

Ada User Journal Volume 27, Number 3, September 2006

ADA
USER
JOURNAL

Volume 27
Number 3

September 2006

Contents
Page

Editorial Policy for Ada User Journal 130

Editorial 131

News 133

Conference Calendar 167

Forthcoming Events 174

Articles

 P Leroy
“Memories of a Language Designer” 181

 D N Kleidermacher
“Developing Reliable Software Rapidly” 184

Ada-Europe 2006 Sponsors 192

Ada-Europe Associate Members (National Ada Organizations) Inside Back Cover

130

Volume 27, Number 3, September 2006 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal – The Journal for the
international Ada Community – is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the first of the
month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 131

Ada User Journal Volume 27, Number 3, September 2006

Editorial
First of all I want to apologize to our readers for the late arrival of this issue of the journal to their doorstep. The production
of AUJ 27-3 encountered very serious and equally unwelcome technical problems that took us time and effort to overcome,
which our tight agendas have very little provisions for. My gratitude goes to Santiago Urueña, our News editor, who was the
one hit the most by my friend Murphy and yet survived the hit, and to Dirk Craeynest, our long-time Calendar and
Forthcoming Events editor for reliably providing a steady flow of material for the journal.

Lateness of the September production aside, the end of Summer brough us the very good news that the Ada 2005 amendment
had gained the technical approval of ISO/IEC JTC 1/SC 22, thus freezing the new technical shape of the Ada language. That
was a major achievement for the Ada community, which we celebrate in this issue by hosting an interesting retrospective
reflection by Pascal Leroy, the chair of the group of technical experts tasked to shape the new version of the language. Well
done, Pascal.

With this issue we also begin the publication of summary articles from the industrial presentations delivered at the Ada-
Europe 2006 conference that took place in Porto back in June. The first author to contribute was Dave Kleidermacher, who
shared with us some guidance for the rapid production of reliable software. Thanks Dave.

We are also happy to share with our readers the announcement that the 13th edition of the International Real-Time Ada
Workshop (better known as IRTAW) will take place in April 2007. A welcome return for an event that has always made
important contributions to the progress and fostering of the Ada language in the domain of real-time and high-integrity
systems. You will find the details on page 176. The return of IRTAW means that the year 2007 will enjoy at least three major
Ada-related events, which sounds like good news to us all.

Regrettably this editorial has to close on a negative tone, for which I apologise to the readership. Thanks to the advice of one
of our readers we have in fact sadly realized that the article entitled “A New Strategy Pattern for OO Technology” and
published on pp. 110 – 116 of AUJ 27-2, appears to be a case of serious plagiarism in that it lifted verbatim text and
illustrations from the book: Head First Design Patterns, authored by Eric and Elizabeth Freeman and published in October
2004 by O’Really associates with ISBN 0-596-00712-4. Our humblest and most sincere apologies to the original authors. As
for the perpetrators of the fraud, who were not responding to our complaints in the regard of this most annoying incident, we
say that they taught us the hard way a good lesson into tightening up our review process. We shall strive to keep this promise
in the future.

Tullio Vardanega
Padova

September 2006
Email: tullio.vardanega@math.unipd.it

 133

Ada User Journal Volume 27, Number 3, September 2006

News
Santiago Urueña
Technical University of Madrid (UPM). Email: Santiago.Uruena@upm.es

Contents

Ada-related Events 133
Ada and Education 134
Ada-related Tools 134
Ada-related Products 141
Ada and GNU/Linux 146
References to Publications 150
Ada Inside 151
Ada in Context 155

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal. --
su]

Jun 20 — Ada-Belgium
General Assembly
From: Dirk Craeynest

<dirk@apollo.cs.kuleuven.ac.be>
Organization: Ada-Belgium, c/o Dept. of

Computer Science, K.U.Leuven
Date: 1 Jun 2006 01:33:49 +0200
Subject: UML2 profile enforcing Ravenscar

model, Tue 20 Jun 19:45, Ada-Belgium
Newsgroups:

comp.lang.ada,fr.comp.lang.ada,be.com
p.programming,nl.comp.programmeren

Ada-Belgium Special Evening Event
Ada-Belgium is pleased to announce our
next event: a technical presentation by
Tullio Vardanega of the University of
Padua, Italy.
Correctness by constr uction: a UML2
profile enforcing the Ravenscar
Computational Model
Tuesday, June 20, 2006, 19:45-21:45
at the U.L.B., Department of Computer
Science, Campus de la Plaine, "Forum"
complex, auditorium "Forum D",
Boulevard du Triomphe / Triomflaan, B-
1050 Brussels (after the Ada-Belgium
2006 General Assembly at 18:45).
http://www.cs.kuleuven.ac.be/~dirk/ada-
belgium/events/local.html
Announcement
Ada-Belgium will hold its 13th annual
General Assembly on Tuesday, June 20,
2006, at the U.L.B., Department of

Computer Science, Boulevard du
Triomphe / Triomflaan, B-1050 Brussels,
at 18:45. The official convocation is
available, also in PDF format, and is sent
via postal mail to all members.
There will be refreshments and pizza for
Ada-Belgium members at 18:00. Please
notify us if you are a current or new
member and intend to participate at this
informal "pre-meeting".
At 19:45 the General Assembly will be
followed by a technical presentation on
"Correctness by construction: UML2
profile enforcing the Ravenscar
Computational Model", by Tullio
Vardanega from the University of Padua,
Italy.
Abstract
In this talk we illustrate the results of a
research project that attempts to unite
three distinct fronts of advances in the
engineering of high-integrity software
systems:
* the pursuit of correctness by
construction;
* the reliance on the UML2 notions of
profile supported by meta-model
ontologies;
* the adoption of an educated approach to
the use of concurrency by compliance
with the computational model entailed by
the Ravenscar Profile.
The talk will proceed in three successive
steps:
* we first discuss how an initial UML2
profile can be built by mapping the basic
ontologies of HRT-HOOD onto the
UML2 meta-model;
* subsequently we address and overcome
some frustrating limitations inflicted by
the HOOD heritage and make an
important step towards better integration
of the HRT and OO dimensions of
modern systems;
* finally we show how the increased
expressive power of Ada 2005 permits to
greatly amplify the benefits of correct-by-
construction model-based code generation
via factorization and instantiation.
Speaker
Tullio Vardanega, from the Department of
Pure and Applied Mathematics of the
University of Padua, is an expert in the
development of real-time embedded
systems, and processes and
methodologies for the engineering of
software-intensive high-integrity systems.
Before joining the University of Padua, he

worked for a long time at ESA, the
European Space Agency.
He is Ada-Europe Board member and
Editor of the Ada User Journal. He is
active in ISO's Ada standardization
working group (WG9), more specifically
in the Ada Rapporteur Group (ARG,
language maintenance) and the Annex H
Rapporteur Group (HRG, guidance for
high integrity applications in Ada).
Participation
Everyone interested is welcome at either
or both parts of this meeting. As usual, the
event is free and presentations are in
English.
If you plan to attend the General
Assembly or the technical presentation,
we would appreciate it if you could
inform us by e-mail (please also specify if
you intend to participate at the informal
"pre-meeting"). Although no formal
registration is required, this helps our
preparations.
All Ada-Belgium members have a vote at
the General Assembly, can add items to
the agenda, and can be a candidate for a
position on the Board (see the
convocation for more details).
If you are a member but have not yet
renewed your affiliation please do so by
paying the appropriate fee before the
General Assembly (you have also
received a printed request via normal
mail). If you are interested to become a
new member, please register by filling out
the 2006 membership application form
and by paying the appropriate fee before
the General Assembly. After payment you
will receive a receipt from our treasurer
and you are considered a member of the
organization for the year 2006 with all
member benefits. Please settle this invoice
ASAP. Early renewal ensures you receive
the full Ada-Belgium membership
benefits (including the Ada-Europe
indirect membership benefits package).
Directions
This event takes place at the premises of
the Universit Libre de Bruxelles (U.L.B.),
Boulevard du Triomphe / Triomflaan,
Campus de la Plaine, 1050 Brussels,
Belgium. Exact location is auditorium
"Forum D", in the "Forum" complex.
An access plan to the Campus de la Plaine
of the U.L.B. is available. Parking
facilities are at access no. 2 (parking
Fraiteur) or no. 4 (parking UAE, the
closest, usually has free space). You can
check on-line how to reach the Campus
de la Plaine by car or by public transport.

134 Ada-related Tools

Volume 27, Number 3, September 2006 Ada User Journal

Looking forward to meeting many of you
in Brussels!
Dirk Craeynest
President Ada-Belgium
Dirk.Craeynest@cs.kuleuven.be
Acknowledgments
We would like to thank our sponsors for
their continued support of our activities:
AdaCore, Katholieke Universiteit Leuven
(K.U.Leuven), Offis nv/sa — Aubay
Group, and Universit Libre de Bruxelles
(U.L.B.).
[See also same topic in AUJ 26-2 (Jun
2005), pp.69–70. —su]

15 Nov — SIGAda Award
Nominations
From: John McCormick

<mccormick@cs.uni.edu>
Newsgroups: comp.lang.ada
Subject: Call for SIGAda Award

Nominations
Date: 11 Sep 2006 10:57:53 -0700
Dear Members of the Ada Community:
On Wednesday, 15 November 2006, the
2006 SIGAda Awards will be presented in
a special morning plenary session at the
SIGAda 2006 conference in Albuquerque,
New Mexico. (See
http://www.acm.org/sigada/conf/sigada20
06/ if you have somehow missed
announcements of this year's annual
SIGAda international conference.)
We welcome your nominations of
deserving recipients.
The ACM SIGAda Awards recognize
individuals and organizations who have
made outstanding contributions to the
Ada community and to SIGAda. The two
categories of awards are:
(1) Outstanding Ada Community
Contribution Award — For broad, lasting
contributions to Ada technology & usage.
(2) ACM SIGAda Distinguished Service
Award — For exceptional contributions
to SIGAda activities & products.
Please consider who should be nominated
this year. You may nominate a person for
either or both awards, and as many people
as you think worthy. One or more awards
will be made in both categories.
Please visit
http://www.acm.org/sigada/exec/awards/a
wards.html#Recipients and peruse the
names of past winners. This may help
you think about the measure of
accomplishment that is appropriate. You
may be aware of people who have made
substantial contributions that have not yet
been acknowledged. Nominate them.
Consider what you believe to be the best
developments in the Ada community or
SIGAda in the last year; the last 5 years;
since Ada's inception. Who was
responsible? Nominate them.

Please note that anyone who has received
either of the two awards remains eligible
for the other. Perhaps there is an
outstanding SIGAda volunteer who has
won our Distinguished Service Award
and who has also made important
contributions to the advance of Ada
technology, or visa versa. Nominate him
or her!
The nomination form is available on the
SIGAda website at
http://www.acm.org/sigada/exec/awards/a
wards.html. (You need to visit this
website to see past award winners' names,
and also a picture of the statuette which is
the award among other things, so you
don't nominate someone who has already
won an award in a category.) Submit
your nomination as an e-mail or e-mail
attachment to SIGAda-Award@acm.org.
The ACM SIGAda Awards Committee,
comprised of volunteers who have
previously won an award, will determine
this year's recipients from your
nominations.
Call our attention to the people who are
most deserving, by nominating them.
And please nominate by OCTOBER 15!
Your participation in the nominations
process will help maintain the prestige
and honor of these awards.
Thank you,
John McCormick
Chair ACM SIGAda
[See also same topic in AUJ 26-4 (Dec
2005), p.229. —su]

Ada and Education
Public Ada 95 Courses
From: Ed Colbert <colbert@abssw.com>
Date: 8 Jun 2006 13:05:52 -0700
Subject: [Announcing] Public Ada 95

Courses 17-21 July in Carlsbad CA
Newsgroups: comp.lang.ada
Absolute Software will be holding a
public Ada 95 course during the week of
17 July 2006 in Carlsbad, CA. You can
find a full description and registration
form on our web-site, www.abssw.com.
Click the Public Courses button in the left
margin. (We also offer courses on
software architecture-based development,
safety-critical development, object-
oriented methods, and other object-
oriented languages.)
[See also same topic in AUJ 26-3 (Sep
2005), pp.150–151. —su]

Ada 2005 Upgrade Course
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Newsgroups: comp.lang.ada
Subject: Re: Ada 2005 courses?
Date: Mon, 26 Jun 2006 09:47:20 +0200
Organization: Adalog

> With Ada 2005 ISO approval almost
assured are their any classes planned
that cover the new features?

Adalog is offering an Ada 95->Ada 2005
upgrade course (see
http://www.adalog.fr). The scheduled one
is in French, but we can make it in-house
in English.
Please get in touch with me if you need
further information

Ada-related Tools
PragmARC — PragmAda
Reusable Components
From: PragmAda Software Engineering

<pragmada@mchsi.com>
Organization: PragmAda Software

Engineering
Date: Thu, 27 Apr 2006 19:42:03 GMT
Subject: Announcement: New Version of the

PragmAda Reusable Components
Newsgroups: comp.lang.ada
PragmAda Software Engineering
announces a new release of the PragmAda
Reusable Components. This release adds
PragmARC.Genetic_Algorithm, a generic
framework for genetic programming.
The PragmARCs are available from the
PragmAda web site:
http://pragmada.home.mchsi.com/
Error reports, comments, and suggestions
are always welcome.
[See also same topic in AUJ 27-1 (Mar
2006), pp.7–8. —su]

Simple components
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: Simple components v2.3
Newsgroups: comp.lang.ada
Date: Tue, 15 Aug 2006 21:47:06 +0200
The new version is here:
http://www.dmitry-
kazakov.de/ada/components.htm
Changes to v2.2:
- Generic package
Object.Handle.Generic_Handle_Set is
provided for sets of objects accessed
through handles;
- Insert procedure was added to
Generic_Set with a parameter to
determine whether the item has been
added to the set:
- The package
Parsers.Multiline_Sources.Standard_Input
was added to provide interface to the
standard input file;
- Packages for dealing with XPM image
format were added;
- Bug fix in Stack_Storage;

Ada-related Tools 135

Ada User Journal Volume 27, Number 3, September 2006

- Bug fix in the implementation of "and"
in Generic_Set and
Object.Handle.Generic_Set.
[See also “Updates for Fuzzy sets for
Ada, and Simple components” in AUJ 27-
2 (Jun 2006), p.72. —su]

Auto_Text_IO & SAL
From: Stephen Leake

<stephen_leake@acm.org>
Date: Sun, 18 Jun 2006 17:17:05 -0400
Subject: SAL, Auto_Text_IO release
Newsgroups: comp.lang.ada
I've downloaded GNAT GPL-2006, and it
compiles all of my SAL and
Auto_Text_IO code, and passes all tests,
without problems. I think this is a first for
a public GNAT release!
So I'm releasing a new version of SAL
(2.00) and Auto_Text_IO (3.03). Support
for GNAT 3.15p is now removed, making
some things simpler; I've started using
some Ada 2005 features (mainly 'raise …
with <string>;'.
There are lots of improvements in SAL;
it's been almost two years since the last
release, and I've been improving it a lot
for work. The biggest additions are
support for left- and right-multiply
quaternions (a somewhat obscure topic,
but it took a lot of effort :), and many
more features for config files.
Auto_Text_IO hasn't changed much.
See
http://www.toadmail.com/~ada_wizard/
for more info.
[See also same topic in AUJ 25-4 (Dec
2004), p.193. —su]

GNU Ada Compiler
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: [gnuada] R5 release with lots of

improvements now available
Date: Sun, 09 Jul 2006 11:13:17 +0200
Newsgroups: comp.lang.ada
With the R5 release many loose ends have
been tied up:
1) The package naming convention
changed to closer reflect the naming
convention by the distribution.
2) The package dependencies have been
properly filled in so useful error messages
for missing packages are given.
4) The source packages are now self
contained so that "rpmbuild --rebuild
xxxx.src.rpm" should now work [1].
3) Only one set of source packages are
provided.
5) RPM-Build-Script are now fully
compatible with GNAT/Pro.
6) Configurations Scripts now updated.
And on top of all these improvements
both GCC and GPL are created with the

newest releases from the FSF and
AdaCore.
All in all, this release is a lot better than
any previous release.
[1] you still need an appropriate
~/.rpmmacros file.
[http://gnuada.sourceforge.net —su]
[See also same topic in AUJ 27-2 (Jun
2006), p.71. —su]

GNU Ada MinGW
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: [gnuada] MinGW cross compiler

available
Date: Tue, 22 Aug 2006 19:06:34 +0200
Newsgroups: comp.lang.ada
MinGW has been our problem child for
quite a while but now we have a MinGW
cross compiler ready for your test.
Currently available as Build-Hosts are
SuSE Linux 10.1 X86_64 [1] and MS-
Windows Cygwin [2]. Look out for the
"gnat-mingw-*" files.
The Toolchain only contains Ada and C
as the other languages are not cross
compile and/or windows friendly.
And yes, we do hope to use one of the
cross compilers to create a native MinGW
compiler. Details on how to use the
compiler will be added to the MinGW
wiki page [3] when I find some time.
[1]
http://gnuada.sourceforge.net/pmwiki.php
/Install/SuSE
[2]
http://gnuada.sourceforge.net/pmwiki.php
/Install/Cygwin
[3]
http://gnuada.sourceforge.net/pmwiki.php
/Install/MinGW

GNU Ada GPS
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: [gnuada] Finaly: GPS 4.0.0

available.
Date: Sat, 09 Sep 2006 20:19:11 +0200
Newsgroups: comp.lang.ada
Finally after many unsuccessful attempts
we have created a working GPS. And not
any old one — the very current GPS 4.0.0
with lots of new features.
"GNAT/GPL SuSE 10.1 x86_64" and
"GNAT/GPL Source" are uploaded and
others will follow when they become
available.
Please note that you can use the GPL
version of GPS together with the GCC
version of GNAT — just the setup is a bit
more tricky but you won't need to install
two GPS if you don't want to.
[http://gnuada.sourceforge.net/ —su]

From: Martin Krischik
<krischik@users.sourceforge.net>

Subject: Re: Finaly: GPS 4.0.0 available.
Date: 12 Sep 2006 03:56:14 -0700
Newsgroups: comp.lang.ada
> I'd like to try this on SuSE 10.1_586 but

since I've been away from Ada for a
while could someone please tell me
where this downloadable from.

For SuSE 10.1 568 it should be fairly
simple as SuSE 10.1 x86_64 is already
there. You need the base setup:
http://gnuada.sourceforge.net/pmwiki.php
/Packages/GNATConfig
http://gnuada.sourceforge.net/pmwiki.php
/Packages/GNATRPM
Then download the Source RPMs:
http://sourceforge.net/project/showfiles.ph
p?group_id=3D12974&package_id=3D=
191854
After that the fun of building begins:
http://gnuada.sourceforge.net/pmwiki.php
/RPM/HomePage
Now there is one hurdle here: You need
the GPL version of GNAT for the GPS
(unless you want to patch the sources).
But the GPL version can only be build
with another GPL version.
For Linux 586 this is fairly simple:
download a GPL version from Libre. For
SuSE Linux you you can also download
and install the SuSe 9.2 version to create a
10.1 version.
Initial setup is hard but once everything is
set up then creation is as simple as
calling:
Package_Step1.bash
Package_Step2.bash
Package_Step3.bash

or
make gpl
make gpl-gktada
make gpl-xmlada
make gpl-gps

From: Björn Persson
<rombo.bjorn.persson@sverige.nu>

Subject: Re: [gnuada] Finaly: GPS 4.0.0
available.

Date: Mon, 11 Sep 2006 17:57:56 GMT
Newsgroups: comp.lang.ada
Alas, it looks like there won't be a GPS
package for Fedora anytime soon. It just
displays the splash screen and then
crashes on a failed assertion.

lcov — Coverage analysis on
Windows
From: Manuel Collado

<m.collado@lml.ls.fi.upm.es>
Date: Thu, 07 Sep 2006 12:40:33 +0200
Subject: Re: Coverage analysis on Windows
Newsgroups: comp.lang.ada
> I am looking for a windows tool which

enables to display gcov (gcc 3.4.4)

136 Ada-related Tools

Volume 27, Number 3, September 2006 Ada User Journal

coverage results.
Would you know one?
I have tried lcov, but it isn't ported for
Windows …

'lcov' is just a set of Perl scripts. They can
be executed in any Windows system with
a Perl interpreter (I've just tested it).
From: Manuel Collado

<m.collado@lml.ls.fi.upm.es>
Date: Fri, 08 Sep 2006 13:29:41 +0200
Subject: Re: Coverage analysis on Windows
Newsgroups: comp.lang.ada
> lcov processes Unix-style paths.

However, our version of gcc and gcov
(gcc 3.4.4) encrypts windows-style
paths into .obj, .gnco, .gda and .gcov
files. Therefore, lcov does not manage
them correctly …

It works on Cygwin. Cygwin is a
Windows port of a large set of GNU
utilities. Includes a bash shell that
provides a Unix-like environment. The
Perl interpreter (and any other utility)
from Cygwin understand both forward
and backward slashes as path delimiters.
> lcov would need to be fully ported to

windows …
It works OK in my Windows XP machine
via Cygwin. […]

Ada and Software
Engineering Library
From: Dick Gayler

<gaylers@mindspring.com>
Subject: Ada and Software Engineering

Library Version 2
Date: Sun, 04 Jun 2006 18:22:55 GMT
Newsgroups: comp.lang.ada
We have been hosting Ada and Software
Engineering Library Version 2 but the
person who helped maintain the site is no
longer affiliated with KSU. Thus, we are
in the process of "pulling the plug" on the
site. Is this site frequently used and is
there anyone who would like to takeover
hosting the site?
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Mon, 05 Jun 2006 21:43:30 -0400
Subject: Re: Ada and Software Engineering

Library Version 2
Newsgroups: comp.lang.ada
> We have been hosting Ada and

Software Engineering Library Version
2 but the person who helped maintain
the site is no longer affiliated with
KSU. Thus, we are in the process of
"pulling the plug" on the site. Is this
site frequently used and is there anyone
who would like to takeover hosting the
site?

I don't think it is all that frequently used
but it would be a shame of anything was
lost. There is probably a lot of
duplicate/old files there that are already
hosted elsewhere. (e.g. some old versions
of GNAT).

I may try to pull it down and sort through
it but I don't currently have the resources
to host it.
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Subject: Re: Ada and Software Engineering

Library Version 2
Date: 17 Jun 2006 08:17:35 +0200
Organization: Ada-Belgium, c/o Dept. of

Computer Science, K.U.Leuven
Summary: A mirror is available on the Ada-

Belgium ftp server.
Newsgroups: comp.lang.ada
> Maybe it could become part of

Adapower or Ada World? I remember
Stéphane Richard saying he had lots of
space.

FWIW, since a very long time Ada-
Belgium has provided a complete mirror
of the "Ada and Software Engineering
Library Version 2 (ASE2)" on our ftp-
server.
The starting point is:
<ftp://ftp.cs.kuleuven.ac.be/pub/Ada-
Belgium/cdrom/index.html>
> There are probably numerous links the

site. Please don't break those if it can be
avoided. If someone takes over hosting,
will you set up redirections (HTTP
response 301)?

Anyone who has links to this library is
invited to redirect to the Ada-Belgium
mirror. I will keep the ASE2 directory
on-line as a permanent archive of this
library.
[See also same topic in AUJ 22-4 (Dec
2001). —su]

GtkAda Contributions
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: GtkAda contributions v1.2
Date: Thu, 24 Aug 2006 21:09:00 +0200
Newsgroups: comp.lang.ada
http://www.dmitry-
kazakov.de/ada/gtkada_contributions.htm
This new version contains two new
sections:
1. A package to access style properties.
Style properties are controlled using
resource files. Additionally to the
appearance of a widget, they can be used
for internationalization purpose. String
style properties are natively UTF-8.
2. xpm2gtkada, an utility for embedding
images into a GtkAda application.
Normally images are attached as separate
files referenced in the resource file. But
sometimes one could wish to be able to
link some "stock" images to the
executable.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: GtkAda contributions v1.3
Date: Sun, 27 Aug 2006 18:56:12 +0200
Newsgroups: comp.lang.ada

http://www.dmitry-
kazakov.de/ada/gtkada_contributions.htm
Added:
1. Missing windows positioning
subprograms and bug fix for Set_Property
on GFloat contributed by Maxim Reznik;
2. xpm2gtkada has an option to create
Pixbuf embeddable images;
3. Reference-counted Ada objects as
GValue.

wxAda — wxWidgets
bindings
From: Lucretia <lucretia9@lycos.co.uk>
Subject: [ANNOUNCE] wxAda (pre-pre-

pre-pre-release)
Date: 7 Sep 2006 12:28:34 -0700
Newsgroups: comp.lang.ada
Just thought I'd post a little note about the
status of the project. I have uploaded the
source to Tigris. This is not complete and
I have stalled. I have recently stumbled
across major blocks which I need help
with. Or if somebody wants to take over
leading development, I have no problem
with that; my future with wxAda isn't too
clear to me at the moment.
The source isn't in the best way, but it
does build with wxWidgets 2.6.3 and does
provide some functionality.
Please feel free to look over the project
and see what can be done.
[http://wxada.tigris.org —su]

AutoIT — Automated GUI
Testing
From: Per Sandberg

<per.sandberg@bredband.net>
Subject: [ANNOUCE] AutoIT in Ada

(Automated GUI testing) Version 0.5.1
Date: Fri, 25 Aug 2006 22:37:56 +0200
Newsgroups: comp.lang.ada
First release of auto-it in Ada, an Ada
binding to the AutoIT dll that makes it
possible to automate GUI tests on
Windows.
Requirements:
 A Win32 box
 GNAT GPL 2006 / or better
URL: https://sourceforge.net/projects/ada-
autoit/
And http://www.autoitscript.com/autoit3/
For documentation and background.

ASIS2XML
From: Simon Wright

<simon@pushface.org>
Subject: ASIS2XML 20060827 released
Date: Sun, 27 Aug 2006 18:58:30 +0100
Newsgroups: comp.lang.ada
Now released at
http://sourceforge.net/project/showfiles.ph
p?group_id=104293&package_id=19276
1

Ada-related Tools 137

Ada User Journal Volume 27, Number 3, September 2006

There have been two silent releases since
this was added to the GNAT-ASIS project
on SourceForge:
20060610
Notes: This is the first SourceForge
release of asis2xml.
Changes: Working on Traits so that they
have a more natural interpretation: for
example, An_Access_Definition_Trait on
an element el becomes
<el access="true"/>
20060806
Notes: This release supports multi-unit
programs, and includes unit name and file
location.
Changes: If you've built your program
using a GPR
 $ gnatmake -Pfoo -gnatct

which puts the Ada library info into say
.build you can process the library by
 $ asis2xml .build >foo.xml

Declaration elements that correspond to
units (ie, source files) include the
attributes file (full source path), unit (Ada
unit name).
The 'size' attributes are missing (problems
with generic instantiations).
20060827
Notes: This release includes context
clauses and record component sizes.
Changes: The schema has changed; now
you get
 <asis>
 <compilation_unit
file="/where/ever/foo.ads"
unit="Foo">
 <context_clauses/>
 <unit_declaration/>
 <compilation_pragmas/>
 </compilation_unit>
 </asis>

where the contents of <unit_declaration/>
are as before.
The usage has changed:
 usage: ./asis2xml [flags]
directory|unit.adt
 flags: -s report data sizes
For as-yet-unknown reasons, an exception
can be raised if you give -s on an adt
derived from a body; it seems to work
fine on specs.
[See also same topic in AUJ 25-4 (Dec
2004), p.191. —su]

Avatox — Ada to XML
From: Marc A. Criley <mc@mckae.com>
Subject: Announce: Avatox 1.0 is now

available
Date: Thu, 17 Aug 2006 00:58:17 GMT
Newsgroups: comp.lang.ada
Avatox 1.0 (Ada, Via Asis, To Xml) is an
application that traverses an Ada

compilation unit and outputs the ASIS
representation of that unit structured as an
XML document.
It is now available in source code form at
www.mckae.com/avatox.html.
Avatox' XML representation provides
some content, such as identifier names
and operators, as attributes, rather than
outputting everything as an element. It
also outputs the row/column span of every
element, and embeds comment lines
within non-ASIS "A_COMMENT"
elements.
Here's a brief excerpt generated by:
 avatox avatox.adb -Imckae
-I$GNAT/include/asis

(assuming GNAT is the GNAT GPL 2006
installation directory)
<A_DECLARATION startLine="47"
endLine="299" startCol="1"
endCol="11">
<A_PROCEDURE_BODY_DECLARATION
startLine="47" endLine="299"
startCol="1" endCol="11">
</A_PROCEDURE_BODY_DECLARATIO
N>
 <A_DEFINING_NAME
startLine="47" endLine="47"
startCol="11" endCol="16">
 <A_DEFINING_IDENTIFIER
name="Avatox" startLine="47"
endLine="47"
startCol="11" endCol="16"/>
 </A_DEFINING_NAME>

The canonical style of XML element
naming can also be selected for ASIS
element naming, which alters the previous
excerpt to look like this:
<aDeclaration startLine="47"
endLine="299" startCol="1"
endCol="11">
 <aProcedureBodyDeclaration
startLine="47" endLine="299"
startCol="1" endCol="11">

 </aProcedureBodyDeclaration>
 <aDefiningName
startLine="47" endLine="47"
startCol="11" endCol="16">
 <aDefiningIdentifier
name="Avatox" startLine="47"
endLine="47"
startCol="11" endCol="16"/>
 </aDefiningName>

So what can you do with Avatox?
Well, you can now leverage XML
technologies, like XPath and XQuery, for
source code metrics and analysis.
There's enough information in the
generated XML representation that one
should be able to identically reconstitute
the original Ada source code. And should
such a utility come into existence <grin>,
one could even do things like XSLT
based transformations on the XML and
generate Ada source code from the
resulting file.

Avatox 1.0 was developed using GNAT
GPL 2006, and is an evolution of the
Display_Source program distributed with
that compiler's ASIS distribution. Avatox
is therefore licensed under the GPL, while
the included McKae software utilities is
licensed as GMGPL.
Check it out at
www.mckae.com/avatox.html. (And yes, I
know the title graphic is missing, it's on
order :-)
From: Marc A. Criley <mc@mckae.com>
Subject: Announce: Avatox 1.1 now

available
Date: Sun, 20 Aug 2006 14:48:13 GMT
Newsgroups: comp.lang.ada
(Though it's been scarcely a week since
the 1.0 release 1.1 is already on the net.
Hopefully there won't be too many
applications dependent on the 1.0 Avatox
XML Format that will be impacted by this
update :-)
Avatox (Ada, Via Asis, To Xml) is an
application that traverses an Ada
compilation unit and outputs the ASIS
representation of that unit structured as an
XML document.
With 1.1, that ASIS representation is now
wrapped in a containing element that also
includes information about the elements
being used to express the representation
of the source code. The intent of these
element "pedigrees" is to support the
extension of the Avatox XML Format
(AXF) and simplify the processing
performed by any follow-on tools.
Avatox 1.1 is available at the McKae
Technologies website at
www.mckae.com/avatox.html.
From: Marc A. Criley <mc@mckae.com>
Subject: Re: Announce: Avatox 1.0 is now

available
In-Reply-To:

<m2odudyfdm.fsf@grendel.local>
Date: Thu, 24 Aug 2006 00:41:18 GMT
Newsgroups: comp.lang.ada
Simon Wright wrote:
> I took the view that

<A_DEFINING_NAME/> would look
better as <defining_name/> throughout.

I try to adopt the prevailing style and
idioms of a given programming or similar
such language, hence the camelBack no
underscore approach.
> There are also some interesting choices

about which aspects to map into
attributes and which into child
elements, and indeed on the whole
mapping to be used.

Basically, I mapped literals into attributes,
like identifiers, operators, numbers, and
such.
There are other possibilities, but I didn't
want to have to maintain any kind of info
stack to know what value to associate
with a previous or subsequent element.
Like A_CLAUSE could've had the kind

138 Ada-related Tools

Volume 27, Number 3, September 2006 Ada User Journal

of clause--"with", "usePackage"--as an
attribute. Here it's all done in a single
pass with no look back or look-ahead.
> Do you support multi-unit

environments?
The current release of Avatox only
processes the single compilation unit
provided to it. Extending that to a closure
probably wouldn't be that hard.
The Avatox XML Format (AXF) would
support multiple units as-is (v1.1 and
beyond), you just keep adding them in.
> Do you think there'd be a future in

offering at least the concept to the ASIS
team?

