

Ada User Journal Volume 27, Number 4, December 2006

ADA
USER
JOURNAL

Volume 27
Number 4

December 2006

Contents
Page

Editorial Policy for Ada User Journal 194

Editorial 195

News 197

Conference Calendar 232

Forthcoming Events 239

Articles

 J-C Mahieux, B Maudry, A Foster
“Using CORBA to Bring New Life to Legacy Ada Software: an Experience Report” 244

 J Klein, D Sotirovski
“The Publisher Framework” 248

Ada-Europe 2006 Sponsors 256

Ada-Europe Associate Members (National Ada Organizations) Inside Back Cover

194

Volume 27, Number 4, December 2006 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal – The Journal for the
international Ada Community – is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the first of the
month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 195

Ada User Journal Volume 27, Number 4, December 2006

Editorial
While this issue completes volume 27 of the Journal (gosh, what a long history the AUJ begins to have!) and the year 2006
comes to an end, I come to think that we have plentiful reasons to look forward to a new year 2007 reach with important
achievements for the Ada community at large. Let me mention just a few, even before talking about the contents of this issue.
To begin with, early in January 2007 we should be hearing the very final word from the ISO top-level governing bodies that
the the Amendment to ISO/IEC 8652 (a.k.a. the Ada 2005 standard) has been definitely approved: that will be a great
achievement, really, which lots of valuable people have contributed to, most of all the ARG team and editor. We have all
reasons to expect very good news from that front. Secondly, in deftly planned sync with the progress of the ISO-related
events, the “book” (a.k.a. the Springer LNCS edition of the Ada 2005 Reference Manual), generously produced by Ada-
Europe, should be starting to arrive at your doorstep. That also is a jolly good news, and a nice gift too. Thirdly, the coming
Spring will see a new edition of the IRTAW series, this time focused on drawing the early lessons learned from the use of the
very rich set of novel real-time programming features that have come along in the Ada 2005 standard. Even those who are not
too attracted to or familiar with real-time systems issues may look forward to the proceedings of IRTAW-13, which will
expectedly position on solid ground, Ada 2005 as a leading language for that domain.

It is a few years now that the Ada-Europe annual Conference has introduced the notion of “industrial track”. I am very happy
that the proceedings of that session of the conference are published, in a staggered fashion, in successive issues of the Ada
User Journal. In keeping with this plan, this issue includes two articles that draw from industrial-track presentations made at
the 2006 Conference in Porto. One article, by J-C Mahieux, B Maudry, A Foster, all of PrismTech (a French company
specializing in middleware products and solutions) report on a successful use of CORBA technology to migrate a sizeable
Ada application to a new target platform. The other article, by J. Klein of Lockheed Martin, and D. Sotirovski of Raytheon
Canada, presents the foundation of a distributed object-oriented framework used as the basis of the design of a critical Air
Traffic Control application. Both presentations attracted consolidarable interest at the conference.

The rest of the issue contains the usual wealth of news and events of relevance and interest to the Ada community. I am not
quite sure the readers appreciate the level of effort that goes in the selection, weaving and editing of that information so that
you can have on the journal. You would be surprised should you know the truth! For this reason I am (and you should too,
trust me) truly grateful to Santiago Urueña and Dirk Craynest, our News and Calendar editors for their efforts and wish them
both (and to all readers too, of course) the best for the new year 2007.

Tullio Vardanega
Padova

December 2006
Email: tullio.vardanega@math.unipd.it

 197

Ada User Journal Volume 27, Number 4, December 2006

News
Santiago Urueña
Technical University of Madrid (UPM). Email: Santiago.Uruena@upm.es

Contents

Ada-related Events 197
Ada-related Resources 199
Ada-related Tools 199
Ada-related Products 204
Ada and GNU/Linux 208
References to Publications 212
Ada Inside 212
Ada in Context 214

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal. --
su]

15 November — SIGAda
Awards
From: John McCormick

<mccormick@cs.uni.edu>
Subject: Call for SIGAda Award

Nominations
Date: 11 Sep 2006 10:57:53 -0700
Newsgroups: comp.lang.ada
Dear Members of the Ada Community:
On Wednesday, 15 November 2006, the
2006 SIGAda Awards will be presented in
a special morning plenary session at the
SIGAda 2006 conference in Albuquerque,
New Mexico. (See
http://www.acm.org/sigada/conf/sigada20
06/ if you have somehow missed
announcements of this year's annual
SIGAda international conference.)
We welcome your nominations of
deserving recipients.
The ACM SIGAda Awards recognize
individuals and organizations who have
made outstanding contributions to the
Ada community and to SIGAda. The two
categories of awards are:
(1) Outstanding Ada Community
Contribution Award — For broad, lasting
contributions to Ada technology & usage.
(2) ACM SIGAda Distinguished Service
Award — For exceptional contributions
to SIGAda activities & products.
Please consider who should be nominated
this year. You may nominate a person for
either or both awards, and as many people

