

Ada User Journal Volume 27, Number 2, June 2006

ADA
USER
JOURNAL

Volume 27
Number 2
June 2006

Contents
Page

Editorial Policy for Ada User Journal 66

Editorial 67

News 69

Conference Calendar 97

Forthcoming Events 106

Articles

 G Varaprasad, R S D Wahidabanu, P Venkataram
“A New Strategy Pattern for OO Technology” 110

 K Fairlamb
“Ada Conference UK 2006” 118

 A S Brandon
“Ada Market in 2005 Entails at Least a $5.6 Billion Investment” 123

Ada-Europe 2006 Sponsors 128

Ada-Europe Associate Members (National Ada Organizations) Inside Back Cover

66

Volume 27, Number 2, June 2006 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal – The Journal for the
international Ada Community – is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the first of the
month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 67

Ada User Journal Volume 27, Number 2, June 2006

Editorial

In closing the June issue of the journal, memory goes back to the numerous events that the Ada community at large enjoyed
this month: the annual conference in beautiful Porto, which featured an intense and interesting program, both technically and
socially; the steady progress of the new language standard, some advance flavours of which the most eager users are already
able to experiment with; the General Assembly of the Ada-Europe association, which saw the hand-over between a sizeable
portion of the Board members: Farewell to the outgoing members, with congratulations for the accomplished services and
welcome to the new members, with wishes for a productive service to the community.

This issue of the Journal features technical contributions that originate from as many as three continents: a technical article
submitted by authors based in Universities at Bangalore and Salem, India, which wittingly discusses the value of design
patterns in modern software engineering; a short summary of a survey that the Ada Resources Association in the USA
successfully performed to gauge the size and the wealth of the Ada market; an account of the very successful Ada UK 2006
conference, which revived the tradition of an important Ada event in the UK. The rest of the issue contains the usual wealth
of news and calendar events, once again edited by Santiago Urueña and Dirk Craeynest, respectively.

My best wishes for a happy reading and for the forthcoming Summer holidays.

Tullio Vardanega
Padova

June 2006
Email: tullio.vardanega@math.unipd.it

 69

Ada User Journal Volume 27, Number 2, June 2006

News
Santiago Urueña
Technical University of Madrid (UPM). Email: suruena@datsi.fi.upm.es

Contents

Ada-related Organizations 69
Ada-related Events 69
Ada and Education 70
Ada-related Resources 70
Ada-related Tools 71
Ada-related Products 73
Ada and GNU/Linux 77
Ada and Microsoft 81
References to Publications 81
Ada Inside 82
Ada in Context 83

Ada-related
Organizations
ARA — Technical Work on
Ada 2005 Standard
Completed
URL: http://www.adaic.com/news/iso-
Ada05.html
Technical Group Reaches Consensus and
Moves Language Amendment to Next
Milestone
SALT LATE CITY, UT [May 2, 2006]
Today at the Systems & Software
Technology Conference, the Ada
Resource Association announced the
accomplishment of a major milestone in
the development of the new Ada ISO
standard. ISO’s Ada Working Group (WG
9) has unanimously accepted the proposed
amendment to the language and has
forwarded it to the parent organization for
an official ballot. Formal approval by ISO
is expected some time later this year.
The new amendment to the language,
commonly referred to as Ada 2005,
culminates a collaborative international
effort to enhance the 1995 version of the
Ada language. The effort was sponsored
in part by the Ada Resource Association,
which helped support the work of the
project editor, Mr. Randall Brukardt.
 “Gaining WG 9 approval for the
amendment to the language is a key step,”
said Mr. James Moore, Convener of WG
9. “The new features draw on
programming language design and user
experience over the past ten years, and
they should serve to increase Ada’s
attractiveness in applications where
reliability, safety, efficiency, and
maintainability are demanded.”

 “Ada 2005 is a breakthrough in language
technology,” added Dr. Ben Brosgol,
President of the Ada Resource
Association. “It has advanced the state of
the art in language design while
preserving Ada’s long-standing support
for sound software engineering. WG 9 is
to be congratulated for bringing this effort
to fruition with a strong consensus on the
features being added.”
Ada 2005 offers significant enhancements
in several areas. Improvements in the
language’s Object-Oriented Programming
features include the addition of Java-like
interfaces and traditional
“object.operation” syntax. More flexible
program structuring allows mutually
dependent package specifications and
makes it easier to interface with languages
such as Java. Real-time system support
includes additional task dispatching
policies such as Earliest Deadline First,
execution-time clocks, and handlers for
task termination. The concurrency and
object-oriented features are successfully
unified through a new interface feature
that allows implementation through either
a sequential or concurrent type.
Support for safety and security is
enhanced with the inclusion of the
Ravenscar Profile (a tasking subset that is
amenable to safety certification), syntax
that avoids some common Object-
Oriented Programming errors with
inheritance, and a mechanism for defining
language profiles. Other enhancements
increase the language’s general
expressiveness, for example by allowing
nested subprograms to be passed as run-
time parameters, and by extending the
predefined environment with new
functionality, such as a Containers library.
About the Ada Resource Association
The Ada Resource Association (ARA) is
an international Ada advocacy trade
group comprising major Ada language
and tool vendors. The ARA financially
supports the maintenance of the Ada
language standard and is committed to
ensuring the continued success and
expanded usage of Ada-related
technology. Current ARA members are
AdaCore, IBM Rational Software, Praxis
High Integrity Systems, and SofCheck.
[See also “Ada 2005 Standarization
Status” in AUJ 26-4 (Dec 2005), p.249.
— su]

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,

some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
— su]

Mar 28 — Ada Conference
UK 2006 Videos and Slides
Author: Jamie Ayre
Title: Videos from the Ada event in the UK
Date: Wednesday May 31, 2006
Source: AdaCore development log
URL: http://www.adacore.com/2006/05/

31/videos-from-the-ada-event-in-the-uk/
For those of you that couldn’t make it to
this event, the videos of the speakers
along with the slides presented are
available [at
http://www.adacore.com/home/ada_answ
ers/lectures/ada_uk06 —su]
Topics covered include: Ada 2005, Ada
and real-time programming, safety-critical
and secure software development, among
others.
[See also “March 28 — Ada Conference
UK 2006” in AUJ 27-1 (Mar 2006), p.7.
— su]

Nov 12–16 — SIGAda 2006
From: Leemon Baird

<leemon@leemon.com>
Newsgroups: comp.lang.ada
Subject: CFP - SIGAda 2006
Date: 20 Mar 2006 12:51:05 -0800
Call for Participation — SIGAda 2006
Conference on Software Development for
Safety, Security, and High Reliability
Systems
November 12–16 2006, Albuquerque,
NM, USA.
Submission deadline: 16 May 2006
Sponsored by ACM SIGAda
http://www.acm.org/sigada/conf/
sigada2006 (Approval pending by ACM)
Constructing highly reliable software is
an engineering challenge that can now be
met in many domains. The SIGAda 2006
conference focuses on how the
application of software engineering
methods, tools and languages interrelate
and on how features in Ada affect the
quality of the resulting software. Papers
that analyze Ada with respect to these
factors or in comparison to other
languages are especially welcome.
SIGAda 2006 gathers industry experts,
educators, software engineers, and

70 Ada-related Resources

Ada User Journal Volume 27, Number 2, June 2006

researchers interested in developing,
analyzing, and certifying reliable, cost-
effective software. Technical or
theoretical papers as well as experience
reports with a focus on Ada are solicited.
A brief list of topics include safety and
high integrity issues, real-time and
embedded applications, Ada & software
engineering education, Ada in other
environments such as XML and .NET,
Ada and other languages, metrics,
standards, analysis, testing, validation,
and quality assurance. For a more
extensive list of topics visit the SIGAda
2006 web page.
Contributions are solicited in six
categories: Technical articles, extended
abstracts, experience reports, workshops,
panels, and tutorials.
We openly welcome contributions from
educators and students. Educator grants
are available and should be applied for by
26 October 2006 (please see
http://www.acm.org/sigada/conf/sigada20
06/grants.html). An Outstanding Student
Paper Award will be given for the best
student contribution to the conference.
Technical articles or experience reports
from students could focus on such
projects as comparing applications
implemented in other languages and then
re-implemented in Ada, mixed language
development of applications, how Ada is
used with XML or .NET applications,
and/or software engineering education
experiences with Ada.
Please see the full Call for Participation
on the SIGAda 2006 web site for
submission details.
http://www.acm.org/sigada/conf/
sigada2006
The deadline for submission is 16 May
2006.
Leemon Baird, SIGAda 2006 Program
Chair

Ada and Education
GNAT GPL available for the
GAP community
From: Jamie Ayre <ayre@adacore.com>
Date: Tue, 6 Jun 2006 17:32:37
Subject: [AdaCore] [F306-016] - GNAT

GPL 2006 now available for GAP
members

To: announce@adacore.com
We are pleased to announce the release of
GNAT GPL 2006 available for the GAP
community. To facilitate the job of
distributing GNAT, we have
synchronized the technology distributed
to the Academic and Free Software
communities. Hence, on the most popular
personal platforms, your students will be
able to download GNAT GPL 2006
directly from libre.adacore.com.

It is immediately available on the x86
GNU Linux, Windows, Mac OS X,
SPARC Solaris, platforms. We also plan
to make available on the very near future,
2 new important pieces of technology:
- a bareboard cross configuration targeted
to the ERC32 along with its simulator.
This is an ideal platform for introducing
students to realistic embedded
development on bare machines.
- a new runtime for GNU Linux platforms
based on MaRTE (thanks to a cooperative
effort with the Santander University
team). This new runtime will be ideal for
real-time courses thanks to its full support
for Ada 95 Annex D. It will will also, in
the future, be the base for all the new Ada
2005 annex D features.
GNAT GPL 2006 can be downloaded
from the “Download” section on GNAT
Tracker. Please note that, for your
convenience, GNAT Tracker can now be
accessed directly from AdaCore’s
academic page:
http://www.adacore.com/home/academia/
This new edition includes almost all of
the new features introduced in the recent
language revision, Ada 2005. These are
described in the new Ada 2005 reference
manual (now included in the GNAT GPL
documentation). Highlights include:
Object-oriented features:
- abstract interfaces (AI-251)
- object operation notation (AI-252)
- nested type extensions (AI-344)
- synchronized interfaces (AI-345)
Program structure:
- unchecked union (AI-216)
- limited with clauses (AI-217)
- overriding indicators (AI-218)
- private with_clauses (AI-262)
- aggregates for limited types (AI-287)
- partial parametrization of formal
packages (AI-317)
- limited and anonymous access return
types and the extended return statement
(AI-318)
- null procedures (AI-348)
Libraries:
- directory operations (AI-248)
- container library (AI -302)
- time operations (AI-351)
- environment variables (AI-370)
Concurrency:
- the Ravenscar profile (AI-249)
- timing events (AI-297)
- priority-specific dispatching (AI-355)
Enhanced access types:
- generalized used of anonymous access
types (AI-230)

- anonymous access to subprogram types
(AI-254)
- current instance rule for access types
(AI-382)

SPARK Training
URL: http://www.praxis-his.com/

sparkada/training.asp
Public Course Dates for 2006 — UK
Course 1 – “Software Engineering with
SPARK”
11th – 14th September 2006 at the Praxis
Offices in Bath.
Course 2 – “Black-Belt SPARK”
19th – 21st September 2006 at the Praxis
Offices in Bath.
Course 3 – “High-Integrity Concurrent
Software Design with RavenSPARK”
15th September 2006 at the Praxis Offices
in Bath.
Course 4 – “UML to SPARK”
15th September 2006 at the Praxis Offices
in Bath.
[See also same topic in AUJ 26-4 (Dec
2005), p.232. — su]

Public Ada 95 Courses
From: Ed <colbert@abssw.com>
Date: 19 May 2006 12:47:26
Subject: [Announcing] Public Ada 95

Courses 12-16 June in Carlsbad CA
Newsgroups: comp.lang.ada
Absolute Software will be holding a
public Ada 95 course during the week of
12 June 2006 in Carlsbad, CA. You can
find a full description and registration
form on our web-site, www.abssw.com.
Click the Public Courses button in the left
margin. (We also offer courses on
software architecture-based development,
safety-critical development, object-
oriented methods, and other object-
oriented languages.)
If there is anything you’d like to discuss,
please call, write, or send me E-mail.
[See also same topic in AUJ 26-3 (Sep
2005), pp.150–151. —su]

Ada-related Resources
PragmAda’s New Home
From: PragmAda Software Engineering

<pragmada@mchsi.com>
Date: Mon, 27 Mar 2006 19:06:11
Subject: PragmAda’s New Home
Newsgroups: comp.lang.ada
PragmAda Software Engineering has a
new web address:
http://pragmada.home.mchsi.com/
The PragmAda Reusable Components are
at:

Ada-related Tools 71

Ada User Journal Volume 27, Number 2, June 2006

http://pragmada.home.mchsi.com/pragma
rc.htm
and the Mine Detector game at:
http://pragmada.home.mchsi.com/mindet.
html
You may send e-mail to PragmAda at the
“From” address of this message.
Jeffrey R. Carter, President, PragmAda
Software Engineering
[See also “PragmARC — PragmAda
Reusable Components” in this issue
— su]

Ada-related Tools
GNAT GPL 2006 Edition
From: Jamie Ayre <ayre@adacore.com>
Date: 14-jun-2006 12:07
Subject: [AdaCore] GNAT GPL 2006 now

available
To: announce@adacore.com
We are pleased to announce the release of
GNAT GPL 2006. This new edition
includes almost all of the new features
introduced in the recent language
revision, Ada 2005. These are described
in the new Ada 2005 reference manual
(now included in the GNAT GPL
documentation). Highlights include:
Object-oriented features:
- abstract interfaces (AI-251),
- object operation notation (AI-252)
- nested type extensions (AI-344)
- synchronized interfaces (AI-345)
Program structure:
- unchecked union (AI-216)
- limited with clauses (AI-217)
- overriding indicators (AI-218)
- private with_clauses (AI-262)
- aggregates for limited types (AI-287)
- partial parametrization of formal
packages (AI-317)
- limited and anonymous access return
types and the extended return statement
(AI-318)
- null procedures (AI-348)
Libraries:
- directory operations (AI-248)
- container library (AI -302)
- time operations (AI-351)
- environment variables (AI-370)
Concurrency:
- the Ravenscar profile (AI-249)
- timing events (AI-297)
- priority-specific dispatching (AI-355)
Enhanced access types:
- generalized used of anonymous access
types (AI-230)

- anonymous access to subprogram types
(AI-254)
- current instance rule for access types
(AI-382)
GNAT GPL 2006 comes with the latest
versions of the GNAT IDE, GPS 3.1.3
and PolyORB. For more information on
these technologies please visit
http://www.adacore.com/home/gnatpro/up
dates
It is available on the Linux, Windows,
and Mac OS X platforms.
GNAT GPL 2006 can be downloaded
from the “Download GNAT GPL
Edition” section on libre.adacore.com
[See also “GNAT GPL 2005 Edition” in
AUJ 26-3 (Sep 2005), pp.153–154. — su]

The GNU Ada Compiler
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Thu, 13 Apr 2006 20:16:45
Subject: [gnuada] Help needed for MS-

Windows version
Newsgroups: comp.lang.ada
The GNU Ada project needs some help
from experienced Ada MinGW users.
Although we have tried to produce a
working MS-Windows version, it did not
work out.
So here is our call for help. If you are
interested you can start by looking on
how far we came:
http://gnuada.sourceforge.net/pmwiki.php
/Install/MS-Windows
Join our discussions on:
http://sourceforge.net/forum/
forum.php?forum_id=40858
http://sourceforge.net/forum/
forum.php?forum_id=40860
Or get right down to it by downloading
the current make scripts:
http://sourceforge.net/svn/
?group_id=12974
and try them out.
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Thu, 13 Apr 2006 20:02:29
Subject: [gnuada] AIX available.
Newsgroups: comp.lang.ada
Thank’s to Karl Nyberg we have one
more operating system on our portfolio:
IBM AIX 5.1 for PowerPC. That brings
us to 10 OSs — Thanks Karl.
From: Björn Persson

<rombo.bjorn.persson@sverige.nu>
Date: Sat, 08 Apr 2006 23:09:13
Subject: Re: [gnuada] R4 update available.
Newsgroups: comp.lang.ada
And now there are Fedora versions of the
RPM packages, for both Fedora 4 and
Fedora 5 on i386.
A warning though: There is a bug in the
latest kernel updates for both Fedoras.

Gnat doesn’t work at all on these kernels.
Until this bug has been fixed you have to
stick to the Linux 2.6.15 packages when
using Gnat.
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Thu, 30 Mar 2006 20:34:43
Subject: [gnuada] R4 update available.
Newsgroups: comp.lang.ada
We have updated the GNAT distributions.
It is a minor fix mainly some sources
where missing in the devel packages for
GPS. Those have been added. Sadly we
where not able to compile GPS after all
— neither with GNAT/GCC nor with
GNAT/GPL. I find it a bit disturbing that
GPS can not be compiled with any GNAT
I can lay my hands on.
But AWS is included for platforms where
compiles where possible. See:
http://gnuada.sourceforge.net/pmwiki.php
/Main/3rdPartyBugs
We also have a new version for MS-
Windows cygwin for you to try. Since
cygwin is closer to Linux than mingw so
it was easier to create. We could really do
with some dedicated Windows packager.
For installation see:
http://gnuada.sourceforge.net/pmwiki.php
/Install/Cygwin
It’s a Wiki — share your experience. But
do not use the names of well known
pharmaceutical products. They are on the
list of banned words ;-).

AVR-Ada
From: Rolf <rolf.ebert@gmx.net>
Date: 15 May 2006 00:18:48
Subject: [Announce] AVR-Ada V0.4.0

released
Newsgroups: comp.lang.ada
We are proud to announce a new release
of AVR-Ada, one of the first GCC based
Ada compilers targeting 8-bit
microcontrollers.
You get the project description and some
documentation at:
http://avr-ada.sourceforge.net/
The Sourceforge development pages with
the download section are at:
http://www.sourceforge.net/projects/
avr-ada/
AVR-Ada is available in source and
binary form. Binary packages of the cross
compiler hosted on Linux and Windows
are available in the download area. A
future release of WinAVR
(winavr.sourceforge.net) will probably
also include AVR-Ada.
Feel free to join the mailing list at:
http://lists.sourceforge.net/mailman/
listinfo/avr-ada-devel
It has quite low traffic.

72 Ada-related Tools

Volume 27, Number 2, June 2006 Ada User Journal

Please use SF’s bug reporting and feature
request system for guiding future
development of AVR-Ada.
Status
The goal of the AVR-Ada project is to
make the gcc based Ada compiler GNAT
available for the AVR microcontrollers.
More specifically the project provides
- a GNAT compiler based on the existing
AVR and Ada support in gcc
- a minimalistic Ada runtime system
- a useful AVR specific support library
The current distribution of AVR-Ada is
V0.4.0. It is based on gcc-3.4.6 and gcc-
4.1.1 (prerelease). In the AVR-Ada
project we rarely have problems with the
Ada compiler itself. It is quite stable.
The Ada run time system (RTS) on the
other hand is for the most part not even a
run time system. It is more a compile
time system :-). Most files in the RTS are
only needed at compile time. As a
consequence we don’t have support for
exceptions nor for tasking
(multithreading).
There is some AVR specific support.
Type and interface definitions, timing
routines, eeprom access, UART, and most
importantly the necessary definitions for
most AVR parts.
Some sample programs in the apps/
directory show how to use the compiler
and the library. This includes the demo
programs from the avr-libc distribution
and some of Peter Fleury’s example
programs
(http://homepage.sunrise.ch/mysunrise/pet
erfleury/avr-software.html) translated to
Ada.
The documentation is still low and
consists only of the pages at avr-
ada.sourceforge.net. A copy of the pages
is in the directory AVR-Ada-0.4.0/web/
for offline reading. Feel free to ask any
question on the mailing list.
News
V 0.4.0 (2006-05-11)
The part description Ada specs are now
based on Atmel’s XML part description
files of AVR Studio 4.12 build 473 SP 2 +
Atmega644p.
Limited support for new devices:
at90can32 at90can64 at90pwm2
at90pwm3
at90usb1287 atmega1280 atmega1281
atmega164p atmega165 atmega165p
atmega169p atmega324p atmega325
atmega3250 atmega329 atmega3290
atmega406 atmega640 atmega644
atmega644p atmega645 atmega6450
atmega649 atmega6490 attiny24 attiny25
attiny261 attiny44 attiny45
attiny461 attiny84 attiny85 attiny861

We build part specific runtime systems
(RTS) now. Old Makefiles have to be
adjusted!
The AVR-lib has new packages:
Watchdog, Sleep, Int_Img. (Note that not
all packages have been ported to all
devices).
Updated scripts to build AVR-Ada with
gcc-3.4.6 and gcc-4.1.0 are now located in
tools/build/.
New script (wizard) to generate a ready-
to-compile project directory with all
necessary files (tools/mk_ada_app/).
New examples (largedemo, debounce) are
located in apps/.
New bug fixes and workaounds for gcc-
3.4 and gcc-4.1 are located in patches/.
[See also same topic in AUJ 26-1 (Mar
2005), p.10. — su]

Updates for Fuzzy sets for
Ada, and Simple
components
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 25 May 2006 11:50:48
Subject: ANN: Cumulative update: Fuzzy

sets, Measurements units, Components
Newsgroups: comp.lang.ada
Cumulative update:
Fuzzy sets for Ada 4.2
http://www.dmitry-kazakov.de/
ada/fuzzy.htm
Units of measurement for Ada v2.1
http://www.dmitry-kazakov.de/
ada/units.htm
Simple components 2.2
http://www.dmitry-kazakov.de/
ada/components.htm
Things are now compilable with GNAT
2005, GCC 4.0.2 (20051125), some minor
bug fixes and extensions made.
[See also “Fuzzy sets for Ada” in AUJ 26-
4 (Dec 2005) p.237 and “Simple
components” in AUJ 26-3 (Sep 2005)
p.152. — su]

GLOBE_3D — 3D Engine
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Wed, 29 Mar 2006 00:04:17
Subject: Ann: GLOBE_3D, now running

under Linux (Upload: 25-Mar-2006)
Newsgroups: comp.lang.ada
GLOBE_3D means “GL Object Based
Engine for 3D”.
GLOBE_3D is an open-source software.
It allows an easy and fast real-time
display of objects, of any kind, or groups
of connected objects like a series of
rooms with open doors.

New: runs under Linux, thanks to Marc
Criley (GL/GLU/GLUT bindings with
appropriate Import pragma for Linux)
More details here:
http://homepage.sunrise.ch/mysunrise/gd
m/g3d.htm
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Mon, 15 May 2006 21:18:55
Subject: Ann: GLOBE_3D, (Upload: 15-

May-2006)
Newsgroups: comp.lang.ada
News:
- full-screen mode: now the mouse
functions as expected in a game: pointer
invisible, no limitation against screen
borders
- tools/max2ada.ms, the export script
from GMax / 3D Studio Max was
improved a lot, especially tiled textures
are mapped exactly
- random extruded surface generator —
e.g., you can generate a Sci-Fi city with a
minimal effort.
One single source set — without any
conditional compilation — for all
platforms and compilers. Tested on
Windows and Linux.
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Tue, 16 May 2006 21:41:29
Subject: Re: Ann: GLOBE_3D (v. 14 mai

2006)
Newsgroups: fr.comp.lang.ada
[Translated from French – su]
> Weird.They talk about compatibility

with 3D scenes max and not about
Blender. Did I get anything wrong?

If you kind of imply that that’s
incompatible with Blender, then yes you
got it wrong: that 3D engine is compatible
with all modeling tools around, but the
code to export scenes still is to be written.
To that end there is just a single solution:
roll up your sleeves!
As far as Blender is concerned you’ll
certainly never fall short of sources of
inspiration …
http://www.google.com/
search?&q=export+scene+blender
That said, if the scripting language for
Blender ever gets to be as hopeless as that
in 3DS, then it won’t be such fun
anymore!
Much the same as exporting scenes in
VRML or 3DS as intermediate formats,
you can pass them on into wrl2ada and
max2ada.

OpenALada
From: Aurele <aurele.vitali@gmail.com>
Date: 15 May 2006 19:07:32
Subject: OpenALada v1.4
Newsgroups: comp.lang.ada

Ada-related Products 73

Ada User Journal Volume 27, Number 2, June 2006

The OpenALada binding has been
updated for OpenAL v1.1. Visit
http://www.openalada.com for details.
[See also same topic in AUJ 26-2 (Jun
2005), p.75. — su]

YAML data serialization
format parser
From: Y.Tomino

<demoonlit@panathenaia.halfmoon.jp>
Date: Thu, 11 May 2006 04:33:33
Subject: Re: YAML
Newsgroups: comp.lang.ada
> A quick google for YAML and Ada

turned up nothing. Does anyone know
of tools for using YAML in Ada?

I’ve made a reader/writer subset of
YAML for myself.
http://panathenaia.halfmoon.jp/alang/
dyayaml.7z
It needs
http://panathenaia.halfmoon.jp/alang/
ase.7z (my personal packages)
I did not write any documentation, sorry.

ASnip — Ada source code
decorator
From: Georg Bauhaus

<bauhaus@futureapps.de>
Subject: ANN: Ada source code decorator
Date: Tue, 23 May 2006 14:59:29
Newsgroups: comp.lang.ada
ASnip reads snippets of Ada source text,
correct or incorrect, and produces output
suitable for printing, viewing, or
including in web pages (also in the Ada
Wikibook).
* HTML - use your own style sheets, or
the ones provided
* Text - for regression testing, really
* TeX - via Knuth’s WEB macros (Try
lgrind with LaTeX)
* WiKiBook - adds markup used for the
Ada Wikibook, automatically links tokens
to the Ada reference
(* RTF - time permitting)
(* XML - time permitting, using Simon
Wright’s ASIS based GIs.)
http://home.arcor.de/bauhaus/Tools/
ASnip/

Source code to XML
From: Marc A. Criley <mc@mckae.com>
Date: Tue, 23 May 2006 15:40:15
Subject: Re: Can I get access to an AST of

parsed Ada code?
Newsgroups: comp.lang.ada
> I have legacy Ada and C++ code, and I

need to export this code into an XML
format so I can create a tool to analyze
and work with it. I tried various tree-
dump-* commands with g++ and didn’t
find anything that looked to be read-
able or anything that was at a high level

like my code (GIMPLE was much to
low level for me because I want to
maintain variable names and such).