I'm a little unclear on what concept you're
referring to…an XML definition for Ada?
> As a demo of the sort of thing one can

do, we found it pretty straightforward
to generate a report …

The analysis and reporting aspect is
definitely one area for Avatox, using
stylesheets just as you've done.
My focus though is more on
"Transformation & Vivification", i.e.,
transforming the XML representation
using <buzzword>XML-enabled
technologies</buzzword> and then
bringing the result to life by some means,
whether that be converting the XML back
to Ada source code, or compiling it
directly, or through some other animation.
I'm experimenting and watching to see
where this goes…

GADBTK — Generic
Avionics Data Bus Tool Kit
From: okellogg <okellogg@freenet.de>
Subject: GADBTK ATIP1553 GNAT?
Date: 31 Aug 2006 07:43:09 -0700
Newsgroups: comp.lang.ada
Has anybody ported the The Generic
Avionics Data Bus Tool Kit (GADBTK)
MIL-STD-1553 Ada binding to GNAT?
The version at AdaIC is for DEC Ada:
http://archive.adaic.com/tools/bindings/ga
dbtk/
> "atip1553.tgz,182 KBytes) The Generic

Avionics Data Bus Tool Kit
(GADBTK) provides a strong Ada
software binding to the military
standard 1553 data bus. The bus is used
for time multiplex data communications
between different sensor and computer
subsystems on many current military
platforms. [NR]"

Qt4Ada — Qt 4 Binding
From: Yves Bailly <kafka.fr@laposte.net>
Subject: Qt4Ada: Qt for Ada
Date: Sat, 29 Jul 2006 12:34:04 +0200
Newsgroups: comp.lang.ada
After reading the thread about an Ada
2005 binding for the Qt library, it seems

obvious that many would be interested in
such a work.
So, let me announce I have started such a
binding some times ago, a binding to Qt
version 4.1.4.
It's only the beginning, however it's
already usable: the 6th Qt tutorial
(http://doc.trolltech.com/4.1/tutorial-
t6.html) has been successfully
reimplemented in pure Ada.
The binding is done through a
intermediate C interface, using GNAT
2006 as compiler. However I'm trying to
write things as portable as possible, not
relying on compiler-specific features. The
actual binding is a rather thick one, the
thin binding being limited to the C
interface.
I pay particular attention to reflect in Ada
the type structure from C++. At the top
there is one package, named "Qt". Below
there are child packages, corresponding to
Qt's modules, for now only "Qt.Core" and
"Qt.Gui". Then each class has its own
package, for example "Qt.Core.QStrings"
for QString class, "Qt.Gui.QWidgets" for
QWidget class. The hierarchy of types is
also preserved: the type
Qt.Gui.QWidgets.QWidget is derived
from the type Qt.Core.QObjects.QObject,
and so on.
Please note I'm not an Ada expert — but
I'm willing to learn and get better. So
even a quick review by someone more
skilled would be very appreciated ;-)
Now some numbers.
There are more than 5000 functions or
methods in Qt4. With the current
structure, when not asleep, it needs
roughly 1min30sec to bind a C++ method
to an Ada function or procedure, in the
simplest cases. So it would need at least
125 hours to bind everything, more than 5
days if working 24 hours a day, or about
16 days if working 8 hours a day.
Applying the usual correction factor for
projects planning, we get about 50 days of
full-time work. Which is not that much,
after all.
But I'm not working full-time on this
project. It's a "free" project, done on my
spare time. […]
So, by myself I can only work on Qt4Ada
something like 1 (one) hour a day (it's a
weekly mean, some days I work more,
some days not at all). At this pace, the
binding would be achieved in more than
one year, assuming everything goes well.
No, I'm not using some automatic
translator: as someone already told, for
such complex things as Gtk or Qt such
translators would in fine do more harm
than good. […]
[See also “QtAda binding” in AUJ 26-4
(Dec 2005), pp.237–238. —su]
From: Michael Bode <m.g.bode@web.de>
Subject: Re: Qt4Ada: Qt for Ada

Date: Sat, 29 Jul 2006 14:35:35 +0200
Newsgroups: comp.lang.ada
> On the "administrative" side, I have

some wonder about licensing. Has it's
only a personal project, I think GPLv2
would be fine. What's your opinion?

Since you started the Qt4Ada thread with
the words:
 I just read the thread "Answer of
Request to AdaCore on licensing Status of
GtkAda 2.4.0",
I'd suggest using GMGPL. But this
depends on what you want to achieve
with Qt4Ada:
Do you want to promote the Free
Software idea in the first place? Then go
with the GPL.
Do you want to create a library that is
useful to the widest range of
programming projects (Free and Non-
Free)? Then use GMGPL.
Do you want to to create an alternative to
GtkAda because you think it sucks
technically or you like Qt better? Then
both are viable.
Do you want to create an alternative to
GtkAda because of the licensing mess
there? Then go with GMGPL.
Of course since Qt itself uses a dual
licensing scheme where you have to pay
if you want to do CSS development (but
not as astronomical as for GtkAda), you
could invent a similar dual license scheme
and maybe earn some money.
Anyway, please make it crystal clear what
your licensing is and stay with it.
From: Jeffrey Creem

<jeff@thecreems.com>
Subject: Re: Qt4Ada: Qt for Ada

 Date: Sat, 29 Jul 2006 13:44:28 -0400
Newsgroups: comp.lang.ada
> Does it matter if QT4Ada is GMGPL

when QT is GPL? I mean shouldn't
QT4Ada then be dual licensed so that
whether one use the QT GPL or non-
GPL version one do not get problems?

GMGPL is "GPL Compatible", so
GMGPL can certainly be the only way
this library is licensed (assuming that
meets the needs of the developers that
sign up).
So, I don't see a reason for dual license if
GMGPL is what is selected.
From: Michael Bode <m.g.bode@web.de>
Subject: Re: Qt4Ada: Qt for Ada
Date: Sat, 29 Jul 2006 23:50:05 +0200
Organization: 1&1 Internet AG
Newsgroups: comp.lang.ada
[…] If Qt4Ada is GPL, you can't use it for
CSS even if you buy a Qt license.
For this reason I'd prefer something that is
GTK+ based. And I consider GtkAda
under GPL like the tail wagging the dog.
After all GTK+ does the real work and it
is LGPL. Now comes one of a dozen or so

Ada-related Tools 139

Ada User Journal Volume 27, Number 3, September 2006

language bindings and shows people how
to do Free Software.
From: Yves Bailly <kafka.fr@laposte.net>
Subject: Re: Qt4Ada: Qt for Ada
Date: Tue, 01 Aug 2006 23:55:19 +0200
Newsgroups: comp.lang.ada
> Are you aware of this project at

http://www.websamba.com/guibuilder
? I haven't looked at it in detail; it
seems to be GPL.

Yes, I've looked at it. For one thing, it's
for Qt 3.3 : my proposal targets Qt 4 —
and only Qt4, so both are complementary.
Second, it's a binding for Ada 95, I'm
targetting Ada 2005.
> Me on my side, I think that if you do

not release your binding under the
GMGPL, you inhibit any (closed
source) commercial use of your
binding. Because closed source
software can't use your binding for
writing commercial programs released
under GPL, whereas they could if you'd
release it under the GMGPL.

Note that the GPL doesn't prohibit
commercial software, it "only"
prohibits *closed source* software. I
guess we could argue on this till the end
of times, but I do believe that
"commercial" /= "closed source". And I
also believe (again an arguable opinion)
that open source is better to produce good
software. For now I'm producing closed
source software, for which I'm paid so I
can live. Despite the fact it pleases some
consumers, who don't want to pay too
much, it's badly written, and it's the case
of almost all closed source software I've
had the opportunity to read the source
code. On the hand, most open source
software are better written. At least, this is
my own experience until now, I won't say
it will never change in the future.
> I share Jeffry's concern that you may

very well be unable to switch back to
GMGPL later on, once the community
has started sending source updates on
your binding.

I understand this. But given the previous
opinions, it's not really a concern for me.
I've reached the conclusion that the "best"
model would be some kind of dual-
licensing, something like TrollTech does
for Qt. However I don't see, at least for
now, how I could "enforce" a commercial
license, charge fees for it, and so on (not
to mention that this project is still at its
beginning and not yet really usable). Dual
licensing implies many legal and
administrative stuffs, which I'm not ready
nor able to handle by myself. Again, this
might change. I have to discuss of all this
with a lawyer I know and with my current
boss. Who knows…
So, to sum things up: for now, I tend to
prefer the GPL. But if something new
happens soon (some legal knowledge I

don't have, some administrative
support…), I might go for a dual license.
From: Michael Bode

<michael.bode@laserline.de>
Subject: Re: Poll: Qt4Ada as alternative to

GtkAda
Date: 28 Jul 2006 12:24:39 +0200
Newsgroups: comp.lang.ada
> But the real issue isn't if the GtkAda is

GPL or not as long as the GNAT
compiler only can be used to make
GPL code then it really doesn't matter
what license your library has.

But I think this is quite clear: gnat from
FSF still has the linking exception. GCC-
GNAT 4.1 is available for some Linux
distributions (Mac OS X?) and I think
MinGW gnat 3.4.5 is available for
Windows.
So the problem are some libraries the
most important being some decent
multiplatform GUI lib.
From: Simon Clubley

<clubley@eisner.decus.org>
Subject: Re: Poll: Qt4Ada as alternative to

GtkAda
Date: 28 Jul 2006 08:17:52 -0500
Newsgroups: comp.lang.ada
> So it means that what AdaCore

contributes to FSF (GCC) is GMGPL,
while what they package themselves is
GPL?

Yes, that's right. If you pull a FSF GCC
distribution, with a FSF version number,
from a FSF server, it's my understanding
that the Ada RTL component is licensed
under the GMGPL.
A theoretical concern that I had a few
weeks ago was could ACT, at a later date,
move the GNAT.* packages in the FSF
distribution to been GPL only on the basis
that they were not part of the Ada 95
standard, and hence, like GtkAda, ACT
was free to do with them whatever they
wanted to do?
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Fri, 28 Jul 2006 10:08:41 -0400
Subject: Re: Poll: Qt4Ada as alternative to

GtkAda
Newsgroups: comp.lang.ada
I would expect some discussion on the
GCC group before such a move happens.
For items in the actual FSF GCC tree,
ACT has to assign copyright to the FSF.
So, while they are always free to stop
contributing, I don't think AdaCore by
themselves can change the license terms
on items pulled from the FSF tree.
Of course, the FSF could make a change
like that. While AdaCore's actions are
(hopefully) driven by profit motives,
FSF's motives are simply trying to ensure
an end state where software is "Free" (in a
GPL sense). So they could certainly
change future releases to pure GPL for
their own reasons (and of course a

proprietary vendor could change future
license terms to require something
unacceptable in future versions too). At
least with open source and either very
shallow pockets (lawsuit proof) or fairly
deep pockets (lawyer up), one could
branch from the last set of acceptable
license terms…
In any case, on the original point of this
thread, it is hard to understand why we
would abandon GtkAda for Qt4Ada when
Qt itself is GPL without exception on
some platforms.
http://www.trolltech.com/developer/down
loads/qt/windows
So, how would the community be any
better off? Yes you can buy a commercial
license for it.. But of course you can by
GtkAda from AdaCore too.
Now, having an alternate or additional
GUI library support is not a bad thing
(perhaps it is even a good thing) but I
don't think QT really solves the license
problems that most people are worrying
about.

ABDI — Ada Unified
Database Interface
From: Maxim Reznik

<reznikmm@front.ru>
Subject: Re: Custom model in gtkada?
Date: Wed, 14 Jun 2006 21:00:37
Newsgroups: comp.lang.ada
ABDI is an unified database interface for
Ada. Now it works with Firebird and
Oracle. You can get it http://www.ada-
ru.org/files/adbi-0.2.tar.bz2

Vim Ada-Mode
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: Ada-Mode for vim updated.
Date: Sun, 16 Jul 2006 18:01:49 +0200
Newsgroups: comp.lang.ada
If you are using Ada and VIM then I have
something for you: A complete
refurbished Ada-Mode for vim.
http://www.vim.org/scripts/script.php?scri
pt_id=1609
The new mode is now distributed as Vim-
Ball for easy installation and features its
own on-line help (just type ":help
ada.txt") for easy setup and usage.
Tag search has been updated using vim
new ability to set the quick-fix list under
script control. A lot more helpful then the
ugly tjump list.
But the coolest extra is omni-completion
which allows syntax completion across
the whole project and not just the file(s)
loaded. Provided you have a "tags." file
with all the identifiers in it.
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Thu, 10 Aug 2006 20:31:50 +0300
Subject: VIM Ada-Mode 3.5

140 Ada-related Tools

Volume 27, Number 3, September 2006 Ada User Journal

Newsgroups: comp.lang.ada
The Vim Ada-Mode 3.5 [1] is out and it
has some really interesting features which
make development interesting. You can
have a look at what it can do here:
http://sourceforge.net/project/screenshots.
php?group_id=3D12974
The Ada-Mode mode supports GNAT and
Dec Ada and Vim runs on quite a few
more platforms than the GPS.
[1]
http://www.vim.org/scripts/script.php?scri
pt_id=3D1609

Convert_prj — GPR to ADP
From: M E Leypold <kontakt@m-e-

leypold.de>
Subject: Re: Meet the new Date: 28 Jun

2006 01:06:35 +0200
GPS…same as the old GPS…
Newsgroups: comp.lang.ada
> I would like to use Emacs as the "IDE"

as I do for other languages. Are you
using the Ada-mode supplied with
Emacs 21.x? Or are you using the Ada-
mode from ACT, or some other Ada-
mode?

I use the one coming with Debian.
Whichever version that is.
> I don't understand how to "install" the

Ada-mode files (about 5 Emacs lisp
sources) that I downloaded from the
Libre site. As I mentioned above, the
Ada-mode that comes with Emacs has a
significant problem: when you select
Build from the Ada menu in Emacs, it
builds the source > you're looking at.

You need to create a .adp file to set the
"main file" to build. Then it builds always
your program. Use Ada→Project→New
from the Emacs menubar to create a new
project file for Ada mode.
> And then, if you try to build again while
in a new source (even after killing the
buffer for the previous source) it builds
the old source again.
Since it constructed a default adp file
from the first file.
> I have not found a way, other than

killing that instance of Emacs and
starting a new one, to ever build more
than one source module. That doesn't
sound like a good productivity
proposition!

No. I missed the point for some time too.
Since then I generate (that is a bit
unusual) a adp file for every executable
from the Makefile.
 statfix.adb -> statfix.adp
 createdb.adb -> createdb.adp
etc.
Now on first compilation I'm asked what I
want to compile, except if the file that is
open is one of the main files, then the
selection is automatically.

The debugger is a pain in Emacs, though.
It’s workable, but you have to convince
yourself.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: Meet the new GPS…same as

the old GPS…
Date: 28 Jun 2006 02:23:08 -0700
Newsgroups: comp.lang.ada
Both versions are available [in Debian];
one bundled with Emacs, and the more
advanced one in the "ada-mode" package.
Personally I use a modified ada-mode that
does not use .adp files at all, it uses the
.gpr files directly. There are limitations,
but it does mostly what I need. I'll make
my changes availale somewhere on
request.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: Meet the new GPS…same as

the old GPS…
Date: Wed, 28 Jun 2006 23:07:26 +0200
Newsgroups: comp.lang.ada
> I don't know if you know the AdaCore

GLIDE? it uses a special program
convert_prj which converts a GPR to a
nearly-equivalent ADP.
I see that the sources of convert_prj are
(c) FSF …

Yes, I'm aware of it. convert_prj is also
in the sources of GPS, but I haven't taken
the time to look at it. I'm reluctant
however to use ..adp files at all, even
generated, when I could use only the .gpr
files.

Emacs Ada-Mode
From: Georg Bauhaus

<bauhaus@futureapps.de>
Subject: Re: looking for emcas ada2005

mode
Date: Tue, 27 Jun 2006 11:51:32 +0200
Newsgroups: comp.lang.ada
> Does anyone known where it is? Or

still in progress?
According to one of the authors of Ada
mode for Emacs, who works for the
producers of GPS, they are concentrating
on GPS ("we never looked back").
Some of the Emacs Lisp can be changed
easily, like adding the three new
keywords to the list of reserved words.
From: Stephen Leake

<Stephe.Leake@nasa.gov>
Subject: Re: looking for emcas ada2005

mode
Date: Thu, 29 Jun 2006 13:31:00 -0400
Newsgroups: comp.lang.ada
I have volunteered to be the new Gnu
Emacs Ada mode maintainer.
However, I am waiting for AdaCore to
release their test suite for the indentation
engine. They have some proprietary
(customer) Ada code in the test suite, so
they have to strip that out.

If you could pressure them to do that,
things would move forward.
I've added the new Ada 2005 keywords to
my copy of Emacs Ada mode, but only
for fontify, not for indentation.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: New mainainer for emcas

ada2005 mode
Date: Fri, 30 Jun 2006 23:53:06 +0200
Newsgroups: comp.lang.ada
> Would you like to join the GNU Ada

Project? We already maintain the
current Ada mode for vim [2] and
would welcome Emacs as well.
Just get youself an sourceforce user and
drop us a support request [3].

Please consider joining the upstream
Emacs project instead.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: New mainainer for emcas

ada2005 mode
Date: Sun, 02 Jul 2006 19:19:48 +0200
Newsgroups: comp.lang.ada
> Sure. But joining the upstream is also

an upstream struggle. Ada is then only
one minor part of the whole project. For
example: In the vim development the
runtime files/scripts are only changed
when a new version comes out. vim 7.0
is fairly new so it can take quite a while
until vim 7.1 comes out.

That is a short-sighted argument. Yes, it
takes more effort to join the upstream
team. So what? The benefits are well
worth it. As more and more tools gain
native support for Ada more people will
be intrigued and consider using Ada in
their software. The upstream authors
themselves might be sufficiently intrigued
to investigate the language. Contrast this
with separate add-ons that require
potential users:
- to be aware of their existence
- to be convinced that they are well
integrated in their tool
- to actively look for them
- to download them
- to install them
- to maintain them when their tool
changes
That is the reason why I have joined the
Debian GCC maintainers, rather than
maintaining gnat separately from GCC.
And that is the reason why, a while ago, I
recommended that you do the same for
your distribution of choice.
From: Stephen Leake

<Stephe.Leake@nasa.gov>
Subject: Re: New mainainer for emcas

ada2005 mode
Date: Tue, 04 Jul 2006 09:12:22 -0400
Newsgroups: comp.lang.ada

Ada-related Products 141

Ada User Journal Volume 27, Number 3, September 2006

> And that is also why GNAT was
integrated into GCC, raising awareness
of Ada to unprecedented levels.

I plan to join the 'upstream Emacs'
project. However, it may also be useful,
as Martin points out, to have a place to do
intermediate releases. The Sourceforge
Gnu Ada project seems like a reasonable
place, although a Savannah project might
be more appropriate.
I hope to set up a Gnu Emacs Ada mode
mailing list somewhere, to discuss the
future of Ada mode, and details about
proposed changes.

Ada refactoring tools
From: trg <trg@world. std.com>
Subject: Ada refactoring tools?
Date: Tue, 8 Aug 2006 18:59:35 +0200
Newsgroups: comp.lang.ada
I'm looking for tools that will do
refactoring for Ada 95+. I've seen
Adasubst/Adadep. What else is available?
Other than dedicated tools, what sort of
refactoring features exist in current Ada
environments (beyond gnatpp)?
Any suggestions on refactoring features
for Ada that you haven't seen but would
find useful?
From: pth@darrach.net
Subject: Re: Ada refactoring tools?
Date: 10 Aug 2006 11:53:38 -0700
Newsgroups: comp.lang.ada
You can check out Headway Review, at
http://headwaysoftware.com/products/revi
ew/ada/.
It does "prefactoring" i.e. the analysis of
the changes you might want to make.
But do bear in mind that Review is in the
process of being replaced by
Structure101, which is currently only
available for Java. Ada support is
expected to see the light of day before the
end of the year.
Review is a good place to start.

Ada Plugin for Eclipse
From: Fifth Horseman

<asmjk1@comcast.net>
Subject: Eclipse Plug-In
Date: Thu, 10 Aug 2006 10:57:25 -0600
Newsgroups: comp.lang.ada
Time to revive the Ada plug-in for
Eclipse discussion. I haven't seen any
posts more recent than a year ago, so I am
about to get started on trying to create my
own solution.
If anyone has a working (or partially-
working) solution they're willing to share,
I'd love to see it. I don't have any prior
experience writing Eclipse plug-ins, so I
might be getting in over my head, but
we'll see how successful I am.
From: Jeffrey Creem

<jeff@thecreems.com>
Subject: Re: Eclipse Plug-In

Date: Thu, 10 Aug 2006 22:15:39 -0400
Newsgroups: comp.lang.ada
The CDT group (C/C++ developers
toolkit) seemed interested and eager to
help anyone interested in extending that
toolkit to support Ada though there really
has not been any mail list traffic about
that in about a year.
It is not clear to me that adding on top of
CDT is the quickest/best choice. It may be
faster to do something more direct and
limited but it is worth a look.
Other are correct that there exists non-
publically available eclipse plugins.
(Aonix and DDC-I and to some extent
AdaCore).
Another thought for a starting point is that
there are several colorizer plugins for
eclipse that are Ada aware. That is
obvious a far cry from real Eclipse
integration.
From: Stephen Leake

<stephen_leake@acm.oSubject: Re:
Eclipse Plug-In

rg>
Date: Sat, 12 Aug 2006 08:10:52 -0400
Newsgroups: comp.lang.ada
AdaCore just announced GNATbench, a
plug-in for Eclipse fully supporting
GNAT.
It will probably make it into a public
release sometime.
[http://www.adacore.com/home/gnatpro/t
oolsuite/gnatbench —su]
From: Tom Grosman, Aonix

<grosman@aonix.fr>
Subject: Re: Eclipse Plug-In
Date: Wed, 16 Aug 2006 19:41:44 +0200
Organization: Aonix
Newsgroups: comp.lang.ada
> Well, Aonix made one and in the small

print they say it even supports GNAT.
Yes, AonixADT (Ada Development
Toolkit) is an Ada development plug-in
for Eclipse. It supports ObjectAda as well
as GNAT (and not just in small print :-).
ADT currently runs under MS Windows,
Intel Linux and Sparc Solaris
environments.
We will very shortly be releasing the
latest version which will be freely
available, so stay tuned.
Tom Grosman, Aonix
[http://www.aonix.com/adt.html --su]

GHDL — VHDL simulator
From: Tristan Gingold

<tgingold@REM.free.fr>
Subject: GHDL 0.25 is released
Date: 14 Aug 2006 11:53:31 GMT
Newsgroups: comp.lang.ada
I have just released GHDL 0.25. GHDL is
a complete VHDL simulator. You can
download it or get more info from
http://ghdl.free.fr

I post this announce on CLA for three
reasons:
* GHDL is written in Ada
* On Linux, GHDL is a GCC front-end
(like GNAT, it doesn't generate C code).
* On Windows, GHDL directly generate
x86 code. As far as I know, GHDL is the
only OSS/Free Ada program which
includes a JIT.

Ada-related Products
AdaCore — GNATbench
Eclipse Plug-in
URL:

http://www.adacore.com/2006/06/19/new
-plug-in-bridges-the-gap-between-gnat-
pro-and-eclipse/

Monday June 19, 2006
New AdaCore Plug-in Bridges the Gap
Between GNAT Pro and Eclipse
NEW YORK, NY, USA — AdaCore
today announced its latest technology
addition — a stand-alone version of the
company’s GNATbench plug-in that
integrates Ada into native (standard)
Eclipse. GNATbench offers the familiar
Eclipse “look and feel” when utilizing
GNAT Pro’s leading-edge compiler, tools
and capabilities, and supports both all-
Ada and mixed-language development.
With one simple plug-in, GNATbench
lets Eclipse users access the benefits of
GNAT Pro Ada to develop more reliable
applications with fast, predictable
performance and at lower cost.
GNATbench was originally developed for
Wind River’s Eclipse-based Workbench
development suite to facilitate multi-
language development, sophisticated Ada-
aware editing, code browsing, debugging,
comprehensive compilation, as well as
prototyping and simulation for advanced
VxWorks systems creation. The new
GNATbench configuration for Eclipse is
a separate plug-in that offers all the
editing and browsing features of the
Workbench version, including the Outline
View — a high-level view of the code to
facilitate program comprehension and
development. The difference is the
intended execution target: the builder
produces executables for native systems,
rather than embedded processors, and
likewise the debugger supports native
system debugging. GNATbench for
Eclipse is currently supported on
Windows and Solaris host environments.
“The growing popularity of the Eclipse
framework in embedded application
development motivated us to add a native
Eclipse plug-in to our comprehensive
GNAT Pro Ada toolsuite,” said Robert
Dewar, President of AdaCore. “Our new
plug-in not only integrates Ada
seamlessly into Eclipse, it also provides
assurance to our Ada customers that they

142 Ada-related Products

Volume 27, Number 3, September 2006 Ada User Journal

always have access to the latest tools,
language and toolset experts to support
their multi-language embedded
application development projects.”
About GNAT Pro
GNATbench draws its strength from
AdaCore’s GNAT Pro, a robust, flexible,
and open Ada development environment
with user-friendly licensing, based on the
GNU GCC compiler technology. It
comprises a full Ada compiler (including
support for all major Ada 2005 features),
an Integrated Development Environment
(GPS, the GNAT Programming Studio), a
comprehensive toolset including a visual
debugger, and a useful collection of
libraries / bindings. GNAT Pro allows
development of pure Ada applications as
well as Ada components in multi-
language systems. It is distributed with
complete source code, and is backed by
rapid and expert support service. GPS is
available on a wide range of host
environments for both native and cross-
development using GNAT Pro, including
Unix, Windows and GNU/Linux. As
evidenced by its successful application by
customers worldwide, GNAT Pro is the
best choice for reliable and efficient
software, across a wide spectrum of
applications, including high-integrity
systems.
Pricing and Availability
The GNATbench plug-in for Eclipse will
be available starting July 2006 as part of
the GNAT Pro subscription. Please
contact AdaCore (sales@adacore.com)
for the latest information on pricing and
supported configurations.
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial, open-source
software solutions for Ada, a modern
programming language designed for
large, long-lived applications where
reliability, efficiency and safety are
absolutely critical. AdaCore’s flagship
product is GNAT Pro, the commercial-
grade open-source Ada development
environment, which comes with expert
online support and is available on more
platforms than any other Ada technology.
AdaCore has customers worldwide; see
http://www.adacore.com/home/company/
customers/ for more information.
Use of Ada and GNAT Pro continues to
grow in high-integrity and safety-critical
applications, including commercial and
defense aircraft avionics, air traffic
control, railroad systems, financial
services and medical devices. AdaCore
has North American headquarters in New
York and European headquarters in Paris.
www.adacore.com

AdaCore — GNAT Pro
Preview release
From: Romain Berrendonner

<berrendo@adacore.com>
To: announce@adacore.com
Subject: [AdaCore] Announcing beta

program for GNAT Pro new compiler
back-end technology

Date: Fri, 07 Jul 2006 18:51:06 +0200
Organization: AdaCore
We are in the process of transitioning the
GNAT Pro technology to a new compiler
back-end based on GCC 4.1 which we
expect to bring significant performance
improvements to user applications. Our
goal is to have several of our supported
configurations on this back-end for the
next major GNAT Pro release scheduled
early 2007.
At this stage, we can provide beta
versions for sparc-solaris, x86-linux and
x86-windows, and would appreciate
feedback on this new technology from
interested GNAT Pro users. AdaCore will
provide support for beta
Note that this beta version is based on our
current development version, 5.05w. It is
unrelated to the forthcoming 5.04a1
release which will be announced in the
coming weeks.
If you are interested in participating in
this beta program, please download the
packages from the Download GNAT Pro
section of GNAT Tracker
(www.adacore.com) and send your
general feedback via gnattracker as usual.
Please don't hesitate to contact us if you
have any questions on this program.

AdaCore — GNAT
Programming Studio 4.0
AdaCore Delivers Enhanced Ada Integrated

Development Environment
Publication date on this website: Monday,

July 10, 2006
Company: AdaCore
Category: Press Releases : Tools
Summary:
AdaCore launches GNAT Programming
Studio (GPS) 4.0, an advanced, powerful
Integrated Development Environment
(IDE) that accompanies the GNAT Pro
Ada language development toolset.
Full Text:
NEW YORK, July 10, 2006 — AdaCore
today launched GNAT Programming
Studio (GPS) 4.0, an advanced, powerful
Integrated Development Environment
(IDE) that accompanies the GNAT Pro
Ada language development toolset.
The completely updated version of GPS
improves productivity through new
features such as on-the-fly code
completion, remote programming, and
improved version control. The
sophisticated code completion engine

understands the details of Ada language
semantics, enabling automatic program
completion, maximizing efficiency, and
cutting development time. The new
remote programming function allows
developers to take advantage of the power
and graphical capabilities of their PCs,
enabling them to work without incurring
bottlenecks on servers. Version control is
now tightly integrated within GPS,
enabling better management of large and
complex projects, particularly across
sizable development teams.
Additionally, the user interface has been
extensively updated to provide a modern
look and feel that ensures that GPS
remains easy to use by Ada programmers.
Extended support for new platforms such
as x86-64 Linux and PPC AIX further
increases the range and usability of GPS
4.0.
"The combination of advanced
programming features and its updated
interface mean that GPS 4.0 leads the
field in Ada development," said Arnaud
Charlet, GPS Project Manager at
AdaCore. “We have listened extensively
to our customers and provided the most
powerful environment yet for professional
Ada programmers.”
“The increasing use of Ada in major
mission-critical software projects around
the world demonstrates the need for an
advanced development environment,”
added Robert Dewar, AdaCore's President
and CEO. “The latest version of GNAT
Programming Studio delivers further
productivity improvements that make Ada
development fast and seamless."
GPS offers advanced features such as
multi-language support (including Ada, C,
and C++) and is available on a wide range
of host environments for both native and
cross-development, including Unix,
Windows and GNU/Linux. An intuitive,
unified visual interface, identical across
all platforms, serves as a control panel to
access tools from AdaCore´s GNAT Pro
Ada development environment as well as
from third parties, easing both
development and maintenance. As a
result, GPS is particularly suited for large,
complex systems requiring tool chain
integration, ease of use, user
customization, and code
navigation/analysis.
GPS 4.0 provides many new
improvements, including:
· On-the-fly code completion
· Remote programming
· Version Control improvements
· Support for branches
· File status cached between sessions
· Support for .cvsignore
· Improved user interface
· Support for x86-64 Linux and PPC AIX

Ada-related Products 143

Ada User Journal Volume 27, Number 3, September 2006

As with all GNAT Pro components, GPS
is distributed with full source code and is
backed by AdaCore´s rapid and expert
online support.
About GPS
GPS is a powerful Integrated
Development Environment (IDE) written
in Ada, based on the GtkAda toolkit.
GPS´ extensive source-code navigation
and analysis tools can generate a broad
range of useful information, including call
graphs, source dependencies, project
organization, and complexity metrics. It
also provides support for configuration
management through an interface to third-
party Version Control Systems, and
supports a variety of platforms, including
Alpha Tru64, Altix Linux, IA64 HP
Linux, IA64 HP-UX, MIPS-IRIX, PA-
RISC HP-UX, PPC AIX, PPC Mac OS,
SPARC Solaris, x86-64 Linux, x86
GNU/Linux, x86 Solaris, and x86
Windows. GPS is highly extensible; a
simple scripting approach enables
additional tool integration. It is also
customizable, allowing programmers to
specialize various aspects of the
program´s appearance in the editor for a
user-specified look and feel.
Pricing and Availability
GPS 4.0 is now available to GNAT Pro
customers on selected platforms. GPS is
included with the GNAT Pro Ada
Development Environment. Pricing for
GNAT Pro subscriptions starts at
$14,000. Please contact AdaCore
(sales@adacore.com) for the latest
information on pricing and supported
configurations.