as you think worthy. One or more awards
will be made in both categories.
Please visit
http://www.acm.org/sigada/exec/awards/a
wards.html#Recipients and peruse the
names of past winners. This may help
you think about the measure of
accomplishment that is appropriate. You
may be aware of people who have made
substantial contributions that have not yet
been acknowledged. Nominate them.
Consider what you believe to be the best
developments in the Ada community or
SIGAda in the last year; the last 5 years;
since Ada's inception. Who was
responsible? Nominate them.
Please note that anyone who has received
either of the two awards remains eligible
for the other. Perhaps there is an
outstanding SIGAda volunteer who has
won our Distinguished Service Award
and who has also made important
contributions to the advance of Ada
technology, or visa versa. Nominate him
or her!
The nomination form is available on the
SIGAda website at
http://www.acm.org/sigada/exec/awards/a
wards.html. (You need to visit this
website to see past award winners' names,
and also a picture of the statuette which is
the award among other things, so you
don't nominate someone who has already
won an award in a category.) Submit
your nomination as an e-mail or e-mail
attachment to SIGAda-Award@acm.org.
The ACM SIGAda Awards Committee,
comprised of volunteers who have
previously won an award, will determine
this year's recipients from your
nominations.
Call our attention to the people who are
most deserving, by nominating them.
And please nominate by OCTOBER 15!
Your participation in the nominations
process will help maintain the prestige
and honor of these awards.
Thank you,
John McCormick, Chair ACM SIGAda
[See also “Nov 12–16 — SIGAda 2006
Conference” in this issue. —su]

AdaCore’s Ben Brosgol receives
SIGAda’s Outstanding Ada Community
Contribution Award

Wednesday November 22, 2006
Ben Brosgol, a senior member of
AdaCore’s technical staff, received an
Outstanding Ada Community
Contribution Award at the ACM SIGAda

2006 Conference in Albuquerque, New
Mexico (US), on 15 November. This
annual award is bestowed on individuals
“for broad, lasting contributions to Ada
technology and usage”, and past
recipients from AdaCore are Robert
Dewar (1995), Ed Schonberg (1997), Bob
Duff (2002), and Matthew Heaney
(2005).
In honoring Ben, SIGAda noted his
numerous and significant contributions to
the Ada effort, starting from the earliest
days and continuing to the present. He
worked on the “Red” language (the
runner-up in the original Ada language
design competition) and served as a
Distinguished Reviewer for Ada 83 and as
a member of the language revision team
for Ada 95. He has been conducting Ada
courses for over 20 years, has presented
papers and tutorials at many Ada-Europe
and SIGAda conferences, and is currently
the President of the Ada Resource
Association.
In 1998 Ben received SIGAda’s other
annual award, for distinguished service to
SIGAda itself; he is one of only three
individuals to have received both awards.

12-16 November— SIGAda
2006 Conference
From: Ricky E. Sward

<ricky.sward@ix.netcom.com>
Subject: Call for Participation SIGAda 2006
Date: 18 Sep 2006 12:39:07 -0700
Newsgroups: comp.lang.ada
Call for Participation
ACM SIGAda's Annual International
Conference
November 12–16, 2006
Albuquerque, New Mexico, USA
Join us this year in Albuquerque, New
Mexico from November 12th through the
16th for the annual SIGAda Conference.
This year's program includes two and a
half days of technical presentations from
researchers, academia and industry.
Topics include the integration of Ada
2005 into Visual Studios 2005, issues for
safety critical and high-integrity systems,
using Ada in introductory Computer
Science courses, etc. Our conference also
includes two days of outstanding tutorials
led by some of the most respected
technical leaders in the industry. These
tutorials range from introductory topics in
Ada programming to advanced topics in
the new Ada 2005 standard and .NET
programming.

198 Ada-related Events

Volume 27, Number 4, December 2006 Ada User Journal

We have three outstanding keynote
speakers this year.
Judith Klein, Lockheed Martin
- Use of Ada in Lockheed Martin for Air
Traffic Management and Beyond.
Robert Dewar, AdaCore
- Ada 2005 & High Integrity Systems.
Tucker Taft, SofCheck
- Why You Should be Using Ada 2005
now!
You can find more detailed information in
the Advance Program on the conference
web site:
http://www.acm.org/sigada/conf/
sigada2006/
Greg Gicca and Ricky E. Sward, SIGAda
Conference Co-Chairs
[See also “15 Nov — SIGAda Award
Nominations” in AUJ 27-3 (Sep 2006),
p.134. —su]

Feb 24–25 — FOSDEM 2007
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Ada at FOSDEM 2007 - call for

participants
Date: 6 Oct 2006 03:45:42 -0700
Newsgroups: comp.lang.ada
The Ada day at FOSDEM 2006 was
successful, how about doing something
similar in 2007 again? In particular, I
think an introduction to Ada 2005 would
be a good idea.
http://www.fosdem.org is down due to
hardware failure (this happened to the
Ada-France server this year, too), but the
mailing list still exists. No planning
seems to have taken place yet, so if we
want to reserve a room for our
presentations, now is a good time. I
assume that FOSDEM 2007 is still
planned for late February 2007,
presumably 24–25 February. As usual,
this will be in Brussels, Belgium.
I could redo my classic "Ada in Debian"
speech, but I do not have much more to
say than I did last year, so I will only
speak if there is popular demand for it.
OTOH, Debian is due to be released on
Dec 4, so by February 2007 I'll be in the
planning phase for Etch+1, which might
lead to interesting discussions.
Let's assume that the traditional, slot-
based schedule will be applicable this
year again, i.e. there are six one-hour slots
in a day, and we need to allow for 10
minutes of transition between slots. So,
all presentations should be formatted to a
50-minute schedule including questions
and answers. […]
In 2006, the "Ada day" was on Sunday.
In 2007, if we're early enough we might
get to choose between Saturday and
Sunday, or even get a room for the whole
two days! (but this requires more
speakers).