Is there a way I can access the parser
for either C++ or Ada so that I can
access a high level parsed version of
my code? If not, can a parser dump
command be recommended?

For C++ you can use GCC_XML from
http://www.gccxml.org/, and for Ada you
have ASIS2XML,
http://www.pushface.org/asis2xml.
For Ada the code will have to be
compilable by a version of GNAT with its
corresponding ASIS implementation.
From: Ira D. Baxter

<idbaxter@semdesigns.com>
Date: 24 May 2006 06:56:16
Subject: Re: Can I get access to an AST of

parsed Ada code?
Newsgroups: comp.lang.ada
My understanding is that GCC_XML
does not output function bodies (see their
web page).
The DMS Software Reengineering
Toolkit has robust parsers for many
dialects of C++, including ANSI, GNU,
and MS Visual Studio 2005, and parsers
for Ada 83 and 95. DMS has an option
to dump the XML produced by the
parsers, and so would satisfy the OP’s
request.
See: http://www.semanticdesigns.com/
Products/DMS/DMSToolkit.html
From: Marc A. Criley <mc@mckae.com>
Date: Wed, 24 May 2006 12:16:48
Subject: Re: Can I get access to an AST of

parsed Ada code?
Newsgroups: comp.lang.ada
Yep, that’s correct. So it depends on what
one needs to do with the C++. If the need
is to work mostly with declarations
(which is all I care about), then
GCC_XML should suffice. If the
analysis needs to be more comprehensive,
processing the executable content as well,
then one has to look elsewhere.
[See also “ASIS2XML” in AUJ 25-4
(Dec 2004), p.191. — su]

Forth interpreter in Ada
From: Samuel Tardieu <sam@rfc1149.net>
Date: 30 May 2006 12:38:46
Subject: Forth embeddable interpreter

written in Ada
Newsgroups: comp.lang.ada
For the French robotics cup, I wrote a
Forth interpreter in Ada which you can
easily embed in your application. Look at
http://tinyurl.com/ru4qv to get it under the
GPLv2. No doc at all, it was just a dirty
hack to be able to test the robot
functionalities, I will add some docs later
if time permits.

The interpreter was tested on Linux/x86
and Linux/sh4 (which we ran on the two
robot boards).
PS/ Before you ask, our ranking was near
the middle, much better than last year and
probably much worse than next year. The
Ravenscar profile allowed us to get very
clean, efficient and well structured code.

Ada-related Products
AdaCore — GNAT Pro
5.04a
From: Jamie Ayre <ayre@adacore.com>
Date: Tue, 07 Mar 2006 18:23:32
Subject: [AdaCore] F213-023 - Announcing

immediate availability of GNAT Pro
5.04a - batch 2

To: announce@adacore.com
AdaCore are pleased to announce the
immediate release of 5.04a for the
following platforms:
 ppc-vxw-solaris
 ppc-vxw-windows
 ppc-elf-solaris
This release comes with a corrective
version of the GNAT Programming
Studio for all native platforms on which it
is supported.
This release also includes PolyORB 2.0
for the following platforms:
 sparc-solaris
 x86-linux
 pa-hpux
The following UNIX packages have been
repackaged to address the warning on
installation issue reported with 5.04a
release that was distributed earlier this
year:
 alpha-tru64
 ia64-hpux
 mips-irix
 pa-hpux-11
 ppc-aix-5.1
 sparc-solaris
 x86-solaris
The distributions can be downloaded as
usual using GNAT Tracker. Note that, for
your convenience, GNAT Tracker can
now be accessed directly from Adacore’s
home page (http://www.adacore.com).
You may also want to take a moment to
discover our new web site and in
particular the Developer Center.
We encourage you to install and start
using this latest version of the GNAT Pro
tool suite. As always, for questions, or to
inform us of issues that you encounter,
please let us know through the GNAT
Tracker report facility or by email at the
usual report@adacore.com address.

74 Ada-related Products

Volume 27, Number 2, June 2006 Ada User Journal

[See also “AdaCore — GNAT Pro 5.04”
in AUJ 27-1 (Mar 2006) p.11–12 and
“AdaCore — GNAT Pro 5.03a” in AUJ
26-1 (Mar 2005) pp.13–14. — su]

AdaCore — GNAT Pro on
x86-64
http://www.adacore.com/2006/04/18/

adacore%e2%80%99s-gnat-pro-brings-
ada-to-x86-64-gnulinux/

Tuesday April 18, 2006
AdaCore’s GNAT Pro Brings Ada to x86-
64 GNU/Linux
GNAT Pro and Ada ease customer
transition to high-performance, 64-bit
applications.
AdaCore today announced the availability
of its flagship GNAT Pro Ada
development environment on the x86-64
platform. The product is available on two
primary GNU/Linux operating systems —
Red Hat® Enterprise Linux® v. 4, and
SUSE® Linux Enterprise Server 9 — on
the Intel EM64T and the AMD64
processors. AdaCore’s porting of GNAT
Pro to 64-bit platforms reflects the
market’s natural progression from 32-bit
to 64-bit computing. Because 64-bit
architectures overcome the 4 GB memory
space limitations of standard 32-bit
platforms they are able to handle larger
and more demanding applications. In
addition, recent x86 architecture
improvements, including advanced multi-
core processing, now provide exceptional
processing power, multi-threaded
throughput, and better performance. As a
result, the x86-64 platform is quickly
gaining mainstream popularity with
vendors of compute-intensive, memory-
hungry applications, such as servers,
databases, and telecommunications. And
by also providing support for 32-bit
execution, the processor eases the
transition to 64-bit computing.
 “We have received requests from major
enterprise players to support Ada on x86-
64 configurations, and we anticipate
continued industry demand in the future,”
said Robert Dewar, CEO of AdaCore.
“With this port of GNAT Pro to x86-64,
our customers will be able to break free
from the limitations of 32-bit platforms,
while benefiting from the full
complement of AdaCore tools and
services they currently enjoy with other
GNAT Pro supported platforms.”
About GNAT Pro
GNAT Pro is a robust and flexible open-
source Ada development environment
based on the GNU GCC compiler
technology. It comprises a full Ada
compiler, an Integrated Development
Environment (GPS, the GNAT
Programming Studio), a comprehensive
toolset including a visual debugger, and a
useful collection of libraries / bindings.
GNAT Pro allows development of pure

Ada applications as well as Ada
components in multi-language systems. It
is distributed with complete source code,
and is backed by rapid and expert support
service. GPS is available on a wide range
of host environments for both native and
cross-development using GNAT Pro,
including UNIX, Windows and
GNU/Linux.
GNAT Pro supports the major new
features in the Ada 2005 revision of the
Ada programming language. With over
120 enhancements over the previous
release of the technology, GNAT Pro is
the best choice for reliable and efficient
software, across a wide spectrum of
applications, including high-integrity
systems.
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial, open-source
software solutions for Ada, a modern
programming language designed for
large, long-lived applications where
reliability, efficiency and safety are
absolutely critical. AdaCore’s flagship
product is GNAT Pro, the commercial-
grade open-source Ada development
environment, which comes with expert
online support and is available on more
platforms than any other Ada technology.
AdaCore has customers worldwide; see
http://www.adacore.com/home/company/
customers/ for more information.
Use of Ada and GNAT Pro continues to
grow in high-integrity and safety-critical
applications, including commercial and
defense aircraft avionics, air traffic
control, railroad systems, financial
services and medical devices. AdaCore
has North American headquarters in New
York and European headquarters in Paris.
www.adacore.com

AdaCore — GNAT Pro for
HP OpenVMS
http://www.adacore.com/2006/05/01/

gnat-pro-now-available-for-hp-openvms-
on-hp-integrity-servers/

Monday May 1, 2006
GNAT Pro Now Available for HP
OpenVMS on HP Integrity Servers
GNAT Pro helps customers meet
stringent requirements for mission-critical
software systems
SALT LAKE CITY, USA — Today at the
Systems & Software Technology
Conference AdaCore announced the
immediate availability of its flagship
GNAT Pro Ada development
environment for HP OpenVMS on HP
Integrity servers. GNAT Pro for
OpenVMS on HP Integrity servers is
tailored to the needs of developers who
require reliability, performance and
maintainability in their software. It can be
used for a broad spectrum of applications,

including database systems, device
control and transportation.
GNAT Pro for OpenVMS on HP Integrity
servers comprises a full Ada compiler, a
comprehensive toolset, and supplemental
libraries and bindings. It allows
developers to build pure Ada applications
as well as Ada components in multi-
language systems. The product not only
implements Ada 95, but it also supports
the Ada 83 subset and a large set of the
new Ada 2005 features. It is optimized to
take full advantage of the performance
and scalability of the 64-bit HP Integrity
server architecture, allowing full use of
the large address space.
AdaCore has been providing Ada
products on OpenVMS platforms since
1998, when the company introduced its
GNAT Pro environment for HP
AlphaServer systems.
 “GNAT Pro and OpenVMS have always
been a natural mix because of their shared
emphasis on reliability and robustness,”
said Robert Dewar, CEO of AdaCore.
“With GNAT Pro now available for HP
Integrity servers running OpenVMS,
developers on the platform have the
opportunity to use Ada, the language best
suited for mission-critical systems.”
GNAT Pro is especially useful for
systems comprising many thousands of
modules and millions of lines of code. Its
robust system architecture allows
scalability based on program size and
does not degrade abruptly when a fixed
capacity is reached. Its project facility
provides a flexible framework for
organizing large, multi-person
development efforts.
 “We are delighted that AdaCore has
chosen to strengthen its commitment to
HP OpenVMS and extend the value of HP
Integrity servers to its customers,” said
Ann McQuaid, general manager of the
OpenVMS Group, Business Critical
Servers, HP. “The deployment of Ada
products on HP Integrity servers enables
customers to experience the synergy
between the mission-critical enterprise
computing strengths of OpenVMS and the
secured availability of the HP Integrity
platform.”
GNAT Pro is highly compatible with the
HP Alpha-hosted Ada 83 compiler
(formerly known as “DEC Ada”),
implementing HP-specific pragmas and
attributes, following HP Ada’s
representational conventions, and
providing a binding to the HP Ada
predefined library. GNAT Pro tool
invocation has the OpenVMS “look and
feel”, using standard OpenVMS syntax
and conventions.
GNAT Pro for OpenVMS implements
both Ada-specific and platform-dependent
optimizations, and the run-time library
has been designed to map Ada’s dynamic
features directly and efficiently onto the

Ada-related Products 75

Ada User Journal Volume 27, Number 2, June 2006

underlying OpenVMS services. The
product features a comprehensive tool
suite, including a pretty-printer, program
browser and program metrics generator.
AdaCore distributes GNAT Pro with
complete source code, and backs the
product with rapid and expert support
service.
Availability
GNAT Pro for OpenVMS is currently
available for HP Integrity servers. Pricing
for GNAT Pro subscriptions starts at
$14,000. Please contact AdaCore
(sales@adacore.com) for the latest
information on pricing and supported
configurations.

AdaCore — GNAT Pro for
VxWorks Simulator
URL: http://www.adacore.com/2006/05/16/

vx-sim-release/
Tuesday May 16, 2006
GNAT Pro Supports Simulator for
VxWorks 6 and VxWorks 653
ORLANDO, FL, USA — Today at the
Wind River Worldwide User Conference
AdaCore announced that its flagship
GNAT Pro Ada development
environment now supports the latest
versions of the Wind River® VxWorks
Simulator, a prototyping and simulation
tool for VxWorks® 6 and VxWorks 653
applications in the Wind River“
Workbench development suite. VxWorks
Simulator (formerly known as
VxSIMTM) enables application
development and testing without the need
for target hardware – either before
hardware is available, or to reduce the
number of targets required, thereby
lessening development cost. It is fully
integrated into the Wind River
Workbench development suite for
execution of VxWorks applications,
allowing complete configuration,
execution and debugging control through
standard interfaces on the host platform.
AdaCore’s GNAT Pro is well established
on Wind River platforms, with several
hundred customers already using GNAT
Pro for VxWorks. GNAT Pro for
VxWorks 6 is currently targeted to the
Wind River“ General Purpose Platform,
VxWorks Edition, on the PowerPC, from
Windows, GNU/Linux and Solaris host
environments. GNAT Pro for VxWorks
653 is targeted to the Wind River“
Platform for Safety Critical ARINC 653
supporting Windows and Solaris host
environments. AdaCore also offers plug-
in support for Wind River Workbench.
Workbench is an Eclipse-based
development suite optimized for device
software and supported by Wind River’s
worldwide professional services and
support organization.
 “We welcome AdaCore’s expanded
support for Wind River’s Workbench

development suite and simulation
products,” said Chip Downing, industry
marketing manager for Aerospace and
Defense at Wind River Systems. “These
integrated products continue to expand
the design and debug choices for our large
and growing customer base. Combined
with our expert worldwide support
organization, our companies lead the
industry with robust multi-language
development platforms for high-reliability
systems.”
 “Support for the VxWorks Simulator is a
natural addition to AdaCore’s GNAT Pro
offerings for the Wind River Workbench
development suite and VxWorks-based
platforms,” said Robert Dewar, CEO of
AdaCore. “It also demonstrates the
commitment we bring to our partnership
with Wind River by continually
delivering new tools and support services
to complement their real-time device
software environments. In addition, our
joint customers can continue to enjoy an
ever-increasing selection of robust and
proven design, debug and deployment
solutions.”
GNAT Pro allows users the flexibility to
choose between two powerful host
development environments. The first is
GNATbench, a GNAT Pro plug-in
developed in close collaboration with
Wind River specifically for the Wind
River Workbench development suite to
facilitate multi-language development,
sophisticated editing, browsing,
debugging, comprehensive compilation,
as well as prototyping and simulation for
advanced VxWorks systems creation. The
second is GNAT Programming Studio
(GPS), a sophisticated IDE that is
seamlessly integrated with the Wind
River VxWorks real-time operating
system (RTOS) and provides a one-click
switch between native and cross
environments.
About GNAT Pro for VxWorks
GNAT Pro for VxWorks includes
implementation of all versions of Ada:
Ada 2005, Ada 95, Ada 83; mixed-
language support, allowing composition
of applications comprising Ada, C, and
C++; full source for GNAT Pro, allowing
users to see how the run-time libraries
implement dynamic Ada features in the
context of VxWorks, whether in kernel or
user mode; Ada run-time features
(memory management, tasking, I/O) that
map directly and efficiently onto the
underlying VxWorks routines; an
extensive GNAT library; and an Ada unit
testing framework (Aunit).
GNAT Pro open standard GCC compiler
technology offers backward compatibility
with VxWorks 5.x to ease migration for
customers choosing to transition to
VxWorks 6 at their own pace.
Availability

GNAT Pro for VxWorks 6 and GNAT
Pro for VxWorks 653 are currently
available and targeted to the Wind River
General Purpose Platform, VxWorks
Edition, on the PowerPC, from Windows,
GNU/Linux and Solaris host
environments, and to the Wind River
Platform for Safety Critical ARINC 653
from the Windows and Solaris host
environments respectively.
Implementations for other targets are in
progress. Please check the AdaCore
website or contact a sales representative
for news on availability, specific
configurations, or further details.
[See also “AdaCore — Support for
VxWorks 6” in AUJ 26-4 (Dec 2004),
pp.240–241. — su]

AdaCore — Ada 2005
Preview release
From: Jamie Ayre <ayre@adacore.com>
Date: Tue, 30 May 2006 10:35:34
Subject: [AdaCore] [F502-014] Preview

release for new Ada 2005 features
To: announce@adacore.com
The implementation of Ada 2005 in
GNAT is almost complete. We are
pleased to announce the availability of a
preview of the next release allowing beta
testing of those new features as described
by the new Ada 2005 reference manual
(now included in the GNAT Pro
documentation). Highlights include:
Object-oriented features: abstract
interfaces (AI-251), object operation
notation (AI-252), nested type extensions
(AI-344) synchronized interfaces (AI-
345)
Program structure: unchecked union (AI-
216), limited with clauses (AI-217),
overriding indicators (AI-218), private
with_clauses (AI-262), aggregates for
limited types (AI-287), partial
parametrization of formal packages (AI-
317), limited and and anonymous access
return types and the extended return
statement (AI-318), null procedures (AI-
348)
Libraries: directory operations (AI-248),
container library (AI -302), time
operations (AI-351), environment
variables (AI-370)
Concurrency: the Ravenscar profile (AI-
249), timing events (AI-297), priority-
specific dispatching (AI-355)
Enhanced access types: generalized used
of anonymous access types (AI-230),
anonymous access to subprogram types
(AI-254), current instance rule for access
types (AI-382)
The full list can be found on GNAT
Tracker in the “Ada 2005 implemented in
GNAT Pro” tab of the “Release notes”
section.
The implementation of some of these
features is ongoing (e.g. the extended

76 Ada-related Products

Volume 27, Number 2, June 2006 Ada User Journal

return statement) or depends on
specialized OS facilities (e.g. priority-
specific dispatching). Nevertheless, we
encourage our users to experiment with
the new language, which reflects a decade
of experience with Ada 95, and adds
substantial expressive power and
increased safety to it.
In order to participate in this Beta
Program, please download the Ada 2005
GNAT Pro preview using GNAT Tracker
(select the version “5.05w Ada 2005
preview”) and send your questions or
issues using the regular GNAT Pro report
mechanism. It is available on the Linux,
Solaris, and Windows platforms.
Note that, for your convenience, GNAT
Tracker can now be accessed directly
from Adacore’s home page
(http://www.adacore.com).

Aonix — ObjectAda Update
From: Owner-Intel-ObjectAda <owner-

intel-objectada@aonix.com>
Date: Mon, 20 Mar 2006 17:26:52
To: intel-objectada@aonix.com
Subject: Intel-OA: New ObjectAda 7.2.2

Update
A new update for Aonix ObjectAda for
Windows 7.2.2, 1102V722-U21, is now
available at
http://www.aonix.com/ada_patches.html.
Please see the Release Notes for further
details on the corrections made and
installation instructions. The release
notes can be viewed at
ftp://ftp.aonix.com/pub/adats/outgoing/11
02/7.2.2/U21/1102V722-
U21.Release_Notes.
Downloading ObjectAda updates requires
a password which can be obtained from
your local Aonix Customer Support
department. Please note that a current
maintenance agreement is required to
obtain the password.
For information on obtaining or renewing
a maintenance agreement, please contact
your nearest Aonix Sales office. For
contact information see:
http://www.aonix.com/contact_us.html
[See also “Aonix — ObjectAda 8.2 for
Windows” in AUJ 26-4 (Dec 2005),
p.242. — su]

DDC-I — SCORE for RTX
http://www.ddci.com/display_news_item.

php?filename=news_first_ada_rtx_
release.php

DDC-I Announces Industry’s First Ada
Environment For RTX-based Windows
Real-Time Systems
Mixed Ada, C and Embedded C++
applications can now run in real time on
Windows systems
Phoenix, AZ. May 1, 2006. DDC-I, a
leading supplier of development tools for

safety-critical applications, today
announced the availability of its
SCORE® Integrated Development
Environment (IDE) for Ardence’s RTX, a
real-time enabling technology for
Windows applications. SCORE® is fully
integrated with RTX version 6.x, a real-
time extension to Windows that provides
deterministic real-time multitasking,
interrupt handling, and other real-time
features. Now, Ada and mixed
Ada/C/Embedded C++ applications
developed using the SCORE® IDE can
run in real time on Windows systems
equipped with RTX.
 “RTX transforms Windows systems into
real-time platforms suitable for a wide
range of applications, including mil/aero,
industrial control, and telecom,” said Bob
Morris, president and CEO of DDC-I.
“SCORE® is the first IDE for mixed Ada,
C, and Embedded C++ development that
lets designers take full advantage of these
real-time Windows platforms.”
 “Combining the SCORE IDE with
Ardence RTX provides an excellent
solution for building deterministic control
into embedded systems,” said Stephen
Woodard, Ardence senior vice president
of global operations. “The SCORE IDE
helps our customers simplify development
and add system functionality, which is
what makes DDC-I an important
technology partner for Ardence.”
SCORE® is a multi-language, object-
oriented IDE for developing and
deploying safety-critical applications.
SCORE provides optimizing compilers
for Ada, C, Embedded C ++, and
Fortran77, all of which pass the
applicable ACATS, PlumHall, Perennial,
and FCVS compiler validation suites.
The SCORE® IDE features an intuitive
GUI with a color-coded source editor,
project management support, and
automated build/make utilities. SCORE’s
multi-language, multi-window, symbolic
debugger recognizes C/EC++, Ada and
Fortran syntax and expressions, and can
view objects, expressions, call chains,
execution traces, interspersed machine
code, machine registers, program stacks,
etc. The debugger supports full Ada-level
debugging, including constraints,
attributes, tasking, exceptions, and break
on exceptions and tasking events. The
debugger is non intrusive, can debug at
the source or machine level, and can be
enabled without changing the generated
code.
SCORE® supports full debugging of
RTX applications running in both the
Win32 and RTSS (real-time subsystem)
environment. The debugger can start
processes on the local computer if it is
running RTX, or communicate with a
remote computer running Windows XP
(or Windows XP Embedded) and the
RTX environment. SCORE® supplies a
debug agent that runs in the RTSS

environment, and a communication layer
utility that bridges the Win32 and RTSS
environments. These provide all of the
functionality that the debugger needs to
support local/remote debugging of RTX
applications.
SCORE® supports a bare run-time system
certifiable to DO-178B, and an enhanced
bare run-time system for use in a
simulated or emulated environment. The
SCORE run-time can also be linked with
popular real-time operating systems
(RTOSes) and native operating systems
like Windows. In the SCORE/RTX
integration, which provides full Ada
support, DDC-I has mapped the SCORE
Ada run time to RTX. Here, Ada tasks
become RTX threads, and the run-time
system targets the RTX API instead of the
Win32 API.
RTX is a high-performance extension to
the Windows operating system that
enables Windows applications to run in
real time. Occupying just 250 kbytes of
RAM, RTX supports flexible round-robin
and pre-emptive scheduling (with priority
inversion avoidance), and provides
precise control over IRQs, I/O and
memory resources, ensuring that specified
time-critical tasks execute with proper
priority and 100% reliability. RTX also
features a WinSock compliant TCP/IP
stack that is independent of Windows, and
a high-speed interprocess
communications (IPC) mechanism with
no limitation on data message size.
RTX operates at Windows Ring 0,
providing real-time services that enable
Windows applications to process
sustained interrupt rates of up to 30 kHz
with an average IST latency of less than
one microsecond. RTX is a true Windows
extension, utilizing all the standard
Windows conventions, including APIs,
memory management, SRIs, mutexes, and
semaphores that are familiar to Windows
developers. RTX applications can take
full advantage of the memory protection
mechanisms offered by Windows and the
Intel architecture in Ring 3. Once
developers complete the debug process
and ensure that memory pointers and
arrays are valid, the RTX application can
be recompiled to run in Ring 0, where it
can leverage RTX’s real-time services.
SCORE for RTX is available
immediately. Pricing starts at $5000 for a
single developer’s seat. About DDC-I,
Inc. DDC-I, Inc. is a global supplier of
software development tools, custom
software development services, and
legacy software system modernization
solutions, with a primary focus on safety-
critical applications. DDC-I’s customer
base is an impressive “who’s who” in the
commercial, military, aerospace, and
safety-critical industries. DDC-I offers
compilers, integrated development
environments and run-time systems for C,
Embedded C++, Ada, JOVIAL and

Ada and GNU/Linux 77

Ada User Journal Volume 27, Number 2, June 2006

Fortran application development. For
more information regarding DDC-I
products, contact DDC-I at 1825 E.
Northern Ave., Suite #125, Phoenix,
Arizona 85020; phone (602) 275-7172;
fax (602) 252-6054; e-mail
sales@ddci.com or visit www.ddci.com.