AdaCore — GNAT Pro
5.04a1
From: Romain Berrendonner

<berrendo@adacore.com>
To: announce@adacore.com
Subject: [AdaCore] F605-008 Announcing

the availability of GNAT Pro 5.04a1
Date: Fri, 28 Jul 2006 18:17:00 +0200
Organization: AdaCore
AdaCore is pleased to announce the
immediate availability of the GNAT Pro
5.04a1 release for the following native
platforms:
alpha-openvms
alpha-tru64
pa-hpux
ppc-aix
ppc-darwin
sparc-solaris
x86-solaris
x86-linux
x86-windows
x86_64-linux
ia64-hp_linux
ia64-hpux
ia64-sgi_linux
and the following cross platforms:

ppc-vxw-windows
ppc-vxw-solaris
ppc-vx178b-windows
ppc-vx178b-solaris
ppc-vx653-windows
The distributions can be downloaded as
usual using GNAT Tracker. Note that, for
your convenience, GNAT Tracker can
now be accessed directly from the
AdaCore home page
(http://www.adacore.com).
GNAT Pro 5.04a1 provides fixes for
issues reported in the 5.04a release and
documented in the known-problems-504a
file (available through GNAT Tracker).
The 5.04a1 release also comes with an
improved version of our GPS IDE, GPS
4.0. This major update provides many
new improvements, including:
· On-the-fly code completion
· Remote programming
· Version Control improvements
 - Support for branches
 - File status cached between sessions
 - Support for .cvsignore
· Improved user interface
· Support for x86-64 Linux
We encourage you to install and start
using this latest version of the GNAT Pro
tool suite. As always, for questions, or to
inform us of issues that you encounter,
please let us know through the GNAT
Tracker report facility or by email at the
usual report@adacore.com address.
You may also be pleased to learn that we
have created a section on our website
dedicated to technical information
surrounding GNAT Pro and Ada. The
Developers Center includes a developers
log giving updates on GNAT Pro
technology, technical papers, code
samples, and documentation. For more
info, please visit:
http://www.adacore.com/category/develo
pers-center/development-log/
[See also “AdaCore — GNAT Pro 5.04a”
in AUJ 27-2 (Jun 2006), pp.73–74. —su]

AdaCore — ZCX for
VxWorks
Zero cost exceptions supported for VxWorks
Tuesday July 4, 2006
As of the 5.04a1 release, zero cost
exceptions are available on VxWorks 5.x,
and an appropriate ZCX run time is
included with the release. An earlier
version of this support was available with
the 5.03 release, and now with 5.04a1,
this is fully supported. Note that ZCX is
not yet supported on VxWorks 6.

AdaCore — GNAT Pro for
Alpha OpenVMS 8.2
AdaCore extends GNAT Pro 5.04a1 support

to Alpha OpenVMS 8.2
Friday September 8, 2006

AdaCore is pleased to announce that
GNAT Pro 5.04a1 now supports Alpha
OpenVMS 8.2. GNAT Pro has been
ported to more platforms, both native and
embedded, than any other Ada
technology. For a full list of supported
configurations, please visit our
configurations page

Aonix — ObjectAda for
Windows 8.2
From: Owner-Intel-ObjectAda <owner-

intel-objectada@aonix.com>
Subject: Intel-OA: New ObjectAda 8.2

Update
Date: Fri, 15 Sep 2006 14:49:16 -0700
To: intel-objectada@aonix.com
A new update for Aonix ObjectAda for
Windows 8.2, 1102V82-U3, is now
available at
http://www.aonix.com/ada_patches.html.
Please see the Release Notes for further
details on the corrections made and
installation instructions. The release
notes can be viewed at
ftp://ftp.aonix.com/pub/adats/outgoing/11
02/8.2/U3/1102V82-U3.Release_Notes.
Downloading ObjectAda updates requires
a password which can be obtained from
your local Aonix Customer Support
department.
For information on obtaining or renewing
a maintenance agreement, please contact
your nearest Aonix Sales office. For
contact information see
http://www.aonix.com/contact_us.html.
[See also “Aonix — ObjectAda Update”
in AUJ 27-2 (Jun 2006), p.76. —su]

DDC-I — Wind River
Workbench and SCORE
DDC-I's SCORE Compilers Available to

Wind River Workbench Developers
Targeting VxWorks 6.3

Safety-critical Ada, C, and EC++
applications developed using SCORE for
Workbench can now run in real time
under VxWorks
Phoenix, AZ. July 26, 2006. DDC-I, a
leading supplier of development tools for
safety-critical applications, today
announced the availability of its
SCORE® compilers for the Wind River
Workbench, an eclipse-based
development suite, and Wind River's
VxWorks real-time operating system. The
integration enables developers working
within a Wind River Workbench
environment to utilize SCORE tools to
develop mixed Ada, C, and Embedded
C++ applications for deployment on
VxWorks target systems.
"The SCORE toolset addresses all aspects
of safety-critical application development,
debugging, testing, and deployment on
VxWorks target systems," said Bob
Morris, president and CEO of DDC-I.

144 Ada-related Products

Volume 27, Number 3, September 2006 Ada User Journal

"Now, developers can utilize the SCORE
tools within a Wind River Workbench
environment to develop mixed language
applications, with full access to advanced
tools such as dynamic visual process,
task, and thread debugging, system
analysis and validation."
"Wind River is committed to delivering a
standards based development suite that
provides multi-language support in a
single development environment," said
Steve LaPedis, vice president of strategic
alliances, Wind River. "With DDC-I's
SCORE tools tightly integrated with
Wind River's Workbench development
suite, C, C++ and Ada development can
all be supported in a single environment.
This integration enables developers to
create reliable, optimized code for a broad
range of safety-critical applications
targeting VxWorks systems."
SCORE provides optimizing compilers
for Ada, C, Embedded C ++, and
Fortran77, all of which pass the
applicable ACATS, PlumHall, Perennial,
and FCVS compiler validation suites. To
support VxWorks, DDC-I has mapped its
own bare run-time system to VxWorks,
including all system calls, multitasking,
and interrupt processing facilities. In this
implementation, SCORE kernel calls are
mapped to VxWorks calls, and Ada tasks
are mapped to VxWorks tasks.
SCORE is available immediately for
Workbench and VxWorks. Pricing starts
at $ 5000.
About DDC-I, Inc.
DDC-I, Inc. is a global supplier of
software development tools, custom
software development services, and
legacy software system modernization
solutions, with a primary focus on safety-
critical applications. DDC-I's customer
base is an impressive "who's who" in the
commercial, military, aerospace, and
safety-critical industries. DDC-I offers
compilers, integrated development
environments and run-time systems for C,
Embedded C++, Ada, JOVIAL and
Fortran application development. For
more information regarding DDC-I
products, contact DDC-I at 1825 E.
Northern Ave., Suite #125, Phoenix,
Arizona 85020; phone (602) 275-7172;
fax (602) 252-6054; e-mail
sales@ddci.com or visit www.ddci.com.

DDC-I — Enhanced SCORE
IDE
DDC-I Announces Enhanced SCORE

Integrated Development Environment for
Mixed Ada, C, and EC++ Applications

Features enhanced compiler/run-time
safety for multithreading, RTX and
VxWorks run-time support, Workbench
integration, and support for the latest
Vector test tools

Phoenix, AZ. July 18, 2006. DDC-I, a
leading supplier of development tools for
safety-critical applications, today
announced version 2.7 of its SCORE®
Integrated Development Environment
(IDE). The new IDE features enhanced
safety for compiler and run-time multi-
threading, run-time support for the
VxWorks real-time OS and RTX
Windows real-time extensions, and
seamless integration with Wind River's
Workbench IDE. SCORE version 2.7 also
provides support for the latest version of
Vector Software's VectorCAST test tools.
"The SCORE IDE addresses all aspects of
safety-critical application development,
debugging, testing, and deployment on
the target system," said Bob Morris,
president and CEO of DDC-I. "Version
2.7 takes SCORE to the next level by
giving SCORE developers access to
advanced tools."
SCORE® is a mixed-language, object-
oriented IDE for developing and
deploying safety-critical applications.
SCORE provides optimizing compilers
for Ada, C, Embedded C ++, and
Fortran77, all of which pass the
applicable ACATS, PlumHall, Perennial,
and FCVS compiler validation suites.
The SCORE® IDE features an intuitive
GUI with industry leading features such
as a color-coded source editor, project
management support, and automated
build/make utilities. SCORE's mixed-
language, multi-window, symbolic
debugger recognizes C/EC++, Ada and
Fortran syntax and expressions, and can
view objects, expressions, call chains,
execution traces, interspersed machine
code, machine registers, and program
stacks. The debugger supports full Ada-
level debugging, including constraints,
attributes, tasking, exceptions, break-on-
exception and break-on-tasking events.
The debugger is non intrusive, can debug
at the source or machine level, and can be
enabled without changing the generated
code.
SCORE provides versatile run-time target
options, including a bare run-time system
certifiable to Level A of the FCC DO-
178B standard, and an enhanced bare run-
time system for simulated and emulated
environments. SCORE version 2.7 adds
two new run-time options: Wind River's
VxWorks GPP 6.3 (General Purpose
Platform) and Ardence's RTX real-time
extensions for Windows (including
Windows XP and XP Embedded).
To support VxWorks, DDC-I has mapped
the SCORE real-time kernel to VxWorks,
mapping all SCORE system calls to
VxWorks calls, and mapping Ada
multitasking to VxWorks multitasking.
This enables mixed Ada, C, and
Embedded C++ applications developed
using SCORE to be hosted under
VxWorks on the target system. SCORE is
also integrated with Wind River's Eclipse-

based Workbench, which gives SCORE
developers targeting VxWorks seamless
access to the Workbench toolkit.
RTX provides deterministic real-time
multitasking, interrupt handling, and other
real-time features for Windows
applications. To support Windows/RTX
run-time environments, DDC-I has
mapped Ada tasks to RTX threads. This
enables mixed Ada, C, and Embedded
C++ applications developed using
SCORE to run in real time on Windows
systems. In this scenario, RTX provides
real-time services that enable designated
time-critical Windows applications to
process sustained interrupt rates of up to
30 kHz. SCORE version 2.7 provides full
support for VectorCAST 4.0, the latest
version of Vector Software's software test
tool. VectorCAST automates the test
process for C/C++, Embedded C++, and
Ada 83/Ada 95 program modules,
significantly reducing the time, effort and
cost required to validate safety-, mission-,
and business-critical systems. Version 4.0
adds support for integration testing, which
enables designers to test entire
subsystems and applications using the
same tools available for unit testing.
SCORE version 2.7 is available
immediately. Pricing starts at $5000.
About DDC-I, Inc.
DDC-I, Inc. is a global supplier of
software development tools, custom
software development services, and
legacy software system modernization
solutions, with a primary focus on safety-
critical applications. DDC-I's customer
base is an impressive "who's who" in the
commercial, military, aerospace, and
safety-critical industries. DDC-I offers
compilers, integrated development
environments and run-time systems for C,
Embedded C++, Ada, JOVIAL and
Fortran application development. For
more information regarding DDC-I
products, contact DDC-I at 1825 E.
Northern Ave., Suite #125, Phoenix,
Arizona 85020; phone (602) 275-7172;
fax (602) 252-6054; e-mail
sales@ddci.com or visit www.ddci.com

Headway Software —
Headway reView
Ada Reverse Engineering and Static

Analysis with Headway Review
Date: July 7, 2006
Headway reView uses advanced reverse
engineering and static analysis techniques
to create one of the most powerful code
comprehension, code review, and source
code visualization tools for Architects and
Team Leads. It lets you understand the
complexity of your software. It gives your
business agility by ensuring flexibility in
your software assets. Ensuring an
optimized software design, it illuminates
the period of "radio silence" that
accompanies implementation by enabling

Ada-related Products 145

Ada User Journal Volume 27, Number 3, September 2006

senior development staff to analyze the
software directly and thus giving
technical leads and project managers
more control.
Key features include source code
visualization, advanced code browsing,
source code metrics, dependency
management, complexity analysis,
snapshots, architectural differencing,
change analysis and predictive refactoring
(also referred to as pre-factoring).
Headway reView delivers practical,
useful visualization of a code-base that
are guaranteed to be totally up-to-date and
accurate. Analysis and research tools
allow developers to thoroughly engage
with their source code and design, so that
their evolution is constantly understood
and controlled. Intelligent extraction
(analysis) and intelligent presentation
(visualization) combine to give you
Software Intelligence.
Headway reView parses Java, J2EE, and
Ada to reverse engineer a visual
representation of the composition and
dependencies of an application. The
Headway reView diagrams, called
Higraphs, are intuitive, interactive, visual
environments in which a developer or
designer can gain a truer understanding of
how their applications are structured, or
more significantly, how their applications
SHOULD be structured.
Being code-centric, Headway review has
access to all the information about a code-
base. There is no separation of code-base
and design. The code IS the design. The
results of code-base analyses are
presented in the model so that the
developer can not only find problems, but
also understand the context in which they
occur.
"Complexity kills. It sucks the life out of
developers, it makes products difficult to
plan, build and test. … Each of us should
… explore and embrace techniques to
reduce complexity." Ray Ozzie, Chief
Technology Officer, Microsoft
Corporation.
Important Note: Headway Software is
currently in the process of upgrading
Headway Review to our new product line,
Structure101. All new Review customers
will be supported throughout the
migration process and will be provided
with complimentary upgrades to
Structure101 as soon as it is available for
your required programming language.
We plan to complete the migration to
Structure101 with the Java version first,
before implementing backends for Ada,
C/C++ and .Net. For Java we recommend
at this point you start with Structure101.
For Ada, we recommend Headway
Review.

Praxis HIS — zero-defect
security software
Praxis High Integrity Systems produce zero-

defect security software for US National
Security Agency

12 June 2006
Recent security work carried out by
Praxis has now been cleared for general
publication by the US National Security
Agency (NSA).
The NSA commissioned Praxis to
develop secure software for an
experimental biometric access control
system to meet or exceed Evaluation
Assurance Level (EAL) 5 (out of 7) in the
Common Criteria. The Common Criteria
is an international security scheme aimed
at providing confidence to users of
security products. EALs 5-7 represent the
highest levels of security assurance.
The NSA commissioned this work to
evaluate, under controlled conditions, the
suitability of Praxis's Correctness by
Construction (CbyC) software
development method for the development
of high-security systems. Praxis and its
clients have used CbyC for fifteen years
to develop high-integrity software, and
the NSA wanted to carry out its own
evaluation.
The software developed by Praxis was
tested independently of both Praxis and
the NSA. During independent test and
subsequent use, zero defects were
reported. Development costs were lower
than traditional methods per line of code.
Keith Williams, Praxis Managing
Director, commented “I'm delighted that
we are now able to publish the results of
this work, which provide further evidence
for the cost-effectiveness of Praxis's
software development method for high-
security software”.
The work is reported in the paper
“Engineering the Tokeneer Enclave
Protection Software”, co-authored by
Praxis and the NSA, and published in the
Proceedings of the IEEE International
Symposium on Secure Software
Engineering, held in March 2006 in
Arlington, Virginia, USA. This paper is
available from the publications section of
the Praxis website.

McKae Technologies —
DTraq
From: Marc A. Criley

<marccriley@earthlink.net>
Subject: Announce: DTraq Released
Date: Thu, 15 Jun 2006 14:20:17 GMT
Newsgroups: comp.lang.ada
McKae Technologies announces the
release of DTraq versions 1.000 for
GNAT 3.15p and GNAT 1.100 for GNAT
GPL 2005. DTraq is available on the
redesigned McKae Technologies website
at http://www.mckae.com/dtraq.html.

DTraq is a data logging and playback
debugging tool providing near realtime
data logging and analysis to aid
debugging and validation. Captured, or
'tapped' data from a program can be
viewed live while the program is running
or, since it is being logged to a file,
played back or printed out later for off-
line review and analysis.
DTraq differs from other logging and
playback tools in that no data layout maps
or byte interpretations or "data dumpers"
need to be manually created. Nor is the
application responsible for converting the
raw binary data to text form before
logging it. DTraq handles all conversion
automatically by scanning the
application's source code, identifying
tapped data items, and extracting the
information it needs to properly convert
and display the logged items-simple
scalar items as well as arrays and records.
When the layout of data items change,
rescanning automatically picks up the
changes.
Here are the most significant changes to
DTraq since the last public release,
0.986a:
- No more code generation and associated
compilation needed when building a
logging server. The logging server now
uses an XML formatted configuration file
to recognize and process tapped data
items.
- The command line driven "mkdtq" has
been replaced with dtq-analyze, providing
a GUI-driven interface for source code
scanning and generation of the
aforementioned configuration file.
- All the DTraq applications are now
prefixed with "dtq": dtq-analyze, dtq-vdt,
and dtq-dv.
- Data transfer between tapped clients and
the logging server has been changed from
a stream-based model to one of simply
sending tapped data items' bytes through a
socket. The result has been a significant
throughput increase, and, in conjunction
with the use of configuration files instead
of code generation, a much simpler
implementation.
- The data viewer can now be started
independently of the logging server, and
the location of the logging server can then
be interactively specified. In addition, the
data viewer can switch from one logging
server to another.
- The need for temporary working
directories has been reduced, and the
remaining use has been streamlined to
reduce the chance of inconsistency errors.
DTraq 1.000 for GNAT 3.15p is licensed
using the GNAT-Modified GPL, i.e.,
GMGPL.
DTraq 1.100 for GNAT GPL 2005 is
licensed using the full GPL, although the
instrumentation portion that is compiled

146 Ada and GNU/Linux

Volume 27, Number 3, September 2006 Ada User Journal

into the client remains GMGPL, for what
it's worth.
A release for GNAT GPL 2006 will be
provided once its downloading server's
traffic load eases.
[See also same topic in AUJ 26-2 (Jun
2005), p.80. —su]
From: Marc A. Criley <mc@mckae.com>
Subject: Re: Announce: DTraq Released
Date: Sat, 17 Jun 2006 13:30:05 GMT
Newsgroups: comp.lang.ada
> Is that a change in policy or do you

think/know that Code released for use
with GNAT 2006 cannot have the
linking exceptions (for this part of the
code at least)?

The licensing of DTraq is being driven by
the licensing of the GNAT Run-time
library.
I made an effort to keep the client
instrumentation packages GMGPL (by
replacing GNAT.Sockets in 3.15p with
AdaSockets) so that one could at least
theoretically use DTraq on non-GPL
code. Frankly I doubt the practicality of
that, though, since DTraq uses ASIS,
which is compiler-version specific, so to
use the GNAT GPL 2005 version of
DTraq one would have to compile and
build their code with that
compiler…which would require the code
be GPL if it was to be distributed.
I haven't acquired GNAT GPL 2006 yet,
but I have every expectation that it, too,
will be GPL.
Continued DTraq development will be for
the GNAT GPL 200x compiler versions,
since those are AdaCore blessed and
maintained. Unless of course someone
contracts for a GNAT Pro or other version
☺
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: Announce: DTraq Released
Date: Sat, 17 Jun 2006 16:30:00 +0200
Newsgroups: comp.lang.ada
> Continued DTraq development will be

for the GNAT GPL 200x compiler
versions, since those are AdaCore
blessed and maintained. Unless of
course someone contracts for a GNAT
Pro or other version :-)

I have downloaded the sources (not the
binaries) of GNAT GPL 2006 Edition and
I confirm that ASIS is pure GPL.
In addition, I am preparing a Debian
package of ASIS 2006 under pure GPL.
This is in contrast to the GNAT run-time
library and every other library, which will
remain GMGPL.
So, if someone makes a Debian package
of DTraq, that will be pure GPL.
From: Marc A. Criley <mc@mckae.com>
Subject: Re: Announce: DTraq Released
Date: Sun, 18 Jun 2006 20:29:28 GMT
Newsgroups: comp.lang.ada

> For my own OSS work, my position is:
* code meant for a user to include in
her product, GMGPL
* code intended for
tutorial/example/prototype, no
restriction
* code that's part of the toolset, GPL

Though I've not explicitly codified it
before as a position, these bullets are
consistent with my approach, though I
might perhaps be a little more explicit by
adding:
 * code _available_ for a user to include
in her product(s), GMGPL
These covers the situation for XPath In
Ada (XIA) and XML EZ Out, which were
written because of DTraq, but since they
have areas of application beyond that
product were broken out on their own for
community use.
> As a potential customer of yours, I

would want the part of your code that's
linked with mine in my product (your
runtime) to be GMGPL, regardless of
the compiler you use to develop it[1].

Which it now is. I removed the GNAT
dependencies from that code, which was
primarily the replacement of
GNAT.Sockets with AdaSockets, so as to
get GMGPL instead of GPL (for GNAT
GPL 2005 and beyond).
> Unless I've misunderstood DTraq,

though, the recorder side _isn't_ in the
same boat, it's not intended to be
released to my customers; so the
licence terms aren't so crucial. Clearly
the binary distribution terms have to
match the compiler runtime, but why
should the source code?

That is true, the source code license terms
aren't so crucial, the code could turn out
to be tailored for a specific compiler and
runtime, but distributed solely as source
code, and therefore merely "inherit" the
licensing of the RTL with which it is
linked. I opted for GPL on the DTraq
core components because it gave me the
most flexibility: I could use AdaCore's
free software releases, GNAT GPL 2005
and now 2006; I can utilitize any GPL or
GMGPL or LGPL licensed software that I
find useful; and I don't have to worry
about tracking what software is under
what license and who might "own"
portions if modifications or enhancements
were done under contract.
> That said, I can't see any reason why the

'instrumenter' and 'recorder' parts of
DTraq shouldn't be pure GPL anyway,
since they're not intended to be part of
my distribution; and even if they were I
could comply with GPL terms for them
without affecting my own product. I
guess it might be different if my work
and the recorder were integral parts of
my overall product, but that doesn't
seem very likely.

The 'recorder', i.e., the DTraq Logging
Server is pure GPL. The 'instrumenter'
portions, DTraq.Tap, et.al., could be GPL,
but their removal would be required
before the distribution of your product if
you're licensing with something less than
GPL. However, I've suggested that the
instrumentation be retained in the product
because the taps can be disabled and your
product run without a logging server
present, and that way you retain the
ability to run a deployed application in a
remote debug or monitoring mode. And
also, if your app requires integrated
logging, DTraq can fill the bill for that as
well.
> [1] Do you think there's any issue with

generated code? One might think that
fragments of text copied into generated
code could carry licence implications
with them.

From the DTraq perspective this is not an
issue because the only part that would be
at all likely to show up in generated code
would be _instantiations_ of DTraq.Tap,
and the GMGPL already covers that.

Ada and GNU/Linux
Debian Etch Trasition
Author: Ludovic Brenta
Subject: Ada dans Debian : transition vers

GCC 4.1 pour Etch
Date: July 12, 2006
URL: http://www.ada-

france.org/article124.html
[Translated from French –su]
Debian is, among other things, an
excellent platform for the development
and the execution of Ada programs. In the
current version, named “Sarge”, that
platform uses GNAT 3.15p. In the next
one, called “Etch”, the compiler with be
GCC 4.1.
Debian 3.1 Sarge is the current and stable
version for Debian and it is the one
recommended for production. The version
currently under test, Etch, will become
stable as of December 2006.
At the beginning of July 2006 the Ada
component of it however has entered a
“zone of turbulence”, hence that version
at present is no longer recommended for
production. The current turbulences are
due to the changes in the compiler, which
I explain below.
The decision to use GCC 4.1 rather than
the latest version GNAT GPL 2006
Edition results from two concerns:
- the licence of the runtime library should
permit redistribution of programs
compiled under licences other than GPL.
That it possible with GCC but not with
GNAT GPL Edition
- interoperability with other languages
should be optimal. With GNAT GPL
Edition we only have C and Ada. With

Ada and GNU/Linux 147

Ada User Journal Volume 27, Number 3, September 2006

GCC with also have C++, Fortran 95,
Java, Objective C, and Objective C++.
GCC 4.1 incorporates most part of the
new features of Ada 2005, but not all;
complete coverage will be attained in the
next version.
In Sarge, GNAT supported i386, Sparc
and PowerPC. Etch will add Amd64,
Hppa, Ia64, Kfreebsd-i386, Mips, Mipsel
and s390. There will not be however
support for dual architectures such as
i386-Amd64 or PowerPC-PPC64. Again,
support for that will be incorporated in the
next version of Debian, in conjunction
with the general support for multiple
architectures (multilib).
The gnat-4.1 package has made into
Debian Etch in April 2006. After a
stabilization period, in July it will become
the default compiler.
The new gcc-defaults package, which
provides “gnat”, is already present in the
current unstable distribution in place of
the previous “gnat” that was at version
3.15p.
The “gnat-4.1” package is constructed
from the source “gcc-4.1” package much
like all other languages except for Java. In
this way I have joined the team of those
responsivble for GCC in Debian.
The other versions of GNAT, including
3.15p and those includes in GCC 3.3,
GCC 3.4 and GCC 4.0, will be retired
from Debian: I will concentrate myself on
a single version so as to be able to provide
quality support.
All the other packages presently are in the
migration phase. As the binary interface
changes all the libraries have to be
recompiled with a change in their so-
name. Considering the difficulties we are
facing the migration should still take
another couple of months.
- ASIS: version 2005 GPL Edition has
arrived in the unstable version on 2006-
07-11 and it should shortly migrate
towards Etch. It works well with GCC
4.1, in contrast with 2006 GPL Edition,
which requires changes in the compiler.
Pay attention to the changes in the
licence; the GNAT-Modified GPL
becomes pure GPL. The documentation,
which was non-libre (in that it does not
allow modifications) has been transferred
to the new package asis-doc.
- GtkAda: v2.8.1 will shortly be
integrated with the unstable version,
together with a change to the GPL pure
licence.
- GPS is transitioning from version 2.1 to
version 4.0 using GtkAda 2.8.1.
- A GDB improved for Ada is migrating
from version 5.3 to version 6.3, including
support for the new format utilised by
GCC for debug information (DWARF2 in
place of STABS).

- Florist, the POSIX interface, is going
towards the 2006 GPL Edition with a
change to the pure GPL licence.
- GLADE (the support for distributed
systems) is transitioning from 3.15p to the
2006 GPL Edition with change to the
GPL pure licence.
- XML/Ada is moving from 1.0 to 2.2
with change of licence to pure GPL.
- AWS is moving from 2.0p to 2.2 with
change of licence to pure GPL.
- Charles will be retired from Debian: that
library of generic containers is replaced
by the normalized containers
(Ada.Containers) supported by GCC 4.1.
- GNADE, the interface to ODBC,
PostgreSQL, MySQL and SQLite
databases will go from v1.5.1 to the latest
to date, 1.6.1. It will stay with GMGLP.
- AUnit will go from version 1.01 to 1.05
without changes of licence as that has
always been pure GPS.
- AdaBrowse has already been recompiled
with ASIS 2005 and it is already part of
the unstable version.
- The destiny of the other libraries, more
rarely utilized, remains to be decided. The
group includes libadabindx, libtexttools
and libopentoken. Please contact me in
case you needed to use them and wished
they should stay in Debian.
Change of licence
The change of licence towards pure GPS,
which affects most important libraries,
has been made necessary by their
provider, AdaCore. With pure GPS it is
no longer possible to distribute non-libre
software that uses those libraries. If your
software uses a library under pure GPL,
you have four possibilities:
- to not distribute your software at all (you
may of course use it privately)
- to distribute your software under GPL,
hence with open source and the four
liberties (inspection, redistribution,
modification and retristribution of
modified copies)
- to distribute only your open source
under a licence of your choice (for
example with clauses for confidentiality
and non-redistribution) and to ask your
users to recompile it themselves
- contact AdaCore and buy a GMGPL
licence that allows you to distribute your
software without devolving your sources.
It is possible to safeguard the old versions
under GNAT-modified GPL along with
the new ones. Howevr that requires some
extra maintenance effort, which I cannot
and do not want to provide all by myself.
I am ready to provide two versions (GPL
and GMGPL) of some specific libraries in
parallel if and only if I receive some
financial support. This is thus a call for
financial contributions: contact me in case
you needed GMGPL libraries. That goes

especially for GtkAda, AWS and
XML/Ada.
References:
- Debian : http://www.debian.org
- Debian Ada Policy : http://www.ada-
france.org/debian/debian-ada-policy.html
Ludovic Brenta is the principal
responsible for the Ada packages in
Debian. He works as a volunteer since
2003 and provides a complete and
integrated platform for development and
execution. You can contact him at:
lbrenta@debian.org.

Multiple Debian
Environments
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: Is there a GMGPL GtkAda

available for use with GNAT 3.15p?
Date: 18 Aug 2006 03:37:22 -0700
Newsgroups: comp.lang.ada
> Can anyone tell me if there is a GtkAda

under the modified GPL that I can use
with 3.15p, and if so, where I can
obtain it?

From Debian or gnuada.sourceforge.net,
of course. I think the gnuada packages are
designed for parallel installation on
several platforms.
> I had an old source archive and I've

spent all evening trying to build it. I've
all the prereqs (possibly at levels that
are too high) but I don't have things
installed in standard paths (Linux)
because I'm running multiple copies of
GCC on this machine. I created a user
just for working with the 3.15p toolset.
I can build vanilla Ada sources and
ncurses applications without difficulty
so the base 3.15p and ncurses
installations are fine. What I'm unable
to do is to build GtkAda in this
environment.
I built glib, gettext, and Gtk+2.6
(several times each) and I still get all
kinds of errors when I try to build
GtkAda 2.4.0 because it says I don't
have some of these things installed.
When I built almost every .adb in
Emacs using gnatmake from Ada-mode
everything compiled properly but then I
couldn't bind any sample programs
because of unresolved symbols
(missing libraries).
If any kind soul would help with this
that would be grand.

Since you're obviously willing to spend as
much time as necessary, why don't you go
all the way and solve your problem once
and for all? If not already done, install
Debian Sarge (with GNAT 3.15p and
GtkAda 2.4 under GMGPL in the
standard paths), then create a chroot
environment containing Etch or Sid (with
GCC 4.1 as the Ada compiler, but no
GtkAda yet). You can create as many
chroots as you like. Use debootstrap to

148 Ada and GNU/Linux

Volume 27, Number 3, September 2006 Ada User Journal

create each of them, then use apt-get
inside each chroot to install packages as
usual.
Then, bind-mount your /home directory in
each of the chroots, so you share it
between all chroots and the top-level root.
Then, copy your top-level /etc/passwd
into each of the chroots, so all users of the
top-level root also exist in the chroots.
Last, use dchroot to allow non-root users
to use chroot in a controlled way.
This solution is less error-prone, quicker,
and much much more maintainable than
recompiling everything. I use it myself on
my machine: Etch with gnat 3.15p in the
top-level root, Sid (unstable) with GCC
4.1 in a chroot where I do the Ada
transition.

Linux Kernel Modules
From: Frank <franjoe@frisurf.no>
Subject: call procedure in Linux-Ada-

module from "normal" program
Date: Thu, 24 Aug 2006 18:33:21 +0200
Newsgroups: comp.lang.ada
Debian sarge kernel 2.4.27, gcc-3.3
I've been tinkering with modules by using
Ada. The module compiles, and I manage
to do insmod on it. The symbols appears
in ksyms; like "some_call_me".
Now I wish to call "some_call_me" from
the test program (3) — is that possible?
From: Manuel Gomez

<mgrojo@gmail.com>
Subject: Re: call procedure in Linux-Ada-

module from "normal" program
Date: 25 Aug 2006 04:10:13 -0700
Newsgroups: comp.lang.ada
Maybe this text is useful for you, but don't
know if you already follow those steps.
Section "Writing Linux Modules" from
the "The Big Online Book of Linux Ada
Programming":
http://www.pegasoft.ca/resources/boblap/
16.html#16.16

Generating Ada from UML
From: "Martin Krischik"

<krischik@users.sourceforge.net>
Date: Mon, 07 Aug 2006 14:40:45 +0300
Subject: Re: Generating Ada from UML on

Linux
Newsgroups: comp.lang.ada
> […] Are there any Linux tools which

can generate Ada code from UML
diagrams? Maybe even some Open
Source tools?
I have found a package called
"dia2code" on my Ubuntu system.
Does any of you have any experience
with using it to generate Ada code from
UML diagrams? I have made some
very simple experiments with it, and it
appears that it cannot express private
attributes and operations properly in

Ada. Is that just me making a mistake?
Or is it an error in `dia2code`?