Besides speeches, we could also have:
- programming tutorials (e.g. have fun
with distributed systems)
- a programming contest ("obfuscated
Ada", perhaps? :))
- hands-on demonstrations
- unconstrained questions and answers
At this point, I would like to have a "gut
feeling" on whether or not an "Ada day at
FOSDEM" is feasible or desirable. This
"gut feeling" should be sufficient for me
to ask for a developer's room for 1/2 day,
1 day, 3/2 days, or 2 days. It would be
nice to have that by the end of October.
Later on we can agree on a precise
schedule, which must be finalised by mid-
November.
If you would like to speak at FOSDEM,
attend, or if you simply would like to
know what's in the works, please
subscribe to the AdaFOSDEM mailing
list. This list is not moderated, but only
subscribers can post and browse the
archives.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: Ada at FOSDEM 2007 - call

for participants
Date: 24 Oct 2006 04:55:48 -0700
Newsgroups: comp.lang.ada
The dates for FOSDEM 2007 have just
been announced on
http://www.fosdem.org. The site is now
back up on-line. As I suspected the dates
are 24–25 February 2007 in Brussels,
Belgium.
Two people have already offered
presentations; we need more! Please
subscribe to the AdaFOSDEM mailing
list if you are interested.
[See also “Feb 25–26 — FOSDEM 2006”
in AUJ 26-4 (Dec 2005), p.231. —su]

Jun 25–29 — Ada-Europe
2007
From: dirk@apollo.cs.kuleuven.ac.be (Dirk

Craeynest)
Subject: Ada-Europe 2007 submission

deadline approaching
Date: 9 Nov 2006 21:15:13 +0100
Organization: Ada-Europe
Newsgroups:

comp.lang.ada,fr.comp.lang.ada,comp.la
ng.misc

12th International Conference on Reliable
Software Technologies — Ada-Europe
2007
25 – 29 June 2007, Geneva, Switzerland
http://www.ada-
europe.org/conference2007.html
Organised, on behalf of Ada-Europe, by
Ecole d'Ingénieurs de Genève in
cooperation with ACM SIGAda (approval
pending)
Ada-Europe organizes annual
international conferences since the early

80's. This is the 12th event in the
Reliable Software Technologies series,
previous ones being held at Montreux,
Switzerland ('96), London, UK ('97),
Uppsala, Sweden ('98), Santander, Spain
('99), Potsdam, Germany ('00), Leuven,
Belgium ('01), Vienna, Austria ('02),
Toulouse, France ('03), Palma de
Mallorca, Spain ('04), York, UK ('05),
Porto, Portugal ('06).
General Information
The 12th International Conference on
Reliable Software Technologies (Ada-
Europe 2007) will take place in Geneva,
Switzerland. Following the usual style,
the conference will span a full week,
including a three-day technical program
and vendor exhibitions from Tuesday to
Thursday, along with parallel workshops
and tutorials on Monday and Friday.
Topics
In the last decade the conference has
established itself as an international forum
for providers and practitioners of, and
researchers into, reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development and maintenance of long-
lived, high-quality software systems for a
variety of application domains. The
program will allow ample time for
keynotes, Q&A sessions, panel
discussions and social events.
Participants will include practitioners and
researchers from industry, academia and
government organizations interested in
furthering the development of reliable
software technologies. To mark the
completion of the technical work for the
Ada language standard revision process,
contributions that present and discuss the
potential of the revised language are
particularly sought after.
For papers, tutorials, and workshop
proposals, the topics of interest include,
but are not limited to:
- Methods and Techniques for Software
Development and Maintenance:
Requirements Engineering, Object-
Oriented Technologies, Formal Methods,
Re-engineering and Reverse Engineering,
Reuse, Software Management Issues
- Software Architectures: Patterns for
Software Design and Composition,
Frameworks, Architecture-Centered
Development, Component and Class
Libraries, Component-Based Design
- Enabling Technology: CASE Tools,
Software Development Environments and
Project Browsers, Compilers, Debuggers
and Run-time Systems
- Software Quality: Quality Management
and Assurance, Risk Analysis, Program
Analysis, Verification, Validation,
Testing of Software Systems

