:34:51 +0100
Subject: [gnuada] gcc 4.1.0 available
Newsgroups: comp.lang.ada
The GNU Ada Project
[http://gnuada.sourceforge.net/] is pleased
to announce a new GNAT release based
on GCC 4.1.0. The Release is currently
available for “SuSE 10.0 x86_64” and
“Solaris 10 UltraSparc” – others are to
follow.
The SuSE release consist of all GCC core
languages (Ada, C, C++, Fortran, Java,
Objective-C, Objective-C++) and all
currently supported libraries and tools
(ASSIS, Boochs, GDB, GtkAda,
XML/Ada).
The Solaris release consists of Ada, C and
C++.

SNMP for Ada
From: Stephane Riviere

<stephane@rochebrune.org>
Date: Sat, 04 Mar 2006 16:37:15 +0100
Subject: Re: Ada et SNMP ?
Newsgroups: fr.comp.lang.ada
[Translated from French. -- su]
> Do you know of any package that

supports SNMP ?
www.ijs.co.nz/code/ada95_snmp_2.zip
That’s more for NT or FreeBSD if I have
well understood ☺
SNMP is not that simple. Version 1, the
simplest and the most up to date is not
very reliable.
That of SNMP is a subject that attracts me
too, but I have the impression that one has
got lots of things to do on one’s own,
short of binding with some C library
reputed as reliable, but that’s much less
attractive.

ADB – Ada 95 Object
Database Server
From: Michael Erdmann

<merdmann@users.sourceforge.net>
Date: Fri, 23 Dec 2005 17:34:07 +0100
Organization: http://gnade.sourceforge.net
Subject: Announce: Release of Small Ada 95

Object Database Server Version 0.1.0
Newsgroups: comp.lang.ada
The first Alfa release version 0.1.0 of the
ADB project is available for download.
The ADB project provides simple object
database server including the libraries for
client application development.

The current version is developed on a
SuSe 9.0 Linux distribution but it is
expected to compile with GNAT 3.15p on
other Linux versions as well.
Download instructions:
http://sourceforge.net/project/showfiles.ph
p?group_id=23045.
Select: oos-src 0.1.0
After downloading, simply unpack the
release and run make.
The documentation is available at:
http://gnade.sourceforge.net/adb
Unfortunately the documentation is
incomplete but it will be updated
constantly.
Comments are welcome!
[See also “GNADE 1.5.3a – GNAT Ada
95 Database Development Environment”
in AUJ 25-3 (Sep 2004), p.123. -- su]

PCHIF – Proof Checker
Interface for SPARK
From: JP Thornley

<jpt@diphi.demon.co.uk>
Date: Tue, 28 Feb 2006 14:27:56 +0000
Subject: ANN: New version of Proof

Checker Interface for SPARK
Newsgroups: comp.lang.ada
The latest version of the SPARK toolset
(Version 7.3) has removed the problem
that limited the capability of the first
version of the Proof Checker Interface
(PCHIF).
With version 2.6 of the Proof Checker
(included in SPARK Version 7.3) it is
now possible to handle both input to and
output from the Proof Checker in the
interface.
The download page for the new version of
the interface can be reached from
www.sparksure.com.
If you already have the earlier version
then note that the new version has been
developed with GtkAda 2.4.0 (the earlier
version used 2.2.0).
The downloads include the VC_View tool
that is unchanged from the earlier version.
[See also “VC_View and PCHIF –
SPARK Proof Tools” in AUJ 26-3 (Sep
2005), p.154. -- su]

L4DA/Lovelace – Ada based
Operating System
From: askliepios <askliepios@yahoo.com>
Date: 30 Jan 2006 02:53:34 -0800
Subject: Yet another operating system
Newsgroups:

alt.os.development,comp.lang.ada
I plan to write with a few friends a new
operating system called Lovelace, an
Unix Ada based operating system on top
of a L4 pistachio micro-kernel.

There is a (little) web page about it, we
are looking for people to help us.
http://lovelace.rochebrune.org
By now we manage to boot some Ada
code in Bochs with GRUB (and other real
computers too :-p), and we can catch Ada
exceptions in the user address space. We
have a little memory support and we
started a file system and the thread
support. Our main goal is to provide :
- A complete Ada framework to develop
various OS on top of L4 (in fact by
rewrite the Ada GNAT run time lib on top
of L4)
- Provide various L4 servers written in
Ada with our framework to make a real
Unix operating system.
From: Eduardo Zambon

<zambon@inf.ufes.br>
Date: Wed, 01 Feb 2006 20:09:38 -0200
Organization: UFES - DI
Subject: Re: Yet another operating system
Newsgroups: comp.lang.ada
Really interesting project. Since AdaOS
seems to be stalled, this one is a nice
replacement.
The funny thing is that we have an OS
research group at my University (UFES –
Brazil) and one of our projects is very
closely related to Lovelace. We call it
L4DA, and as one may guess is an
implementation of L4 in Ada. Currently,
there is no web page for L4DA since it’s
still in an early stage of development and
is the topic of my master thesis. We hope
that a first version will be completed until
the beginning of second semester and by
then the code will be released under a
GPL-like license.
Soon we’ll be replacing GNU/Linux with
Lovelace/L4DA :) Or better yet:
L4DA/Lovelace :))
From: askliepios <askliepios@yahoo.com>
Newsgroups: comp.lang.ada
Subject: Re: Yet another operating system
Date: 2 Feb 2006 01:37:20 -0800
Really interested. If you achieve this
project, I will be really happy to
implement Lovelace on top of L4da.
Please keep me informed about this
project.
Maybe we could join our effort in order to
implement a standard L4 lib with Ada.
From: Nick Roberts

<nick.roberts@acm.org>
Date: Tue, 07 Feb 2006 19:43:20 GMT
Subject: Yet another operating system
Newsgroups: comp.lang.ada
I’d like to comment that, although the
AdaOS project is stalled, it is not entirely
dead, and I hope to bring it back to full
vigor at some point in the not-too-distant
future.
I’d also like to offer the use of the AdaOS
web site: http://www.adaos.net

10 Ada-related Products

Volume 27, Number 1, March 2006 Ada User Journal

to anyone who is starting a related project,
if it would be any help.
There is also currently a discussion forum
at: http://adaos.multiply.com
You are welcome to start a new topic
there.
[See also “The AdaOS Project” in AUJ
23-4 (Dec 2002), p.199-200. -- su]

Mine Detector 5.0
From: PragmAda Software Engineering

<pragmada@earthlink.net>
Date: Tue, 31 Jan 2006 19:11:27 GMT
Subject: ANN: New Source Version of Mine

Detector
Newsgroups: comp.lang.ada
Mine Detector 5.0 is available as source
only. This version works with GtkAda 2.2
or later and adds user-selectable levels to
the game. At the higher levels, guessing
may be required to win.
You may download the source for Mine
Detector 5.0 from:
http://home.earthlink.net/~jrcarter010/min
det.html
If you’d like to receive these notifications
directly by e-mail, send an e-mail to:
pragmada@earthlink.net
[See also “Mine Detector Game 4.4” in
AUJ 25-4 (Dec 2004), p.190. -- su]

Ada-related Products
AdaCore – GPS 3.1
http://www.adacore.com/2006/01/10/adacor

e-launches-new-version-of-its-market-
leading-ada-integrated-development-
environment/

Tuesday January 10, 2006
AdaCore Launches New Version of its
Ada Integrated Development
Environment
AdaCore today introduced the latest and
most versatile version of its GNAT
Programming Studio (GPS) product, a
sophisticated software development
environment for the Ada programming
language.
Incorporating a significant number of new
features, this new version delivers
improved usability and more powerful
source navigation. It is available on the
latest 64 bit GNU/Linux-based platforms,
including those from SGI, HP and Intel.
Productivity-increasing improvements
include a more user-friendly location
view, enhanced tool tips, code
completion, and new project editing
capabilities. Human interface
improvements include better layout of
graphical information, and the ability to
export using the Scalable Vector Graphics
format.

“With this new version, GPS continues to
set the pace as the industry’s most
advanced Ada development
environment,” said Arnaud Charlet, GPS
Project Manager at AdaCore. “Many
features are based on suggestions from
customers, resulting in a practical tool
that can be used to develop, manage and
maintain even the largest and most
complex systems.”
“Our GNAT Programming Studio has
been a success since its inception,” added
Robert Dewar, AdaCore’s President and
CEO. “Its intuitive interface, tailorability
and extensibility make it an essential tool
for the professional Ada programmer.
With the enhancements offered in the
latest release, GPS remains the Integrated
Development Environment of choice for
Ada.”
GPS offers advanced features such as
multi-language support (including Ada, C,
and C++) and is available on a wide range
of host environments for both native and
cross-development, including Unix,
Windows and GNU/Linux. An intuitive,
unified visual interface, identical across
all platforms, serves as a control panel to
access tools from AdaCore’s GNAT Pro
Ada development environment as well as
from third parties, easing both
development and maintenance. As a
result, GPS is particularly suited for large,
complex systems requiring tool chain
integration, ease of use, user
customization, and code
navigation/analysis.
This latest version of GPS provides many
new improvements, including:
* New availability on IA-64 SGI Altix,
IA-64 HP Linux, IA-64 HP-UX, x86-64
GNU/Linux platforms
* New cross-reference queries
* Improved plug-in capabilities and
python extensions
* Refactoring (rename entity, named
parameter associations)
* More efficient and user-friendly
locations view
* Improved assembly view
* Persistent bookmarks
* Version Control System activities
(group commit)
* Enhanced tooltips and code completion
* Improved graphs (better layout, ability
to export in SVG format)
* New call graph tree
* Project Editor enhancements
About GPS
GPS is a powerful Integrated
Development Environment (IDE) written
in Ada, based on the GtkAda toolkit.
GPS’ extensive source-code navigation
and analysis tools can generate a broad
range of useful information, including call
graphs, source dependencies, project
organization, and complexity metrics. It
also provides support for configuration
management through an interface to third-

party Version Control Systems, and
supports a variety of platforms, including
Alpha Tru64, Altix Linux, MIPS-IRIX,
PA-RISC HP-UX, SPARC Solaris, x86
GNU/Linux, x86 Solaris, and x86
Windows. GPS is highly extensible; a
simple scripting approach enables
additional tool integration. It is also
tailorable, allowing programmers to
specialize various aspects of the
program’s appearance in the editor for a
user-specified look and feel.
Pricing and Availability
GPS 3.1 is available to GNAT Pro
customers on selected platforms starting
December 14. GPS is included with the
GNAT Pro Ada Development
Environment. Please contact AdaCore for
the latest information on pricing and
supported configurations.
(sales@adacore.com)
http://www.adacore.com/2006/01/23/
gps-31/
AdaCore is pleased to announce the
immediate release of GPS 3.1.0 for the
following platforms:
* alpha-tru64
* ia64-sgi_Linux
* ia64-hp_Linux
* ia64-hpux
* mips-irix
* pa-hpux
* ppc-darwin
* SPARC-solaris
* x86-Linux
* x86-solaris
* x86-windows
* x86_64-Linux
The 3.1.0 version is a major release and
provides many new improvements,
including:
* New availability on ia64-sgi_Linux,
ia64-hp_Linux, ia64-hpux, x86_64-Linux
* New cross-reference queries
* Improved plug-in capabilities and
python extensions
* Refactoring (rename entity, name
parameters, ...)
* More efficient and user-friendly
locations view
* Improved assembly view
* Persistent bookmarks
* VCS activities (group commit)
* Enhanced tooltips and code completion
* Improved graphs (better layout, ability
to export in SVG format)
* New call graph tree
* Project Editor enhancements (extending
projects, …)
GPS 3.1 is compatible with all versions of
GNAT Pro from 3.15 through to 5.04
[See also “AdaCore – GPS 3.0” in AUJ
26-2 (Jun 2005), p.77. -- su]

Ada-related Products 11

Ada User Journal Volume 27, Number 1, March 2006

AdaCore – Thales Group
adopts GNAT Pro
http://www.adacore.com/2006/01/23/thales-

group-adopts-adacore-as-a-corporate-
ada-standard/

Monday January 23, 2006
Thales Group Adopts AdaCore as a
corporate Ada Standard
Signs three year global agreement to
benefit from flexible software licensing
terms
International electronics and systems
group Thales, have announced a global
software licensing agreement with
AdaCore. This will provide flexible, cost-
effective, access to AdaCore’s GNAT Pro
development environment for developers
across the 6 businesses in the worldwide
Thales Group and its subcontractors.
The three year corporate licence covers a
minimum of 250 Thales developers, with
additional licences available to be added
flexibly in packs of five by both Thales
Group companies and their
subcontractors. The agreement means that
Thales will adopt GNAT Pro as a
corporate standard.
The Ada programming language is
designed specifically for large, long-lived
applications where reliability, efficiency
and safety are vital. The latest version of
the language, Ada 2005, was ratified
earlier this year. AdaCore has been
closely involved with the Ada language
since its inception and its GNAT Pro
development environment combines
market leading technology, including Ada
2005, with an expert support system to
provide a natural solution where efficient
and reliable code is critical.
Close to 300 Thales developers are
currently using AdaCore around the
globe. Projects using Ada cover all of
Thales markets, including naval, air
systems, aerospace and land systems.
They range from the ARH Tiger
Helicopter Simulator (France/Australia),
Thales Raytheon Systems Air Command
and Control System (USA), avionics
systems for the Airbus A400M (France)
and the Combat Management System for
the French Navy.
“The advent of Ada 2005 further
strengthens the already impressive
capabilities of the Ada language for
mission-critical defence and avionics
projects,” said Jean-Michel Tanneau,
Thales Group. “Given our use of Ada our
new agreement with AdaCore is ideal,
providing us with cost-effective and
flexible access to the leading Ada
development environment for our staff
across the world.”
“Thales Group’s global adoption of
AdaCore demonstrates our leadership in
the market and the growing use of Ada
within complex and safety-critical

projects,” commented Franco Gasperoni,
managing director, AdaCore. “Our
innovative licensing arrangement
provides Thales and its subcontractors
with the flexibility to access our tools and
support simply and efficiently while
benefiting from volume pricing.”
At the heart of GNAT Pro is a full
featured multi-language (Ada, C, C++)
development environment complete with
libraries, bindings and a range of
supplementary tools. All its technology
combines the flexibility and freedom
associated with open source development
and the assurance that comes from
knowing that all tools go through a
rigorous quality assurance process. It is
based on GCC technology and is backed
by rapid and expert support service.
About Thales
Thales is an international electronics and
systems group serving defence, aerospace,
security and services markets worldwide.
The Group employs 60,000 people
throughout the world and generated
revenues of 10.3 billion euros in 2004.
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial, open-source
software solutions for Ada, a modern
programming language designed for
large, long-lived applications where
reliability, efficiency and safety are
absolutely critical. AdaCore’s flagship
product is GNAT Pro, the commercial-
grade open-source Ada development
environment, which comes with expert
online support and is available on more
platforms than any other Ada technology.
AdaCore has customers worldwide; see
http://www.adacore.com/home/company/
customers/ for more information.
Use of Ada and GNAT Pro continues to
grow in high-integrity and safety-critical
applications, including commercial and
defence aircraft avionics, air traffic
control, railroad systems, financial
services and medical devices. AdaCore
has North American headquarters in New
York and European headquarters in Paris.
www.adacore.com

AdaCore – GNAT Pro 5.04
http://www.adacore.com/2006/02/15/adacor

e-delivers-most-advanced-ada-2005-
development-environment/

Wednesday February 15, 2006
AdaCore Delivers Most Advanced Ada
2005 Development Environment
GNAT Pro 5.04 enables more efficient
creation of dependable software
AdaCore today launched the latest and
most advanced version of its flagship
GNAT Pro open-source Ada development
environment, GNAT Pro 5.04. Enabling
faster creation of robust, dependable
software, it supports all the major new

features in the Ada 2005 release of the
Ada programming language, with over
120 enhancements to the technology.
Created under the auspices of the
International Organization for
Standardization (ISO), Ada 2005
introduces significant enhancements in
many areas, including Object-Oriented
Programming, interfacing with other
languages (most notably Java), software
architectural design, real-time systems,
and predefined libraries. It offers
improved support for high-integrity
applications, including the standardization
of the Ravenscar profile for
certifiable[BMB1] concurrent programs.
Ada 2005 represents the first major
upgrade of the Ada language in 10 years.
GNAT Pro 5.04 incorporates improved
installation, easier usage, and new
features, including options for stack usage
analysis and a tool for enforcing project-
specific rules. It is implemented on more
than 30 configurations, the widest variety
in the Ada industry, including new 64-bit
platforms, such as SGI’s Altix servers,
HP’s Integrity servers, and the x86-64.
Over half of the new features in GNAT
Pro stem from customer requests,
demonstrating the effectiveness of
AdaCore’s unique support model, which
ensures customer queries are answered by
the product developers themselves, the
largest and most experienced group of
Ada experts in the world. “With its many
enhancements, Ada 2005 is the best
choice for reliable and efficient software,
across a wide spectrum of applications,
including high-integrity systems,”
commented Cyrille Comar, managing
director, AdaCore. “The latest release of
GNAT Pro extends these benefits to
programmers, enabling faster
development of safe and robust code.”
“Ada 2005 truly advances the state of the
art in programming language design,”
added Robert Dewar, AdaCore’s CEO.
“As one example, its unification of
concurrency and object oriented
technology is a breakthrough that can help
programmers develop more maintainable
systems. AdaCore’s GNAT Pro 5.04
brings these benefits to the industry now,
backed by the quality support and high-
caliber expertise that we have been
providing to our customers since our
company was founded.”
GNAT Pro 5.04 includes advanced
AltiVec support, both direct to PowerPC
and simulated to other compatible targets;
greater stack size control and analysis;
and efficient, linker-level removal of
unused subprograms and data. The new
ASIS-based GNATCHECK tool provides
evidence of the enforcement of project-
specific rules.
About GNAT Pro
GNAT Pro is a robust and flexible Ada
development environment based on the

12 Ada-related Products

Volume 27, Number 1, March 2006 Ada User Journal

GNU GCC compiler technology. It
comprises a full Ada compiler, an
Integrated Development Environment
(GPS, the GNAT Programming Studio), a
comprehensive toolset including a visual
debugger, and a set of supplemental
libraries and bindings. It is distributed
with complete source code, and is backed
by rapid and expert support service.
http://www.adacore.com/2006/01/30/
gnat-pro-504a/
AdaCore is pleased to announce the
immediate availability of the GNAT Pro
5.04 release.
GNAT Pro 5.04 sees important
enhancements in many areas, including:
 * Support for all major 64-bit
 architectures
 * Increased support for OS versions
 * Altivec support
 * Improved installation and usage of
 the toolset
 * Stack size control and analysis
 * Linker-level removal of unused
 subprograms (on Linux only so far)
 * GNATCHECK (The new coding
 standard verification tool)
 * Support for all major features of Ada
 2005 including:
 o “Limited with” and “private with”
 o All new forms of anonymous
 access types
 o Complete interface feature
 (including task, protected,
 synchronized, and limited
 interfaces)
 o “Object.Operation” notation
 o Complete containers library
[See also “AdaCore – GNAT Pro 5.03a”
in AUJ 26-1 (Mar 2005), p.13-14. -- su]

AdaCore – PolyORB 2.0
http://www.adacore.com/2006/03/14/polyor

b-20/
PolyORB 2.0 - March 14, 2006
The recent release of PolyORB 2.0 brings
increased versatility to our generic
middleware technology.
A comprehensive architecture review and
strategic reorganization resulted in a clear
isolation of the essential controlling logic
of the core distribution library. This
allowed us to build and verify formal
models of the internal components of
PolyORB, providing increased confidence
in the code.
New scheduling policies are also
supported, allowing better adaptation to
specific application requirements.
Profiling was performed on the
distribution runtime. This allowed us to
identify and remove performance
bottlenecks.
In addition to the extensive
interoperability features of previous
releases, this latest version makes
PolyORB suitable for safe and secure

software development in distributed
applications.
PolyORB 2.0 is available for the
following platforms:
 * sparc-solaris
 * x86-Linux
 * pa-hpux
[See also “ACT – PolyORB 1.0p” in AUJ
25-1 (Mar 2004), p.10-11. -- su]

Aivosto – Visustin v3.1
connects with Project
Analyzer
http://www.aivosto.com/visustin.html
February 2006
Visustin v3 Flow chart generator
Added support to flowchart from Project
Analyzer v8.
Visualize your code with flow charts.
Open up your source file and Visustin
shows its execution flow -be it in Visual
Basic, VB.NET, VBA, ASP, C/C++, C#,
Java, JSP, JavaScript, COBOL, Fortran,
Pascal/Delphi, Perl, PHP, T-SQL,
PL/SQL or Ada.
Understand existing code. Review
algorithms. Verify correctness of program
logic. Document complex procedures.
Restructure incomprehensible code.
No matter what kind of code you need to
document, Visustin can reverse engineer
its underlying structure. If, goto, for and
while statements, even with and
try..catch..finally blocks are visualized in
an easy-to-understand format. No new
languages to learn – your existing code is
all you need. If you see a real complex
case, print it out as a mosaic and hang it
on your wall.
Automated layout. Visustin creates an
optimal visual layout automatically. Just
hit one key and you’re done – no need to
adjust the charts.
All code with comments. Visustin flow
charts include all of your code, optionally
the comments as well. Create large master
charts or small charts with just the
important logic.
Multi-page print. Preview and print large
flow charts on multiple pages, or squeeze
to fit on one sheet.
Save graphs. Use flow charts in your
project documentation in GIF, BMP, JPG,
PNG, WMF, EMF, PS or DOT image
format.
Web publication. Save flow charts as web
pages or MHT web archives.
Visio export [Pro Edition] Export your
flow charts to edit in Microsoft Visio
2002/2003. Save your drawing efforts by
converting your code to Visio format.
Visio exportPopup link

Bulk charting [Pro Edition] Save all your
source files as flow charts in one run.
Also exports as Visio .vsd files.
[See also “Aivosto – Visustin v3
flowcharts Ada code” in AUJ 26-1 (Mar
2005), p.14-15. -- su]

Aonix – ObjectAda 8.2
Available for
VxWorks/PowerPC
Platform
http://www.aonix.com/pr_12.19.05.html
Latest Aonix ObjectAda Release Now
Available for VxWorks/PowerPC
Platform
Wind River RTOS developers demand
new ObjectAda 8.2 capabilities
San Diego, CA, Paris, France, December
19, 2005
Aonix, a provider of solutions for safety-
and mission-critical applications, released
its latest version of ObjectAda Windows
for the PowerPC/VxWorks development
environment. The ObjectAda 8.2 port
brings significantly enhanced compiler
and debug technology to Wind River’s
Tornado 2.x and VxWorks 5.x
environments and boasts an
Ada/VxWorks binding that interfaces Ada
constructs with VxWorks primitives in
the same application.
The Windows-hosted ObjectAda 8.2
improves the underlying Aonix Ada 95
compiler, reducing compile time for the
PowerPC/VxWorks platform. As well,
ObjectAda 8.2 includes a newly
developed capability to attach the
symbolic debugger to a running Ada
application, which aids VxWorks
developers in resolving programming
errors discovered after the test and debug
phase is completed. Integration with the
VxWorks environment is seamless thanks
to a specifically developed VxWorks
binding that enables Ada tasks and
VxWorks tasks to be combined in the
same application.
“Impressed with the overall
improvements in the ObjectAda 8.2
release, many PowerPC/VxWorks users
have requested these capabilities on their
platform,” noted Jacques Brygier, VP
Marketing of Aonix. “Our customers
appreciate the quality of the real-time
support we provide through our Ada
implementation. Having this available on
the VxWorks/PowerPC platform is a real
benefit to them as they can take advantage
of the performance and productivity
capabilities offered by combining the two
well-proven technologies.”
ObjectAda 8.2 Windows cross
PowerPC/VxWorks is available under the
CorePack packaging that includes an Ada
95 compiler, Ada 95 optimizer, partial
annex C support, partial annex D support,
syntactic editor, graphical and command

Ada-related Products 13

Ada User Journal Volume 27, Number 1, March 2006

line interfaces, library configuration tool,
program builder, source browsing engine,
source registration tool, source un-
registration tool, source code reference
tool, symbolic debugger, and graphical
installer. Online documents in PDF
format and sample programs provide the
developer with immediate development
assistance.
Eclipse integration and compatibility with
VxWorks 6.x is expected in the beginning
of 2006.
Shipping and Availability
ObjectAda Windows cross
PowerPC/VxWorks is available
immediately for Windows 2000 and XP
host platforms and supports Tornado 2.x
and VxWorks 5.x running on all PowerPC
boards supported by VxWorks. For more
information about this product, please
visit: www.aonix.com/objectada.html.
About Aonix
Aonix offers mission- and safety-critical
solutions primarily to the military and
aerospace, telecommunications and
transportation-related industries. Aonix
delivers the leading high-reliability, real-
time embedded virtual machine solution
for running Java programs deployed today
and has the largest number of certified
Ada applications at the highest level of
criticality. Our unique modeling solution
features UML 2.0 profiles and MDA
tailored for the mission- and safety-
critical space. Aonix products include
PERCS, RAVEN, and Ameos.
Headquartered in San Diego, CA and
Paris, France, Aonix operates sales offices
throughout North America and Europe in
addition to offering a network of
international distributors. For more
information, visit www.aonix.com.

Aonix – ObjectAda 8.2
Available for
LynxOS/PowerPC Platform
http://www.aonix.com/pr_02.14.06a.html
Latest Aonix ObjectAda Release Now
Available for LynxOS/PowerPC
Platforms
Ada LynuxWorks developers benefit from
new ObjectAda 8.2 capabilities
Embedded World, Nurernberg, Germany,
February 14, 2006
Aonix, a provider of solutions for safety-
and mission-critical applications, released
its latest versions of ObjectAda Linux for
PowerPC/LynxOS and ObjectAda Solaris
for PowerPC/LynxOS development
environments. The ObjectAda 8.2 release
brings significantly enhanced compiler
and debug technology to LynuxWorks’
LynxOS 4.x environments, enabling
developers to mix Ada and C within the
same application by using the POSIX1.c
API.

The Linux- and Solaris-hosted ObjectAda
8.2 environments improve the underlying
Aonix Ada 95 compiler, reducing compile
time for the PowerPC/LynxOS platform.
In ObjectAda 8.2, the symbolic debugger
can be attached to a running Ada
application. This feature aids LynxOS
developers in resolving programming
errors discovered after the test and debug
phase is completed.
“Our customers have come to rely on the
robust efficiency of the combined Aonix
and LynuxWorks offering for more than a
decade,” noted Jacques Brygier, VP
Marketing of Aonix. “They can now take
full advantage of ObjectAda 8.2 and the
rich set of functionality and real-time
capabilities offered by LynxOS.”
ObjectAda 8.2 Linux and Solaris
development platform targeting the
PowerPC/LynxOS embedded platforms
are available under the CorePack
packaging. CorePack includes an Ada 95
compiler, Ada 95 optimizer, partial annex
C support, partial annex D support,
syntactic editor, and both graphical and
command line interfaces. Other parts of
the CorePack toolchain consist of a
library configuration tool, program
builder, source browsing engine, source
registration and unregistration tools,
source code reference tool, symbolic
debugger, and graphical installer. Online
documents in PDF format and sample
programs provide the developer with
immediate development assistance.
In addition to the CorePack packaging,
both environments offer additional
optional components. One of these
components is Ada-ASSURED, an
advanced editor that provides additional
language-sensitive features and style-
guideline conformance checking.
Aonix ADT (Ada plug-in into Eclipse)
and compatibility with Luminosity is
expected in Q2 2006.
Shipping and Availability
ObjectAda Linux cross PowerPC/LynxOS
is available immediately for Linux
RedHat Enterprise 4.0 or compliant host
platforms and supports LynxOS 4.x
running on all PowerPC boards supported
by LynxOS. For more information about
this product, please visit
www.aonix.com/objectada.html.

Aonix – ObjectAda 8.2 for
Windows Update
From: Owner-Intel-ObjectAda <owner-

intel-objectada@aonix.com>
Date: Fri, 27 Jan 2006 10:56:31 -0800
Subject: Intel-OA: New ObjectAda 8.2

Update
To: intel-objectada@aonix.com
A new update for Aonix ObjectAda for
Windows 8.2, 1102V82-U1, is now
available at
http://www.aonix.com/ada_patches.html.