Well we also have xmi2code [1] which
works with Umbrello [2] as UML tool.
[1] http://xmi2code.sourceforge.net/
[2] http://uml.sf.net/
From: "okellogg" <okellogg@freenet.de>
Subject: Re: Generating Ada from UML on

Linux
Date: 7 Aug 2006 06:08:12 -0700
Newsgroups: comp.lang.ada
While dia2code and xmi2code are close to
unmaintained these days, Umbrello is
alive and kicking. With Umbrello you
stand a much better chance of getting
possible problems fixed.
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Subject: Re: Generating Ada from UML on

Linux
Date: Mon, 07 Aug 2006 15:18:58 +0200
Newsgroups: comp.lang.ada
It appears that the Ada code generator is
included in the Ubuntu package
"Umbrello". I would also say that it
seems to work much more like I would
expect an UML to Ada converter to do.

Linux GUI Bindings
From: Simon Clubley

<clubley@eisner.decus.org>
Subject: Ada bindings to Linux GUI

toolkits?
Date: 30 Jun 2006 19:11:17 -0500
Newsgroups: comp.lang.ada
With the change in license for GtkAda, I
have started looking for Ada bindings for
other GUI toolkits that run under Linux.
At:
http://www.adapower.com/index.php?Co
mmand=Class&ClassID=AdaGUI&Title=
Ada+GUI
there is a list of known bindings and only
the base X11 and Motif interfaces appear
to have Ada bindings for Linux.
(GWindows appears to be MS-Windows
only).
Are any other Ada open source bindings
to current Linux based GUI toolkits
available?
From: Simon Wright

<simon@pushface.org>
Subject: Re: Ada bindings to Linux GUI

toolkits ?
Date: Sat, 01 Jul 2006 10:10:59 +0100
Newsgroups: comp.lang.ada
http://tcladashell.sourceforge.net/ (no
downloadable distribution as yet,
checkout via anoncvs or follow the links
to Terry Westley's original site).
From: Lucretia <lucretia9@lycos.co.uk>
Subject: Re: Ada bindings to Linux GUI

toolkits?
Date: 1 Jul 2006 08:25:43 -0700
Newsgroups: comp.lang.ada

Well, I have some source that I'm in the
process (slowly) of making available. It's
not complete but does work. There needs
to be a lot of work done on it, especially
on the C++ virtual functions.
You can keep an eye on it here:
http://wxada.tigris.org
http://wxada.tigris.org/screenshots.html
From: Simon Clubley

<clubley@eisner.decus.org>
Subject: Re: Ada bindings to Linux GUI

toolkits?
Date: 3 Jul 2006 06:36:05 -0500
Newsgroups: comp.lang.ada
> Also learning Gtk (any GUI Toolkit)

well is hard. One probably would like
to preserve one's investment in that
area, so moving to another language
(and staying with Gtk) is a definite
option. My recommendation at that
point for lovers of exotic languages
would be Ocaml :-), but YMMV.

I was thinking about this over the
weekend and have now come to the same
conclusion, but I would like to thank
people for their pointers to Ada bindings
to other toolkits anyway.
My current GtkAda programs tend to be
things like microcontroller
programmers/debuggers or status
monitors for things (like a current
autonomous robot experiment) that do
need Ada. Neither of those GUI
applications really require Ada (the robot
has to handle the status monitor link
potentially failing for reasons unrelated to
the code in the status monitor anyway),
and I've spent quite a bit of time learning
the GTK toolkit.
You are correct about this affecting
hobbyist users. The above projects (and
others) are hobbyist projects, but since I
don't know what I will do with this (and
other) projects in the future, I would like
to be in control of how I use my code.
I think that the most annoying thing is that
GtkAda started out life as GMGPL[1]
before been changed to pure GPL and
then impacting all the projects built up
until then. If it had been GPL at the start,
then that would have been known
before designing and writing any code.
[1] It most definitely started out life as
GMGPL. From the GtkAda mailing lists:
http://lists.adacore.com/pipermail/gtkada/
2002-February/001204.html
 Arnaud Charlet
 Sun, 10 Feb 2002 00:38:36 +0100
 GtkAda is licensed under the GNAT
modified GPL (see the GtkAda spec files
more the exact wording). So basically you
should be fine, but that being said,
whether you can use it in such or such
exact conditions would require to
examine all the licenses involved or to
hire a lawyer to do this job for you.

Ada and GNU/Linux 149

Ada User Journal Volume 27, Number 3, September 2006

From: M E Leypold <kontakt@m-e-leypo
Subject: Re: Ada bindings to Linux GUI

toolkits ?
ld.de>
Date: 04 Jul 2006 02:04:55 +0200
Newsgroups: comp.lang.ada
The GMGPL interested community would
have to maintain (i.e. bugfix and
conservatively extend) the GMGPL
version for the next years. Is it big
enough?
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: Ada bindings to Linux GUI

toolkits?
Date: 4 Jul 2006 03:19:08 -0700
Newsgroups: comp.lang.ada
The number 1 requirement, as far as
Debian is concerned, is that GtkAda must
be suitable for supporting GPS.
GtkAda >= 2.4.0 is fine with GPS 2.1
(this is in Sarge).
GtkAda >= 2.8.1 seems to be fine with
GPS 4.0.0 (this is the plan for Etch).
Notably, GtkAda 2.4.0 would NOT be
enough for GPS 4.0.0.
Just a data point.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: Ada bindings to Linux GUI

toolkits?
Date: Wed, 05 Jul 2006 21:37:21 +0200
Newsgroups: comp.lang.ada
> Which of course doesn't require

GMGPL. (I expect this has been said
already, but ..)

No, but it implies that it may be
impractical to support a GMGPL version
(namely 2.4.0) of GtkAda in Debian.
From: M E Leypold <kontakt@m-e-

leypold.de>
Date: 05 Jul 2006 00:55:07 +0200
Subject: Re: Ada bindings to Linux GUI

toolkits?
Newsgroups: comp.lang.ada
> Or else live with the last GMGPL

version.
"Live with" without the option of
conservative maintenance sounds pretty
much like a dead end. One reason to
decide for the main stream (Gtk) is the
continued development, in backend and
interface. Writing now a software based
on something that will become more and
more unbuildable within the next years
seems to be a waste of time.
Personally I never ever build
infrastructure on something that is not
maintained any more or doesn't have
community debugging it. Considering all
the answers that I got on the bugs in Gnat
3.15p (which is after all in current
Debian) that told me, that 3.15p is dead
dead dead, I can imagine what answers
anyone will get (here in c.l.a) when

asking about GtkAda 2.4.0 problems in
some months: It will go like this:
 - "Got problem with GtkAda 2.4.0 […] "
 - "Oh man / good grief, that has been
fixed looong ago. Just use a current
GtkAda."
 - "There is no newer GMGPL GtkAda"
 - "The new version is GPL, just take
that?"
 - "Can't use GPL"
 - "Why not?"
 - "I, want to link closed source."
 - "Just buy support or free your
software! You wouldn't want to restrict
the freedom of your customers?"
 - "But …"
From there the discussion quickly spins
out of control, without actually addressing
the initial technical problem again.
Mind you, that I'm not reproaching
anyone that the recent discussions went
like they went. They were rather
instructive to me. But the thought
experiment "What will I do when I think I
found a bug in an already dusty version?"
should make clear, that using an old
version will not really be fun.
From: Jeffrey R. Carter

<spam.not.jrcarter@acm.not.spam.org>
Subject: Re: Ada bindings to Linux GUI

toolkits?
Date: Thu, 06 Jul 2006 03:43:11 GMT
Newsgroups: comp.lang.ada
A fairly common practice on real projects
is to choose a toolset and freeze it for the
life of the project. Such projects "live
with" whatever drawbacks their chosen
toolset may have. So, living with an older
toolset is not that uncommon a situation.

Official Debian Developers
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Ada in Debian: I am now an

official Debian Developer
Date: 4 Jul 2006 05:03:52 -0700
Newsgroups: comp.lang.ada
Subject says it all. […]
The full process took 35 months since I
started packaging gnat in Debian. I'm
sure glad it is complete at last. Also, this
will give me read-write access to the
Subversion repository that holds the GCC
build scripts. I'm not going to take
advantage of that privilege just now, as
my work on GCC 4.1 is complete. On the
other hand, I anticipate I'll make quite a
few package uploads in the next few
weeks, without the need for a sponsor.
Stay tuned for more announcements :-)
Ah, one last thing: I am now in a position
to sponsor other people who would like to
contribute to Debian. So, if you too would
like to maintain a few packages (or co-

maintain them with me), please drop me a
note.
From: george <gshapovalov@gmail.com>
Subject: Re: Ada in Debian: I am now an

official Debian Developer
Date: 4 Jul 2006 12:28:44 -0700
Newsgroups: comp.lang.ada
Brothers in arms, rejoice!
Wow!
And I thought we (Gentoo) were slacking,
with mentoring/recruitment process
taking 3-6 month nowadays :). Well, OK,
most of our recruits have a history
(usually upwards of a year) of
submissions to our bugtracking system,
but still.. Apparently you cannot beat
Debian when it comes to, um, I don't
know, — the process? :)
Congratulations!
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: Ada in Debian: I am now an

official Debian Developer
Date: Tue, 04 Jul 2006 21:38:54 +0200
Newsgroups: comp.lang.ada
Well yes. Gentoo is growing faster than
Debian, and I think that's one reason. No
one is paid to process applications, and
there are many, and the process is indeed
very thorough. Just to give you an idea,
the very first step is to have your GPG
key signed by two Debian Developers or
more.
From: Poul-Erik Andreasen

<poulerik@pea.dk>
Subject: Re: Ada in Debian: I am now an

official Debian Developer
Date: Mon, 17 Jul 2006 03:58:56 +0200
Newsgroups: comp.lang.ada
Congratulations for me too.
I want you to know that it actually was
your work which made me change my
preferred distro to Debian. And a have no
regrets at all :-)

GNU/kFreeBSD GNAT port
Title: GNAT porté vers GNU/kFreeBSD
Date: mercredi 31 mai 2006.
Source: Association Ada-France
URL: http://www.ada-

france.org/breve50.html
Aurélien Jarno has ported GNAT 3.4, 4.0
and 4.1 to GNU/kFreeBSB. The patch has
been accepted in GCC. He has also ported
GNAT 3.15p to that system; in Debian the
gnat 3.15p-18 package incorporates the
necessary modifications. The other Ada
packages currently in Debian will
continue to exist.
GNU/kFreeBSB is a platform built on the
FreeBSB kernel but with the GNU user
environment (glibc, utilities, etc.).
A Debian GNU/kFreeBSB distribution
currently is under development.
The Debian gnat-3.4, gnat-4.0 and gnat-
4.1 are lready included in that.

150 References to Publ icat ions

Volume 27, Number 3, September 2006 Ada User Journal

GNAT in FreeBSD
From: M E Leypold <kontakt@m-e-

leypold.de>
Date: 02 Jun 2006 17:57:59 +0200
Subject: GNAT at FreeBSD -- Question

about available versions …
Newsgroups: comp.lang.ada
> I'm trying to port GCC 3.4.6 with Ada

support to FreeBSD.
BTW: I remember that 3.15p has been in
earlier FreeBSD-Release. But when I
looked into Release 6.x I only found gnat-
2005 (ACT GPL GNAT, I think).
Does anybody here know, wether there is
any technical reason that Gnat-3.xp has
been dropped from the 6.x release stream
(i.e. problems between the tasking
runtime and FreeBSD thread model or
whatever) , or wether the only reason is
that it was just too much effort or no
maintainer available?
From: Karel Miklav

<karel@lovetemple.adbloccker.net>
Subject: Re: GNAT at FreeBSD -- Question

about available versions …
Date: Fri, 02 Jun 2006 19:13:42 +0200
Newsgroups: comp.lang.ada
GNAT 3.15p wasn't dropped, it was just
updated to GNAT 2005. Check the
revision history on i.e.:
http://www.freshports.org/lang/gnat.
There is still a binary version of the old
compiler on servers used to bootstrap the
new one.
There are no direct technical problems
just a lack of manpower. Maybe you can
help — try to download and play with my
port than share your experience (beware,
it doesn't deinstall).

GNAT for Mac OS Tiger
From: Burkhard

<burkhard@no.spam.please>
Subject: Re: gnat for MacOS Tiger?
Date: Sun, 13 Aug 2006 21:56:03 +0200
Newsgroups: comp.lang.ada
> I just discovered that the GCC that

comes with Tiger does not have Ada
support (unlike the one that comes with
SUSE Linux). […]
So what does one need to do these days
to get an Ada-capable GCC on OS X
10.4?

Take a look at www.macada.org
From: Simon Williams

<williams@ntlworld.com>
Subject: Re: gnat for MacOS Tiger?
Date: Mon, 14 Aug 2006 02:20:01 GMT
Newsgroups: comp.lang.ada
[…] Mac Ada is alive and well and we
have GCC 4.2 from the FSF archives for
tiger that works quite well as well as a
plug-in for apples IDE (Xcode).
On Intel macs Paralleles makes a really
nice virtual machine capability and I run
Mac OS, Windows XP, and Linux

(Ubuntu and Fedora) all on the same
machine. with enough memory they will
all run at once.
I did some GtkAda code and built it and
had same app running under mac and
windows at the same time. Worked very
nicely to test it out.
From: Javier Miranda

<jmiranda@iuma.ulpgc.es>
Subject: Re: gnat for MacOS Tiger?
Date: Mon, 14 Aug 2006 04:39:21 -0400
Newsgroups: comp.lang.ada
Go to the Libre site of Adacore
(https://libre2.adacore.com/), select and
download the ppc-darwin platform.
Remember that if you want to execute
GPS you also need to install the X11
server, available at
http://www.apple.com/downloads/macosx
/apple/x11formacosx.html
…. and launch GPS from an X11 console.
From: Simon Williams

<williams@ntlworld.com>
Subject: Re: gnat for MacOS Tiger?
Date: Tue, 15 Aug 2006 01:57:30 GMT
Newsgroups: comp.lang.ada
But keep in mind that if you get the
version from AdaCore you can only use it
for producing Open source applications.
the 4.2 compiler at macada.org is built
from the FSF sources so it retains the
GMGPL exception.
Besides ours works with Apple's IDE
Xcode. ;-)
I have just put out beta installers. Join the
mailing list if you want to get them. They
will be on the website in a week or so
after we are sure they are OK.

References to
Publications
Dedicated STSC CrossTalk
From: roderick.chapman@googlemail.com
Subject: Ada2005 in August's CrossTalk
Date: 12 Jul 2006 09:00:45 -0700
Newsgroups: comp.lang.ada
I just noticed this:
http://www.stsc.hill.af.mil/crosstalk/them
e.html
It seems Ada 2005 is the main theme for
the August 2006 issue of CrossTalk.
Anyone know who's contributed to this
issue?
From: Britt Snodgrass

<britt.snodgrass@gmail.com>
Subject: Re: Ada2005 in August's CrossTalk
Date: 25 Jul 2006 12:51:17 -0700
Newsgroups: comp.lang.ada
This issue is now on-line at
http://www.stsc.hill.af.mil/crosstalk/2006/
08/index.html
It looks like a good read.

NSA's Tokeneer system
From: roderick.chapman@googlemail.com
Subject: ANN: NSA, SPARK, Praxis project

— results now available
Date: 12 Jun 2006 08:32:54 -0700
Newsgroups: comp.lang.ada
I'm pleased to say that we're finally able
to publish the results of our work on the
NSA's Tokeneer system. Press release
and PDF of the full paper from the recent
ISSSE Conference are at
www.sparkada.com as usual.
 — Rod, SPARK Team

JGNAT and MGNAT
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Subject: Re: C to JVM, time to revive

JGNAT?
Date: Wed, 09 Aug 2006 11:48:23 +0200
Organization: Adalog
Newsgroups: comp.lang.ada
> AMPC (Axiomatic Multi-Platform C):

http://www.axiomsol.com/
If you are interested in non-Java
languages for the JVM, have a look at
http://www.robert-
tolksdorf.de/vmlanguages.html
That's really impressive…
From: Colin Paul Gloster

<Colin_Paul_Gloster@acm.org>
Subject: Re: C to JVM, time to revive

JGNAT?
Date: Wed, 9 Aug 2006 12:59:09 +0200
Newsgroups: comp.lang.ada
From the homepage of Axiomatic
Solutions:
"If you write Java code, you can write
once and run anywhere!"
and
"I write C code, and with AMPC I can
write once and run anywhere!"
and
"The best and easiest way to convert C
programs to standard Java bytecodes
(classes) is AMPC from Axiomatic
Solutions"
"AMPC allows users to develop software
using the standard C programming
language.
AMPC covers a very large subset of
ANSI C (1989). A notable difference is
that "double" in AMPC is 32 bits long. In
order to utilize 64-bit floating point you
can use "DOUBLE".
From: napi@axiomsol.com
Subject: Re: C to JVM, time to revive

JGNAT?
Date: 9 Aug 2006 19:53:32 -0700
Newsgroups: comp.lang.ada
The compiler/IDE itself comes in three
versions (Linux, Mac OS X, and MS
Windows), but the generated code (.class
files) should be able to run on any

Ada Inside 151

Ada User Journal Volume 27, Number 3, September 2006

properly installed JVM/JRE. In other
words, AMPC is a cross-compiler suite
whose development platforms are Linux,
Mac OS X, and MS Windows, all
targeting the platform-independent JVM.
The ANSI C standard does not specify the
size of scalar variables since there are
various CPU architectures out there from
8 bits to 64 bits, etc. So, making "double"
to be 32 bits or even 16 bits is still
conformant to the ANSI C standard,
although abnormal. AMPC actually
supports 64 bit floating point by means of
the type DOUBLE.
From: Georg Bauhaus

<bauhaus@futureapps.de>
Subject: Re: C to JVM, time to revive

JGNAT?
Date: Wed, 09 Aug 2006 12:15:20 +0200
Newsgroups: comp.lang.ada
I find the idea more than obvious. Zillions
of mobile computers and the like are
driven by JVMs. Major web sites, too.
Ada, as has been explained and also
proven as early as 1996 by Tucker Taft
and colleagues, is a language well suited
for targeting the JVM.
I'm using an Ada->J-code compiler, and I
must say that in spite of some rough edges
(it's not full Ada 95, older byte codes just
like JGNAT), it's fun, it's quick, and it
works. The Java-Ada integration is very
smooth, quite unlike your usual binding.
Tons of libraries at your finger tips.
Is it that Ada programmers feel bad about
virtual machines? Do they feel more
powerful when they can pretend to
themselves to be controlling "the metal"?
According to Robert Dewar at FOSDEM,
GNAT is going the JNI and/or "OO-ABI"
path, which I interpret to also mean that
Redhat is funding GCC development for
compiling the Java language directly to
machine code. GCC C++ ways can be
integrated with GCC Ada ways.
But how can Java, compiled to processor
instructions, be so helpful where the OS is
really a specialized JVM?
Sometimes research going into Real Time
Java, Java memory management, object
lifetime etc, is really reapeating Ada
stories, AFAICT from my limited view.
What if the two efforts can be readily
integrated, taking advantage of Ada
features, JVM libraries, portability, etc
etc?
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Wed, 09 Aug 2006 19:01:27 +0300
Subject: Re: C to JVM, time to revive

JGNAT?
Newsgroups: comp.lang.ada
I think JGNAT, MGNAT and
Interfaces.CPP are interesting
technologies but somehow
undermaintained.

While MGNAT seem to come along
nicely both JGNAT and Interfaces.CPP
are stalled on a missing code
analyzer/generator for the needed thin
bindings. It is just too much work to
create them by hand.
And a last point: the GCJ (GNU Compiler
for Java) is coming along nicely as well
Interfaces.Java (interface to GCC) might
be an alternative to JGNAT.
Sadly we don't have the man power for
any of these projects. Apart from
MGNAT which is sponsored by the US
Air force.
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Thu, 10 Aug 2006 13:11:02 +0300
Subject: Re: C to JVM, time to revive

JGNAT?
Newsgroups: comp.lang.ada
> Well, [GCJ] wouldn't give us JVM

target, or?
GCJ is dual target — binary and jvm.
> Having a naked Ada compiler into

anything isn't much useful. Ada's run-
time library is the thing that makes it
useful.

Let's be honest here: the Java runtime lib
is a lot more powerful than Ada's.

Ada Inside
Boeing Company Selects
SofCheck
http://www.sofcheck.com/news/boeingpressr

elease.html
The Boeing Company Selects SofCheck’s
Error Detection Technology for Quality
Assurance and Testing of Advanced
Avionics System
SofCheck Inspector™ for Ada finds flaws
early in the development process, assuring
quality of today’s complex, mission
critical applications, like those used in
transportation, finance, communications
and health care.
BURLINGTON, Mass. (June 13, 2006) –
SofCheck, Inc., a provider of software
analysis and verification technology,
today announced that The Boeing
Company has selected SofCheck
Inspector™ for Ada to perform analysis
and quality assurance on an advanced
avionics system. SofCheck Inspector for
Ada offers sophisticated error detection
which is vital to assuring the quality of
today’s increasingly complex mission
critical applications, like those utilized in
the transportation, financial services,
communications and health care
industries.
“Software powers many of the products
and services that we rely on every day—
from automobiles and medical devices to
ATMs and mobile phones,” said Tucker

Taft, chairman and CTO of SofCheck.
“As applications have become more
complex and more safety and mission
critical, organizations like Boeing
recognize that manual error detection and
quality assurance cannot adequately test
systems to the level required by their
customers and government regulations.”
SofCheck Inspector is available for Ada
and Java. A complement to traditional
run-time testing tools, it helps eliminate
programming errors by performing
advanced static analysis on the compiled
program source code. The SofCheck
Inspector family utilizes static control-
flow, data-flow, and value propagation
techniques to identify places where run-
time errors could occur. This automated
software quality technique provides 100
percent path coverage and enables
identification and elimination of flaws
very early in the software life cycle—
before run-time testing. The system runs
unattended, analyzes about 100,000 lines
of code per hour, and does not require any
application domain knowledge to
configure and run.
About The Boeing Company
Boeing is the world’s leading aerospace
company and the largest manufacturer of
commercial jetliners and military aircraft,
with capabilities in rotorcraft, electronic
and defense systems, missiles, satellites,
launch vehicles and advanced information
and communication systems. Boeing’s
reach extends to customers in 145
countries around the world, and is the
number one U.S. exporter in terms of
sales. (www.boeing.com)
About SofCheck
Founded in 2002, SofCheck develops
technology that enables software
developers and IT organizations to detect
and eliminate bugs that can cause crashes
or numeric overflows earlier in the
development cycle, improving overall
software quality and reducing time-to-
market. SofCheck’s flagship product,
SofCheck Inspector, is a complement to
traditional run-time testing tools,
employing advanced static error detection
technology and push-button convenience
to find lurking defects in software.
SofCheck is a privately held company
whose clients include: Raytheon,
Northrop Grumman and United
Technologies.

Tomahawk Mission
Planning
Boeing Selects Aonix ObjectAda for

Tomahawk Cruise Missile Mission
Planning Software

Product maturity, vendor responsiveness,
and new capabilities cited as key selection
criteria
San Diego, CA, August 28, 2006

152 Ada Inside

Volume 27, Number 3, September 2006 Ada User Journal

Aonix®, a provider of complete solutions
for safety- and mission-critical
applications, announced that Boeing has
chosen and licensed ObjectAda for
Windows. Boeing plans to use Aonix’s
ObjectAda for Windows for ongoing
software development and for migration
tasks on the Tomahawk Mission Planning
(TMP) Software Platform. Boeing’s
interest in Aonix’s ObjectAda for
Windows hinges on several technical
factors, including its full compatibility
with Microsoft’s .NET platform.
Facing legacy obsolescence and
diminishing support for their existing Ada
development environment, Boeing’s TMP
group initiated a full-scale evaluation of
available Ada compiler and tool solutions.
Their challenge was to find an Ada
vendor with compiler technology able to
support a very large Ada source code
base, meet stringent performance and
functionality requirements, and efficiently
support a large software development
team. In order to port a large code base
without requiring a large investment of
new engineering resources, Boeing’s
TMP group needed a multilanguage
development environment to
accommodate existing C, Fortran, and
.NET software assets.
“Aonix rose to all the challenges we laid
out,” noted Dan Turpin, TMP Systems
Engineer. “They accommodated specific
requirements critical to our success, such
as performing specific debugger and
compiler performance improvements that
we needed.”
Similarly, Ben Ralston, TMP’s compiler
technical evaluator, stated, “As an
engineer, I realize it was no small feat to
accomplish technical changes of this
magnitude to their compiler, especially in
such a short time frame. Aonix met all of
our objectives.”
The Aonix ObjectAda for Windows
brings the improvements of ObjectAda
8.2 to the Windows development
platform. In integrating current Windows
improvements with the Aonix Ada 95
compiler, Aonix has delivered
enhancements to the object code and
symbolic debugging information
generation and provided full compatibility
with the Microsoft Visual Studio .NET
2003 development tools. Recognizing the
growing number of large-scale Ada
projects, ObjectAda 8.2 for Windows
offers dramatic performance
improvements for developers linking
executable files or initiating debugging
sessions for large programs.
ObjectAda for Windows 8.2 includes the
comprehensive Ada libraries needed for
calling Windows Win32 and the Visual
C++ .NET 2003 MFC interfaces from
application source code written in Ada. In
ObjectAda for Windows, these Ada
binding libraries are fully compatible with

the Microsoft Visual Studio .NET 2003
tools and libraries.
As part of the ObjectAda 8.2 family,
ObjectAda for Windows allows
developers to choose between the
traditional Aonix IDE for development
and the new AonixADT™ Eclipse plug-
in. AonixADT incorporates Ada-project
awareness, an Ada-language sensitive
editor, Ada-language compile and build
capabilities, and a complete Ada debugger
interface, enabling Ada developers to
enjoy state-of-the-art interface capabilities
geared to maximize developer ease and
efficiency.
Shipping and Availability
ObjectAda for Windows is available
immediately for Windows 2000 and XP
platforms. For more information about
ObjectAda 8.2 for Windows, please visit:
www.aonix.com/objectada.html.
About Aonix
Aonix is a leading global supplier of
technologies supporting the development
of sophisticated applications primarily in
the real-time and embedded domains. Our
mission- and safety-critical solutions
serve industries such as
telecommunications, military and
aerospace, and transportation. Aonix
delivers the leading high-reliability, real-
time embedded virtual machine solution
for running Java™ programs deployed
today and has the largest number of
certified Ada applications at the highest
level of criticality. Aonix also offers the
TeleUSE line of Motif graphical user
interface development solutions.
Headquartered in San Diego, CA and
Paris, France, Aonix operates sales offices
throughout North America and Europe in
addition to offering a network of
international distributors. For more
information, visit www.aonix.com.

"Health-Conscious" Planes
SCORE® Helping Develop "Health-

Conscious" Planes
Product: SCORE®
Imagine a jet able to warn air and ground
crews when the plane exhibits the earliest
symptoms of a serious problem. This
long-term goal in the aviation industry is
no longer limited to the realm of science
fiction, as engineers under the wings of
the FAA Aviation Safety Program use
DDC-I's development environment —
Safety Critical, Object-oriented, Real-
time Embedded (SCORE®) to develop
the technology to build "health-
conscious" planes: the Aircraft Condition
Analysis and Management system
(ACAMS).
SCORE's multi-language capabilities
allow project engineers to develop safety-
critical code in Ada and compile the
board support package, originally written
in C, within a single integrated

development environment. The PowerPC
target relies on SCORE's JTAG
integration to enable work at the bare
board level with minimal intervening
software layers, reaching down onto the
board to debug by directly manipulating
the processor.
Unique in the aviation industry, ACAMS
offers real-time diagnosis and prognosis
within a complex dynamic system,
including flight subsystems, landing gear,
and structural elements. Already
configurable for propulsion systems,
ongoing development is expected to
incorporate, or simply merge with,
ongoing propulsion system health
management programs.
ACAMS consists of onboard and ground-
based elements. In the air, proprietary
models and algorithms analyze data in
real time to identify and help manage
anomalies. Results are automatically
prioritized in accordance with user-
specific criteria to assess the impact of
fault conditions on future operation. If a
critical anomaly appears, data is
automatically transmitted to the ground
crew. In certain cases, the system can
even predict faults in the monitored
subsystems before they occur.
On the ground, ACAMS combines
collected and analyzed in-flight data with
historical information like component
maintenance history and reliability data,
as well as quick-access recorder and flight
operations quality assurance data for
commercial air carriers. Such combined
analysis will facilitate improved long-
term, fleet-wide aircraft dispositioning
and improve maintenance scheduling and
parts supply management.
Future research and development is
expected to include integration of
ACAMS and ACARS (Aircraft
Communications Addressing and
Reporting System), an air-to-ground
network enabling aircraft to emulate
mobile computer terminals linked to a
ground-based command-and-control
management system.
While aircraft accidents caused by
equipment failure are responsible for an
estimated 23% of serious aviation
mishaps, many may someday be predicted
and prevented using ACAMS technology
developed with SCORE®.

EADS Unmanned Aerial
Vehicles
Future EADS UAVs with integrated avionic

systems by SYSGO
Publication date on this website: Thursday,

July 06, 2006
Company: SYSGO AG
Category: Press Releases : RTOS
Summary:

Ada Inside 153

Ada User Journal Volume 27, Number 3, September 2006

SYSGO´s PikeOS Kernel enables new
platform architecture for military avionic
systems
Mainz/Germany, June 6, 2006
SYSGO, the European vendor for safety
critical COTS software, facilitates a new
system architecture for an open and
modular platform for FMS/MMS (Flight
Management System/Mission
Management System) avionic systems
which will be used in future Unmanned
Aerial Vehicles (UAVs). SYSGO´s real-
time operating system PikeOS will be
used as an integration platform in order to
integrate various existing avionic systems,
formerly based on other safety critical
commercial operating systems, with a
single COTS hardware running PikeOS.
Full Text:
The main project objective is the
integration of applications with different
levels of criticality on a single COTS
hardware. This will be realized by using
SYSGO´s microkernel based, COTS real-
time operating system, PikeOS. The `New
Avionics Structures´ department of EADS
Military Air Systems leads the project.
The resulting system is meant to be used
in future UAVs. The project is financed
by the German Ministry of Defense´s
Research and Procurement Agency BWB,
supporting research projects in the field of
safety critical systems.
The major objective of this project is to
reduce the overall costs for avionic
systems, by integrating several existing
systems on just one platform.
Additionally, the new platform
architecture opens the door to use Linux
based open source components for non-
critical applications, which is another
important step towards significant cost
savings. Using the partitioning concept of
PikeOS, safety critical real-time
applications can co-exist with Linux,
guaranteeing that the Linux applications
are not able to compromise the execution
of the critical tasks.
The critical legacy applications are based
on Ada. These applications will run on
top of PikeOS using ObjectAda, the Ada
runtime environment from AONIX,
which is already available for PikeOS.
Other legacy components, which
previously were based on other COTS
operating systems, will be migrated to a
PikeOS API, which emulates the system
calls of the legacy RTOS. The reference
implementation is based on a 3U cPCI
Board which integrates IBM´s 750FX
PowerPC.
About PikeOS
PikeOS is a real time operating system
supporting the principle of software
partitioning.
The foundation of PikeOS is a powerful
microkernel, a genuine development of
SYSGO AG, developed according to the

highest safety standards. Therefore,
PikeOS is meant to be used in safety and
mission critical systems as well as
standard embedded systems for which
hard real time is mandatory.
Each software partition of PikeOS can run
an entire operating system such as Linux,
POSIX and ARINC-653 or native
application programs. Several of these
heterogeneous partitions can co-exist.
Fault containment is one of the features of
software partitioning, enabling the use of
critical and non-critical software on the
same hardware platform. PikeOS is the
ideal choice for legacy code migration,
using embedded Linux in a hard real time
environment or for platform
consolidation. To support PikeOS
customers, SYSGO included CODEO in
the PikeOS suites. CODEO is the Eclipse-
based development environment from
SYSGO, offering additional plug-ins for
system configuration, validation and
analysis as well as comfortable
application development.
About SYSGO AG
SYSGO is specialized in design,
implementation and configuration of
system software for the embedded market
with a special focus on the operating
system environment. SYSGO develops
device drivers, board support packages
and firmware and supports its
international customers with products,
services and support for Embedded Linux,
real time and certification for safety-
critical applications. The target markets
are automotive, electronics, board vendors
and semiconductors, engineering and
medical technology as well as aerospace.
SYSGO customers include
DaimlerChrysler, EADS Airbus, EADS
Military Air Systems, Honeywell, IBM,
Raytheon, Rheinmetall, Rockwell-
Collins, Rohde & Schwarz, or Siemens
VDO. SYSGO AG was founded in
Mainz, Germany, in 1991 and was
reincorporated as a joint stock company in
October 2002. Today, the company
employs more than 70 people and has six
facilities in Germany and Europe.
About EADS Military Air Systems
Military Air Systems (MAS), the centre
of competence for all manned and
unmanned combat aerial vehicles within
EADS, is an integrated part of the EADS
Defence & Security Systems Division
(DS). With revenues of about € 5.6 billion
in 2005 and roughly 23,000 employees
across nine nations, DS forms the defence
and security pillar within EADS. As a
Large Systems Integrator, it offers
integrated systems solutions to the new
challenges confronting armed forces and
global security. It is active in the areas of
manned and unmanned integrated combat
and mission air systems, including related
training services, and in missile systems,
battlefield management systems for all
branches, global security solutions, secure

networks, defence electronics, sensors and
avionics, as well as related services.
EADS is a global leader in aerospace,
defence and related services. In 2005,
EADS generated revenues of € 34.2
billion and employed a workforce of
about 113,000.