Ada-related Tools 199

Ada User Journal Volume 27, Number 4, December 2006

- Critical Systems: Real-Time,
Distribution, Fault Tolerance, Information
Technology, Safety, Security
- Distributed Systems: Reliability,
Security, Trust and Safety in Large Scale
Distributed Platforms
- Mainstream and Emerging Applications:
Multimedia and Communications,
Manufacturing, Robotics, Avionics,
Space, Health Care, Transportation
- Ada Language and Technology:
Programming Techniques, Object-
Oriented, Concurrent, Distributed
Programming, Bindings and Libraries,
Evaluation & Comparative Assessments,
Critical Review of Language
Enhancements, Novel Support
Technology, HW/SW platforms
- Experience Reports: Experience
Reports, Case Studies and Comparative
Assessments, Management Approaches,
Qualitative and Quantitative Metrics,
Experience Reports on Education and
Training Activities with bearing on any of
the conference topics
Proceedings
The conference proceedings including all
accepted papers will be published in the
Lecture Notes in Computer Science
(LNCS) series by Springer Verlag, which
will be available at the start of the
conference. The authors of accepted
papers shall prepare their camera-ready
submissions in full conformance with the
LNCS style, not exceeding 12 pages and
strictly by *February 26, 2007*. Authors
should refer to:
http://www.springer.de/comp/lncs/authors
.html for format and style guidelines.
Failure to comply will prevent the paper
from appearing in the conference
proceedings.
Awards
Ada-Europe will offer honorary awards
for the best paper and the best
presentation, which will be presented
during the banquet and at the close of the
conference respectively.
Exhibition
Commercial exhibitions will span the
three days of the main conference.
Vendors and providers of software
products and services should contact the
Exhibition Chair Neville Rowden as soon
as possible for further information and for
allowing suitable planning of the
exhibition space and time.
Reduced Fees for Students
A small number of grants are available for
students who will (co-)author and present
papers at the conference. A reduction of
25% will be made to the conference fee.
Contact the Conference Chair Nabil
Abdennadher for details.

Conference Chair
Nabil Abdennadher, University of
Applied Sciences, Geneva, Switzerland,
nabil.abdennadher@hesge.ch
Program Co-Chairs
Nabil Abdennadher, University of
Applied Sciences, Geneva, Switzerland,
nabil.abdennadher@hesge.ch
Fabrice Kordon, University Pierre &
Marie Curie, France,
Fabrice.kordon@lip6.fr
Tutorial Chair
Dominik Madon, University of Applied
Sciences, Geneva, Western Switzerland,
dominik.madon@hesge.ch
Exhibition Chair
Neville Rowden, Siemens Switzerland,
neville.rowden@siemens.com
Publicity Chair
Ahlan Marriott, White-elephant,
Switzerland, Ada@White-elephant.ch
Dirk Craeynest, Aubay Belgium &
K.U.Leuven, Belgium,
Dirk.Craeynest@cs.kuleuven.be
Local Chair
Régis Boesch, University of Applied
Sciences, Geneva, Switzerland,
regis.boesch@hesge.ch
[See also “Jun 5–9 — Ada-Europe 2006”
in AUJ 27-1 (Mar 2006), pp.6–7. —su]

Ada-related Resources
Ada & Software Engineering
Library and CD-ROM
September 7, 2006
A searchable on-line copy of the Ada and
Software Engineering Library, the on-line
version of the famous ASE CD-ROMs,
has been created at the AdaIC. (The
previous home of this material has gone
off line.) The library is also available via
FTP at Ada-Belgium's site.
http://archive.adaic.com/ase/
ftp://ftp.cs.kuleuven.ac.be/pub/Ada-
Belgium/ase/
[See also same topic in AUJ 21-4 (Jan
2001), p.224. —su]

Ada-related Tools
Simple components
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: Simple components v2.4
Date: Sun, 8 Oct 2006 14:53:09 +0200
Newsgroups: comp.lang.ada
http://www.dmitry-
kazakov.de/ada/components.htm
Changes:

1. Doubly-linked webs and lists of items
with referential semantics were added.
Items can be of any type, including tasks,
protected objects, unconstrained strings
etc;
2. Get_Line procedure was added to the
abstract source interface to improve
parser performance in the cases when
compiler optimization is poor;
3. Slicing and concatenation operations
were added to the package
Object.Handle.Generic_Bounded_Array;
4. The code was slightly re-arranged to
circumvent bugs of GNAT 2006, GCC
4.1.1 (20060525).
[See also same topic in AUJ 27-3 (Sep
2006), pp.134–135. —su]

Ada Profilers
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Wed, 22 Nov 2006 10:42:59 -0500
Subject: Re: Profiler?
Newsgroups: comp.lang.ada
> Does anyone know of a good profiler

for programs written in Ada?
I usually just select the profiling options
from the menu in the builder after
ensuring the auxclock rate is what I
expected (using Greenhills AdaMULTI
with a VxWorks target).
What compiler, OS, IDE, etc are you
using?
I can say that gprof is actually an "OK"
profiler. It is not great but it gets the job
done.
If you make use of Ada tasking, you will
run into the well known issue with gprof
and threads under Linux (only the main
program gets counted) but the
workaround here
http://sam.zoy.org/writings/programming/
gprof.html
works just fine (you build a shared library
and then use LD_PRELOAD to wrap
pthread_create as you execute your
program.
From: Alex R. Mosteo