Praxis HIS — SPARK
Toolset 7.31
URL: http://www.praxis-his.com/

sparkada/release7p3.asp
SPARK Release 7.31
April 2006
Praxis High Integrity Systems is pleased
to announce the immediate availability of
Release 7.31 of the SPARK language and
the SPARK toolset.
Release 7.31 includes many significant
improvements, including:
 VC Generation improvements in the
presence of semantic and data-flow errors.
 Support for full-range of IEEE 64-bit
floating point values in the configuration
file.
 A new Examiner switch that produces
explanations of errors and warnings on-
screen and in the listing files.
 Better error messages for common
syntax errors.
 Relaxation of the rule requiring
qualification of modular literals.
 Support for proof rules involving the
'Size attribute.
 Correct order or declaration in FDL
files for type-announced and private
types.
 Support for the use of pragma Import to
complete an external own variable.
 Significant new Simplifier tactics for
modular and rational inequalities.
 Support for user-defined proof rules for
the Simplifier.
 Port of the Simplifier and Checker to
the SICSTUS PROLOG compiler. Both
are significantly faster as a result.
Full details of all language and tool
changes can be found in the release notes
for releases 7.3 and 7.31.
[See also “Praxis HIS — SPARK Toolset
7.3” in AUJ 27-1 (Mar 2006), pp.15–16.
— su]

Vector Software —
VectorCAST 4.0
URL: http://www.vectors.com/pdf/

vector_40.pdf
Vector Software announces version 4.0
release.
North Kingstown, RI – May 15, 2006 –
Vector Software, the leading provider of
software test tools for embedded systems,

today announced the release of
VectorCAST version 4.0
Version 4.0 highlights
• Integration Testing — VectorCAST 4.0
supports integration testing. This means
that you can effectively test an entire sub-
system, or application, using the same
techniques that you use for unit testing.
All existing tool functionality is supported
for integration testing, including point-
andclick test case editing, automated
regression testing, and code coverage
analysis.
• Common GUI for VectorCAST/C,
VectorCAST/Ada and
VectorCAST/Cover — It is now possible
to create, or open, any type of
VectorCAST project from the same GUI,
this allows you to easily switch between
Integration, Unit test, and Coverage
projects.
• HTML Reports — All reports are
generated in HTML by default, with user
control over report layout and coloring.
Customers who are interested in browsing
through the release notes, or down-
loading the production release should
contact their sales person, please email to
sales@vectorcast.com
All existing customers with a current
maintenance contract will be sent keys for
version 4.0 automatically.
About Vector Software
Vector Software, Inc. is a leading
independent provider of automated test
tools for software developers. Established
in 1989 as a consulting and service
organization, Vector’s product focus is to
empower software professionals to deliver
the highest quality software in the least
amount of time. Vector’s “VectorCAST”
line of products, reduce the burden placed
on individual developers by automating
and standardizing application component
level testing. This innovative technology
developed by Vector represents the “next
generation” of intelligent embedded
software test tools. The tools support
Ada83/95, C/C++ and Embedded C++
(EC++). Over 150 customers use Vector
Software’s products for embedded
software testing worldwide. The market
focus of Vector is on companies
performing embedded systems
development for aerospace, military,
medical, telecom, and process control
related projects.
Vector Software’s Product Family
VectorCAST/Ada
VectorCAST/C++
VectorCAST/RSP
VectorCAST/Cover
MC/DC Coverage for DO-178B Level A
certification
DO-178B Qualification Packages

Ada and GNU/Linux
Debian Policy for Ada
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: Sat, 18 Mar 2006 02:15:29
Subject: Debian Policy for Ada, Second

Edition
Newsgroups: comp.lang.ada
After more than a year, I have just
uploaded the second edition of the Debian
Policy for Ada. It is now available on
Ada-France’s web site as HTML, plain
text, and PDF. In addition, the Debian
.deb package contains an info version.
As I explained during the FOSDEM, the
Policy itself has not changed. Basically, it
consist of two points: (1) all Ada
packages must use the same compiler
from the gnat package, and (2) all
libraries must follow the GNU Ada
Environment Specification for the
filesystem structure, and provide GNAT
project files.
However, I have reworded most of the
document for clarity, and updated a lot of
time-dependent information. There are
also details on the planned transition to
GCC 4.1 in Etch in an appendix.
http://www.ada-france.org/debian/
http://www.ada-france.org/debian/
debian-ada-policy.html
And for your /etc/apt/sources.list, if you
use Debian:
deb http://www.ada-france.org/debian/
ada main
deb-src deb http://www.ada-
france.org/debian/ ada main
As always, I welcome comments and
suggestions.
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: 28 Apr 2006 03:57:54
Subject: New home for the Debian Ada

Policy
Newsgroups: comp.lang.ada
Some of you may have noticed the sad
demise of the Ada-France web site; the
server never recovered from a hard disk
crash. That server was the place where I
published the Debian Policy for Ada, and
where I placed my Debian packages for
my sponsors to pick up and upload to the
official Debian archive.
Stéphane Richard has been kind enough
to provide a Giga of disk space on his
web site so I could publish these assets
again. The new URL for the Debian
Policy for Ada is thus:
http://www.adaworld.com/debian/
debian-ada-policy.html
It is also possible to just browse the file
hierarchy under
http://www.adaworld.com/debian

78 Ada and GNU/Linux

Volume 27, Number 2, June 2006 Ada User Journal

There you will find the Policy in plain
text, info, PDF and the original Texinfo
source formats, as well as a Debian
repository with my latest and greatest
packages. I periodically delete packages
from that archive as they are uploaded
into the official Debian archive.
Impatient Debian users can also add the
following lines to their
/etc/apt/sources.list:
deb http://www.adaworld.com/debian ada
main
deb-src http://www.adaworld.com/debian
ada main
The repository also supports pinning if
you add the following to
/etc/apt/preferences:
Package: *
Pin: release a=ada
Pin-Priority: 600
(adjust the Pin-Priority to taste). Then you
can use “apt-get install” and “apt-get
source” to obtain my packages before
everyone else :) Otherwise, you can just
wait a few more days and get the
packages from Debian as usual.
Many thanks to Stéphane Richard for this
web space.
I would encourage anyone interested to
mirror this space so that the Debian Ada
Policy is always available somewhere on
the web.
[See also same topic in AUJ 25-3 (Sep
2004), p.126. — su]

Ada in Next Debian Release
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: 7 Apr 2006 03:50:18
Subject: Ada in Debian: gnat-4.1 is now in

testing
Newsgroups: comp.lang.ada
The package gnat-4.1 (=4.1.0-1) has been
in unstable for 5 days and, since it didn’t
have any release-critical bugs, reached
Debian Etch/testing today. It contains one
preliminary patch by yours truly, but
nothing yet related to Ada. It is now
easier for Debian Etch users to
experiment with gnat-4.1; just do:
$ apt-get install gnat-4.1
 (beware: it conflicts with gnat, which is
still the officially supported Ada
compiler).
The GCC maintainer for Debian was
waiting for GCC 4.1 to be in Etch before
accepting my Ada-related patches into it.
I already have a few patches ready,
namely:
- support symbolic tracebacks
- look for project files in
/usr/share/ada/adainclude by default
- link the GNAT tools dynamically
against libgnat

- README.gnat
And I’m working on:
- build libgnatvsn and link the GNAT
tools dynamically against it
The next step will be:
- build libgnatprj and link the GNAT tools
dynamically against it.
I’ll send these patches to debian-gcc at
lists .debian dot org this weekend.
These patches will most probably appear
in 4.1.0-2 in the next few days. If you’re
interested, you can look at the Debian
build scripts and patches for GCC here:
http://svn.debian.org/wsvn/gcccvs/branch
es/sid/gcc-4.1/debian
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: Wed, 03 May 2006 00:57:56
Subject: Ada in Debian: gcc-4.1 4.1.0-2 has

reached unstable
Newsgroups: comp.lang.ada
The planned transition to GCC 4.1,
outlined in the Debian Policy for Ada[1],
is making progress. Today saw the
upload of gcc-4.1 4.1.0-2, which includes
my first batch of patches ported from gnat
3.15p. See the changelog[2] for a
summary of these changes. With this
upload, I have now ported all the changes
I made in gnat to the newer gnat-4.1.
Of course, there are problems, since this
is the “unstable” distribution. In
particular, 4.1.0-2 failed to build from
source[3] on the AMD64 and SPARC
autobuilders[4] due to autoconf (which
we in Ada-land all know and love), and
might fail on other architectures too. I
think the FTBFS issue will be fixed in the
next few days. On the good side, the
packages are already available as prebuilt
binaries for i386, powerpc, and hppa.
Yes, if you have one of 'em HP9000
boxes running Debian, you can now do
Ada. Ada on a Superdome, anyone?
[1] http://www.adaworld.com/debian/
debian-ada-policy.html
[2] http://packages.qa.debian.org/g/
gcc-4.1/news/20060502T162915Z.html
[3] http://bugs.debian.org/cgi-bin/
bugreport.cgi?bug=365780
[4] http://buildd.debian.org/
build.php?pkg=gcc-4.1
Bug #365780 is release-critical because of
its severity, “serious”. Therefore, gcc-4.1
4.1.0-2 will not migrate to Etch/testing;
perhaps 4.1.0-3 will, if it fixes that bug
(and that’s very likely). If you find other
bugs, release-critical or not, please report
them.
The binary packages of particular interest
to us on c.l.a are:
gnat-4.1
libgnat-4.1
libgnatvsn-dev

libgnatvsn4.1
libgnatprj-dev
libgnatprj4.1
Looking forward
My next steps will be to port the other
packages, starting with asis and glade, to
gnat-4.1. Then I will package the latest
versions of GtkAda and GPS, and the
remaining packages after that will be
piece of cake. When all that porting is
done, I will then perform the official big-
bang transition by uploading a new
version of the package gcc-defaults so
that the default Ada compiler becomes
gnat-4.1. I anticipate that it will take
another couple of months to complete the
transition, and that we’ll be well in time
for the release of Etch in December this
year.
Biarch is another major area that needs
work. Several people have expressed
interest on this newsgroup (hello Adrian).
Here is a summary of the situation as I
understand it; please correct me if I got
anything wrong:
a) not even AdaCore support biarch
b) there is currently no platform that
offers a biarch GNAT
c) this is uncharted territory
d) I don’t (yet) have a 64-bit laptop to
work on
e) I have no interest, other than
intellectual, in biarch
As a consequence, if nobody helps me,
then Debian will not provide biarch for
Ada. Nor will any other operating
system, for that matter, per b) above. I
am more than willing to coordinate and
provide advice, but I am not prepared to
do the actual work. I think it is safer for
Debian users if I concentrate on good
uniarch packages first, and then look at
biarch, if I have spare time, in the
experimental distribution (i.e. it would not
be in Etch). If, OTOH, several interested
people band together and do a coordinated
effort to bring biarch to life, then we can
have it in Etch. Ideally, we’d need at
least one person for i386/AMD64 and one
person for PowerPC/PowerPC64.
For uniarch, perspectives are more rosy. I
know that gnat-4.1 can be made to work
on AMD64 and PowerPC64 with a little
love and care. I don’t know about other
platforms, but since we now have hppa,
anything is possible :)
If you would like to help, please visit
http://lists.debian.org and send mail to
debian-gcc@. Patches are greatly
appreciated.
Oh, one last thing: after the transition, I’m
planning to drop libcharles0 since gnat-
4.1 provides Ada.Containers. If anyone
wants to keep libcharles0 in Debian for
compatibility reasons, please adopt the
package.

Ada and GNU/Linux 79

Ada User Journal Volume 27, Number 2, June 2006

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: 7 Apr 2006 05:02:56
Subject: Re: Ada in Debian: gnat-4.1 is now

in testing
Newsgroups: comp.lang.ada
Someone asked me privately about 64-bit
support in GtkAda, and I thought I’d
clarify the situation once more here, as
this information may be of general
interest.
The transition to gnat-4.1 is in progress
but still in early stages. Like I said, my
first patches are not even public yet. I
will try to provide 64-bit binary packages
only after I’m done with the compiler,
because a 64-bit compiler is a prerequisite
for any 64-bit binary packages (d’oh).
I’m not sure yet how much work is
needed for good biarch support in gnat,
but basically I want to make sure that both
-m32 and -m64 work, and that libgnat has
both 32-bit and 64-bit versions. Since I
don’t have 64-bit hardware, I cannot do
this by myself, so I will rely on input from
people who are sufficiently interested in
biarch to invest some of their time into it.
Or, maybe someone could sponsor me
and buy me a 64-bit laptop? My
workhorse is starting to show its age (it’s
an IBM ThinkPad T22 from 2001 with an
Intel Pentium III @900 MHz — a bit
slow to build GCC).
[See also “Multi-arch” in this issue —su]

Multi-arch
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: 17 May 2006 02:22:57
Subject: Multi-arch
Newsgroups: comp.lang.ada
I am following up on the questions raised
here about running both 32-bit and 64-bit
binary code on the same machine. This is
called biarch. Currently, the GCC-4.1
source package in Debian supports biarch
for a few languages, but this support is
maintenance-intensive and partial. Most
notably, Ada does not currently support
biarch (and neither does AdaCore).
Furthermore, administration of a biarch
system is more complex than that of a
single-arch system, as not all binary
packages support biarch, and some
support packages are required, e.g. ia32-
libs.
Canonical, the company behind Ubuntu (a
derivative of Debian), has written two
very interesting papers about multi-arch,
including an introduction, problems, and a
proposed solution. Multi-arch is a
generalisation of biarch, and allows
mixing packages for several architectures
that are compatible with a processor. For
example, an Athlon or Opteron system
can run binaries for all of AMD64, i386,
i486, i586 and i686. The proposed design
would solve the current problems with

biarch, at the expense of rewriting dpkg
almost from scratch.
http://multiarch.alioth.debian.org/
[See also “Ada in Next Debian Release”
in this issue —su]
From: Björn Persson

<rombo.bjorn.persson@sverige.nu>
Date: Thu, 18 May 2006 21:24:44
Subject: Re: Multi-arch
Newsgroups: comp.lang.ada
I understand how multi-arch is useful if
you want to use proprietary binaries that
are available only for certain
architectures. Otherwise I don’t see a
reason to do it. I’d think free code would
just be compiled for the “native”
architecture. Is multi-arch useful in an
altogether free system in some way that
eludes me?
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Newsgroups: comp.lang.ada
Subject: Re: Multi-arch
Date: 19 May 2006 00:23:41
Yes.
Today, for example, OpenOffice works
only on 32-bit architectures; if you want
to run it on an AMD64 machine, you need
biarch or multiarch. There are probably
other cases where compiling for one of
the architectures in a multi-arch system is
problematic.
Also, 32-bit binaries use less memory
than 64-bit binaries do. It makes sense to
run 32-bit binaries on 64-bit machines, if
those binaries do not benefit from the
larger address space or 64-bit instructions.
Another benefit of multiarch is that you
can e.g. compile i386 binaries on an
AMD64 machine and run them on i386
machines.
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: Sat, 20 May 2006 13:18:46
Subject: Re: Multi-arch
Newsgroups: comp.lang.ada
> That sounds like a defect in

OpenOffice, so in that case multi-arch
support functions as a workaround for a
buggy program.

I think it’s a bit more complex than that; it
may well be a defect in OpenOffice, but
also in the compiler or in any of the
numerous libraries that OpenOffice uses.
But I agree, in this case multi-arch is a
workaround; this does not make multi-
arch a bad idea, though.
> Ah. Yes, that’s a good reason if the

difference in memory usage is
significant. (A factor two perhaps?)

A factor two for pointers and integers,
yes, but not for Strings or other data
structures. If you have many pointers, the
increase in memory usage is quite
significant.

> And then the compiler would also be an
i386 program I presume. What are the
benefits of that over an AMD64 to i386
cross compiler?

On the AMD64 machine, you need either
an AMD64-to-i386 cross-compiler (gcc
-m32 does just that), or a native i386
compiler. Either will do, but then you
also need the i386 libraries to link against.
A proper multi-arch design allows you to
have these libraries alongside the AMD64
libraries, in a clean way as opposed to
local hacks.
From: Dr. Adrian Wrigley

<amtw@linuxchip.demon.co.uk.uk.uk>
Date: Sun, 21 May 2006 16:03:04
Subject: Re: Multi-arch
Newsgroups: comp.lang.ada
I suggest that people who run a mixture of
machines may want to share binaries
across the network, but build them on
their newest machines.
People also want to avoid recompiling
working code with another architecture,
even if they have source code. You can’t
be sure it’ll work exactly right without
testing, which may be expensive. I found
a couple of latent errors when building for
64-bit. One was calling a C varargs
function incorrectly from Ada. Another
was caused by undocumented members of
a C struct overwriting the Ada stack.
Changing architectures is a risk.
If you have written some code in
assembly language, this will constrain the
architecture until alternative code is
available.
Finally, some people store records
directly in data files for various reasons.
Changing architecture would need
recreation of those files.
It only takes one old architecture library
to be a show-stopper, whether that is a
third-party or handwritten codec, a buggy
library or whatever.
multi-arch eases the transition to a new
architecture.
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Wed, 17 May 2006 11:45:19
Subject: Re: Multi-arch
Newsgroups: comp.lang.ada
IIRC, HP has always played with mounts
per architecture. They also have an
interesting file system standard. So I trust
there is good reason to rewrite dpkg,
given that only uni-arch is probably
reasonably simple?
From: gshapovalov@gmail.com
Date: 17 May 2006 13:31:49
Subject: Re: Multi-arch
Newsgroups: comp.lang.ada
Yes, it can be done and is very well worth
it. On Gentoo it is called multilib and is
supported distribution-wide, not only for
x86 and AMD64, but PowerPC and
SPARC have theirs multilibs too IIRC (I

80 Ada and GNU/Linux

Volume 27, Number 2, June 2006 Ada User Journal

think both of them, but may be only
SPARC actually). GCC is supported, as
well as Ada and most of the libs and apps
(to the point where you can have wine
running 32-bit Windows code on
otherwise 64bit-clean system — kernel
and userspace).
This is regulated primarily via multilib
and toolchain eclasses, which is basically
the way to contain common controlling
code. I recently put Ada on the same rails,
so that now, on a multilib system, (that is
for users who selected the multilib
profile) two sets of rts libs are generated
and compiler can generate 64 bit or 32 bit
code. Although, as there were no requests
so far, I haven’t yet automatized
switching between the multilib sub-
profiles, only the usual niceties — like
having FSF’s 3.4.x, 4.1.x based and
AdaCore’s GNAT GPL compilers
installed side-by-side and activated as
necessary...
You can see the code here:
http://www.gentoo.org/cgi-bin/
viewcvs.cgi/eclass/
You would be looking for the
toolchain.eclass, multilib.eclass and
possibly some other eclasses. And here:
http://www.gentoo.org/cgi-bin/
viewcvs.cgi/dev-lang/gnat-gcc/
http://www.gentoo.org/cgi-bin/
viewcvs.cgi/dev-lang/gnat-gpl/
The ebuilds and eclasses are mostly just a
bash code, so should be familiar, aside
from a few vars that have special
meaning. Some Ada-specific
implementation details and discussion can
be found in this bug:
https://bugs.gentoo.org/show_bug.cgi?
id=111340
and you can catch me on irc,freenode.net
in channels #gentoo and #gentoo-dev if
you would like to discuss this further (my
nick there is georges, email of course
works too: george at gentoo.org),
although I suppose the way it will have to
be done on Debian would be quite
different...
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: 18 May 2006 04:39:58
Subject: Re: Multi-arch
Newsgroups: comp.lang.ada
Interesting. I’ve looked at multilib.eclass
and gnat-gcc-4.1.0.ebuild. I have no
detailed knowledge of the Gentoo portage
system, so I can only guess, but it seems
to me that the current infrastructure means
that each source package builds several
binary packages, one for each arch, on the
machine where you build. So, for
example, if you have an AMD64
machine, you’d get two binaries, i386 and
AMD64. Furthermore, the i386 package
would install libraries in /usr/lib32,
whereas the same package built on a i386

machine would install libraries in /usr/lib,
so the two packages would be slightly
different, and incompatible, even though
built for the same architecture. Debian is
currently in a similar situation, except that
it has not deployed this scheme
distribution-wide but only in a few
important packages, binutils and gcc
being the most prominent ones.
In the proposal, a source package would
only produce one binary package for the
machine doing the build; thus your
AMD64 box would only produce the
AMD64 binary. Then, if you want to
install the i386 binary as well, you’d take
the package built by the i386 autobuilder,
modify it on the fly (this is one of the
proposed changes to dpkg), and install it
alongside your AMD64 package.
Of course, this scheme only makes sense
in the context of a binary distribution like
Debian, but there are several benefits:
- it reduces the workload of the
autobuilders
- it reduces the size of the binary
distribution, and load on the mirrors
- it simplifies system administration
- it simplifies the job of package
maintainers and reduces the opportunities
for bugs.
From what I understand, Gentoo people
might not be very interested in these
benefits, because:
- Gentoo has no autobuilders, as each user
recompiles the world on their machine
- Gentoo has no binary distribution apart
from the minimal bootstrapping system
- Gentoo users seem to like system
administration :)
- Gentoo package maintainers seem to
like difficult problems :)
The proposal also hints at the LSB. I think
it would be necessary to standardise the
library paths across all distros. The
current /usr/lib, /usr/lib32, and /usr/lib64
directories are not general enough.
Consider that some HP processors can run
i386, AMD64, IA64, HPPA *and*
HPPA64 binaries on the same machine :)
And what about Cell processors and other
future asymmetric multiprocessors? What
about binaries intended to run on GPUs or
other coprocessors?
From: gshapovalov@gmail.com
Date: 18 May 2006 09:34:34
Subject: Re: Multi-arch
Newsgroups: comp.lang.ada
This is actually quite similar to what is
happening in Gentoo, as it does not make
sense to make two versions of *every*
package. Only the principal libs (parts of
glibc and GCC RTS) plus compatibility
libs (of these actually only the ones that
are dependencies of requested packages)
are produced “by default”. Then user is
free to mix and match in a usual fashion,

although most people just stick with
defaults of course :).
Although many people claim that their
system administration efforts were
reduced after switching to Gentoo :).
Well, as usual, this is an issue of how you
think and what tools you like I guess..
Definitely, [a LSB effort] will have to be
done. Unfortunately I do not see it
happening *just yet* — having seen how
much it takes to organize anything on a
large scale :). However in 2-3 years and
when we can persuade LSB people that
Linux/BSD/FOSS is not limited to Red
Hat... (admittedly they are getting better
at that lately). But we can start by having
a discussion among Gentoo and Debian
toolchain people.
From: Dr. Adrian Wrigley

<amtw@linuxchip.demon.co.uk.uk.uk>
Date: Sun, 21 May 2006 13:05:25
Subject: Re: Multi-arch
Newsgroups: comp.lang.ada
Since I have been raising this as an issue
in the past few months, I thought I’d give
an update on my progress.
I am now running a prototype stock
trading system on an AMD64 system
running Fedora Core 5 (x86_64).
The problem I had been trying to solve
was accessing very large memory-mapped
market data arrays (several GB). I had
run out of addressing range on IA32
systems.
Moving to AMD64, however, I found I
couldn’t link in commercial 32-bit library
code, available in binary form only.
The system is based around Annex E
distributed computing, with client
partitions accessing server code using the
32-bit library via a
Remote_Call_Interface partition.
I now build the system using AMD64
architecture for all the partitions except
this Remote_Call_Interface partition,
which is built for i386. There is no
problem mixing architectures in a
program as long as each partition only
links in code from a permitted
architecture. (Note that it will build
invalid binaries with mixed architecture!)
The build process relies on a full i386
install of FC5 in a separate set of
partitions from the x86_64. I installed a
complete suite of i386 GNAT tools while
running in 32-bit mode. The machine is
dual-bootable, for convenience, but the
build scripts use linux32 and chroot to
compile 32-bit when booted as x86_64.
I have the same source code checked out
from CVS in two separate directories.
The build script checks the architecture,
and if it is x86_64, it builds all the
partitions except those which need the 32-
bit library. Otherwise, it builds all the
partitions.

References to Publ icat ions 81

Ada User Journal Volume 27, Number 2, June 2006

I build one source tree in a 64 bit
environment, the other in a 32-bit
chrooted environment. I copy the 32-bit-
only partition once built into the 64-bit
build directory. This way, I get two
complete working builds.
The GtkAda component ‘gate’ does not
seem to work on x86_64. This is invoked
by the build script in a 32-bit chroot.
I had experimented with -m32 in GNAT,
and this produced working 32-bit .o files,
but needed messing with at the linking
stage, since it seemed to be looking in the
wrong directories for the libraries. This
might be made to work fairly easily, but I
cannot get the -m32 switch passed from
gnatdist as a compiler argument. This
seems to be a simple bug(?).
I think having two separate build
directories is necessary for building a
mixture of architectures, even if each
partition is needed once, since some .o
files are needed in both architectures (for
pure partitions, for example). I haven’t
yet arranged it to build the binaries in side
directories from the same source files.
This would help ensure a consistent code
base.
I would like to thank Ludovic Brenta and
Martin Krischik (and others) for working
on these issues, providing helpful posts
here at c.l.a, and for providing the
necessary packages for running GNAT on
these systems.
The 64-bit system is still at a development
stage on a test machine. I may try Debian
for the production system, but I think the
same build process will be needed until
the issues mention above are fixed.
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: Sun, 21 May 2006 15:41:49
Subject: Re: Multi-arch
Newsgroups: comp.lang.ada
I guess you could have just one checkout,
but two different object and executable
directories. This is quite easy to set up in
GNAT project files or, failing that,
Makefiles.
I don’t know if the proposal from
Canonical will be accepted or
implemented, much less in what time
frame. What do you think I should do in
Debian? Continue supporting single-arch
only (which still allows you to use a
chrooted system for the other arch, like
you are doing now) and wait for dpkg 2.0,
or try provide multi-arch GNAT and
libraries now?
From: Dr. Adrian Wrigley

<amtw@linuxchip.demon.co.uk.uk.uk>
Date: Sun, 21 May 2006 16:07:01
Subject: Re: Multi-arch
Newsgroups: comp.lang.ada
I found that I could build code with -m32
in FC5 with Martin’s rpms, provided I
messed around with linker commands and
copied the 32-bit libraries from elsewhere.

This would be OK, provided there was a
“how to” document somewhere
explaining it. It’s what you call “local
hacks” in another post.
But the lack of a functioning gnatdist
-m32 option, and lack of ‘gate’ meant I
had to use the chroot method. Using
chroot took a lot of time to set up, with a
whole new install and ‘bind’ for
directories in fstab, and implementing a
dchroot script, needing sudo etc. If gate
and gnatdist were fixed, and the -m32
linking were documented, it wouldn’t be
worth the effort providing multi-arch
GNAT libraries at this stage. It’s only
people with special requirements like
mine who would really benefit.
Perhaps a year from now, once there are
more AMD64 users, and once higher
priorities are addressed, looking at the
problem again would be a good idea.
I don’t know enough about the amount
and value of work needed on multi-arch
GNAT to be able to be sure whether it
makes sense. But I’m sure people value a
streamlined robust, current and complete
set of packages for each separate
architecture.

Ada and Microsoft
AdaGIDE — Ada GUI IDE
for Windows
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Mon, 20 Mar 2006 22:21:56
Subject: Ann: AdaGIDE 7.41 release
Newsgroups: comp.lang.ada
AdaGIDE (the Ada GUI Integrated
Development Environment) is a
lightweight but powerful interface to the
GNAT compiler featuring a color context-
sensitive editor and a code reformatter. It
runs on Windows NT,2K,XP as well as
the Windows 9x,ME series.
URL: http://adagide.martincarlisle.com
* Main improvements in AdaGIDE 7.41
compared to version 7.30
- Function to search through all open
documents
- Possibility of running user-defined
external tools on demand or automatically
(check-in/out for source version control,
call a code analyzer like AdaControl, run
gnatelim, etc.)

Ada 2005 in Visual Studio
2005
From: Martin Carlisle

<carlislem@acm.org>
Date: 3 May 2006 07:04:23
Subject: Ada 2005 in Visual Studio 2005
Newsgroups: comp.lang.ada
The A# compiler (Ada for .NET), a free
GPL software product, has now been

integrated into Visual Studio 2005. For
more details, see
http://asharp.martincarlisle.com
From: Martin Carlisle

<carlislem@acm.org>
Date: 5 May 2006 07:43:48
Subject: Re: Ada 2005 in Visual Studio 2005
Newsgroups: comp.lang.ada
> Can we use the .NET environment

coupled with A# for coding Ada 95
applications.