Please see the Release Notes for further
details on the corrections made and
installation instructions. The release notes
can be viewed at
ftp://ftp.aonix.com/pub/adats/outgoing/11
02/8.2/U1/1102V82-U1.Release_Notes.
Downloading ObjectAda updates requires
a password which can be obtained from
your local Aonix Customer Support
department. Please note that a current
maintenance agreement is required to
obtain the password.
For information on obtaining or renewing
a maintenance agreement, please contact
your nearest Aonix Sales office. For
contact information see
http://www.aonix.com/contact_us.html.
[See also “Aonix – ObjectAda 8.2 for
Windows” in AUJ 26-4 (Dec 2005),
p.242. -- su]

DDC-I – Opens New US
Sales Office for the Eastern
Region
http://www.ddci.com/display_news_item.ph

p?filename=news_ddci_opens_eastern_r
egion_sales_office.php

DDC-I, Inc. Opens New US Sales Office
for the Eastern Region
March 15, 2006 – Phoenix, AZ – DDC-I,
a global leader in safety and security
critical software development tools for
embedded applications announced today
the opening of a new U.S. Eastern region
sales office and the appointment of Rich
Ciccotto to the growing sales team.
In order to better support significant
growth, DDC-I has been increasing staff
in the sales and engineering departments,
with engineering expanding by 25% this
year. Ciccotto’s appointment puts an
experienced industry veteran in the
territory to continue the customer
responsiveness that DDC-I is recognized
for.
Ciccotto has over 24 years of new
business development, customer service,
training, technical sales and account
management experience. A motivational
leader, Ciccotto has achieved 23
“Presidents Club” awards in recognition
of his accomplishments.
“Rich is a true professional with stellar
customer references, exactly the kind of
person we want working closely with our
customers,” said Bob Morris, President &
CEO of DDC-I, Inc. “He brings a wealth
of experience and motivation that fits
nicely with the rest of our team.”
Ciccotto joins DDC-I from AONIX,
where he served for over 7 years as the
Southeast and Midwest Sales Manager.
Prior to AONIX, he worked for
RTM/Integrated Chipware, Magic
Software Enterprises & Computer
Associates. As DDC-I’s Eastern Sales
Manager, Ciccotto will work out of a new

14 Ada-related Products

Volume 27, Number 1, March 2006 Ada User Journal

east coast sales office located Viera,
Florida, which will allow for easy access
to his east coast accounts.
About DDC-I, Inc.
DDC-I, Inc. is a global supplier of
software development tools, custom
software development services, and
legacy software system modernization.
DDC-I’s customer base is an impressive
“who’s who” in the commercial, military,
aerospace, and safety-critical industries.
Tools include compiler systems and run-
time systems for C, Embedded C++, Ada,
JOVIAL and Fortran application
development. For more information
regarding DDC-I products, contact DDC-I
at: 400 North Fifth Street, Phoenix,
Arizona 85004; phone (602) 275-7172;
fax (602) 252-6054; e-mail
sales@ddci.com or visit www.ddci.com

Green Hills – INTEGRITY
for Radiation-Hardened
RAD750
http://www.ghs.com/news/20060117_rad750

.html
Green Hills Software Announces
INTEGRITY Support for BAE Systems
RAD750
Brings Proven Mission-Critical Real-
Time Operating System to Premier
Radiation-Hardened Computer for Space
Applications
Santa Barbara, CA, January 17 , 2006
Green Hills Software, Inc., the leader in
real-time operating systems (RTOS) and
device software optimization (DSO),
today announced the immediate
availability of a complete port of its
INTEGRITY real-time operating system
to the BAE Systems’ RAD750 radiation
hardened PowerPC Processor and
CompactPCI single board computer. The
combination of INTEGRITY and
RAD750 yields the industry’s most
advanced hardware/software architecture
for high reliability space systems.
“We selected INTEGRITY because of its
proven heritage in mission critical
systems as well as its integration with
Green Hills Software’s powerful MULTI
IDE tool set,” commented Dave Stofko,
Flight Systems Software Manager, Space
Systems/Loral. “Coupled with the latest
radiation-hardened hardware, this solution
represents the state-of- the art in space-
based device software platforms.”
INTEGRITY RTOS
INTEGRITY, the premier real-time
operating system for use in mission
critical systems, has been selected for use
in space-based systems such as satellites
as well as a wide variety of aerospace
applications. According to leading
industry analysts, INTEGRITY has
demonstrated the highest growth in real-
time operating system market share for

the past 4 years. INTEGRITY’s success is
due to its advanced technological design,
incorporating memory protection,
guaranteed resource availability, field
upgradeability, optimal real-time
response, and the world’s leading
development tools integration with Green
Hills Software’s MULTI IDE. In addition,
INTEGRITY is the only commercially
developed real-time operating system to
be certified with integrated modular
avionics (IMA) systems by the US
Federal Aviation Administration (FAA) to
the stringent DO-178B Level A, the
highest level of safety in which a system
failure may be catastrophic. In
comparison, legacy real-time operating
systems running on radiation-hardened
computers have not taken advantage of
the processor’s memory management unit
(MMU) at all, making the system
susceptible to unforeseen interactions
between software components, including
memory corruptions, faults and denial of
service problems.
RAD750 CompactPCI Board Support
Package (BSP)
INTEGRITY’s comprehensive device
driver and debugging support for the
RAD750-based single board computer
includes:
 * Serial/UART
 * Ethernet
 * Hardware cache snooping
 * High resolution timer
 * Watchdog timer
 * RAM initialization and booting from
 EEPROM
 * JTAG debugging with the Green
 Hills probe
 * Enhanced power PCI bridge,
including PCI enumeration, timers, DMA,
EMC access, a hardware semaphore API,
and support for power saving modes
A wide range of INTEGRITY
middleware available for the BAE space
computer includes:
 * IPv4 and IPv6 TCP/IP stacks
 * Network applications and security
 (FTP/TFTP, DHCP, DNS, SSL, SSH,
 Crypto, Firewall)
 * DOS/FAT, RAM and Fast File
 System (FFS) support
 * Partition Journaling File System
 (PJFS)
Reconfigurable Space Systems
Next generation space-based systems will
be characterized by complex missions,
many of which have field lifetimes
measured in years. As such, these systems
require an operating system that can meet
the highest levels of reliability and
security while enabling in-space
reconfiguration. INTEGRITY’s
microkernel design, virtual device drivers,
and partitioning architecture enable
designers to build truly reliable space-
based systems wherein any part of the
software, including application programs,

RTOS middleware, and even the kernel
and interrupt service routines, can be
patched, replaced, or upgraded. “This
kind of flexibility is a requirement in
space due to the harsh environment and
likelihood of an SEU (Single Event
Upset) that can cause portions of memory
to fail. Mission controllers can take
advantage of INTEGRITY’s field upgrade
capabilities to work around hardware
problems and extend the life and value of
their space-based investments”,
commented David Kleidermacher, Vice
President of Engineering at Green Hills
Software.
PJFS
Green Hills Software’s Partitioning
Journaling File System (PJFS) is a natural
partner with INTEGRITY for space-based
systems and is also now available for the
RAD750 space computer. PJFS employs
complete file data and metadata
journaling, ensuring that the file system
and file data cannot be lost in the event of
unexpected power loss. In addition, PJFS
employs a patent-pending partitioning
architecture that enables applications to
have guaranteed media resources and
access control, preventing unintended
resource exhaustion or other failures that
can arise when sharing a traditional file
system with complex software. Finally,
like INTEGRITY, PJFS sports a very
small footprint that is ideal for resource-
constrained systems.
About the RAD750
The RAD750 from BAE Systems is the
most technologically advanced
microprocessor ever offered to the space
community. The RAD750 is a licensed
radiation hardened version of the IBM
PowerPC 750. The RAD750 is a 3rd
generation microprocessor, with almost
ten times the performance of current
space processors, and is the follow-on to
BAE System’s highly successful and
space proven RAD6000 family. The
RAD750 is available in a single board
computer in the CompactPCI form factor.
The RAD750 architecture supports an
industry leading performance of 260
MIPS operating at 132 MHz.

Green Hills – Model-Driven
Development for Safety-
Critical Embedded Software
http://www.ghs.com/news/20060214_esterel

.html
Green Hills Software and Esterel
Technologies Partner to Create the First
Complete Model-Driven Solution for
Safety-Critical Embedded Software
Development
First Integration of a DO-178B Level A
and IEC 61508 SIL3 Compliant
Modeling, Code Generation, Verified
Compilers and RTOS Solution

Ada-related Products 15

Ada User Journal Volume 27, Number 1, March 2006

SANTA BARBARA, CA and
ELANCOURT, France – February 14,
2006
Green Hills Software, Inc., the leader in
real-time operating systems (RTOS) and
device software optimization (DSO), and
Esterel Technologies, a leading
worldwide supplier of model-based
design, validation and code generation
tools for safety-critical embedded
software applications, announced today a
strategic partnership resulting in the first
complete Model-Driven Solution (MDD)
for safety-critical embedded software
code generation and product
development.
“By partnering with Esterel Technologies,
Green Hills Software is the first company
to provide a highly integrated Model-
Driven Solution for safety-critical
embedded systems developers, based on
the widely established DO-178B, IEC
61508, and SCADE standards,” said Dan
O’Dowd, founder and chief executive
officer of Green Hills Software. “SCADE
provides the most comprehensive Model-
Driven Development solution available
for the safety-critical embedded markets
today. The combination of SCADE with
our MULTI IDE development solution,
royalty-free operating systems and target
middleware gives our customers a
comprehensive and safe solution for
optimizing the time-to-market, time-to-
certification and total reliability of safety-
critical embedded systems.”
Under the agreement, Esterel
Technologies’ SCADE Qualified Code
Generator (KCG) will produce code that
will be automatically integrated with
Green Hills Software’s INTEGRITY-
178B Level A and IEC 61508 certified
INTEGRITY RTOS’s. Furthermore,
Green Hills Software’s industry leading
compilers will be pre-qualified through
SCADE’s Compiler Verification Kit
(CVK) ensuring that any code produced
by SCADE and then compiled by Green
Hills Software’s compilers will go
successfully to certification in a cost-
effective, timely manner. SCADE KCG
and CVK will be integrated with Green
Hills Software’s technology-leading
INTEGRITY RTOS and C/C++ / Ada
compilers to enable a seamless workflow
between modeling and implementation.
The two companies will also collaborate
on future integrated features and
capabilities, including the integration of
the SCADE built-in simulator with
MULTI.
This integration will create the first DO-
178B Level A and IEC 61508 SIL3-
compliant end-to-end solution, spanning
software modeling, code generation,
compilation, and RTOS integration.
Green Hills Software’s and Esterel
Technologies’ products are also integrated
with leading UML/SysML modeling tools
such as I-Logix’ RHAPSODY to support

legacy and non-critical code modeling
and reverse engineering.
Traditionally, software designers and
developers have used separate
environments for different development
aspects: one for application software
modeling, often paper-based, and another
for implementation to target. In contrast,
the integrated solution developed by
Green Hills Software and Esterel
Technologies accelerates time-to-market
and time-to-certification by generating a
DO-178B and IEC 61508-compliant
target code in C, directly from the
SCADE model.
“Green Hills Software offers the
industry’s most complete and best
technology RTOS and IDE solutions,”
said Eric Bantegnie, president and chief
executive officer of Esterel Technologies.
“When these qualities are combined with
our market-leading SCADE safety-critical
application development environment, our
two companies, each the fastest growing
and most successful in our respective
sectors, provide a truly synergistic
solution. This not only benefits our
mutual customers, but also reduces the
overall cost of development and
certifications of DO-178B up to Level A
and IEC 61508 SIL3 embedded systems.”
Integrated Solution Addresses Critical
Development Phases
The combination of SCADE,
INTEGRITY and Green Hills Software
compilers provides an integrated solution
that addresses critical phases of DO-178B
and IEC 61508 embedded systems
development
* Behavioral design and validation –
using SCADE Editor, Simulator and
Model Test Coverage
* Code Generation using SCADE’s
Qualified Code Generator, KCG –
removing the need for low-level testing
other than the qualification of the User
context and Compiler
* Compiling with Green Hills Software
compilers – pre-qualified for SCADE
generated code compilation thanks to
SCADE’s Compiler Verification Kit
* Integration with Green Hills Software’s
market-leading INTEGRITY RTOS – the
standard for certified and certifiable
RTOS’s in the DO-178B Level A and
IEC 61508 markets
* Debugging and optimization – The
multi-source-level debugger is fully
synchronized with the SCADE models
Availability
SCADE KCG and CVK integration with
INTEGRITY and Green Hills Software
compilers will be available in July 2006.
About Green Hills Software
Founded in 1982, Green Hills Software,
Inc. is the technology leader in real-time
operating systems (RTOS) and device

software optimization (DSO) for 32- and
64-bit embedded systems. Our royalty-
free INTEGRITY RTOS, velOSity
microkernel, compilers, MULTI and
AdaMULTI integrated development
environments and TimeMachine debugger
offer a complete development solution
that addresses both deeply embedded and
high-reliability applications. Green Hills
Software is headquartered in Santa
Barbara, CA, with European headquarters
in the United Kingdom. Visit Green Hills
Software on the web at www.ghs.com.
About Esterel Technologies
Esterel Technologies’ tools create
unambiguous specifications that produce
correct-by-construction, automated
implementation in software and/or
hardware. Today, SCADE Suite is the
standard for the creation of RTCA DO-
178B, EUROCAE ED-12B, and IEC
61508 safety-critical embedded software
in the civilian avionics and transportation
industries; SCADE Drive is the emerging
standard for the creation of safety-critical
embedded software in the automotive
industry. Esterel Studio allows electronics
hardware designers to create golden
specification models that can be
automatically implemented in RTL or C.
Esterel Technologies is a privately held
company with headquarters in Mountain
View, California, USA, and Elancourt,
France, with direct sales offices in
Germany, the United Kingdom, and
China. For additional information, visit
the Esterel Technologies website at
www.esterel-technologies.com.

Praxis HIS – SPARK
Toolset 7.3
From: Rod Chapman

<rod.chapman@praxis-his.com>
Date: 26 Jan 2006 06:20:09 -0800
Subject: ANN: SPARK 7.3 now available
Newsgroups: comp.lang.ada
Praxis High Integrity Systems are pleased
to announce the immediate availability of
release 7.3 of the SPARK language and
toolset.
Complete details, including the revised
language definition and the toolset release
note are now available from
www.sparkada.com
Supported customers are being upgraded
now. Academic users and tool-partners
will be upgraded shortly.
Tool upgrade packages for readers of the
SPARK textbook are also available from
www.sparkada.com
Highlights of this release include:
- VC Generation improvements in the
presence of semantic and data-flow errors.
- Support for full-range of IEEE 64-bit
floating point values in the configuration
file.
- A new Examiner switch that produces

16 Ada and Microsoft

Volume 27, Number 1, March 2006 Ada User Journal

explanations of errors and warnings on-
screen and in the listing files.
 - Better error messages for common
syntax errors.
- Relaxation of the rule requiring
qualification of modular literals.
- Support for proof rules involving the
'Size attribute.
- Correct order or declaration in FDL files
for type-announced and private types.
- Support for the use of pragma Import to
complete an external own variable.
- Significant new Simplifier tactics for
modular and rational inequalities.
- Support for user-defined proof rules for
the Simplifier.
- Port of the Simplifier and Checker to the
SICSTUS PROLOG compiler. Both are
significantly faster as a result.
See www.sparkada.com for more details,
including performance metrics for the
new Simplifier.
Full details of all language and tool
changes can be found in the release note.
Buyers of the “SPARK Book” by John
Barnes can now download upgrade
packages to bring their toolset and
documentation up to release 7.3.
So how much better is the new
Simplifier?
Well, here are the results of a simple
experiment, conducted on the SHOLIS
application software. SHOLIS comprises
some 27000 lines of embedded, safety-
critical, real-time code, so it’s a “real-
world” example for sure. We generated
VCs using Examiner 7.3, then applied the
following versions of the Simplifier:
2.17 (POPLOG) – as shipped with toolset
release 7.2 (i.e. what you’ve got right
now...)
2.22 (POPLOG) – with new tactics, but
using the same compiler.
2.22 (SICSTUS) – as shipped with release
7.3 (i.e. what you’ll be getting real-soon-
now...)
We ran all three runs on a single 2.4GHz
Pentium 4 Xeon machine, running
Windows XP. Here are the results:
 2.17 (POPLOG)
 2.22 (POPLOG)
 2.22 (SICSTUS)
VC total 9685 9685 9685
VC proved 9134 9221 9221
VC un-proved 551 464 464
% Proved 94.31 95.21 95.21
Time 185 mins
 144 mins 73 mins
We’ve just commissioned a new server,
which contains a dual-core AMD
Opteron64 model 275. This gives
identical results in JUST FORTY
MINUTES, using sparksimp’s “/p=4”
option to load both processor cores.
In summary:
1) Simplifier 2.22 is both smarter AND
faster than 2.17 even using the same

PROLOG compiler. In this example, it
discharges an additional 87 VCs
automatically – an improvement of 16%
in the number of VCs left.
2) SICSTUS prolog nearly doubles the
performance of the Simplifier with
identical results. Not bad!
[See also “Praxis HIS - SPARK Release
7.2” in AUJ 26-1 (Mar 2005), p.17-18. --
su]

Praxis HIS – SPARK
Toolset for Mac OS X
From: Rod Chapman

<rod.chapman@praxis-his.com>
Date: 15 Feb 2006 07:55:04 -0800
Subject: ANN: SPARK for Apple OS X now

available
Newsgroups: comp.lang.ada
I’m pleased to announce that the “book”
edition of the SPARK Toolset is now
available for Apple Mac OS X.
This release is functionally identical to the
release 7.3 already available for Windows
and GNU/Linux.
This release includes the demonstration
versions of the SPARK Examiner,
Simplifier, POGS, SPARKFormat and
SPARKMake tools, RavenSPARK
examples, and full documentation. We
still recommend that you read the SPARK
book though!
This release has been compiled and tested
on PowerPC/OS X 10.4.4 only at this
stage. We haven’t tried it on any Intel-
based Mac. If anyone out there has an
Intel-based Mac, then we’d be fascinated
to hear if the SPARK tools run under
Rosetta or not...
Downloads from http://www.praxis-
his.com/sparkada/sparkbook.asp

Ada and GNU/Linux
Multi-architecture Support
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 15 Mar 2006 00:43:04 +0100
Subject: Re: [gnuada] gcc 4.1.0 available
Newsgroups: comp.lang.ada
> I had tried Debian, knowing that

Ludovic Brenta was doing great work
on GNAT support in Debian. But I
didn’t get on very well with Sarge,
lacking hardware support and multi-
arch. I wasn’t sure if I could run the 32-
bit applications on it properly.

As far as I can tell, multiarch support is
immature in all distributions. Work is
ongoing in Debian to provide good
multiarch support, but currently we’re
restricted to biarch support on some
architecture pairs (i386-amd64, powerpc-
ppc64, and sparc-sparc64). I’m not
actually that knowledgeable about biarch

myself. The technicalities are already
complex enough, but there are policy
decisions to be made as well. Apparently,
we’re looking at generalising the tool
chain, libraries, file system hierarchy,
dynamic loader, package manager (dpkg),
and I’ve probably forgotten some other
things.
That said, have you looked at
http://www.debian.org/ports/amd64/ ?
Yes, you can run 32-bit applications on it.
In the worst case, you can always create a
chroot containing a complete 32-bit
userland running on top of a 64-bit
system. But as I said, Debian developers
are looking for ways to provide that out of
the box.
If you want to do Ada on amd64 with
Sarge, you need to use gnat-3.4 instead of
gnat. In Etch, you get gnat-4.0 instead.
I’m now working on providing gnat-4.1,
which, when it stabilises, will become the
default compiler for Ada 2005, C, C++,
Fortran 95, Java, Objective C, and
Objective C++.
> SuSE seemed very promising, and your

creation of a complete set of GNAT
packages makes it quite attractive.
Perhaps this is what I should use?

I don’t follow SuSE development, but I
am under the impression that its otherwise
good support for amd64 is uniarch only,
i.e. support for 32-bit binaries is
immature. Perhaps Martin can confirm or
deny.
> As regards Annex E, I am still stuck

with the version of Glade that goes with
GNAT 3.15p, and there appears to be a
nasty bug which I hit occasionally. I
had got the impression that Glade
development had halted in favour of
PolyORB. Which of these should I be
using? I guess I should stick with Glade
if that is what you have packaged!

You can download recent sources of
GLADE from AdaCore’s CVS
repository[1]. I see there is activity there,
the most recent file was modified 6 days
ago. The change seems to be related to
64-bit architectures.
[1] https://libre2.adacore.com/cvsweb
It is my intention to take these sources
and port them to GCC 4.1.

Ada and Microsoft
MinGW vs. Cygwin
From: midgleyben@hotmail.com
Date: 30 Jan 2006 06:57:12 -0800
Subject: Mingw vs Cygwin
Newsgroups: comp.lang.ada
I have a question about the differences
between Cygwin Adan Mingw, with
reference to the Ada compiler.

Ada Inside 17

Ada User Journal Volume 27, Number 1, March 2006

I need to port Ada code to XP from
Linux, link C code (maybe C++) to the
project and create an exe which supports
sockets (networking). So which way
Mingw or Cygwin ? I have read so many
reports of problems with c under Mingw
and just problems with gcc-ada but non
particularly up to date, any advice
welcome.
Also if I get the whole Cygwin
installation I get Mingw too, to my
understanding if I use Mingw I statically
link support for the windows API and if I
use the gcc-ada compiler I need to
provide Cygwin1.dll for distribution, is
this accurate and can anyone add detail to
this explanation?
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Mon, 30 Jan 2006 19:51:01 -0500
Subject: Re: Mingw vs Cygwin
Newsgroups: comp.lang.ada
If you go to any “help” newsgroup you
will find nothing but problems about a
topic so first of all I would not get too
worked up about seeing “nothing but
problems” with people doing C under
Mingw.
Next, you do not need to provide
Cygwin1.dll for Ada code that is built
from a Mingw based distribution.
The question is, do you need capability
that is present in the Cygwin dll or not.
The Cygwin dll provides essentially a
UNIX compatibility layer. Depending on
the nature of your code, you might not
need it at all.
If you do think you need it, you need to
understand the licensing terms of the
Cygwin dll which is essentially (last time
I checked) GPL (not LGPL). (Though I
think you can buy a license under
different terms from RedHat).
If you need to link your code against the
standard Cygwin dll then you will need to
distribute your application under the
terms of the dll (read the GPL for details.
Short story, you have to give the source
code to everyone you give the binary to
and you can’t limit who they give the
source code to).
The standard AdaCore GNAT build
executables that are Mingw based. The
Cygwin.dll that is inside of most of the
GNAT windows binary distributions is
there (I think) to support the GDB install
which is Cygwin based.
In general, I would not recommend the
Cygwin approach unless it is critical to a
successful port.

References to
Publications
Programming in Ada 2005
by John Barnes
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 27 Feb 2006 18:18:22 -0600
Subject: Re: Programming in Ada 2005

book
Newsgroups: comp.lang.ada
> I’ve just ordered my copy.

John is clearly far too modest to
advertise here, so I’ll just pass on this
link :-)
http://www.amazon.co.uk/exec/obidos/
ASIN/0321340787/ref=br_lf_b_8/203-
8725360-1116746

John told me last week that he didn’t have
the publishing details yet (which is why
the Ada 2005 section of
http://www.adaic.com/learn/textbook.htm
l is empty). How did you find it out before
he did?? :-)
From: Randy Brukardt

<randy@rrsoftware.com>
Newsgroups: comp.lang.ada
Subject: Re: Programming in Ada 2005

book
Date: Tue, 28 Feb 2006 16:32:08 -0600
> By the way, Amazon are advertising a

30th June 2006 release date, but the
AdaIC site is listing an April 2006 – is
that the release date in the USA?

I used the date on the publisher’s website
(follow the link on the AdaIC page). (That
was March 30th). John sent me a cryptic
note this morning that seems to imply that
date is wrong. Hopefully, I’ll find out the
real answer.
From: Barbara Barnes

<llsbarns@rdg.ac.uk>
Date: Thu, 2 Mar 2006 08:21:07 -0000
Organization: University of Reading
Subject: Re: Programming in Ada 2005

book
Newsgroups: comp.lang.ada
Here is a bit more info.
> It is nearly done (index to be done still).

At least the cover has been chosen
which is always a huge step forward. It
has grown from 702 to 830 pages and
that has been kept down by putting
some Answers on the CD. The 23
chapters are now 25. Clearly some of it
is as in the 95 book but every chapter
has been messed with – probably every
section has been messed with.
I am hoping to have copies at Ada-
Europe in June.
Incidentally, looking at the above link
to Amazon and then clicking on “Other
books by the same author” brings up a
whole lot of stuff I didn’t write!
Pointers are dodgy!
Also please note that a new printing of

the Spark book is just coming out. The
book itself is much the same except that
a few semicolons have been added. But
the key point is that the CD has some
new versions of the Spark tools.
John

Ada Inside
Ada inside the High Speed
Train
From: trg <trg@world.std.com>
Date: Tue, 14 Feb 2006 12:14:27 +0100
Subject: Re: Is Ada inside the Bullet Train?
Newsgroups: comp.lang.ada
John McCormick wrote:
> My publisher just sent me a draft of a

cover design for the 2nd edition of my
data structures textbook (updated to
Ada 2005). It includes a photograph of
the Bullet Train going through rural
Yonezawa, Japan. I’ve always been
under the impression that the Bullet
Train had some Ada inside. However, it
does not appear on Mike Feldman’s
Web page listing the commercial uses
of Ada. Can anyone confirm that Ada is
on board this train?

I don’t know about the Japanese train, but
your publisher could use a picture of the
French TGV, the Eurostar, or the Korean
TGV if he wants a picture of a high speed
train system that relies on Ada.

Green Hills – Boeing 777
http://www.ghs.com/news/20051214_smith_

boeing.html
Smiths Aerospace Selects Green Hills
Software for New Boeing 777 Systems
FAA DO-178B Certified Systems
Deployed in New Boeing 777-300ER and
Being Retrofit into Earlier 777 Models
Santa Barbara, CA – December 14, 2005
– Green Hills Software, Inc., the
technology leader in operating systems
and development tools for safe and secure
systems, today announced that Smiths
Aerospace successfully certified two new
systems to the FAA’s RCTA/DO-178B
safety critical standard using Green Hills
Software products.
Smiths Aerospace used Green Hills
Software’s GMART run-time system and
AdaMULTI development environment to
develop the software for the Electrical
Load Management System (ELMS2) and
Fuel Quantity Indicating System (FQIS)
for the new Boeing 777 300ER aircraft.
The software running in both systems has
been certified to the Federal Aviation
Administration’s (FAA) standard for
safety-critical software, RTCA/DO-178B.
Both the FAA and European Joint
Aviation Authority (JAA) were involved
in the certification process.

18 Ada Inside

Volume 27, Number 1, March 2006 Ada User Journal

“Smiths Aerospace selected Green Hills
Software’s AdaMULTI development
environment and GMART run-time
system for the ELMS2 and FQIS because
these systems met our safety requirements
and supported the low power and low cost
Freescale ColdFire 5307 processor that
we were using,” said Dave Bolton,
principal software engineer at Smiths
Aerospace.GMART also reduced our
development effort because we were able
to use Green Hills Software’s certification
package, including design and verification
data, in our FAA certification submittal.”
We are pleased that Smiths Aerospace,
like other major avionics manufacturers,
is using Green Hills Software’s solutions
to optimize development of their safety-
critical devices,” commented Dan
O’Dowd, founder and chief executive
officer of Green Hills Software.
“Avionics manufacturers are increasingly
recognizing that they can reduce the time,
cost and risk of software development and
certification by using our robust and
proven off-the-shelf DO-178B solutions.
This is why, in addition to the Boeing
777-300ER, Green Hills Software has
also been selected for multiple safety-
critical systems on both the Boeing 787
and Airbus A380, among others.”
About AdaMULTI and GMART
Green Hills Software’s AdaMULTI is a
complete software development
environment for embedded computer-
based applications developed using the
Ada 95, C, C++ and Embedded C++
(EC++) programming languages.
AdaMULTI contains an integrated set of
tools that maximize software developers’
productivity while enabling them to
optimize the reliability, performance and
resource requirements of their devices.
Green Hills Software’s GMART supports
the SPARK safety critical subset of the
Ada language. It is ideal for those
applications requiring a small fast and
deterministic run-time environment.
Further SPARK facilitates the
development and certification of safety-
critical software. GMART has been
proven in numerous systems certified to
DO-178B, including flight-critical
systems that require the most stringent,
Level A certification.

Green Hills – Military
Trainer Aircraft
http://www.ghs.com/news/20060214_hawk.h

tml
Green Hills Software Kernel and
Development Environment Selected for
New HAWK Military Trainer Aircraft
Santa Barbara, CA/Nurnberg, Germany
February 14 , 2006 – Green Hills
Software, Inc., the technology leader in
operating systems and development tools
for safe and secure systems, today

announced that BAE Systems has selected
the Green Hills GMART SPARK Ada-
compliant kernel and AdaMULTI
development environment for the new
Hawk military trainer development
aircraft.
The GMART kernel for PowerPC is being
used for the next-generation Hawk
Mission Systems for the aircraft
consisting of two new open architecture
mission computers. The second unit
allows the two cockpits of the aircraft to
operate independently, each being used
for different purposes to fulfill the
required training needs. Instructors in the
rear seat can monitor the trainees in the
front or configure the system for their
own requirements. The second computer
also provides extensive back-up capability
in the event of any failure. This system
provides graphics for all six cockpit
display panels and a heads-up display.
“Green Hills Software is very pleased that
BAE Systems selected our GMART
safety critical kernel and our AdaMULTI
development environment for the new
Hawk program,” said Dan O’Dowd,
founder and chief executive officer of
Green Hills Software. “Green Hills
Software offers several different kernels
within our safety critical product line.
These were specifically developed to
meet individual program needs. The
GMART kernel is a SPARK-compliant,
small and deterministic kernel that is
statically verifiable to be correct.”
Green Hills Software offers a complete
line of safety critical products. This
includes the Green Hills Minimal Ada
Run-Time (GMART) product used here
by BAE Systems, the Green Hills Small
Tasking Ada Run-Time (GSTART)
product, the INTEGRITY-178B real-time
operating system (RTOS) and all the
support tools necessary for safety critical
development. GMART and GSTART are
both small, fast and deterministic kernels
for executing single applications on an
embedded computer. INTEGRITY-178B
is a time and memory partitioned
operating system, certified to DO-178B
Level A and to full ARINC 653-1
compliance. Support for ARINC 653-1
with its partitioning definition allows
developers to deploy multiple applications
on a single processor, at potentially
multiple safety certification levels. This
powerful capability enables developers to
reduce the number of on-board computers
needed to support multiple software
systems. Further, INTEGRITY-178B is
the only safety critical RTOS to be
certified for multiple languages,
including: Ada, C, MISRA C and
Embedded C++, allowing developers to
choose the language and kernel best
suited to meet their development needs.