<devnull@mailinator.com>
Subject: Re: Profiler?
Date: Wed, 22 Nov 2006 17:34:32 +0100
Newsgroups: comp.lang.ada
[With GNAT under Linux], I've used
successfully Valgrind and kcachegrind
with nice results, also for multitasking
programs. Oprofile was in my list of
things to look at that I never reached.
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Wed, 22 Nov 2006 13:01:41 -0500
Subject: Re: Profiler?
Newsgroups: comp.lang.ada
The combination of Valgrind and
kcachegrind is actually quite powerful

200 Ada-related Tools

Volume 27, Number 4, December 2006 Ada User Journal

(though large programs do tend to run
quite slowly under Valgrind).
I also toyed with oprofile a while back
and did not find it as useful (in the case I
was working with) as
Valgrind/kcachegrind but I did not spend
enough time with it to be sure.
From: Emmanuel Briot

<briot@nospam.invalid.fr>
Subject: Re: Profiler?
Date: Thu, 23 Nov 2006 10:29:35 +0100
Newsgroups: comp.lang.ada
One additional one which I find even
more convenient is sysprof on Linux,
since it will monitor the whole system,
you can start it whenever you want (i.e.
you don't have to profile since the start up
of your application), and has a nice GUI
to examine the results
[See also "Profiling GNAT programs with
gprof" in AUJ 26-3 (Sep 2005), p.154. —
su]

GNU Ada Compiler
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: [gnuada] SuSE 10.1 i686 released.
Date: Tue, 26 Sep 2006 20:02:15 +0200
Newsgroups: comp.lang.ada
The SuSE 10.1 i686 version of The GNU
Ada Tool-chain has been released. You
can find details here:
http://gnuada.sourceforge.net/pmwiki.php
/Install/SuSE
The 32bit version is late as the 32bit SuSE
system is not as readily available to me.
As such I would welcome it if someone
would take the 32 bit release of me. It is
not that much work once build
environment has been set up.
[See also same topic in AUJ 27-3 (Sep
2006), p.135. —su]

GNU Ada GPS
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: [gnuada] Finaly: GPS 4.0.0

available.
Date: Sat, 09 Sep 2006 20:19:11 +0200
Newsgroups: comp.lang.ada
Finally after many unsuccessful attempts
we have created a working GPS. And not
any old one — the very current GPS 4.0.0
with lots of new features.
"GNAT/GPL SuSE 10.1 x86_64" and
"GNAT/GPL Source" are uploaded and
others will follow when they become
available.
Please note that can use the GPL version
of GPS together with the GCC version of
GNAT — just the setup is a bit more
tricky but you won't need to install two
GPS if you don't want to.
http://gnuada.sourceforge.net/

From: Martin Krischik
<krischik@users.sourceforge.net>

Subject: Re: Finaly: GPS 4.0.0 available.
Date: 12 Sep 2006 04:02:10 -0700
Newsgroups: comp.lang.ada
There is no official announcement of GPS
4.0 for non Pro customers — so if you
like to read up on what GPS 4.0 can do
better then your current GPS read the
Wikipedia article:
http://en.wikipedia.org/wiki/GNAT_Progr
amming_Studio
From: Björn Persson

<rombo.bjorn.persson@sverige.nu>
Subject: Re: [gnuada] Finaly: GPS 4.0.0

available.
Date: Mon, 11 Sep 2006 17:57:56 GMT
Newsgroups: comp.lang.ada
Alas, it looks like there won't be a GPS
package for Fedora anytime soon. It just
displays the splash screen and then
crashes on a failed assertion.
[See also same topic in AUJ 27-3 (Sep
2006), p.135. —su]

VAD 6.3 — Visual Ada
Developer
From: Stephane Richard

<MystikShadows@stny.rr.com>
Subject: Announcement on behalf of Leonid

Dulman
Date: Thu, 07 Sep 2006 19:56:05 GMT
Newsgroups: comp.lang.ada
[Leonid Dulman] announces the latest
version of his VAD (Visual Ada
Developer) application. Version 6.6 has
now arrived and features some great
things.
Have a look for yourself, right here:
http://websamba.com/guibuilder
[See also "About VAD — Visual Ada
Developer" in AUJ 25-4 (Jun 2004),
pp.192–193. —su]

AutoIT — Automated GUI
Testing
From: Per Sandberg

<per.sandberg@bredband.net>
Subject: [ANN] ada-AutoIT 0.5.2 Released
Date: Thu, 23 Nov 2006 06:49:34 +0100
Newsgroups: comp.lang.ada
http://sourceforge.net/projects/ada-autoit/
Release: 0.5.2
Date: 2006-11-22
Changes since last release:
* Updated to autoIT 3.2
* Added HTML documentation
(Extracted from .chm file) to be used in
GPS
* Added GPS integration
* Changed install method to make script
* Included Release notes in Installation
AutoIT is a scripting-language/tool for
GUI automation.