A# and Ada 2005 have the same syntax.
You can write Ada 2005 (Ada 95)
applications using A# and .NET.
From: Srini <RSVasan1007@gmail.com>
Date: 5 May 2006 04:51:13
Subject: Re: Ada 2005 in Visual Studio 2005
Newsgroups: comp.lang.ada
That is wonderful.
Will the “free” Visual Studio C#
download available from Microsoft work?
I am not sure what the version number of
that is.
From: Martin Carlisle

<carlislem@acm.org>
Date: 5 May 2006 07:45:05
Subject: Re: Ada 2005 in Visual Studio 2005
Newsgroups: comp.lang.ada
I do not believe the Express (free) version
of C# will work, but I haven’t tested this.
The documentation from MS says you
have to at least have the “Standard”
version.

References to
Publications
AdaCore Technical Papers
Author: Jamie Ayre
Date: Wednesday March 8, 2006
Title: Certification & Object Orientation:

The New Ada Answer
URL: http://www.adacore.com/2006/03/08/

certification-object-orientation-the-new-
ada-answer/

The object model of Ada 2005 is well-
suited for applications that have to meet
certification at various levels. We review
the use of Ada in the context of
certification, and show that the object-
oriented facilities of the current language
standard, properly restricted to avoid
dynamic dispatching, can already be used
without problems under current DO-178B
guidelines. We then examine the
complications to certification that are
presented by dynamic dispatching in a
single inheritance model, and show
implementation-specific ways of
addressing these complications. Finally,
we discuss the problems introduced by the
use of multiple inheritance. We conclude
by showing how, regardless of the extent
to which object-oriented idioms are used,
Ada provides a safe and efficient vehicle
to create certifiable systems.

82 Ada Inside

Volume 27, Number 2, June 2006 Ada User Journal

Author: Jamie Ayre
Date: Thursday March 30, 2006
Title: Safety, Security, and Object-Oriented

Programming
URL: http://www.adacore.com/2006/03/30/

safety-security-and-object-oriented-
programming/

When safety-critical software
malfunctions people lives are in danger.
When security-critical software is cracked
national security or economic activity
may be at risk. As more and more
software embraces object-oriented
programming (OOP) safety-critical and
security-critical projects feel compelled to
use object-orientation. But what are the
guarantees of OOP in terms of safety and
security? Are the design goals of OOP
aligned with those of safe and secure
software (S3) systems? In the following
sections we look at key OOP aspects and
analyze some of the hazards they
introduce with respect to S3 and outline a
possible way of addressing these
vulnerabilities. Specifically, after a quick
overview of OOP in section 2, section 3
deals with inheritance and shows some of
its hazards in terms of S3 along with
possible remedies. Section 4 focuses on
dynamic binding and suggests a safer and
more secure implementation than what is
conventionally done. Finally, section 5
looks at testing programs with dynamic
binding.
 [See also “Object-Oriented Programming
and Safety” in this issue — su]

Ada Inside
Boeing 787 Air Conditioning
Control Unit
URL: http://www.adacore.com/2006/05/01/

hamilton-sundstrand-selects-gnat-pro-
for-boeing-787-air-conditioning-pack-
control-unit/

Monday May 1, 2006
Hamilton Sundstrand Selects GNAT Pro
For Boeing 787 Air Conditioning Control
Unit
SALT LAKE CITY, USA — Today at the
Systems & Software Technology
Conference AdaCore announced that
Hamilton Sundstrand has chosen
AdaCore’s GNAT Pro as the Ada
development environment for the
software running in their Air
Conditioning Pack airborne software
configuration, which regulates cabin air
temperature on the Boeing 787 aircraft.
As part of the contract, AdaCore will
adapt its flagship GNAT Pro Ada
development environment to generate
code for the 787 Pack Control Unit’s
designated MPC5554 microcontroller,
and provide support for this new,
specialized configuration.

The Boeing 787’s Pack Control Unit is
the first cabin air temperature control
system to utilize Freescale’s™ MPC5554
microcontroller (MCU). Hamilton
Sundstrand chose the MPC5554 MCU
because it offers a BookE compliant
PowerPC™ core, a high level of
integration, high system performance,
reliability, real-time control and the
ability to reuse legacy software
architecture, reducing development cycle
time.
 “Implementing GNAT Pro for the
PowerPC BookE compliant e200z6 core
of the 5554 is very exciting for AdaCore,”
said Robert Dewar, President of AdaCore.
“The MPC5554 is loaded with control
functionality and is clearly attractive to
designers of critical embedded systems
for which Ada is the preferred
programming language.”
The processor is a variation on the
standard AIM PowerPC architecture that
AdaCore has been supporting for many
years. The differences derive from the
processor’s incorporation into highly
integrated embedded microcontrollers,
and the port of the GNAT Pro toolset
utilizes all of the work done for the
PowerPC while taking advantage of the
GCC compiler technology’s flexibility to
adapt to the different selection of
instructions.
 “This is the first GNAT Pro port
targeting an MPC5554 processor, and we
are looking forward to this opportunity,”
added Dewar. “Our advanced Ada
environment will help Hamilton
Sundstrand manage their development
and exploit the advantages of Ada for
mission-critical systems.”
 “We knew that finding an Ada compiler
vendor that could design, deliver and
support our designated hardware platform
would be critical to the success of this
project,” said Andrew Wayner, Senior
Software Designer at Hamilton
Sundstrand. “We selected AdaCore based
on previous technical expertise with both
Ada compilation systems and with
avionics application development
environments, specifically on the A380
cabin air conditioning system project. The
company also demonstrated a serious
commitment to port GNAT Pro to the
MPC5554 and see the project through to
fruition.”
About Boeing 787 Air Conditioning PCU
Two identical, dual channel, fully digital
Pack Control Units (PCU) provide most
of the control and monitoring of the Cabin
Air Conditioning and Temperature
Control System (CACTCS) on the Boeing
787. The CACTCS provides cabin heating
and cooling for passenger, crew and cargo
zones utilizing two air cycle packs, each
controlled by a PCU. Each channel of a
PCU contains a Freescale MPC5554,

which provides a plethora of features such
as CAN communications, Queued
Analog-to-Digital Converters and an
Enhanced Modular Input/Output
Subsystem. The PCU takes advantage of
these features to acquire data from a
multitude of sensor types, including
pressure and temperature as well as
providing accurate and real-time control
of its motor control outputs.
About Hamilton Sundstrand
Hamilton Sundstrand, a United
Technologies Company, is headquartered
in Windsor Locks, Connecticut, and
manufactures and services advanced
technology aerospace and industrial
systems. It employs approximately 16,000
people worldwide. United Technologies,
based in Hartford, Conn., is a diversified
company that provides high-technology
products and services to the aerospace and
commercial building industries.

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. — su]
(...) Work in high-integrity programming
language design and static verification.
You will form part of this team, working
in all areas of the product lifecycle
including R&D, customer support, sales,
delivery of training, and marketing.
(...) You will require a robust set of
technical skills and have experience in
one or more of the following:
programming language design, static
analysis tools or compilers, theorem
proving, software model checking, SAT
solving or grid-based computing. You
will probably have at least a 2:1 degree in
a related subject. You’ll be a strong team
member, have the ability to think
analytically and have clear customer
focus. Applications from recent graduates
or those with higher degrees are welcome.
(...) For our aeronautics skills centre, we
are currently looking to recruit Ada 83 or
95 SOFTWARE ENGINEERS
specialised in ADA DESIGN and
DEVELOPMENT (m/f). Experienced in
ADA DESIGN, we propose you to join
our team working on most challenging
projects, in the highest speed area (space
and avionics) and the railway sector.
Knowledge in aeronautic or military
standards or railway standards is a plus.
Industrial Engineer (Ing) or Civil
Engineer (IR) with good knowledge &
experience in Ada 83/95 (min 3 years).
You have very good communication skills
and English is mandatory as the
development is done on a very
international and multi-site basis, with
frequent meetings and close interactions.

Ada in Context 83

Ada User Journal Volume 27, Number 2, June 2006

Ada in Context
Java-like Exception
Contracts
From: Maciej Sobczak

<maciej@msobczak.com>
Organization: CERN — European

Laboratory for Particle Physics
Date: Wed, 22 Mar 2006 10:24:10
Subject: Re: Handling invalid objects
Newsgroups: comp.lang.ada
Dmitry A. Kazakov wrote:
> Still exception contracts would greatly

improve safety of Ada as a language.
If by exception contracts you mean
embedding the exception specification in
the “signature” of the procedure/function,
then it was already exercised by the Java
community with rather disappointing
effects.
From: Maciej Sobczak

<maciej@msobczak.com>
Organization: CERN — European

Laboratory for Particle Physics
Date: Wed, 22 Mar 2006 17:42:53
Subject: Re: Handling invalid objects
Newsgroups: comp.lang.ada
> If Java did it wrong, let’s do it right in

Ada.
Do what exactly? This is important
question. The problem with exception
specifications is that they are self-
contradictory:
- We use exceptions when we want to
DECOUPLE error reporting from error
handling. We find it especially good in
those situations, where error reporting site
and error handling site are separated by
more than one level of subroutine calls
(otherwise returning error codes is good
enough).
- We embed contract information in
subroutine signatures to *COUPLE* the
caller with the callee with respect to what
they provide to each other and what they
expect from each other.
Now, “coupling” and “decoupling” are
hardly compatible. Let’s see where it
breaks in so-called practice.
First, there is a cascading effect when
someone on one end of the chain adds a
new exception type. Just let’s say that the
project evolved and for example a
database got involved in something that
was previously managed with the use of
files. There is a new DBError exception,
possibly having some db-specific
information encoded (you know,
exceptions are real objects in some
languages :)). This error is not handled
neither by the offending function nor
anybody in the chain, but is supposed to
be handled at some higher level. In this
scheme, the poor programmer has to add
the DBError type to the exception

specification to *all* functions in the
chain. And apart from being a
maintenance horror, it might be just
impossible because the functions on the
road are already closed or just owned by
someone else. The tempting “solution” is
to shut up the exception to meet the
specification which was already cast in
stone. Just grep any bigger Java project
for things like:

catch (Throwable e) {}
 // <- empty block here!

to see it at work.
Java guys can at least try to fight this
problem with inheritance. The exception
need not be exactly of the specified type,
but might be something derived from
what was specified. So, the other
temptation is to specify the exception type
that is rather general (higher in the
inheritance hierarchy) to ease the
accommodation of new exception types.
But the more general is the specification,
the less useful it is with regard to
enforcing anything. In the extreme, it does
not enforce anything at all.
(Note that Ada would not have this
possibility, or it would need to allow for
exception hierarchies.)
Second, the problem is that the error
reporting and handling might be stated as
a contract not between immediate caller
and callee, but between some entities that
operate across some other entity. A C++
example could be:

void myFun()
{
 vector<MyType> array;
 // ...
 sort(array.begin(), array.end(),
 myComparator());
 // ...
}

Above, the call chain is myFun->sort->
myComparator, but the error handling
and reporting is the business which is
agreed between myFun and
myComparator only. The sort algorithm
was written long before myFun and
myComparator and it (sort) does not care
what it sorts and for whom. This means
that sort should be completely transparent
to the agreement that myFun and
myComparator might have with regard to
error reporting and handling.
The solution might be to allow the
compiler to synthesise the exception specs
for sort automatically. But then, the specs
would be just useless, because it would
not enforce anything.
The real problem is that languages based
on simple subroutine calls are not
appropriate for expressing these kind of
relationships. Something fundamentally
different would be needed to ensure that
myFun handles exceptions from

myComparator without involving sort in
this process, but I don’t see what that
thing would look like.
Anyway. The whole purpose of
exceptions is to provide a kind of “out-of-
band” channel which is *decoupled* from
the main chain of subroutine calls. This
“out-of-band” property is something that
you either like (and/or accept) or not in
the given project. Messing around with
things like exception specifications is just
swimming upstream - you cannot provide
coupling into something that was
intended to be “out-of-band” in the first
place.
Java guys failed with this exercise. C++
community dropped the idea altogether
before failing (C++ never had compile-
time enforcements of exceptions specs
and today nobody’s using them anyway).
I don’t see how Ada would do something
like this without incurring effects
described above or without fundamentally
changing something in the way
subroutines are used. But I’m looking
forward to see your opinions on this (and
maybe learn something about Ada
culture? :)).
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 23 Mar 2006 14:20:24
Subject: Re: Handling invalid objects
Newsgroups: comp.lang.ada
No, we are decoupling using contracts.
Instead of presenting any concrete caller,
we do a contract. The callee is coupled
only to its contract. It does not to any
caller, because it hopes that any caller will
respect the contract.
This [cascading effect problem] is not
specific to exceptions. It is “fragile class”
design.
You cannot add a new exception type
[better to say a class of], this breaks the
contract. You have to stay within the
class.
In Ada model, where exceptions are
values, this means that the exception
contracts should specify ranges of values
[subtype] and a new exception [value]
should be chosen from that range. It is
doable.
When you have some procedure
composed out of another procedure, in
this example, you pass it as a parameter,
you could say something like:
A raises this plus anything what B does.
Because B has a defined subroutine type,
its contract is statically known.
One could also bind exceptions to types
of primitive subprograms. For example:

84 Ada in Context

Volume 27, Number 2, June 2006 Ada User Journal

type File is tagged ...;
subtype File_Error is
 File'Exception;
-- The range of exceptions
--+ bound to File
procedure Read (X : File)
 exception File_Error;
type DB is new File with ...;
DB_Error : File_Error := some sugar;
-- Declares a new exception
--+ in the range
procedure Read (X : DB);
-- This is allowed to raise DB_Error

Exceptions allow us to weaken
preconditions. Without exceptions, a real-
valued sqrt should specify x >= 0.0 as a
precondition. This is unacceptable when x
is statically unknown. Exceptions relax
the precondition and bring things back to
static. The price is that you leave the
realm of real numbers. You have to this
way or another. Either you make it
complex-valued or you say that the result
is “Real or Constraint_Error.” Who will
deal with this result is the question for
another day. But when exceptions are not
contracted, then the gain of static
preconditions gets lost. So in my view,
Java’s is undoubtedly right here.
From: Stefan Lucks

<lucks@th.informatik.uni-
mannheim.de>

Organization: Th. Informatik, Univ.
Mannheim, Germany

Date: Wed, 22 Mar 2006 19:06:57
Subject: Re: Handling invalid objects
Newsgroups: comp.lang.ada
One thing Ada could reasonably do is to
enable subroutines to *promise* to
raise no exceptions, or only certain
exceptions. (And, of course, to enable the
compiler to verify if this promise is kept.
This would, be a little bit similar to
SPARK, which can prove the exception-
freedom of subroutines.)
Of course, the implication is that the
subroutine itself may only use (or rather
“with” ;-) subroutines which make a
similar promise, or have to handle all
exceptions (“others”).
As an example for a notation, consider the
following subroutines which any freedom
to raise and propagate exceptions
deliberately:

function "+"(A, B: T) return T;
procedure Get (Item: out T);
procedure Put (Item: T);

The remaining source code is not Ada.
(Or perhaps it is Ada 2015? :-)
No Exceptions raised:

function "+"(A, B: T) return T
 raise null;
procedure Get (Item: out T)
 raise null;

procedure Put (Item: T)
 raise null;

Some Exceptions may be raised:

function "+"(A, B: T) return T
 raise Constraint_Error,
 Program_Error;
-- can raise or propagate
--+ Program_Error, but nothing else

procedure Get (Item: out T)
 raise Ada.Text_IO.End_Error,
 Ada.Text_IO.Data_Error,
 Ada.Text_IO.Mode_Error,
 Ada.Text_IO.Layout_Error;
-- can raise or propagate these
--+ four exception, none else

Line_Failed : exception;

procedure Put_Line (Item: T)
 raise Ada.Text_IO.End_Error,
 Ada.Text_IO.Data_Error,
 Line_Failed;
-- can raise or propagate these
--+ three exceptions none else

procedure Put (Item: T)
 raise Ada.Text_IO.End_Error,
 Ada.Text_IO.Data_Error,
 package;
-- can raise or propagate
--+ two exceptions from Ada.Text_IO
--+ and any exception defined in the
--+ current package

I could also imagine a package to specify
which errors might be raised or
propagated in any of its subroutines. This
would simplify notation. Consider the
following almost-complete example for a
package specification

with Ada.Text_IO;
package Some_Library
 raise Ada.Text_IO.End_Error,
 Ada.Text_IO.Data_Error,
 Ada.Text_IO.Mode_Error,
 Ada.Text_IO.Layout_Error,
 Constraint_Error,
 Program_Error,
 package;
-- Any subroutine defined here
--+ may raise the four exceptions
--+ from
--+ Ada.Text_IO, the two exceptions
--+ Constraint_Error, Program_Error,
--+ from Standard, and the
--+ exception(s) defined in the
--+ package, namely
--+ Line_Failed.

 Line_Failed : exception;
 type T is private;
 function "+"(A, B: T) return T;

 procedure PutLine (Item: T);
 procedure Put (Item: T);

private
 type T is ...;
 -- which type T wold you like?

end Some_Library;

Further, when a subroutines X formal
parameter is access-to-subroutine, then
any exception raised by a subroutine
given as an actual parameter need not be
handled by X. This should be the caller’s
duty.

Uninitialized variables in
Ada
From: Brian May

<bam@snoopy.apana.org.au>
Date: Tue, 14 Mar 2006 18:44:09
Subject: Re: private types
Newsgroups: comp.lang.ada
(...) some languages will initialise all
variables to dummy values — this means
you can get predictable results in code
that (wrongly) uses them before setting
them to a value.
In this case it is possible to force
initialisation (at least outside the
package), as per another poster’s
suggestion, because it is a private type.
Alternatively it is possible to turn it into a
record type and provide a default value
for the component, as per another post.
In other cases it isn’t so easy, e.g. any
non-private non-record type.
In fact, by default (at least last time I
checked), GCC (or was that GNAT)
doesn’t check the validity of parameters
to functions if the type matches, even
though the type hasn’t been initialised and
may just happen to contain an illegal
value.
I seem to recall Ada will initialise access
types to null, and record components (if
defaults given), but nothing else.
From: Justin Gombos

<usenet.ada.jog@xoxy.net>
Date: Fri, 17 Mar 2006 04:33:15
Subject: Re: private types
Newsgroups: comp.lang.ada
Beyond access types, I would not
consider that feature you’re describing
helpful. In fact, it’s more of a disservice.
The first problem: initializing to zero, or
some other “dummy” value of the
compilers choice is likely to result in a
valid value (sometimes), which only
serves to /hide/ bugs in the cases where
the object is used prior to a meaningful
assignment.
Then problem with user forced
initialization (which is what the OP is
after): it could mask the cases where
reassignment is inevitable. IOW, suppose
you have subprograms like this:

Ada in Context 85

Ada User Journal Volume 27, Number 2, June 2006

function Exists return Boolean is
-- Later assignment to Found_It is
--+ evitable
 Found_It : Boolean := False;
begin
 if Some_Precondition then
 Found_It :=
 Some_Other_Condition;
 end if;
 return Found_It;
end Exists;

In the above case, an initial value may
persist if some path is not executed. The
maintainer can immediately expect this to
be the case upon seeing the initialization
(assuming the author was competent). In
other cases, an initial value may get
overwritten no matter what. In these cases
it makes more sense not to initialize,
because it clarifies to the maintainer what
kind of logic to expect before even
looking at the body of code.
It’s always irritating to be reading
someone else’s code, and find that
they’ve blanket initialized objects
needlessly. It hides bugs, and also
obscures the logic from the maintainer.
We don’t know enough about the OPs
case to know whether forced initialization
is wise, but he should be cautioned not to
take this approach arbitrarily, or on a
regular basis. It really depends on the
situation.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Fri, 17 Mar 2006 19:17:32
Subject: Re: private types
Newsgroups: comp.lang.ada
Brian May wrote:
> For testing the code, as Found_It is

undefined in the second test, it is
possible it might just fluke the tests you
give it and pass everyone.
The first code is predictable though,
and as long as you give it the same
inputs, it will always produce the same
outputs, making it easier (IMHO) to
test.

It’s not just testing. Ada 95 is very clear
that an Ada compiler cannot assume an
object is in range unless it can prove it is
initialized. Explicit initialization makes
this proof trivial (and leaving it out may
make it impossible to prove.) Thus, given
 A : Positive := 10;
 B : Positive;
the compiler can assume that A is in
range, potentially being able to eliminate
checks and speeding up the code. But it
cannot assume that B is in range (unless it
can prove that it is initialized further on).
So I recommend initializing everything
(or assigning it immediately after the
begin) that could be significant to
performance.

From: Justin Gombos
<usenet.ada.jog@xoxy.net>

Date: Sat, 18 Mar 2006 02:17:12
Subject: Re: private types
Newsgroups: comp.lang.ada
As a rule, I try to put readability ahead of
optimizations. But if I did want to write
optimum code, I’m not seeing your point
here.
The runtime checks that might be placed
on B need not affect code not handling B.
Assuming an extreme case, suppose B is
not assigned until 100 lines later (i.e. not
immediately following the begin). There
should be no runtime checks in those 100
lines between the ‘begin’ and the first
assignment to B if B is not referenced
(and if B is referenced prior to
assignment, that’s a problem that
outweighs excessive checks anyway).
The first occurrence of B is going to be an
assignment to B, and it must have the
same checks that A would have if A were
being reassigned at this point. So I’m not
seeing why more runtime checks would
occur in the case of B.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 20 Mar 2006 18:08:25
Subject: Re: private types
Newsgroups: comp.lang.ada
Because, in general, you don’t know
whether B is initialized. And Ada 95
requires that invalid values be detected
before they cause any damage (with some
unfortunate exceptions). If B is used to
index an array, for instance, it must be
checked unless the compiler can prove
that it is valid. But that is very hard in
general, because of path issues:

 B : Positive;
begin
 if Bafflegab (10) then
 B := 10;
 end if;
 ... Str (B) ... -- Must check for
 --+ invalid values here.
end;

There is no way that the compiler can tell
if B has been initialized or not. And Ada
95 does not allow *assuming* that it is
initialized (which is essentially what your
argument boils down to) — the compiler
must presume the program is incorrect for
this purpose unless it can prove that it is
not.
But note Bob Duff’s point that there are
other ways to arrange code generators that
might have different effects on checking.
That’s true in general, but in this case in
particular, the compiler cannot remove the
check for Str (B) no matter what the code
generation scheme. If B had been
initialized, it would have been able to in
most schemes.
In any case, in most real code, it’s hard to
prove something is initialized unless it is

done right at the top. Moreover, compilers
vary in the amount of flow analysis that
they do. So preinitialization is the way to
go for maximum portability. (But I
suggest this when you’re going to
initialize the value anyway, as opposed to
initializing it just for this purpose.)
You’re right about premature
optimizations, of course.
From: Dirk Craeynest

<dirk@apollo.cs.kuleuven.ac.be>
Organization: Ada-Belgium, c/o Dept. of

Computer Science, K.U.Leuven
Date: 18 Mar 2006 09:39:56
Subject: Uninitialized variables (was: Re:

private types)
Summary: If you use GNAT, use pragma

Initialize_Scalars.
Newsgroups: comp.lang.ada
We did (and do) feel [initializing
everything] is not a good approach, at
least not when using GNAT or another
compiler that supports something like the
pragma Initialize_Scalars and enhanced
validity checking.
For much more about uninitialized
variables in Ada code, the following
paper might be useful:
[1] “Exposing Uninitialized Variables:
Strengthening and Extending Run-Time
Checks in Ada”, Robert Dewar, Olivier
Hainque, Dirk Craeynest, and Philippe
Waroquiers, In [2] “Proceedings of the
7th International Conference on Reliable
Software Technologies — Ada-Europe
2002”, Vienna, Austria, June 17–21,
2002, Johan Blieberger and Alfred
Strohmeier (Eds.), volume 2361 of
Lecture Notes in Computer Science,
pages 193–204, Springer-Verlag, 2002.
The conclusion of that paper contains our
recommendation:
---start-quote---
5.3 Impact of Usage of Initialize Scalars
on How to Program
There is a trend in programming
guidelines to “force” initializing
everything at declaration resulting in code
like:

B : Natural := 0;
if then
 B := 5;
else
 B := 8;
end if;

The difficulty with such an approach is
that the initial value is meaningless. If this
value is used accidentally, the results are
potentially just as wrong as the use of an
uninitialized value, and furthermore, the
explicit initialization precludes the
approach we have described in this paper,
and thus may introduce bugs that are
much harder to find and fix. The
automatic initialization under control of

86 Ada in Context

Volume 27, Number 2, June 2006 Ada User Journal

the compiler using Initialize Scalars is a
far preferable approach.
We therefore recommend that when a
scalar is declared, the programmer should
avoid initializing it if the code is supposed
to set the value on all paths. It is better to
let Initialize Scalars + gnatVa detect the
bug in the code logic rather than trying to
deal with meaningless initial values. Even
for safety-critical programs, we can first
compile with Initialize Scalars + gnatVa +
invalid values and then, if needed, field
the code with Initialize Scalars + all zero
values (if it is the case that zero values
give the code a better chance of avoiding
seriously improper behavior).
---end-quote---
The GNAT manuals provide more
information on GNAT’s pragma
Initialize_Scalars [3] and on enhanced
validity checking [4]. Reference [3]
mentions:
---start-quote---
Note that pragma Initialize_Scalars is
particularly useful in conjunction with the
enhanced validity checking that is now
provided in GNAT, which checks for
invalid values under more conditions.
Using this feature (see description of the -
gnatV flag in the users guide) in
conjunction with pragma
Initialize_Scalars provides a powerful
new tool to assist in the detection of
problems caused by uninitialized
variables.
---end-quote---
We can assure everyone that from a
developers and testers point of view the
combination of Initialize_Scalars and
enhanced validity checking is indeed
“particularly useful”.
References:
[1] <http://www.cs.kuleuven.be/~dirk/
papers/ae02cfmu-paper.pdf>
[2] <http://www.springer.de/cgi/svcat/
search_book.pl?isbn=3-540-43784-3>
[3] <http://www.adacore.com/
wp-content/files/auto_update/
gnat-unw-docs/html/
gnat_rm_2.html#SEC48>
[4] <http://www.adacore.com/
wp-content/files/auto_update/
gnat-unw-docs/html/
gnat_ugn_4.html#SEC47>
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 20 Mar 2006 18:38:40
Subject: Re: Uninitialized variables (was:

Re: private types)
Newsgroups: comp.lang.ada
I disagree in detail with your conclusions,
but probably not in general.
1) Initialize_Scalars is an Annex H thing
that is rarely available in Ada
implementations. GNAT is the only one
that I know of that has it. I don’t think

offering advice that most users can’t
follow is very helpful.
2) Initialized_Scalars does no good when
you have full range types (which are very
common in a compiler, for instance). In
that case, it is equivalent to initializing to
a random value, and worse, it gives a false
sense of security.
3) “The initial value is meaningless”.
Here I agree and disagree with you. The
agreement is that you shouldn’t initialize
to a meaningless value. The disagreement
is that for most variables, there is an
obvious initial value (like Null for access
types) that is not meaningless. For
instance, I have a lot of string processing
code in the spam filter that have length
variables. I usually initialize the length to
zero (empty), because that *is* the initial
state of the object. So, much of time there
is a useful initialization.
It think it is better to *avoid* uninitialized
variables than to argue about how to
handle uninitialized values. The
example you gave:

B : Natural := 0;
if ... then
 B := 5;
else
 B := 8;
end if;

is awful, I agree. But I’d probably write:

B : Natural := 8;
if ... then
 B := 5;
 -- else use the default values
end if;

instead, and the initial value is no longer
meaningless. Similarly, I use a lot of
blocks, and try to keep the declarations on
variables to scopes where their initial
values are known (or immediately
initialized). Both of these are better than
any technique to handle uninitialized
variables.
4) As your note suggested, assuming that
everything is tested is dangerous. It’s
necessary in the fielded system to protect
against uninitialized variables causing
weird results. I just prefer to do it from
the beginning (by reducing them as much
as possible). And I’d prefer to rely on
compile-time warnings (which GNAT
also does well, BTW) to get rid of them at
the source.
5) Any extra cost from initializing objects
to meaningful values early (and such cost
is usually quite small) will quickly pay for
itself. (I think that is in line with the
conclusions of the paper, too).
Conclusion: don’t write uninitialized
variables in the first place; but use your
head to eliminate them — junk
initializations are no better than the
uninitialized variables that they replace.