Green Hills – FMCDU
system
http://www.ghs.com/news/20060307_CMC.

html
CMC Electronics Selects Green Hills
Software Platform for Avionics
Chosen Solution Includes INTEGRITY-
178B RTOS, Ada Ravenscar Kernel and
AdaMULTI Development Environment
Santa Barbara, CA – March 7, 2006
Green Hills Software, Inc., the technology
leader in operating systems and
development tools for safe and secure
systems, today announced that CMC
Electronics Inc. has selected the Green
Hills Software Platform for Avionics,
including the INTEGRITY-178B real-
time operating system (RTOS), GSTART
Ravenscar compliant Ada kernel and
AdaMULTI development environment,
for CMC’s Flight Management Control
and Display (FMCDU) system.
“The Green Hills Platform for Avionics
provides a single vendor solution that
satisfies our advanced development
environment requirements,” said Patrick
Champagne, vice-president engineering of
CMC Electronics. “Furthermore, the dual
redundant FMCDU system will require
certification to the FAA’s DO-178B
safety critical standard. The Green Hills
Software INTEGRITY-178B operating
system has been previously proven as
certifiable to the highest level for DO-
178B.”
The Green Hills Platform for Avionics
will also be utilized for the development
of a CMC Electronics Aircraft
Management System product line,
featuring PCI open system architecture.
“Green Hills Software is pleased that
CMC Electronics has selected our
Platform for Avionics with the
INTEGRITY-178B RTOS, GSTART
kernel and AdaMULTI development
environment,” said Dan O’Dowd, founder
and chief executive officer of Green Hills
Software. “Green Hills Software has
developed a complete Platform for
Avionics to support the diverse needs of
our avionics customers. These include a
full time and memory partitioned RTOS,
Ada language specific kernels, integrated
multi language support, all of which have
been previously proven as certifiable to
the avionics safety critical standard DO-
178B Level A. Only the Green Hills
Platform for Avionics offers all these
capabilities, developed and certified by
in-house experts.”
The Green Hills Software Platform for
Avionics offers a complete line of safety
critical products. These include Green
Hills Minimal Ada Run-Time (GMART),
Green Hills Safe Tasking Ada Run-Time
(GSTART), the INTEGRITY-178B real-
time operating system (RTOS) and all the

Ada in Context 19

Ada User Journal Volume 27, Number 1, March 2006

support tools necessary for safety critical
development. GMART and GSTART are
both small, fast and deterministic kernels
for executing single applications on an
embedded computer. INTEGRITY-178B
is a time and memory partitioned
operating system, certified to DO-178B
Level A with full ARINC-653-1
compliance. Support for ARINC-653-1
with its partitioning definition allows
developers to deploy multiple applications
on a single processor, at potentially
multiple safety certification levels. This
powerful capability enables developers to
reduce the number of on-board computers
needed to support multiple software
systems. Furthermore, the Platform for
Avionics with INTEGRITY-178B is the
only safety critical RTOS certified for
multiple languages, including: Ada, C,
and Embedded C++, allowing developers
to choose the language and kernel best
suited to meet their development needs.
About CMC Electronics
CMC Electronics designs and produces
leading technology electronics products
for the aviation and global positioning
markets. CMC’s focus is on delivering
innovative cockpit systems integration
and avionics solutions to its customers
worldwide. CMC’s principal locations are
in Montreal, Quebec; Ottawa, Ontario;
and Chicago, Illinois. Formerly known as
Canadian Marconi Company, CMC
Electronics has designed and built
innovative communication and electronics
systems since 1903.

Praxis HIS – High-Grade
Programmable
Cryptographic Engine
http://www.praxis-his.com/sparkada/pdfs/

praxis_rockwell_final_pr.pdf
Rockwell Collins selects SPARK Ada for
High-Grade Programmable Cryptographic
Engine
Bath, England – 28th February 2006
Praxis High Integrity Systems today
announced that Rockwell Collins has
chosen Praxis’ SPARK Ada language and
toolset for its Janus high-grade
programmable cryptographic engine.
Rockwell Collins will utilize SPARK for
development and verification of the Janus
security-critical application software.
SPARK allows Rockwell Collins to verify
security requirements and to provide a
quality product with minimal defects in a
constrained budget and schedule. SPARK
provides the capability to perform a
formal mathematical analysis of the
control data and user information flow
within a virtual machine.
Rod Chapman, SPARK products manager
at Praxis, commented, “We’re pleased
that Rockwell Collins has chosen SPARK
and recognized the unique strengths that it

brings to the development of ultra-secure
software systems. In particular, SPARK
prevents large classes of software defect
and allows a rigorous and traceable
approach to generating the evaluation
evidence required by the Common
Criteria scheme.”
About SPARK
SPARK is a programming language,
design approach and toolset designed for
the construction and verification of high-
integrity software application. The
language is an unambiguous, annotated
subset of Ada95. The annotations embody
“design-by-contract” information in a
program that can be cross-checked and
verified by the tools. The language is free
from all undefined, unspecified or
ambiguous constructs and so can be
compiled with any standard Ada
compiler. This property also enables
verification that combines soundness with
depth and efficiency. SPARK programs
are immune from a wide variety of
defects, including data-flow errors and all
so-called “runtime errors” including
buffer-overflow. SPARK has an enviable
track record in meeting the requirements
of the most stringent software standards in
the world, including UK Def Stan 00-56,
DO-178B, CENELEC 50128, and the
Common Criteria at the highest assurance
and integrity levels. More information
about SPARK can be found at
www.sparkada.com
About Praxis High Integrity Systems
Praxis High Integrity Systems has
developed a global reputation in the fields
of high integrity software development,
systems engineering, systems safety and
security. The Company’s roots are in the
application of sound engineering
principles to the development of high-
integrity software systems whether safety,
security or business critical. Its unique
approaches, tools and products have
evolved from practical experience in the
most effective approaches to developing
such systems. The Company operates in
the defence, aerospace, transport,
telecommunications, finance and
automotive markets. For more
information, please visit:
www.praxis-his.com.

Ada in Context
Comparing Floating Point
Numbers
From: Matthias Kretschmer

<mccratch@gmx.net>
Date: Sun, 4 Dec 2005 11:33:32 +0100
Subject: Floating-Point Numbers and

Internal Representation
Newsgroups: comp.lang.ada
I had a problem in one of my programs,
that was caused by the internal

representation of floating-point numbers
in the FPU. Concrete: calculating the
value of an optimum for some large
number of objects, then in a second doing
something with all optimal objects. The
problem was, that when doing the
calculation the second time, the compiler
left the floating-point number in the FPU
which had a higher precision than the
representation I chosen, so comparing for
equality returns always “False”. The
problem would be solved by some
operation truncating the floating-point
number to the precision I originally
wanted or used. I could of course put all
the values in an array or list and then
finding optimum and optimal objects, but
I don’t want to go this way. In C if I
remember correctly I could use a volatile
variable to ensure the compiler will put
the value in and read from the variable
before comparing, but to achieve
something similar (truncating the
precision to that of the type used) in Ada?
My current solution is to enhance
precision to compiler maximum which
seems to be the machine maximum. But I
would like to know if there are any better
solutions?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 4 Dec 2005 15:50:04 +0100
Subject: Re: Floating-Point Numbers and

Internal Representation
Newsgroups: comp.lang.ada
> Independent of CPU/language used I

would always suggest to use:
abs (X – Y) < epsilon
with a sufficient but not to small
epsilon instead.

Epsilon above can well be relative that
depends solely on the algorithm. Usually
epsilon is estimated in the course of
calculations together with X and Y, as a
part of the algorithm. So the answer is
still the same. (:-))
BTW, I wouldn’t use division to evaluate
relative errors as the paper suggest.
Rather:
 Half_Epsilon * (abs X + abs Y)
A really different answer would be
interval arithmetic. If X and Y were
intervals they would carry the accuracy
estimation with them. So one could
directly compare them:
case X<Y or X>Y is
-- The result is not Boolean!
 when False | Uncertain =>
 -- The difference cannot be
 -- distinguished from
 -- accumulated inaccuracy
 when True =>
 -- They are sufficiently
 -- different
end case;

From: Steve <steved94@comcast.net>
Date: Mon, 5 Dec 2005 18:54:15 -0800

20 Ada in Context

Volume 27, Number 1, March 2006 Ada User Journal

Subject: Re: Floating-Point Numbers and
Internal Representation

Newsgroups: comp.lang.ada
> Suggested reading:

http://www.cygnus-
software.com/papers/comparingfloats/c
omparingfloats.htm
There is more than one answer to this
problem

Interestingly enough I ran across this site
a couple of months ago, and am using the
AlmostEquals function in some C++
code.
For Ada, I would think you could make
use of the 'Adjacent attribute to achieve a
similar result, but would be independent
of the floating point representation.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 5 Dec 2005 17:38:57 -0600
Subject: Re: Floating-Point Numbers and

Internal Representation
Newsgroups: comp.lang.ada
If you’re only interested in using the
memory precision, you can use the
Machine attribute, see A.5.3(60-62).
http://www.adaic.com/standards/95lrm/ht
ml/RM-A-5-3.html
But, as others have said, that may not be
the best solution, as direct comparison of
float values for equality is often dubious.
It’s also relatively expensive on some
machines (such as the Intel Pentium
processors), where values in registers are
always kept in extended precision;
dropping that precision usually requires
writing the values to memory and back.
So it’s best to avoid this attribute in
performance critical code portions.
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Sun, 04 Dec 2005 22:29:03 +0100
Subject: Re: Floating-Point Numbers and

Internal Representation
Newsgroups: comp.lang.ada
As a complement to other answers about
comparing floating point numbers, here is
a page explaining the use of appropriate
epsilons in Ada according to the
circumstances:
http://www.adaic.com/docs/95style/html/s
ec_7/7-2-7.html

Portability among Windows,
Linux and MacOS
From: Szymon Guz <alpha@skynet.org.pl>
Date: Thu, 02 Feb 2006 11:53:54 +0100
Subject: Ada & MacOS
Newsgroups: comp.lang.ada
I’m going to develop a small (later it will
be bigger as further modules come up)
application for small business. It is going
to work under Windows, Linux and Mac
OS having very similar GUI and using
common database (it will be
PostgreSQL). I wanted to use
C++/wxWindows/PostgreSQL for that but

I’d rather go in the Ada direction, so I’ve
got some questions:
1. Is it possible to make such a program in
Ada with as less work as possible while
creating a GUI for another OS ? I wanted
to develop it under windows, and then try
to run it under Mac OS without too much
work, I want to avoid the situation when I
have to create another GUI from the
beginning.
2. Is there any compiler for Ada under
Mac OS that is compatible with a
compiler for Linux and Windows.
3. Does anybody have any experience
with using PostgreSQL with Ada on all of
these systems (or maybe choose another
database) ?
4. How about printing with GtkAda ?
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Fri, 03 Feb 2006 19:38:10 GMT
Subject: Re: Ada & MacOS
Newsgroups: comp.lang.ada
Jean-Pierre Rosen wrote:
> For libraries (and especially GUI

libraries like GTK), it is not a matter of
compiler, it is a matter of... libraries.
Simply choose a library that has been
ported to the OSs you want to target.

I haven’t checked the latest version, but
GtkAda relied on GNAT-specific
features.
From: Simon Williams

<williams@ntlworld.com>
Date: Fri, 03 Feb 2006 23:55:57 GMT
Subject: Re: Ada & MacOS
Newsgroups: comp.lang.ada
I am the keeper of the macada.org
website, and one of the maintainers of the
system for Mac OS X. GNAT GCC works
fine with Mac OS X. I develop and
maintain GUI and server programs for my
work in GCC version of GNAT that we
build/use/sell for both Linux and Mac OS
X. There is no difference in code. We use
GtkAda as our GUI, and that works well
for us. We have not done a Windows port
(though my boss keeps making threats),
but in theory it should pretty much just
work. I did do a partial port of the server
several years ago and it came up and
seemed to work. But I didn’t have any
customers so company wasn’t interested
in paying to test etc then.
If you have questions on the Mac
compatibility on GNAT check out the
GNAT for Mac mailing list at:
http://hermes.gwu.edu/cgi-
bin/wa?SUBED1=gnat-osx&A=1%22
From: Adrian Hoe <abyhoe@gmail.com>
Date: 4 Feb 2006 08:22:40 -0800
Subject: Re: Ada & MacOS
Newsgroups: comp.lang.ada
Visit http://macada.org. This GNAT
integrates with Xcode and the Apple’s
Interface Builder with appropriate plug-in
from macada will allow you to develop

Apple’s native GUI applications. But
then, it will not be portable to Windows
and Linux. You can overcome this by
using Darwin X11 and GTK (GtkAda) to
develop your Mac applications.
There is a GTK native port to Mac OS X
somewhere (I can’t remember the URL
but Google should give you some results).
If this native port is successful,
developing cross-platform GUI will be
even more pleasant on Mac.
The Xcode also have nice and convenient
integration with Subversion and other
SCM. I have just configured my SVN to
work with Xcode.
GNAT from macada does not support
universal binary yet but soon.
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Mon, 06 Feb 2006 09:20:44 +0100
Organization: CERN - European

Laboratory for Particle Physics
Subject: Re: Ada & MacOS
Newsgroups: comp.lang.ada
>>OK but how with the compatibility of

code compiled on GNAT that is part of
GCC between Mac OS, Windows and
Linux ?

> It’s Ada not C or C++. Ada compilers
obey and not ignore the ISO standard.
Ada compilers come without a 10 page
list of ISO standard features not yet and
probably never to be implemented. Ada
does not only have an ISO standard – it
also has an ISO standard test suite.
BTW: The only programming language
with an official standard test suite.
Ada is most likely the most compatible
programming language in existence that
compiles into binary code.

Of course, not counting “features” of
different compilers, right? If you say
“Ada compiler”, then is GNAT a good
example? Doesn’t it have any “features”
that can affect compilability/behaviour of
some code?
The words “compiler bug” appear in
comp.lang.ada archive, don’t they?
In the same way, C++ guys can say that
C++ is an incredibly portable language,
with compilers existing for almost every
piece of silicon in existence. Well, except
of some compiler “features” that spoil the
picture, of course.
> That’s for theory, in practice: I have

used Ada with OS/2, MS-Windows,
Linux, OpenVMS and the tendency is:
if it runs in one OS it will run on any
other as well. Well: unless you use OS
specific features or grab deep down into
the System packages.

Same for C++. One of the users of my
recent code (non-trivial, I would say)
compiled it on Mac OS by typing “make”,
even though I’ve never touched Mac. So?
Granted, the fact that Ada has a standard
test suite is a Very Good Thing, really.

Ada in Context 21

Ada User Journal Volume 27, Number 1, March 2006

The lack of such test suite for C++
allowed various vendors to put big “C++”
letters on whatever shi^H^H^H product
they wanted to sell over the last decade or
so and that’s the cause for the C++
landscape to look so messy today. But
don’t present it to be entirely hopeless,
because it isn’t.
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Mon, 06 Feb 2006 18:48:44 GMT
Subject: Re: Ada & MacOS
Newsgroups: comp.lang.ada
Using which compilers and what
language features? Very few “C++”
compilers implement the language
defined by the ISO standard. Can you use
all the features of the standard language
and count on it compiling with all “C++”
compilers?
With Ada, the entire standard language is
compiled by every compiler; a compiler
that didn’t implement, say, generics,
would be laughed out of existence. Yet
“C++” users regularly use compilers that
don’t implement templates, exceptions, or
namespaces.
Sure, Ada compilers are large programs
and have errors. They’re less common
than back in the good old days when it
seems I broke a compiler every time I
turned around.
Ada compilers can implement compiler-
dependent pragmas and attributes, and can
supply compiler-dependent packages.
Many also supply platform-dependent
packages. If you use those, you’re not
writing portable code. If you stick to the
standard language, though, portability is
pretty much guaranteed.
GNAT is an interesting beast. Versions
exist for a number of platforms, and it
comes with a large library (GNAT.*) that
is compiler dependent, and much of it
(such as GNAT.OS_Lib) seems platform
dependent, too. These work fine on all
platforms that GNAT compiles to. So you
have compiler-dependent but platform-
independent packages with GNAT.
From: Hyman Rosen

<hyman.rosen@gmail.com>
Date: 6 Feb 2006 12:44:26 -0800
Subject: Re: Ada & MacOS
Newsgroups: comp.lang.ada
Much more so now than in the past. The
biggest missing feature is implementation
of the “export” keyword, and that’s more
due to deliberate foot-dragging than
anything else, by vendors who loathe the
feature. There are also legacy features that
remain in some implementations that
would not be there in a completely
conforming compiler. But you now have
to be quite expert in C++ to find the
missing features in modern compilers.
What about all the standard annexes
which vendors may choose not to
implement? If I write a standard-

conforming distributed program in Ada, is
portability pretty much guaranteed?

Java Exception Model and
Ada
From: Peter C. Chapin

<pchapin@sover.net>
Date: Fri, 18 Nov 2005 11:48:46 GMT
Subject: Java exception model. Was: Re:

Ada Quality and Style book discussion
("_Type" suffix)

Newsgroups: comp.lang.ada
Brian May wrote:
> With respect to his complaint on

exception handling – I like the Java
model where every exception that can
be raised by a function has to be
declared – that way you don’t have to
check for exceptions that don’t
currently occur – and if the
specifications change, the compiler can
generate an error to let you know that
you may not have considered an
exception.

The problem with Java’s model is that it
forces the programmer to deal in some
way with exceptions that semantically
can’t happen. Consider
procedure Outer is
begin
 if Some_Complicated_Check then
 Inner;
 end if;
end Outer;

Suppose procedure Inner raises an
exception under certain conditions yet
can’t do so in the code above because
Inner is only executed when the
complicated check succeeds. Assume that
under those particular conditions, it will
never fail. The Java exception model
would require us to either handle an
exception that will never occur, or declare
that Outer might raise an exception that
we know it will never raise. Such a
declaration will force Outer’s callers to
also do something about this impossible
exception as well, etc, and so forth.
The example above is simplistic and
contrived but it’s my belief that in real
programs this sort of issue comes up a lot.
I agree with the quoted article, though, in
that using exceptions properly is
surprisingly tricky and that it does require
the programmer to think about non-local
issues. I think there are times when the
old fashion method of returning error
codes is probably better. However, a
blanket prohibition against exceptions is
probably an over reaction.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 18 Nov 2005 14:18:43 +0100
Subject: Re: Java exception model. Was:

Re: Ada Quality and Style book
discussion ("_Type" suffix)

Newsgroups: comp.lang.ada

I can’t tell for Java, but let consider Ada
adopting a contract model of exceptions.
Your reasoning above is flawed. If the
designer of Outer knows that the
exception X cannot propagate out of it
then it should be:
procedure Outer is
begin
 if Some_Complicated_Check then
 begin
 Inner;
 exception
 when X =>
 -- This is not a state,
 -- it is a bug
 raise Program_Error;
 end if;
 end if;
end Outer;

I think it is a software design issue. When
exceptions and exceptional states are
considered as *valid* states, then there
cannot be any good argument against
contract model of exceptions. They
belong to a *functional* part of the
program. What is left, are the arguments
like – it is too difficult to implement;
there would be too big overhead; I don’t
know how to do it right – not much
impressive. Alternatively you can say,
OK, exceptions are exclusively for
software bugs. But this is also a quite
weak position, because if they are bugs,
then why would you like to handle them?
Bugs to be debugged!
From: Peter C. Chapin

<pchapin@sover.net>
Date: Sat, 19 Nov 2005 18:06:05 GMT
Subject: Re: Java exception model. Was:

Re: Ada Quality and Style book
discussion ("_Type" suffix)

Newsgroups: comp.lang.ada
One of the arguments for exceptions is
that they simplify error handling. I’m not
sure code above is much of a
simplification over traditional methods.
For example, I don’t really want to be
forced into the style above for
Constraint_Error every time I index into
an array. In any case, using the Java
model procedure Outer would have to
declare that it might raise Program_Error.
Do you really want to force programmers
to put such declarations on every
subprogram? That would render those
declarations pointless, wouldn’t it?
Actually in Java, some exceptions are
unchecked like the null reference
exception¦ because it’s clear that forcing
programmers to either handle it or declare
it as thrown in every method would be
excessive. A program would be littered
with “useless” handlers or else every
single method written would have to say
that it might throw a null reference. Java
thus has two classes of exceptions: those
that are checked and those that are not.
How does one decide into which class a
new exception should go?

22 Ada in Context

Volume 27, Number 1, March 2006 Ada User Journal

The whole issue seems like a nasty
morass to me.

Porting from ObjectAda to
GNAT
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Thu, 08 Dec 2005 21:49:51 +0100
Subject: Re: Gnat calls to Aonix DLL
Newsgroups: comp.lang.ada
> I am trying to convert a project written

in Aonix Ada 7.2.2 to GNAT. I would
like to call the existing dll libraries
compiled in Aonix from gnat compiled
code. I am doing this because the
packages are large and it would help
me convert the code in pieces. At this
time some functions seem to work but
others cause a segmentation fault.
Can anyone help with a procedure for
calling the Aonix Ada compiled dll
from GNAT?

I have been running both ObjectAda and
GNAT in parallel and I had found that the
easiest way to move from ObjectAda to
GNAT is the following approach.
The maybe tricky parts:
 * Get a clear view of the build
dependencies in the current system.
 * Get all your source code to match the
GNAT naming conventions.
The boring part:
 * Set up a project structure matching the
ObjectAda structures with GNAT project-
files “.gpr” files (no library projects at this
point).
The fun part:
 * Build your programs using GNAT.
 * Verify.
The final part:
 * Change the “library” projects to be
real library projects (static) in the GNAT
environment and do a complete build.
 * Change the desired static libraries to
be dynamic.
 * Recompile and copy the DLL:s to the
correct directory for execution.
 * Verify.
 * Done.
Note: I have done this with a >2MSLOC
system almost single handed.

The Use Clause: That is the
Question
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Sat, 19 Nov 2005 20:28:25 GMT
Subject: Don't use the "use" clause
Newsgroups: comp.lang.ada
> You introduced a name collision by the
‘use’ clause; that can always cause name
collisions. The proper solution in that case
is to use the qualified name.

I agree. I personally take it an extreme
step further, and never use ‘use’ clauses
anywhere. They shouldn’t even be in the
language. Every Ada project I’ve worked
on that had a coding standard banned the
use clause, and rightly so.
I don’t only oppose it because of the
ambiguity, but even when there is no
ambiguity, it’s a severe inconvenience to
have to grep a large tree to hunt down a
declaration. Then to possibly get multiple
hits and have to compare two lists of
packages to discover which hit is the
correct one. By the time you make it to
the declaration you’re looking for, you’ve
forgotten why you need to look at it :)
Clearly the typing time saved by the use
clause cannot possibly offset the time lost
on all the resulting code searches.
From: Ed Falis <falis@verizon.net>
Date: Sat, 19 Nov 2005 20:35:36 GMT
Subject: Re: Don't use the "use" clause
Newsgroups: comp.lang.ada
If you were using a modern editor, with
Ada cross-referencing, you wouldn’t have
this problem. GPS, Emacs Ada mode,
ObjectAda and quite a few others provide
this.
From: David Emery <demery@cox.net>
Date: Mon, 21 Nov 2005 12:36:47 -0500
Subject: Re: Don't use the "use" clause
Newsgroups: comp.lang.ada
I’ve been in the middle of several debates
on this. My personal strong belief and
experience has been that qualified names
are very useful in comprehension,
particularly trying to grasp the ‘big
picture’ of software structure.
So in one previous life, when handed a
package that did not have qualified names
in it, the first thing I’d do is add the
qualified names.
It’s possible to construct programming
environments that can show you the
unambiguous source for each
name/operator. But such information is
transient, it only lasts for as long as you
have the mouse/etc there. Often I’m
sufficiently “Luddite” that I print out and
scribble over hard copies of programs.
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Sat, 19 Nov 2005 23:40:46 GMT
Subject: Re: Don't use the "use" clause
Newsgroups: comp.lang.ada
Dmitry A. Kazakov wrote:
> No, name collisions better be prevented

by making “use” illegal when it hides
anything.

The use clause is barred by coding
standards for a good reason, and I don’t
think it’s necessarily name collisions that
drive this rule. Programmers are forced to
resolve name collisions, with or without
the USE clause. The use clause is banned
because it makes code unreadable and
difficult to use. As Joel Spolsky said,

travel should be minimal when
interpreting a line of code. Fully qualified
naming is a better style because you know
immediately, from the code itself, where
the identifier lives. And if you need to see
the declaration, you know immediately
where to go.
> BTW, what about banning implicit

“use” of “Standard”? Care to write an
AI to make Integer, “+”, “-” etc
invisible? (:-))

The “use type” clause is a different beast,
and I do not object to its use; nor is it
banned in any coding standard I’ve read.
> IDE should have “go to declaration”

button.
I agree, but not all IDEs have that luxury.
The last IDE I worked in had the option,
but it was broken. My current
environment is Emacs, which doesn’t
offer that feature by itself. I’ve only seen
it when Emacs is paired with Apex. Even
under the best tools, where a mouseover
might reveal the home for some
declaration, it’s still poor style to not have
that information in the text, so the reader
doesn’t have to mouse around
compulsively, as the keyboard is faster
than the mouse.
>> Then to possibly get multiple hits and

have to compare two lists of packages
to discover which hit is the correct one.
By the time you make it to the
declaration you’re looking for, you’ve
forgotten why you need to look at it :)

> It is no matter “where”, “what” does
matter. If you need to frequently
browse sources to determine “what”,
then the program is poorly designed.

Certainly not. I would say just the
opposite. If you’re repeating information
from your declaration in your identifiers,
then you’ve created a maintenance
problem by introducing too much noise,
also forcing identifiers to change
whenever the declaration changes. A good
design doesn’t repeat this information.
>> Clearly the typing time saved by the

use clause cannot possibly offset the
time lost on all the resulting code
searches.

> What about the time spent on reading
something like A.B.C.D.E.F.G.H?

If you have something like that, then
there’s something wrong with the
architecture of your project. A user should
not need visibility into such a deep level
within an external component.
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Sun, 20 Nov 2005 03:57:57 GMT
Subject: Re: Don't use the "use" clause
Newsgroups: comp.lang.ada
Stephen Leake wrote:
> Hmm. Even for operators?

A := B + C;
should work when A, B, C are

Ada in Context 23

Ada User Journal Volume 27, Number 1, March 2006

Cartesian Vectors, not just scalars.
And a use clause in a small function
can easily improve readability.

That’s what the “use type” clause is for. I
have no objection to the use type clauses.
I use them myself, and coding standards
always accommodate them.
The version of Emacs they’ve installed at
work does not have this capability, and
I’m stuck with what they provide; but it
wouldn’t matter anyway. Even with that
feature (which I’ve had on previous
projects), it wouldn’t be worth it to
constantly search like that, when
disciplined Ada programmers can simply
follow the coding standard and fully
qualify external identifiers.
As a beginner I was tempted to use the
use, but after I was forced to fully qualify,
I’ve discovered that it’s much easier to
read code from others as well as old code
of my own. I would never go back, even
if Emacs had a mouseover cross
reference.
> It’s not the time typing I’m worried

about, it’s the time reading and
understanding.

In that case the time you’re worried about
is what’s reduced by fully qualifying your
names. If you get the information as fast
as you can read it, you know what’s going
on faster than you can even reach for your
mouse. You just cannot beat
instantaneously knowing which names are
internal and which are not, and where
they come from.
There is one case where I might be
willing to tolerate the use clause on a
project. If an editor existed that would
fully qualify the names (inline) as it loads
the buffer so I wouldn’t even need to
hover over them with a mouse, and the
project supported such a tool, then it
wouldn’t matter to me either way whether
I had to read code that used use clauses.
AFAIK, no such tool exists, or at least it’s
certainly not mainstream.
A better approach would be to have the
controlled code checked in without use
clauses, and if some hacker wants the
package names hidden, or other hidden
information for that matter, then it would
be easier to make that a check out for
browse option.
At one point I worked on a project that
did not enforce their prohibition on the
use clause. They simultaneously
mandated a lousy Windows-based tool
set, which did not have cross referencing,
and to worsen things, grep was not
provided either. So we had to search using
the crappy native Microsoft search tool,
which does not support regular
expressions. The folks on that project who
used use clauses needlessly robbed me of
copious man/hours.
From: Jeffrey R. Carter

<jrcarter@acm.org>

Date: Sun, 20 Nov 2005 19:48:23 GMT
Subject: Re: Don't use the "use" clause
Newsgroups: comp.lang.ada
There is some justification for this.
SPARK, for example, does not have the
use clause (but does have the use type
clause).
I tend to work from the idea of what the
reader should know. I expect my reader to
know Ada, and as such to be familiar with
the standard library, so there’s no real
problem with using Ada.Text_IO. On a
specific project, if there’s a standard
library used on the project, people
working on the project should be familiar
with the library, and using the library
packages should not be a problem.
However, I don’t expect everyone to be
familiar with the entire system, so
application-specific packages should
generally not be used.
From: Peter Amey <peter.amey@praxis-

cs.co.uk>
Date: Wed, 25 Jan 2006 11:01:28 +0000
Subject: Re: Don't use the "use" clause
Newsgroups: comp.lang.ada
> What does SPARK gain by outlawing

use clauses? Surely the examiner can
handle the extra name resolution!

I haven’t followed all of this thread but do
wonder if poor initial name choice is
sometimes a driver for the desire to
employ “use”? I think the original topic
was Ada Quality and Style so naming
may be on topic anyway.
I think the trick is to choose names
knowing that they will be read in
sequences separated by dots. Then the
desire to strip away chunks of the name
becomes less pressing.
I often see (ghastly) things like:
Engine_Sensor_Class.Engine_Speed_
Sensors.Turbine_Speed.Read_Turbin
e_Speed

no wonder people want to employ use
clauses to shorten it!
If instead we had:
Sensors.Speed.Turbine.Get

then a use clause is less useful and might
even be positively misleading.
A side benefit of banning “use” (but not
“use type”) which we do in SPARK, is it
encourages this kind of naming because
nobody ever has to worry about what a
name might look like with bits of it
missing.

Ada to C++ Translator
From: Jeffrey R. Carter

<jrcarter@acm.org>
Newsgroups: comp.lang.ada
Subject: Re: Ada to C++ translator
Date: Tue, 24 Jan 2006 22:39:16 GMT
> I am looking for an Ada to C++

translator. The converter will only be

used as an intermediate step and not
used on sections of code we will be re-
architecting to make use of C++
functionality.