ASSERT Project — Ada in
the European space industry
http://www.adacore.com/2006/09/05/assert-

project-adopts-ada-2005/
Tuesday September 5, 2006
ASSERT Project Adopts Ada 2005
New Ada standard improves embedded
real-time development.
Ada EUROPE, PORTO, 5 June 2006 –
ASSERT, the EU-sponsored project to
improve the development of critical
embedded real-time systems today
announced that it will adopt the Ada 2005
language and AdaCore’s open-source
GNAT development environment.
ASSERT (Automated proof-based System
and Software Engineering for Real-Time)
will use Ada 2005 to develop a run-time
platform and integration framework and
re-usable components that can be adopted
into Aerospace and other high-integrity
sectors to aid the development of real-
time, safety critical systems. Begun in
2004, the €15 million project will begin
its 18 month final development phase in
June July-August 2006.
A joint industrial and academic
consortium, ASSERT brings together
leading players from the European space
industry, SMEs and research
organisations to improve the system and
software development process for critical
embedded real-time systems. Part of this
process is to create building blocks of
open source code covering common areas
along with a run-time platform and
integration framework for them to operate
within. The UPM (the Technical
University of Madrid) Madrid and ENST
Paris (Ecole Ingenieur Télécom Paris —
ENST Ecole nationale supérieure des
télécommunications) are developing the
run-time platform framework while
Alcatel, EADS, Astrium France and other
leading industrial partners will create the
first building block application level
components for it. These will be
developed in a variety of programming
languages that will be weaved and
integrated for execution on the run-time
platform using into the framework
through Ada 2005 “capsules” interfaces to
and C/C++interfaces. The components
will then be made available via open
repositories, allowing them to be used by
developers to speed up safety-critical
development.
“Developing critical real-time embedded
systems is central to the continued
development of the European aerospace

154 Ada Inside

Volume 27, Number 3, September 2006 Ada User Journal

industries,” commented Juan Antonio de
la Puente, professor, UPM. “Ada 2005
was the only language that provided us
with a reliable, open-source environment
that will enable us to create the
framework for a new generation of safety
critical systems. Working with AdaCore
was the natural choice due to its
knowledge and advanced implementation
of Ada 2005 in products.”
The Ada programming language is
designed specifically for large, long-lived
applications where reliability, efficiency
and safety are vital. Created under the
auspices of the International Organization
for Standardization (ISO), Ada 2005, the
latest version of the language, was ratified
last year. It introduces significant
enhancements in many areas including
Object-Oriented Programming,
interfacing with other languages (most
notably Java), software architectural
design, real-time systems, and predefined
libraries. It offers improved support for
high-integrity applications, including the
standardization of the Ravenscar profile
for certifiable concurrent programs. Ada
2005 represents the first major upgrade of
the Ada language in ten years.
Ada 2005 was chosen by ASSERT due to
its seamless integration of budget
monitoring, timing events, priority-
specific dispatching, execution time
monitoring, ‘limited with clauses’, new
interfaces and compile and run-time
support for the Ravenscar Profile.
“ASSERT’s choice of Ada 2005 and
GNAT demonstrates that it provides the
perfect solution for real-time embedded
system development, combining safety-
critical features with the benefits of an
open source development environment,”
said Cyrille Comar, managing director,
AdaCore. “The combination of Ada 2005,
ASSERT and AdaCore aims to make
significant progress in driving forward
European embedded system
development.”
ASSERT developers working on the both
the run-time framework and pilot
applications will be using Ada 2005, with
an estimated 33,000 lines of code
predicted to be written, making it the
largest current use of the latest version of
the language.
AdaCore has been closely involved with
the Ada language since its inception and
its GNAT development environment
combines market leading technology,
including Ada 2005, with an expert
support system to provide a natural
solution where efficient and reliable code
is critical.
About ASSERT
ASSERT (Automated proof based System
and Software Engineering for Real-Time)
is an integrated project (IP) partially
funded by the European Commission
under the Information Society

Technology (IST) priority within the 6th
Framework Programme (IST-FP6-2004
004033). The project addresses the
strategic objective of the Embedded
Systems sector. ASSERT brings together
an important consortium, coordinated by
the European Space Agency, which
includes leading actors in the European
Space industry, SMEs and research
organisations with the determination,
skills and critical mass to create cross-
industry consensus and to take the project
outputs through to standardization.
ASSERT is a 2-phased project spanning
from Q3 2004 until Q4 2007. Phase 1 has
laid out the conceptual and
methodological foundations on which the
development work in Phase 2 will base.
Phase 2 will demonstrate the operation of
a tool-assisted model-driven reuse-
oriented property-preserving development
process in the production of 3 pilot
applications consisting of property-
endowed building blocks controlledly
instantiated and integrated by property-
preserving interfaces and and bindings,
and executed on a property-preserving
run-time environment.
For more information about ASSERT
please contact:
Eric Conquet
European Space Agency
eric.conquet@esa.int

AdaCore — Boeing’s Real-
time Simulation Systems
http://www.adacore.com/2006/07/25/gnat-

pro-development-environment-to-
support-boeing%e2%80%99s-real-time-
simulation-systems/

Tuesday July 25, 2006
GNAT Pro to Support Boeing’s Real-time
Simulation Systems
AdaCore’s GNAT Pro Development
Environment to Support Boeing’s Real-
time Simulation Systems
NEW YORK, July 25, 2006 – AdaCore
today announced that it has been awarded
a contract to provide its flagship GNAT
Pro Ada toolset and development
environment to The Boeing Company’s
Training Systems & Services (TSS)
division in St. Louis, MO, where it will be
used for the development of Ada flight
simulation code. AdaCore has been
supplying Boeing with Ada development
tools for real-time aircrew training
simulation systems since 2003, including
the C-17, the U.S. Army AH-64D Apache
Longbow (an all-Ada aircraft), and the F-
15E Rapid Prototyping System (RPS). As
part of the contract, AdaCore will also be
supplying GNAT Pro for the development
of training systems for custom Apache
aircraft that will be delivered to Japan and
Kuwait. TSS specifically utilizes
AdaCore’s GNAT Pro, including the
GNAT Programming Studio (GPS)

Integrated Development Environment, for
software development, testing and
debugging on x86 Linux and x86
Windows platforms.
“Ada has been used successfully in
Boeing programs for a number of years,
both for training device software
development and for adaptation of
operational flight programs used in the
flight hardware of the aircraft being
simulated,” said Robert Dewar, CEO of
AdaCore. “The use of common, proven
system components, such as our GNAT
Pro Ada environment, means the
technology can be easily integrated into a
wide variety of systems at a significant
cost savings, which maximizes
operational readiness and reduces total
ownership costs.”
About Boeing’s Training Systems &
Services Division
The Boeing Company’s Training Systems
and Services (TSS), headquartered in St.
Louis, Mo., provides the full range of
military and government training and
mission planning system solutions for
domestic and international customers.
TSS consists of over 2,400 employees,
has operations at six major sites, and
provides training support at numerous
sites located throughout the world. TSS’
business scope, which is based on years of
expertise gained in the design and
development of more than 150 trainers for
24 different aircraft, encompasses fully
integrated training systems, as well as
comprehensive services that include
instructors, courseware developers,
logistics support and mission planning
systems.

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —su]
Mariland, United States
From: Atul Bhardwaj

<atul.bhardwaj@mastech.com>
Subject: Unix and Ada Programmer/Analyst

with CSC @ Rockville MD
Date: 25 Aug 2006 14:20:33 -0400
Newsgroups: comp.lang.ada
Advanced programmer/analyst needed
who will perform software development
or software development support
activities using the Ada programming
language.
Needs to be an experienced user of Unix
and Ada, and have solid programming
experience in large scale development.
Knowledge of air traffic control systems
development a plus.
Candidate must have experience
developing large systems and be able to
work with a large team of developers.

Ada in Context 155

Ada User Journal Volume 27, Number 3, September 2006

Candidate must have knowledge of
software development methodologies.
BS degree in Computer Science, IT, or
other technical field required.
Brussels, Belgium
[…] Ada 83 or 95 SOFTWARE
ENGINEERS specialised in Ada design
and development.
Projects are varied and could reach
managerial responsibilities depending on
your experience.
You will be part of engineers team
designing and developing new
architectures, or working on others
projects involving methodology and
quality.
Experienced in ADA DESIGN, we
propose you to join our team working on
most challenging projects, in the highest
speed area (space and avionics) and the
railway sector. Knowledge in aeronautic
or military standards or railway standards
is a plus.
Profile:
You are Industrial Engineer (Ing) or Civil
Engineer (IR) with good knowledge &
experience in ADA 83/95 (min 3 years).
Very good communication skills and
English speaking are mandatory as the
development is done on a very
international and multi-site basis, with
frequent meetings and close interactions.
Besides a personalized career plan with
real evolution prospects, we offer you an
attractive treatment and various
advantages which include a company car,
a GSM and standard benefits such as
luncheon vouchers, Group insurance,
extra legal medical insurance,
supplementary days off.
Florida, United States
Need two (2) VERY experienced Ada
contract programmers for an 18+ month
assignment to develop/test embedded
(PowerPC) Ada software on a GPS/INS
product:
 * Must be an expert in Ada
 * Must have extensive experience
developing military-rated software
 * Experience with GPS and Inertial
navigation software a plus
 * Experience with RavenAda toolset a
plus.
No telecommuting allowed.
California, United States
Position is for real-time, avionics
system/software engineering […] Work is
in the software development organization
defining requirements, developing
interface control documents, and
performing system/software integration
and testing. The software being developed
is real-time avionics software. Work may
involve displays, operating systems, or
flight controls.

Required Skills: 1) Experience across all
software development phases including
requirements analysis, top level and
detailed design, code, integration and test.
2) Experience in software requirements
definition and interface requirements
analysis including writing SRS and ICD
documents. 3) Experience with testing
avionics or similar architectures including
designing test cases, writing test scripts,
and conducting tests using sophisticated
test/simulation environments. 4) Ability
to work independently and solve difficult
technical problems with minimal
assistance. Must be able to focus and
solve problems while also multi-tasking
on more than one task. Must demonstrate
persistence, patience, and flexibility in
problem solving. 5) Good communication
skills, ability to work in team
environment, ability to work
constructively with other strong
personalities.
Desired Skills: 1) Experience writing
automated test scripts. 2) User knowledge
of configuration management processes
and CM tools such as ClearCase. 3) User
knowledge of DOORS. 4) Experience
with interface protocols such as 1553,
ARINC 429, RS-232, RS488, or TCP/IP

Ada in Context
Ada 83 Reference Manual
From: Jeffrey R. Carter

<spam.not.jrcarter@acm.not.spam.org>
Subject: Re: 83 LRM
Date: Mon, 17 Jul 2006 20:31:42 GMT
Newsgroups: comp.lang.ada
> Can someone tell me where I can find a

PDF version of the '83 LRM?
There's an HTML version at adaic.org;
I'm not aware of a PDF version.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: 83 LRM
Date: Mon, 17 Jul 2006 19:33:16 -0500
Newsgroups: comp.lang.ada
To my knowledge, the 83 RM was
produced directly to paper. (It long
predates things like PDF!). I don't think
the original Scribe files exist anymore,
either. The HTML version was created by
hand by AJPO (which is why it is full of
markup errors; I can't vouch for the
accuracy of the text, either).
The only reason that there is a PDF of the
Ada 95 version is that I made one to test
the new tools at the start of the project
that created the (2001) Consolidated RM.
It has a few formatting errors that have
been discovered more recently (one just a
month ago), so even it can't be considered
"official".
The PDF of the 2001 Consolidated RM is,
OTOH, the same as what was printed by
Springer, and I expect the same will be

true for the 2005 version when that is
finished up. (Keep in mind the version
currently available is the last draft, and it
is possible that some changes will be
made in the final version. There definitely
will be some changes in Annex P and the
index (not normative, of course).
From: "Stuart" <stuart@0.0>
Subject: Re: 83 LRM
Date: Tue, 18 Jul 2006 08:11:06 +0100
Newsgroups: comp.lang.ada
Digital (aka DEC, now HP) produced a
postscript version of their DEC Ada
Language Reference Manual which
describes itself as
"… the Digital-supplemented text of
ANSI/MIL-STD-1815A-1983"
Having had a quick search there seems to
be a PDF version at:
http://h71000.www7.hp.com/commercial/
ada/ada_lrm.pdf
This might be helpful.
From: "Charlie McCutcheon"

<charlie.mccutcheon@hp.com>
Subject: Re: 83 LRM
Date: Thu, 27 Jul 2006 14:35:00 GMT
Organization: Hewlett-Packard Company
Newsgroups: comp.lang.ada
> Of course it has all the Dec… — HP

Ada extras in green writing.
And the little numbers in the margins for
the black text are supposed to be the
original paragraph numbers to the original
Ada 83 language standard…

Ada for VMS
From: Kilgallen@SpamCop.net (Larry

Kilgallen)
Subject: Re: Is Ada on VAX/VMS Ada 95
Date: 26 Jun 2006 14:36:58 -0500
Newsgroups: comp.lang.ada
> What are the differences of VAX Ada

and Ada 95?
VAX Ada conforms to the Ada 83
standard. […]
VAX Ada became DEC Ada became
Compaq Ada became HP Ada and runs on
either VAX or Alpha, implementing Ada
83.
If you want an Ada 95 implementation on
the VMS operating system, use GNAT
Ada 95 for Alpha VMS. It has many of
the VMS-specific capabilities of the
original VAX Ada.
From: Keith Thompson <kst-u@mib.org>
Date: Tue, 27 Jun 2006 02:12:35 GMT
Subject: Re: Is Ada on VAX/VMS Ada 95
Newsgroups: comp.lang.ada
> One major reason why there is no Ada

95 implementation on VAX is that Ada
95 requires IEEE floating point
semantics while the VAX hardware
provides VAX floating point semantics.

I don't believe that's correct. The
floating-point model is intended to be

156 Ada in Context

Volume 27, Number 3, September 2006 Ada User Journal

flexible enough to cover any existing
hardware that implements a mantissa-
exponent model (IEEE, VAX, IBM, etc.).
See section G.2.1.
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: Re: Is Ada on VAX/VMS Ada 95
Date: Tue, 27 Jun 2006 18:57:03 +0200
Newsgroups: comp.lang.ada
> The GNAT Ada 95 is not available for

VAX at all. It is available for Alpha
VMS, which runs on the Alpha
hardware.

And IA64 OpenVMS — just saw it today
on GNAT Tracker.
The GNU Ada project has got one — but
it is horribly out-dated.
> That said, some shops imprecisely refer

to any machine running the VMS
operating system as being a "VAX". I
figure they are not the type of shops to
choose strongly typed languages :-)

I would think that all VAXes are now in a
cosy little retirement home and the OP
was just new to the wonderfull world of
OpenVMS.

Global variables
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Subject: Re: [SPARK] Code safety and

information hiding
Date: 18 Aug 2006 19:02:20 -0400
Newsgroups: comp.lang.ada
> I really don't like the use of the term

"global" for state variables. True global
variables (in package specs) should be
illegal; state variables are a different
cup of fish and should not be tainted by
the "global" label.

I think the terms "global" and "local" are
most useful if they are relative to
something. A variable can be more global
or less global. The Ada RM agrees with
that (not surprising, since I wrote that part
;-)). See quote below.
Jeff wants to consider package-spec
variables particularly evil. OK, but there
are global variables even more global than
that. The Registry in windows is an
obnoxiously global variable. And
environment variables under many
operating systems are obnoxiously global.
I suppose disk files are global, although I
don't usually find them obnoxious.
I don't agree that package-spec variables
should be illegal. Such a rule
accomplishes nothing, since the
programmer can just have a getter and a
setter, which is just as evil. In some rare
cases, a package-spec variable makes
sense, and in those cases, the getter/setter
method is no better (just more verbose).
So I like the SPARK syntax for "global".
It means so-and-so variable is global to
this procedure, not necessarily global to
the whole program, or global to that part

of the program that with's certain
package, or global to the whole world.
AARM-8.1 says:
14 [{local to} A declaration is local to a
declarative region if the declaration
occurs immediately within the declarative
region.] [An entity is local to a declarative
region if the entity is declared by a
declaration that is local to the declarative
region.]
 14.a Ramification: "Occurs
immediately within" and "local to" are
synonyms (when referring to
declarations).
 14.b Thus, "local to" applies to both
declarations and entities, whereas "occurs
immediately within" only applies to
declarations. We use this term only
informally; for cases where precision is
required, we use the term "occurs
immediately within", since it is less likely
to cause confusion.
15 {global to} A declaration is global to
a declarative region if the declaration
occurs immediately within another
declarative region that encloses the
declarative region. An entity is global to a
declarative region if the entity is declared
by a declaration that is global to the
declarative region.
From: Peter Amey <peter.amey@praxis-

cs.co.uk>
Subject: Re: [SPARK] Code safety and

information hiding
Date: Wed, 23 Aug 2006 10:44:54 +0100
Newsgroups: comp.lang.ada
That's certainly the design decision we
made with SPARK. The term global is
always relative to the place where you
are asking the question. If an entity is
declared outside the declarative part of the
place from which you are looking it is
global otherwise it is local. A local
variable of a subprogram may well be a
global to a nested subprogram for
example. SPARK's global annotation
eliminates "hole in scope" issues (as well
as doing other useful things).
SPARK doesn't prohibit package-spec
variables (actually it did in the very early
days but a large and influential customer
made us change our minds); however, it
does nag you in various ways if you make
use of them. Abstract own variables and
refinement clauses are a much better
solution!
From: Peter Amey <peter.amey@praxis-

cs.co.uk>
 Subject: Re: [SPARK] Code safety and
information hiding

Date: Thu, 24 Aug 2006 11:55:25 +0100
Newsgroups: comp.lang.ada
> I think it would be better if you'd

educated your customer on how to use
that better solution, and kept SPARK as
it was.

Now we probably would, then (1991?) we
were very small and we _really_ needed
that customer!
Our nagging really is persistent though
and I don't think any current SPARK
projects continue to abuse own variable
visibility.
From: Jeffrey R. Carter

<spam.not.jrcarter@acm.not.spam.org>
Subject: Re: [SPARK] Code safety and

information hiding
Date: Sat, 19 Aug 2006 05:40:39 GMT
Newsgroups: comp.lang.ada
Designs based around global (package
spec) variables are clearly done by people
who are not competent to be designing
SW. Such people can always find others
ways to create SW that's just as bad. But
such a person might not immediately
think in terms of getter/setter operations if
denied the use of global variables, so not
allowing them might provide a little
pressure towards better designs.
The real solution, recognizing that all SW
people are not equal, doesn't seem likely
to happen any time soon.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Sat, 19 Aug 2006 05:49:14 -0400
Subject: Re: [SPARK] Code safety and

information hiding
Newsgroups: comp.lang.ada
I have an application called Goddard
Dynamic Simulator (GDS); it is used to
test flight software and hardware for
NASA Goddard (yes, I am a rocket
scientist). It has 90,000 lines of code,
mostly Ada, some C and VHDL.
The design uses information hiding,
abstraction, etc; all the good features of a
good program, made easy by using Ada
2005.
However, there are some global variables.
I thought long and hard about each one,
and decided they are the best solution to
the problem.
One important global variable is the root
of the symbol table. GDS consists of
many modules, that use the symbol table
to communicate. One module models a
star tracker, another a spacecraft (which
contains the star tracker), another
thrusters, etc. In addition, any symbol can
be written by the user, or displayed to the
user.
This design has evolved thru several
iterations of similar systems. They all
have a global symbol table.
In addition, there are global variables that
indicate global information about mode:

type Distribute_Mode_Type is
 (Master_Mode, Remote_Mode,
 Single_Mode);

Ada in Context 157

Ada User Journal Volume 27, Number 3, September 2006

Distribute_Mode :
 Distribute_Mode_Type :=
 Single_Mode;

This indicates whether GDS is running on
a single computer, or on several. This
makes a difference in many places in the
code.

Ignore_Hardware_Errors : Boolean
 := False;
-- Set True for unit tests when
--+ hardware is not present or should
--+ be ignored.

Unit tests are important, and this feature is
the simplest way to support running them
without hardware, in a system that
normally talks to hardware.

Main_Config : SAL.Config_Files.
 Configuration_Type;

More information that the entire system
needs.
I claim to be competent to design SW; I
have 20 years of experience, and at least
10 monetary awards for outstanding
performance, together with high praise
from my (internal) customers, to prove
that. My system has a few global
variables because they are the right
solution to the problem.
You have not said why getter/setter would
be better for these variables. I agree with
Robert; they are just more verbose.
Hmm. You could try to impose control
over what parts of the system are
"allowed" to write the variables, as
opposed to reading them. But that would
require an elaborate system of IDs for
various parts of the system (which does
not otherwise exist); definitely not worth
it.
I'll make a counter claim; people who
claim global variables are _always_ bad
should not be designing large complex
systems; the systems will be more
complex than necessary, which is
definitely a Bad Thing.
While it is true that all SW people are not
equal, I don't see what that has to do with
the issue of global variables, nor do I see
what problem recognizing that might be a
solution to.
From: Jeffrey R. Carter

<spam.not.jrcarter@acm.not.spam.org>
Subject: Re: [SPARK] Code safety and

information hiding
Date: Sun, 20 Aug 2006 03:52:27 GMT
Newsgroups: comp.lang.ada
Some is probably better than [lot of global
variables]. With "some" they might be
well documented. As I've said, I've seen
large, safety-critical systems designed
around thousands of undocumented global
variables. I think it would be faster and
easier to redesign and reimplement these
systems than to understand them well

enough to safely make changes to a small
part of them.
I've often had similar thoughts about
systems in which simple boolean options
exist which may be changed at any time.
If it's a sequential system, Boolean
variables seem sufficient. For a
concurrent system, making them atomic
should be enough, though I would prefer a
protected object. On the other hand, I
don't want to seem to give permission for
modifiers of the system to create global
variables that are more complex or have
more restricted situations when they may
be accessed.
So, as a modifier of the system, without
reading and understanding all parts of the
system that may access this variable, it's
OK for me to write to this variable
whenever it's convenient?
It must be reasonable and meaningful for
me to change the SW to write [the
Distribute_Mode variable] whenever it
suits me. If that's not the case, then I
claim this should not be a variable.
Instead of being able to write

X.Distribute_Mode :=
 X.Master_Mode;

I should have to call something like

function
Request_Distribute_Mode_Change
 (New_Mode :
 Distribute_Mode_Type)
 return Boolean;

-- Request mode change to
--+ New_Mode.
--+ Returns True if the mode change
--+ is legal; False otherwise.

All the details of when a mode change
may occur should be encapsulated with
the current mode value.
On the 3rd hand, systems generally are
either distributed or not, and that doesn't
change during execution. In that case, this
is essentially a constant. If the actual
mode is determined at run time during
start up, then probably the value should be
encapsulated with the logic that
determines it, and the resulting value be
made available to the rest of the system
through a function.
In this latter case, there may also be a race
condition. What if one part of the system
reads this and gets the default value
before its actual value is determined? It's
probably better to control that locally than
otherwise. […]
Who modifies the system? Add one
undocumented global variable to a
system, and you generally increase the
coupling and decrease the cohesion. You
understand the system, but after you're hit
by a truck, how easy is it for someone
who doesn't have any experience with the
system to figure out how it works?

I don't think [getter/setter] are better. I
said that if global variables were not
available, those who would try to base
their designs around them might not think
of using such operations to mimic them.
You might simply document who may
write and who may read such variables.
That would be a big improvement in the
global-centric systems I've seen. Of
course, that goes against the basic Ada
philosophy that packages should not be
concerned with who their clients are.
That's something that's not always
achievable in large, real SW systems.
There are sometimes operations that are
documented as "used only by X and Y to
achieve Z". Such things should generally
be private to some subsystem.
In general, values should be encapsulated
with the logic that generates or modifies
them, and systems that are designed that
way have better coupling and cohesion
than systems that aren't. Systems designed
around global variables are an extreme
example of the latter. If your SW
determines a value in one place and stores
it in another, that's an indication that you
may need to rethink your design. If the
value is determined in multiple places,
that's almost always a red flag.
Now, I've worked on systems with
physical redundancy, so that one
processor is the currently active one, and
the others shadow it and are prepared to
take over if it fails. I've worked on such
systems where the determination of which
is the active processor is made by another
part of the system, so it is necessary to
distribute that value to the processors. In
that case, the SW pretends that it
determines the value; for example, there's
a module that encapsulates the value and
provides access to it to other parts of the
SW. There isn't a procedure Set for the
value; rather, the module has an operation
that receives and processes the message
that changes the value.
I have over 30 yrs of professional SW
development experience, and I still find
myself doing things I know I shouldn't.
Hopefully I catch them most of the time
in the important cases. But I've seen
people with decades of experience who
are not competent to design any
meaningful SW. They're among that large
proportion of developers who will never
be more than coders. Customers are
happy with anything that works and they
can afford; I've seen customer satisfaction
with very poorly designed SW.
There may be cases where global
variables are the correct design approach,
but I have yet to see one.
Once you recognize that [all SW people
are not equal], you don't allow the coders
to design SW. That gets rid of most poor
design, including designs with large
numbers of undocumented global
variables.

158 Ada in Context

Volume 27, Number 3, September 2006 Ada User Journal

As I said above, I have many designs that
are not as good as they could be, and
some of them are freely available for
anyone to look at. My primary problem is
with designs where the global variable is
the determining feature, with large
numbers of them, and the fact that in over
30 yrs I've never seen a case where global
variables were the best approach. GDS is
probably not in that category. I'm not
saying the GDS SW is poorly designed
(I've seen enough of your work to suspect
it probably isn't), but I suspect that the
design could be improved and that the
improvement would eliminate the global
variables. Whether the improvement in
design quality would be worth the effort
to achieve it now, I can't say. At the time
of initial design, it almost certainly was.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Subject: Re: [SPARK] Code safety and

information hiding
Date: Sun, 20 Aug 2006 15:06:04 -0400
Newsgroups: comp.lang.ada
[…] "Rocket scientists" are actually
typically engineers. The original term was
for the people who made the first large
rockets actually fly; they were certainly
engineers. […]
In my system, as you alluded to above,
the use of each global variable is well
documented; programmers are expected
to follow the rules in the documentation.
Of course, every time I add a new
programmer to the team, they discover
new ways to (mis-)use the globals that
were not covered by the documentation :).
You want the code to enforce the design
rules. That's not possible in general. Ada
allows enforcing some design rules, but
not ones at this level.
In fact, for this particular variable, the
rule is "only the environment task may
write to this variable, and only before any
other tasks are started".
People modifying the code must
understand the design.
I have been tempted to write some ASIS
programs to enforce more of the design
rules. One that people keep breaking is
"modules must not write to their own
Input symbols". But this would be a
complex program (worse than
Auto_Text_IO, for example), so I haven't
done it yet.
Hmm. Now that I think about it, it would
be easy to implement a run-time check for
that rule. But it would be a waste of time
in the production system. Might still be
worth it; I have other run-time checks for
similar rules (in particular, "symbols must
be written before being read") that are
hard to check otherwise.
> On the 3rd hand, systems generally are

either distributed or not, and that
doesn't change during execution. In that
case, this is essentially a constant. If the

actual mode is determined at run time
during start up, then probably the value
should be encapsulated with the logic
that determines it, and the resulting
value be made available to the rest of
the system through a function.

That would be essentially a globally
visible getter/setter; the getter must be
globally visible, but the environment task
which calls the setter should not be. I
don't see any way to enforce the rule of
which task is allowed to set the variable at
run time.
In practice, the rule of how this variable is
set has never been broken. […]
During any particular run of the full
production system,
[Ignore_Hardware_Errors] is a constant;
usually False but occasionally True (if
some important hardware is absent). Thus
it is set by the environment task at start-
up, just like Distribute_Mode.
During runs of many unit tests together
(under an AUnit test harness), this value
changes between False and True. Some
unit tests use hardware emulation code,
and can check for hardware errors. Other
unit tests have no emulation code, and
must ignore them.
[…] Add one undocumented
function/procedure/package/task to the
system, and you have a problem.
The key notion here is "documentation";
any system must be documented, so that
maintainers understand it before
modifying it.
When one of my team members or
customers asks a question about how to
use the system, I try to look in the
documentation to answer it first. If the
answer isn't there, I fix the documentation
as the answer to the question.
Of course, when there's a crunch on,
questions get answered more directly. So
the documentation isn't perfect. But it is
intended to be adequate. […]
"Large numbers" and "undocumented" are
the key here, and as I pointed out above,
that description applies to other aspects of
the software as well; large numbers of
small functions, or large numbers of
threads, are just as bad (possibly worse)
as large numbers of global variables.
[…] At the time of the initial design, I
decided that eliminating the global
variables was more costly than the risk of
them being misused.
It does depend on the quality of the
maintenance team; whether they truly
understand the system before modifying
it. But someone who doesn't understand a
system will still be tempted to "just add a
global variable to fix this". Which is why
adding complexity just for the sake of
reducing global variables is not worth it;
it makes the system that much harder to
understand.

Opaque Types
From: claude.simon@equipement.gouv.fr
Subject: Re: How to hide type internals
Date: 30 Jun 2006 04:19:11 -0700
Newsgroups: comp.lang.ada
> I would like to write a package that

exports functions using a special type,
without showing the details in the spec
(even not in the private part).
In Modula-2 one can declare opaque
types (which mostly are pointers but
also can be any type of word size).

package Keys is
 type Key is private;
 function Getkey return Key;
-- …
private
 type Imp_Key; -- deferred type to
 --+ the body
 type Key is access Imp_Key;
end Keys;

package body Keys is
 type Imp_Key is new Integer;
 -- whatever type
 function Getkey return Key is
 The_Key : Key := new Imp_Key;
 begin
 return The_Key;
 end GetKey;
end Keys;

From: Alex R. Mosteo
<devnull@mailinator.com>

Subject: Re: How to hide type internals
Date: Fri, 30 Jun 2006 13:26:11 +0200
Newsgroups: comp.lang.ada
I've done this in occasions where I want to
have a multi-platform package, so
switching bodies is enough, keeping the
same spec file. Like this:

package Blah is
 type External is private;
 -- Operations on external
private
 type Internal; -- forward declaration
 type Internal_Acess is access all
 Internal;
 type External is record
 Ptr : Internal_Access;
 end record;
end;

And then you define Internal in the body.
With Ada 2005 you can even get rid of
Internal_Access and simply have

type External is record
 Ptr : access Internal;
end record;

Of course you can have reference
counting, deep copying or whatever
making External a Controlled type, so you
can have a proper abstraction (This will

Ada in Context 159

Ada User Journal Volume 27, Number 3, September 2006

be probably a requisite for initialization
anyways…)
From: Stephen Leake

<Stephe.Leake@nasa.gov>
Date: Sun, 02 Jul 2006 11:23:02 -0400
Subject: Re: How to hide type internals
Newsgroups: comp.lang.ada
Others have shown how to do this.
But I'd like to understand _why_ you
want to do this.
If it is just to explore the capabilities of
the language, that's fine.
But you should also understand the
compiler issues involved. The reason Ada
provides a private part in package specs is
to provide information to the compiler to
allow it to generate more efficient code
(not using pointers, for example).
One downside of providing information in
the spec is more recompilation when the
private part changes.
From: Gerd <GerdM.O@t-online.de>
Subject: Re: How to hide type internals
Date: 4 Jul 2006 04:11:52 -0700
Newsgroups: comp.lang.ada
There are at least two reasons:
If the definition is left to the body, a
change of the definition needs only a
recompilation of the body. If the full type
is declared within the spec, you would
have to recompile .all. packages that
"with" this spec. Otherwise it would be
enough to provide a compiled object-file
with the spec.
First this is a question of compile time
(large system), second this would give the
contractor a look into your internals. The
first is a simple thing of money, the
second is a security decision (e.g. if the
"user" of this package has no clearance).