Mindless following of coding standards
always produces junky code.
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Sat, 18 Mar 2006 15:06:19
Subject: Re: Uninitialized variables (was:

Re: private types)
Newsgroups: comp.lang.ada
Here (trying to to sum up), three problems
I see with the tactic of initializing
everything:
- useless initializations (i.e. dummy
values rewritten later) take time and
usually _hurt_ performance (think to
number crunching with huge objects, or
frequently used functions with local
variables)
 - useless initializations introduce
meaningless code lines
 - useless initializations prevent detecting
bugs that can be detected without these
initializations (they can be detected by
combining the Initialize_Scalars pragma
and the validity checks)
My rule is rather to initialize only
variables you can give a meaningful
values. Of course it depends on the
context. Maybe there are situations where
you can prefer a program giving wrong
results than an unhandled exception
popping at the wrong moment (although I
find the method very shocking!)... In such
cases the systematic initialization could
be a way (not nice but pragmatic) to
silently disable bug detection.
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Sat, 18 Mar 2006 09:36:24
Subject: Re: Uninitialized variables
Newsgroups: comp.lang.ada
This is also the approach I follow. It has
the added benefit that some compilers can
now give you warnings about reading
from it before you assign to it and thus
help you find the bug. If one does the
typical initialize everything to 0 or 'First
or something like that then you can expect
no help from the compiler.
Now in reality, compilers vary in their
ability to provide useful warnings in this
area.
GNAT does a reasonably good job of
balancing real warnings in this case
against false warnings.
Another compiler I use takes a different
approach where it seems to warn in a lot
more cases and thus ends up with a lot
more false positives. It is probably not
that bad of an approach if you used this
compiler from the beginning but with lots
of legacy code the signal to noise
Consider the following toy code:

with Text_IO;
procedure Toy is
 I : Integer;
 I_Set : Boolean := False;

Ada in Context 87

Ada User Journal Volume 27, Number 2, June 2006

 Should_We_Set_I : Character;
 J : Integer;
begin
 Text_IO.Get(Should_We_Set_I);
 if Should_We_Set_I = 'y' then
 I_Set := True;
 I := 1;
 end if;
 if I_Set then
 Text_IO.
 Put_Line(Integer'Image(I));
 -- This is ok
 Text_IO.
 Put_Line(Integer'Image(J));
 -- This is bad
 end if;
 J := 1;
end Toy;

GNAT warns on the line that says “This is
bad” but not on the line that says this is
ok.
Another compiler I use warns on both
(Not posting other compiler here only
because I have not tested this exact code
on it and am making this assertion based
on similar real code).
Obviously, unless one uses someting like
polyspace, a simple compiler can’t be
expected to detect all of these path flow
type cases.
The important point here is that if one had
a convention that all variables should be
initialized, no compiler could tell you that
you were doing something wrong on the
“this is bad line”.
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Sat, 18 Mar 2006 12:06:37
Subject: Re: private types
Newsgroups: comp.lang.ada
Or use a tool like PolySpace, which is
very good at spotting this sort of thing.
(www.polyspace.com).
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: 18 Mar 2006 07:47:09
Subject: Re: private types
Newsgroups: comp.lang.ada
This is not quite true. What the compiler
can prove depends on the compiler’s code
generation strategy. Example:

type Index is range 1..10;
type A is array(Index) of Character;
X: Index; -- not initialized here
procedure P(Y: Index) is
begin
 ...
end P;
... -- (*) might initialize X here
P(X);

Suppose the compiler cannot prove that
the code marked “-- (*)” will initialize X.

The compiler has a choice: It can do a
range check at the call to P, and then
assume inside the body of P that Y is in
range (even though the value _might_
have come from an uninitialized variable).
Or, the compiler can avoid the range
check on the call to P, in which case it
cannot assume that Y is in range.
[Whether initializing everything could be
significant to performance] also depends
on the compiler. Many compilers can
prove that a variable is initialized here:

begin
 if ... then
 A := 3;
 else
 A := 4;
 end if;
 ... -- Here, we can presume A
 --+ is in range.

Adding “A := 0;” between “begin” and
“if” would be overkill for such compilers.
From: Justin Gombos

<usenet.ada.jog@xoxy.net>
Date: Fri, 17 Mar 2006 23:44:08
Subject: Re: private types
Newsgroups: comp.lang.ada
Robert A Duff wrote:
> I’m not sure what the right answer is,

but surely all the arguments for and
against dummy values apply equally to
access types.

I don’t agree with that. Null is a standard
abnormal object for access types in all
languages, and can never be taken for
something valid. Null pointers are
quickly detected, and easily understood.
But with any other type, null (zero) is
most likely a valid value. This is probably
why the ARM states:
 The implicit initial value for an access
subtype is the null value of the access
type.
But makes no such rule for other types.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: 18 Mar 2006 07:56:45
Subject: Re: private types
Newsgroups: comp.lang.ada
Null is neither “abnormal” nor “invalid”
in Ada. As for “all languages”, some
have a concept of “null” or “nil” or
whatever that is the same in this regard.
Some languages have no such concept.
In Ada, if an object of an access type has
no explicit initial value, you can’t easily
tell whether that means “null is a
meaningful value for this variable, and
that’s the default I want” versus “this
variable will be initialized to a meaningful
(non-null) value later”.
This is exactly analogous to the case with
integers — if they were default-initialized
to zero, you can’t easily tell whether zero

is intended as a meaningful initial value,
versus later initialization to a meaningful
value.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: 19 Mar 2006 13:15:03
Subject: Re: private types
Newsgroups: comp.lang.ada
> > Zero has a universal meaning with

access types, but it could be in range or
out of range for any other type. The
ARM selects access types specifically
to get a default initialization of zero for
this reason.

> Who says that Null := 16#0#? I could
image a Hardware/CPU/OS where it
would be better to define Null :=
16#FFFF_FFFF_FFFF_FFFF#.

The convention on TOPS-20 for null (in
all the various languages that have it) is to
use some address other than zero. I don’t
remember which address. The OS
protects that page so it traps (just as most
modern operating systems do for page
zero).
There was even an Ada compiler for
TOPS-20, and of course it obeyed that
convention.
Using all-zero-bits for null has some
minor efficiency advantages.
> For example an OS who’s Virtual

Memory Management System assign
address 16#0# to be a valid address and
to hold some important process data to
which the process needs access.
Of course programming C or C++ on
such an OS could be quite challenging
(Write to (void*)0 and you mess up
your Process Information Descriptor).

I believe the C++ rule is that 0 (written in
your program) is the same thing as NULL
— but it need not be represented
internally by all-zero-bits. Casting the
integer zero to a pointer, however, does
not necessarily result in NULL. That’s
sort of confusing, but if you understand
the rules, the “quite challenging”
comment above does not hold.
From: Dr. Adrian Wrigley

<amtw@linuxchip.demon.co.uk.uk.uk>
Date: Sun, 19 Mar 2006 20:43:42
Subject: Re: private types
Newsgroups: comp.lang.ada
> Super! And how many (in %) of C++

programmer actually know that. By
guess is 0.1%. And indeed I is the main
problem: Only a very few C/C++
programmers actually master the
language.

It is (or was) quite a common interview
question, to see if C (and C++)
programmers know their subject properly.
As you say, Robert, most don’t.
A related topic is the issue of pointer
representation, which (IIRC) says that
pointers to char (any kind) and void have
to be the same. Pointers to functions have

88 Ada in Context

Volume 27, Number 2, June 2006 Ada User Journal

to be the same. But all other pointers can
have their own representation. All
pointers can be converted to and from
pointers to void, without loss. And
pointers can have different sizes and
different patterns for the null pointer. I
suspect a lot of code would fail if
compilers wanted to exercise their full
freedoms!

Ada and the Open Source
Movement
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Sat, 06 May 2006 15:55:49
Subject: Re: Why C for the Open Source

Movement?
Newsgroups: comp.lang.ada
> Can someone explain me the reasons

why the main actors of the Open
Source community didn’t choose Ada
instead of C to write the core elements
of their systems (Linux, Hurd,
FreeBSD, etc...) and most of the critical
applications that come with it if the
main goal was to provide a real
alternative to the “proprietary clan”.
Would it have reduce significantly bug
list for all development projects and
assure much more reliable applications?
Isn’t the Unix tradition based on well
crafted design mechanisms? Does its
traditional ways became so heavy to
prevent adaptation and or renewal of its
philosophy through time?

All of those projects started before there
was a freely available Ada compiler.
In the case of someting like the GNU
project itself, when Stallman started the
GNU project, Ada 83 was not even really
out yet and certainly not in a position
where it was stable.
There is a lot of inertia to overcome once
one starts an OS project. Switching the
Linux kernel or Hurd or anything else of
that scale to Ada just for the sake of the
better language is probably not the best
idea.
Ignoring all of the forking and grubling
that it would create for a moment at the
very least one would have to agree that it
could be years before you got back to the
same level of stability as the original
kernel.
One could argue that it could be done
piecewise but the problem with that is if
you start small now you have to justify
pulling in some small Ada runtime into
the kernel just to support some particular
module and again it does not seem to
make sense.
There are lots of “silver bullet” languages
out there that have cool features (e.g.
Python) but still no one has tried to port
the kernel to python.
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: 8 May 2006 02:05:26

Subject: Re: Why C for the Open Source
Movement?

Newsgroups: comp.lang.ada
I think C was well suited as a bootstrap
language, because C was designed to
make the compiler writer’s job easy.
When starting the GNU project, RMS
first wrote a C compiler, and then used
that to write a Lisp system, which he used
for Emacs. That was the right thing to do,
IMHO.
Early on, Lisp was therefore in a much
better position than Ada to become the
language of choice for GNU. Even today,
there is still quite a lot of Lisp in
GNU/Linux systems; and not just in
Emacs and XEmacs, as there are several
free Common Lisp and Scheme systems
available now. But even then, Lisp is still
a minority language. So the OP’s
question remains valid, but in the context
of the early days of the GNU project, I
would ask “why C and not Lisp”? I think
it may be because Lisp has or can be
perceived to have too much overhead for
writing libraries or a kernel, and so was
summarily and incorrectly dismissed by
application programmers. I would think
the folks on comp.lang.lisp have already
discussed this question many times.
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: 8 May 2006 02:13:22
Subject: Re: Why C for the Open Source

Movement?
Newsgroups: comp.lang.ada
> Isn’t the Unix tradition based on well

crafted design mecanisms?
No, it’s not. It started as a hack made by a
few long-haired, rebel programmers in
their spare time, bazaar-style. In contrast,
MULTICS was intended to be a beautiful
cathedral of software, and I think it was
written in PL/I not C. MULTICS is still
not complete, and I think it’ll take as long
to complete as it took actual cathedrals :)
But history showed that “worse is better”,
unfortunately for purists.
http://en.wikipedia.org/wiki/
Worse_is_better
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 8 May 2006 15:12:11
Subject: Re: Why C for the Open Source

Movement?
Newsgroups: comp.lang.ada
I don’t think that it was simplicity. Unix
never was simple, rather it was simply
bad. (:-))
P.S. It is illogical to express badness in a
positive way, like “simplicity”, for
example. If simplicity is the goal, then it
is good, and thus bad cannot be simple! In
fact, to be really bad (as Unix, or
Windows is) is much harder than to be
any good. So many things can be
considered positive... It is very difficult to

ensure that most combinations of them
were indeed wrong... (:-))
From: thvv <thvv64@gmail.com>
Date: 6 Jun 2006 07:24:16
Subject: Re: Why C for the Open Source

Movement?
Newsgroups: comp.lang.ada
Dick Gabriel [the author of the “worse is
better” philosophy — su] is welcome to
his opinion, but as someone who worked
on Multics with the creators of Unix in
the 60s I have to say that I don’t see it that
way. Multics was not rigorously planned
first and then executed; our design and
implementation evolved over 20 years.
We did have this pattern of writing
something and discussing it before
coding, and often the discussion led to an
improved design. Multicians felt that we
were rebels, back in the 60s, fighting
against batch processing, writing systems
in assembler, and using human waves of
programmers. We advocated flexibility,
virtual memory, interactiveness, and
powerful tools. Ken and Dennis did not
have the longest hair or wildest beards on
the Multics development team.
Multics was written in PL/I. The Bell
Labs folks encountered BCPL at Project
MAC in the 60s and created B and then C
in the 70s. Multics was not “complete”
when Bull stopped development on it in
the mid 80s: no operating system is ever
“complete” since user needs, hardware,
and competition keep changing
requirements.
For more information, see
 http://www.multicians.org/myths.html
 http://www.multicians.org/pl1.html
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: 6 Jun 2006 08:35:15
Subject: Re: Why C for the Open Source

Movement?
Newsgroups: comp.lang.ada
:-) Thanks a lot for correcting me. I am
honoured that you gave us this first-hand
information. Multics is quite a legend to
me, a bit like dragons; now I feel like I’ve
just met an actual dragon slayer :)
Still, would you agree that Multics used
The Right Thing approach, as opposed to
Unix which uses Worse Is Better?

Object-Oriented
Programming and Safety
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Wed, 26 Apr 2006 11:17:58
Organization: Adalog
Subject: Re: procedural vs object oriented
Newsgroups: comp.lang.ada
> I am working in an Ada based flight

software development project. As a
means of improving I took to the CASE
tool based development. ours is a
procedural approach of development,

Ada in Context 89

Ada User Journal Volume 27, Number 2, June 2006

but the commercial CASE tools speak a
lot about class/object/UML. How will
this suit for procedure oriented
development where we don’t have
necessity to identify classes and do
detailed design as mentioned in OO
approach.

There is no sin in not being object-
oriented, it all depends on your needs.
Especially in real-time, procedural
approaches are often better when ensuring
WCET is important.
UML is an object oriented approach, and
is not appropriate for procedural
development. Other tools supporting
SART for example might be more
appropriate.
The need must be lead the choice of the
tool, not the other way round!
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 26 Apr 2006 14:52:50
Subject: Re: procedural vs object oriented
Newsgroups: comp.lang.ada
I would not equalize OO with UML.
Ada is a nice language. You’d probably
need less tools when working in Ada,
either OO or not.
Class/object is a different story. Even if
you don’t need OOA for your problem
space. It depends on how much code
you’d like to reuse. You can use generics
for that, or tagged types, which are
traditionally counted for OO and
“classes.” But in any case you will need
to identify and refactor these.
From: bh <no-spam@nosuchaddress.com>
Newsgroups: comp.lang.ada
Date: Wed, 26 Apr 2006 21:33:04
Subject: Re: procedural vs object oriented
If you don’t know how to do good OO
with Ada, I’d recommend against it. We
tried a project using OO and I think it is
pretty safe to say we didn’t get what we
were hoping for. I think your results will
be better with procedural.
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: Thu, 27 Apr 2006 07:22:21
Subject: Re: procedural vs object oriented
Newsgroups: comp.lang.ada
According to Robert Dewar during
FOSDEM, nobody uses OOP in avionics
software, because the uncertainty inherent
to dynamic dispatching hinders
certification. Is someone on this
newsgroup in a position to give a counter-
example?
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: 27 Apr 2006 03:42:10
Subject: Re: procedural vs object oriented
Newsgroups: comp.lang.ada
> Can’t tell about avionics, but what

uncertainty of dynamic dispatching is
meant? Or, maybe, “certification” is the

context of? Then which certification,
according to which criteria?

Dynamic dispatching, by definition,
means that you don’t know which
subprogram you call at run-time. The
compiler guarantees that the call will
succeed (i.e. that there exists a
subprogram to dispatch to), but there is
uncertainty about which one it is.
DO-178B does not prohibit dynamic
dispatching; it only requires that the
program be completely deterministic, and
it requires the software developers to
provide reasonable proof that the program
is indeed deterministic.
If you use dynamic dispatching in a
program, you must therefore prove that
you know precisely which subprogram
you call each time you execute the
dispatching call. At DO-178B level A,
you must also prove that the machine
code in the executable program dispatches
correctly and in a deterministic way, in
bounded time and memory conditions.
This additional burden of proof is on the
developer. That’s what I meant when I
said that dynamic dispatching hinders
certification.
The question of “how to I use dynamic
dispatching while keeping the
certification costs reasonable” is quite
interesting, complicated, and has received
a lot of thought, but no clear answer has
come out of it. So, for now, the only
clear-cut answer in the conservative world
of avionics is, “you don’t.”
> Talking about uncertainty in general,

what about “inherent uncertainty” of a
procedure call? Can you tell which
procedures will be called and when at
run time? If you can then, you can also
do it for dispatching calls. Are generic
bodies more certain? With “with
function "*" (Left, Right : Foo) return
Foo”? Really?

A static procedure call has no uncertainty:
when you read the program source, you
know exactly which subprogram is called,
even in the presence of overloading.
When you instantiate a generic, you also
know exactly which subprogram you pass
as a parameter. Again there is no inherent
uncertainty here.
At Barco, our coding standards prohibit
access-to-subprogram values, and require
all generics to be preelaborated. Thus they
eliminate all uncertainty and make all
subprogram calls statically deterministic.
Needless to say, our coding standards also
prohibit dynamic dispatching.
From: Maciej Sobczak

<maciej@msobczak.com>
Organization: CERN — European

Laboratory for Particle Physics
Date: Thu, 27 Apr 2006 13:07:35
Subject: Re: procedural vs object oriented
Newsgroups: comp.lang.ada

In what way is this better or more certain
than a dispatching call based on the tag?:

If Shape.Type = Triangle then
 Draw_Triangle(Shape);
elsif Shape.Type = Rectangle then
 Draw_Rectangle(Shape);
else
 Put("Damn, I never thought we will
 have more shape types.");
end If;

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: 27 Apr 2006 05:03:31
Subject: Re: procedural vs object oriented
Newsgroups: comp.lang.ada
Because:
* the dispatching logic is visible in the
source and therefore easy to trace to
object code (you always certify the
machine code, not the source code).
* you see, at the call site, the complete list
of possible call targets.
Besides, peer review would reject your
code. You should have used a case
statement with no “others” clause, and
thought about all possible shape types up-
front.
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: 27 Apr 2006 08:17:25
Subject: Re: procedural vs object oriented
Newsgroups: comp.lang.ada
> This is something I’m not getting in this

discussion. Provided that you know all
derived classes, you know all possible
dispatchings and you can validate all
for correctness and time the worst one.
How’s this different than evaluating all
branches in a case?
It’s true that you don’t have the
information at the calling point, but you
have it elsewhere.

The issue is not whether or not you *can*
validate dispatching calls; of course you
can. The issue is *how much it costs* to
do so. (This same argument is also why
we use Ada instead of C or handwritten
assembly).
As you said, the list of all possible call
targets is not present at the call site, but
spread across the entire program source.
You’d have to gather the list of all
possible targets for each dispatching call,
and review the dispatching machine code
at every call site. Try to do that on the
software you’re currently writing. The
first step would be for you to come up
with a list of all dispatching (not static)
calls in your program. If you do just that,
you will then start to realise how much
effort would be required for full-fledged
certification.
Furthermore, during maintenance, more
possible call targets can appear, affecting
previously tested and certified call sites,
and requiring you to redo the certification

90 Ada in Context

Volume 27, Number 2, June 2006 Ada User Journal

process each time you add a type to a
derivation class.
In general-purpose programming, you can
use all the features of the language that
help you write your source code faster; in
avionics, you only use those that help you
certify your machine code faster. It
matters more to reduce the cost of
certification than the cost of writing the
software, because the former far
outweighs the latter.
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: Thu, 27 Apr 2006 22:19:03
Subject: Re: procedural vs object oriented
Newsgroups: comp.lang.ada
Ada has unique features designed
precisely to help with certification. I
suggest you re-read annexes D and H in
the light of this thread; you will see why
Ada shines where lesser languages fall
flat on their face.
Particularly relevant to the present
discussion is:
pragma Restrictions (No_Dispatch);
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Thu, 27 Apr 2006 16:01:41
Organization: Adalog
Subject: Re: procedural vs object oriented
Newsgroups: comp.lang.ada
> if Read (File) then

 Foo;
else
 Bar;
end if;

The uncertainty of a dispatching call is
one of the context, exactly as in the
example above. Provided that there is
nothing uncertain in how dispatching
works or what potential targets do.

Of course you can assume that every
dispatching call is equivalent to a case
statement over all possibly redefined
primitives. That works well for one level.
But if you consider that each called
primitive may in turn redispatch
internally, you end up with a
combinatorial explosion. In theory, yes,
the analysis can be performed. In practice,
no.
From: Peter Amey

<peter.amey@praxis-cs.co.uk>
Date: Thu, 27 Apr 2006 16:38:58
Subject: Re: procedural vs object oriented
Newsgroups: comp.lang.ada
The committee that is revising the DO-
178B avionics “standard” is currently
meeting in Los Angeles. There is an
entire sub-group devoted to the problem
of certifying OO software. At the breaks,
they look like it is proving hard work!
Those of us in the formal methods sub-
group are having a slightly easier time.

From: Ed Falis <falis@verizon.net>
Subject: re: OO vs procedural
Date: Thu, 27 Apr 2006 12:06:27
Newsgroups: comp.lang.ada
There are two papers on AdaCore’s
website that go into some of the issues
with certification of applications
containing dispatching:
http://www.adacore.com/2006/03/08/
certification-object-orientation-the-new-
ada-answer/
http://www.adacore.com/2006/03/30/
safety-security-and-object-oriented-
programming/
From: kevin cline

<kevin.cline@gmail.com>
Date: 4 May 2006 12:40:50
Subject: Re: OO vs procedural
Newsgroups: comp.lang.ada
In the second paper, they give [an
example involving an abstract tagged type
Alert].
The authors then point out a describe a
potential pitfall of this code — that a
derived type implementation may fail to
call the base implementation. This is true.
The authors fail to point out that this
possibility could have been prevented by
correct base class design.
I also fail to understand why this error is
hard to test, but perhaps I do not
understand S3 testing methods. I would
have expected that a failure of a derived
type X_Alert to call the base type Handle
method would have been caught by a unit
test of X_Alert, when it was observed that
after calling X_Alert.Handle, no logging
occurred.
I would also expect that the error would
be easily detected through any formal
verification process, since the erroneous
Handle method would not meet the
‘Logging occurred’ postcondition.
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: Thu, 04 May 2006 22:21:37
Subject: Re: OO vs procedural
Newsgroups: comp.lang.ada
Of course, what you say is true — good
unit testing or good peer review will catch
the error, and the formal verification
process will document how the error was
found, corrected, and verified to be
corrected. But, by that argument, “any
good programmer with a good process
can write perfect software in any
language, even assembly language”.
The point is to help the compiler catch the
error automatically, before the first unit
test is written and before any peer review
takes place. Compile-time checks are
why we (in avionics) use Ada in the first
place. In other industries, people also like
the run-time checks, which help later, i.e.
during testing.

Ada and
Internationalization
From: Michael Rohan <mrohan@acm.org>
Date: 30 May 2006 16:12:35
Subject: Ada and Internationalization
Newsgroups: comp.lang.ada
I’ve checked Google and have not been
able to find anything in Ada out there for
internationalized code. There’s support
for Wide_Character and
Wide_Wide_Character but there doesn’t
seem to be libraries for message strings.
Before starting down the path of writing
from scratch, wanted to check.
If nothing is available, I was considering
taking Java .properties files, somehow
“compiling” them into an Ada package
and implementing something akin to
Java’s MessageFormat:
 Arguments : Message_Arguments;
 ...
 Arguments.Append ("a string");
 Arguments.Append (10);
 Arguments.Append (Pi);
 Put_Line (Message_Format ("facility",
"msg001", Arguments));
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: Wed, 31 May 2006 07:52:21
Subject: Re: Ada and Internationalization
Newsgroups: comp.lang.ada
GtkAda contains a binding to GNU
gettext. Look at
http://libre.adacore.com/GtkAda
BTW, with GNU gettext, your internal
encoding is likely to be UTF-8, so you
wouldn’t be using Wide_Character or
Wide_Wide_Character.
From: James Dennett <jdennett@cox.net>
Date: Wed, 31 May 2006 07:53:36
Subject: Re: Ada and Internationalization
Newsgroups: comp.lang.ada
> I don’t see how this is related to

internationalization. It looks like stream
communication (see S'Output attribute)
or string formatting. In either case you
convert data to/from stream/string.