Such a beast is impossible, since there is
no translation for tasks and protected
objects.
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Wed, 25 Jan 2006 00:25:15 +0100
Subject: Re: Ada to C++ translator
Newsgroups: comp.lang.ada
It seems you are indeed looking for an
Ada compiler producing C or C++ code
(since you mention that the converter is
an intermediate), and such tools exist. For
instance:
http://www.sofcheck.com/products/adama
gic.html
From: David Emery <demery@cox.net>
Date: Tue, 24 Jan 2006 18:26:14 -0500
Subject: Re: Ada to C++ translator
Newsgroups: comp.lang.ada
That’s not true. There’s no 1-1 translation,
but a POSIX-based runtime certainly can
show how to translate Ada tasking to a
sequence of C/POSIX primitives
(Mutexes, Semaphores, etc). It’s certainly
non-trivial, but it can be done.
A good recent paper on sequential Ada is:
 Audsen, Howard & Nyberg, “Using
ASIS to Generate C++ Bindings”, Proc
SIGAda 2005
For tasking constructs, search for papers
by Ted Baker and/or Ted Giering.
If you’re a SIGAda member, it’s in the
proceedings you got last month :-)
From: James Alan Farrell
Date: Wed, 25 Jan 2006 17:30:11 -0500
Subject: Re: Ada to C++ translator
Newsgroups: comp.lang.ada
I used such a tool on a previous project
(which proves it can be done). I would
say if it could not be done (because of
tasking or other considerations) then Ada
probably could not be compiled or run.
Since it obviously can be, why can it not
be compiled to another language such as
C++? (To my mind, compiling means to a
specific runtime environment, such as to
Linux on a PC, so I do not buy the
argument that converting to C++/POSIX
is different somehow from converting to
C++)
Unfortunately I do not recall the name of
the tool we used.
I do recall that after converting a
substantial amount of Ada code, a number
of programmers were employed full time
for six months fixing up the C++ to make
it readable. My office mate was one of
them. It is also possible that they were
making corrections to mistranslated code,
but the majority of the effort was simply
to make it readable.

24 Ada in Context

Volume 27, Number 1, March 2006 Ada User Journal

From: Charlie McCutcheon
<charlie.mccutcheon@hp.com>

Date: Fri, 27 Jan 2006 15:01:26 GMT
Organization: Hewlett-Packard Company
Subject: Re: Ada to C++ translator
Newsgroups: comp.lang.ada
Recently, I’d heard of such a thing, seems
to be at:
http://www.softresint.com/expe.htm
I’m skeptical that the translation would be
very good. I’d predict lots of cost for hand
fixing problems. They do at least
acknowledge that Ada and C++ are
“different”.

Mr. Safety and Mr. Sloppy
From: Anonymous Coward

<anonymous@coward.org>
Date: Thu, 16 Feb 2006 02:15:17 GMT
Subject: Working with incompetent adaists /

unsafe typing war story
Newsgroups: comp.lang.ada
I’d like to start with a war story:
“Despite the lack of coding standard, Mr.
Safety wrote a well constructed package
that uses private types, then wrote some
packages that use those types. After these
packages all reach a mature and refined
(and tested) state, another developer (Mr.
Sloppy) finds that they need to use Mr.
Safety’s package, which requires private
types in the interface. Mr. Sloppy refuses
to work with private types. It’s the typical
anti-strong typing mentality, where the
developer refuses to accept anything that
might limit their power.
Mr. Safety was forced to introduce
support for duplicate public versions of
these types to accommodate Mr. Sloppy’s
skill limitations; which obviously
produced a sloppy free-for-all in the work
product.”
The understanding that most s/w
developers seem to have is that they
design their own interfaces for packages
they create, and users of that Ada spec
only have a say in whether it meets
standards and requirements. I always bend
to accommodate types that other
developers require in their spec, because
it’s theirs. Maybe I’m wrong about what I
think is typical. It was explained to me
that interfaces are “shared” and are no
more controlled by the author than the
users of it.
That story is just a sample of what I
encounter too frequently in the Ada
workforce. It seems a /majority/ of Ada
developers have no formal Ada training,
and are primarily C developers who
picked up the Ada syntax on the job.
Consequently, Ada principles are lost, and
much of the Ada code out there is only
slightly safer than C code (but still safer
primarily because even a poor Ada
developer cannot write ambiguous code
like they can in C).

I’ve only worked on four or so workplace
Ada projects. The projects with elaborate
coding standards produced substantially
better code, but I think it was just chance
that those projects also had Ada
enthusiasts who used private types, as the
coding standard did nothing to promote
private typing.
Do you folks encounter this frequently?
And what’s the solution? Management
can never appreciate the benefits of
concepts like type safety. Strong typing is
incorrectly viewed as “academic” and
counter to progress.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Thu, 16 Feb 2006 09:32:43 +0100
Organization: Adalog
Subject: Re: Working with incompetent

adaists / unsafe typing war story
Newsgroups: comp.lang.ada
Ada was designed to induce a change in
mentalities. A change in mentality is
much harder to introduce than a change of
programming language.
Moreover, training is felt by management
as a waste of time and money. Why
should we pay to get our engineers not
working for a week or two? This newly
hired guy does not know Ada? Just give
him some code to read (Ada is so readable
after all); he’s a talented guy, he will learn
quickly. In only rare cases, the guy is
given Barnes’ book (not to be read during
work hours).
Currently, we see many projects in Ada,
and at the same time the attendance to my
training sessions has never been so low.
I’m worried, not for my business (the said
projects provide me with enough
occupation), but for this growing idea that
proper training is not necessary.
I just added a new rule to AdaControl
(available in the next release) to check
“while true loop .. end loop;”. I did so
because I found it in actual programs. It is
a great indicator of modules written by
people without any Ada education, and
which certainly deserve peer review!
From: Peter C. Chapin

<pchapin@sover.net>
Date: 16 Feb 2006 16:10:08 GMT
Subject: Re: Working with incompetent

adaists / unsafe typing war story
Newsgroups: comp.lang.ada
I agree with this. It also works in another
direction! I believe I became a
significantly better C programmer after
studying Ada. Like all good programming
techniques, the concepts end up being
language independent.
From: stephe_on_the_web@toadmail.com
Date: Thu, 16 Feb 2006 05:20:34 -0500
Subject: Re: Working with incompetent

adaists / unsafe typing war story
Newsgroups: comp.lang.ada
My view is that interfaces are always
negotiated between the implementers and

the users, preferably with input from the
system architect; they both need the
interface, but have different needs from it.
The interface represents the best
compromise they can achieve.
They do have to be controlled; you can’t
let just anybody force a change to an
interface.
In my experience, most programmers
have inadequate training. Most of my
current job is teaching people how to
write good code. I find it helps that I’m
also teaching them Ada; it helps them to
abandon their preconceptions. It does give
Ada a rep of being “hard to learn”, but I
can live with that.
I suspect that’s a mindset issue; if you like
elaborate coding standards, you are likely
to also like private types and strong
typing.
[The solution is] programmer education
and strong project management.
Managers need to be educated along with
the programmers.
The best way to educate managers is by
demonstrating an impact on the bottom
line. If you can show that good
programming actually saves time and
therefore money, they will listen.
But you need support in getting that
process started. That’s when you need
stories from others that have used good
programming and saved money; check
http://www.adaic.com for good stories.
On the other hand, some programmers
will never be “good”, and you need to get
them off your project.
Unfortunately, we don’t have a good
database of examples to show it is wrong
that [strong typing is counter to progress].
In my job, I have sufficient clout that I
can say “on my projects we use Ada,
because it is the best language”. However,
other project managers don’t want to be
bothered with learning new tools, or
training their staff; they are unconcerned
about productivity.
Since I work for the government, it’s hard
to use the profit motive. Instead, it helps
to remember that our real purpose is to
spend the taxpayer’s money in the
congress-critter’s district. That explains
why we often do things in the most
inefficient way :)
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Thu, 16 Feb 2006 21:17:14 +0100
Subject: Re: Working with incompetent

adaists / unsafe typing war story
Newsgroups: comp.lang.ada
At Barco, I am part of a small team that
has been using Ada for the past 8 years or
so. I’ve been there for only two years
myself. My colleagues are software
engineers, not just coders. They all
understand the power of type safety, and
their desks have badges with the

Ada in Context 25

Ada User Journal Volume 27, Number 1, March 2006

Countess’ effigy and the motto: “In strong
typing we trust – Ada – 1983 – 1995 –
2005”. Last year, I wrote the new version
of the coding standard, and everyone on
the team has a culture of following it. So,
my experience is quite exactly the
opposite of yours, and as a consequence
I’m a happy software engineer :)
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Sat, 18 Feb 2006 00:09:16 +0100
Subject: Re: Working with incompetent

adaists / unsafe typing war story
Newsgroups: comp.lang.ada
> What would one put on their resume to

selectively stand out to these
companies, and simultaneously deter
the sloppy projects from offering an
interview?

I think you can just explain what you’re
looking for in your CV. Then add a
couple of keywords such as “quality”,
“coding standards” and “software
engineering”.
If you evolve to that point (I haven’t yet
but am planning to), you can replace these
keywords with “formal methods”, “proof
of correctness”, “SPARK”.
It has worked for me at least.
From: Richard Riehle

<adaworks@sbcglobal.net>
Date: Thu, 16 Feb 2006 23:57:01 GMT
Subject: Re: Working with incompetent

adaists / unsafe typing war story
Newsgroups: comp.lang.ada
I was at an Ada conference many years
ago, before the end of the mandate, and
visiting the booth of a well-known CASE
tool publisher. They began to demonstrate
the tool for me.
At one point the person doing the
demonstration said something such as,
“Well let’s get rid of these limited private
types since they cannot be used for
anything useful.” He then continued with
his demonstration of the tool.
I was horrified, but decided to remain
polite. It would have been no good to try
to educate him to the contrary.
From an engineering perspective
(although not from a programmer’s point-
of-view) it is quite valuable that we
cannot overload the assignment operation
and do other little things that are easy in
languages without the equivalent of
limited private. Yes, to do assignment on
a limited type we must create a procedure,
but that is not a bad thing – it is a good
thing.
One of my early mentors in Ada, Doug
Bryan, once said, “Until you understand
‘limited’ you don’t understand Ada.” I
eventually learned just how right he was.
With Ada, we are not trying to appeal to
the programmer. Rather, we are
concerned with good engineering
practice. Ada continues to be the best

language available when one is focused
on engineering rather than programming.
From: Marc A. Criley <mc@mckae.com>
Date: Fri, 17 Feb 2006 07:39:33 -0600
Subject: Re: Working with incompetent

adaists / unsafe typing war story
Newsgroups: comp.lang.ada
An Ada seminar run by Doug Bryan that I
attended quite some time ago continues to
exert a profound influence on my Ada
programming practice and understanding.
In that seminar he focused on Ada’s “type
model” and how that was the foundation
of the language’s definition. The proper
definition of types embeds mountains of
useful information about your program
that can be programmatically extracted by
querying the type model for that
information, which is mostly done via
attributes.
That’s why I occasionally get on the
soapbox that while “strong typing” is a
strength of Ada, it’s only _part_ of the
story, the rest is having access to
information about types and their
instances that is being implicitly encoded
into the software due to Ada’s type model
based definition.
With the fallacious dismissal of strong
typing, not only the defensive aspects of
Ada are being thrown out, but the
revelatory ones as well.
From: Brian May

<bam@snoopy.apana.org.au>
Date: Fri, 17 Feb 2006 12:57:54 +1100
Subject: Re: Working with incompetent

adaists / unsafe typing war story
Newsgroups: comp.lang.ada
A big hurdle I find (not just in Ada
software) is that the API Mr Safety
carefully designed and implemented is
insufficient for the requirements of the
project. As a result, and due to demands
from management to get the project
finished Yesterday, Mr Safety is forced to
expose a lot of the inner workings which
he never intended.
The reason why the API was insufficient?
Because Mr. Safety didn’t understand all
of the requirements. The reason? Because
management considers the design phases
of the very complicated software a
complete waste of time and money. Bugs
will occur anyway. What is the point?
However, Mr. Safety wanted to try to do
the right thing. So he tried to do the
design. Unfortunately he couldn’t see into
the future for what would be required, as
Management considers each modification
as a totally isolated project.
Not only that, but Mr. Safety wasn’t given
time to document the API. As such other
programmers tied themselves up in knots,
either by continuing to do things in
obsolete ways, or by making changes to
the API that aren’t required and break
other things in horrible ways. This can
lead to conflicts between Mr. Safety and
the other programmers in doing things the

“correct way” vs. the “quickest way” with
management supporting the later. Not
only that, but even Mr. Safety wasn’t sure
how the API was meant to work, as he
wrote it years ago and hasn’t had an
opportunity to look at it since. During this
time other developers have gradually been
changing it in ways which look totally
inappropriate and Mr. Safety doesn’t
understand.
At the end of the day, management gets
code that appears to work, and they are
happy. Other code might be completely
broken and need fixing, but that is rule
rather then the exception in such projects.
These issues occur regardless of language
– admittedly this isn’t Ada, and isn’t even
I strongly typed language, but I think Ada
wouldn’t help without significant culture
change.
I have seen web pages dedicated to
discussing why strong typing systems are
bad and slow implementation, and the
world would be a much better place if
everyone used typeless scripting
languages instead.
Then people ask how come so many web
pages have obvious and known security
holes. There was a talk at the Linux
conference (LCA2006), New Zealand, in
fact. The speaker wrote a program
designed to check websites against
obvious attacks, such as not quoting user
input before displaying it back as HTML
to the user, or displaying unquoted user
input (meaning HTTP post variables) in
SQL error messages. He found so many
security problems in common websites
around the Internet he refuses to distribute
the code for fear that attackers might use
it.
These things shouldn’t happen …
Oh well, such is life.
I only hope that software written for
mission critical applications is better.

Exception Safety in Ada
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Wed, 30 Nov 2005 14:57:07 +0100
Organization: CERN - European

Laboratory for Particle Physics
Subject: Controlled types and exception

safety
Newsgroups: comp.lang.ada
I try to understand how the Controlled
types work and I spotted one “small
issue” that makes it difficult to write
exception-safe code.
The “exception-safe” means that code
behaves “correctly” in the presence of
exceptions, for some chosen definition of
“correctly”.
In C++ we define the following levels of
exception-safety:

26 Ada in Context

Volume 27, Number 1, March 2006 Ada User Journal

- level 0 (no guarantee) – in the presence
of exception, anything can happen,
memory may become corrupted, data
structures may become completely
mangled, etc.
- level 1 (basic guarantee) – in the
presence of exception, no resources are
leaked and objects are in a coherent, but
not necessarily predictable state.
- level 2 (strong guarantee) – in the
presence of exception, the program state
(to the relevant extent) remains
unchanged. This is similar to the commit-
or-rollback semantics known from
databases.
- level 3 (nothrow guarantee) – the code
simply guarantees that there are no
exceptions.
Why is this classification useful? Let’s
say that I have an abstract data type that
implements some data structure – a stack,
for example. I can classify the stack’s
operations by assigning them any of the
above four levels, so that I know what can
be expected when an exception is thrown
for any reason (like inability to allocate
more memory, or alike). For example, if
the Push method of the stack gives me the
strong guarantee (level 2 above), then I
know that by calling this method either
the new element will be appended to the
stack, or the stack will remain unchanged,
so that even if the exception is thrown, I
don’t have to worry about the stack’s
internal consistency.
This is useful.
This is useful also in assignment
operations. Since stack can be a dynamic
data structure, assigning one stack object
to another may involve destroying one
existing data structure *and* creating a
new one (a copy) in its place. Similarly,
the quality implementation should provide
the strong guarantee, so that I *know*
that either the stack was properly copied,
or there was a problem during assignment
and an exception was thrown, but nothing
changed in any of the objects involved.
Let’s say that I want to write a stack in
Ada. Making it a Controlled type seems to
be a good idea, so that we have hooks for
initialization, adjusting and finalization.
Let’s say that I have two stack objects, X
and Y. These objects were populated with
some data, so that each of them manages
its own internal dynamic data structure.
Now, I do this:
X := Y;
and the following happens (this is what I
understand, please correct me if I’m
wrong):
1. X is finalized. This allows me to clean
up (free) its internal data.
2. Y is *shallow-copied* to X, so that in
effect X and Y share their state.

3. X is adjusted. This allows me to
duplicate its internal structure so that it
becomes independent from Y.
Later:
4. Both X and Y are finalized. This allows
me to clean up (free) their resources.
For everything to work correctly it’s
important that two separate stack objects
never share their internal dynamic data
structure, otherwise bad things can
happen. It would be also fine not to leak
memory.
Now, the interesting part: let’s say that
during adjustment (3.) some error
happened (like low memory condition or
whatever) that resulted in raising an
exception (note: this exception might be
actually risen not by the stack code, but
by the assignment operation of the stack
elements, even somewhere in the middle
of this process). Bad things will happen in
subsequent finalization of those objects,
unless I handle it by cleaning up
everything that I already managed to
duplicate (but still, this leaves me with the
empty stack).
I think that the inherent problem comes
from the fact that the finalization of X
was forced *before* its adjustment. The
canonical C++ way is to *first* make a
copy of new value (because this is when
errors might occur, so that even if they
occur, there was no change in the
destination object) and *then* inject the
duplicate into the destination object,
getting rid of its old state (and this is
assumed to be nothrow).
The “Ada way” looks like selling the
house *before* looking for the new one.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 30 Nov 2005 16:06:52 +0100
Subject: Re: Controlled types and exception

safety
Newsgroups: comp.lang.ada
ARM 7.6.1 reads: “It is a bounded error
for a call on Finalize or Adjust to
propagate an exception. For an Adjust
invoked as part of an assignment
operation, any other adjustments due to be
performed are performed, and then
Program_Error is raised.”
Here the semantics of “copy”, “inject”,
“duplicate” is ill-defined. In general, you
can copy a set of bits, but you cannot an
object without defining it in the terms
copy-constructor. In Ada’s case copy-
constructor is defined as Bitwise copy +
Adjust. It is an atomic operation. Which is
equivalently means that in general case
you cannot define any reasonable
semantics for its partial completion.
I don’t let exceptions propagate.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 30 Nov 2005 17:52:24 -0600

Subject: Re: Controlled types and exception
safety

Newsgroups: comp.lang.ada
It’s a bug to let Finalize or Adjust
propagate an exception. If they do, the
only reasonable assumption is that the
object is corrupted. The language bends
over backwards to insure that a failure of
one of these operations for an object does
not corrupt any other object (or
component), which is a strong guarantee
in itself.
In just plain old (no controlled types
around):
 A := B;
the raising of an exception during the
assignment leaves A abnormal if A is
composite. In other words, Ada says that
objects that are being assigned are
corrupted by an exception.
The solution is to not allow exceptions to
be raised by Adjust. Yes, that’s not
completely practical, because of
Storage_Error, but even there you should
handle the exception and do what you can
to prevent corruption of the object. (Claw
leaves the object invalid in this case, so
future operations on it, other than
recreating it, will fail.) And this also
suggests that you should try to avoid
allocating memory in Adjust (not always
possible, of course).
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Wed, 30 Nov 2005 17:19:23 +0100
Organization: CERN - European

Laboratory for Particle Physics
Subject: Re: Controlled types and exception

safety
Newsgroups: comp.lang.ada
When I said “copy” above (C++), I meant
create a new object as a copy. This
involves copy constructor. The point is
that this new object is *separate* from the
destination object (from what’s on the left
side of assignment operator), so even if
there are errors, they do not influence any
of the two objects which were originally
involved. After this new helper object is
constructed (which means: *successfully*
constructed), it’s “injected” in the
destination object by means of swapping
the bowels. This idiom is very effective.
[In Ada,] the assignment is defined as
Finalize + Bitwise copy + Adjust. And
it’s the fact that Finalize comes first that
bothers me.
Note that in the example above there is no
“partial completion”. On the contrary –
either the operation completes
successfully or it fails *without*
modifying anything. Moreover, the
scheme does not force me to ignore the
error nor anything like this, I can let it go
to the place where there’s enough context
to really handle it.
What do you mean by “don’t propagate”?
What if there is an exception that was

Ada in Context 27

Ada User Journal Volume 27, Number 1, March 2006

raised by the run-time (like low memory
condition) in the middle of adjusting the
whole stack? What should I do with the
part that was already adjusted
(duplicated)? What should I do with the
part that was not yet adjusted? Should I
clean up what’s already done and leave
the destination stack as empty and shut
the exception up, thus preventing the
higher-level code from properly handling
it?
Is it possible to have assignment with
strong exception guarantee?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 1 Dec 2005 10:21:35 +0100
Subject: Re: Controlled types and exception

safety
Newsgroups: comp.lang.ada
The real problem is that you cannot both
look into an atomic abstraction and
pretend that this look is consistent with
the abstraction. The problem comes with
user-defined constructors. The language
generated ones are composed out of parts
which can be reversible, provided the
language designer knows how to do it.
But a user-defined constructor is
irreversible, otherwise than by, again, a
user-defined destructor. Now you are
sitting in a rocket, a user-defined
constructor has just turned on the ignition,
and oops, you notice that you have left
your hat at home!
Consider an exception raised while
construction of the copy. The copy is
corrupt. Both to destruct or to just
deallocate it could be wrong.
[Also, a] user-defined constructor as a
concept is useless if I cannot construct in-
place. Consider construction of non-
movable objects containing self
references or bound to definite memory
locations.
Exception-safety is irrelevant to the issue.
If Ada should ever have user-defined
constructors and assignment (because
Ada.Finalization is not), then I would
really like to have an access to the left
part of the assignment. In my opinion, the
model could be:
1. Compiler-generated assignment is
generated as Finalize + Copy-constructor.
2. User-defined assignment can override
it. However, there are many tough
problems. The assignment should be able
to change the constraints (i.e. bounds,
discriminants, tags.) It should be
composable against aggregation. It should
have access to the left part, but also be
able to override it in-place.
As far as I know, there is no language
which does it right.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Thu, 1 Dec 2005 22:17:20 -0600
Subject: Re: Controlled types and exception

safety

Newsgroups: comp.lang.ada
Ada doesn’t really have user-defined
assignment; if you *really* need that you
have to use a procedure.
And in any case, what you are asking for
would be contrary to the efficiency goals
of Ada. You’re saying that all assignment
have to be made to temporaries. I can
imagine some language working that way,
but it’s performance would be several
times slower than C++. We have enough
trouble with people thinking Ada is slow
as it is, without duplicating all of the
effort twice. There is a lot of words in the
Ada standard specifically to allow
implementers to optimize (eliminating the
assignment temporary, for instance).
Ada’s model is that a failed assignment
leaves the target corrupt. You can
mitigate that, but not completely eliminate
it. If that is unacceptable for your
application (and I can think of few for
which that would be the case), then you
have to avoid “:=“ (most likely by using a
limited type). At least Ada 200Y
improves the support for limited types a
lot, so that you no longer have to give up
fancy constructors, aggregates, and
constants when you use them.
In your example of a failed stack
assignment, the Adjust routine ought to
clean up the mess if Storage_Error is
raised, and leave the target Stack empty.
Is this ideal? Possibly not, but it hardly
matters, because there is no clean way to
know what might or might not have been
done when the assignment fails (read 11.6
if you believe otherwise); recovery means
exiting out and rolling back far more than
one object. (And there really is no safe,
portable recovery from out-of-memory
conditions – you can only figure out what
works with a specific compiler and target
and do that.)
Probably not specifically. Obviously it
depends on the implementation. I just
looked at [our implementation of
unbounded string], and it does nothing at
all to handle memory issues in Adjust.
That means that the object would fail the
invariants after such an assignment. (I
didn’t actually realize that; it would be
better to null the pointer in that case!)
And presumably, it would eventually
access through a deallocated pointer. But
that’s all a correct (if unfriendly)
implementation of Ada, because the
object is abnormal, and any access to it is
erroneous – see 13.9.1. (Humm, this
actually isn’t as clear as it ought to be;
one could argue that Storage_Error isn’t a
“language-defined check” (its not called
that in 11.1(6)). But surely it is intended
to be covered; it’s hard to imagine a case
that is more likely to corrupt things than
running out of memory. And it is indexed
as a check. So I apply Dewar’s rule [the
Standard never says anything silly].
Anyway, sorry about the language lawyer
musings :)

Moral: don’t touch the left-hand side of
any assignment after it failed raising an
exception, other than to assign a new
value to the *entire* value. If you want
some other semantics, don’t fool yourself
and others by calling it “:=“; use limited
types and appropriate copying procedures.
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Fri, 02 Dec 2005 10:29:40 +0100
Organization: CERN - European

Laboratory for Particle Physics
Subject: Re: Controlled types and exception

safety
Newsgroups: comp.lang.ada
OK, and now it’s bright clear to me. I got
an impression that Controlled types can
buy me the same syntax sugar with the
same flexibility in exception-safety
guarantees that I have with assignment
operators in C++. It’s not bad that they
don’t – but I have to know it. [...]
Interestingly, in the Stack example there
is no performance tradeoff – you *have*
to do both cleanup and state duplication
anyway, no matter what’s the provided
guarantee, but by introducing the
temporary object I can force the specific
order of those operations (first
duplicate, then clean up) that gives me the
strong guarantee – which means commit-
or-rollback. It’s a free lunch in C++ and
therefore there’s no reason not to have it
in types like string, stack, etc. In
particular, there’s no efficiency loss. OK,
you can argue that in this scheme you
have to first create a duplicate and then
destroy the old state, which means that for
some short period of time we consume
more memory (which, funny, makes it
more likely to fail because of memory
shortage :)) and that can result in lower
cache hit rates and this kind of stuff. But
as already said – it’s *my* responsibility
to judge the tradeoffs for each case
separately. It’s not true that this should be
done everywhere.
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Tue, 06 Dec 2005 10:00:39 +0100
Organization: CERN - European

Laboratory for Particle Physics
Subject: Re: Controlled types and exception

safety
Newsgroups: comp.lang.ada
>> But X := Y overwrites X before

calling Adjust on it, so you can’t store
the backup copy, or any way of
accessing the backup copy, in X.

> Right. But Adjust, in case of problems,
could still find the copy of the old X in
the “to be deleted” backup queue and
restore X from there. I didn’t say this
was nice, just that it was possible. ;)

Except that it doesn’t solve anything. The
whole issue with this commit-or-rollback
implementation is that it should not just
suppress the exception and pretend that
nothing happened – it should guarantee

28 Ada in Context

Volume 27, Number 1, March 2006 Ada User Journal

the old state and at the same time let the
exception fly out to the place where it
could be actually handled, whatever that
means in the given context. I’ve started
with the assumption that function “:=“ is
allowed to fail – in the sense that it can
raise exceptions. It’s not, and therefore
there is no point in implementing any
failover features in it. It has to either
guarantee the success or not be provided
at all and the type should be limited.
This brings me to the next problem. Let’s
say that I provide a separate procedure
Duplicate or Copy or Assign or whatever
with the commit-or-rollback guarantees
for some type (like Stack). Now, some of
the types in my program will have “:=“
for assignment, and some others will have
the Copy procedure, but not “:=“. I want
to create a generic container or some
other component that will copy things
around internally. It has to use “:=“ for
some types (like Integer) and Copy for
others (like Stack). In C++ I solve this
problem (aside the fact that there is no
problem in the first place) with template
type traits or some other application of
template specializations.
What about Ada?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 6 Dec 2005 10:50:22 +0100
Subject: Re: Controlled types and exception

safety
Newsgroups: comp.lang.ada
generic
 type Object is limited private;
 with procedure Deep_Copy
 (Left : in out Object;
 Right : Object) is <>;
package Container is
 …
end Container;
with Container;
generic
 type Object is private;
package Specialized_Container is
 procedure Deep_Copy
 (Left : in out Object;
 Right : Object);
 pragma Inline (Deep_Copy);
 package Copying_By_Assignment
 is new Container (Object);
end Specialized_Container;
package body
Specialized_Container is
 procedure Deep_Copy
 (Left : in out Object;
 Right Object) is
 begin
 Left := Right;
 end Deep_Copy;
end Specialized_Container;

Note also that your example is not much
realistic. Transaction model is expensive.
One usually does not compose
transactions. This means that components
of a container will be copied
destructively, *after* necessary memory
allocation. Only the upper level will take

care of a possibility to roll things back.
Thus it makes much sense to distinguish
light-weight “:=“ (which can’t fail) and
heavy-weight “Copy”.
The container itself could be a red-black
tree, which supports roll-backs after
mutations.
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Tue, 06 Dec 2005 18:34:38 GMT
Subject: Re: Controlled types and exception

safety
Newsgroups: comp.lang.ada
[...] For Container to work correctly for
all possible actual types, the assignment
procedure must have Left be mode “out”.
Now the uninitialized actual for Left is
not checked on entry to the procedure,
and it works correctly for scalars. For
composite types, there is a whole
collection of situations in which “out”
really means “in out”, so the user can still
write a meaningful procedure that can
inspect the contents of Left.
Personally, I would have preferred
procedure R'Assign
 (To : in out R;
 From : in R);

for any record type R. This can be
redefined by the user:
 for R'Assign use
 My_Assignment_Procedure;

[...]
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Tue, 6 Dec 2005 13:34:29 -0600
Subject: Re: Controlled types and exception

safety
Newsgroups: comp.lang.ada
This was the original idea for Ada 95, but
it doesn’t work. That’s because the object
on the left-hand side may come into
existence because of the outer assignment,
or disappear because of the assignment.
The beauty (and curse) of Adjust is that it
can be called by itself when needed, or
with an appropriate Finalize.
You can’t, in general, read the object that
you’re assigning into. That means that
user-defined assignment in Ada can never
be as powerful as that in other languages
(unless you somehow prevent the types
from being used in discriminant-
dependent components – which would
probably be a generic contract problem).
For an another explanation of this, see
ARM 7.6(17.a-17.h).
http://www.adaic.com/standards/95aarm/h
tml/AA-7-6.html
The other issues are solvable, but this one
is not.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 7 Dec 2005 18:50:14 -0600
Subject: Re: Controlled types and exception

safety

Newsgroups: comp.lang.ada
[...] These user-defined assignments have
to compose (otherwise, you’d be breaking
the invariants of the component types –
remember, these components are likely
private types, and you might not have any
idea how they’re implemented). So, you
have to be able to *automatically* do the
right thing for each component. (This,
BTW, is why Ada insists that an
exception in one Adjust routine be
delayed until all other Adjusts have
completed – we don’t want a failure in
one abstraction to destroy another,
unrelated one.)
Say you have an assignment for type R as
described above, and a function F
returning an object of type R. And you
have type S defined as:
type S (D : Boolean := False) is
 record
 case D is
 when False => null;
 when True => C : R;
 end case;
 end record;
O : S; -- D = False here.
O := (D => True, C => F);

Now, how is this assignment performed if
we’re using the default assignment here?
Since we need to component, we need to
call the Assign procedure on the
component C, but what left-hand side to
pass as To? There isn’t a component O.C
in the left-hand side!
Now, you could try to (a) require this also
have a user-defined Assign [but that’s
very unfriendly and error-prone] or (b)
ban components that have user-defined
assignment from being discriminant
dependent [but this would be a big
contract model problem – or, a lot of
things that are currently done in generic
bodies could no longer be. For instance, if
R was a generic private type, the above
type S would have to be illegal in a
generic body - not matter what the actual
type of R is.]
So there is no solution in the framework
of Ada. To solve the problem, you’d have
to get rid of discriminants and
discriminant-dependent components – and
that’s not an option for Ada.
Maybe Ada 200Y limited types and
Assign procedures would be adequate, but
certainly not the Ada 95 variety. Ada 95
limited types don’t allow (1) aggregates;
(2) constants; (3) useful functions; or (4)
any sort of complex initialization. Which
means that you can’t use many of the
techniques that help reduce bugs in Ada
(such as letting the compiler check that all
components have been given in an
aggregate). And limited types also block
most optimizations by their very nature.
That’s useful in some cases, but in others
you’d rather let the compiler eliminate
extra temporaries and Finalizes. (That’s

Ada in Context 29

Ada User Journal Volume 27, Number 1, March 2006

allowed for non-limited types, but never
for limited types.)
From: Robert A Duff
Date: 02 Dec 2005 18:51:41 -0500
Subject: Re: Controlled types and exception

safety
Newsgroups: comp.lang.ada
> You can get Storage_Error if Adjust

allocates storage. Other sorts of
exceptions should have occurred during
the adjustment of the intermediate
object, and so corrected before the
assignment to X.
Storage_Error is a strange beast; there’s
no guarantee that you can do anything
about it. There may not even be enough
storage available to execute an
exception handler.