GUI packages for Ada
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Subject: Re: GWindows
Date: Thu, 09 Nov 2006 02:04:25 -0500
Newsgroups: comp.lang.ada
> I've never seen any reference to a Linux

port of GWindows myself.
I certainly hope not.
The original rational for GWindows was
to be a rational Ada binding to the
Microsoft Windows API.
Changing that to some other OS/GUI
combination would be just wrong.
Which windowing API do you want on
GNU/Linux?
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Thu, 09 Nov 2006 07:38:26 -0500
Subject: Re: GWindows
Newsgroups: comp.lang.ada
David Botton had been looking into if
Gwindows would work well when linked
to winelib under Linux.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: Re: GWindows
Date: Fri, 10 Nov 2006 09:56:00 +0100
Newsgroups: comp.lang.ada
> Probably GTK+, because that's what I

know from GtkAda :-). More important
it is widely used and plain C, which
may make it easier to bind to than
something written in C++. But if there
is a better choice I wouldn't object.

Though GTK+ performs quite poorly on
Windows platform. And overall, when its
documentation tells you that you
fundamentally cannot save and restore the
position of a window, what could you
say?
In my opinion it must be 100% Ada. I
don't believe in C.
From: Pascal Obry <pascal@obry.net>
Date: Fri, 10 Nov 2006 23:40:23 +0100
Subject: Re: GWindows
Newsgroups: comp.lang.ada
GPS manages to work pretty well on
Windows and it is using GtkAda. It uses
to perform poorly, but things have
improved a lot since a year or so.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Fri, 10 Nov 2006 08:33:04 -0500
Subject: Re: GWindows
Newsgroups: comp.lang.ada
> But not making the GUI lib portable

makes it useless for projects targeting
more than just Windows.

Obviously.
So if you require portability across
platforms, don't use GWindows.

Ada-related Products 201

Ada User Journal Volume 27, Number 4, December 2006

On the other hand, making the GUI lib
portable means using only those features
common to all of the targeted platforms.
So if you want your application to be able
to take full advantage of the Win32 API,
use GWindows.

Erlang/Ada Interface
From: Samuel Tardieu <sam@rfc1149.net>
Subject: Re: PolyORB - building and

applications
Date: 21 Sep 2006 15:32:49 +0200
Newsgroups: comp.lang.ada
> I recall someone mentioning an Ada

program working as an Erlang node. So
perhaps you could leave the
communication to an Erlang system?

http://www.rfc1149.net/devel/adaerl

SecurePolyORB — CORBA
Common Secure
Interoperability v2
From: vgodunko@rostel.ru
Subject: ANNONCE: SecurePolyORB
Date: 16 Oct 2006 02:05:06 -0700
Newsgroups: comp.lang.ada
SecurePolyORB, an implementation of
CORBA Common Secure Interoperability
version 2, now available for download
from Ada-RU site:
http://www.ada-ru.org/files/
securepolyorb-0.2w.tar.gz
For now it provides:
- support for SSL/TLS transport
mechanism (authentication, encryption
and integrity control);
- support for GSSUP (user/password)
attribute layer authentication mechanism;
- identity assertion;
- delegation with backward trust
evaluation.

Avatox — Ada To XML
From: Marc A. Criley <mc@mckae.com>
Subject: Announce: Avatox 1.2 Now

Available
Date: Sun, 24 Sep 2006 20:09:02 -0500
Newsgroups: comp.lang.ada
Avatox (Ada, Via Asis, To Xml) is an
application that traverses an Ada
compilation unit and outputs the ASIS
representation of that unit structured as an
XML document.
Version 1.2 now supports UTF-8
character encoding, as well as switches to
retain ASIS tree files that pre-existed or
are generated on the fly, and to "krunch"
the XML output into a continuous, non-
indented stream.
Avatox 1.2 is available at
www.mckae.com/avatox.html.
From: Marc A. Criley <mc@mckae.com>
Organization: McKae Technologies

Subject: Announce: Avatox 1.3 now
available

Date: Sun, 19 Nov 2006 14:20:12 -0600
Newsgroups: comp.lang.ada
The format of the XML in the document
can be configured, and supplemental
source annotation can be generated.
Changes since version 1.2:
 - Fixed a bug that caused comments to
sometimes get skipped.
 - Added the ability to generate axfPoint
(AXF Points Of INformation for
Transformations) elements. These
elements provide supplemental context-
dependent information about the element
in which they're nested.
For this first release, axfPoint elements
are used to provide language-independent
identifiers for operators, e.g. "/=" is
annotated as "axfNe", and "&" is
"axfConcat". For more information see
the AXF_XML_FORMAT file in the
distribution and on the website.
Avatox 1.3 is available at
www.mckae.com/avatox.html.