Lexical Analysis
From: Keith Thompson <kst-u@mib.org>
Subject: Re: lexical ambiguity
Date: Fri, 02 Jun 2006 23:27:04 GMT
Newsgroups: comp.lang.ada
> I'm doing a lexical analysis of Ada

using Lex as part of a student project.
The highlight is on using Lex, not on
the programming language of Ada and
I'm not familiar with using Ada. So
what I would like to find out is if there
is any lexical ambiguity in Ada (like
the ambiguity in C with the unary and
binary plus and minus). Thanks in
advance…

I suppose it depends on what you mean by
"lexical ambiguity".
Strictly speaking, there are no
grammatical ambiguities in either
language. There are plenty of things that
look like ambiguities, but they're all
resolved by the rules of the language.
In C, for example, this:
 x+++++y

looks like it could be parsed as
 x ++ + ++ y
which would be a legal expression, but in
fact it's tokenized as
 x ++ ++ + y
which results in a syntax error. (C's
typedef names do cause some interesting
lexical problems, but that's another topic.)
Ada, like, C, has unary and binary "+"
and "-" operators, but each operator is
easily identified based on the syntactic
context in which it appears. One well-
known case of a near ambiguity is:

 Character'('x')

If Ada followed C's "maximal munch"
rule, this would be tokenized as

 Character '(' x '…

leading to a syntax error; instead, it's
tokenized as:

 Character ' ('x')

So, there are no real ambiguities in either
language, but each uses different rules to
resolve things that would otherwise have
been ambiguous.
From: Frank J. Lhota

<FrankLho@rcn.com>
Subject: Re: lexical ambiguity
Date: Fri, 2 Jun 2006 18:35:55 -0400
Newsgroups: comp.lang.ada
The biggest lexical issue with Ada is the
multiple uses of the single quote:
- Single quotes surround character literals
(e.g. 'A'),
- prefix attributes (for example List'First),
and
- are used in [qualified expressions], such
as Rational'(Num =>1, Demom => 2).
From: Jeffrey R. Carter

<jrcarter@acm.org>
Subject: Re: lexical ambiguity
Date: Mon, 05 Jun 2006 01:36:19 GMT
Newsgroups: comp.lang.ada
> Make sure that your lexer can handle

the following expression properly:
 Foo'(',',',',',' …)

Clearly you have an evil mind :)
From: Keith Thompson <kst-u@mib.org>
Subject: Re: lexical ambiguity
Date: Mon, 05 Jun 2006 20:27:11 GMT
Newsgroups: comp.lang.ada
> Well, there is a good reason to consider

this worst case scenario. I have seen
quick and dirty Ada lexers that try to
determine if a single quote starts a
character literal by looking ahead 2
character. As this scenario shows, this
approach is not guaranteed to work.

If I recall correctly, it's sufficient to
remember what the previous token was.
A character literal cannot follow an
identifier.

I think that might break down if an
implementation chooses to define an
attribute with a single-character name, but
I don't remember the details; presumably
no implementation will actually do this.
From: Jeffrey R. Carter

<spam.not.jrcarter@acm.not.spam.org>
Subject: Re: lexical ambiguity
Date: Mon, 05 Jun 2006 22:11:37 GMT
Newsgroups: comp.lang.ada
Right, so it must be either an attribute, a
qualified expression, or an error. An
attribute must be an identifier, so it can't
be an attribute, so it's either a qualified
expression or an error. In this case, it's an
error, since you can't have "…" as part of
an aggregate :)
From: M E Leypold <kontakt@m-e-

leypold.de>
Subject: Re: lexical ambiguity
Date: 06 Jun 2006 13:38:06 +0200
Newsgroups: comp.lang.ada
> Though the previous token shouldn't be

a reserved word, as in
if'('="-"("="('='=',',','=','))

Or
 return'a';

So now (question to all): Is the following
rule enough?
 - "'" is the beginning of a character
literal if the token before
 "'" has not been an identifier (reserved
words not counted as identifier in this
case).
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Subject: Re: lexical ambiguity
Date: 07 Jun 2006 10:49:31 -0400
Newsgroups: comp.lang.ada
Not quite:

function F(X: Integer) return String;
Length: constant Natural :=
F(123)'Length;
Y: access T'Class := …;
Z: access T2'Class := Y.all'Access;

For reserved words, I think you have to
study the grammar, and determine which
ones can precede a tick mark.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: Re: lexical ambiguity
Date: Wed, 7 Jun 2006 11:02:51 +0200
Newsgroups: comp.lang.ada
It does not differ from the case of +/-. In
the infix context, i.e. after an operand
(whatever it might be), ' is an infix
operation as well as +/-. In the prefix
context, where an operand is expected '
introduces a character literal (=operand),
+/- do an unary prefix operation.
Your rule is wrong: 'A' and 'B'. "and" is a
reserved word. Then of course "…"
comments should be parsed before.

160 Ada in Context

Volume 27, Number 3, September 2006 Ada User Journal

Which gives you a nice vicious circle
around ' " ' and " ' ". (:-))
The bottom line: parsing has state.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Subject: Re: lexical ambiguity
Date: 08 Jun 2006 17:30:53 -0400
Newsgroups: comp.lang.ada
To determine whether a single quote
begins a character literal versus a tick, it
is sufficient to look back one token.
Some tokens can be followed by a tick,
some by a char_lit, and some by neither.
None can be followed by both. It's fairly
straightforward to study the grammar and
determine which are which. Or look at the
GNAT sources.
It might be wise to include a sentinel
token at the start of the token stream
(Begin_File_Token or whatever), just in
case ' comes first (that would be illegal,
but you don't want to crash on it).
It can all be done in the lexer, with no
feedback from the parser — the lexer just
needs to keep track of the previous token,
and check it when it sees a single quote.
Lookahead will get you in trouble; look-
back is the better answer here.
> The ensuing discussions leaves me

more and more doubtful: Can lexical
analysis (grouping characters to tokens
and grammatical analysis (building a
parse tree from a token sequence) be
separated cleanly in Ada?

Yes. The look-back is localized to the
lexer (which is not "clean", but at least it's
localized (separated from the parser)).
> My first approach would have been (no

I'm not implementing an Ada parser,
but since compiler construction has
been a favorite subject of> me for a
number of years, I'm a bit curious about
the position of Ada in all this) — now:
My first approach would have been, to
write a lexer with a minimal amount of
state. It would shift into collect-string
state when encountering a '"' (I mean a
double quote :-) and into especially into
maybe-now-comes-a-character-literal
state at certain points. My first take was
that the "certain points" are always after
identifiers. In view of the case quoted
above (F(123)'Length) I could amend
this rule by adding ')' to the certain
points.

Right. But you have to study the
grammar to know which tokens have this
property. It's not that big of a deal.
> But now things become rather ad-hoc.

Well — as I said, that it's just curiosity
driving me, so I'm not going now to
examine the RM not I'm going to
reverse engineer GNAT to find out how
it is done in reality.
But if anyone in c.l.a. has the answer to
the following questions, I'd be eternally
grateful. Well, grateful, anyway. :-)
- Is it possible (for Ada parsers) to

separate lexical analysis and
grammatical analysis into separate
phases without tricky feedback from
parser to lexer, possibly by using a
lexer with a finite amount of states.

Yes. Just a tiny bit of state — the
previous token. The lexer writer needs to
understand the grammar, but the lexer
does not need to understand the parser.
> - What is the complete rule for

deciding when the next token might be
a character literal. Or is that
undecidable by just looking on past
input (i.e. using lexer state)?

It is decidable by looking at the previous
token. I forget the exact rule, but it can be
deduced easily from the grammar.
> BTW: The "evil" case

 if'('="-"("="('='=',',','=','))
is not parsed OK by syntax highlighting
in Emacs ada-mode (I wouldn't have
expected it, actually). The rule there
seems to be my incomplete rule without
the reserved words exception.
Everything falls magically into place if
a " " is inserted immediately after "if".

I'm not surprised. Emacs ada-mode uses
some ad-hoc technique that doesn't
always work properly. Anyway, Emacs is
trying to parse bits and pieces of things
without seeing the whole file, and that's a
whole 'nother thing. It is certainly easy to
parse the above "evil" thing properly, but
not necessarily if you start in the middle
of it.

Elaboration Issues
From: Alex R. Mosteo

<devnull@mailinator.com>
Subject: Elaboration worries
Date: Wed, 21 Jun 2006 14:33:06 +0200
Newsgroups: comp.lang.ada
I'm revisiting this topic in hope of
enlightenment by someone that really
understand the dark magic behind
elaboration. I've read the relevant sections
of the ARM but I can just grasp a more-
or-less depth understanding, of which
details fade away with time.
From past discussions and from reading
an old article of Mr. Dewar, my rule of
thumb is that you should
a) make your package Pure.
b) if not possible, make it Preelaborate.
c) if not possible, put an Elaborate_Body
in the spec.
I was happy following this rule, but just
recently I've started to experiment with
the -gnatwl switch, that warns when a
"Elaborate_All" is needed. I have two
questions related with this.
The first one is that I don't really grasp
why a "Elaborate_All" could be needed if
one strictly follows the tree rules above.
The second one is this: by my observation
of the GNAT warnings, it seems that the

requirement for "Elaborate_All" is a
"server side" one. However, I must use
the Elaborate_All in all "client side" units.
This is because contrarily to the abc) rule
pragmas, that can refer to the package
where they appear, Elaborate_All can not.
Example: Package A causes a warning for
Elaborate_All in all packages that use A. I
can't do nothing at A to remove the
warning, but to put an Elaborate_All(A)
in all client packages. This seems strange
to me.
A final note is that this second situation
happens to me mostly with generic units.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Elaboration worries
Date: Wed, 21 Jun 2006 15:34:12 -0500
Newsgroups: comp.lang.ada
Unfortunately, this rule of thumb is wrong
(you probably got it from reading the old
article). Adacore later discovered that
having Elaborate_Body in a spec does not
eliminate elaboration problems, and their
modern versions of GNAT don't make
any recommendation for this. We were
bitten rather badly by this with Claw
(which followed your list of
recommendations quite closely). I forget
the exact reason that Elaborate_Body
doesn't work, but the effect is that you
can't count on it to eliminate elaboration
problems completely.
Effectively, if you do much of anything at
elaboration time, you'll need
Elaborate_All in the clients for any
packages that aren't at least Preelaborate.
There is nothing whatsoever that can be
done for the service packages that
prevents that. (It's really a flaw in Ada,
but one that cannot be fixed without
radical surgery and incompatibilities —
not an option these days).
My personal rule of thumb is:
 (a) make your package Preelaborate if
possible (Pure is so limited that no real
packages ever qualify) — but this is
usually impossible because I/O and
Calendar aren't Preelaborate. Which
means that you can't trace or log a
Preelaborate package (well, there *is* one
way to do it, but it adds runtime
overhead);
 (b) if not (a), try to avoid doing
anything at elaboration time other than
use language-defined packages;
 (c) if not (b), then you have to add
Elaborate_All for anything used at
elaboration time.
(c) usually happens when you have
generic instantiations at the library level,
or you declare controlled objects at the
library level. The latter can be avoided,
the former obviously can't.
I've long since given up running code (the
'begin' part of a package body) at
elaboration time; there always seems to be

Ada in Context 161

Ada User Journal Volume 27, Number 3, September 2006

some reason that you have initialization
dependencies that aren't encoded in the
elaboration order (for instance, the need
to load parameters from the registry or a
configuration file before starting a
subsystem). I use appropriate
initialization routines (and often checks
for calls to other routines in the package
that the initialization has been properly
called).
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Elaboration worries
Date: Thu, 22 Jun 2006 18:06:02 -0500
Newsgroups: comp.lang.ada
> There are cases where (b) is quite

impractical; for example, when using
the Ravenscar profile, tasks cannot be
created dynamically and will be started
at elaboration time. Using a "start"
protected object can be used as a
workaround to limit their execution
until after the main program has been
launched.

Which is why I said "try to avoid", not
just "avoid". It's hard to avoid library-
level generic instantiations, for instance.
OTOH, I was under the impression that
most Ravenscar programs used what is
now known as the ["Sequential"]
elaboration policy (see H.6 in the Ada
2005 RM). That prevents tasks from
being started until elaboration of library
units is finished. So the problem is less
that you have to do things at elaboration
time in Ravenscar, and more that
Ravenscar is incompatible with the
traditional Ada elaboration model.
From: Matthew Heaney

<matthewjheaney@earthlink.net>
Subject: Re: Elaboration worries
Date: Thu, 22 Jun 2006 02:24:24 GMT
Newsgroups: comp.lang.ada
[…] you need to pragma Elaborate_All
whenever you do an instantiation, e.g.

with GP;
pragma Elaborate_All (GP);

package Q is
 pragma Preelaborate;
 -- or whatever

 package P is new GP (…);
 …
end Q;
with GR;
pragma Elaborate_All (GR);
package body Q is
 package R is new GR (…);
 …
end Q;

The Charles library and the GNAT
implementation of the standard container
library are implemented like that, with an
Elaborate_All on the generic package
being instantiated.

Note that I don't usually bother using
pragma Elaborate_Body unless I need to
either force a body for a spec that
otherwise wouldn't require a body, or
because the body has state. In the latter
case you want to ensure that the package
state is fully elaborated before any
operations in that package are called (by
some other package during its own
elaboration).
Of course if, during elaboration of a
package, the package calls an operation in
some other package, then the package
must Elaborate_All on the called package.
Normally you want pragma
Elaborate_All, but pragma Elaborate is
still useful occasionally, when elaborating
packages with mutual dependencies.
From: Alex R. Mosteo

<devnull@mailinator.com>
Subject: Re: Elaboration worries
Date: Thu, 22 Jun 2006 18:25:15 +0200
Newsgroups: comp.lang.ada
For the record, I've found this link a
interesting read in relation with this topic:
http://www.ada-auth.org/cgi-
bin/cvsweb.cgi/AIs/AI-
00366.TXT?rev=1.19
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Subject: Re: Elaboration worries
Date: 21 Jun 2006 19:12:41 -0400
Newsgroups: comp.lang.ada
I have put debug output code in Pure and
Preelab packages by "cheating". Like this:
write a simple I/O package (I like to avoid
the complexity of Text_IO). Use pragma
Export(Ada) on all of its procedures.
Then write another package that declares
all the same procedures, with pragma
Import(Ada), and put pragma Pure in that.
This is cheating, so I only do it for
temporary debugging output.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Elaboration worries
Date: Thu, 22 Jun 2006 18:09:50 -0500
Newsgroups: comp.lang.ada
True, you can leave the language if you
like, or lie to the compiler (I guess you'd
say what you are doing is the latter; I
would call it the former), but I was
thinking of ways that don't require such
underhandedness and can be used in
production code.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Elaboration worries
Date: Thu, 22 Jun 2006 18:31:18 -0500
Newsgroups: comp.lang.ada
> I'm also interested in the "cheating" for

I/O, since this seems really a weak spot.
Any other cheats besides the one
mentioned by Mr.Duff?

Well, I don't cheat, rather I pass in the
logging routines to the Preelaborated

packages. (This will also work for Pure in
Ada 2005.)
First, I declare a logging access type:

type Logger_Access is access
 procedure (Message : in String);
 -- Write a line to the log (if any).

And then all of the routines that need to
do logging including a Logger parameter:

Logger : in Logger_Access := null

If Logger is null, nothing is written.
Logger_Access is defined so that the
profile matches Ada.Text_IO.Put_Line
for unit debugging, and it matches the
profile of the logging routines that we
usually use.
Now, you do have to pass this through all
of the calls inside of Preelaborated
packages. Once you get to a normal
package, you can just provide the
appropriate logger routine:

…
Logger =>
 Ada.Text_IO.Put_Line'Access);

And this provides a way to access
"normal" stuff from Preelaborated
packages. Of course, it only works if the
number of such things is rather limited.
I should point out that I started using this
because I had a need to use different
logging techniques in different programs
that depended on the same shared library.
The fact that it let some of the libraries be
Preelaborated was a bonus.

Debug and Conditional
Compilation
From: Guillaume Portail

<guillaume.portail@bigfoot.com>
Subject: Conditional compilation of debug

traces without cpp
Date: Tue, 04 Jul 2006 20:06:51 +0200
Newsgroups: comp.lang.ada
I have pieces of code like this:

package Debug is
 procedure Put_Line (M : in String);
end;
package body Debug is
 Enabled : constant Boolean :=
 False;
 procedure Put_Line (M : in String)
 is
 begin
 if Enabled then
 Real_Put_Line (M);
 end if;
 end;
end;

162 Ada in Context

Volume 27, Number 3, September 2006 Ada User Journal

Many other units, many calls like:

…
Debug.Put_Line ("PC was here, A =
 ", A_Type'Image(A)); -- (1)
…

Debug.Enabled is a compile time
constant, so with a bit of -O3 pragma
Inline or other (-gnatN), the binary
implementation of Debug.Put_Line will
be null. But never will be the elaboration
of the many calls to it. I guess that the
elaboration of theses calls is always
required by the language, think of :

Debug.Put_Line ("PC was here, A = "
 & A_Function_Call(12)); -- (2)
Debug.Put_Line ("PC was here, A = "
 & A_Function_Call(1/0)); -- (3)

For my needs, A_Function_Call is only
for debugging purposes here, it has no
side effects (it is a function).
How may I organize the code to obtain
the effect of having Debug.* calls being
nulls when Debug.Enabled is False?
For your information, this is easy using
cpp:
#if _DEBUG
#define DEBUG(x)
 real_put_line x

#else
#define DEBUG(x) 0
….
 if (foo)
 {
 a = something;
 DEBUG(("PC was here,
 A=%d", b()+a));
 }
 else
 DEBUG(("no foo"));
….
And I would like not to use cpp or
gnatprep, etc.
From: Guillaume Portail

<guillaume.portail@bigfoot.com>
Subject: Re: Conditional compilation of

debug traces without cpp
Date: Tue, 04 Jul 2006 21:14:26 +0200
Newsgroups: comp.lang.ada
> You could place all calls to

Debug.Put_Line inside a pragma
Debug. These are enabled only if you
pass -gnata to GNAT; they are off by
default.

It helps, but it is GNAT specific. I would
prefer a pure Ada solution.
From: Matthew Goulet

<blueherring0@gmail.com>
Subject: Re: Conditional compilation of

debug traces without cpp
Date: 4 Jul 2006 20:10:31 -0700
Newsgroups: comp.lang.ada
The reference manual specifies unknown
pragmas should be ignored, so if
development is done on GNAT pragma

Debug could be used, and they'd be
ignored on other compilers (sort of the
desired effect). Not exactly compiler
agnostic, but a thought.
From: Björn Persson

<rombo.bjorn.persson@sverige.nu>
Subject: Re: Conditional compilation of

debug traces without cpp
Date: Tue, 04 Jul 2006 21:39:33 GMT
Newsgroups: comp.lang.ada
Well, there is always the good old if
statement:

with Ada.Text_IO; use Ada.Text_IO;
procedure Debug_Demo is
 Debug_Enabled: constant
 Boolean := false;
begin
 if Debug_Enabled then
 Put_Line("PC was here, A = " &
 Integer'Image(12));
 end if;
end Debug_Demo;

When Debug_Enabled is false, the
compiler (at least Gnat) will remove the if
statement completely.
From: Guillaume Portail

<guillaume.portail@bigfoot.com>
Subject: Re: Conditional compilation of

debug traces without cpp
Date: Tue, 04 Jul 2006 23:43:34 +0200
Newsgroups: comp.lang.ada
This complicates the code (the McCabe
numbers), it is better to have the if
statement encapsulated.
From: Gautier <gautier@fakeaddress.nil>
Subject: Re: Conditional compilation of

debug traces without cpp
Date: Tue, 04 Jul 2006 22:24:44 +0200
Newsgroups: comp.lang.ada
At least this works, with GNAT 3.15p and
ObjectAda 7.2.2 SE:

package Debug is
 procedure Put_Line (M : in String);
 pragma Inline(Put_Line);
 procedure Put_Line (M : in String;
 I: Integer);
 pragma Inline(Put_Line);
end Debug;
with Ada.Text_IO;
package body Debug is
 Enabled : constant Boolean :=
 False;
 procedure Put_Line (M : in String)
 is
 begin
 if Enabled then
 Ada.Text_IO.Put_Line (M);
 end if;
 end;
 procedure Put_Line (M : in String;
 I: Integer) is
 begin

 if Enabled then
 Ada.Text_IO.Put_Line
 (M & Integer'Image(I));
 end if;
 end;
end Debug;
with Debug, Ada.Text_IO;
procedure Test_debug is
begin
 for I in 1..1234 loop
 Ada.Text_IO.Put_Line("[a]");
 Debug.Put_Line
 ("(0) PC was here"); -- (0)
 Debug.Put_Line
 ("(1) PC was here,
 I = ", I); -- (1)
 Ada.Text_IO.Put_Line("[b]");
 end loop;
end;

gcc -O2 -S -gnatpN test_debug.adb
[…] When you have concatenations
and/or a function call in the parameter it
doesn't work with these compilers —
maybe, as you guess, they can't skip the
computation of parameters. Or they may,
or newer versions do. Perhaps it is a
question of having a pragma Pure for the
function.
From: Simon Wright

<simon@pushface.org>
Subject: Re: Conditional compilation of

debug traces without cpp
Date: Tue, 04 Jul 2006 21:54:05 +0100
Newsgroups: comp.lang.ada
> Debug.Enabled is a compile time

constant, so with a bit of -O3 pragma
Inline or other (-gnatN), the binary
implementation of Debug.Put_Line will
be null.

I don't think you need more than -O2 for
this magic to work. But it's a promise
made by GNAT, other compilers may
behave differently.
You could check out gnatprep, I suppose.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Subject: Re: Conditional compilation of

debug traces without cpp
Date: Wed, 05 Jul 2006 15:03:42 +0200
Organization: Adalog
Newsgroups: comp.lang.ada
Small plug: have a look at package Debug
from Adalog's components page
(http://www.adalog.fr/compo2.htm), it
does this in a very sophisticated way…
As for your question, name you package
Debug_Effective. Then write another
package (Debug_Dummy) with the same
specification, and where all procedures
are null. Then simply compile:

with Debug_Effective;
package Debug
 renames Debug_Effective;

Ada in Context 163

Ada User Journal Volume 27, Number 3, September 2006

or:

with Debug_Dummy;
package Debug
 renames Debug_Dummy;

Switching packages is then not more
difficult than changing a #define…
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Subject: Re: Conditional compilation of

debug traces without cpp
Date: Thu, 06 Jul 2006 09:59:55 +0200
Organization: Adalog
Newsgroups: comp.lang.ada
Forgot to mention: make the fake debug
pure, to avoid any elaboration.[…]
Therefore yes, the *execution* of the call
will always involve the *evaluation* of
the parameters (unless the compiler can
prove that this evaluation has no side-
effects — like a call to a function declared
in a pure package).

Ripple effect
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Subject: Re: Ripple effect
Date: 04 Sep 2006 09:52:01 -0400
Newsgroups: comp.lang.ada
[…]
> I recall that during the Ada-9X revision

process, it was proposed that primitive
operators of a type have this kind of
visibility. IIRC, one of the reasons that
this was not accepted was that it would
lead to Ripple effects: adding or
removing a unit from a context clause
could change one legal program to a
different legal program.

No, I think you misunderstand the "Ripple
Effect". As I understand it, the Ripple
Effect means that adding/removing a
with_clause can cause compilation units
that do not depend DIRECTLY on the
modified thing to become illegal. For
example, suppose C with's B and B with's
A. Can a with_clause on A affect the
legality of C? If so, there's a Ripple
Effect.
There's no issue of changing the meaning
from one legal program to another, as can
happen with the Beaujolais Effect.
Therefore, the Ripple Effect is (IMHO)
merely an annoyance, rather than a bug-
causing language-design flaw.
I believe Tucker coined the term "Ripple
Effect", and that one is supposed to
imagine the addition of a with_clause
rippling through the transitive closure of
semantic dependences. Also, it's a joke
because Ripple is a wine — that's the
main similarity to Beaujolais Effect. I've
never tasted Ripple, but I think it's
considered to be of somewhat lower
quality than Beaujolais. ;-)
Anyway, to answer Jeff's question: I
think with_clauses should be transitive in

the first place, so that the Ripple Effect is
not an issue.
One problem with Ada 83 is that
with_clauses cannot appear inside the
private part. I think that's the root of the
idea that transitive with_clauses are
somehow evil.
[See also “The Beaujolais Effect
Revisited” in AUJ 23-1 (Mar 2002),
pp.38–39. —su]
From: Jeffrey R. Carter

<jrcarter@acm.org>
Subject: Re: Ripple effect
Date: Mon, 04 Sep 2006 15:15:05 GMT
Newsgroups: comp.lang.ada
'In brief, the (undesirable) Ripple effect
was related to whether the legality of a
compilation unit could be affected by
adding or removing an otherwise
unneeded "with" clause on some
compilation unit on which the unit
depended, directly or indirectly.' (Tucker
Taft)
So it's not a with on C, as I thought, and
can be a with on B, which you exclude. It
also refers only to unneeded withs. So, if
B withs A unnecessarily, that could cause
a Ripple effect.

Teaching a Specification
Language
From: Colin Paul Gloster

<Colin_Paul_Gloster@ACM.org>
Subject: Re: Generating Ada from UML on

Linux
Date: Wed, 9 Aug 2006 13:01:18 +0200
Newsgroups: comp.lang.ada
> I have to teach a course on software

design with UML [..]
Perhaps you should refuse to teach an
inadequate modeling language which is
not a formal specification language.
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Subject: Re: Generating Ada from UML on

Linux
Date: Thu, 10 Aug 2006 12:59:44 +0200
Newsgroups: comp.lang.ada
Perhaps I should, but initially I am just
refusing to teach the students Java. And
they will of course also be explained the
limitations of UML.
Which formal specification language
would you suggest for teaching
undergraduate students? I am open to
suggestions. Formal specifications is not
exactly my primary expertice. I can
easily see that UML is much too weak,
compared to what we can implement in
Ada, but I am not aware of any more
practical choices.
From: Colin Paul Gloster

<Colin_Paul_Gloster@ACM.org>
Subject: Re: Generating Ada from UML on

Linux
Date: Thu, 10 Aug 2006 19:06:54 +0200
Newsgroups: comp.lang.ada

I am not sure which to suggest, a number
of them also have weaknesses and I do
not know all of the good specification
languages. VDM (specifically VDM-SL)
can be represented in ASCII but it has no
reuse capability […] Z has this basic
capability but is not expressible in ASCII
(some people write it in LaTeX but
LaTeX can easily need several runs
before all interdependant references are
resolved but still produces output which if
not thoroughly checked could be mistaken
for a finished document). Also, Z does not
have any built-in temporal facilities.
Being an Ada course, the SPARK
specification language might not be
irrelevant.
From: Stephen Leake

<stephen_leake@acm.org>
Date: Sat, 12 Aug 2006 08:07:05 -0400
Subject: Re: Generating Ada from UML on

Linux
Newsgroups: comp.lang.ada
In no sense is UML a "formal
specification language"!
Ada is a better specification language than
UML, if you are looking for well-defined
execution semantics.
As far as I can tell, the only advantage
UML has over Ada is that you can write it
with a mouse — and personally, I
consider that a disadvantage :).
I understand there are good tools for Z
(much better than just LaTeX), but I have
not used them.
From: Jacob Sparre Andersen

sparre@nbi.dk
 Subject: RSL (Was: Generating Ada from

UML on Linux)
Date: Tue, 15 Aug 2006 16:27:37 +0200
Newsgroups: comp.lang.ada
I took a look at the table of contents for
Dines Bjørner's "Software Engineering:
Abstraction and Modelling". It looked
much too theoretical for my students. I
have no intention of teaching them the
complete theoretical foundations of RSL,
which seems to be the aim with Dines
Bjørner's book. Are there some more
practically oriented introductions to RSL?
From: Mark Lorenzen

<mark.lorenzen@surfpost.dk>
Date: 16 Aug 2006 02:10:44 +0100
Subject: Re: RSL (Was: Generating Ada

from UML on Linux)
Newsgroups: comp.lang.ada
[…] Dines usually focuses on practical
applications when writing text books.
There are "pure" RSL books available, but
they are definitely more theoretical,
although still accessible.
There is of course always the problem of
tool support (or lack of) when one wants
to use RSL.

164 Ada in Context

Volume 27, Number 3, September 2006 Ada User Journal

Bug Reports
From: M E Leypold <kontakt@m-e-

leypold.de>
Date: 21 Jun 2006 14:29:59 +0200
Subject: Re: Compiler Bug or what I'm

doing wrong?
Newsgroups: comp.lang.ada
> It would be nice if you could write a

minimal test case that reproduces the
problem. Yes, it takes time. I cannot do
that for you, for various

I've already done that (it took me 10 hours
so far to isolate the problem from a larger
program): The original program was
much larger. I'll be trying to even strip the
example further, but the problem with the
bug seems to be that it's a Heisenbug
which vanishes when you delete some
fields in the datastructure, then turns up
again if you delete more fields and so on.
The malloc() implementation of libc
which the GNAT runtime uses is
unchecked so obviously one gets
sometimes away when freeing invalid
pointers and (as we know from C
programming).
Whatever: I'll try to produce an even
smaller test case.
From: James Dennett <jdennett@acm.org>
Subject: Re: Compiler Bug or what I'm

doing wrong?
Date: Wed, 21 Jun 2006 19:07:31 -0700
Newsgroups: comp.lang.ada
> Indeed, for me the most frustrating part

of bug reporting is obtaining a
sufficiently small test case. I usually hit
bugs in a large project I'm involved.
Once you start to chop off, you know
that the bug will disappear along the
way. When you're not even sure if
you're the culprit and not the compiler,
the frustration is even bigger.

The "delta" tool can largely automate the
task of reducing a test case to something
closer to minimal, though some manual
intervention helps:
http://gcc.gnu.org/wiki/A_guide_to_testca
se_reduction
I've used it only a couple of times, but it
saved me a *lot* of effort. (On the other
hand, it might need tweaking to support
Ada; I don't know, I used it on C++ code.)
[See also http://delta.tigris.org/ for more
information about this tool --su]
From: Simon Wright

<simon@pushface.org>
Subject: Re: Compiler Bug or what I'm

doing wrong?
Date: Thu, 22 Jun 2006 20:10:40 +0100
Newsgroups: comp.lang.ada
> It's a pity that GNAT (at least 3.15p?

I'm repeating myself …), doesn't have
some kind of community support side
where things as these could be
collected. Or is there such a site?

What about the GNU Ada wiki at
Sourceforge?
http://gnuada.sourceforge.net/
From: Simon Wright

<simon@pushface.org>
Subject: Re: Compiler Bug or what I'm

doing wrong?
Date: Sat, 24 Jun 2006 21:33:10 +0100
Newsgroups: comp.lang.ada
> After inspecting more carefully the

gnuada site, I believe that the bug
tracker is for their installation packages.
Maybe the 3rd party bugs section could
serve.