Right. In practice, you can get away with
handling Storage_Error, but it’s annoying
that it is pretty-much impossible to write a
handler for Storage_Error in Ada that is
guaranteed (portably) correct by the RM.
Ada is better than some languages, where
a stack overflow can go entirely
undetected, and the program just starts
overwriting who-knows-what data.
But I think I’ve got a better way, which I
would use in my own language design.
My idea is that stack overflow is like an
abort or a hardware interrupt. An abort is
asynchronous with the running code – it
can happen anywhere, even in the middle
of “X := Y”. If X:=Y is aborted in the
middle, we say that X becomes abnormal
– perhaps its discriminants are
nonsensical, so later code can’t even
determine the size of X. The solution is to
have abort-deferred regions – regions of
code where abort can’t happen. Inside
such a region, you can say X:=Y, and be
sure that X is unchanged, or Y is fully
copied into it. If somebody attempts to
abort in the middle of X:=Y, the abort
will take effect at the end, and all is well.
Same thing for hardware interrupts – the
solution is to allow (hopefully short)
regions of code where interrupts can’t
interrupt.
Stack overflow is asynchronous in the
sense that it can happen pretty much
anywhere. So in my fictitious language,
you can have regions of code where stack
overflow can’t happen. The compiler is
required to calculate (at link time!) a
static quantity that is the max stack usage
for each procedure, task, and other
relevant construct. This quantity is an
integer ranging from 0 up to the max size
of the address space
(System.Memory_Size, in Ada).
Calculations use saturating arithmetic.
When you enter a no-stack-overflow
region, we allocate the max size for that
region, and raise Storage_Error if that’s
not possible. So it’s like an abort-deferred
or interrupt-deferred region, except that
the deferral goes backward in time – if
Storage_Error _might_ be raised in that

region, we instead raise it before entering
the region.
Of course, the code in a no-stack-
overflow region can’t do stuff that
allocates unknown amounts of stack
space. If a procedure has a local variable
of subtype String, with no compile-time-
known bounds, the max size is perhaps
2**31 bytes or so. If a procedure is
recursive, the max size is
System.Memory_Size. If a procedure
makes an indirect call (so it _might_ be
recursive), the max size is
System.Memory_Size. So you write no-
stack-overflow regions with small
numbers of known-size locals. But that’s
OK – all you want to do is log the error,
clean up some things, and return to a
more-global point in the program.
If the max size for such a region is
System.Memory_Size, or close to it, the
compiler should at least issue a warning,
because at run time, every execution of
that thing will raise Storage_Error.
Storage_Error also applies to “new”, but
that seems like an easier problem. The
allocator can be “blamed”, so heap
overflow is not asynchronous like stack
overflow. At least, for _explicit_ use of
the heap. If the compiler is allocating
activation records on the heap or some
such, then that’s still an issue.

Buffer Overflows and Ada
From: Richard Riehle

<adaworks@sbcglobal.net>
Date: Sun, 13 Nov 2005 05:14:02 GMT
Subject: Buffer overflow Article
Newsgroups: comp.lang.ada
There is an interesting article in the
current issue of the Communications of
the ACM (Vol 48, No 11, page 50) about
preventing stack buffer overflow attacks.
The authors, Kuperman, Brodley,
Ozdoganoglu, Viuakumar, and Jalote,
write as if they have never heard of Ada.
In one paragraph, they criticize C as being
vulnerable to such attacks and then
dismiss Pascal as being unable to address
low-level issues. As I read their solution,
it became clear that simply choosing Ada
for their development language would
solve the vast majority of their concerns.
This kind of article appears every now
and then. The authors of these articles
write as if it is necessary to improve C or
invent new tools when all they really have
to do is discover Ada.
From: Tom Moran <tmoran@acm.org>
Date: Sun, 13 Nov 2005 01:35:10 -0600
Subject: Re: Buffer overflow Article
Newsgroups: comp.lang.ada
They also say “the performance cost of
bounds checking (reported in [the
‘Cyclone’ variant of C]) involves up to an
additional 100% overhead.”
I tried:

-- Lo, Hi, and A are procedure
-- parameters, so their values
-- and bounds are not known at
-- compile time.
for i in Lo .. Hi loop
 A(i) := 0;
end loop;

with GNAT 3.15p with bounds checking
on or off, -O2, and got a 65%
degradation, (Because the bounds are
pushing the index out of a register?) In the
real world, my impression is that 10-15%
is a more common cost of all checking on
vs all off. Even at 65%, if the 20% of the
code that takes 80% of the time were hand
checked and then compiled with checking
suppressed, 65% would change to 13% or
about 3 months of CPU age by Moore’s
law.
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Sun, 13 Nov 2005 12:55:39 +0100
Subject: Re: Buffer overflow Article
Newsgroups: comp.lang.ada
Some quotes:
“One way to prevent programs from
having such vulnerabilities is to write
them using a language (such as Java or
Pascal) that performs bound checking.
However, such languages often lack the
low-level data manipulation needed by
some applications. Therefore, researchers
have produced “more secure” versions of
C that are mostly compatible with existing
programs but add additional security
features. Cyclone [5] is one such C-
language variant. Unfortunately, the
performance cost of bounds checking
(reported in [5]) involves up to an
additional 100% overhead.”
“Dynamic protection techniques can be
costly in terms of overhead, but some
researchers are trying to move that
functionality into faster, hardware-based
protection schemes. As these techniques
move from academic laboratories into
mainstream software releases, computer
users and software developers have
become aware of what they can do, and
what they can’t do.”
From: Florian Weimer

<fw@deneb.enyo.de>
Date: Sun, 13 Nov 2005 15:58:13 +0100
Subject: Re: Buffer overflow Article
Newsgroups: comp.lang.ada
The tables in that paper do not justify the
100% figure, and the paper shows that
some of the programs were incorrect,
presumably because the authors failed to
include run-time bounds checks. The “fat
pointer” approach used by Cyclone is not
representative of typical compiler
implementations of bounds-checked array
types, either.
Bounds checks are costly, so lets get rid
of them and just use obfuscation
techniques to prevent code injection. The
truth is that you have to check things at
some point, and manually coded bounds

30 Ada in Context

Volume 27, Number 1, March 2006 Ada User Journal

checks have been shown to be error-prone
(more than compiler-generated ones). For
most applications implicit bounds checks
are probably a win.
The authors show a profound lack of
industry experience. In real-world Internet
applications, a typical non-exploitable
buffer overflow is still a very serious
defect because it affects availability.
Shifting bugs from crash-and-control to
crash-only isn’t such a tremendous
improvement, especially in environments
which use multi-threading instead of
multiple cooperating (but isolated)
processes.
From: Florian Weimer

<fw@deneb.enyo.de>
Date: Sun, 13 Nov 2005 16:02:20 +0100
Subject: Re: Buffer overflow Article
Newsgroups: comp.lang.ada
Ada compilers are not designed to be
secure in that sense, and there doesn’t
appear to be any commercial interest to
change this. The needs of typical safety-
critical software are completely different,
and they do not help much with writing
secure code (in the “buffer overflow”
sense).
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Sun, 13 Nov 2005 23:57:28 GMT
Subject: Re: Buffer overflow Article
Newsgroups: comp.lang.ada
I found the article quite amusing. [There
was only one] paragraph that addressed
language choice in the entire article.
Considering that language choice is the
cause of buffer overflow vulnerabilities,
you’ll understand why I found the article
amusing.
1st, they say languages such as Java and
Pascal may not be low level enough.
That’s certainly not true of Ada, nor of
most versions of Modula-2 and Pascal. So
this is simply hand waving to justify their
decision to use a C derivative.
Then they say that bounds checking adds
100% overhead. This may be true of
trying to patch C, but it’s certainly not
true of all the checks Ada does, which is
much more than simply bounds checking.
In practice I have never found a case in
which leaving checks in was too slow, nor
where turning them off saved more than
10%.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 14 Nov 2005 09:35:11 +0100
Subject: Re: Buffer overflow Article
Newsgroups: comp.lang.ada
> And then even if there was 100%

overhead, what the problem ? For most
applications this is not critical and at
least for debugging the application this
is invaluable. Running with a 100%
overhead is equivalent to running with
a computer 18 months old. Not that bad
:) Again I understand that in some

domains we are counting the CPU
cycles, but this is not the majority of
applications.

This is not the whole truth. I agree that
overhead caused by run-time checks is not
a big deal. But that is not the problem in
my view. Let they be 0%! The real
problem is that a check may fail while
program crash is not an option. This
means that there must be some error
handling. More errors may happen at run-
time more complex infrastructure one
would require. Add here unit tests for
these errors etc.
It is a design problem and design
problems are in order of magnitude more
expensive than any hardware.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 15 Nov 2005 09:49:54 +0100
Subject: Re: Buffer overflow Article
Newsgroups: comp.lang.ada
> For information – is your point that we

should design the program (using e.g.
SPARK) so that there isn’t any need for
runtime checking?

Yes, when possible.
> (I don’t think it likely that you want us

not to bother to do any checking!)
We should draw line between
“functional” and “non-functional” checks.
When checks is an artefact of
program/language/environment design
then its penalty is more than just run-time
overhead. Of course the distinction is not
absolute. For example End_Error might
look functional, but probably in a better
OS with OO interface you will never have
it working with a string container, XML
document rather than with a raw byte
stream. Buffer overflow checks is a clear
“non-functional” candidate to me. This is
also a reason why I’m skeptical about the
design of Unbounded_String and
Ada.Container. They don’t support safe
iteration constructs “for I in X'Range
loop”.
From: Christopher Browne

<cbbrowne@acm.org>
Date: Fri, 25 Nov 2005 00:56:26 -0500
Subject: Re: Buffer overflow Article
Newsgroups: comp.lang.ada
> Even in cases where it is critical, how

fast does an incorrect program have to
be in order to be acceptable? If a really
fast, incorrect program is better than a
slow, correct program, then I submit the
following as the solution to all
problems:
procedure Solution is
 -- null;
begin – Solution
 null;
end Solution;
Compile with all checks suppressed for
maximum acceptability.

Reality does *not* lie there.

Something that is only approximately
correct but that is super-fast may, in cases
where time or computational effort *are*
at a premium, be preferable to a slower
“correct all the time” program.
The trouble with formal verification
methods is that they consume time (for
the analysis work) when you may well
discover that the problem wasn’t specified
well enough in the first place for formal
verification to actually do any material
good.
Having super-well-specified problems is
extremely necessary when doing “rocket
science;” if it costs $1B to fire off a
rocket, and you don’t get a second
chance, it’s necessary to do whatever up-
front effort is required to make sure the
problem is super-well-specified.
But there are a lot of cases where that
level of effort is not warranted, and it’s
NOT worth getting “super-detailed,
super-correct” specifications, and it’s
NOT worth various of the efforts.
Where the CACM article has some things
right is that there are plenty of systems
where it would be way too costly to
reimplement them in a buffer-overflow-
immune language. People are not going to
redo everything in PL/1 or Ada just
because they have better specified string
types. They don’t have time.
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Sat, 26 Nov 2005 01:31:53 GMT
Subject: Re: Buffer overflow Article
Newsgroups: comp.lang.ada
Good point, if they’re willing to pay for
the losses of others whose systems are
hijacked because of buffer-overflow
errors injected by their poor language
choices. If that were required, I suspect
they would suddenly have time.
From: Richard Riehle

<adaworks@sbcglobal.net>
Date: Sun, 27 Nov 2005 21:36:01 GMT
Subject: Re: Buffer overflow Article
Newsgroups: comp.lang.ada
I am reminded of the well-known
comment that “We always have time to
do it over but never time to do it right.”
In the case of Ada, there is no need to
“redo everything.” The language is rather
friendly to other languages. As for PL/I,
there are entirely too many other
problems with that language to use it for
dependable software.
From: Peter Amey

<peter.amey@praxis-cs.co.uk>
Date: Mon, 14 Nov 2005 10:17:21 +0000
Subject: Re: Buffer overflow Article
Newsgroups: comp.lang.ada
Of course, using SPARK, we can
statically prove the absence of buffer
overflows (and many other potential
exploits) and thus add precisely nothing in
the form of a run-time overhead!

Ada in Context 31

Ada User Journal Volume 27, Number 1, March 2006

From: Peter Amey <peter.amey@praxis-
cs.co.uk>

Date: Tue, 29 Nov 2005 10:48:37 +0000
Subject: Re: Buffer overflow Article
Newsgroups: comp.lang.ada
> I though that with SPARK, you have to

write your program with no moving
parts (or dynamic data structures) and
then supply a suite of proofs, which
may be quite hard, even with the
assistant? How often is this practical?

Obviously how hard it is it depends what
it is you are trying to prove. Proving that a
SPARK program is free from all run-time
errors (of which “buffer overflow” is but
one) is remarkably straightforward. A
majority of SPARK users are using this
technology in an industrial setting on a
regular basis.
For exception-freedom proof, you do not
have to add extra annotations, the
Examiner generates the necessary proof
obligations from the language rules of
Ada; it essentially generates proof
obligations that mirror what the LRM
requires for run-time checks. It is
necessary to provide some extra
information, such as the bounds of the
predefined types such as Integer using a
configuration file mechanism.
The Simplifier tool, that comes with the
SPARK Examiner, usually discharges
over 95% of the resulting verification
conditions (assuming the code is correct
of course!). Sometimes the process
prompts the addition of a precondition
here and there which is, of course,
extremely useful intelligence for future
maintenance of the software.
This paper: http://www.praxis-
his.com/pdfs/Industrial_strength.pdf gives
an overview of the process. The
Simplifier hit rate has gone up sharply
since it was written but the principles are
the same.
From: Stephen Leake

<stephen_leake@acm.org>
Date: Sun, 13 Nov 2005 10:44:59 -0500
Subject: Re: Buffer overflow Article
Newsgroups: comp.lang.ada
I hope you wrote to the editor of CACM
pointing out this flaw in the article. It is
up to the editor to ensure that articles are
fair and balanced! And they won’t know
there’s a problem if nobody tells them.
There have been similar problems with
articles in Dr Dobbs; the editor has been
quite gracious when I point them out.
We’ll have to see if that translates into
more balanced coverage in the future [...]
From: Richard Riehle

<adaworks@sbcglobal.net>
Date: Mon, 14 Nov 2005 14:40:21 GMT
Subject: Re: Buffer overflow Article
Newsgroups: comp.lang.ada
I did not contact CACM. Rather, I
contacted the principal author and
informed him about this thread. Perhaps

he, or one of the other authors will find
the time to post a note in this forum.
Further, given that their complaint was
primarily focused on the languages they
do know instead of those they don’t, I
think the article is well-reasoned. The
problem, as I see it, is that so many
academics spend so much time solving
problems while existing solutions are
either ignored or unknown to them.
The editor of Dr. Dobbs has a long-
standing invitation for articles that
describe, in depth and in detail, problems
that have been solved in Ada that could
not have been just as easily solved in
some other language. Further, if someone
wants to write an article about Ada 2005,
I think Dr. Dobbs will print it – given that
it is a well-written article.
From: Marc A. Criley <mc@mckae.com>
Date: Tue, 07 Mar 2006 10:08:20 -0600
Subject: Props to Jean-Pierre!
Newsgroups: comp.lang.ada
Thanks go to Jean-Pierre Rosen for taking
the time to write a letter, “Lack of Ada
Reflects Software Immaturity”, to the
editors of “Communications of the ACM”
that they published in the March ‘06
issue.
It was in a response to an article titled
“Detection and Prevention of Stack
Buffer Overflow Attacks” (11/2005).
Money quote (as they say :-)...
“Many of the problems addressed in the
article follow from not using appropriate
programming languages, an issue Ada
solved more than 20 years ago.”
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Wed, 08 Mar 2006 09:19:53 +0100
Organization: Adalog
Subject: Re: Props to Jean-Pierre!
Newsgroups: comp.lang.ada
Yeap. Couldn’t resist, when I saw people,
in 2006, coming with the bright new idea
that the programmer cannot always be
trusted, and that it would be good to have
the language perform automatically some
checks.

Blaming Ada Wrongly
From: Robert Love <rblove@airmail.net>
Date: Thu, 22 Dec 2005 16:25:21 -0000
Subject: SBIRS, Ada and Ignorance
Newsgroups: comp.lang.ada
Let me quote from the December 19th
“Space News” article entitled Pentagon
Scales Back SBIRS Program. For those
who don’t know, SBIRS is a multi
satellite program to detect missile
launches via infra red sensors. It is way
behind and billions over budget, mostly
due to the sensor and bad initial design.
Air Force Secretary Michael Wynne is
quoted as saying:

“One of the biggest problems with SBIRS
lies with its operating software, which is
based on a programming language called
Ada that was developed in the 1970’s,
Wynne said.
 “Ada is a program that is not popular any
longer,” Wynne said. “It is a software
design that was literally invented around
the time DOS was invented. DOS is no
longer even being talked about nor should
Ada be, but we still have Ada-based
programmers trying to do it.”
The Air Force hopes to use a more
modern language like C+ (yes, they used
a single +) for SBIRS follow-on system,
Air Force Undersecretary Ronald Sega
told reporters in a Dec. 15 briefing at the
Pentagon.”
Lord, there is so much wrong here. Where
to start. Is it even worth it to try and
educate the Air Force? I suppose I’ll try
and write one of these bozos once I calm
down but I would say this is a huge slam
against our favourite language.
From: Richard Riehle

<adaworks@sbcglobal.net>
Date: Fri, 23 Dec 2005 00:12:29 GMT
Subject: Re: SBIRS, Ada and Ignorance
Newsgroups: comp.lang.ada
My experience with the USAF decision-
makers is that they are doing their best to
make responsible decisions on behalf of
the National Defence. They are being
misinformed by contractors whose self-
interest sometimes preempts what ought
to be their better judgment.
I must say that I have heard high-ranking
DoD people denigrate Ada based on their
own experience. One Admiral spoke to a
group about how hard it was to teach
people Ada in his command. He talked of
the credentials of the person hired to do
the teaching and noted that, “even this
person, with many years of experience in
computer science,” could not make Ada
clear to the students.
There are some unique differences in Ada
from other languages. Unless we make
those differences clear the students will be
discouraged from using it. Too often the
language is taught by people who do
themselves understand it. To be fair, the
same is true of much of what passes for
C++ instruction. The difference is that
C++ looks like C and it gets a lot of good
press. This, in spite of its being one of the
most error-prone languages ever to be
used by anyone.
From: Steve Whalen

<SteveWhalen001@hotmail.com>
Date: 23 Dec 2005 17:12:14 -0800
Subject: Re: SBIRS, Ada and Ignorance
Newsgroups: comp.lang.ada
I’d like to respectfully suggest to those
who are going to try to set this record
straight that you include these people in
your correspondence:

32 Ada in Context

Volume 27, Number 1, March 2006 Ada User Journal

Senator John Warner of Virginia
Senator Carl Levin of Michigan
Senator John McCain of Arizona
Senator Joseph Lieberman of Connecticut
All of the above Senators are members of
the Senate Armed Services Committee
which has “oversight” of the U.S.
military, and their web sites can be found
at: http://armed-services.senate.gov/
Since our Senators serve 6 year terms,
they are somewhat more insulated from
the immediate pressures of daily politics
and vendor pressures (but only compared
our House of Representatives)....
They are the people who can get such
misrepresentations as were made by the
Air Force civilian leadership investigated
and corrected.
One thing that might be helpful to include
in any correspondence to anyone in a
position to help, would be a list of
questions they could ask which would
help them to see that the Air Force’s
civilian leadership’s statements are on
their face, incredibly nonsensical to
anyone who knows anything about
programming or managing large projects.
Questions like:
Were the specifications from which the
Ada programming was to be done
complete before coding began?
Has anyone independent of the vendor or
project management made an assessment
of why the project has gone so wrong?
How is it than many of the largest and
most complex project have been
successfully programmed in Ada?
etc.
From: Robert Love <rblove@airmail.net>
Date: Fri, 23 Dec 2005 17:01:57 -0000
Subject: Re: SBIRS, Ada and Ignorance
Newsgroups: comp.lang.ada
At the level of the Secretary and
Undersecretary I expect them to be far
removed from direct knowledge of the
project but somebody dropped the ball. I
expect it is in the USAF Project office.
Those managers have an oversight
responsibility and since it involves
billions of tax payer dollars and national
defence it is a task that should not just
rely on the contractors information. Did
this project have a V&V contractor? I’ll
have to look.
I do note that Secretary Wynne has
previously worked for LockMart, the
prime contractor for SBIRS. It may be
that he is too cosy with his old employers
but I doubt it.
It should be noted that the USAF has
several big ticket satellite programs all
well over budget and years behind
schedule. T-Sat, Space Based Radar and
others join SBIRS as projects in trouble.
Most of them are due to sensor problems
and general poor management. Some

should be more like R&D programs that
operational projects.
Since the Secretary has brought up
software as an issue on this satellite I
want to know what was the real cause of
the problem. I can’t believe Ada is a
cause in its own right. Was it
compiler/tool problems? Was it a bad
software architecture? Was there a valid
set of requirements that were stable?
From: Joseph Vlietstra

<joevl@earthlink.net>
Date: Sat, 24 Dec 2005 18:49:18 GMT
Subject: Re: SBIRS, Ada and Ignorance
Newsgroups: comp.lang.ada
Some answers about the SBIRS program.
- The SBIRS program was plagued by
poor initial systems engineering. Those
responsible have been replaced and we
were able to get the program somewhat
back on track last fall. We can’t undo all
of the stupid mistakes but I think we can
get at least 95% functionality. (The more
optimistic think we can score 100%)
- Flight software is written in Ada 95
using Rational Apex compiler. The only
problems we’ve had with the
development environment were self-
induced (e.g., attempting an
Apex/ClearCase integration before it was
released by Rational).
- We considered GNAT at the start of the
project and contacted ACT. For whatever
reason, they weren’t interested in
developing a GNAT compiler for us. (I
don’t think they realized that we would
play for the development.) In any case,
we’re happy with Rational Apex.
- We also considered using a GNU C/C++
compiler but it ran slower than the
Rational Ada code. This isn’t an Ada is
faster than C++ claim – Lockheed-Martin
spent a lot of money to have a good Ada
compiler available; the C++ compiler was
an afterthought for the hardware test
group.
- There were several subtle hardware
glitches that required software fixes. This
is a typical problem for a development
program. We all learned Chapter 13 of the
LRM by heart.
Anyone claiming that Ada was the
problem is either ignorant of the
circumstances or hoping to obscure the
initial systems engineering problems. In
fact, the Ada language features allowed us
to get as far as we have.
From: Robert Klungle

<bklungle@adelphia.net>
Date: Tue, 3 Jan 2006 22:33:43 -0800
Subject: Re: SBIRS, Ada and Ignorance
Newsgroups: comp.lang.ada
Joe presents a good partial description of
what happened. There is a lot more to it
which had nothing to do with coding. Five
major problems leading up to the situation
were:

1. Incomplete and incorrect requirements
through PDR (which was failed
previously.)
2. Incomplete and incorrect design
mechanisms leading to individuals
designing the same thing more than once,
not knowing what the others were doing
(multiple CPUs with similar
functionality.) Eventually leading to a
system which would not perform (loss of
messages) at 70% loading. The system
was completely redesigned from the
ground up in a matter of 5 months. The
system is now heading for success
(disregarding the usual integration
problems.)
3. Management chain failure due to little
or no knowledge regarding software
development.
4. Incorrect or misleading design
specifications on the SBC containing the
RH-32(s) from the supplier.
5. Low ball funding and late resource
allocation to the project on the part of the
government and contractor(s).
I could continue with a very long list but
you should get the idea.
Bottom line, Ada had nothing to do with
the problem(s), and in fact actually
contributed to them having any success at
all.
Incidentally, someone mentioned Wynne
(in a later posting) casting aspersions on
Ada. He is getting his information from
others who have a specific agenda to
remove Ada from the development list
(been hearing it in PDRs and PDAs).
There is a general belief that “No one can
find any Ada developers. Ada is not being
taught in schools. Systems Engineers and
Mathematicians coming out of school
only know c++ and refuse to learn Ada.”
Note this is a direct quote from a high
level government person, which I took
issue with.
The problem of Ada(s) reputation and
viability is very big and going down hill
rapidly, if observations are any indication.
Note I don’t think this is a conspiracy,
just a serious case of decisions being
made by the wrong people with little or
no correct information.
From: David Emery <demery@cox.net>
Date: Thu, 29 Dec 2005 16:47:44 -0500
Subject: Re: SBIRS, Ada and Ignorance
Newsgroups: comp.lang.ada
In my experience, Ada was often blamed
for bringing system engineering failures
to light before the program was ready
hear about it. From a political perspective,
being able to demonstrate an inconsistent
design at PDR is NOT a good way to get
the program through its next major
government milestone.

Ada in Context 33

Ada User Journal Volume 27, Number 1, March 2006

Ada Code Formatting
From: Peter C. Chapin

<pchapin@sover.net>
Date: 18 Feb 2006 12:19:59 GMT
Subject: Quick question about Ada code

formatting.
Newsgroups: comp.lang.ada
I realize formatting style varies from
person to person and from organization to
organization. Nevertheless some
programming language communities have
definite community standards about how
certain language constructs should be
formatted. For example, it seems
universal in this community to name
variables This_Way.
When it comes to calling subprograms
I’ve seen some sources that put a space
between the name of the subprogram and
the argument list.
My_Procedure (X, Y, Z);
A := My_Function (B);

When wrapping such calls the entire
argument list is moved down to the next
line.
My_Procedure
 (Very_Long, Argument_List,
 With_Many, Arguments);

In other communities (C/C++) it is more
common to leave the space out and also to
leave the opening ‘(‘ on the same line as
the procedure name.
I’m wondering how universal the above
style is among Ada programmers. In other
words: would it be desirable for me to
adopt it as part of my personal style
guide?
P.S. Is there an accepted indentation depth
among Ada programmers? I’ve seen three
spaces in several places and I notice both
Ada-mode in Emacs and GPS use three
spaces by default.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Sat, 18 Feb 2006 14:00:46 +0100
Subject: Re: Quick question about Ada code

formatting.
Newsgroups: comp.lang.ada
This is quite universal, because of the Ada
Quality and Style Guide. Most coding
standards I’ve seen take the AQ&SG as a
starting point and recommend, or even
mandate, the same indentation style.
Another indentation style which I find
quite common is: […]
Three shall be the number of spaces, and
the number of spaces shall be three. No
more, no less. Two shalt thou not indent,
except that thou then proceedest to three.
Four is right out.
This is also from the AQ&SG.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 18 Feb 2006 13:26:25 +0000
Subject: Re: Quick question about Ada code

formatting.
Newsgroups: comp.lang.ada
On my current project we decided to use
the formatting provided by GLIDE/GPS
and to use the -gnaty switch to check it.
You can give a whole slew of options to -
gnaty but it seems far easier to just accept
the defaults even if they aren’t what you
would be used to. The 3 space indent is a
case in point; of course if your editor just
does it for you it’s not so hard to accept!
What always baffles me is how people
will *not* train themselves to do what the
style checker expects, and will *not* just
fix the style warnings as they go.
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Sat, 18 Feb 2006 16:36:35 +0100
Subject: Re: Quick question about Ada code

formatting.
Newsgroups: comp.lang.ada
A “hand writing” can work for one
person, but not for another person. People
can, and do fight over whose handwriting
viz. Ada style is better. Even neglecting
the strong influence that a font can have
on appearance. But I think there are much
more important issues, and just -gnaty is
overly strict here.
Good in my (limited) experience:
- Consistent use of whatever non-
typographical convention is in use.
- Comb structure, and then tough may use
4 or 2 spaces or whatever. (so does the
GNAT default style in constructs that are
continued on the next line, so...) There is
no real harm done when one block uses
just 2 spaces for the indented lines, and
another uses 5. I understand that some
people go crazy when they find knife,
spoon, and fork not properly aligned, no
matter how good or bad the meal is.
But programming has more to do with
recipes and food than with the relative
angle of eating tools during the “work”.
Also, play with the image of fish & chips
in a paper box, framed by sterling cutlery
- Compare how easily something is
looked up in the code versus how easily
something is read (left-right, top-down) in
the code. These two processes are very
different. Their analog in regular texts is
table versus paragraph. There will have to
be a compromise, then, unless you think
that code that looks ordered is code that
actually is ordered.
Slightly different handwritings will work.
And it makes team mates feel better,
because they can adopt some of their very
own hand writing style nevertheless,

without doing harm to others provided
everyone has retained some modicum of
flexibility.
An additional proof of -gnaty being
overly strict is when it comes function
names in GUI programming. Many do not
want to see ‘_’s in identifiers when they
are use to them without the underscores.
Note the “used to”... :-)
There is a study (from Kent?, comparing
MISRA C and other style guides) that
demonstrates how useless and wasteful
typographic sophistry is.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Quick question about Ada code

formatting.
Date: Mon, 20 Feb 2006 16:10:19 -0600
Newsgroups: comp.lang.ada
> Between subprograms I prefer the

“GNAT style” header box:

-- Process_Whatever --

procedure Process_Whatever is
 ...
Far clearer than 2 blank lines IMHO.