Casbah — Ada Wikis
From: Peter.H.M.Brooks@gmail.com
Subject: Wiki written in Ada?
Date: 10 Sep 2006 11:55:06 -0700
Newsgroups: comp.lang.ada
I know that there are wikis about Ada, I
just wondered (I can't find a reference) if
there's a project to produce a wiki that's
written in Ada.
In particular, I'm interested to know if
there's a distributed wiki model being
developed in Ada.
From: Marius Amado-Alves

<marius@amado-alves.info>
Subject: Re: Wiki written in Ada?
Date: Thu, 14 Sep 2006 14:28:20 +0100
Newsgroups: comp.lang.ada
That would be the Casbah, available at
http://www.softdevelcoop.org/software/
(still in the old "software" directory,
waiting for man-hours to update the site ;)
It's Miai Certified progressive software.
A Casbah system is online at
http://www.liacc.up.pt/cgi-
bin/casbah/casbah.cgi
From: Peter.H.M.Brooks@gmail.com
Subject: Re: Wiki written in Ada?
Date: 10 Sep 2006 18:31:25 -0700
Newsgroups: comp.lang.ada
PHP is quick to write, fairly easy to
understand and has intuitive interfaces to
the front and back ends. I'd say that it
really was the nature of PHP that brought
about the idea of a wiki in the first place.
A testimony to the ease of writing in PHP
is the large number of separate wiki
engines that have been written in it

(relative to the smaller number in things
like C and Python).
To my mind, an Open Source Ada wiki
would be just as cross-platform now,
much safer to extend and much, much
more robust. So it would be a good
project. The overall structure of wikis has
become clearer now, so to draw up a spec.
based on the limits of current
implementation would be a useful job all
on its own.
From: Brian May

<bam@snoopy.apana.org.au>
Subject: Re: Wiki written in Ada?
Date: Sat, 16 Sep 2006 09:17:27 +1000
Newsgroups: comp.lang.ada
> PHP seems to be the language of choice

these days for web applications. [...]
I think the speed and robustness of a
compiled language would be ideal for
any large scale web application. Not an
interpreted language like PHP.

PHP is perceived as being quicker to
write.
Maybe for small and very simple projects
this might be true.
However, as the code size goes up,
productivity goes down, and risk of
security problems goes up. After you
factor in time wasted due to debugging
security breaches on a web server and not
getting anywhere. What virtual host did
the attacker break into? How did an
attacker run wget on this system? How
did the attacker execute the IRC server
after downloading it? Did the attacker do
any other damage?
[...] I think it would be an interesting
experiment to rewrite something like
Mediawiki in Ada + AWS.
From: Marius Amado-Alves

<marius@amado-alves.info>
Subject: Re: Wiki written in Ada?
Date: Tue, 19 Sep 2006 10:51:12 +0100
Newsgroups: comp.lang.ada
Yes. This is not opposed to what I said.
The thing is code size goes up very
quickly. For me 1000 lines is already an
indicator of "you should be coding in
Ada"—and not the large number
(1000000?) seen on some ads. Of course
here we are using "code size" more as a
symptom of reliability requirements and
the corresponding code _complexity_.
Also efficiency requirements. Clearly
requirements for a good wiki. In my lab
sometimes we use Moodle (PHP) and the
Casbah (Ada) for the same function
(writing something or collecting data
collectively). The Casbah beats Moodle in
speed hands down.

EWS — Embedded Web
Server
From: Simon Wright

<simon@pushface.org>
Subject: Re: programming a web with Ada

202 Ada-related Products

Volume 27, Number 4, December 2006 Ada User Journal

Date: Tue, 17 Oct 2006 19:55:24 +0100
Newsgroups: comp.lang.ada
> It would want to make a web page in

Ada
You can create a web server in Ada using
AWS (at http://libre.adacore.com), which
offers lots of standard protocols, or my
embedded web server (at http://embed-
web-srvr.sf.net/) which is very minimalist
by comparison. May be (probably are)
others.
[As can be read in the home page "EWS
is a web server construction kit, designed
for embedded applications using the
GNAT Ada compiler. The Embedded
Web Server is designed for use in
embedded systems with limited resources
(eg, no disk). It supports both static
(converted from a standard web tree,
including graphics and Java class files)
and dynamic pages. It is written in GCC
Ada." -—su]
From: Simon Wright

<simon@pushface.org>
Subject: Re: programming a web with Ada
Date: Wed, 18 Oct 2006 05:59:11 +0100
Newsgroups: comp.lang.ada
> Simon, does it have a name?
EWS of course, but unfortunately
someone on sf.net got there first!

SWIG — Simplified
Wrapper and Interface
Generator
From: rodkay@dodo.com.au
Subject: Re: C to Ada
Date: 23 Nov 2006 18:28:46 -0800
Newsgroups: comp.lang.ada
> Are there any up-to-date utilities for

converting a C *.h file into a Ada
wrapper package?

You might try the prototype SWIG 'ada'
and 'gnat' modules.
These attempt to generate Ada bindings to
both C and C++ libraries. The 'ada'
module is for any Ada compiler, and
produces bindings based on a 'proxy'
approach. The 'gnat' compiler targets the
GNAT family of compilers, and produces
Ada types and objects which are the
binary equivalent of their corresponding
C/C++ types.
> I don't care if it requires cleaning up by

hand afterwards.
The generated bindings are pretty rough,
and generally need to be 'pretty print'
formatted, by gnatpp or another tool.
There are also many style 'warts', which
should eventually be cleared up.
> Or is it considered better to write the

entire wrapper by hand?
Bindings done by hand tend to be better
than the auto-generated ones. SWIG
produces very thin bindings. A decent
compromise is to use SWIG to build a

thin binding, and then write a thick
binding by hand, on top of the thin.
> (considering a number of C libraries

that I would like to be able to access
from Ada here but with no native Ada
bindings yet).