I would have thought something starting
at the GNATP page (== 3.15p) would be
appropriate for that compiler, similar for
others. This is at
http://gnuada.sourceforge.net/pmwiki.php
/Packages/GNATP reached from the
Packages section of the first page.
From: M E Leypold <kontakt@m-e-

leypold.de>
Date: 26 Jun 2006 13:16:24 +0200
Subject: Re: Compiler Bug or what I'm

doing wrong?
Newsgroups: comp.lang.ada
> I would suggest the Debian bug tracker

instead; not because I'm trying to
promote Debian, but because the
Debian BTS already has 200 bugs filed
in it or so.

I'll try to file the bug in both places.
IMHO gnuada.sourceforge.net would be
the logical place for tracking bugs in
community supported Ada software, but
since nobody has reported anything there
yet, one can hardly expect anyone looking
there for solutions.
> The community will be better served by

one central bug database than by
several disjoint ones.

I completely agree. I think the situation is
a bit confused presently because of the
transition between p-releases and GCC
GNAT: For GCC gnat the upstream
source for the Debian releases would
come from http://gcc.gnu.org/ and their
BTS would be the first to report bugs to.
Debian BTS would either mostly refer to
bugs in the GCC BTS or to packaging
defects.
[…] I think the situation wrt to where to
report bugs will become more clearly
defined when the transition to gccada has
been done.
> I specifically encourage anyone to

submit bugs there, even if they do not
use Debian. Similarly, my patches that
fix several bugs in 3.15p are available
to all.

Yes, I already perceived that Debian is the
only open platform where I'd say that
Gnat is actually supported in sense.
> The only reason why I started using the

Debian BTS back in 2003 was because

no other public database existed at that
time. So, I claim precedence :)

You'll get it.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: [Ada in Debian] GtkAda and

GNAT versions
Date: 26 Jun 2006 05:13:58 -0700
Newsgroups: comp.lang.ada
The Debian documentation says you
should report bugs to the Debian BTS,
and nowhere else. The package
maintainer then decides whether the bug
comes from the packaging, or from
upstream. In the case of gnat 3.15p, there
simply is no upstream bug database. In
the case of gnat-4.1 (the default in Etch),
we use GCC's bugzilla as the upstream
database.
[…] People not using Debian are
welcome to reports bugs, but I'd ask them
to state exactly what platform they're
using, as with any bug report, but also to
check that their bug is not already solved
in Debian.

Calling a System Command
From: Jim Maureen Rogers

<jimmaureenrogers@worldnet.att.net>
Subject: Re: Is there some way of calling a

system command?
Date: 11 Jun 2006 06:19:12 -0700
Newsgroups: comp.lang.ada
> I am a newbie Ada-programmer and

need help with this topic. In C one can
launch a system command, for instance
through the following function.
 system("ls ");
or in Java
 exec("ls");
Is there some similar way of calling a
system command in Ada?

The easiest way is to simply call the C
system command. The example below
was run on my Windows XP system.

with Interfaces.C.Strings;
use Interfaces.C.Strings;
procedure System_Example is
 function System_Call
 (Command : Chars_Ptr) return
 Interfaces.C.Int;
 pragma Import
 (Convention => C,
 Entity => System_Call,
 External_Name => "system");
 Rc : Interfaces.C.Int;
begin
 Rc :=
 System_Call(New_String("dir"));
end System_Example;

The important part of the example is the
creation of a function specification I have
named System_Call. That function
specification takes a parameter of
Chars_Ptr, which corresponds to a C char

Ada in Context 165

Ada User Journal Volume 27, Number 3, September 2006

*. The function specification is used as
the Ada interface to the C system call.
The compiler is notified of that
association through the pragma Import.
That pragma causes the compiler to link
the C system command and call it
whenever System_Call is called in the
Ada code.

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Subject: Re: Is there some way of calling a
system command?

Date: 15 Jun 2006 07:11:10 -0700
Newsgroups: comp.lang.ada
> I am learning Ada and do not know C. I

tried your approach to call an other
program from Ada and it worked,

except for one problem: the calling
program will wait for the return
parameter (Rc in your example) and
thus it will freeze until the other one is
closed. Could I do something similar
but withour the return parameter?

See
GNAT.OS_Lib.Non_Blocking_Spawn,
GNAT.Expect.Non_Blocking_Spawn.

Conference Calendar 167

Ada User Journal Volume 27, Number 3, September 2006

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺denote events with close relation to Ada.
The information in this section is extracted from the on-line Conference announcements for the international Ada community
at: http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2006

October 01-06 9th International Conference on Model-Driven Engineering Languages and Systems
(MoDELS'2006), Genoa, Italy. Topics include: Model-driven engineering methodologies, approaches,
languages and tools; Domain-specific modeling languages; Programming language and meta-
programming support for linking models to code; Modeling languages and tools; Semantics of modeling
languages; Modeling and analysis of real-time, embedded, and distributed systems; etc.

☺ October 02-04 25th IEEE International Symposium on Reliable Distributed Systems (SRDS'2006), Leeds, UK.
Topics include: reliability, availability, safety, security, and real time; Security and high-confidence
systems, Distributed objects and middleware systems, Formal methods and foundations for dependable
distributed computing, Analytical or experimental evaluations of dependable distributed systems, etc.

October 02-06 20th Brazilian Symposium on Software Engineering (SBES'2006), Florianópolis – Brazil. Topics
include: Object-oriented Development; Component-based Software Engineering; Distributed Software
Engineering; Empirical Software Engineering and Metrics; Model Driven Development; Multi-
paradigm and Multi-language Modelling and Programming; Object-oriented Techniques; Software
Economics; Software Engineering for Embedded and Real-time Software; Software Engineering Tools
and Environments; Software Maintenance and Reverse Engineering; Software Quality; Software Reuse;
Software Safety, Dependability, and Reliability; Software Security; Software Verification, Validation
and Inspection; etc

October 11-13 European Systems and Software Process Improvement and Innovation Conference
(EuroSPI'2006), Joensuu, Finland.

☺ October 12-13 Automotive - Safety & Security 2006, Stuttgart, Germany. Theme: "Sicherheit und Zuverlässigkeit für
automobile Informationstechnik". Organized by Gesellschaft für Informatik (GI), etc., in cooperation
with Ada-Deutschland and Fachgruppe "Ada", etc. Includes keynote by Prof. Michael Gonzales (Univ.
de Cantabria, Spain) on "Predictable Response Times in Event-driven Real-time Systems". Topics
include (in German): Zuverlässigkeit und Sicherheit für fahrbetriebs-kritische Software und IT-Systeme;
Sichere Entwicklung, Aktualisierung und Freischaltung; Normen und Standardisierungsbestrebungen;
Entwicklungsbegleitende Evaluation und Zertifizierung; etc.

October 16-20 10th International IEEE Enterprise Distributed Object Computing Conference (EDOC'2006), Hong
Kong.

☺ October 18-20 IEEE Symposium on Industrial Embedded Systems (IES'2006), Antibes, Juan les Pins, Cote d'Azur,
France. Topics include: recent developments, deployments, technology trends and research results, as
well as initiatives related to embedded systems and their applications in a variety of industrial
environments.

☺ October 22 Workshop on Linguistic Support for Modern Operating Systems (PLOS'2006), San Jose,
California, USA. Topics include: type-safe languages for OS; language-based security and OSs;
language support for OS verification, testing, and debugging; etc.

☺ October 22-26 21st Annual Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA'2006), Portland, Oregon, USA. Topics include: diverse disciplines related to object
technology.

October 22-26 5th International Conference on Generative Programming and Component Engineering
(GPCE'2006), Portland, Oregon, USA. Co-located with OOPSLA'2006. Topics include: Generative

168 Conference Calendar

Volume 27, Number 3, September 2006 Ada User Journal

techniques for Product-line architectures; Distributed, real-time and embedded systems; Model-driven
development and architecture; Component-based software engineering (Reuse, distributed platforms and
middleware, distributed systems, evolution, patterns, development methods, deployment and
configuration techniques, and formal methods); Integration of generative and component-based
approaches; Industrial applications; etc.

October 23 2nd International Workshop on Code Based Software Security Assessments (CoBaSSA'2006),
Benevento, Italy. Topics include: Mitigating stack- or heap-based buffer overflow attacks; Race
condition detection; Case studies in analyzing software vulnerability; Best practices for secure coding;
etc. Deadline for early registration: October 7, 2006.

October 23-26 4th International Symposium on Automated Technology for Verification and Analysis
(ATVA'2006), Beijing, China. Topics include: theory useful for providing designers with automated
support for obtaining correct software or hardware systems, applications of theory in engineering
methods and particular domains and handling of practical problems occurring in tools, etc.

October 23-27 13th Working Conference on Reverse Engineering (WCRE'2006), Benevento, Italy. Theme:
"Empirically Assessing Reverse Engineering Techniques and Tools". Topics include: Empirical studies
in reverse engineering; De-compilation and binary translation; Re-documenting legacy systems; Reverse
engineering tool support; Mining software repositories; Program analysis and slicing; Software
architecture recovery; Program transformation and re-factoring; etc.

October 25-27 5th International Conference on Software Methodologies Tools, and Techniques (SoMeT'2006),
Quebec, Canada. Topics include: Software methodologies, and tools for robust, reliable, non-fragile
software design; Automatic software generation versus reuse, and legacy systems, source code analysis
and manipulation; Software evolution techniques; Formal methods for software design; Static and
dynamic analysis, and software maintenance; Formal techniques for software representation, software
testing and validation; Software reliability, and software diagnosis systems; etc.

October 26-28 6th International Conference on Quality Software (QSIC'2006), Beijing, China. Topics include:
Software quality (reliability, safety and security, ...); Methods and tools; Evaluation of software products
and components (static and dynamic analysis, validation and verification); Formal methods (program
analysis, model checking, formal process models, ...); Applications (component-based systems,
distributed systems, embedded systems, enterprise applications, safety critical systems, ...); etc.

☺ Oct. 29-Nov. 03 8th International Symposium on Distributed Objects and Applications (DOA'2006), Montpellier,
France. Topics include: Application case studies of distribution technologies; Component-based
software development; Design patterns for distributed systems; Integrated development environments;
Middleware for distributed object computing; Real-time solutions for distributed objects; Technologies
for reliability and fault-tolerance; Testing and validation of distributed object systems; etc.

Oct. 30-Nov. 03 8th International Conference on Formal Engineering Methods (ICFEM'2006), Macao SAR, China.
Topics include: Abstraction and refinement; Tool development and integration for formal system
design, analysis and verification; Integration of formal verification tools in CASE tools; Techniques for
specification, verification and validation; Techniques and case studies for correctness by construction;
Experiments of verified systems; Application in real-time, hybrid and critical systems; Emerging
technologies; etc.

November 01-03 21st International Symposium on Computer and Information Sciences (ISCIS'2006), Istanbul,
Turkey. Topics include: Computer Architecture and Embedded Systems, Parallel and Distributed
Computing, Security & Cryptography, Software Engineering, Theoretical Computer Science, etc.

November 08-10 4th Asian Symposium on Programming Languages and Systems (APLAS'2006), Sydney, Australia.
Topics include: both foundational and practical issues in programming languages and systems; type
systems, language design; program analysis, optimization; software security, safety, verification;
compiler systems, interpreters; programming tools and environments; etc.

♦ Nov. 12-16 2006 ACM SIGAda Annual International Conference (SIGAda'2006),
Albuquerque, New Mexico, USA. Sponsored by ACM SIGAda, in cooperation with
SIGAPP, SIGCAS, SIGCSE, SIGPLAN, SIGSOFT, Ada-Europe, and Ada Resource
Association (ACM approval pending, Cooperation approvals pending.). Topics include:
reliability needs and styles; safety and high integrity issues; analysis, testing, and

Conference Calendar 169

Ada User Journal Volume 27, Number 3, September 2006

validation; standards; use of ASIS for new Ada tool development; mixed-language
development; Ada in XML and .NET environments; quality assurance; Ada & software
engineering education; commercial Ada applications: what Ada means to the bottom
line; static and dynamic code analysis; software architecture and design; etc. Keynote
presentations: Judith Klein, Lockheed Martin, "Use of Ada in Lockheed Martin for Air
Traffic Management and Beyond"; Robert Dewar, AdaCore, "Ada 2005 & High
Integrity Systems"; Tucker Taft, SofCheck, "Why You Should be Using Ada 2005
now!" Deadline for early registration: October 15, 2006.

November 20-24 3rd International Colloquium on Theoretical Aspects of Computing (ICTAC'2006),
Gammarth/Tunis, Tunisia. Topics include: principles and semantics of programming languages;
software architectures and their description languages; software specification, refinement, and
verification; model checking and theorem proving; models of object and component systems; integration
of formal and engineering methods; models of concurrency; theory of parallel and distributed
computing; real-time and embedded systems; etc.

☺ Nov. 30-Dec. 01 National Workshop on High Confidence Software Platforms for Cyber-Physical Systems:
Research Needs and Roadmap, Alexandria, Virginia, USA. Topics include: producing distributed,
real-time, and embedded platforms and applications, where computer processors control physical,
chemical, or biological processes or devices; R&D strategies and tactics for restructuring the current
real-time operating system, virtual machine, and distributed computing middleware platforms into a
sound and assured real-time technology base for building future cyber-physical systems. Deadline for
submissions: October 18, 2006, 2006

☺ December 01-04 4th International Symposium on Parallel and Distributed Processing and Applications (ISPA'2006),
Sorrento, Italy. Topics include: Parallel/distributed system architectures; Tools and environments for
software development; Parallel/distributed algorithms; Distributed systems and applications; Reliability,
fault-tolerance, and security; etc. Includes "Languages and Algorithms" and "Software and
Applications" Tracks.

☺ December 04-07 7th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2006), Taipei, Taiwan. Topics include: Parallel/distributed architectures;
Reliability, and fault-tolerance; Formal methods and programming languages; Parallelizing compilers;
Component-based and OO Technology; Tools and environments for software development;
Parallel/distributed algorithms; Task mapping and job scheduling; etc.

December 05-07 19th International Conference on Software & Systems Engineering and their Applications
(ICSSEA'2006), Paris, France. Topics include: distributed systems, real-time systems, embedded
systems, interoperability, evolution, object-orientation, formal methods, validation, certification,
reliability, etc.

☺ December 05-08 27th IEEE Real-Time Systems Symposium (RTSS'2006), Rio de Janeiro, Brazil. Topics include: all
aspects of real-time systems design, analysis, implementation, evaluation, and case-studies.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

December 15 BCS-FACS Christmas Meeting 2006: Teaching Formal Methods Workshop, London, UK. Topics
include: how to motivate the study of formal methods; linking formal methods and software
development; tools for teaching formal methods; etc. Deadline for submissions: October 20, 2006.

 2007

January 03-06 Software Technology Track of the 40th Hawaii International Conference on System Sciences

(HICSS-40), Waikoloa, Big Island, Hawaii, USA. Includes mini-tracks on: Software Engineering
Decision Support (topics include: Design decisions; Reuse decisions; Maintenance decisions; Selection
of software tool, methods or techniques; ...); etc.

January 15-16 ACM SIGPLAN 2007 Symposium on Partial Evaluation and Program Manipulation
(PEPM'2007), Nice, France. Co-located with POPL'2007. Topics include: program manipulation, partial
evaluation, and program generation. PEPM focuses on techniques, theory, tools, and applications of

170 Conference Calendar

Volume 27, Number 3, September 2006 Ada User Journal

analysis and manipulation of programs. Deadline for submissions: October 18, 2006 (abstracts), October
20, 2006 (papers).

☺ January 16 ACM SIGPLAN Workshop on Types in Language Design and Implementation (TLDI'2007), Nice,
France. Topics include: Typed intermediate languages and type-directed compilation; Type-based
language support for safety and security; Types for interoperability; Type-based program analysis,
transformation, and optimization; Dependent types and type-based proof assistants; Types for security
protocols, concurrency, and distributed computing; Type based specifications of data structures and
program invariants; Type-based memory management; Proof-carrying code and certifying compilation;
etc.

January 17-19 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL'2007), Nice, France. Topics include: fundamental principles and important innovations in the
design, definition, analysis, transformation, implementation and verification of programming languages,
programming systems, and programming abstractions.

January 20 2007 International Workshop on Foundations and Developments of Object-Oriented Languages
(FOOL/WOOD'2007), Nice, France. Topics include: language semantics, type systems, program
analysis and verification, concurrent and distributed languages, language-based security issues, etc.
Deadline for submissions: October 6, 2006

☺ February 07-09 15th Euromicro Conference on Parallel, Distributed and Network-based Processing (PDP'2006),
Naples, Italy. Topics include: Advanced Applications (scientific and engineering applications, multi-
disciplinary and multi-component applications, real-time applications, ...); Models and Tools for
Programming Environments; Distributed Systems; Languages, Compilers and Runtime Support Systems
(task and data parallel languages, object-oriented languages, dependability issues, ...); Parallel Computer
Systems.

March 07-10 38th ACM Technical Symposium on Computer Science Education (SIGCSE'2007), Covington,
Kentucky, USA.

March 11-15 22nd ACM Symposium on Applied Computing (SAC'2007), Seoul, Korea.

☺ Mar. 11-15 Track on Object-Oriented Programming Languages and Systems (OOPS'2007). Topics
include: Programming abstractions; Advanced type mechanisms and type safety; Multi-
paradigm features; Language features in support of open systems; Program structuring,
modularity, generative programming; Distributed Objects and Concurrency;
Middleware; Heterogeneity and Interoperability; Applications of Distributed Object
Computing; etc.

☺ Mar. 11-15 Track on Software Engineering (SE'2007). Theme: "Developing Trustworthy Software
Systems" Topics include: Trustworthy Software Systems Development; Software
Testing, Validation and Verification; Model-Driven Architecture and Interface Design;
Software Metrics, Cost Estimations and Benchmarking; Software Reuse and
Component-Based Development; Real-Time Embedded Systems; Software Reliability
Model and Implementation; Software Fault Tolerance and Software Availability;
Reengineering for Safety and Security; etc.

☺ March 21-23 2nd European Conference on Computer Systems (EuroSys'2007), Lisbon, Portugal. Topics include:
All areas of operating systems and distributed systems; Systems aspects of: Programming language
support, Parallel and concurrent computing, Dependable computing, Real-time and embedded
computing, Middleware, Security, ...; etc.

March 21-23 11th European Conference on Software Maintenance and Reengineering (CSMR'2007), Amsterdam,
the Netherlands. Theme: "Software Evolution in Complex Software Intensive Systems". Topics include:
software migration strategies and technologies, experience reports on maintenance and reengineering,
etc.

* Mar. 24-Apr. 01 13th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS'2007), Braga, Portugal. Part of ETAPS'2007. Topics include: rigorously based tools
and algorithms for the construction and analysis of systems; formal methods, software and hardware
verification, static analysis, programming languages, software engineering, real-time systems, etc.
Deadline for submissions: October 6, 2006 (abstracts), October 13, 2006 (papers).

Conference Calendar 171

Ada User Journal Volume 27, Number 3, September 2006

☺ March 26-30 21st IEEE International Parallel and Distributed Processing Symposium (IPDPS'2007), Long
Beach, California, USA. Topics include: Applications of parallel and distributed computing; Parallel
and distributed software, including parallel programming languages and compilers, runtime systems,
middleware, libraries, and programming environments and tools; etc. Deadline for submissions: October
9, 2006.

☺ Mar. 26-27 15th International Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS'2007). Topics include: Applications and tools; Distributed real-time and
embedded middleware; Soft real-time and mixed-critical systems; QoS based resource
management and real-time scheduling; Programming languages and environments;
Specification, modeling, and analysis of real-time systems; etc. Deadline for
submissions: November 6, 2006.

☺ Mar. 26-30: Workshop on Tools, Operating Systems and Programming Models for Developing
Reliable Systems (TOPMoDelS'2007). Topics include: Tools for recovery in parallel
and distributed systems; Programming models and primitives for reliable distributed
computing; Compilers for languages with primitives for reliability and recoverability;
Compilers for domain specific languages with applications in distributed environments;
Models for distributed systems; etc. Deadline for submissions: November 6, 2006.

March 27-29 13th Conference on Languages and Models with Objects (LMO'2007), Toulouse, France. Deadline
for submissions: October 13, 2006 (abstracts), October 20, 2006 (papers).

♦ April 17-19 13th International Real-Time Ada Workshop (IRTAW-2007), Woodstock, VT,
USA. Topics include: early experiences in using Ada 2005 for the development of real-
time systems and applications; implementation approaches for the new real-time
features of Ada 2005; developing other real-time Ada profiles in addition to the
Ravenscar profile; implications to Ada of growing use of multiprocessors in
development of real-time systems; paradigms for using Ada 2005 for real-time
distributed systems; definition of specific patterns and libraries for real-time systems
development in Ada; how Ada relates to the certification of safety-critical and/or
security-critical real-time systems; current ISO reports related to real-time Ada and
new secondary standards or extensions; status of the Real-Time Specification for Java
and other languages for real-time systems development, and user experience with
current implementations and with issues of interoperability with Ada in embedded
real-time systems; lessons learned from industrial experience with Ada and the
Ravenscar Profile in actual real-time projects. Deadline for submissions: January 12,
2007 (position papers), March 16, 2007 (final paper).

April 25-27 Software & Systems Quality Conferences (SQC'2007), Duesseldorf, Germany. Deadline for
submissions: October 13, 2006.

☺ May 20-26 29th International Conference on Software Engineering (ICSE'2007), Minneapolis, Minnesota, USA.
Deadline for submissions: October 8, 2006 (education papers, tutorials, workshops), October 29, 2006
(research demonstrations), December 11, 2006 (doctoral symposium).

☺ May 29-June 01 DAta Systems In Aerospace (DASIA'2007), Naples, Italy.

June 18-21 Systems and Software Technology Conference (SSTC'2007), Tampa (Florida, USA).

June 25-27 12th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2007), Dundee, Scotland, UK.

☺ June 09-16 3rd History of Programming Languages Conference (HOPL-III), San Diego, CA, USA. Co-located
with FCRC'2007.

♦ June 25-29 12th International Conference on Reliable Software Technologies - Ada-
Europe'2007, Geneva, Switzerland. Sponsored by Ada-Europe, in cooperation with
ACM SIGAda (approval pending). Deadline for submissions: November 6, 2006
(papers, tutorials, workshops).

172 Conference Calendar

Volume 27, Number 3, September 2006 Ada User Journal

June 25-29 27th International Conference on Distributed Computing Systems (ICDCS'2007), Toronto, Canada.
Topics include: all aspects of distributed and parallel computing. Deadline for submissions: November
20, 2006 (papers).

☺ July 09-12 2007 International Conference on Software Engineering Theory and Practice (SETP-07), Orlando,
FL, USA. Topics include: all areas of Software Engineering and all related areas, such as: Component-
based software engineering; Critical and embedded software design; Distributed and parallel systems;
Distribution and parallelism; Education (software engineering curriculum design); Embedded and real-
time software; Empirical software engineering and metrics; Evolution and maintenance; High assurance
software systems; Interoperability; Legal issues and standards; Object-oriented techniques; Program
understanding issues; Programming languages; Quality management; Real-time software engineering;
Reliability; Reverse engineering and software maintenance; Software architectures and design; Software
components and reuse; Software cost estimation techniques; Software design and design patterns;
Software engineering methodologies; Software engineering versus systems engineering; Software policy
and ethics; Software reuse; Software safety and reliability; Software security; Software testing,
evaluation and analysis technology. Deadline for submissions: February 1, 2007 (draft papers).

August 12-15 26th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2007), Portland, Oregon, USA.

☺ September 04-07 International Conference on Parallel Computing 2007 (ParCo2007), Juelich & Aachen, Germany.
Topics include: all aspects of parallel computing, including applications, hardware and software
technologies as well as languages and development environments. Deadline for submissions: March 4,
2007 (abstracts, mini-symposia), May 15, 2007 (presentations), July 31, 2007 (full papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2008

June 13th Annual Conference on Innovation and Technology in Computer Science Education

(ITiCSE'2008), Madrid, Spain.

176 Forthcoming Events

Volume 27, Number 3, September 2006 Ada User Journal

13TH INTERNATIONAL REAL-TIME ADA WORKSHOP
IRTAW-13

17-19 April 2007
Woodstock, Vermont

USA

CALL FOR PARTICIPATION
For over 20 years the series of International Real-Time Ada Workshop meetings has provided a forum for identifying

issues with real-time system support in Ada and for exploring possible approaches and solutions, and has attracted
participation from key members of the research, user, and implementer communities worldwide. Since the standardization of
Ada 95, the IRTAW series has assisted in the review of the real-time related portions of the Guide for the Use of the Ada
Programming Language for High Integrity Systems (ISO/IEC TR 15942:2000) and has developed and promoted the
Ravenscar tasking profile. Recent IRTAW meetings have significantly contributed to the new Ada 2005 standard, especially
with respect to the tasking features, the real-time and high-integrity systems annexes, and the standardization of the
Ravenscar profile.

In keeping with this tradition, and in light of the formal approval of the Ada 2005 language standard, the goals of
IRTAW-13 will be to:

• examine early experiences in using Ada 2005 for the development of real-time systems and applications;
• report on or illustrate implementation approaches for the new real-time features of Ada 2005;
• consider the added value of developing other real-time Ada profiles in addition to the Ravenscar profile;
• examine the implications to Ada of the growing use of multiprocessors in the development of real-time systems,

particularly with regard to predictability, robustness, and other issues;
• examine and develop paradigms for using Ada 2005 for real-time distributed systems, taking into account robustness

as well as hard, flexible and application-defined scheduling;
• consider the definition of specific patterns and libraries for real-time systems development in Ada;
• identify how Ada relates to the certification of safety-critical and/or security-critical real-time systems;
• review the status and contents of the current ISO reports related to real-time Ada and consider the interest of

developing new secondary standards or extensions;
• examine the status of the Real-Time Specification for Java and other languages for real-time systems development,

and consider user experience with current implementations and with issues of interoperability with Ada in embedded
real-time systems;

• consider the lessons learned from industrial experience with Ada and the Ravenscar Profile in actual real-time
projects.

Participation at IRTAW-13 is by invitation following the submission of a position paper addressing one or more of the above
topics.

Position papers should not exceed six pages. All accepted papers will appear, in their final form, in the Workshop
Proceedings, which will be published as a special issue of Ada Letters (ACM Press).

Please submit position papers, in pdf format, to the Program Chair by e-mail: jpuente@dit.upm.es

Program Committee
Ben Brosgol (Local Chair), Alan Burns, Michael Gonzalez Harbour, Stephen Michell, Javier Miranda, Luis Miguel Pinho,
Juan Antonio de la Puente (Program Chair), Jorge Real, José Ruiz, Tullio Vardanega, Andy Wellings.

Important Dates
Receipt of Position Paper: 12 January 2007
Notification of Acceptance: 16 February 2007
Final Copy of Paper: 16 March 2007
Workshop Date: 17-19 April 2007

 181

Ada User Journal Volume 27, Number 3, September 2006

Memories of a Language Designer

Pascal Leroy
IBM Rational software; Chairman, Ada Rapporteur Group; email: pascal.leroy@fr.ibm.com

Introduction
On September 27, 2006, ISO/IEC JTC 1/SC 22, the
ISO subcommittee in charge of standardizing
programming languages, approved the Amendment to
the Ada standard (“Ada 2005” in the vernacular) by
twelve votes in favour1, one abstention2 and two non-
voting countries supporting approval3. No comments
were submitted as part of the vote, so the definition of
Ada 2005 is now frozen as only administrative chores
remain to be performed before the new standard is
officially published by ISO. In parallel to this, the Ada
standard will be published this fall in the prestigious
Lecture Notes in Computer Science. After working on
this Amendment for many years, it is now an
interesting time to look back into the mirror.

1 Inception
Shortly after Ada 95 was standardized minor issues and
questions concerning the language were addressed to the
Ada Rapporteur Group (ARG). Though none of these were
earth-shattering, there were anomalies and inaccuracies in
the Reference Manual that needed fixing. In 1996 to
address those issues the ARG started working on a
Technical Corrigendum, which was completed in 2001.

In the meanwhile it became clear that there would not be
financial room for another massive revision effort like the
Ada 9X project. Future evolutions of the language would
thus have to happen as part of a volunteer effort from
people and organizations having an interest in Ada. As the
user community started to use Ada 95 on real-life projects,
they encountered a number of annoyances that could not be
fixed by incremental changes. These early annoyances
included for instance the impossibility of creating cyclic
dependencies among package specifications, and the lack
of support for interfacing with C or C++ unions.

Consensus quickly arose that it was necessary to put in
place a framework for keeping Ada “alive” through a
controlled revision process capable of preserving the
benefits of standardization while also allowing room for
improvements to the language.

2 History
As a consequence of those considerations, in 1998 the ARG
was tasked by WG 9 (the ISO working group in charge of

1 Canada, China, Denmark, France, Germany, Japan, Romania,

Russian Federation, Spain, Switzerland, United Kingdom,
United States.

2 The Netherlands.
3 Belgium, Italy.

maintaining the Ada standard) to start studying “language
enhancements”. It is interesting to notice that by that time
some of the most significant issues related to object-
oriented programming and program structure were already
identified: in addition to solutions to the cyclic
dependencies problem, the suggestions made in 1998
included explicit control of overriding, upward-closure for
subprogram parameters, and Java-style interfaces.

In fact, actual work on the Amendment did not really start
until late 2000, in part because the focus was first on
completing the Technical Corrigendum, and in part because
more return on experience was needed before deciding
what areas of the language actually required improvement.

In the summer of 2001 WG 9 asked for an Amendment to
be developed with a target date of 2005 (this being
software-related, it should not come as a surprise that we
are now running some 9 months behind schedule on a 5-
year project). WG 9 later approved a more formal and
detailed schedule, as well as directions regarding the kinds
of enhancements that the ARG should consider.

By that time it had become apparent that enhancements had
to be developed to better support real-time and high-
integrity systems, with the Ravenscar profile being the first
item on the list. In the following years, numerous proposals
relevant to this specific application area were developed by
the International Real-Time Ada Workshop (IRTAW) and
forwarded to the ARG for inclusion in Ada 2005 (though
not without extensive rework in some cases!).

It had been clear from the beginning that expanding the
predefined library was an essential goal of Ada 2005. Early
on we worked on a package for accessing directories and
file systems in a portable way, and we chose to include the
matrix and vector facilities described in standard ISO/IEC
13813. Still, the topic that everyone had in mind was a
predefined library of containers, though that looked like a
daunting effort. To make that happen we decided to harness
the help of the user community, and asked for proposals on
this subject. After careful study of the two proposals that
we received, we felt that neither of them was ideal. We thus
decided to craft a third alternative by picking the good
ideas in both submissions. This third alternative was
initially given a very restricted scope, for we didn’t want to
miss the Amendment deadline. As it turned out, however
once the core ideas had stabilized it was possible to add
more packages, so that the final library may be deemed
reasonably complete.

Interestingly the work on containers proved to be a
valuable usability test for the new language: as difficulties
were encountered in the development of the library, new
features had to be added to the core language. Nested type

182 Memories of a Language Designer

Volume 27, Number 3, September 2006 Ada User Journal

extensions and partial parameter parts for formal packages
originated in this manner.

By the summer of 2004 the scope of the Amendment was
pretty much stabilized, and it was clear which of the major
proposals were in and which were out. What remained to
be done was “mere” integration work. In fact, this proved
much more time consuming than we anticipated. This had
to do in part with the sheer size of the updated Reference
Manual (nearly 1100 pages in its annotated version) and in
part with the fact that upon reviewing all the changes “in
place” we discovered inconsistencies that required rather
extensive rework. For instance, some of the rules related to
the inheritance of limited-ness, or to functions returning
access results, came very late in the integration process and
therefore required considerable attention. Overall, it took
very intense work for everyone in the ARG over a period of
18 elapsed months before we had a document that could be
submitted to WG 9 for approval.

3 Lessons Learned
It should not be surprising that “real” things take longer to
finalize than one may initially expect. Some new features,
like the limited_with_clause, proved extremely difficult to
design: as many as seven proposals were considered over
the course of five years before a satisfactory solution was
arrived at: every time we tried a new idea, it seemed like it
was breaking a fundamental invariant of the language.
Interfaces have had a different story, but an equally
complicated one at that: the basic ideas were essentially in
place by the end of 2000, yet their entanglement with the
rest of the language is so deep that we have been revising
them literally until the last minute. Even apparently simple
enhancements, like allowing aggregates for limited types,
turned out to have unexpected consequences that required
heart-wrenching decisions (for example, giving up on
aggregates for private types).