But extremely hard to maintain. We used
a style like that in the Janus/Ada
compiler, and we found that we were
spending a lot of time lining up the
closing hyphens ever time the comment
changed in some way. We abandoned the
whole idea with Claw, and went to two
blank lines between subprograms.
After all, the idea isn’t to carry any
information, but to simply to separate the
procedures. (Comments that repeat what
is obviously known by reading the source
code are evil, IMHO, so I find this
comment wasteful.) Perhaps a better
approach would be to include a dashed
line separator between procedures – but
that takes *three* lines, and since you
never have enough screen real estate, so it
seems like a waste.
From: Alex R. Mosteo

<alejandro@mosteo.com>
Date: Thu, 23 Feb 2006 10:49:43 +0100
Subject: Re: Quick question about Ada code

formatting.
Newsgroups: comp.lang.ada
> Yes. One of the projects I’m on

(GWindows) also requires this style.
After the first couple of days, I wrote
an Emacs macro to write the comment
for me. Customizable tools are
essential.

GPS already has a macro for this, you
simply have to give a key binding to it. I
personally use Ctrl+B and voilá!
subprogram box with null effort.
Otherwise I agree that it would be quite
painful.

Conference Calendar 35

Ada User Journal Volume 27, Number 1, March 2006

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺denote events with close relation to Ada.
The information in this section is extracted from the on-line Conference announcements for the international Ada community
at: http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2006

April 02-06 4th Symposium on Design, Analysis, and Simulation of Distributed Systems
(DASD'2006), Huntsville, Alabama, USA.

☺ April 04-07 12th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'2006), San
Jose, CA, USA. Topics include: programming languages and software engineering for real-time or
embedded systems; middleware for real-time or embedded systems; assessments of real-time and
embedded technologies for particular application domains; technology transition lessons learned; etc.

☺ April 10-11 10th International Conference on Empirical Assessment in Software Engineering
(EASE'2006), Keele University, Staffordshire, UK. Topics include: any aspect of product and process
evaluation and assessment, both qualitative and quantitative.

April 17-19 13th Annual European Concurrent Engineering Conference (ECEC'2006), Athens, Greece. Topics
include: Engineering of embedded systems, system development process, specification languages;
Diagnostics and maintenance, Automated inspection and quality control; Architectures for building CE
systems, CE languages and tools, Distributed computing environments; etc.

☺ April 18-21 1st EuroSys Conference (EuroSys'2006), Leuven, Belgium. Topics include: Systems aspects of
Programming language support, Distributed algorithms, Middleware, Parallel and concurrent
computing, Embedded computers, Real-time computing, Dependable computing, etc. This should be of
interest to the European languages community.

April 18-21 17th Australian Software Engineering Conference (ASWEC'2006), Sydney, Australia. Topics
include: Software Design and Patterns; Object-Oriented Software Engineering; Testing, Analysis and
Verification; Formal Methods; Software Security, Safety and Reliability; Software Reuse, Components,
and Product Line Development; Software Maintenance; Software Engineering Tools; Measurement,
Metrics, Experimentation; Technology Transfer, Education; Standards and Legal Issues; etc.

April 19 19th Conference on Software Engineering Education and Training (CSEET'2006), Oahu, Hawaii, USA.

☺ April 18 Workshop on Secure Software Engineering Education & Training (WSSEET'2006).
Topics include: experience, current situation, and future of education and training in
software engineering of (more) secure software

April 23-27 21st ACM Symposium on Applied Computing (SAC'2006), Dijon, France

☺ April 23-27 Track on Programming Languages (PL'2006). Topics include: Compiling Techniques,
Formal Semantics and Syntax, Language Design and Implementation, New
Programming Language Ideas and Concepts, Practical Experiences with Programming
Languages, Program Analysis and Verification, Program Generation and
Transformation, Programming Languages from All Paradigms, etc.

☺ April 23-27 Track on Object-Oriented Programming Languages and Systems (OOPS'2006).
Topics include: Programming abstractions; Advanced type mechanisms and type safety;
Multi-paradigm features; Language features in support of open systems; Program
structuring, modularity, generative programming; Distributed Objects and Concurrency;
Applications of Distributed Object Computing; etc.

☺ April 24-26 9th IEEE International Symposium on Object and component-oriented Real-time distributed
Computing (ISORC'2006), Gyeongju, Korea. Topics include: Programming and system engineering

36 Conference Calendar

Volume 27, Number 1, March 2006 Ada User Journal

(ORC paradigms, languages, RT Corba, UML, application programming interface (API), specification,
design, verification, validation, testing, maintenance, system of systems, etc.); System software (real-
time kernels, middleware support for ORC, extensibility, scheduling, security, etc.); Applications
(embedded systems (automotive, avionics, consumer electronics, etc), real-time object-oriented
simulations, etc.); System evaluation (worst-case execution time, dependability, fault detection and
recovery time, etc.); ...

April 24-28 30th Annual IEEE/NASA Software Engineering Workshop (SEW-30), Columbia, MD, USA. Topics
include: Metrics and experience reports; Software quality assurance; Formal methods and formal
approaches to software development; Real-time Software Engineering; Software maintenance, reuse,
and legacy systems; etc.

☺ April 25-29 20th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2006), Rhodes
Island, Greece. Topics include: all areas of parallel and distributed processing; including the
development of experimental or commercial systems; applications of parallel and distributed computing;
parallel and distributed software, including parallel programming languages and compilers, runtime
systems, middleware, libraries, programming environments and tools, etc.

☺ April 25-26 14th International Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS'2006). Topics include: Applications, benchmark, and tools; Distributed real-
time and embedded middleware; Fault-tolerance and security in real-time systems;
Resource management and real-time scheduling; Programming languages and
environments; Specification, modeling, and analysis of real-time systems; etc.

April 27 Technical Day of Ada-Spain, Madrid, Spain. The event includes: selected technical
presentations; an invited talk; the general assembly and the Ada-Spain award for the
best academic project developed in Ada.

May 01-04 Systems and Software Technology Conference (SSTC'2006), Salt Lake City, Utah, USA

May 01-05 International Conference on Practical Software Quality and Testing (PSQT'2006 West), Las Vegas, NV,
USA

May 03-05 6th International SPICE Conference on Software Process Improvement and Capability dEtermination
(SPICE'2006), Luxembourg, Luxembourg

☺ May 20-28 28th International Conference on Software Engineering (ICSE'2006), Shanghai, China

☺ May 27-28 3rd International Workshop on Software Development Methodologies of
Distributed Systems (SDMDS2006). Topics include: Fundamental issues and
education issues related to distributed systems and technologies; Case studies for large-
scale distributed systems development; Tools and practice experiences; Trends in
Industry that effect design of distributed systems; etc.

☺ May 22-25 DAta Systems In Aerospace (DASIA'2006), Berlin, Germany

May 25-27 International Conference on Dependability of Computer Systems (DepCos'2006), Szklarska Poreba,
Poland. Topics include: General aspects of dependability; Survivable systems; Coding and
dependability; Fault tolerant computing; Software dependability; Software testing, validation and
verification; etc.

May 28-31 6th International Conference on Computational Science (ICCS'2006), Reading, UK

♦ June 05-09 11th International Conference on Reliable Software Technologies - Ada-
Europe'2006, Porto, Portugal. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda

☺ June 06-09 New Technologies for Distributed Systems (NOTERE'2006), Toulouse, France. Topics include:
software components, distributed architectures, models and tools, semi-formal and formal techniques,
verification, etc.

June 08-10 2nd International Conference on Open Source Systems (OSS'2006), Como, Italy. Topics include:
Software engineering perspectives on OSS development, Studies of OSS deployment, etc.

Conference Calendar 37

Ada User Journal Volume 27, Number 1, March 2006

☺ June 10 PLDI2006 - ACM SIGPLAN Workshop on Programming Languages and Analysis for Security
(PLAS'2006), Ottawa, Canada. Topics include: Language-based techniques for security; Program
analysis and verification (including type systems and model checking) for security properties;
Applications, examples, and implementations of these security techniques; etc.

☺ June 11-13 5th IFIP Working Conference on Distributed and Parallel Embedded Systems (DIPES'2006), Braga,
Portugal. Topics include: Design methodology for distributed and parallel embedded systems, Formal
verification of embedded systems, Novel programming techniques for distributed real-time systems,
Specific (parallel) architectures for distributed embedded systems, Dependability and fault tolerance of
distributed embedded systems, Case studies of distributed embedded systems, etc.

June 12-14 7th International Conference on Product Focused Software Process Improvement (PROFES'2006),
Amsterdam, The Netherlands. Topics include: Systems and Software Quality, Embedded Systems
related Security and Safety, Measurement, SPI in different Software Development Areas, Empirical
Studies, Industrial Experiences and Case Studies, Best Practices, Lessons Learned, etc.

June 12-14 International Workshop on Engineering of Fault-Tolerant Systems (EFTS'2006), Luxembourg,
Luxembourg. Topics include: Software architecture and fault tolerance; OO frameworks and design
patterns for fault tolerance; Error handling and fault handling in the software life-cycle; Fault tolerant
software development processes; Error recovery through exception handling in the software life-cycle;
Design and implementation of fault tolerant distributed systems; etc.

June 12-15 9th International Conference on Software Reuse (ICSR-9), Torino, Italy. Topics include: Processes to
identify and select OTS components; Integration and evolution problems; Reliability and security of
OTS components and legal issues; Software generators and domain-specific languages; Evolution of
component-based software systems; Benefit and risk analysis of reuse investments; Generation of non-
code artefacts; Quality aspects of reuse, e.g. security and reliability; Success and failure stories of reuse
approaches from industrial context; etc.

June 13-16 6th IFIP WG 6.1 International Conference on Distributed Applications and Interoperable Systems
(DAIS'2006), Bologna, Italy

June 14-16 8th IFIP International Conference on Formal Methods for Open Object-based Distributed Systems
(FMOODS'2006), Bologna, Italy. Topics include: Semantics and implementation of object-oriented
programming and (visual) modelling languages; Formal techniques for specification, design, analysis,
verification, validation and testing; Model checking, theorem proving and deductive verification; Model
transformations and refactorings; Software architectures; Component-based design; Experience report
on best practices and tools; etc.

☺ June 18-21 Workshop on State-of-the-art in Scientific and Parallel Computing (PARA'2006), Umea, Sweden.
Topics include: software, tools, environments as well as applications for Scientific Computing, High
Performance Computing, Parallel Computing, Grid Computing, and Interactive and Scientific
Visualization.

June 19-23 15th IEEE International Symposium on High-Performance Distributed Computing (HPDC-15),
Paris, France. Topics include: Software environments, programming frameworks & language/compiler
support; Fault tolerance, reliability and availability for HPDC applications; etc.

June 25-28 2006 International Conference on Dependable Systems and Networks (DSN'2006), Philadelphia,
PA, USA. Topics include: Dependability Measurement and Analysis; Fault-Tolerance in Distributed and
Real-Time Systems; Safety-Critical Systems; Software Reliability; Software Testing, Validation, and
Verification; etc. Deadline for submissions: May 1, 2006 (demonstrations)

☺ June 27 Workshop on Architecting Dependable Systems (WADS'2006). Topics include:
dependability modeling in software architectures; run-time checks of architectural
models; dependability evaluation in software architectures; architectural patterns for
dependable systems; exception handling in software architectures; dependable
architectures and implementation; etc.

June 26-28 11th Annual Conference on Innovation and Technology in Computer Science Education (ITiCSE'2006),
Bologna, Italy.

June 26-29 The 2006 World Congress in Computer Science, Computer Engineering, and Applied Computing
(WORLDCOMP'2006), Las Vegas, Nevada, USA

38 Conference Calendar

Volume 27, Number 1, March 2006 Ada User Journal

☺ June 26-29 International Conference on Programming Languages and Compilers (PLC'2006).
Topics include: Design and processing of domain specific languages; Implementation of
languages features; Language support for security and safety; Compiler construction
techniques for modern systems; Program representation & Program analysis; Program
optimizations and transformations techniques; Interaction between compilers and
architectures; Compilation for distributed, concurrent, and heterogeneous systems;
Languages and compilers for high performance computing; Object oriented
programming techniques; Object-oriented languages; Run-time environment and storage
management techniques; Compilation and interpretation techniques; Code generation
and code optimization techniques for modern programming languages; Compilation
techniques for embedded code; Security and safety techniques at compiler level; Design
of novel language constructs and tool supports; etc.

☺ June 26-29 International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA'2006). Topics include: Parallel/Distributed applications;
Reliability and fault-tolerance; Real-time and embedded systems; Object oriented
technology and related issues; Software tools and environments for parallel and
distributed platforms: operating systems, compilers, languages, debuggers, monitoring
tools, software engineering on parallel/distributed systems, ...; etc.

☺ June 26-29 International Conference on Real-Time Computing Systems & Applications
(RTCOMP'2006). Topics include: Software engineering for real-time computing and
systems; Software technologies (real-time operating systems, middleware and
distributed technologies, compiler support, component-based technologies, ...); Fault-
tolerance; Embedded systems and ubiquitous computing; Distributed systems;
Programming languages and run-time systems; Scheduling algorithms and analysis;
Real-time kernel support; Real-time & embedded distributed algorithms & systems;
Simulation of real-time systems; Real-time middleware systems; Object oriented
methods for real-time systems; etc.

☺ June 26-29 International Conference on Software Engineering Research and Practice
(SERP'2006). Topics include: Object-oriented technology (design & analysis); Software
engineering methodologies; Reliability; Distributed and parallel systems; Legal issues
and standards; High assurance software systems; Evolution and maintenance;
Component-based software engineering; Software engineering standards;
Interoperability; Software reuse; Verification, validation and quality assurance;
Programming languages; Education (software engineering curriculum design); Novel
software tools and environments; Real-time software engineering; Critical and
embedded software design; Quality management; Software design and design patterns;
Case studies; etc.

June 27-30 6th International Conference on Application of Concurrency to System Design (ACSD'2006),
Turku, Finland. Topics include: design of complex concurrent systems, correct-by-construction design
methods and integration of verification techniques with the design process, etc.

☺ July 02 5th International Workshop on Constructive Methods for Parallel Programming (CMPP'2006),
Kuressaare, Estonia. Topics include: formal models, methods, and languages for parallel programming;
parallelization and compilation techniques; parallel and distributed object-oriented programming;
hardware-software codesign; etc. Deadline for registration: May 15, 2006

☺ July 03-07 20th European Conference on Object-Oriented Programming (ECOOP'2006), Nantes, France.
Topics include: Patterns, Modularity, Adaptability, Separation of Concerns, Components, Frameworks,
Concurrency, Real-time, Embedded, Distribution, Domain Specific Languages, Language
Workbenches, Multi-paradigm Languages, Language Innovations, Compilation, Methodology,
Practices, Metrics, Formal methods, Tools, etc. Deadline for submissions: May 5, 2006 (posters and
demos) Deadline for early registration: May 23, 2006

☺ July 03 Workshop on Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems (ICOOOLPS'2006). Topics include:
implementation of fundamental OOL features: inheritance (object layout, late binding,
subtype test, ...), genericity (parametric types), memory management; runtime systems:
compilers, linkers, etc; optimizations: static and dynamic analyses, etc; resource

Conference Calendar 39

Ada User Journal Volume 27, Number 1, March 2006

constraints: real-time systems, etc: relevant choices and tradeoffs: separate compilation
vs. global compilation, dynamic checking vs. proof-carrying code, etc.

☺ July 03 10th Workshop on Pedagogies and Tools for the Teaching and Learning of Object
Oriented Concepts. Topics include: experiences, ideas and resources to support the
teaching and learning of basic object-oriented concepts.

☺ July 03 6th Workshop on Parallel/High-Performance Object-Oriented Scientific Computing
(POOSC'2006). Topics include: tried or proposed programming language alternatives to
C++; issues specific to handling or abstracting parallelism; etc.

☺ July 04 3rd International Workshop on Practical Problems of Programming in the Large
(PPPL'2006). Topics include: Experience, positive or negative with technology transfer
and cooperation of academia and industry; Negative results: what went wrong although
it should have worked according to software engineering folklore; Success-stories for
component-based software engineering; Keeping systems with large amounts of classes
/ objects / modules / components organised; Refactoring, Software Evolution and
Migration; etc.

☺ July 05-07 18th Euromicro Conference on Real-Time Systems (ECRTS'2006), Dresden, Germany. Topics
include: all aspects of real-time systems; special focus on industrial applications of real-time
technology; compiler support; component-based approaches; middleware and distribution technologies;
programming languages; real-time operating systems; model-driven development of embedded RT
systems; formal methods; reliability, security and survivability in RT systems; scheduling and
schedulability analysis; worst-case execution time analysis; validation techniques; etc.

July 09-16 33rd International Colloquium on Automata, Languages and Programming (ICALP'2006), Venice,
Italy. Topics include: Principles of Programming Languages, Formal Methods, Models of Concurrent
and Distributed Systems, Program Analysis and Transformation, etc.

☺ July 10-13 OMG Workshop on Distributed Object Computing for Real-time and Embedded Systems,
Washington, DC, USA. Topics include: Real-time systems; Embedded systems; Fault-tolerant systems;
High-availability systems; Safety-critical systems; Design tools for real-time distributed systems; Real-
time middleware, including real-time CORBA; Modeling notations, including UML; Model-Driven
approaches, including MDA; High-level real-time programming models; etc.

July 10-14 2nd European Conference on Model Driven Architecture: Foundations and Applications (ECMDA-
FA'2006), Bilbao, Spain. Topics include: Model Transformation - languages, tools; MDA for Large
Scale Distributed Systems; Comparative studies of MDA tools; MDA for Legacy Systems; MDA for
systems engineering; MDA for embedded systems; MDA for high-integrity systems (safety-critical and
security-critical systems; etc.

☺ July 12-15 12th International Conference on Parallel and Distributed Systems (ICPADS'2006), Minneapolis,
Minnesota, USA. Topics include: Parallel and Distributed Applications and Algorithms; Reliable and
Fault-Tolerant Computing; Real-Time Systems; Tools; etc.

☺ July 23-26 25th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2006), Denver, Colorado, USA. Topics include: Concurrent programming, Distributed systems
and middleware platforms, Correctness and verification of distributed and parallel programming, etc.

☺ August 14-18 35th International Conference on Parallel Processing (ICPP'2006), Columbus, Ohio, USA. Topics
include: findings in any aspects of parallel and distributed computing; such as Compilers and
Languages, Systems Support for Parallel and Distributed Applications, etc.

August 21-27 14th International Symposium of Formal Methods Europe (FM'2006), Hamilton, Canada. Topics
include: Tools for formal methods (tool support and software engineering, environments for formal
methods), Formal methods in practice (experience with introducing formal methods in industry, case
studies), etc. Deadline for submissions: May 26, 2006 (posters, tools, doctoral symposium)

☺ August 26-27 11th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2006),
Bonn, Germany. Deadline for submissions: May 26, 2006 (abstracts), June 2, 2006 (full papers)

☺ Aug 29-Sept 01 12th International Conference on Parallel and Distributed Computing (Euro-Par'2006), Dresden,
Germany. Topics include: the promotion and advancement of parallel computing; Support Tools and

40 Conference Calendar

Volume 27, Number 1, March 2006 Ada User Journal

Environments; Distributed Systems and Algorithms; Parallel Programming: Models, Methods, and
Languages; Embedded Parallel Systems; etc.

☺ September 13-15 7th Joint Modular Languages Conference (JMLC'2006), Oxford, England. Topics include:
programming language design and implementation; software tools and environments; software quality
and testing; formal methods in modular and composable software development; modularity and
composability in parallel and distributed systems; modularity and composability in safety-critical and
real-time systems; software engineering education; case studies aligning with any of the above; etc.

☺ September 16-20 Parallel Computing Technologies (PaCT'2006), Seattle, Washington. USA. Topics include: Compilers
and tools for parallel computer systems, Parallel programming languages and applications, Run time
system support for parallel systems, Parallel processing in type safe languages, Support for correctness
in hardware and software (esp. with concurrency), etc.

☺ September 18-20 20th International Symposium on DIStributed Computing (DISC'2006), Stockholm, Sweden. Topics
include: concurrent programming and synchronization algorithms; fault tolerance; specification,
semantics, and verification; distributed programming languages; distributed object-oriented computing;
etc. Deadline for submissions: May 1, 2006

☺ September 20-22 Real-Time and Networked Embedded Systems Track of the 11th IEEE International Conference on
Emerging Technologies and Factory Automation (RTNES-EFTA'2006), Prague, Czech Republic.
Topics include: Real-time (distributed) embedded systems; Dependable embedded systems; Formal
methods; Real-time executives and operating systems; Real-time scheduling; Real-time components and
Middleware; Software engineering and programming languages; Case studies (industrial automation,
automotive, avionics, communications...); etc.

September 25-28 26th IFIP WG 6.1 International Conference on Formal Techniques for Networked and Distributed
Systems (FORTE'2006), Paris, France. Topics include: Practical experience with formal methods, etc.
Deadline for submissions: April 10, 2006 (short abstracts), April 18, 2006 (papers)

October 01-06 9th International Conference on Model-Driven Engineering Languages and Systems
(MoDELS'2006), Genoa, Italy. Topics include: Model-driven engineering methodologies, approaches,
languages and tools; Domain-specific modeling languages; Programming language and meta-
programming support for linking models to code; Modeling languages and tools; Semantics of modeling
languages; Modeling and analysis of real-time, embedded, and distributed systems; etc. Deadline for
submissions: May 8, 2006 (workshops, tutorials)

☺ October 02-04 25th IEEE International Symposium on Reliable Distributed Systems (SRDS'2006), Leeds, UK.
Topics include: reliability, availability, safety, security, and real time; Security and high-confidence
systems, Distributed objects and middleware systems, Formal methods and foundations for dependable
distributed computing, Analytical or experimental evaluations of dependable distributed systems, etc.
Deadline for submissions: April 24, 2006

☺ October 12-13 Automotive - Safety & Security 2006, Stuttgart, Germany. Theme: "Sicherheit und Zuverlässigkeit für
automobile Informationstechnik". Organized by Gesellschaft für Informatik (GI), etc., in cooperation
with Ada-Deutschland and Fachgruppe "Ada", etc. Topics include (in German): Zuverlässigkeit und
Sicherheit für fahrbetriebs-kritische Software und IT-Systeme; Sichere Entwicklung, Aktualisierung und
Freischaltung; Normen und Standardisierungsbestrebungen; Entwicklungsbegleitende Evaluation und
Zertifizierung; etc. Deadline for submissions: April 15, 2006

☺ October 22-26 21st Annual Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA'2006), Portland, Oregon, USA. Topics include: diverse disciplines related to object
technology. Deadline for submissions: June 30, 2006 (DesignFestR Posters, Onward! Films, Student
Research Competition, Demonstrations, Doctoral Symposium), August 1, 2006 (Student Volunteers)

October 23-27 13th Working Conference on Reverse Engineering (WCRE'2006), Benevento, Italy. Theme:
"Empirically Assessing Reverse Engineering Techniques and Tools". Topics include: Empirical studies
in reverse engineering; Decompilation and binary translation; Redocumenting legacy systems; Reverse
engineering tool support; Mining software repositories; Program analysis and slicing; Software
architecture recovery; Program transformation and refactoring; etc. Deadline for submissions: June 7,
2006 (papers), June 20, 2006 (special tracks, workshops, tutorials)

Conference Calendar 41

Ada User Journal Volume 27, Number 1, March 2006

October 25-27 5th International Conference on Software Methodologies Tools, and Techniques (SoMeT'2006),
Quebec, Canada. Topics include: Software methodologies, and tools for robust, reliable, non-fragile
software design; Automatic software generation versus reuse, and legacy systems, source code analysis
and manipulation; Software evolution techniques; Formal methods for software design; Static and
dynamic analysis, and software maintenance; Formal techniques for software representation, software
testing and validation; Software reliability, and software diagnosis systems; etc. Deadline for
submissions: May 15, 2006

☺ Oct 29-Nov 03 8th International Symposium on Distributed Objects and Applications (DOA'2006), Montpellier,
France. Topics include: Application case studies of distribution technologies; Component-based
software development; Design patterns for distributed systems; Integrated development environments;
Middleware for distributed object computing; Real-time solutions for distributed objects; Technologies
for reliability and fault-tolerance; Testing and validation of distributed object systems; etc. Deadline for
submissions: May 15, 2006

Oct 30-Nov 03 8th International Conference on Formal Engineering Methods (ICFEM'2006), Macao SAR, China.
Topics include: Abstraction and refinement; Tool development and integration for formal system
design, analysis and verification; Integration of formal verification tools in CASE tools; Techniques for
specification, verification and validation; Techniques and case studies for correctness by construction;
Experiments of verified systems; Application in real-time, hybrid and critical systems; Emerging
technologies; etc. Deadline for submissions: May 12, 2006 (papers), June 30, 2006 (tutorials)

♦ Nov 12-16 2006 ACM SIGAda Annual International Conference (SIGAda'2006),
Albuquerque, New Mexico, USA. Sponsored by ACM SIGAda, in cooperation with
SIGAPP, SIGCAS, SIGCSE, SIGPLAN, SIGSOFT, Ada-Europe, and Ada Resource
Association (ACM approval pending, Cooperation approvals pending.) Topics include:
reliability needs and styles; safety and high integrity issues; analysis, testing, and
validation; standards; use of ASIS for new Ada tool development; mixed-language
development; Ada in XML and .NET environments; quality assurance; Ada & software
engineering education; commercial Ada applications: what Ada means to the bottom
line; static and dynamic code analysis; software architecture and design; etc.
Deadline for submissions: May 16, 2006 (technical articles, extended abstracts,
experience reports, workshops, panel sessions, and tutorials)

☺ December 01-04 4th International Symposium on Parallel and Distributed Processing and Applications (ISPA'2006),
Sorrento, Italy. Topics include: Parallel/distributed system architectures; Tools and environments for
software development; Parallel/distributed algorithms; Distributed systems and applications; Reliability,
fault-tolerance, and security; etc. Includes "Languages and Algorithms" and "Software and
Applications" Tracks. Deadline for submissions: May 1, 2006 (workshops), May 31, 2006 (papers)

☺ December 05-08 27th IEEE Real-Time Systems Symposium (RTSS'2006), Rio de Janeiro, Brazil. Topics include: all
aspects of real-time systems design, analysis, implementation, evaluation, and case-studies. Deadline for
submissions: May 19, 2006

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2007

June 12th Annual Conference on Innovation and Technology in Computer Science Education

(ITiCSE'2007), Dundee, Scotland, UK

☺ June 09-16 3rd History of Programming Languages Conference (HOPL-III), San Diego, CA, USA. Co-located
with FCRC'2007. Deadline for submissions: August 2006 (reworked full papers)

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2008

June 13th Annual Conference on Innovation and Technology in Computer Science Education

(ITiCSE'2008), Madrid, Spain

46

Volume 27, Number 1, March 2006 Ada User Journal

Rationale for Ada 2005: Epilogue
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract
This is the last of a number of papers describing the
rationale for Ada 2005. In due course it is anticipated
that the papers will be combined (after appropriate
reformatting and editing) into a single volume for
formal publication.
This last paper summarizes a small number of general
issues of importance to the user such as compatibility
between Ada 2005 and Ada 95. It also briefly
considers a few potential changes that were
considered for Ada 2005 but rejected for various
reasons.
Keywords: rationale, Ada 2005.

1 Compatibility
There are two main sorts of problems regarding
compatibility. These are termed Incompatibilities and
Inconsistencies.

An incompatibility is a situation where a legal Ada 95
program is illegal in Ada 2005. These can be annoying but
not a disaster since the compiler automatically detects such
situations.

An inconsistency is where a legal Ada 95 program is also a
legal Ada 2005 program but might have a different effect at
execution time. These can in principle be really nasty but
typically the program is actually wrong anyway (in the
sense that it does not do what the programmer intended) or
its behaviour depends upon the raising of a predefined
exception (which is generally considered poor style) or the
situation is extremely unlikely to occur.