Formatting of strings for human readers
needs to produce output that is correctly
localized, hence is always an issue in an
internationalized program, non?
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Wed, 31 May 2006 12:11:22
Subject: Re: Ada and Internationalization
Newsgroups: comp.lang.ada
When I do this, I make message printing
suitable for several languages right from
the start, taking advantage of the Ada type
system. Collect the messages in an
enumeration type, i.e., name them. Then
build an (abstract) Message type around
this enumeration. Then derive (compose)
one type for each natural language.

Ada in Context 91

Ada User Journal Volume 27, Number 2, June 2006

Advantages:
- Ada’s coverage rules will make sure that
translation won’t miss a single message.
- You can easily create an external
messages collection for the translators in
XML, Excel, plain text, even gettext if
you must, because of the mentioned
properties of the message type: You have
it in your program, so just write another
main unit that basically enumerates the
values in the types made for the messages,
using the desired output format.
- No need to analyze the entire program
using external tools, no need to touch
sources.
Disadvantages:
- It’s not gettext, only Ada, so maybe it’s
less fashionable.
- It also requires that a programmer
considers messages important enough to
be worthy of a type that can be checked
by the compiler.
Using a Message type and the .properties
approach are somewhat similar, except
that with a type, you won’t have to leave
the Ada language: add the properties to a
library package, e.g. in constants,
roughly:
 (en_US => (got_foo => ...,
 no_bar_please => ...,
 argh => ...),
 (fr_CA => (got_foo => ...,
 no_bar_please => ...,
 arhg => ...),
 ...
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Organization: cbb software GmbH
Date: Wed, 31 May 2006 17:23:19
Subject: Re: Ada and Internationalization
Newsgroups: comp.lang.ada
I am not sure. It looks like a question of
content. Formatting is a quite low level
thing. Mixing content and formatting can
turn very surprising. There are right-to-
left and top-down languages, word
ordering might change, their number as
well, numerals, ordinals, articles,
inflexions etc.
Both as a customer and vendor I always
try to avoid internationalized programs.☺
From: James Dennett <jdennett@cox.net>
Date: Wed, 31 May 2006 08:27:38
Subject: Re: Ada and Internationalization
Newsgroups: comp.lang.ada
And these are included in my notion of
internationalized formatting, though for a
wide range of languages we can get away
with supporting left-to-right, and just
dealing with issues of phrase lookup,
word ordering and cardinality.
[To Avoid internationalized applications]
is increasingly difficult in many domains,
though it’s certainly true that
programming is somewhat simpler when
i18n is not a factor.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Organization: cbb software GmbH
Date: Thu, 1 Jun 2006 13:00:07
Subject: Re: Ada and Internationalization
Newsgroups: comp.lang.ada
OK, but even then the target cannot be a
simple stupid object like stream or string.
It should know how to translate a
sequence of “precompiled” objects into a
proper sentence. There is a danger that it
might quickly become double
dispatching, the thing we cannot
effectively do in Ada. Alternatively the
target object should know the language
and be intelligent to determine parts of
speech...
So I’d try to stay as much as possible on
the side of objects being output. They
should know how to translate themselves
according to the target locale.
In a recent project I had a similar
problem. In place of localization there
were different rendering devices: Text,
HTML, GTK etc. It ended up with a
primitive operation defined on objects,
that had a class-wide argument
controlling the output parameters.
Needless to say, that I am not satisfied
with this design.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Fri, 2 Jun 2006 20:23:24
Subject: Re: Ada and Internationalization
Newsgroups: comp.lang.ada
I had a similar problem with the
formatting tool that produces the Ada
Reference Manual and other good stuff.
(In fact, it is essentially the same
problem.) I ended up defining an “output
object” abstract type, with instances of the
type for text, HTML, and RTF. The
needed operations for formatting and the
like are defined for the abstract type. The
formatting engine takes an output object
and writes to it as needed.
The design was fairly successful; Stephen
Leake created a new type and object to
support TextInfo output. He was able to
do that fairly successfully with the
interface already provided.

Ada and XMI
From: marktxx@yahoo.com
Date: 27 May 2006 09:02:35
Subject: Ada to XMI tool?
Newsgroups: comp.lang.ada
Since XMI was discussed recently in this
forum. Can anyone name some tools that
“reverse engineer” (using this term
loosely) Ada 83 code to XMI and/or
UML? Commercial or non-commercial.
Static structure only is OK because this
would help us identify and reuse existing
code in a follow-on design project. (For
large projects people still like diagrams.)
Any experience with Rhapsody-Ada,
Artisan-Ada or Pragsoft UMLStudio ?

From: Martin Krischik
<krischik@users.sourceforge.net>

Date: Sat, 27 May 2006 20:17:49
Subject: Re: Ada to XMI tool?
Newsgroups: comp.lang.ada
Rational Ada ↔ Rational Rose ↔ XMI is
the only setup that comes to my mind.
From: Simon Wright

<simon@pushface.org>
Date: Sun, 28 May 2006 10:21:02
Subject: Re: Ada to XMI tool?
Newsgroups: comp.lang.ada
No experience, but I know that Artisan
will reverse-engineer Ada 95 (to Artisan’s
UML Ada-profile) so you stand a
reasonable chance.
From: pth@darrach.net
Date: 29 May 2006 02:33:29
Subject: Re: Ada to XMI tool?
Newsgroups: comp.lang.ada
You can try Headway Review,
http://headwaysoftware.com/products/revi
ew/. Review uses advanced reverse
engineering and static analysis techniques
to create a powerful code comprehension,
code review, and source code
visualization tool for Architects and Team
Leads.
It will certainly help you understand what
parts of the code you want to reuse.
One caveat: you don’t specify what
compiler you use for the Ada 83 code. If
the code compiles with GNAT then its a
no-brainer, you get the model instantly
from the GNAT adt files, no need to
spend time laying out diagrams or
struggling with the reverse engineering.
But I should also point out that we have a
number of customers using Review with
non-GNAT based code, I know for certain
it includes Greenhills and SunAda. If you
download and try it out, one of our guys
will be happy to help you get up and
running.

ASIS to XML Schema
From: Simon Wright

<simon@pushface.org>
Date: Tue, 23 May 2006 22:01:47
Subject: Re: ANN: Ada source code

decorator
Newsgroups: comp.lang.ada
Georg Bauhaus wrote:
> [...] using Simon Wright’s ASIS based

GIs.
Although that work was useful, a lot more
needs to be done on it to make it
anywhere near complete. It would be a lot
easier if ASIS (the standard) was open-
source.
If there is to be an ASIS 2005 I hope the
representation will be as an XML schema
and not an API; the API makes using
ASIS so very clumsy compared to the
various XML processing technologies
available now.

92 Ada in Context

Volume 27, Number 2, June 2006 Ada User Journal

Well, that’s the way it seems from here!
From: Stephen Leake

<stephen_leake@acm.org>
Date: Wed, 24 May 2006 20:28:17
Subject: Re: ANN: Ada source code

decorator
Newsgroups: comp.lang.ada
The ASIS _standard_ is open-source; it
consists of Ada specs giving the API.
The GNAT implementation is also open-
source. So what is missing?
There [will be an ASIS 2005]; the ARG is
starting work on it.
I don’t see how [using XML Schema
instead of an API] is remotely possible.
The whole point of ASIS is to access the
knowledge the compiler has about the
source. Thus the compiler has to provide
functions to access that knowledge.
I can see building an XML processor in
which some of the XML tags cause ASIS
API calls. But that is a layer on top of the
ASIS API, not a replacement for the ASIS
API.
Can you give a concrete example of how
an ASIS-XML would work?
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Thu, 25 May 2006 14:36:12
Subject: Re: ANN: Ada source code

decorator
Newsgroups: comp.lang.ada
The compiler could provide a
representation of its knowledge of the
source that uses XML. For example,
internal trees (or graphs), where the nodes
carry information not only about names,
etc, but also about representations. Trees,
or groves, are an ideal candidate for XML
based representation because an XML
document instance is a tree or graph, and
XML based tools are made for working
on these.
In fact, ASIS and XML use almost the
same wording, e.g. element trees.
If ASIS were to provide a set of XML
element definitions, these could be used
to write transformations to and from XMI,
easing the use of Ada with some OOD
tools.
Getting a sorted index of all tagged types
in a program will then be very easy with
XML tools: just declare the corresponding
XPath choice and employ XSL’s sort and
key functions. Done.
Which leads me to a question: Is there a
set of "ASIS items" that you use
frequently? Items that could be useful
when represented using XML, even when
the Ada information contained therein is
limited?
From: Stephen Leake

<stephen_leake@acm.org>
Date: Thu, 25 May 2006 09:48:13
Subject: Re: ANN: Ada source code

decorator

Newsgroups: comp.lang.ada
Ok, now I see; that does make sense.
I don’t think that will happen as part of
the ASIS 05 effort; there are not many
people working on it, and they don’t see
that as their mission. They are working on
extending the ASIS 95 API to cover the
new Ada 2005 features, and possibly
fixing any problems with the current API.
I believe the original decision to specify
an API, rather than a format, was to allow
each compiler vendor to use a format that
was similar to their already-existing
internal compiler structures, thus making
it easier for each compiler vendor to
support ASIS.
I suspect that argument still holds. But it
might be reasonable to add an optional
standard XML format.
If enough people want it to happen, they
should get together and produce a
working example of such a standard
format, then lobby to get it approved as a
secondary standard.
Note that vendors will only support such a
format if they see money in it. So people
who want it must be able to say they will
pay a reasonable fee for it, and that there
are still others who will also pay such a
fee. Or they need to fund the entire
development themselves.
I have not used XML processors, so I
can’t comment on whether they are "less
clunky" than using the ASIS API. But I
can see that having a standard XML
representation of the Ada source would
make it easier for people who are familiar
with XML to build useful tools. And since
there are certainly more people familiar
with XML than with ASIS, that would be
a good thing for Ada.

Ada vs. Fortran
From: Nasser Abbasi <nma@12000.org>
Date: Mon, 22 May 2006 04:54:42
Subject: Ada vs Fortran for scientific

applications
Newsgroups:

comp.lang.ada,comp.lang.fortran
I like to discuss the technical reasons why
Ada is not used as much as Fortran for
scientific and number crunching type
applications?
To make the discussion more focused,
let’s assume you want to start developing
a large scientific application in the
domain where Fortran is commonly used.
Say you want to develop a new large
Finite Elements Methods program or
large computational physics simulation
system. Assume you can choose either
Ada or Fortran.
What are the technical language specific
reasons why Fortran would be selected
over Ada?

I happened to know a little about Ada and
Fortran, and from what I know, I think
Ada would be an excellent choice due to
its strong typing, good support for
numerical types and good Math library.
I know also that Fortran is supposed to be
better/faster when it comes to working
with large Arrays (Matrices), but it is not
clear to me why that is, and if it is still
true with Ada 05. Something about arrays
aliasing, but not sure how that is.
I am also not sure on the support of sparse
matrices in both languages’ libraries.
It is known that Ada strong domain is
realtime and safety critical applications. I
never understood why Ada never became
popular in the scientific field in particular
in areas such as computational physics or
CFD or such similar fields.
From: Dan Nagle <dannagle@verizon.net>
Date: Mon, 22 May 2006 15:23:05
Subject: Re: Ada vs Fortran for scientific

applications
Newsgroups:

comp.lang.ada,comp.lang.fortran
> Some immediate reasons:

1) Packaging. Packages allow better
organization of software, which is good
for any kind of application.

Can you compare and contrast Ada
packages with Fortran modules and
submodules?
> 2) Strong typing. Scientific applications

often deal with physical units, and Ada
is great at supporting these.

What specific features of Ada provide
better support than the comparable feature
of Fortran?
> 3) User defined accuracy. Ada allows

you to define the accuracy you need,
the compiler chooses the appropriate
representation. Note that you are not
limited to only two floating point types
(many machines have more than that).

How is this better than Fortran’s kind
mechanism?
> 4) Fixed points. Not available in Fortran
Agreed. How important is this for floating
point work? Fortran is rarely used for
imbedded software (at least, I wouldn’t).
> 5) Guaranteed accuracy, not only for

basic arithmetic, but for the whole
mathematical library

Can you compare Ada’s accuracy
requirements with Fortran’s support for
IEEE 754?
> 6) Standardization. All compilers

process exactly the same language.
Again, how is this different? Fortran
compilers are required to be able to report
use of extensions to the standard.
> 7) Interfacing. Easy to call libraries in

foreing languages => all libraries
available for Fortran are available for
Ada.

Ada in Context 93

Ada User Journal Volume 27, Number 2, June 2006

Can you compare Interfaces.C to
ISO_C_BINDING? How is one better or
worse than the other?
> 8) Concurrency, built into the language
Co-arrays and concurrent loops are
coming in Fortran 2008.
> 9) Generics. Stop rewriting these damn

sorting routines 1000 times.
Intelligent Macros are coming in Fortran
2008.
> 10) Default parameters. Makes complex

subprograms (simplex...) much easier
to use.

Agreed.
> 11) Operators on any types, including

arrays. Define a matrix product as "*"...
How is Ada’s operators for types better or
worse than Fortran’s? Is Ada’s "*"
operator better than Fortran’s matmul()?
> 12) Bounds checking, with a very low

penalty. Makes bounds checking really
usable.

How is Ada’s bounds checking better or
worse than Fortran’s?
"Fortran" /= "FORTRAN 77" ;-)
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Organization: Adalog
Date: Tue, 23 May 2006 10:25:37
Subject: Re: Ada vs Fortran for scientific

applications
Newsgroups:

comp.lang.ada,comp.lang.fortran
[...] Because Fortran has no fixed points,
the scientific community sees floating
point as the only way to model real
numbers.
Actually, fixed points have nothing to do
with embedded software, they are a
different way of modelling real (in the
mathematical sense) numbers, with
different numerical properties. Depending
on the problem, fixed point may (or not)
be more appropriate.
[...] Ada’s accuracy requirement is
independent from any hardware (or
software) implementation of floating
points, and are applicable even for non
IEEE machines.
[...] Concurrency has been in Ada since
1983! Moreover, it’s a multi-tasking
model, not concurrent statements model.
Both models have benefits and
drawbacks, it depends on the needs.
[...] I don’t know what an "intelligent
macro" is, but certainly generics (once
again available since 1983"), are much
more than macros, even intelligent ones.
For one thing, the legality of generics is
checked when the generic is compiled.
This means that, provided actual
parameters meet the requirements of the
formals, there is no neeed to recheck at
instantiation time, and ensures that any
legal instantiation will work as expected.

AFAIK, this cannot be achieved by
macros.
[...] I may miss something on the Fortran
side, but Ada’s very precise typing allows
to define variables whose bounds are
delimited.
If these variables are later used to index
an array (and if the language features are
properly used), the compiler statically
knows that no out-of-bound can occur. In
short, most of the time, an Ada compiler
is able to prove that bounds checking is
not necessary, and corresponding checks
are not generated.
In practice, compiling an Ada program
with or without bounds checking shows
very little difference in execution speed,
because only the really useful checks are
left, all the spurious ones have been
eliminated.
From: "J.F. Cornwall"

<JCornwall@cox.net>
Organization: U.S. Geological Survey,

Reston VA
Date: Wed, 24 May 2006 12:56:29
Subject: Re: Ada vs Fortran for scientific

applications
Newsgroups:

comp.lang.ada,comp.lang.fortran
> In a weather forecasting program you

want to have data acquisition (real-
time), prediction (computation) and
display (real-time GUIs) running on a
continuous, high uptime basis across a
network of machines.

If Fortran had strong multitasking, real-
time and distributed capabilities, these
goals would be reasonable and achievable
within the language. Absence of these
features means such systems would often
(I guess) be multi-language setups, with
things like Java, C++, Tcl/Tk, shell
scripts, cron jobs etc. playing a part.
Has anyone here worked on a big
meteorological system? Am I right?
In my US Air Force days, I worked at a
large global weather-forecasting facility.
We had multiple data input systems (a
variety of comm links talking to several
Univac mainframes), multiple number-
crunching systems (a couple more
Univacs and a Cray), and an cluster of 40
or so Vax 11/780s for interactive
tweaking of the forecasts. The majority of
the software for the comm was in
assembler, just about all of the remainder
was Fortran (IV and 77, this was back in
the early 80’s...).
We also used Fortran mixed with
assembly code for a new comm front-end
machine that was implemented in ‘88.
Fortran was used for comm, utility
programs, forecasting models, database
input/output/maintenance, and just about
everything else in that system. Worked
fine.

Nowadays, I have no idea what they’re
running. Bet there’s still a lot of Fortran
though :-)
From: "Dr. Adrian Wrigley"

<amtw@linuxchip.demon.co.uk.uk.uk>
Date: Wed, 24 May 2006 13:39:44
Subject: Re: Ada vs Fortran for scientific

applications
Newsgroups:

comp.lang.ada,comp.lang.fortran
Interesting.
I *think* you are supporting my view that
in practice, Fortran requires additional
support or coding outside of the language
to tie together the different parts of a
complex system.
You speak of utility programs, forecasting
programs, database I/O programs.
Invoking these in the right order, at the
right time, on the right files at the right
terminals is always done outside of the
pure Fortran application. At the very least
it requires an OS command interpreter. It
probably involves scripts to delete old
files or do other housekeeping.
In Ada, the separate program components
can form a *single* running application
program entity, with a single invocation -
even if the program is running across
several loosely connected machines and
consists of many different executable
files. The program execution is a network
of cooperating processes and shared data
stores. Parts of the program can even be
recompiled as it runs - without affecting
the shared data stores or other executing
tasks.
In fact Ada supports persistent variables
with hold their values even if the program
is stopped completely and restarted later.
No mainstream language comes even
close to this program execution model.
From: "J.F. Cornwall"

<JCornwall@cox.net>
Organization: U.S. Geological Survey,

Reston VA
Date: Wed, 24 May 2006 16:49:10
Subject: Re: Ada vs Fortran for scientific

applications
Newsgroups:

comp.lang.ada,comp.lang.fortran
Actually, in that particular environment,
everything was tied together in a
complicated web of cross-ties. The
Fortran code couldn’t do everything, the
assembly code couldn’t do everything, the
scripting and batch control languages
couldn’t do everything. etc... That would
have been the case had we been using
Ada, as well.
And we did look at Ada when starting out
on the comm front-end project. At that
time it wouldn’t do what we needed it to
do, so we went with a continuing mixture
of F77 and assembler. Sorry, I don’t recall
the details of what we needed that it
couldn’t do, recall that this was in the
early 1980s.

94 Ada in Context

Volume 27, Number 2, June 2006 Ada User Journal

From: "Dr. Adrian Wrigley"
<amtw@linuxchip.demon.co.uk.uk.uk>

Date: Wed, 24 May 2006 18:08:20
Subject: Re: Ada vs Fortran for scientific

applications
Newsgroups:

comp.lang.ada,comp.lang.fortran
You’re quite right.
But one thing apparent in this discussion
is that the Ada programmer’s view of
Fortran is the FORTRAN 77 many
learned in college, but the Fortran
programmer’s view of Ada is of Ada 83,
when that was hot technology. Neither
view has much relevance in determining
the technical suitability of the
contemporary languages for new projects.
I’d be overselling the features of modern
Ada to say that the scripting and batch
control ‘glue’ can *all* be done within
the language - but a huge part of it can be.
And this brings a major benefit to system
portability, complexity and integrity.
From: Dick Hendrickson

<dick.hendrickson@att.net>
Subject: Re: Ada vs Fortran for scientific

applications
Date: Wed, 24 May 2006 17:12:55
Newsgroups:

comp.lang.ada,comp.lang.fortran
Dr. Adrian Wrigley wrote:
> So what does the standard say must

happen if you attempt such an access?
Can a program fail unpredictably under
such (rather common!) circumstances -
as routinely happens in C and C++,
sometimes at great cost?

The Fortran standard says nothing at all
about what must happen for most run-
time errors. There is a requirement that a
compiler be able to diagnose syntax-like
errors at compile time. There is also a
requirement that some (unspecified) I/O
errors and some memory management
errors be checked for at run time. The job
will abort unless the program uses one of
the error detection methods. But for
things like subscript bounds errors, or
subroutine argument mismatches, the
standard doesn’t impose anything on the
compiler.
In general, the standard imposes
restrictions on standard conforming
programs, not on the compiler. This
allows compilers to extend the standard in
"useful" ways. Technically, a standard
conforming program is not allowed to use
these extensions, but many do ;). Most
compilers implement a command line
option to do enhanced syntax checking
and report use of extensions.
Subscript bounds errors usually go
unchecked and do whatever they do.
They’re really fun to debug because
adding a PRINT statement usually moves
the effect to some other part of the
program. This isn’t Fortran’s greatest

strength ☺ It was a compromise between
safety and speed.
The other big problem with (old) Fortran
programs was messing up the argument
list in a procedure call. Separate
compilation made this a lot easier to do.
The Fortran 90 addition of MODULES
essenially closes this hole. Most
procedure interfaces now can be explicit
and the compiler must check for calling
consistency.
It’s harder to shoot yourself in the foot
now, but people can still lie to the
compiler.
From: "Dr. Adrian Wrigley"

<amtw@linuxchip.demon.co.uk.uk.uk>
Subject: Re: Ada vs Fortran for scientific

applications
Date: Wed, 24 May 2006 17:54:12
Newsgroups:

comp.lang.ada,comp.lang.fortran
I think this is an area that Ada really
shines. The standard requires numerous
checks for consistency at both compile
time and runtime. Versions of code that
don’t match properly can’t be linked
together or can’t be run together (as
appropriate). Using the language gives a
feeling of integrity of coding, with
mistakes often being caught very early on.
Unfortunately, the language features for
integrity cannot be added to an existing
language without breaking old code. This
is because the integrity features are often
a result of prohibiting "dodgy" code,
flawed syntax or misfeatures.
The history of the C family of languages
illustrates this. I’m not sure where modern
Fortran sits in relation to its forbears in
terms of safety and security though.
It’s noteworthy that Ada and Fortran are
on convergent paths (modules, user
defined types, templates etc).
With array subscripts, an exception must
be raised if the bounds are exceeded. The
same with arithmetic operations.
Curiously, compiling Ada under gcc
(GNAT), a compilation switch is needed
to be standards compliant - a mistake:().
The checks can be switched on and off in
the source code as desired.
One of the benefits of the compile- and
run-time checking is that refactoring code
becomes much easier because the
compiler will usually tell you about what
parts haven’t been fixed up yet.
Languages like C or Perl are at the
opposite end of the spectrum, I find. From
what I read here, Fortran is somewhere in
between.
From: Gordon Sande

<g.sande@worldnet.att.net>
Subject: Re: Ada vs Fortran for scientific

applications
Date: Wed, 24 May 2006 18:34:58
Newsgroups:

comp.lang.ada,comp.lang.fortran

There is a distinction to be made between
what the standard requires and what the
various compilers offer. Some systems are
oriented to the ultimate SpecMark(??)
benchmark figures while others offer
tightly monitored executions.
Subscript checking can be turned on for
those systems. Some even go the extra
mile of offering checking for usage of
undefined (uninitialized) variables. Some
undefineds can be caught as a byproduct
of flow checking at compile time but
others, like array elements, are only
possible at run time.
Some "real" programmers disdain the use
of such tools but others are glad for all the
aids that are available.
As with most groups there are subgroups.
Some Fortran programmers dismiss any
notions of less than full exploitation of
every last quirk of the hardware and
software of the day. Their equivalents in
other programming groups are probably
the folks who ignore all interrupts.
The urban legends have the Fortran error
of a DO loop that changed into an
assignment because of a typo changing a
comma into a period and a satellite was
lost. For Ada it is a tossed interrupt that
caused a launch failure. Bad practice of
one will always be inferior to good
practice of the other.
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Wed, 24 May 2006 21:36:29
Subject: Re: Ada vs Fortran for scientific

applications
Newsgroups:

comp.lang.ada,comp.lang.fortran
> Well, at least one thing is common

between Ada and Fortran: Both are case
INSENSITIVE.

Two other points in common are
readability (or, non-cryptic syntax) and
(Fortran: 77+ ?) full-bracketing
(conditional or loop statements terminated
by END). Both things are extremely
helpful for revising code, which is crucial
for scientific programming, and separate
the pre- (Pascal, C) and post-1977
compiled languages.
From: Richard E Maine

<richard.maine@nasa.gov>
Subject: Re: Ada vs Fortran for scientific

applications
Date: Wed, 24 May 2006 12:56:51
Organization: NASA Dryden
Newsgroups:

comp.lang.ada,comp.lang.fortran
I had also noticed the similarity between
Fortran 90 modules and Ada packages.
Not idenical by any means, but there are
sure some similarities.
And the possibility of specifying
procedure arguments by keyword instead
of just positionally. You find that in some
scripting languages. And you find things
like that in lots of other contexts,

Ada in Context 95

Ada User Journal Volume 27, Number 2, June 2006

including the syntax typically used to
invoke compilers. But in compiled
languages, it seems like the feature is rare;
it is shared by Fortran 90 and Ada, and
then I start slowing down a lot in naming
compiled languaages in widespread use
that have it.
From: "Ed Falis" <falis@verizon.net>
Date: Wed, 24 May 2006 18:40:34
Subject: Re: Ada vs Fortran for scientific

applications

Newsgroups:
comp.lang.ada,comp.lang.fortran

I have to say as an Ada guy, that I’m
finding this thread more interesting than
most language comparison fests. You
Fortran guys are presenting mature,
intelligent and interesting perspectives.
Kudos to you.
From: Brooks Moses <bmoses-

nospam@cits1.stanford.edu>
Organization: Stanford University

Date: Thu, 25 May 2006 15:31:42 -0700
Subject: Re: Ada vs Fortran for scientific

applications
Newsgroups:

comp.lang.ada,comp.lang.fortran
And kudos to you as well — I had just
been thinking much the same thing about
the Ada crossover. I’ve found it a very
thought-provoking thread!