It is amusing to notice that the ARG started out fairly
timorous in the changes it contemplated: an early proposal
for explicit control of overriding entailed making use of
pragmas because the notion of adding new syntax was
considered heretic. As it became clear that pragmas would
be terrible for readability, we slowly warmed to the notion
of new syntax. Thus we became increasingly bolder: when
nested type extensions were added in 2003, they were
easily swallowed, even though we knew that they would
have a considerable impact on compilers.

While we were very much driven by the user community, a
number of changes appeared out of our own work as we ran
either into inconsistencies in Ada 95 or into unpleasant
non-uniformities in Ada 2005. For instance, we initially
added null_exclusions and improved support for
anonymous access types so as to ease programming with
access types (especially in the context of OOP). But for
long we didn’t want to allow anonymous access types as
function results because of the deep language design
difficulties that go with them. It was only when we started
to use the new language for predefined units and for

realistic examples that we discovered that it was an
unacceptable limitation and decided to bite the bullet.

4 Regrets?
There are a number of ideas that we discussed for a long
time, and on which considerable effort was expended, but
which were not included in the final Amendment because
we could not find a satisfactory solution. Partial generic
instantiations come to mind, as do support for the IEEE 559
floating-point model, and pre- and post-conditions for types
and packages. In all cases, integrating the new features into
the language was hard and the solutions just didn’t “feel
right”. Some of those ideas might in time mature to become
valuable additions for a future version of Ada.

I suppose that every member of the ARG has his or her set
of favourite features that didn’t make it into the
Amendment for one reason of another. Since I have the
opportunity to do it here, I shall name my top three. I think
it was unfortunate that we could not find a solution to the
problem of partial generic instantiation, which hampers the
usability of generics to compose abstractions; I guess that
the discussion on this problem started too late and that we
didn’t have enough time to find the “magic” idea that
would solve it elegantly. I also regret that we didn’t have
time to revise the exception mechanism: exceptions in Ada
are frustratingly limited compared to other languages, but
improving them without compromising performance and
compatibility is a tough call. Finally, I wish we had had the
guts to add out and in out parameters to functions,
although I realize that this is a very controversial topic.

5 With (More Than) a Little Help…
It is often claimed that Ada was designed by a committee.
Nothing could be further from the truth. The ARG is made
of experts from the user community, the tools vendor
community, and academia, who are among the best minds
in our industry. It is important to stress that political
bickering has no place in the ARG at all, and that although
we have had a fair share of heated discussions, proposals
were always judged on their technical merits. All the
changes that were ultimately incorporated in the
Amendment were elaborated by combining the best ideas,
and were agreed upon quasi unanimously by the ARG.

I want to conclude by profusely thanking my fellow ARG
members4, who have devoted so much time and energy to
bringing this effort to fruition, and the Convener of WG 95,
who so deftly shepherded the Amendment through the
Byzantine ISO administration. I have been lucky and
honoured to work closely with all of them during all these
years.

4 Steve Baird, John Barnes, Randy Brukardt, Alan Burns, Robert

Dewar, Gary Dismukes, Robert Duff, Kiyoshi Ishihata, Steve
Michell, Erhard Ploedereder, Jean-Pierre Rosen, Ed Schonberg,
Tucker Taft, Bill Thomas, Joyce Tokar, and Tullio Vardanega.

5 James Moore.

184

Volume 27, Number 3, September 2006 Ada User Journal

Developing Reliable Software
Rapidly
David N Kleidermacher
Green Hills Software, Inc.; email: davek@ghs.com

Abstract
Although there is significant evidence that following a
structured, comprehensive quality management
process improves reliability of software relative to the
use of unstructured processes, these rigid
methodologies often cause a loss in efficiency,
delayed time to market, and frustration in the daily
lives of software developers and managers. This
paper will provide advice in the form of guidance
statements that are compatible with the requirements
of various high assurance quality standards, yet are
designed and proven to improve efficiency of software
development.

1 Introduction
Much commonality can be found in various quality
management (e.g. ISO9000 and CMMI) and safety critical
standards (e.g. IEC-61508 and RTCA/DO-178B). These
standards promote a rigorous development process,
covering such activities as configuration management,
requirements specification, testing, quality policy
enforcement, and quality maintenance. The traditional
application of these standards, although often yielding
higher quality and/or safer end products, often leads to
stifling bureaucracy that slows time to market and
innovation.

Proven in use since the early 1980s on reliability-critical
systems such as automotive drive trains, aircraft engines,
telecom switches, industrial plant controls, and medical
devices, Green Hills Software’s High Integrity Process is
designed to maximize the reliability to production cost ratio
of software. The process covers overreaching philosophies
such as software system partitioning and change
management as well as specific implementation details,
such as the use of automated controls in the areas of testing,
configuration management, and coding standard
enforcement. The process has been applied successfully to
meet the demands of ISO9000 audits, U.S. FDA class III
(life critical) medical device maker audits, certification to
RTCA/DO-178B, and certification to IEC-61508.

The Green Hills process can be easily adopted by software
development teams that are currently suffering from the
lack of a software quality management system and can be
applied to legacy software projects written in common high
level languages such as C. This paper will state a set of
specific guidance rules of this process that enable highly

reliable software to be developed while improving
developer productivity and reducing time to market.

2 Partition Management
Many of the problems relating to loss in quality and safety
in software can be attributed to the growth of complexity
that can not be effectively managed [1]. An obvious
solution to this problem is to decompose a large software
system into smaller modules, each of which can be more
easily understood and maintained. One of the key reasons
why overly complex software is difficult to manage is that
such a piece of software is almost always worked on by
multiple developers, often at different times over the life of
the product. Because the software is too complex for a
single person to comprehend, features and defect
resolutions alike are addressed by guesswork and
patchwork. Flaws are often left uncorrected, and new flaws
are added while attempting to correct other problems.

GUIDANCE #1: ensure that no single partition is larger than
a single developer can fully comprehend.

Dividing a system into partitions requires that each
partition have well-defined interfaces. Instead of hacking
the same, shared piece of code, developers must define
simple, clear interfaces for partitions and only use a
partition’s well documented (or at least well understood)
interface to communicate with other partitions. Partitioning
enables developers to work more independently and
therefore more efficiently, minimizing time spent on
meetings in which developers attempt to explain behavior
of their software. Re-factoring a large software project in
this manner can be time consuming. However, once this is
accomplished, all future development will be more easily
managed.

2.1 Enforcing Partitioning at Run Time
Usually, the embodiment of a partition in the target
computer system is a single executable program. Examples
of partitions include Windows .exe applications and UNIX
processes. Thus, complex software made up of multiple
partitions should always be used in conjunction with an
operating system that employs memory protection to
prevent corruption of one partition’s memory space by
another partition. Inter-partition communication is typically
accomplished with standard message passing constructs,
such as sockets or CORBA. Unless absolutely essential for
better performance, shared memory should be avoided,
since it blurs the lines of the designed separation.

David N Kleidermacher 185

Ada User Journal Volume 27, Number 3, September 2006

Each partition must have a well-known partition manager.
One way to ensure that developers understand who owns
which partitions is to maintain an easily accessible partition
manager list that is only modified by appropriate
management personnel. The partition manager is the only
person authorized to make modifications to the partition or
to give another developer the right to make a modification.
By having clear ownership of every single line of code in
the project, developers are not tempted to edit code that
they are not appropriately qualified to handle.

GUIDANCE #2: ensure all developers know who the
partition managers are.

Partition managers develop, over time, a comprehensive
understanding of their owned partitions, ensuring that
future modifications are done with complete knowledge of
the ramifications of modifying any software within the
partition.

Different operating systems (and microprocessors) have
varying capabilities in terms of enforcing strict separation
between components. For example, a small, real-time
operating system may not make use of a computer’s
memory management unit at all; multiple software
applications cannot be protected from each other, and the
operating system itself is at risk from flaws in application
code. These flat memory model operating systems are not
suitable for complex, partitioned software systems. General
purpose desktop operating systems such as Linux and
Windows employ basic memory protection, in which
partitions can be assigned processes that are protected from
corruption by the memory management unit, but do not
make hard guarantees about availability of memory or CPU
time resources.

A family of operating systems, such as the INTEGRITY
real-time operating from Green Hills Software, provide
strict partitioning of applications in both time and space. A
damaged application can not exhaust system memory,
operating system resources, or CPU time because the faulty
software is strictly limited to an assigned quota of critical
resources. The quota affects literally all memory in use,
including heap memory for the C/C++ runtime, memory
used for process control blocks and other operating system
objects, and processes’ runtime stack memory. In addition,
the partitioning policies provide strict quotas of execution
time and strict control over access to system resources such
as I/O devices and files. A more rigorous partitioning of
applications at the operating system level ensures that the
benefits of partition management policies used in the
development process are realized during run-time.

GUIDANCE #3: if possible, use an operating system that
employs true application partitioning.

3 CHANGE MANAGEMENT
A software project may be robust and reliable at the time of
its first release, only to endure change rot over ensuing
years as new features, not part of the original design, are
hacked in, causing the code to become difficult to
understand, maintain, and test. Time to market demands

exacerbate the problem, influencing developers to make
hasty changes to the detriment of reliability. Therefore, an
extremely important aspect of maintaining reliable software
over the long term is to utilize an effective change
management regimen. Some fundamentals of quality
change management, such as the employment of
configuration management systems to control and record
changes and manage code branches and releases, are
assumed and not covered in this paper.

3.1 Peer Reviews
Many rigorous development processes involve the use of
peer code reviews. A common peer code review sequence
consists of the code author developing a presentation
describing the code change followed by a face to face
meeting with one or more developers and development
managers involved in the project. The developer presents
the software design in question, and the others try to poke
holes in the code. These meetings can be extremely painful
and time consuming. Audience members sometimes feel
compelled to nitpick every line of code in order to
demonstrate their prowess.

GUIDANCE #4: use asynchronous code reviews with email
correspondence instead of face-to-face meetings.

Partition management drastically reduces the time required
for code reviews since the code experts are almost always
the one modifying their own partitions. Debates regarding
design decisions are usually avoided. In addition, we
advocate avoiding face-to-face peer reviews except as
absolutely necessary. The partition manager applies the
changes to a local copy of the software, selects a suitable
peer to review the changes, and then makes a review
request via email. Soon after, but at a time convenient for
the reviewer, the reviewer reviews the code differences at
his desk, and then sends back comments via email to the
author. When the author receives an email indication that
the change is approved, the software is committed to the
configuration management system. If a reviewer rejects a
modification, the author must correct any discovered flaws
or, if he disagrees with the assessment, appeal to the
common manager to referee. The configuration
management system must provide for the ability to specify
the reviewer’s user identification as part of the commit
comment. For example, CVS allows a script to be run
during a commit; the script is provided the commit
comment which is parsed for the user identification. If a
valid user identification is not found, the CM system rejects
the commit. Thus, the CM system can be used to automate
the enforcement of a code review policy. Without such an
automated system, there can be no guarantee that a
developer will not commit a change that has not been
properly vetted.

GUIDANCE #5: use the CM system to automate
enforcement of peer reviews for every modification to critical
code.

Recording the reviewer’s identification in the CM system
also provides an electronic paper trail for auditors.

186 Developing Rel iable Software Rapidly

Volume 27, Number 3, September 2006 Ada User Journal

Another advantage of partitioning is the ability to minimize
process requirements across the system. In any large
software project, there is a continuum of criticality amongst
the various pieces of code. By way of example, let us
consider an exciter laser system used in semiconductor
manufacturing. The laser itself is controlled by a highly
critical, real-time software application. If this application
faults, the laser in turn may fail, destroying the
semiconductor. In addition, the system contains a
communications application that uses CORBA over TCP/IP
to receive commands and to send diagnostic data over a
network. If the communications application fails, then the
system may become unavailable or diagnostic data may be
lost, but there is no possibility for the laser to malfunction.
If both applications were built into a single, monolithic
system in which all code executes in the same memory
space, then the entire software content must be developed
at the highest levels of quality and reliability. If the
applications are partitioned, however, the non-critical
communications application development can be subjected
to a lower level of rigor, saving time to market and
development cost.

GUIDANCE #6: apply a level of process rigor, e.g. code
reviews and other controls, that is commensurate with the
criticality level of the partition.

Obviously, we do not advocate a free-for-all on code
partitions that are not considered critical; management
should use judgment regarding which controls to apply to
various software teams. By reducing the process controls in
non-critical applications, time to market for the overall
system can be improved without jeopardizing reliability
where it counts.

3.2 Improving Efficiency of the Build Cycle
When software changes rapidly, the efficiency of the build
process becomes a critical component of developer
efficiency. Complex software projects are often
characterized by complex build processes, where the
software not only takes a long time to recompile from
scratch, but also may require many recompiles in order to
exercise different production configurations. For example,
a software system may have a “production” build, where
compiler optimizations are fully enabled and the software is
configured for maximum speed and reliability; a “debug”
build where the system has debugging information enabled
so that developers can most easily debug the software; and
a “checked” build where the system turns on additional
sanity checks that may drastically reduce performance but
increase the probability of finding unusual problems such
as RAM hardware failures.

During development, it may not be practical for a developer
to build all configurations to test a change. Therefore, an
autobuild system should be used. When a change is
committed to the CM system, one or more dedicated build
computers update their local checkouts of the software and
rebuild all configurations. When a build fails, the
autobuilder sends an automated email to the partition
manager(s) of the affected partition(s). An email is also

sent to the person in charge of the build system. The
autobuild system ensures that erroneous changes causing
build failures are immediately detected, before they affect
other developers.

GUIDANCE #7: use an autobuild system to quickly detect
changes that break system builds.

With x86-based PCs and servers besting several GHz,
developers are enjoying faster builds than ever before.
However, as software complexity has grown in concert,
build times remain an important factor relating to developer
efficiency. Yet there are a couple of methods to reduce the
effect of build times on developer productivity.

GUIDANCE #8: always ensure a developer
has at least two development projects to
work on at all times.

When a change is made and a long build is started, there is
no excuse for a developer to be waiting for that build to
complete. A developer should always have a secondary
project to work on during inevitable breaks, such as those
caused by waiting for builds, peer reviews, or the many
other reasons why a foreground project is delayed.
Ensuring that a developer has multiple projects to work on
at all times is, ultimately, the responsibility of the
developer’s management. However, a developer naturally
considers down time waiting for a build to complete as a
normal mode of operation where the developer has no
choice but to take a break. Therefore, it is important to
teach the developer to proactively request more work in the
case he finds himself blocked on all fronts.

Another technical solution to the waiting build problem is
to reduce build times by bringing to bear the full power of
corporate computer horsepower. A typical development site
may employ many developers, working on the same or
different software projects. There may be dozens, if not
hundreds, of PCs on the desks of these developers. Sadly,
these PCs typically spend the majority of their time idle.

GUIDANCE #9: employ distributed builds to maximize
computer utilization and improve developer efficiency.

Some compiler vendors provide distributed build
capability. Do not confuse, however, something like
parallel “make” [2] that can parallelize build operations on
a single, typically multiprocessor, host computer. To truly
scale, the parallel build system must be able to interrogate
PC resources throughout a site, locate machines that are
under-utilized, and migrate the files required to accomplish
distributed builds to these available resources. Ideally, a
distributed build system should not require significant
configuration. The only required piece of configuration
information for the tool is the knowledge of which
machines on the network should be candidates to share in
the workload. Distributed builds greatly reduce build times,
therefore shortening the build-edit-debug cycle that is so
crucial to developers’ productivity on a daily basis.
Another beneficial side effect of distributed builds is the

David N Kleidermacher 187

Ada User Journal Volume 27, Number 3, September 2006

potential to reduce developer capital expenses by better
utilizing compute resources throughout a site.

4 Coding Standards
Most high assurance development processes espouse the
use of a coding standard that governs how developers write
code [3]. Some of them go further to recommend or require
specific rules be included in the coding standard. The goal
of the coding standard is to increase reliability by
promulgating intelligent coding practices. For example, a
coding standard may contain rules that help developers
avoid dangerous language constructs, limit complexity of
functions, and use a consistent syntactical and commenting
style. These rules can drastically reduce the occurrence of
flaws, make software easier to test, and improve long term
maintainability.

GUIDANCE #10: develop and deploy a coding standard
that governs software development of all critical partitions.

It is not uncommon for a coding standard to evolve and
improve over time. For example, the development team
may discover a new tool that can improve code reliability
and recommend that management add a requirement that
this tool be used during the development process.

It is also not uncommon to see a coding standard consisting
of guidance rules whose enforcement is accomplished
primarily with human code reviews. Developing a new
coding standard with dozens of rules that must be verified
manually is a sure way to reduce developer efficiency, even
if it is increasing the reliability of the code.

GUIDANCE #11: maximize the use of automated
verification of the coding standard; minimize the use of
manually verified coding rules.

Although some coding standard rules are necessarily
language-specific (and omitted in this paper in order to
avoid inapplicability to a large percentage of readership),
there are some universally or almost universally applicable
rules that should be a part of a high quality coding standard.

GUIDANCE #12: prohibit compiler warnings.

Compilers and other tool chain components (e.g. the
linker/loader) often emit warnings, as opposed to halting a
build with a fatal error. Warnings are an indicator to the
developer that a construct may be technically legal but
believed to be dangerous (sometimes the cause of subtle
bugs). To ensure that warnings are not intentionally or
accidentally ignored by developers, tell the compiler to
treat all warnings as errors. Many compilers have such an
option.

GUIDANCE #13: take advantage of the compiler’s strictest
language settings for safety and reliability.

Compilers also tend to provide a variety of strictness levels
in terms of language standard interpretation. In addition,
some compilers are capable of warning the developer about
constructs that are technically legal but dangerous. For
example, the Motor Industry Software Reliability

Association (MISRA) has published guidelines for the use
of the C language in critical systems [4], and some
compilers can optionally enforce some or all of these
guidelines that essentially subset the language by excluding
constructs believed to lead to unreliable software. Some
MISRA guidelines are advisory and may yield warnings
instead of errors; once again, if the MISRA rule is enabled,
the compiler should be forced to generate a fatal build error
on any noncompliant construct.

It goes without saying that organizations should strongly
weigh the diagnostic capability of a compiler when
selecting such an important tool.

GUIDANCE #14: if a coding standard rule cannot be fully
enforced at compile time, try to enforce it in a post-compile
phase.

A good example of this would be a code checking tool that
detects when a NULL pointer is passed to a function,
defined in another source file, that unconditionally
dereferences the pointer. A traditional compiler is unable to
detect this coding error since the compiler’s input is a
single source file. An integrated code checking tool would
take the output from compiling the file containing the call
passing the NULL pointer and the output from the file
containing the function definition, and detect this inter-
module coding error. Although inter-module code checking
tools can take a long time to run through a large project’s
code base, the number of coding errors that can be found
above and beyond a normal compiler’s purview may be
well worth the expense. At least these code checking tools
should be executed occasionally if not on every build.

4.1 Improper Symbolic Resolution
Another family of inter-module coding errors involves the
accidental use of a function definition that is not suitable
for the reference. For example, if a compiler does not
mangle the symbolic name of a function using the
function’s signature (common in languages such as C), then
a function call may be resolved with a definition whose
parameter or return types do not match. Or a variable
reference of one type may be resolved with a definition
whose type is incompatible. For example, consider the
following C function definition and code reference, each
located in a separate source file:

File1:

void read_temp_sensor(float *ret) {
 *ret = *(float *)0xfeff0;
}

File2:

float poll_temperature(void) {
 extern float read_temp_sensor(void);
 return read_temp_sensor();
 }

The above code fragments are perfectly legal ANSI/ISO C.
However, this software will fail since the reference and
definition of read_temp_sensor are incompatible (the
former is written to retrieve the return value of the function

188 Developing Rel iable Software Rapidly

Volume 27, Number 3, September 2006 Ada User Journal

while the latter is written to return the value via a reference
parameter).

GUIDANCE #15: enforce valid resolution of code
references to definitions.

One obviously poor coding practice illuminated above is
the use of an extern function declaration near the code
containing the reference. Although ANSI C requires a
prototype declaration, the scope of this declaration is not
covered by the specification. MISRA attempts to prevent
this coding pitfall by not allowing function declarations at
function code level. However, the following code fragment
would pass this MISRA test yet fail in the same manner as
the preceding example:

 extern float read_temp_sensor(void);
 float poll_temperature(void) {
 return read_temp_sensor();
 }

Another method would be to combine the MISRA rule with
a second rule that disallows the use of prototype
declarations anywhere other than in header files. This
certainly makes the error less likely, yet still falls short of
guaranteeing compliance to the coding standard (the header
file containing the declaration may not be used in the
source file containing the incompatible definition).

There is really only one way to guarantee that the
declaration and definition match: detect incompatibilities
post-compile, such as at link-time. When compiling the
aforementioned code fragment, the compiler can insert into
its output file some marker (such as a special symbol in the
symbol table or a special relocation) that describes the
signature of the return type and parameter types used in a
function call. When the function definition is compiled, the
compiler outputs the signature for the definition as well. At
link time, when the final executable image is being
generated, the linker/loader compares the signature for
same-named functions and generates an error if any
incompatible signature is detected. This additional
checking should add negligible overhead to the build time
(the linker already must examine the references of
functions in order to perform relocation) yet guarantees
enforcement of the coding standard rule and therefore
improves reliability and quality of the resulting software.

Another example of improper symbolic resolution relates to
the unintended use of exported library definitions. Libraries
are often used to collect code modules that provide a
related set of functions. For example, most operating
systems come with a C library, e.g. libc.so, that provides
support for the C runtime, including string manipulation,
memory management, and console input/output functions.
A complex software project is likely to include a variety of
project-specific libraries. These libraries export functions
that can be called by application code. A reliability problem
arises due to the fact that library developers and application
developers may not accurately predict or define a priori
which interfaces are exported by the library. The library
may define globally visible functions intended for use only

by other modules within the library. Yet once these
functions are added to the global namespace at link time,
the linker may resolve references made by applications that
were not intended to match the definitions in the library.
For example, consider an application which makes use of a
“print” function. The application developer envisioned the
use of a print library provided by the printer management
team. However, the font management team created a
library, also used by the application developer, that
provides a set of font manipulation functions. The font
management team defined a print function intended for use
by other modules within the font management library.
However, because there often is no facility for limiting the
namespace of libraries, the font library’s print function was
inadvertently used by the linker to resolve “print”
references made by the application developer, causing the
system to fail.
Therefore, GUIDANCE #15 may need to be enforced with
something other than the compiler’s front end. For
example, a tool can be used to hide library definitions so
that they are used by the linker when resolving intra-library
references but ignored when resolving extra-library
references. The Windows platform employs user-defined
library export files to accomplish this separation [5]. When
creating Windows DLLs, developers specify which
functions are exported. Functions not included in the export
file will not be used to resolve application references.

Note that some high level languages (such as Ada) do a
better job of automatically enforcing type consistency and
name spacing than other languages (such as C). Language
choice could very well make guidance #15 trivial to
enforce.
4.2 Complexity Control
Much has been published regarding the benefits of reducing
complexity at the function level. Breaking up a software
module into smaller functions makes each function easier
to understand, maintain, and test [6]. One can think of this
as meta-partitioning: applying the aforementioned software
partitioning paradigm at a lower, programmatic, level. A
complexity limitation coding rule is easily enforced at
compile time by calculating a complexity metric and
generating a compile-time error when the complexity
metric is exceeded. Once again, since the compiler is
already traversing the code tree, it does not require
significant additional build time to apply a simple
complexity computation, such as the popular McCabe
complexity metric. Because the compiler generates an
actual error pointing out the offending function, the
developer is unable to accidentally create code that violates
the rule.

GUIDANCE #16: use automated tools to enforce a
complexity metric maximum, and ensure that this maximum
is meaningful (such as a McCabe value of 20).

Adopting a coding standard rule that allows a McCabe
complexity value of 200 is useless; most any legacy code
base will be compliant despite having spaghetti-like code
that is hard to understand, test, and maintain. The selection

David N Kleidermacher 189

Ada User Journal Volume 27, Number 3, September 2006

of a specific maximum complexity value is open to debate.
If an existing code base is well modularized, a value may
be selected that allows most of the properly partitioned
code to compile; future code will be held to the same
stringent standard. When applying the complexity metric to
a large code base that has previously not been subjected to
such an analysis, it is likely that a small number of large
functions will fail the complexity test. Management then
needs to weigh the risk of decomposing a large function
with the risk of changing the code at all. Modifying a piece
of code that, while complex, is well exercised (proven in
use) and serves a critical function may very well reduce
reliability by increasing the probability of introducing a
flaw. The complexity enforcement tool should provide a
capability to allow exceptions to the complexity
enforcement rule for specific functions that meet this
profile. Exceptions, of course, should always be approved
by management and documented as such. The coding
standard should not allow exceptions for code that is
developed subsequent to the adoption of the coding rule.
These types of coding standard policies conform to their
spirit while maximizing efficiency, enabling them to be
employed effectively in legacy projects.

5 Software Testing and Verification
Effective testing is well known to be one of the best
mechanisms to assure that software is reliable. Therefore, it
is an important component of many high assurance
development standards and guidance documents, such as
that promulgated by the U.S. Food and Drug
Administration [7]. Testing includes functional testing,
regression testing, performance testing, and coverage
testing. In the realm of functional testing we have fault-
based testing, error-based testing, white-box testing, and
black-box testing. It is left as an exercise to the reader to
explore the various types of testing and their relative
advantages. Our guidance is more concerned with the
integration of testing methodology into the development
process in order to maximize its value.

Organizations that do not follow a rigorous development
process often resort to ad-hoc testing that is often an
afterthought when most of the software has already been
written. Organizations that follow a rigorous process often
focus testing during a release process, again after much of
the software has been written.

GUIDANCE #17: the testing system should be running
24x7.

If a testing system is only run on demand, occasionally, or
only during a release process, then errors which can be
detected by the testing system tend to go unnoticed for an
unnecessarily long period of time. When a flaw is
discovered, the developer has a much harder time trying to
remediate it than if the flaw was introduced the previous
day. In some cases, the developer may have even moved on
to another project if not another company, leaving someone
else to try and learn the code and fix the flaw. Fixing flaws
discovered by the testing system should be prioritized
higher than anything other than emergency customer

support issues; keeping the system running cleanly at all
times guarantees that test system failures are almost always
new failures that have not been examined by anyone else
and need immediate attention.

GUIDANCE #18: the testing system should run on the
development version as well as active shipping versions.

This is a corollary to GUIDANCE #17 but important
enough to be stressed: when a testing system is used
throughout the development process, developers are forced
to keep the product in a working state at all times. Software
projects that only move to rigorous test after a code freeze
are subjected to test phases that last longer overall because
developers must wrestle with problems inserted throughout
months of development time. When a product is always
working, a code freeze leads directly to final quality
assurance testing, saving time to market. If a developer can
not develop code in a manner that prevents the product
from failing, then a private branch can be used as long as it
is not allowed to live too long; integrating old code
branches that have drifted far from the trunk often causes
unforeseen conflicts that affect the efficiency of the entire
development team.

GUIDANCE #19: the testing system should be able to
effectively test a software project in less than one night.

A testing system that takes too long to run tends to become
underutilized if not completely ignored. Developers should
be able to quickly validate a change overnight before
committing it to the master version of the project. In
addition, the automated tests running 24x7 on dedicated
testing compute farms can detect flaws very quickly so they
can be corrected while the understanding of the recently
added code is still fresh in the developer’s mind. It is
reasonable to have more tests that can run in one night;
however longer runs should compete at a lower priority for
computing resources or be run only on demand or at longer
intervals during the development process. The nightly test
run will almost always be good enough to detect flaws
entered during development.

GUIDANCE #20: it should be trivial to determine when a
test run has succeeded or failed; a failed test should be
trivial to reproduce.

Tests should be written such that output is generated only
when an error is detected. A clean test is one without any
output. At worst, the output should be less than a page long.
Too often, testing systems generate voluminous output,
making it difficult for developers to quickly ascertain the
status of the test run. Test output that is difficult to quickly
evaluate tends to be ignored and ineffectual.

When a test fails, the exact state of the software system and
any inputs or process that must be used to reproduce the
discovered error should be clearly displayed within the test
output. If the developer is unable to efficiently reproduce a
test failure, the test system will tend to be ignored.
Reproducibility is the key to maximizing the rate at which
developers can remediate flaws discovered by the testing

190 Developing Rel iable Software Rapidly

Volume 27, Number 3, September 2006 Ada User Journal

system and bring a reliable software product to market
faster.

6 Conclusion
High assurance development processes, such as that
encouraged by ISO/IEC quality standards as well as
regulatory bodies that govern the use of software in safety
and security systems, is generally believed to result in
higher reliability software. However, an organization that
follows these processes to the letter is likely to get to
market later than an organization that develops the same
product without the overhead of following these quality
standards. In this paper we have presented a set of guidance
recommendations, part of a process that has been proven in
use for 24 years at one of the leading reliability-critical
software development organizations in the world, and have
argued how these controls can actually increase developer
productivity and reduce time to market through the use of
methodologies that find software flaws faster and reduce
developer dependencies on each other and on productivity-
killing bureaucracy.

References
[1] Robert Parker. Are Vendors Doing Enough To Improve

Software? Optimize Magazine;
http://www.optimizemag.com/issue/009/squareoff.htm

[2] Morgan Herrington. Optimizing Build Times Using
Parallel “make”.
http://developers.sun.com/solaris/articles/parallel_mak
e.html

[3] RTCA (1992). DO-178B, Software Considerations in
Airborne Systems and Equipment Certification.

[4] The Motor Industry Software Reliability Association.
MISRA-C:2004 Guidelines for the use of the C
language in critical systems. October 2004.

[5] Microsoft Development Network. Working with
Import Libraries and Export File.
http://msdn.microsoft.com/library/default.asp?url=/libr
ary/en-us/vccore/html/
_core_working_with_import_libraries_and_export_file
s.asp

[6] Arthur H. Watson and Thomas J. McCabe. Structured
Testing: A Testing Methodology Using the Cyclomatic
Complexity Metric.
http://www.mccabe.com/pdf/nist235r.pdf

[7] U.S. Food and Drug Administration, Center for
Devices and Radiological Health. General Principles
of Software Validation.
http://www.fda.gov/cdrh/comp/guidance/938.html

Contact
David Kleidermacher is chief technology officer at Green
Hills Software where he has been developing real-time
operating systems and tools for embedded systems for the
past fifteen years. David has a bachelor of science in
computer science from Cornell University. Contact David
at davek@ghs.com.

192

Volume 27, Number 3, September 2006 Ada User Journal

Ada-Europe 2006 Sponsors

8 Rue de Milan, F-75009 Paris, France AdaCore
Contact: Zépur Blot Tel: +33-1-49-70-67-16

Email: sales@adacore.com
Fax: +33-1-49-70-05-52
URL: www.adacore.com

66/68, Avenue Pierre Brossolette, 92247 Malakoff, France Aonix
Contact: Jacques Brygier Tel: +33-1-41-48-10-10

Email : info@aonix.fr
Fax: +33-1-41-48-10-20
URL : www.aonix.com

Dolphin House, St Peter Street, Winchester, Hampshire, SO23 8BW, UK Green Hills Software Ltd
Contact: Christopher Smith Tel: +44-1962-829820

Email :
Fax: +44-1962-890300
URL : www.ghs.com

1 Cornbrash Park, Bumpers Way, Chippenham, Wiltshire, SN14 6RA, UK I-Logix
Contact: Martin Stacey Tel: +44-1249-467-600

Email : info_euro@ilogix.com
Fax: +44-1249-467-610
URL : www.ilogix.com

20 Manvers Street, Bath, BA1 1PX, UK Praxis High Integrity
Systems Ltd
Contact: Rod Chapman

Tel: +44-1225-466-991
Email : sparkinfo@praxis-his.com

Fax: +44-1225-469-006
URL : www.sparkada.com

Triad House, Mountbatten Court, Worrall Street, Congleton, CW12 1DT, UK Ellidiss Software
TNI Europe Limited
Contact: Pam Flood

Tel: +44-1260-29-14-49
Email: info@tni-europe.com

Fax: +44-1260-29-14-49
URL: www.ellidiss.com

	Contents
	Editorial
	News
	Conference Calendar
	Memories of a Language Designer
	Developing Reliable Software Rapidly