As mentioned below in Section 2, during the development
of Ada 2005 a number of corrections were made to Ada 95
and these resulted in some incompatibilities and
inconsistencies with the original Ada 95 standard. These
are not considered to be incompatibilities or inconsistencies
between Ada 95 and Ada 2005 and so are not covered in
this section.

1.1 Incompatibilities with Ada 95
Each incompatibility listed below gives the AI concerned
and the paragraph in the AARM which in some cases will
give more information. Where relevant, the section in this
rationale where the topic is discussed is also given. Where
appropriate the incompatibilities are grouped together.

1 – The words interface, overriding and synchronized
are now reserved. Programs using them as identifiers will
need to be changed. (AI-284, 2.9(3.c))

This is perhaps the most important incompatibility in terms
of visibility to the average programmer. It is discussed in
paper 1 section 2.

2 – If a predefined package has additional entities then
incompatibilities can arise. Thus suppose the predefined
package Ada.Stuff has an additional entity More added to it.
Then if an Ada 95 program has a package P containing an
entity More then a program with a use clause for both
Ada.Stuff and P will become illegal in Ada 2005 because
the reference to More will become ambiguous. This also
applies if further overloadings of an existing entity are
added.

Because of this there has been reluctance to extend existing
packages but a preference to add child packages.
Nevertheless in some cases extending a package seemed
more appropriate especially if the identifiers concerned are
unlikely to have been used by programmers.

The following packages have been extended with
additional entities as listed.

Ada.Exceptions – Wide_Exception_Name, Wide_Wide_
Exception_Name. (AI-400, 11.4.1(19.bb))

Ada.Real_Time – Seconds, Minutes. (AI-386, D.8(51.a))

Ada.Strings – Wide_Wide_Space. (AI-285, A.4.1(6.a))

Ada.Strings.Fixed – Index, Index_Non_Blank. (AI-301,
A.4.3(109.a))

Ada.Strings.Bounded – Set_Bounded_String, Bounded_
Slice, Index, Index_Non_Blank. (AI-301, A.4.4(106.f))

Ada.Strings.Unbounded – Set_Unbounded_String,
Unbounded_Slice, Index, Index_Non_Blank. (AI-301,
A.4.5(88.c))

There are similar additions to Ada.Strings.Wide_Fixed,
Ada.Strings.Wide_Bounded and Ada.Strings.Wide_
Unbounded. (AI-301, A.4.7(48.a))

Ada.Tags – No_Tag, Parent_Tag, Interface_Ancestor_
Tags, Descendant_Tag, Is_Descendant_At_Same_
Level, Wide_Expanded_Name, Wide_Wide_Expanded_
Name. (AI-260, 344, 400, 405, 3.9(33.d))

Ada.Text_IO – Get_Line. (AI-301, A.10.7(26.a))

Interfaces.C – char16_t, char32_t and related types and
operations. (AI-285, B.3(84.a))

John Barnes 47

Ada User Journal Volume 27, Number 1, March 2006

It seems unlikely that existing programs will be affected by
these potential incompatibilities.

3 – If a subprogram has an access parameter (without a
null exclusion) and is not a dispatching operation then it
cannot be renamed as a dispatching operation in Ada 2005
although it can be so renamed in Ada 95. See paper 2,
section 2 for an example. (AI-404, 3.9.2(24.b))

4 – As discussed in paper 2 section 5, there are many
awkward situations in Ada 95 regarding access types,
discriminants and constraints. One problem is that some
components can change shape or disappear. The rules in
Ada generally aim to prevent such components from being
accessed or renamed. However, in Ada 95, some entities
don't look constrained but actually are constrained. The
consequence is that it is difficult to prevent some
constrained objects from having their constraints changed
and this can cause components to change or disappear even
though they might be accessed or renamed.

A key rule in Ada 95 was that aliased variables were
always constrained with the intent that that would solve the
problems. But loopholes remained and so the rules have
been changed considerably. Aliased variables are not
necessarily constrained in Ada 2005 and other rules now
disallow certain constructions that were permitted in Ada
95 and this gives rise to a number of minor
incompatibilities.

If a general access subtype refers to a type with default
discriminants then that access subtype cannot have
constraints in Ada 2005. Consider

type T(Disc: Boolean := False) is
 record
 ...
 end record;

The discriminated type T has a default and so
unconstrained objects of type T are mutable. Suppose we
now have

type T_Ptr is access all T;
subtype Sub_True_T_Ptr is T_Ptr(Disc => True);
 -- subtype illegal in Ada 2005

The type T_Ptr is legal in both Ada 95 and Ada 2005 of
course, but the subtype Sub_True_T_Ptr is only legal in
Ada 95 and not in Ada 2005. The reason why the subtype
cannot be permitted is illustrated by the following

Some_T: aliased T := (Disc => True, ...);
A_True_T: Sub_True_T_Ptr := Some_T'Access;
...
Some_T := (Disc => False, ...);

When Some_T'Access is evaluated there is a check that the
discriminant has the correct value so that A_True_T is
assigned a valid value. But the second assignment to
Some_T means that the discriminant changes and so
A_True_T would no longer have a valid value.

In Ada 95, all aliased variables were considered
constrained and so the second assignment would not have

been permitted anyway. But, as mentioned above, aliased
variables are not considered to be constrained in Ada 2005
just because they are aliased.

Note that there is no similar restriction on types; thus we
can still write

type True_T_Ptr is access all T(Disc => True);

because any conversion which might cause difficulties is
forbidden as explained in one of the examples below.

The restriction on subtypes does not apply if the
discriminants do not have defaults, nor to pool-specific
types. (AI-363, 3.7.1(15.c))

Since aliased variables are not necessarily constrained in
Ada 2005 there are situations where components might
change shape or disappear in Ada 2005 that could not
happen in Ada 95. Applying the Access attribute to such
components is thus illegal in Ada 2005. Suppose the
example above has components as follows

type T(Disc: Boolean := False) is
 record
 case Disc is
 when False =>
 Comp: aliased Integer;
 when True =>
 null;
 end case;
 end record;

Since objects of type T might be mutable, the component
Comp might disappear.

type Int_Ptr is access all Integer;
Obj: aliased T; -- mutable object
Dodgy: Int_Ptr := Obj.Comp'Access; -- take care
...
Obj:= (Disc => True); -- Comp gone

In Ada 95, the assignment to Dodgy is permitted but then
the assignment to Obj raises Constraint_Error because there
might be dodgy pointers.

In Ada 2005, the assignment statement to Dodgy is illegal
since we cannot write Obj.Comp'Access. The assignment to
Obj is itself permitted because we now know that there
cannot be any dodgy pointers.

See (AI-363, 3.10.2(41.b)). Similarly, renaming an aliased
component such as Comp is also illegal. (AI-363,
8.5.1(8.b))

There are related situations regarding discriminated private
types where type conversions and the Access attribute are
forbidden. Suppose we have a private type and an access
type and that the full type is in fact the discriminated type
above thus

package P is
 type T is private;
 type T_Ptr is access all T;
 function Evil return T_Ptr;
 function Flip(Obj: T) return T;

48 Rat ionale for Ada 2005: Epi logue

Volume 27, Number 1, March 2006 Ada User Journal

private
 type T(Disc: Boolean := False) is
 record
 ...
 end record;
 ...
end P;

package body P is

 type True_T_Ptr is access all T(Disc => True);
 subtype Sub_True_T_Ptr is T_Ptr(Disc => True);
 -- legal in Ada 95, illegal in Ada 2005

 True_Obj: aliased T(Disc => True);
 TTP: True_T_Ptr := True_Obj'Access;
 STTP: Sub_True_T_Ptr := True_Obj'Access;

 function Evil return T_Ptr is
 begin
 if ... then
 return T_Ptr(TTP); -- OK in 95, not in 2005
 elsif ... then
 return True_Obj'Access; -- OK in 95, not in 2005
 else
 return STTP;
 end if;
 end Evil;

 function Flip(Obj: T) return T is
 begin
 case Obj.Disc is
 when True => return (Disc => False, ...);
 when False => return (Disc => True, ...);
 end case;
 end Flip;

end P;

The function Evil has three branches illustrating various
possible ways of returning a value of the type T. The
function Flip just returns a value of the type T with opposite
discriminants to the parameter. Now consider

with P; use P;
procedure Do_It is
 A: T;
 B: T_Ptr := new T;
 C: T_Ptr := Evil;
begin
 A := Flip(A);
 B.all := Flip(B.all);
 C.all := Flip(C.all);
end Do_It;

This declares an object A of type T and then two objects B
and C of the access type T_Ptr and initializes them in
different ways. Finally it attempts to change the
discriminant of the three objects by calling the function
Flip.

In Ada 95 all objects on the heap are constrained. This
means that clients cannot change the discriminants even if
they do not know that they exist. So the assignment to B.all
raises Constraint_Error since B.all is on the heap and thus

constrained whereas the assignment to A is fine since A is
not constrained. However, from the client's point of view
they both really do the same thing and so the behaviour is
very curious. Remember that the client doesn't know about
the discriminants and so both operations look the same in
the abstract. This is unfortunate and breaks privacy which
is sinful. There is a similar example in paper 2, section 5
where we try to change Chris but do not know that the new
value has a beard and this fails because Chris is female.

To prevent such privacy breaking the rules are changed in
Ada 2005 so that objects on the heap are unconstrained in
this one case. So the assignments to B.all and C.all do not
have checks on the discriminant. As a consequence Evil
must not return an object which is constrained otherwise
the assignment to C would result in True_Obj having its
discriminant turned to False.

All three possible branches in Evil are prevented in Ada
2005. The conversion in the first branch is forbidden and
the Access attribute in the second branch is forbidden. In
the case of the third branch the return itself is acceptable in
principle because STTP is of the correct type. However,
this is prevented by the rule mentioned above since the
subtype Sub_True_T_Ptr is itself forbidden and so the
object STTP could not be declared in the first place.

See (AI-363, 3.10.2(41.e) and 4.6(71.k)).

5 – Aggregates of limited types are permitted in Ada 2005
as discussed in paper 3, section 5. This means that in
obscure situations an aggregate might be ambiguous in Ada
2005 and thus illegal. Consider

type Lim is limited
 record
 Comp: Integer;
 end record;

type Not_Lim is
 record
 Comp: Integer;
 end record;

procedure P(X: LIm);
procedure P(X: Not_Lim);

P((Comp => 123)); -- illegal in Ada 2005

In Ada 95, the aggregate cannot be of a limited type and so
the type Lim is not considered for resolution. But Ada 2005
permits aggregates of limited types and so the aggregate is
ambiguous. (AI-287, 4.3(6.e))

Another similar situation with limited types and nonlimited
types concerns assignment. Again this relates to the fact
that limitedness is no longer considered for name
resolution. Consider

type Acc_Not_Lim is access Not_Lim;
function F(X: Integer) return Acc_Not_Lim;
type Acc_Lim is access Lim;
function F(X: Integer) return Acc_Lim;
F(1).all := F(2).all; -- illegal in Ada 2005

John Barnes 49

Ada User Journal Volume 27, Number 1, March 2006

In Ada 95, only the first F is considered for name resolution
and the program is valid. In Ada 2005, there is an
ambiguity because both functions are considered. Note of
course that the assignment for the limited function is still
illegal anyway but the compiler meets the ambiguity first.
Clearly this is an obscure situation. (AI-287. 5.2(28.d))

6 – Because of the changes to the fixed-fixed
multiplication and division rules there are situations where
a legal program in Ada 95 becomes illegal in Ada 2005.
Consider

package P is
 type My_Fixed is delta ... ;
 function "*" (L, R: My_Fixed) return My_Fixed;
end P;

use P;
A, B: My_Fixed;
D: Duration := A * B; -- illegal in Ada 2005

Although this is legal in Ada 95, the new rule in Ada 2005
says that if there is a user-defined operation involving the
type concerned then the predefined operation cannot be
used unless there is a type conversion or we write
Standard."*"(...).

So in Ada 2005 a conversion can be used thus

D: Duration := Duration(A * B);

See paper 5, section 3. (AI-364, 4.5.5(35.d))

7 – The concept of return by reference types has gone.
Instead the user has to explicitly declare a function with an
anonymous access type as the return type. This only affects
functions that return an existing limited object such as
choosing a task from among a pool of tasks. See paper 3
section 5 for an example. (AI-318, 6.5(27.g))

8 – There is a very curious situation regarding exporting
multiple homographs from an instantiation that is now
illegal. This is a side effect of adding interfaces to the
language. (AI-251, 8.3(29.s))

9 – The introduction of more forms of access types has
changed the rules regarding name resolution. Consider the
following contrived example

type Cacc is access constant Integer;
procedure Proc(Acc: access Integer);
procedure Proc(Acc: Cacc);
List: Cacc := ... ;
...
Proc(List); -- illegal in Ada 2005

In Ada 95 the call of Proc is resolved because the
parameters Acc are anonymous access to variable in one
case and access to constant in the other. In Ada 2005, the
name resolution rules do not take this into account so it
becomes ambiguous and thus illegal which is a good thing
because it is likely that the Ada 95 programmer made a
mistake anyway. (AI-409, 8.6(34.n))

10 – In Ada 2005, a procedure call that might be an entry
is permitted in timed and conditional entry calls. See paper

4, section 3. In Ada 95, a procedure could not be so used
and this fact is used in name resolution in Ada 95 but does
not apply in Ada 2005. Hence if a procedure and an entry
have the same profile then an ambiguity can exist in Ada
2005. (AI-345, 9.7.2(7.b))

11 – It is now illegal to have an allocator for an access
type with Storage_Size equal to zero whereas in Ada 95 it
raised Storage_Error on execution. It is always better to
detect errors at compile time wherever possible. The reason
for the change is to allow Pure units to use access types
provided they do not use allocators. If the storage size is
zero then this is now known at compile time. (AI-366,
4.8(20.g))

12 – The requirement that a partial view with available
stream attributes be externally streamable can cause an
incompatibility in extremely rare cases. This also relates to
pragma Pure. (AI-366, 10.2.1(28.e))

13 – It is now illegal to use an incomplete view as a
parameter or result of an access to subprogram type or as
an access parameter of a primitive operation if the
completion is deferred to the package body. See paper 3,
section 2 for examples. (AI-326, 3.10.1(23.h, i))

14 – The specification of System.RPC can now be
tailored for an implementation by adding further operations
or by changing the profile of existing operations. If it is
tailored in this way then an existing program might not
compile in Ada 2005. See paper 6, section 7. (AI-273,
E.5(30.a))

1.2 Inconsistencies with Ada 95
1 – The awkward situations regarding access types,
discriminants and constraints discussed in paper 2 section
5, can also give rise to obscure inconsistencies.

Unconstrained aliased objects of types with discriminants
with defaults are no longer constrained by their initial
values. This means that a program that raised
Constraint_Error in Ada 95 because of attempting to change
the discriminants will no longer do so.

Thus consider item 4 in the previous section. We had

type Int_Ptr is access all Integer;
Obj: aliased T; -- mutable object
Dodgy: Int_Ptr := Obj.Comp'Access; -- take care
...
Obj:= (Disc => True); -- Comp gone

We noted that in Ada 2005, the assignment statement to
Dodgy is illegal because we cannot write Obj.Comp'Access.
The assignment to Obj is itself permitted because we now
know that there cannot be any dodgy pointers. Suppose that
the assignment to Dodgy is removed. Then in Ada 95, the
assignment to Obj will raise Constraint_Error but it will not
in Ada 2005. It is extremely unlikely that any correct
program relied upon this behaviour. (AI-363, 3.3.1(33.f)
and 3.10(26.d))

50 Rat ionale for Ada 2005: Epi logue

Volume 27, Number 1, March 2006 Ada User Journal

A related situation applies with allocators where the
allocated type is a private type with hidden discriminants.
This is also illustrated by an earlier example where we had

with P; use P;
procedure Do_It is
 A: T;
 B: T_Ptr := new T;
 C: T_Ptr := Evil;
begin
 A := Flip(A);
 B.all := Flip(B.all); -- C_E in Ada 95, not in 2005
 C.all := Flip(C.all);
end Do_It;

The assignment to B.all raises Constraint_Error in Ada 95
but not in Ada 2005 as explained above. Again it is
extremely unlikely that any correct program relied upon
this behaviour. (AI-363, 4.8(20.f))

2 – In Ada 2005 the categorization of certain wide
characters is changed. As a consequence Wide_
Character'Wide_Value and Wide_Character'Wide_Image
will change in some rare situations. A further consequence
is that for some subtypes S of Wide_Character the value of
S'Wide_Width is different. But the value of
Wide_Character'Wide_Width itself is not changed. (AI-285,
3.5.2(9.h) and AI-395, 3.5.2(9.i, j))

3 – There is an interesting analogy to incompatibility
number 2 which concerns adding further entities to existing
predefined packages. If we add further entries to Standard
itself then an inconsistency is possible. Thus if an
additional entity More is added to the package Standard and
an existing program has a package P with an existing entity
More and a use clause for P then, in Ada 2005, references
to More will now be to that in Standard and not that in P. In
the most unlikely event that the program remains legal, it
will behave differently. The only such identifiers added to
Standard are Wide_Wide_Character and Wide_Wide_String
so this is extremely unlikely. (AI-285, 3.5.2(9.k) and
3.6.3(8.g))

4 – Access discriminants and non-controlling access
parameters no longer exclude null in Ada 2005. A program
that passed null to these will behave differently.

The usual situation is that Constraint_Error will be raised
within the subprogram when an attempt to dereference is
made rather than at the point of call. If the subprogram has
no handler for Constraint_Error then the final effect will be
much the same.

But clearly it is possible for the behaviour to be quite
different. For example, the access value might not be
dereferenced or the subprogram might have a handler for
Constraint_Error which does something unusual. And there
might even be a pragma Suppress for the check in which
case the program will become erroneous.

See paper 2, section 2 for an example. (AI-231, 3.10(26.c))

5 – The lower bound of strings returned by functions
Expanded_Name and External_Name (and wide versions)

in Ada.Tags are defined to be 1 in Ada 2005. Ada 95 did
not actually define the value and so if an implementation
has chosen to return some other lower bound such as 77
then the program might behave differently. (AI-417,
3.9(33.c)) See also 2.2 item 4 below.

6 – The upper bound of the range of Year_Number in Ada
2005 is 2399 whereas it was 2099 in Ada 95. See paper 6,
section 3. (AI-351, 9.6(40.e))

2 Retrospective changes to Ada 95
In the course of the development of Ada 2005, a number of
small changes were deemed to apply also to Ada 95 and
thus were classified as binding interpretations rather than
amendments. Accordingly they are not (generally) covered
by the changes discussed in the previous papers. Note
however, that AI-241 on exceptions was discussed in paper
5 even though it was eventually classified as a binding
interpretation. Moreover, AI-329 on exceptions was split
and the part stating that Raise_Exception never returns
(also applying to Ada 95) was formed into AI-446.

AI-438 adds subprograms Read_Exception_Occurrence
and Write_Exception_Occurence plus corresponding
attribute definition clauses for streams to the package
Ada.Exceptions thus

procedure Read_Exception_Occurrence
 (Stream: not null access Root_Stream_Type'Class;
 Item: out Exception_Occurrence);

procedure Write_Exception_Occurrence
 (Stream: not null access Root_Stream_Type'Class;
 Item: in Exception_Occurrence);

for Exception_Occurrence'Read use
 Read_Exception_Occurrence;

for Exception_Occurrence'Write use
 Write_Exception_Occurrence;

These attributes enable the type Exception_Occurrence to
be streamed. Note that this is a limited type and so
streaming is only possible if predefined. A survey of other
existing and new predefined limited types showed that no
others needed to be treated in this way.

No other retrospective AIs actually affect the specification
of any units but typically add or correct a number of rules.
Of these some are of special interest because they introduce
minor incompatibilities or inconsistencies. They are

108 Inheritance of stream attributes for type extensions

 (108 was actually in the 2001 Corrigendum)

133 Controlling bit ordering

195 Streams (this covers many issues regarding streams)

220 Subprograms withing private compilation units

225 Aliased current instance for limited types

229 Accessibility rules and generics

238 Lower bound of Ada.Strings.Bounded_Slice

John Barnes 51

Ada User Journal Volume 27, Number 1, March 2006

240 Stream attributes for limited types in Annex E

242 Surprise behavior of Update

246 Conversions between arrays of a by-reference type

253 Pragmas Attach_Handler and Interrupt_Handler

268 Rounding of real static expressions

279 Tag read by T'Class'Input

283 Truncation of stream files by Close and Reset

306 Class-wide extension aggregate expressions

341 Primitive subprograms are frozen with a tagged type

360 Types that need finalization

377 Naming of generic child packages

378 The bounds of Ada.Exceptions.Exception_Name

403 Preelaboration checks and formal objects

435 Storage pools for access-to-subprogram types

446 Raise_Exception for Null_Id

These are briefly discussed in the following subsections.

2.1 Incompatibilities with original Ada 95
There are a small number of incompatibilities between the
original Ada 95 and that resulting from various corrections.

1 – A limited type can become nonlimited. Applying the
Access or Unchecked_Access attribute to the current
instance of such a type is now illegal. (AI-225, 3.10(26.e))

This is fairly obscure. Remember that the current instance
rule is about referring to a type within its own declaration
such as

type Strange is limited
 record
 Me: access Strange := Strange'Unchecked_Access;
 ...
 end record;

This is fine. It only makes sense to permit the attribute if
the type is limited. But a type can be limited by virtue of
having a limited component. for example

type Limp is limited private;

type Strange is
 record
 Me: access Strange := Strange'Unchecked_Access;
 C: Limp;
 end record;

If the component is limited private and it turns out that the
full type of the component is not limited after all then the
enclosing type becomes nonlimited. In such a case the
attribute is now not allowed. The cure is to make the
enclosing type explicitly limited.

2 – Conversions between unrelated array types that are
limited or (for view conversions) might be by-reference
types are now illegal. This is because they might not have

the same representation and they cannot be copied in order
to change the representation. (AI-246, 4.6(71.j))

3 – The meaning of a record representation clause and the
storage place attributes for the non-default bit order is now
clarified. One consequence is that the equivalence of bit 1
in word 1 to bit 9 in word 0 for a machine with Storage_
Unit = 8 no longer applies for the non-default order. (AI-
133, 13.5.1 (31.d) and 13.5.2(5.c))

4 – Various new freezing rules were added in order to fix
a number of holes in the original rules for Ada 95. (AI-341,
13.14(20.p))

5 – The type Unbounded_String is defined to need
finalization. If the partition has No_Nested_Finalization and
moreover the implementation of Unbounded_String does
not have a controlled part then it will not be allowed in
local objects now although it was in original Ada 95.
Clearly this is extremely unlikely. (AI-360, A.4.5(88.b)).
The same applies to the type Generator in
Numerics.Float_Random and Discrete_Random (AI-360,
A.5.2(61.a)) and to File_Type in Sequential_IO (AI-360,
A.8.1(17.b)), Direct_IO (AI-360, A.8.4(20.a)), Text_IO (AI-
360, A.10.1(86.c)) and Stream_IO (AI-360, A.12.1(36.b)).
See also D.7(22.a).

This problem is unlikely with types such as
Unbounded_String which were introduced into Ada 95 at
the same time as controlled types and thus are almost
inevitably implemented in terms of controlled types. It is
more likely with the file types that existed in Ada 83 since
some implementations might not have changed them to use
controlled types.

6 – It is now illegal to apply the Access attribute to a
subprogram declared in the specification of a generic unit
in the body of that unit. The usual workaround applies
which is to move the use of the attribute to the private part.
(AI-229, 3.10.2(41.f))

7 – It is now illegal for the ancestor expression in an
extended aggregate to be of a class wide type or to be
dispatching call (probably most readers would never dream
of doing that anyway). Thus if we have tagged type T and a
type NT extended from it and we declare

X: T'Class := ... ;

then the aggregate

NT'(X with ...) -- illegal

is illegal. We have to use a type conversion and write

NT'(T(X) with ...) -- legal

Similarly the ancestor part cannot be a dispatching call
such as F(X) where the function F is

function F(Y: T) return T is
begin
 return Y;
end F;
...
NT'(F(X) with ...) -- illegal since X class wide

52 Rat ionale for Ada 2005: Epi logue

Volume 27, Number 1, March 2006 Ada User Journal

Again it can be fixed by a suitable conversion to a specific
type. (AI-306, 4.3.2((13.b))

8 – If a generic library unit and an instance of it both have
child units with the same name then they now hide each
other. Thus

generic package G is ... ; -- a generic G

generic package G.C is ... ; -- a child C

with G;
package I is new G; -- the instance

package I.C is ... ; -- child of instance

with G.C; with I.C; -- illegal, both hidden
package P ...

Originally it seems that this was allowed but it was not
specified which package C would refer to. This was fairly
foolish and confusing. (AI-377, 8.3(29.z))

9 – A subprogram body acting as a declaration (that is
without a distinct specification) cannot with a private child.
This was allowed by mistake originally and permitted the
export of types declared in private child packages. (AI-220,
10.1.2(31.f))

10 – For the purposes of deciding whether a unit can be
preelaborable a generic formal object is nonstatic. (AI-403,
10.2.1(28.f))

11 – Storage pools (and the attribute Storage_Size) are
not permitted for access to subprogram types. Originally it
looked as if they were allowed provided they were never
used (or the size was zero). (AI-435, 13.11(43.d))

12 – The rules for the two pragmas Interrupt _Handler and
Attach_Handler are the same with respect to where they are
permitted. Originally it appeared that Interrupt_Handler
could be declared in a place remote from the subprogram it
was referring to. (AI-253, C.3.1(25.a))

13 – There are some changes regarding attributes in
remote type and RCI units. These changes primarily
concern streams for limited types. (AI-240, E.2.2(18.a),
E.2.3(20.b))

2.2 Inconsistencies with original Ada 95
There are a small number of inconsistencies between the
original Ada 95 and that resulting from various corrections.

1 – The function Exception_Identity applied to the value
Null_Occurrence now returns Null_Id whereas it originally
raised Constraint_Error in Ada 95. See paper 5, section 2.
(AI-241, 11.4.1(19.y))

2 – The procedure Raise_Exception applied to the value
Null_Id now raises Constraint_Error whereas it originally
did nothing (and thus returned). See paper 5, section 4. (AI-
446, 11.4.1(19.aa))

3 – Rounding of static real expressions is now
implementation-defined whereas it was originally defined
as away from zero. The reason for the change is to match
the behaviour of the hardware; this also means that static

and non-static expressions are more likely to get the same
answer which is comforting. (AI-268, 4.9(44.s))

4 – The lower bounds of strings returned by functions
Exception_Name, Exception_Message, and Exception_
Information (and wide versions) are now defined to be 1.
(AI-378, 417, 11.4.1(19.z))

Similarly the bounds of the various functions Slice are now
defined. (AI-238, A.4.4(106.e))

5 – There are some changes regarding stream attributes.
(AI-108, 13.13.2(60.g) and AI-195, 13.13.2(60.h))

6 – There are changes regarding truncation of stream files.
(AI-283, A.12.1(36.a))

7 – There is a potential inconsistency regarding the use of
Internal_Tag outside of streaming. However, there was an
implementation permission to do as is now required and so
programs were not portable anyway. (AI-279, 3.9(33.b))

8 – The procedure Update in Interfaces.C.Strings no
longer adds a nul character. (AI-242, B.3.1(60.a))

3 Unfinished topics
A number of topics which seemed to be good ideas initially
were abandoned for various reasons. Usually the reason
was simply that a good solution could not be produced in
the time available and the trouble with a bad solution is that
it is hard to put it right later. In other cases it is now felt
that the topic deserved further consideration in the light of
better understanding; sometimes there was fairly general
agreement that the current situation was not ideal and ought
to be improved, nevertheless there was no agreement on
what should be done. And in some cases the good idea
seemed a bad idea after further discussion.

So it might be that when Ada is next revised these further
features might be reconsidered and so perhaps this section
might be called forthcoming attractions. But on the other
hand maybe other matters will need to be dealt with in the
light of user experience with Ada 2005.

The following subsections briefly outline the main topics –
for a fuller discussion, consult the text of the Ada Issue
concerned.

3.1 Aggregates for private types (AI- 389)
The <> notation was introduced for aggregates to mean the
default value if any. See paper 3 section 4. A curiosity is
that we can write

type Secret is private;

type Visible is
 record
 A: Integer;
 S: Secret;
 end record;

X: Visible := (A => 77; S => <>);

but we cannot write

S: Secret := <>; -- illegal

John Barnes 53

Ada User Journal Volume 27, Number 1, March 2006

The argument is that this would be of little use since the
components take their default values anyway.

For uniformity AI-389 proposed allowing

S: Secret := (others => <>);

for private types and also for task and protected types. One
advantage would be that we could then write

S: constant Secret := (others => <>);

whereas at the moment it is not possible to declare a
constant of a private type because we are unable to give an
initial value.

However, discussion of this issue lead into a quagmire
concerning the related AI-413 and in the end both were
abandoned.

3.2 Partial generic instantiation (AI-359)
Certain attempts to use signature packages lead to
circularities. The AI outlines the following example

generic
 type Element is private;
 type Set is private;
 with function Union(L, R: Set) return Set is <>;
 with function Intersection(L, R: Set) return Set is <>;
 ... -- and so on
package Set_Signature is end;

Remember that a signature is a generic package consisting
only of a specification. When we instantiate it, the effect is
to assert that the actual parameters are consistent and the
instantiation provides a name to refer to them as a group.

If we now attempt to write

generic
 type Elem is private;
 with function Hash(E: Elem) return Integer;
package Hashed_Sets is
 type Set is private;
 function Union(L, R: Set) return Set;
 function Intersection(L, R: Set) return Set;
 ...
 package Signature is new Set_Signature(Elem, Set);
private
 type Set is
 record
 ...
 end record;
end Hashed_Sets;

then we are in trouble. The problem is that the instantiation
of Set_Signature tries to freeze the type Set prematurely.

Other similar examples concern the use of access types
with private types. The essence of the problem is that we
want to instantiate a package with a private type before the
full declaration of that type.