Conference Calendar 97

Ada User Journal Volume 27, Number 2, June 2006

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺denote events with close relation to Ada.
The information in this section is extracted from the on-line Conference announcements for the international Ada community
at: http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2006

☺July 02 5th International Workshop on Constructive Methods for Parallel Programming (CMPP'2006),
Kuressaare, Estonia. Topics include: formal models, methods, and languages for parallel programming;
parallelization and compilation techniques; parallel and distributed object-oriented programming;
hardware-software codesign; etc.

☺July 03-07 20th European Conference on Object-Oriented Programming (ECOOP'2006), Nantes, France.
Topics include: Patterns, Modularity, Adaptability, Separation of Concerns, Components, Frameworks,
Concurrency, Real-time, Embedded, Distribution, Domain Specific Languages, Language
Workbenches, Multi-paradigm Languages, Language Innovations, Compilation, Methodology,
Practices, Metrics, Formal methods, Tools, etc.

☺ July 03 Workshop on Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems (ICOOOLPS'2006). Topics include:
implementation of fundamental OOL features: inheritance (object layout, late binding,
subtype test, ...), genericity (parametric types), memory management; runtime systems:
compilers, linkers, etc; optimizations: static and dynamic analyses, etc; resource
constraints: real-time systems, etc: relevant choices and tradeoffs: separate compilation
vs. global compilation, dynamic checking vs. proof-carrying code, etc.

☺ July 03 10th Workshop on Pedagogies and Tools for the Teaching and Learning of Object
Oriented Concepts. Topics include: experiences, ideas and resources to support the
teaching and learning of basic object-oriented concepts.

☺ July 03 6th Workshop on Parallel/High-Performance Object-Oriented Scientific Computing
(POOSC'2006). Topics include: tried or proposed programming language alternatives to
C++; issues specific to handling or abstracting parallelism; etc.

July 03 1st Workshop on Domain-Specific Program Development (DSPD'2006). Topics
include: Role of language paradigms (e.g., object-oriented) in domain-centric software
development processes; Tools to support domain-specific modeling transformation and
domain-specific language implementation; Relationship between domain-specific
modeling and domain-specific languages; Metrics, benchmarks, techniques and tools to
assess the benefits of domain-specific modeling and languages (e.g., productivity,
reliability, robustness, maintenance and evolution of software components);
Relationship between domain-specific languages and scripting languages, general-
purpose languages, markup languages, etc.

☺ July 04 3rd International Workshop on Practical Problems of Programming in the Large
(PPPL'2006) Theme: "Industrial Problems, Technology Transfer, Research Validation".
Topics include: Experience, positive or negative with technology transfer and
cooperation of academia and industry; Negative results: what went wrong although it
should have worked according to software engineering folklore; Success-stories for
component-based software engineering; Keeping systems with large amounts of classes
/ objects / modules / components organised; Refactoring, Software Evolution and
Migration; etc.

July 04-07 26th International Conference on Distributed Computing Systems (ICDCS'2006), Lisboa, Portugal.
Topics include: all aspects of distributed and parallel computing.

98 Conference Calendar

Volume 27, Number 2, June 2006 Ada User Journal

☺July 05-07 18th Euromicro Conference on Real-Time Systems (ECRTS'2006), Dresden, Germany. Topics
include: all aspects of real-time systems; special focus on industrial applications of real-time
technology; compiler support; component-based approaches; middleware and distribution technologies;
programming languages; real-time operating systems; model-driven development of embedded RT
systems; formal methods; reliability, security and survivability in RT systems; scheduling and
schedulability analysis; worst-case execution time analysis; validation techniques; etc.

July 09-16 33rd International Colloquium on Automata, Languages and Programming (ICALP'2006), Venice,
Italy. Topics include: Principles of Programming Languages, Formal Methods, Models of Concurrent
and Distributed Systems, Program Analysis and Transformation, etc.

☺July 10-13 OMG Workshop on Distributed Object Computing for Real-time and Embedded Systems,
Washington, DC, USA. Topics include: Real-time systems; Embedded systems; Fault-tolerant systems;
High-availability systems; Safety-critical systems; Design tools for real-time distributed systems; Real-
time middleware, including real-time CORBA; Modeling notations, including UML; Model-Driven
approaches, including MDA; High-level real-time programming models; etc.

July 10-14 2nd European Conference on Model Driven Architecture: Foundations and Applications (ECMDA-
FA'2006), Bilbao, Spain. Topics include: Model Transformation - languages, tools; MDA for Large
Scale Distributed Systems; Comparative studies of MDA tools; MDA for Legacy Systems; MDA for
systems engineering; MDA for embedded systems; MDA for high-integrity systems (safety-critical and
security-critical systems; etc.

☺July 12-15 12th International Conference on Parallel and Distributed Systems (ICPADS'2006), Minneapolis,
Minnesota, USA. Topics include: Parallel and Distributed Applications and Algorithms; Reliable and
Fault-Tolerant Computing; Real-Time Systems; Tools, and Evaluation; etc.

July 17-21 Absolute Software - Public Ada 95 Course, Carlsbad, CA, USA

☺July 23-26 25th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2006), Denver, Colorado, USA. Topics include: Concurrent programming, Distributed systems
and middleware platforms, Correctness and verification of distributed and parallel programming, etc.

☺August 14-18 35th International Conference on Parallel Processing (ICPP'2006), Columbus, Ohio, USA. Topics
include: findings in any aspects of parallel and distributed computing; such as Compilers and
Languages, Systems Support for Parallel and Distributed Applications, etc.

August 21-27 14th International Symposium of Formal Methods Europe (FM'2006), Hamilton, Canada. Topics
include: Tools for formal methods (tool support and software engineering, environments for formal
methods), Formal methods in practice (experience with introducing formal methods in industry, case
studies), etc.

☺August 26-27 11th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2006),
Bonn, Germany

☺Aug 29 – Sep 01 12th International Conference on Parallel and Distributed Computing (Euro-Par'2006), Dresden,
Germany. Topics include: the promotion and advancement of parallel computing; Support Tools and
Environments; Distributed Systems and Algorithms; Parallel Programming: Models, Methods, and
Languages; Embedded Parallel Systems; etc.

☺September 13-15 7th Joint Modular Languages Conference (JMLC'2006), Oxford, England. Topics include:
programming language design and implementation; software tools and environments; software quality
and testing; formal methods in modular and composable software development; modularity and
composability in parallel and distributed systems; modularity and composability in safety-critical and
real-time systems; software engineering education; case studies aligning with any of the above; etc.

September 13-15 3rd International Workshop on Rapid Integration of Software Engineering techniques (RISE'2006),
Geneva, Switzerland. Topics include: Software reuse, Lightweight or practice-oriented formal methods,
Software processes and software metrics, Software patterns, Design by contract, Defensive
programming, Software entropy and software re-factoring, Programming languages, Software
dependability and trustworthiness, etc. Key applications domains: High-availability or mission-critical
systems, Embedded systems and applications, Development environments, etc. Deadline for
registration: July 3, 2006

Conference Calendar 99

Ada User Journal Volume 27, Number 2, June 2006

September 16-17 2nd International Workshop on Views On Designing Complex Architectures (VODCA'2006),
Bertinoro, Italy. Topics include: all areas related to the design of complex architectures; such as Formal
methods for security, Language-based security, Availability properties, Component-based design,
Distributed systems, etc.

☺September 16-20 Parallel Computing Technologies (PaCT'2006), Seattle, Washington. USA. Topics include: Compilers
and tools for parallel computer systems, Parallel programming languages and applications, Run time
system support for parallel systems, Parallel processing in type safe languages, Support for correctnes in
hardware and software (esp. with concurrency), etc.

September 17-20 7th Conference on Communicating Process Architectures (CPA'2006), Edinburgh, Scotland, UK.
Topics include: all aspects of concurrency - theory and practice, software/middleware/hardware, and
applications.

September 18-19 6th International Workshop on Automated Verification of Critical Systems (AVoCS'2006), Nancy,
France. Topics include: tools and techniques for the verification of critical systems; such as automated
verification, including model checking, theorem proving, abstract interpretation, and refinement
pertaining to various types of critical systems (safety-critical, security-critical, business-critical,
performance-critical, ...). Deadline for submissions: July 28, 2006 (short presentation abstracts)

☺September 18-20 20th International Symposium on DIStributed Computing (DISC'2006), Stockholm, Sweden. Topics
include: concurrent programming and synchronization algorithms; fault tolerance; specification,
semantics, and verification; distributed programming languages; distributed object-oriented computing;
etc.

☺September 20-22 Real-Time and Networked Embedded Systems Track of the 11th IEEE International Conference on
Emerging Technologies and Factory Automation (RTNES-EFTA'2006), Prague, Czech Republic.
Topics include: Real-time (distributed) embedded systems; Dependable embedded systems; Formal
methods; Real-time executives and operating systems; Real-time scheduling; Real-time components and
Middleware; Software engineering and programming languages; Case studies (industrial automation,
automotive, avionics, communications...); etc.

☺September 20-22 19th International Conference on Parallel and Distributed Computing Systems (PDCS'2006), San
Francisco, California, USA. Topics include: all areas of Parallel and Distributed Computing Systems,
their modeling and simulation, design, use and performance, and their impact; such as on Languages,
Compilers and Operating Systems; Libraries and Programming Environments; Software Development,
Services, Support, and Tools; Middleware for Parallel and Distributed Computing; Embedded Systems;
Parallel and Distributed Applications; etc.

☺September 21-23 6th Austrian-Hungarian Workshop on Distributed and Parallel Systems (DAPSYS'2006),
Innsbruck, Austria. Topics include: Parallel and distributed programming languages and algorithms,
Formal models for parallel and distributed computing, Software engineering and development tools, etc.

September 24-27 22nd IEEE International Conference on Software Maintenance (ICSM'2006), Philadelphia, PA,
USA. Topics include: maintaining, modifying, enhancing, and testing operational systems, and
designing, building, testing, and evolving maintainable systems.

September 25-28 26th IFIP WG 6.1 International Conference on Formal Techniques for Networked and Distributed
Systems (FORTE'2006), Paris, France. Special focus on verified middleware and distributed services.
Topics include: Practical experience with formal methods, etc.

September 27-29 9th International Conference on Quality Engineering for Software-Based Systems
(CONQUEST'2006), Berlin, Germany. Topics include: first-hand information on the practical use and
further development of methods and techniques; specific real-life case studies with detailed quality
analysis and evaluation; capabilities and availability of quality engineering tools, etc.

September 27-29 6th IEEE International Workshop on Source Code Analysis and Manipulation (SCAM'2006),
Philadelphia, PA, USA. Topics include: program transformation, abstract interpretation, program
slicing, source level software metrics, program comprehension, etc.

October 01-06 9th International Conference on Model-Driven Engineering Languages and Systems
(MoDELS'2006), Genoa, Italy. Topics include: Model-driven engineering methodologies, approaches,
languages and tools; Domain-specific modeling languages; Programming language and

100 Conference Calendar

Volume 27, Number 2, June 2006 Ada User Journal

metaprogramming support for linking models to code; Modeling languages and tools; Semantics of
modeling languages; Modeling and analysis of real-time, embedded, and distributed systems; etc.

☺October 02-04 25th IEEE International Symposium on Reliable Distributed Systems (SRDS'2006), Leeds, UK.
Topics include: reliability, availability, safety, security, and real time; Security and high-confidence
systems, Distributed objects and middleware systems, Formal methods and foundations for dependable
distributed computing, Analytical or experimental evaluations of dependable distributed systems, etc.

☺October 12-13 Automotive - Safety & Security 2006, Stuttgart, Germany. Theme: "Sicherheit und Zuverlässigkeit für
automobile Informationstechnik". Organized by Gesellschaft für Informatik (GI), etc., in cooperation
with Ada-Deutschland and Fachgruppe "Ada", etc. Topics include (in German): Zuverlässigkeit und
Sicherheit für fahrbetriebs-kritische Software und IT-Systeme; Sichere Entwicklung, Aktualisierung und
Freischaltung; Normen und Standardisierungsbestrebungen; Entwicklungsbegleitende Evaluation und
Zertifizierung; etc.

☺October 18-20 IEEE Symposium on Industrial Embedded Systems (IES'2006), Antibes, Juan les Pins, Cote d'Azur,
France. Topics include: recent developments, deployments, technology trends and research results, as
well as initiatives related to embedded systems and their applications in a variety of industrial
environments. Deadline for submissions: July 15, 2006 (work-in-progress)

☺October 22-26 21st Annual Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA'2006), Portland, Oregon, USA. Topics include: diverse disciplines related to object
technology. Deadline for submissions: August 1, 2006 (Student Volunteers)

October 22-26 5th International Conference on Generative Programming and Component Engineering
(GPCE'2006), Portland, Oregon, USA. Co-located with OOPSLA'2006. Topics include: Generative
techniques for Product-line architectures; Distributed, real-time and embedded systems; Model-driven
development and architecture; Component-based software engineering (Reuse, distributed platforms and
middleware, distributed systems, evolution, patterns, development methods, deployment and
configuration techniques, and formal methods); Integration of generative and component-based
approaches; Industrial applications; etc.

October 23-26 4th International Symposium on Automated Technology for Verification and Analysis
(ATVA'2006), Beijing, China. Topics include: theory useful for providing designers with automated
support for obtaining correct software or hardware systems, applications of theory in engineering
methods and particular domains and handling of practical problems occurring in tools, etc.

October 23-27 13th Working Conference on Reverse Engineering (WCRE'2006), Benevento, Italy. Theme:
"Empirically Assessing Reverse Engineering Techniques and Tools". Topics include: Empirical studies
in reverse engineering; Decompilation and binary translation; Redocumenting legacy systems; Reverse
engineering tool support; Mining software repositories; Program analysis and slicing; Software
architecture recovery; Program transformation and refactoring; etc.

October 25-27 5th International Conference on Software Methodologies Tools, and Techniques (SoMeT'2006),
Quebec, Canada. Topics include: Software methodologies, and tools for robust, reliable, non-fragile
software design; Automatic software generation versus reuse, and legacy systems, source code analysis
and manipulation; Software evolution techniques; Formal methods for software design; Static and
dynamic analysis, and software maintenance; Formal techniques for software representation, software
testing and validation; Software reliability, and software diagnosis systems; etc.

October 26-28 6th International Conference on Quality Software (QSIC'2006), Beijing, China. Topics include:
Software quality (reliability, safety and security, ...); Methods and tools; Evaluation of software products
and components (static and dynamic analysis, validation and verification); Formal methods (program
analysis, model checking, formal process models, ...); Applications (component-based systems,
distributed systems, embedded systems, enterprise applications, safety critical systems, ...); etc.

☺Oct 29 – Nov 03 8th International Symposium on Distributed Objects and Applications (DOA'2006), Montpellier,
France. Topics include: Application case studies of distribution technologies; Component-based
software development; Design patterns for distributed systems; Integrated development environments;
Middleware for distributed object computing; Real-time solutions for distributed objects; Technologies
for reliability and fault-tolerance; Testing and validation of distributed object systems; etc.

Conference Calendar 101

Ada User Journal Volume 27, Number 2, June 2006

Oct 30 – Nov 03 8th International Conference on Formal Engineering Methods (ICFEM'2006), Macao SAR, China.
Topics include: Abstraction and refinement; Tool development and integration for formal system
design, analysis and verification; Integration of formal verification tools in CASE tools; Techniques for
specification, verification and validation; Techniques and case studies for correctness by construction;
Experiments of verified systems; Application in real-time, hybrid and critical systems; Emerging
technologies; etc.

November 08-10 4th Asian Symposium on Programming Languages and Systems (APLAS'2006), Sydney, Australia.
Topics include: both foundational and practical issues in programming languages and systems; type
systems, language design; program analysis, optimization; software security, safety, verification;
compiler systems, interpreters; programming tools and environments; etc.

♦Nov 12-16 2006 ACM SIGAda Annual International Conference (SIGAda'2006),
Albuquerque, New Mexico, USA. Sponsored by ACM SIGAda, in cooperation with
SIGAPP, SIGCAS, SIGCSE, SIGPLAN, SIGSOFT, Ada-Europe, and Ada Resource
Association (ACM approval pending, Cooperation approvals pending.) Topics include:
reliability needs and styles; safety and high integrity issues; analysis, testing, and
validation; standards; use of ASIS for new Ada tool development; mixed-language
development; Ada in XML and .NET environments; quality assurance; Ada & software
engineering education; commercial Ada applications: what Ada means to the bottom
line; static and dynamic code analysis; software architecture and design; etc.

☺December 01-04 4th International Symposium on Parallel and Distributed Processing and Applications (ISPA'2006),
Sorrento, Italy. Topics include: Parallel/distributed system architectures; Tools and environments for
software development; Parallel/distributed algorithms; Distributed systems and applications; Reliability,
fault tolerance, and security; etc. Includes "Languages and Algorithms" and "Software and
Applications" Tracks.

☺December 04-07 7th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2006), Taipei, Taiwan. Topics include: Parallel/distributed architectures;
Reliability, and fault tolerance; Formal methods and programming languages; Parallelizing compilers;
Component-based and OO Technology; Tools and environments for software development;
Parallel/distributed algorithms; Task mapping and job scheduling; etc.

December 05-07 19th International Conference on Software & Systems Engineering and their Applications
(ICSSEA'2006), Paris, France. Topics include: distributed systems, real-time systems, embedded
systems, interoperability, evolution, object-orientation, formal methods, validation, certification,
reliability, etc.

☺December 05-08 27th IEEE Real-Time Systems Symposium (RTSS'2006), Rio de Janeiro, Brazil. Topics include: all
aspects of real-time systems design, analysis, implementation, evaluation, and case-studies.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2007

January 03-06 Software Technology Track of the 40th Hawaii International Conference on System Sciences (HICSS-

40), Waikoloa, Big Island, Hawaii, USA. Includes mini-tracks on: Software Engineering Decision
Support (topics include: Design decisions; Reuse decisions; Maintenance decisions; Selection of
software tool, methods or techniques; ...); etc.

January 15-16 ACM SIGPLAN 2007 Symposium on Partial Evaluation and Program Manipulation
(PEPM'2007), Nice, France. Co-located with POPL'2007. Topics include: program manipulation, partial
evaluation, and program generation. PEPM focuses on techniques, theory, tools, and applications of
analysis and manipulation of programs. Deadline for submissions: October 18, 2006 (abstracts), October
20, 2006 (papers)

January 17-19 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL'2007), Nice, France. Topics include: fundamental principles and important innovations in the
design, definition, analysis, transformation, implementation and verification of programming languages,
programming systems, and programming abstractions. Deadline for submissions: July 15, 2006

102 Conference Calendar

Volume 27, Number 2, June 2006 Ada User Journal

☺February 07-09 15th Euromicro Conference on Parallel, Distributed and Network-based Processing (PDP'2006),
Naples, Italy. Topics include: Advanced Applications (scientific and engineering applications, multi-
disciplinary and multi-component applications, real-time applications, ...); Models and Tools for
Programming Environments; Distributed Systems; Languages, Compilers and Runtime Support Systems
(task and data parallel languages, object-oriented languages, dependability issues, ...); Parallel Computer
Systems

Mar 24 – Apr 01 13th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS'2007), Braga, Portugal. Part of ETAPS'2007. Topics include: rigorously based tools
and algorithms for the construction and analysis of systems; formal methods, software and hardware
verification, static analysis, programming languages, software engineering, real-time systems, etc.
Deadline for submissions: October 6, 2006 (abstracts), October 13, 2006 (papers)

June 12th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2007), Dundee, Scotland, UK.

☺June 09-16 3rd History of Programming Languages Conference (HOPL-III), San Diego, CA, USA. Co-located
with FCRC'2007. Deadline for submissions: August 2006 (reworked full papers)

♦June 25-29 12th International Conference on Reliable Software Technologies - Ada-
Europe'2007, Geneva, Switzerland. Sponsored by Ada-Europe, in cooperation with
ACM SIGAda (approval pending). Deadline for submissions: November 6, 2006
(papers, tutorials, workshops)

June 25-29 27th International Conference on Distributed Computing Systems (ICDCS'2007), Toronto, Canada.
Topics include: all aspects of distributed and parallel computing. Deadline for submissions: August 15,
2006 (workshops), November 20, 2006 (papers)

☺July 09-12 2007 International Conference on Software Engineering Theory and Practice (SETP-07), Orlando,
FL, USA. Topics include: all areas of Software Engineering and all related areas, such as: Component-
based software engineering; Critical and embedded software design; Distributed and parallel systems;
Distribution and parallelism; Education (software engineering curriculum design); Embedded and real-
time software; Empirical software engineering and metrics; Evolution and maintenance; High assurance
software systems; Interoperability; Legal issues and standards; Object-oriented techniques; Program
understanding issues; Programming languages; Quality management; Real-time software engineering;
Reliability; Reverse engineering and software maintenance; Software architectures and design; Software
components and reuse; Software cost estimation techniques; Software design and design patterns;
Software engineering methodologies; Software engineering versus systems engineering; Software policy
and ethics; Software reuse; Software safety and reliability; Software security; Software testing,
evaluation and analysis technology. Deadline for submissions: February 1, 2007 (draft papers)

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2008

June 13th Annual Conference on Innovation and Technology in Computer Science Education

(ITiCSE'2008), Madrid, Spain

106 Forthcoming Events

Volume 27, Number 2, June 2006 Ada User Journal

SIGAda 2006

The Annual International Conference on the
Ada Programming Language

Albuquerque, New Mexico, USA
12-16 November 2006

http://www.sigada.org/conf/sigada2006/

Forthcoming Events 107

Ada User Journal Volume 27, Number 2, June 2006

SIGAda 2006
International Conference on Software Development for

Safety, Security, and High Reliability Systems
12-16 November 2006, Albuquerque, NM, USA

Sponsored by ACM SIGAda

Constructing high reliability software is an engineering challenge that can now be met in many domains. The application of
software engineering methods, tools, and languages interrelate to make the challenge easier or more difficult. This conference
focuses on safety, security and high reliability systems and the issues related to their development. Topics such as applied
software engineering principles, conforming to specific safety or security standards, testing philosophies, programming
language selection, etc. will be discussed. The conference will gather industrial experts, educators, software engineers, and
researchers interested in developing, analyzing, and certifying reliable, cost-effective software. Technical or theoretical
papers as well as experience reports with a focus on Ada will be presented. Contributions were received from among the
following areas:

• Safety, security and high integrity development
issues

• Language selection for a high reliability system: Ada,
C, C++, Java, or others

• Use of high reliability subsets or dialects: Java HIP,
MISRA C, Ravenscar, SPARK, etc.

• High reliability standards and their issues: DO-178B,
EIC 61508, FDA, SAE, CC, EAL, etc.

• Process and quality metrics
• Analysis, Testing, and Validation
• Use of ASIS for new Ada tool development
• Mixed-language development
• Quality Assurance
• Performance analysis

• High reliability software engineering education
• High reliability development experience reports
• Real-time networking/quality of service guarantees
• Fault tolerance and recovery
• Distributed system load balancing
• Static and dynamic code analysis
• Debugging complex systems
• Integrating COTS software components
• System Architecture & Design
• Information Assurance in the age of terrorism
• Improvements and additions to the Ada language in

Ada 2005
• Ada products evaluated per Common Criteria,

Protection Profiles or Security Targets

The keynote address will be given by Judith Klein of Lockheed Martin. Judith will present the “Use of Ada in Lockheed
Martin for Air Traffic Management and Beyond”. Judith Klein is a certified systems architect at Lockheed Martin
Transportation and Security Solutions. She has 28 years' experience developing distributed, real-time systems of various
sizes in different domains; the last 15 years have been focused on air traffic control.

The SIGAda 2006 Program Committee is:

Program Chair Leemon C. Baird III leemon.baird@usafa.af.mil
Tutorials Chair David Cook dcook@aegistg.com
Conference Co-Chairs Greg Gicca gicca@ghs.com and

 Ricky Sward ricky.sward@usafa.af.mil

See the SIGAda 2006 Home Page for further details on the conference:

http://www.acm.org/sigada/conf/sigada2006

108 Forthcoming Events

Volume 27, Number 2, June 2006 Ada User Journal

Call for Papers

12th International Conference on Reliable Software Technologies –
Ada-Europe 2007

25-29 June 2007, Geneva, Switzerland
http://www.ada-europe.org/conference2007.html

Conference Chair

Nabil Abdennadher
University of Applied Sciences, Geneva,
Switzerland.
nabil.abdennadher@eig.ch

Program Co-Chairs

Nabil Abdennadher
University of Applied Sciences, Geneva,
Switzerland.
nabil.abdennadher@eig.ch

Fabrice Kordon
University Pierre & Marie Curie. France
Fabrice.kordon@eig.ch

Tutorial Chair

Dominik Madon
University of Applied Sciences, Geneva,
Switzerland.
dominik.madon@eig.ch

Exhibition Chair

Neville Rowden
Siemens Switzerland
neville.rowden@eig.ch

Publicity Chair

Ahlan Marriot
White-elephant, Switzerland
Alan.Marriott@eig.ch

Dirk Craeynest
Aubay Belgium & K.U.Leuven, Belgium
Dirk.Craeynest@cs.kuleuven.be

Local Chair

Régis Boesch
University of Applied Sciences, Genava,
Switzerland.
regis.boesch@eig.ch

In cooperation with
SIGAda

(approval pending)

General Information

The 12th International Conference on Reliable Software Technologies (Ada-Europe 2007) will
take place in Geneva, Switzerland. Following the usual style, the conference will span a full
week, including a three-day technical program and vendor exhibitions from Tuesday to
Thursday, along with parallel workshops and tutorials on Monday and Friday.