The solution proposed was to split an instantiation into two
parts, a partial instantiation and a full (that is, normal)
instantiation. The partial instantiation might take the form

package P is new G(Private_Type) with private;

and this can be done with the partial view of the type. The
full instantiation can then be given after the full declaration
of the type.

This fell by the wayside at the last minute largely because
of fears that awkward situations might be introduced
inadvertently.

3.3 Support for IEEE 559: 1989 (AI-315)
The proposal was to provide full support for all aspects of
IEEE 559 arithmetic such as Nans (a Nan is Not A
Number). This would have necessitated adding attributes
such as S'Infinity, S'Is_Nan, S'Finite and so on plus a
package Ada.Numerics.IEC_559.

The proposal was abandoned because it would have had a
big impact on implementers and it was not clear that there
was sufficient demand.

3.4 Defaults for generic parameters (AI-299)
Generic subprogram parameters and object parameters of
mode in can have defaults. But other parameters such as
packages and types cannot. This was considered irksome
and untidy and efforts were made to define a suitable
notation for all possible generic parameters.

However, it was abandoned partly because an appropriate
syntax seemed hard to find and more importantly, it was
not felt to be that important.

3.5 Pre/post-conditions for subprograms (AI-288)
This proposal was to add pragmas such as Pre_Assert and
Post_Assert. Thus in the case of a subprogram Push on a
type Stack we might write

procedure Push(S: in out Stack; X: in Item);
pragma Pre_Assert(Push, not Is_Full(S));
pragma Post_Assert(Push, not Is_Empty(S));

These pragmas would be controlled by the pragma
Assertion_Policy which controls the pragma Assert (which
was of course incorporated into Ada 2005). Optional
message parameters were allowed as well.

The general idea was that when the procedure Push was
called, the expression Is_Full(S) would be evaluated and if
this were false then action would be taken as for an Assert
pragma. Note that the key difference from assert is that the
pragmas go on the subprogram specification whereas to use
Assert it would have to be placed in the body.

There were other pragmas for dispatching subprograms and
so this was not quite so simple as at first appeared.

The proposal was abandoned for a number of reasons.
There were more important matters to deal with and we
were running out of time. Moreover, it seemed just the sort
of topic where user experience on a trial implementation
would be helpful in deciding what was required. And there
was some feeling that since this was all dynamic it was not
helpful to the high integrity community where the emphasis
was on static analysis and proof.

54 Rat ionale for Ada 2005: Epi logue

Volume 27, Number 1, March 2006 Ada User Journal

3.6 Type and package invariants (AI-375)
This defined further pragmas similar to those in the
previous proposal (AI-288) but concerned with packages
and types. Thus the pragma Package_Invariant identified a
function returning a Boolean result. This function would be
implicitly called after the call of each subprogram in the
package and if the result were false the behaviour would be
as for an Assert pragma that failed.

This proposal was abandoned for the same reasons as AI-
288.

3.7 Exceptions as types (AI-264)
This AI originally arose out of a workshop organized by
Ada-Europe. The proposal was quite complex and
considered far too radical a change and probably expensive
to implement. As a consequence it was slimmed down
considerably. But having been slimmed down it seemed
pointless and was then abandoned. The only part to survive
was the idea of raise with message which became a
separate AI and was incorporated into Ada 2005.

3.8 Sockets operations (AI-292)
This seemed a very good idea at the time but no detailed
proposal was forthcoming and so it died.

3.9 In out parameters for functions (AI-323)
This is a really interesting topic. Ada functions are curious.
On the one hand they look as if they are going to be well
behaved since they only allow in parameters and thus it
appears as if they cannot have side effects. But of course
they can have any side effects they like by using global
variables! And parameters can be access types and nothing
prevents the accessed values from being changed. Indeed
access parameters are a sort of sly way of getting in out
parameters anyway.

The proposal was to allow functions to have parameters of
all modes. The rationale for the proposal is well
summarized in the problem part of the AI thus "Ada
functions can have arbitrary side effects, but are not
allowed to announce that in their specifications".

Clearly, Ada functions are indeed curious. But strangely,
this AI was abandoned quite early in the revision process
on the grounds that it was "too late". (Perhaps too late in
this context meant 25 years too late.) In any event there was
no agreement on a way forward since there are strong
arguments both ways. But there was agreement that time
would be better spent discussing and agreeing other
matters.

One suggestion is that two kinds of functions should be
supported. Absolutely pure side-effect free functions that
merely deliver the value of some state. Functions in SPARK
[1] are like this. And the other sort of function could be one
that is just like a procedure and can do anything and have
all modes of parameters but for convenience returns a result
which can then be used in an expression.

It is interesting to note that Preliminary Ada [2] had value
returning procedures as well as functions. The functions
were pure but value returning procedures were much as
current functions and could have side effects. But value
returning procedures could not have out and in out
parameters. The difference between the two was thus not
enough and so pure functions were dropped and value
returning procedures became functions.

This topic may deserve to be revisited at some time.

3.10 Application defined scheduling (AI-358)
The International Real-Time Ada Workshops have been a
source of suggestions for improvements to Ada. The
Workshop at Oporto suggested a number of further
scheduling algorithms [3]. Most of these such as Round
Robin and EDF have been included in Ada 2005. But that
for application defined scheduling was not.

The reason is perhaps that it was felt desirable to see how
those that had been included worked out before adding yet
more burden for implementers.

4 Acknowledgements
This is the last of the papers in this series and so this seems
a good moment to once more thank all those who have
helped by reviewing various drafts and pointing out where I
had gone astray. I am especially grateful to Randy
Brukardt, Pascal Leroy and Tucker Taft for their diligence
and patience.

I must also thank Ada-Europe and the Ada Resource
Association and also the British Standards Institute for
financial support for attending various meetings.

Writing this rationale has been a learning experience for me
and I trust that readers will also have found the material
useful in learning about Ada 2005. An integrated
description of Ada 2005 as a whole including some further
examples will be found in a forthcoming version of the
textbook [4].

References
[1] J. G. P. Barnes (2003) High Integrity Software – The

SPARK Approach to Safety and Security, Addison-
Wesley.

[2] ACM (1979) Preliminary Ada Reference Manual,
Sigplan Notices, Vol. 14, No. 6.

[3] ACM (2003) Proceedings of the 12th International
Real-Time Ada Workshop, Ada Letters, Vol 32, No 4.

[4] J. G. P. Barnes (2006) Programming in Ada 2005,
Addison-Wesley.

© 2006 John Barnes Informatics.

56

Volume 27, Number 1, March 2006 Ada User Journal

Generating and improving Ada components for
reuse
Muthu Ramachandran
School of Computing, The Headingley Campus, Leeds Metropolitan University, LEEDS, UK; email;
m.ramachandran@leedsmet.ac.uk

Abstract
Software component reuse is the key to significant
gains in productivity. However, the major problem is
the lack of identifying and developing potentially
reusable components. This paper concentrates on our
approach to the development of reusable software
components. A prototype tool has been developed,
known as the Reuse Assessor and Improver System
(RAIS) which can interactively identify, analyse,
assess, and modify abstractions, attributes and
architectures that support reuse. Practical and
objective reuse guidelines are used to represent reuse
knowledge and to do domain analysis. It takes
existing components, provides systematic reuse
assessment which is based on reuse advice and
analysis, and produces components that are improved
for reuse. Our work on guidelines has been extended
to a large scale industrial application.
Keywords: Software reuse, component reuse,
Development for reuse, Development with reuse,
Reuse improvement, Reuse assessment

1 Introduction
Software component reuse is the key to significant gains in
productivity. However, the major problem against the
widespread introduction of reuse is the lack of identifying
and developing potentially reusable components. We have
clearly seen the difficulties that are faced when trying to
reuse a component or a tool that is not designed for reuse.
Therefore the objectives of this research are to explore the
general area of Development For Reuse (DFR) and to
investigate the possibility of automatically identifying,
assessing and improving reusable domain abstractions,
attributes and architectures. An objective of this process is
to produce components that are potentially reusable as
opposed to the normal practice of Development With
Reuse (DWR) which has an objective of producing a
product [1].

To achieve the production of reusable components we need
to address the fundamental issue of what makes a
component more reusable. Earlier studies have addressed
this issue but do not go far from providing reusable
guidelines [2-6]. Therefore, we took a more practical
approach to address this issue by automating reuse
guidelines for identifying, assessing, analysing and
improving domain abstractions and attributes (Domain

analysis for reuse) as well as identifying language features
that affect component reusability (Language analysis for
reuse). For example, certain languages (such as Java, C++,
Ada95) support reuse explicitly. Engineers often cannot
think about reuse when working on a market-driven
project. In our approach we aim to integrate guidelines on
language features and on domain analysis.

The notion of domain analysis has emerged from the well-
known work conducted by Neighbors [7] on his pioneering
project on the Draco system. Domain analysis aims to
identify and design reusable components for a family of
products. It also defines domain roles, process, and domain
models and architecture. Existing work on domain analysis
provides interesting guidelines, methods, and techniques on
how to do domain analysis [8]. However, they fail to
address, in detail, the issue of design for reuse. We took the
existing work as a starting point for formulating reuse
guidelines.

In our work, we have taken a more practical approach to
domain analysis for the development of reusable software
components by automating reuse guidelines. We also have
defined the process of DFR, identifying domain
abstractions & classification (domain-oriented reuse),
language-oriented reuse, reuse assessment, and reuse
improvement. Recently we have extended our work on
guidelines into the design of reusable architectures for a
large scale industrial application [9].

Our approach includes not only identifying abstractions and
attributes but also assessing and adding these to improve
components' reusability. A prototype has been developed,
known as the Reuse Assessor and Improver System
(RAIS). The major objective of this system is to
demonstrate how well-defined reuse guidelines can be used
to automate the process of development of component
reuse by providing support for language analysis and
domain analysis. For example, this system takes an Ada
component specification, assesses it through two analysis
phases, estimates its reusability according to how well it
satisfies a set of reuse guidelines and generates a
component which is improved for reuse. Furthermore reuse
improvement is done by performing various classes of
structural and architectural transformations. Reuse
assessment allows the identification of such structural
abstractions early in the process.

In this context the system has demonstrated that it is
possible to:

Muthu Ramachandran 57

Ada User Journal Volume 27, Number 1, March 2006

- identify reusable abstractions, attributes and
architectures effectively based on domain classification
and reuse guidelines.

- automate reuse guidelines which provide detailed
advice on how to construct reusable components.

- assist software engineers in the process of reuse
assessment and improvement.

- model reusable components based on templates
(automated improvement)

- produce components that are potentially reusable.

In the following sections we discuss the process on
development for reuse, reuse guidelines, the system that
generates reusable components, an example, and an
evaluation of the approach.

2 The Process of Development for Reuse
The main objective of this project is to provide a software
system supporting the process of the development for
reuse. In our work this process consists of various activities
as shown in Figure 1:

- Identify business needs - assess your existing system
and application from the business point of view. What
is the effort of building a new product? How much do
we need to develop from scratch? How many
components are you able to reuse? Justify your planned
investment on reuse. Identify the application domain
and its business/market needs. Define its boundary so
that we can avoid producing components beyond the
scope of the domain.

- Identify & classify reusable abstractions, identify a list
of components, frameworks, architecture, and utilities
that share your business goals and can produce a high
return-on-investment.

- Formulate and classify reuse guidelines - produce reuse
guidelines and classify them into domain-oriented reuse
(i.e. guidelines on how to do domain analysis,
guidelines on which abstraction has potential for reuse),
design guidelines (guidelines on how design
details/rationale can support reuse), architectural design
guidelines, and language-oriented reuse (guidelines on

language features).

- Design components, make sure reuse engineers are
familiar with reuse guidelines.

- Assessment for reuse, allow other engineers’ to conduct
a reuse walkthrough or we can call it reuse inspection.
Produce a detailed report following the inspection. It is
interesting to see that reuse inspection is more
structured and systematic since we have already
formulated reuse rules.

- Improvement for reuse, modify components based on
the assessment report

- Deliver potentially reusable components.

In this paper we concentrate mainly on two major activities,
reuse assessment which is a process of assessing the
reusability of a components against a set of well-defined
guidelines, and reuse improvement which is a process of
automatically modifying components structures and adding
attributes that improve reusability.

We then identify reusable abstractions and classify them.
The next step is to formulate practical reuse guidelines that
can characterise reusable components effectively and
precisely. The mechanism is based on taking the existing
components, assessing these according to a set of
guidelines, and then making suggestions on how the
reusability of these components could be improved.

3 Reuse Guidelines as Knowledge
Representation Technique

Probably there is no best and easy method of domain
representation. Research is underway on how to do domain
analysis, and on domain representation [8]. In our work, the
approach we take is rule-based representation. Reuse
guidelines are represented as rules. An example rule is:

IF abstract structure is complex AND
 all operations are independent of
 the type of the structure element THEN
 Component should be implemented as a
 generic package with the element type as
 a generic parameter;
END IF;

Figure 1 The process of development for reuse

Potentially reusable
components

Identify
business
needs

Identify &
classify
reusable
abstractions

Formulate
& classify
reuse
guidelines

Reuse
Assessment

Reuse
Improvement

Language-oriented
reuse Domain-oriented reuse

Design
components

58 Generat ing Ada components for reuse

Volume 27, Number 1, March 2006 Ada User Journal

However, automating some of these guidelines breaches
this rule. For example, one of our guidelines on defining
the list of operations on object creation, termination, object
inquiry, and state change, involves more than one
interaction and transformations. Hence it breaches our
single if-then rule and depends on applying domain
knowledge for further transformations. This information is
modelled using a component template and the reusability is
assessed and improved by comparing the component with
that template.

Some of our guidelines are illustrated here:

1. Design of abstract data types. The notion of an abstract
data type allows you to express real world entities of an
application domain. It allows you to separate a
specification from an internal representation of a structure
(principle of information hiding). It means that we are able
to specify an abstraction of a component in terms of its
actual interface descriptions together which is useful to
generalise that abstraction for reuse. It allows the designer
to view a system at a more abstract level and to change the
representation of ADS without affecting their use in other
parts of the system.

One of our guidelines on ADS reads:

- For all complex structures, provide two representations
such as static and dynamic structures for each domain
abstraction.

This guideline says, for each structure, provide two
abstractions such as static which is represented using an
array structure and dynamic which is represented using
dynamic structure (access/pointer). This provides a choice
and maximum flexibility for the reuser with improved reuse
potential. For example, in Ada, we can design two
packages for each structure implemented statically and
dynamically. If an abstraction is to be represented in Ada
then we can apply various Ada reuse guidelines. For
example, one on the rationale for choosing private types.
That is, choose limited private for complex and dynamic
structures, and choose private type for static structures.
However, the Ada library mechanism is inadequate in that
it rises naming conflict when there are two library units
with similar names which means that the implementation of
similar components must have different names.

Another important guideline [4] on the design of abstract
data structures emphasises the need for providing methods
for a list of operations such as object creation, object
termination, state change, state inquiry, and input and
output. They have not considered operations on exceptions
that deal with error conditions. We believe that the
operations on exceptions and handling are significant for
reusable and reliable components. In our work we have
extended this guideline to include operations on exceptions
handling.

Our extended guideline on ADS reads:

- The components should be provided with the following
operations on ADS.

a. Creation

b. Termination

c. Conversion

d. State inquiry

e. State change

f. Input/ output representation, and

g. Exceptions

Creation involves both creating and initialising an object,
termination is a means of making the object inaccessible
for the remainder of its scope, conversion allows for the
change of representation from one type to another, state
inquiry functions allow the user to determine the state of
the object and boundary conditions, state change functions
allow modifying or changing the contents of the object,
input/ output representations are primarily useful for
debugging purposes, and exceptions deal with error
conditions and exception handling procedures. Each
operation emphasises one or more functionality so that the
services offered by the component are increased thus
leading to improved reusability. Sometimes components
which do not provide all these operations may well be
reused. In such cases, the component has to be measured
based on the degree of reusability.

2. Other guidelines. Our guidelines on the design of
reusable static and dynamic structures, and on space
management are essential, objective and realisable.
Complete set of guidelines can be found in [1 and 9]. Some
of our important domain guidelines are:

- Always define a constrained array structure to represent
a component of static structure.

- Always select dynamic object representation for all
complex structures and hide detailed structural
information.

- If the abstract structure is complex and all operations
are independent of the type of the structure element then
that component should be implemented as a generic
package with the element type as a generic parameter.

- Always provide a procedure to record the maximum
size of the free list with a counter so that the user may
increase or decrease the size of the free list. when
decreasing the free list size, space in excess of the new
size is returned to the system.

- Always provide a procedure to release the free list, so
that all space in the free list is returned to the system
completely.

- For each exception, provide an exception handler.

In the following section we will see how these guidelines
can be implemented as a tool for automated improvement
and advisory system which can take Ada code and provides
an assessment and improvement for reuse.

Muthu Ramachandran 59

Ada User Journal Volume 27, Number 1, March 2006

4 The Reuse Assessor and Improver
System (RAIS)

Reuse assessment is concerned with assessing the reuse
potential of a component against reuse guidelines. Reuse
improvement has the goal of transforming an assessed
component into a component that is improved for reuse,
based on language-oriented and domain-oriented reuse
guidelines. This system takes an Ada component
specification and estimates its reusability according to how
well it satisfies a set of reuse guidelines and generates a
component which is improved for reuse. The system
produces assessment reports based on the percent of
guidelines satisfied and interacts with the user for making
further improvements.

A general model of the tool for systematic reuse assessment
and improvement has been developed as shown in Figure 2.

The important features of this system are:

- Identifying domain abstractions, attributes and
architectures, and language attributes and structures that
affect component reusability.

- The integration of language knowledge (supporting
language-oriented reusability) and domain knowledge
(supporting domain-oriented reusability).

- Providing reusability advice and analysis,

- Assisting the reuse engineer in the process of assessing
and improving his component for reuse.

RAIS considers a component specification rather than an
implementation. However, this system can also generate
implementation templates. We believe that reuse of
specifications has definite advantages over reuse of
implementations.

The RAIS system consists of a language analyser which is
supported by built-in language knowledge and provides
reusability analysis and advice, and a domain analyser

which is supported by built-in domain knowledge and
provides reusability analysis and advice.

An Ada component is firstly submitted to the language
analyser which parses the component and applies the
language-oriented guidelines to the code. Some of these
guidelines require human input from the reuse engineer.
RAIS predicts and records existing language constructs,
and provides reuse advice and analysis. For example, the
system can determine if the component processes arrays
and if language attributes are used. However, it cannot
automatically determine whether a component parameter
refers to an array dimension and thus breaches the reuse
guideline.

The language analyser assesses for reuse and changes the
code after consulting the reuse engineer. The system
interacts with the engineer to discover information that
can't be determined automatically. The conclusion of this

first pass is an estimate of how many guidelines are
applicable to the component and how many of these have
been breached. The report generator produces a report with
all the information that has been extracted about that
component and changes that have been made for reuse.

The second pass involves applying domain knowledge to
the system. The component templates have been modelled
representing static and dynamic structures. Their reusability
is assessed by comparing the component against that
template. Domain reuse improvement is done by adding
methods automatically. Operation classes are identified by
interaction with the reuse engineer. If some operations are
found to be missing, skeleton implementations of these can
be generated from the template for expansion to create a
reusable component.

The support provided by the system ensures that the reuse
engineer carries out a systematic analysis of the component
according to the suggested guidelines. He or she need not
be a domain expert. Again, an analysis is produced which
allows the engineer to assess how much work is required to
improve system reusability.

Component Language
analyzer

Domain
analyzer

Reuse
engineer

Language
knowledge

Domain
knowledge

Reusability
analysis

Reusability
advice

Figure 2 : Reuse Assessor & Improver System

Modified
Component

60 Generat ing Ada components for reuse

Volume 27, Number 1, March 2006 Ada User Journal

There are formulated reuse guidelines that emphasise the
need for a packaging mechanism just like in Ada.
Conceptually, packaging is a powerful mechanism for
reuse. Some of these guidelines may only be possible with
the Ada packaging mechanism such as private typing, the
concept of specification which is independent of its body,
and most importantly the concept of generics in order to
achieve parameterisation. However, the approach and the
methodology that are adopted by this system can easily be
applied to any component. In this domain, RAIS uses the
classification scheme in which each abstract data structure
is classified into linear and non-linear structures and again
these are classified into static, and dynamic structures.

As well as this analysis, the system can also produce some
reusability advice, generated from the guidelines, which is
intended to assist the engineer in improving the reusability
of the component. The knowledge of language and domain
experts can be made available to the reuse engineer.

An ultimate objective is automatic reusability improvement
where the system takes its own advice and some human
guidance and modifies the component. A report and
compilable code are produced. Clearly it is possible to use

the language-oriented and domain-oriented guidelines to
infer some code transformations which will improve
reusability.

5 Reuse Assessment
Reuse assessment is a process of assessing the reuse
potential of a component. It depends on the number of
reuse guidelines that are satisfied by the component. RAIS
predicts this and reports to the reuse engineer. RAIS
measures the reusability strength of a component based on
the percent of guidelines satisfied such as weakly (less than
50%), strongly (50-70%), limitedly (70-90%), immediately
reusable (more than 90%) and also it takes into account the
significance of a guideline (its importance for reuse).

For example, let us consider one of our domain guidelines:

- For all complex structures, the components should be
implemented as a generic package with the element
type as a generic parameter.

For instance, if a component of complex structure doesn't
possess a generic package then the significance of this
guideline becomes very important and therefore the system
immediately reports to the reuse engineer that the
component is weakly reusable. The system can make such
structural modification automatically if the engineer
decides to do so by responding to the dialogue.

In this way reuse assessment is being done by RAIS. The
result of the assessment process is obviously arbitrary but it
allows implementations to be compared, reuse
improvements to be assessed, and it allows the reuse
engineer to re-plan well before reusing components. The
report generator produces the complete details of a
component submitted to the systems in a tabular form
which mainly consists of object name, its class, details of
all the subprograms including the details of formal
parameters and their class, and details of private types, etc.
An example of a report is shown in a later section of this
paper, see Figure 3.

6 Reuse Improvement
Reuse improvement is a stepwise process of improving a
component for reuse through several transformations.
Transformations can be simple, multiple, and cumulative.
Because of the effort involved in this process, it has not
been possible to implement for all the possible
improvements. RAIS does most of the reuse improvements
using reuse guidelines as domain rules and component
templates. At present, RAIS can improve the component
reusability by 50%.

Each abstract data structure is analysed and, by interaction
with the user, the presence or absence of these operations is
then identified. This information is modelled using a
component template and the reusability is assessed by

Figure 3: Assessment report and improved

Muthu Ramachandran 61

Ada User Journal Volume 27, Number 1, March 2006

comparing the component against that template. Operation
classes are identified by interaction with the reuse engineer.
If some operations are found to be missing, skeleton
implementations of these are generated from the template
for expansion to create a reusable component.

Two types of templates are created supporting reuse of
architectures, one for static structures and another for
dynamic structures. After reuse assessment, the designer is
given all the information captured from his component (a
report generator for Ada has been designed for this
purpose). Finally, RAIS generates the component that is
assessed and improved for reuse after several
transformations.

The system has taken a pragmatic approach to domain
analysis supporting development for reuse. Figure 3 shows

the details of a report generated by the system after an
initial analysis and assessment. Finally, it generates the
component that is improved for reuse.

7 Critical Evaluation
Existing approaches have not explored the issues of
development for reuse and others have considered this as a
management problem. In this context, our work has
explored one of the major technical problems and the
system has demonstrated that it is possible to assess and
improve components reusability automatically. This work
has also demonstrated that it is possible to formulate object
and practical reuse guidelines that can assist and advise
software engineers on how to construct components that are
potentially reusable. This is one of the major practical steps
taken in this work. Figure 4 illustrates how guidelines are
classified and how many are automated.

RAIS has also demonstrated that the integration of
language knowledge and the application domain knowledge
is possible when modelling components for reuse.
Therefore we feel that the various steps proposed for the
process of development for reuse are important, practical
and can be considered along with or before the normal
software development process.

The system has also proved perhaps to a limited extent that
it is possible to design for the highest form of reuse which
is the reuse of components and architectures. The system
models components effectively based on the templates for
reuse of component architectures that are static and

dynamic. It is not quite clear for example on what is
probably the best technique for domain representation,
what should be considered as a domain, and so on. In this
context we might feel that the application domain chosen is
perhaps inadequate in the commercial sense. However we
believe that it is possible to extend the approach described
here to other application domains, languages, and tools.

It has not been possible to automate all the guidelines that
are formulated but it should be possible in a long-term
project. The system does perhaps a limited number of
domain-oriented reuse improvements. We believe that it is
also possible to extend the approach described here to
higher levels of reuse such as requirements definition and
specification.

Conclusions
The objectives of this project were to explore the general
area of development for reuse and to investigate the
possibility of automatically assessing the reusability of a
software component and modifying that component to
improve its reusability. In this context, the system has
demonstrated that it is possible to identify, assess and
improve components’ reusability automatically based on
domain knowledge and language knowledge.

In addition to these, more interesting results have evolved
from this research, reusing generic component templates
and generic architectures. Further work is needed to
enhance the functionalities of RAIS. We believe that it is
possible to extend the approach described here to other
domains, languages and tools. Our work on reuse
guidelines has been applied to a large-scale industrial
application [9].

Acknowledgements
The author wishes to thank Prof Ian Sommerville for his
support during this work at Lancaster University,
Lancaster, UK.

References
[5] Sommerville, I. and Ramachandran, M. (1991), Reuse

Assessment, First International Workshop on Software
Reuse, Dortmund, Germany, July.

[6] Hooper, J. W. and Chester, R. O. (1991). Software
Reuse: Guidelines and Methods, Plenum Press.

0

20

40

60

80

100

Assessment Improvement

Automated
Informative
Complex
Breached

Figure 4 Automating reuse guidelines

62 Generat ing Ada components for reuse

Volume 27, Number 1, March 2006 Ada User Journal

[7] Gautier, R.J. and Wallis, P.J.L. (Editors) (1990),
Software Reuse with Ada, Peter Peregrinus Ltd for
IEE/BCS.

[8] Braun, C.L. and Goodenough, J.B. (1985), Ada
Reusability Guidelines, Report 3285-2-208/2, USAF.

[9] Booch, G. (1987), Software Components with Ada,
Benjamin/Cummings.

[10] Dennis, R.J.St. (1987), Reusable Ada(R) software
guidelines, Proc. of the 12th annual Hawaii
International conference on system sciences, pp.513-
520.

[11] Neighbors, J.M. (1984), The Draco Approach to
constructing Software from reusable components,

IEEE Trans. on Software Engineering, vol.SE-10,
No.5, pp.564-574, September.

[12] Prieto-Diaz, R and Arango, G (ed) (1991), Domain
Analysis and Software Systems Modeling, IEEE
Computer Society Press Tutorial.

[13] Ramachandran, M. and Fleischer, W. (1996). Design
for large scale reuse: an industrial case study,
Proceedings of the 4th Intl. Conf. on Software Reuse,
IEEE CS press, Orlando, Florida, USA.

[14] Tracz, W. (1991), Reuse through parameterization,
ACM SIGSOFT Software Eng. Notes.

64

Volume 27, Number 1, March 2006 Ada User Journal

Ada-Europe 2005 Sponsors

8 Rue de Milan, F-75009 Paris, France AdaCore
Contact: Zépur Blot Tel: +33-1-49-70-67-16

Email: sales@adacore.com
Fax: +33-1-49-70-05-52
URL: www.adacore.com

66/68, Avenue Pierre Brossolette, 92247 Malakoff, France Aonix
Contact: Jacques Brygier Tel: +33-1-41-48-10-10

Email : info@aonix.fr
Fax: +33-1-41-48-10-20
URL : www.aonix.com

Suite 701, Eagle Tower, Montpellier Drive, Cheltenham, GL50 1TA, UK Artisan Software Tools Ltd
Contact: Emma Allen Tel: +44-1242-229300

Email : info.uk@artisansw.com
Fax: +44-1242-229301
URL : www.artisansw.com

PO Box 7995, Crowthorne, RG45 9AA, UK Esterel Technologies
Contact: Ian Hodgson Tel: +44-1344-780898

Email : sales@esterel-technologies.com
Fax: +44 1344 780898
URL : www.esterel-technologies.com

Dolphin House, St Peter Street, Winchester, Hampshire, SO23 8BW, UK Green Hills Software Ltd

Contact: Christopher Smith Tel: +44-1962-829820
Email :

Fax: +44-1962-890300
URL : www.ghs.com

1 Cornbrash Park, Bumpers Way, Chippenham, Wiltshire, SN14 6RA, UK I-Logix
Contact: Martin Stacey Tel: +44-1249-467-600

Email : info_euro@ilogix.com
Fax: +44-1249-467-610
URL : www.ilogix.com

24 Newtown Road, Newbury, Berkshire, RG14 7BN, UK LDRA Ltd
Contact: Brenda Pedryc Tel: +44-1635-528-828

Email: info@ldra.com
Fax: +44-1635-528-657
URL: www.ldra.com

20 Manvers Street, Bath, BA1 1PX, UK Praxis High Integrity
Systems Ltd
Contact: Rod Chapman

Tel: +44-1225-466-991
Email : sparkinfo@praxis-his.com

Fax: +44-1225-469-006
URL : www.sparkada.com

Riverside Buisness Park, Malmsebury, SN16 9RS, UK Silver Software
Contact: Steve Billet Tel: +44-1666-580-000

Email: enquiries@silver-software.com
Fax: +44-1666-580-001
URL: www.silver-software.com

Triad House, Mountbatten Court, Worrall Street, Congleton, CW12 1DT, UK TNI Europe Limited
Contact: Pam Flood Tel: +44-1260-29-14-49

Email: info@tni-europe.com
Fax: +44-1260-29-14-49
URL: www.tni-europe.com

	Contents
	Editorial
	News
	Conference Calendar
	Rationale for Ada 2005: Epilogue
	Generating and improving Ada components for reuse