Schedule
06 November 2006 Submission of papers, workshop/tutorial proposals
26 January 2007 Notification to authors
26 February 2007 Camera-ready papers required
25-29 June 2007 Conference

Topics
In the last decade the conference has established itself as an international forum for providers
and practitioners of, and researchers into, reliable software technologies. The conference
presentations will illustrate current work in the theory and practice of the design, development
and maintenance of long-lived, high-quality software systems for a variety of application
domains. The program will allow ample time for keynotes, Q&A sessions, panel discussions
and social events. Participants will include practitioners and researchers from industry,
academia and government organizations interested in furthering the development of reliable
software technologies. To mark the completion of the technical work for the Ada language
standard revision process, contributions that present and discuss the potential of the revised
language are particularly sought after.
For papers, tutorials, and workshop proposals, the topics of interest include, but are not limited
to:

• Methods and Techniques for Software Development and Maintenance: Requirements
Engineering, Object-Oriented Technologies, Formal Methods, Re-engineering and Reverse
Engineering, Reuse, Software Management Issues.

• Software Architectures: Patterns for Software Design and Composition, Frameworks,
Architecture-Centric Development, Component and Class Libraries, Component-Based
Design.

• Enabling Technology: CASE Tools, Software Development Environments and Project
Browsers, Compilers, Debuggers, Run-time Systems.

• Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis,
Verification, Validation, Testing of Software Systems.

• Critical Systems: Real-Time, Distribution, Fault Tolerance, Information Technology,
Safety, Security.

• Distributed Systems: Reliability, Security, Trust and Safety in Large Scale Distributed
Platforms.

• Mainstream and Emerging Applications: Multimedia and Communications,
Manufacturing, Robotics, Avionics, Space, Health Care, Transportation.

• Ada Language and Technology: Programming Techniques, Object-Oriented, Concurrent
and Distributed Programming, Evaluation & Comparative Assessments, Critical Review of
Language Enhancements, Novel Support Technology, HW/SW platforms.

• Experience Reports: Experience Reports, Case Studies and Comparative Assessments,
Management Approaches, Qualitative and Quantitative Metrics, Experience Reports on
Education and Training Activities with bearing on any of the conference topics.

118

Volume 27, Number 2, June 2006 Ada User Journal

Ada Conference UK 2006
K Fairlamb
AdaCore, 8 rue de Milan, Paris 75009, France; email: sales@adacore.com

Abstract
March 2006 saw the welcome return of an Ada event
in the UK. The Ada Conference UK 2006, operated by
the Centre for Software Reliability (CSR) in
collaboration with the Safety-Critical Systems Club,
took place this year on 28 March at the award
winning Lowry Hotel in the heart of Manchester.

Overview of the event
The focus of the event was the recent language revision,
called Ada 2005, and its continued suitability for building
systems where reliability, efficiency, and safety are critical.
The success of the 2006 event, attracting around 120
attendees (maybe the largest professional Ada event in the
world), proved that Ada is more than ever at the front of
software developers’ minds.

As the CSR pointed out in its announcement of the event,
Ada continues to prove itself as the answer for many of
today’s most complex programming challenges – especially

in the areas of real time, embedded and safety-critical
applications and in particular as the need for robust and
reliable software systems increases.

The event provided an excellent opportunity for members
from all sectors of the Ada community, both in the UK and
from abroad, to meet, share ideas, and reinforce links. Ada
professionals from all four corners of the UK were present
with a wide range of industries represented.

The event included plenary sessions by eminent Ada
experts Robert Dewar and John Barnes, plus a series of
technical talks by leading industrial experts, the abstracts of
which are provided below and videos of which can be
found on the AdaCore website at www.adacore.com.

In addition, a stream of well-attended vendor talks ran in
parallel to the technical talks and a broad range of leading
Ada toolset and service vendors displayed their
technologies in the exhibition hall.

Figure 1 John Rowlands, BAE Systems, presents at Ada Conference UK 2006

K Fair lamb 119

Ada User Journal Volume 27, Number 2, June 2006

The next Ada UK conference is already in preparation, so
look out for a forthcoming announcement regarding dates
and venue!

Conference papers at Ada UK
• Welcome to Ada 2005

John Barnes, author of ‘Programming in Ada
2005’

Ada 2005 is the latest chapter in the Ada story.
Ada 95 was a huge leap forward from Ada 83.
However, experience has shown that Ada 95 has a
number of roughish edges. Ada 2005 is not such a
giant leap forward but aims rather to round off
Ada 95 and so provide the community with a
really smooth programming language suited for
the demanding applications of the 21st century.
John explained the specific goals of the
development and introduced the key new features
of Ada 2005 and thus set the scene for the rest of
the day.

• OOP & structure control in Ada 2005

Pascal Leroy, IBM

Object-oriented techniques and structure control
are important in very large systems in providing
flexibility and extensibility. This talk gave an
overview of the numerous enhancements that have
been made in this area as part of the Ada 2005
Amendment. These enhancements include topics
such as: Java-like interfaces, which allow proper
multiple inheritance and integrate OOP with
concurrent programming; the prefixed notation,
used by many other languages, which simplifies
usage of complex OO architectures; type
extensions in nested scopes, which make it
possible to declare controlled types at any level;
object factories, which make it possible to
dynamically create objects of any type in a class;
explicit syntax for controlling overriding, which
improves the safety of OO programs; the addition
of limited and private with clauses, which support
mutually dependent type structures crossing
package boundaries and allow finer-grain
visibility control; and finally improved aggregates
and function returns which make limited types
more flexible and easier to use.

• Programming & certifying Ada software on an
ARINC 653 platform

George Romanski, Verocel Inc.

Ada applications running in a partitioned
Integrated Modular Avionics environment such as
ARINC 653 constrain the programmer, but also
provide greater flexibility. The Ada Tasking
model may be replaced by the Process,
Semaphore, Blackboard, Event and other

synchronization and control mechanisms.
Exception management if present, must co-exist
with a Health Monitoring system. Processor-time,
memory and shared resources must be robustly
partitioned. This is accomplished through a
configuration control mechanism. While this
restricts what a programmer can do within a
partition, an application may be split across
several partitions, and different variants of the
applications may co-exist on the same IMA
platform. Multiple schedules and mode switches
will then select which sets of applications should
run and how transitions occur.

An IMA system needs to be configured very
carefully. Platform providers, system integrators
and application developers must set up a
contracting model which specifies the
responsibilities for and ownership of system
parameters. In a safety critical system such
contract models are subject to the same
certification criteria as the application programs
themselves. As systems evolve and applications
change, the cost of system upgrade will remain
high unless the components, Ada and programs in
other languages, can be treated as applications in
this modular system. This reduction of cost will
only be accomplished if the impact of change can
be isolated to the components that change.

• Real time issues

Alan Burns, University of York

Ada 2005 has introduced a number of new
features that aid the programming and analysis of
real-time systems. These features include: the
inclusion of the Ravenscar profile for safety
critical real-time systems, CPU monitoring and
accounting, budgeting for the execution time of
groups of tasks, timing event for efficient time
driven computation, and new scheduling polices.
The latter policies being non-premeption, round
robin, EDF (Earliest Deadline First) and
combinations of these policies. This talk reviewed
all of these features and included examples of use.

• Building safety-critical/certified applications
with Ada

Rod White, MBDA

Developing safety-critical and certified
applications presents different sets of problems in
different domains. This talk considered those that
relate to the missile products of MBDA, typically
characterized by a small platform, demanding
performance and a harsh environment. It
considered issues such as the use of Ada, runtime
systems, software re-use and the role of off-the-
shelf elements. It also considered the challenges
for the future – Ada has been the preferred
language for a considerable period, but it is

120 Ada Conference UK 2006

Volume 27, Number 2, June 2006 Ada User Journal

becoming necessary to address the need to
incorporate elements in other languages e.g. C –
this introduces a new set of issues and concerns.

• Demonstrating Safety-Critical properties of an
automatic train protection system

Robin Messer, Westinghouse

This presentation described work done in
collaboration with Aerosystems International and
showed how safety critical properties of an ATP
have been:

o Captured from hazard analysis

o Analysed using a UML model

o Translated in to SPARK annotations

o Metrics captured on the work

• Safety-Critical Software: Looking for an
argument

Carl Sandom, iSys Integrity

This presentation provided software developers
with a broad overview of what an Independent
Safety Auditor (ISA), safety regulator or third-
party might look for when evaluating safety-
critical software. The presentation should be of
interest to anyone undertaking either safety-
critical software development from the beginning
or the retrospective safety assessment of software
which has not been developed explicitly for
safety-critical use but is subsequently used within
safety-critical systems.

Software safety assurance can be provided to a
third party by constructing a clear and compelling
safety argument which is underpinned with
evidence from various diverse sources. The
structure of the safety argument will determine the
type and depth of the evidence that must be
generated during development and/or collected in-
service to support any claims made regarding the
safety of the software in the context of its actual or
assumed use.

The provision of safety assurance was the central
topic of this presentation and a pragmatic
approach to the construction of a clear and
compelling software safety argument was
described in detail. The presentation was based
upon a software safety assurance strategy that has
been used to support system safety certification or
acceptance for various real-life software
development projects which the presenter has been
directly involved with either as the ISA or as part
of the safety assurance team.

• Executable Modelling with UML and Ada: The
X Factor

John Rowlands, BAE Systems

Traditionally, executability is a property possessed
by programming languages, but often not by
design languages. For instance a simple UML
design only captures the structure of a software
system and provides a high level description of
behaviour, enabling ease of navigation for
maintenance. However, in order to improve the
productivity of the software process, a rich model
is needed that allows animation and code
generation. Animation allows the design to be
tested prior to committing to code or deploying to
a particular platform. Full code generation allows
the software to be maintained at the design level,
lifting the level of abstraction at which the
developer interacts with the design. However, if
we are to maintain our software at the model level,
we need to have access to all the features we have
come to take for granted with traditional
programming languages, such as ease of static
checking, debugging and testing.

In order to enrich a UML model for executability
and code generation, an action language is needed.
This language needs to understand the
architectural concepts inherent in UML and add a
detailed definition of the behaviour of the
software. In the Ada community we are used to
the idea that the programming language inherently
provides support for finding errors early, such as
strong typing, declaration before use and ease of
static analysis. The ideal action language should
allow the software engineer to work at the UML
level of abstraction whilst providing similar static
checking facilities.

The presentation addressed the question of how
such an action language could be constructed, the
features that it should exhibit and the way in
which it could be defined.

• Mixed Criticality

Peter Amey, Praxis High Integrity Systems

High integrity applications, such as those
performing safety or security critical functions, are
usually built to conform to standards such RTCA
DO-178B or UK Def Stan 00-55. Typically such
standards define ascending levels of criticality
each of which requires a different and increasingly
onerous level of verification. It is very common to
find that real systems contain code of multiple
criticality levels. For example, a critical control
system may generate a non-critical usage log.
Unless segregation can be demonstrated to a very
high degree of confidence, there is usually no
alternative to verifying all the software
components to the standard required by the most
critical element, leading to an increase in overall
cost. The presentation described the novel use of
static analysis to provide a robust segregation of

K Fair lamb 121

Ada User Journal Volume 27, Number 2, June 2006

differing criticality levels, thus allowing
appropriate verification techniques to be applied at
the subprogram level. We call this fine-grained
matching of verification level to subprogram
criticality smart certification.

• Ada 2005 & high integrity systems

Robert Dewar, AdaCore

Ada has been, and continues to be, successful for
Safety-Critical applications. This talk covered the

foundations of the Ada language and its evolution
being based on good programming practice and
smooth integration of new features rather than
specific technical capabilities. Among these
readability, the package structure, the strong
typing system, compile time checking, and run
time exceptions all help to ensure that Ada
continues to be used widely in Safety-Critical
applications. The presentation concluded by
emphasizing the importance of the Ada “culture”
instilled in programmers.

 123

Ada User Journal Volume 27, Number 2, June 2006

Ada Market in 2005 Entails at Least
a $5.6 Billion Investment
Ann S. Brandon
Onyons, Inc., P.O. Box 294, Randolph Center, VT 05061 USAD; e-mail: ann@onyons.com

Abstract
The Ada Resource Association sponsored a survey in
2005 on its website, adaic.org. Through the 188
responses it received in a month as well as individual
interviews, it was able to gauge that the Ada market
includes an investment of about $5.6 billion in Europe
and North America.
Keywords: Ada market, Ada Resource Assoc.,
Ada.usage

1 Introduction
An international nonprofit organization, the Ada Resource
Association comprises principal suppliers of Ada
development environments and tools: AdaCore, IBM
Rational Software, Praxis High Integrity Systems Ltd., and
SofCheck. In May through early June 2005, the ARA
sponsored a survey on its www.adaic.com website, and
announced the results at Ada Europe 2005.

According to individual Ada corporate leaders who were
interviewed and the 188 web survey responses that the
ARA received, the Ada market is robust, with a total
investment of at least $5.6 billion in Europe and North
America. The survey asked about both current Ada usage
and familiarity with or plans for Ada 2005. It was
completed by software developers from North America,
Australia, Korea, and almost every country in Europe.

2 322 Million LOAC, Prices and Projects
Varied
The main results on Ada usage, presented at the Ada
Europe conference in York, England, in June 2005, can be
summarized as follows:

 * Around 322 million lines of Ada code (LOAC) are in
software that is either still in development or has been
completed, representing a reported (and conservatively-
estimated) value of around $5.6 billion. The number of
LOAC is admittedly one that depends on how each
company counts a line of code.

 * The prices for the systems also cover a wide range. At
one extreme, several software projects undertaken by
volunteers or hobbyists showed zero as their cost. And at
the other end of the spectrum, a response for one of the
major system developments reported a cost of $2 billion.

 * The projects represent a variety of applications and
stages of development. (In the table below, the percentages

add up to more than 100% since some respondents checked
off more than one category, such as "fielded" and
"maintenance"):

Project type

Embedded systems: 44 21%

Command & Control: 32 17%

Other Types: 32 17%

Tools: 30 16%

Simulation Projects: 30 16%

Graphics: 21 11%

Libraries: 11 6%

IT Projects: 7 4%

Project Stage

Planning: 8 4%

Development: 78 41%

Complete: 31 16%

Fielded: 54 29%

Maintenance: 56 30%

Other stage: 13 7%

2.1 Projects Outside the Defence/Aerospace Box
Although Ada's traditional stronghold has been in the
defence/aerospace industry, the responses to the survey
show that the language has a much broader appeal. This is
likely due to Ada's intrinsic merit in helping produce
reliable software and to the availability of quality Ada
compilers and tools. Some of the more interesting
application areas include many surprises.

2.2 List of Projects Atypical for Ada Applications
The following projects were reported by businesses and
hobbyists. Some were from software engineers within
businesses who prefer to program in Ada and therefore also
programmed “side software” in the language they were
using for their main work.

 * Accounting

 * Banking & Finances

 * Bible Studies

 * Book Title Image Matching

124 Ada market in 2005

Volume 27, Number 2, June 2006 Ada User Journal

 * Commercial Imaging

 * Court Workflow

 * Currency Trading

 * Database Tools

 * DNA Analysis

 * Electronic Voting Machine

 * Industrial Control

 * Interlingual Machine Translator

 * Internet Security

 * Medical Devices & Testing

 * Neuroscience Research

 * Photonic Materials Research

 * Security Assessment

 * Semiconductor Factory

 * Small Office Applications

 * Spellcheck

 * Tension Structure Analysis

 * Warehouse Management/Control

3 Understanding of the Ada 2005
Standard Features Better than Expected
The survey also collected data on respondents' acquaint-
ance with and usage plans for features that are being added
to the Ada 2005 modification.

The survey offered six possible answers for each feature
that it presented, from "Unaware" and "Do not understand"
to "Frequently use". The following specific features were
listed: "limited with"; interfaces; scheduling improvements;
the container library; nested extensions; prefixed views;
directories/environment/calendar packages; enhanced
anonymous access types; limited aggregates and functions;
overriding indicators; Ravenscar; and expanded Unicode
support. A roughly one-line description was given of each.

Since tutorial or rationale material on the language
modification had only recently been made available to the
general Ada community, and since most of the information
available had been highly technical, a deep understanding
of the new features would have been somewhat surprising.
The actual results — on average, about 34% of the

respondents either didn't answer the question, or said that
they either were unaware of a feature or didn't understand it
— are probably better than expected and reflect a high
degree of interest in the new amendment to the Ada
language.

3.1 New Ada 2005 Features Likely to be Used

The best understood new features were the containers
library and the other new packages, while the least
understood feature was overriding indicators. Unlike most
of the other features, the description in the survey’s
question on overriding indicators didn't explain their use,
which might have explained respondents' confusion.

Those features that respondents said they would never use
proved to be highly specialized. Further, if a feature were
understood, it would tend to be used: on average, more than
80% of the users who understood a feature said that they
would use it at least occasionally.

An interesting counterexample was the Ravenscar Profile:
32% of the respondents that understood the feature said that
they would never use it. This may seem surprising, since
the Ravenscar profile is generally regarded as one of Ada's
major strengths for high-integrity applications. But most of
the survey's respondents are working on systems that,
although requiring high reliability, are not safety critical.
The developers can thus use the full Ada language rather
than a specialized subset.

The feature most likely to be used by developers who
indicated an understanding of the feature is the new
standard packages (for directories/environment variables/
calendar), followed by the containers library, prefixed
views, and overriding indicators.

Conclusion
The Ada market is robust, especially in the embedded
systems and command and control software, for which the
language was designed.

As for the survey’s results concerning users’ knowledge of
and interest in the Ada 2005 modification, they seem to
validate the ARG effort in choosing how to update the
language. The survey’s data show a higher degree of
familiarity with the new features than expected, and reveal
even before the Ada community had access to a formal
Rationale that the new libraries were already considered the
language’s most useful addition.

126

Volume 27, Number 2, June 2006 Ada User Journal

Ada-Europe Awards

Year Best Paper Best Presentation Proceedings

2006

Benjamin M. Brosgol and
Andy Wellings
"A Comparison of Ada and
Real-Time JavaTM for Safety-
Critical Applications"

Sri Narayanan
"Secure Execution of Computations in
Untrusted Hosts"

Michael Ward
"Parallel Graphical Processing in Ada"

Pinho, Luís Miguel, González Harbour,
Michael (Eds.): Reliable Software
Technologies – Ada-Europe 2006:
Proceedings 11th Ada-Europe
International Conference on Reliable
Software Technologies, Porto, Portugal,
June 5-9, 2006, LNCS(4006) Springer-
Verlag 2006. ISBN: 3-540-34663-5

2005

Peter Amey, Rob Chapman,
and Neil White
"Smart Certification of
Mixed-Criticality Systems"

Michael Gonzáles-Harbour
"RT-EP: A Fixed-Priority Real-Time
Communication Protocol over Standard
Ethernet"

Vardanega, Tullio, Wellings, Andy
(Eds.): Reliable Software Technologies
– Ada-Europe 2005: Proceedings 10th
Ada-Europe International Conference
on Reliable Software Technologies,
York, United Kingdom, June 20-24,
2005. LNCS(3555) Springer-Verlag,
2005. ISBN 3-540-26286-5

2004

Alan Burns, Andy J.
Wellings and S. Tucker Taft
"Supporting Deadlines and
EDF Scheduling in Ada"

Peter Amey and Neil White
"High Integrity Ada in a
UML and C World"

Adrian J. Hilton
"High-Integrity Interfacing to
Programmable Logic with Ada"

Albert Llamosi, Alfred Strohmeier
(Eds.):
Reliable Software Technologies - Ada-
Europe 2004: Proceedings 9th Ada-
Europe International Conference on
Reliable Software Technologies, Palma
de Mallorca, Spain, June 14-18, 2004.
LNCS(3063) Springer-Verlag, 2004.
ISBN 3-540-22011-9

2003

Miguel Masmano, Jorge
Real, Ismail Ripoll and
Alfons Crespo
"Running Ada on Real-Time
Unix"

Jorge Real
"Running Ada on Real-Time Unix"

Jean-Pierre Rosen, Alfred Strohmeier
(Eds.): Reliable Software Technologies
- Ada-Europe 2003: Proceedings 8th
Ada-Europe International Conference
on Reliable Software Technologies,
Toulouse, France, June 16-20, 2003.
LNCS(2655), Springer-Verlag, 2003.
ISBN 3-540-40376-0

2002

Robert Dewar, Olivier
Hainque, Dirk Craeynest
and Philippe Waroquiers
"Exposing Uninitialized
Variables: Strengthening and
Extending Run-Time Checks
in Ada"

Jean-Pierre Rosen
"Ada, Interfaces and the Listener
Paradigm"

Johann Blieberger, Alfred Strohmeier
(Eds.): Reliable Software Technologies
- Ada-Europe 2002: Proceedings 7th
Ada-Europe International Conference
on Reliable Software Technologies,
Vienna, Austria, June 2002.
LNCS(2361) Springer-Verlag, 2002.
ISBN 3-540-43784-3

Ada-Europe Awards 127

Ada User Journal Volume 27, Number 2, June 2006

Year Best Paper Best Presentation Proceedings

2001
Alexandre Duret-Lutz
"Expression Templates in
Ada"

Alan Burns
"Defining New Non-Preemptive
Dispatching and Locking Policies for
Ada"

Dirk Craeynest, Alfred Strohmeier
(Eds.): Reliable Software Technologies
- Ada-Europe 2001: Proceedings 6th
Ada-Europe International Conference
on Reliable Software Technologies,
Leuven, Belgium, May 2001.
LNCS(2043) Springer-Verlag, 2001.
ISBN 3-540-42123-8

2000

Andy J. Wellings, Robert
W. Johnson, Bo I. Sanden,
Jörg Kienzle, Thomas Wolf
and Stephen Michell
"Object-Oriented
Programming and Protected
Objects in Ada 95"

Brian Dobbing
"Using JavaTM APIs with Native Ada
Compilers"
(paper co-authored with Shayne Flint)

Hubert B. Keller and Erhard Plödereder
(Eds.): Reliable Software Technologies
- Ada-Europe 2000: Proceedings 5th
Ada-Europe International Conference
on Reliable Software Technologies,
Potsdam, Germany, June 26-30, 2000.
LNCS(1845) Springer-Verlag, 2000.
ISBN 3-540-67669-4

1999

Jorge Real and Andy
Wellings
"The Ceiling Protocol in
Multi-Moded Real-Time
Systems"

Roderick Chapman
"Re-engineering a safety-critical
application using SPARK 95 and
GNORT"
(paper co-authored with Robert Dewar)

Michael González Harbour, Juan A. de
la Puente (Eds.): Reliable Software
Technologies - Ada-Europe'99:
Proceedings LNCS(1622) Springer-
Verlag, 1999. Ada-Europe International
Conference on Reliable Software
Technologies, Santander, Spain, June 7-
11, 1999. ISBN 3-540-66093-3

1998

Agustín Espinosa, Vicente
Julián, C. Carrascosa,
Andrés Terrasa and Ana
García-Fornes
"Programming Hard Real-
Time Systems with Optional
Components in Ada"

Brian Dobbing
"The Ravenscar Tasking Profile for High
Integrity Real-Time Programs"
(paper co-authored with A. Burns and G.
Romanski)

L. Asplund (Ed.): Reliable Software
Technologies - Ada-Europe'98:
Proceedings LNCS(1411) Springer-
Verlag, 1998. Ada-Europe International
Conference on Reliable Software
Technologies, Uppsala, Sweden, June
8-12, 1998. ISBN 3-540-64536-5

1997

Michael Gonzalez-Harbour,
Javier J. Gutiérrez García
and J.C. Palencia Gutiérrez
"Implementing Application-
Level Sporadic Server
Schedulers in Ada 95"

Alex E. Bell
"An Alternative Toolset for Analysis of
Ada Programs"

Keith Hardy, Jim Briggs (Eds.):
Reliable Software Technologies - Ada-
Europe'97: Proceedings. LNCS(1251)
Springer-Verlag, 1997. Ada-Europe
International Conference on Reliable
Software Technologies, London, UK,
June 2-6, 1997. ISBN 3-540-63114-3

1996

David E. Emery, Richard F.
Hilliard II, Timothy B. Rice
"Experiences Applying a
Practical Architectural
Method"

Wolfgang Gellerich
"Where Does the GOTO Go To?"
(paper co-authored with Markus Kosiol
and Erhard Plödereder)

Alfred Strohmeier (Ed.): Reliable
Software Technologies - Ada-
Europe'96: Proceedings. LNCS(1088)
Springer-Verlag, 1996. Ada-Europe
International Conference on Reliable
Software Technologies, Montreux,
Switzerland, June 10-14, 1996. ISBN 3-
540-61317-X

128

Volume 27, Number 2, June 2006 Ada User Journal

Ada-Europe 2006 Sponsors

8 Rue de Milan, F-75009 Paris, France AdaCore
Contact: Zépur Blot Tel: +33-1-49-70-67-16

Email: sales@adacore.com
Fax: +33-1-49-70-05-52
URL: www.adacore.com

66/68, Avenue Pierre Brossolette, 92247 Malakoff, France Aonix
Contact: Jacques Brygier Tel: +33-1-41-48-10-10

Email : info@aonix.fr
Fax: +33-1-41-48-10-20
URL : www.aonix.com

Dolphin House, St Peter Street, Winchester, Hampshire, SO23 8BW, UK Green Hills Software Ltd
Contact: Christopher Smith Tel: +44-1962-829820

Email :
Fax: +44-1962-890300
URL : www.ghs.com

1 Cornbrash Park, Bumpers Way, Chippenham, Wiltshire, SN14 6RA, UK I-Logix
Contact: Martin Stacey Tel: +44-1249-467-600

Email : info_euro@ilogix.com
Fax: +44-1249-467-610
URL : www.ilogix.com

20 Manvers Street, Bath, BA1 1PX, UK Praxis High Integrity
Systems Ltd
Contact: Rod Chapman

Tel: +44-1225-466-991
Email : sparkinfo@praxis-his.com

Fax: +44-1225-469-006
URL : www.sparkada.com

Triad House, Mountbatten Court, Worrall Street, Congleton, CW12 1DT, UK Ellidiss Software
TNI Europe Limited
Contact: Pam Flood

Tel: +44-1260-29-14-49
Email: info@tni-europe.com

Fax: +44-1260-29-14-49
URL: www.ellidiss.com

	Contents
	Editorial
	News
	Conference Calendar
	Ada Conference UK 2006
	Ada Market in 2005 Entails at Least a $5.6 Billion Investment