There is an example of a few SWIG 'gnat'
bindings to the GNU Scientific Library
(GSL) at
svn co svn://58.163.88.116/anvil/gsl
SWIG with the 'ada' & 'gnat' modules is
available via
svn co https://svn.sourceforge.net/
svnroot/gnuada/trunk/projects/swig-1.3.29
The repository code is a little out of date,
but recent changes should be committed
within the next few days.
From: rodkay@dodo.com.au
Subject: Re: C to Ada
Date: 25 Nov 2006 15:52:47 -0800
Newsgroups: comp.lang.ada
> I am still not clear on the difference —

what is the 'proxy' approach?
With the 'proxy' approach, the Ada type
holds only a pointer to the wrapped C++
object. When an object of the the Ada
type is constructed, a corresponding C++
object is created, and its pointer stored in
the Ada type object. All operations on the
Ada object are then relayed to its internal
C++ object.
The 'gnat' binary approach produces an
Ada record layout which is equivalent to
the C++ class layout. Operations act
directly on the Ada object.
> Can I assume that the GNAT target uses

GNAT specific features and won't work
without GNAT??

Yes, the 'gnat' SWIG module produces
bindings which require a GNAT compiler.
Perhaps a similar approach (binary-
compatible) for other compilers might be
attempted, after the existing modules have
matured a little more.
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Sun, 26 Nov 2006 13:12:21 -0500
Subject: Re: C to Ada
Newsgroups: comp.lang.ada
> What's the status of the Ada SWIG

support, and where can I find it? I tried
Google, but it wasn't clear to me from
what I found whether such support is
available yet.

It is currently being worked outside of the
SWIG tree. The GNUAda project at
SourceForge setup an area in the SVN
tree so that if the current people working
on it abandon it, we don't loose the
progress.
The hope is that it will soon be mature
enough that it can be accepted into the
SWIG tree.
http://gnuada.svn.sourceforge.net/viewvc/
gnuada/trunk/projects/swig-1.3.29/

From: Jeffrey Creem
<jeff@thecreems.com>

Subject: Re: Ada (GNAT) and GNU
Scientific Library

Date: Sat, 18 Nov 2006 08:48:40 -0500
Newsgroups: comp.lang.ada
> There were also announcements of an

ongoing effort to produce a SWIG
module, however my understanding is
that is not yet finished (and IIRC it
aims at C++ bindings). Meanwhile you
can try throwing cbind at the task – it
may help produce some bindings at
least for the needed functions.

Actually, SWIG will bind to more than
just C++. It really is a N-way language
binding generator. I've not checked the
progress recently (the work is being done
in the SVN repository of of the GNUAda
project on SourceForge).

Cbind
From: george@gentoo.org
Subject: Re: Ada (GNAT) and GNU

Scientific Library
Date: 18 Nov 2006 01:41:35 -0800
Newsgroups: comp.lang.ada
On a related note, I recently "resurrected"
the cbind package. It was one of the
packages we had in portage (that's
Gentoo) and which I did not, at the time,
update yet. The usual search however did
not turn up any update information. In
fact all the references I found were
pointing at the location which now look
dead (If anybody can give me any
pointers to anything "official" I'd be
grateful to hear of course). Fortunately we
still had the sources on our mirrors, so I
somewhat cleaned them up and
repackaged (I don't remember all the
details right now, minor stuff mostly.
Most notably, I converted some script
from csh to bash, in order not to force tcsh
dependency just for one 20-liner. The rest
was trivial IIRC (not that even that was
hard :)))
If anybody is interested to have it you can
get the repackaged sources here:
http://dev.gentoo.org/~george/src/cbind-
6.0.tar.bz2
or on any of our mirrors. Just run make to
build, it only needs GCC and make
AFAICT. I intend to keep it for as long as
I can "maintain" it. I briefly tested it on
some .c file - incidentally that was my
attempt to test some gsl function :), and it
seemed to spit some reasonably looking
code for some gsl header file. Although I
did not test this further at the time.

Cairo Ada binding
From: Damien Carbonne

<damien.carbonne@free.fr>
Date: Wed, 25 Oct 2006 23:46:28 +0200
Subject: Cairo Ada binding
Newsgroups: comp.lang.ada

Ada-related Products 203

Ada User Journal Volume 27, Number 4, December 2006

I have a working (at least for all tests I
have done with it !) Cairo Ada 95
binding. As soon as Cairo people are OK
with it (from Cairo's viewpoint), I expect
to publish it completely on Cairo site.
Till then, I have put its user API here:
http://damien.carbonne.free.fr/cairoada/in
dex.html
All comments would be welcome.
From: Seth Brutzman

<s.brutzman@gmail.com>
Subject: Re: Cairo Ada binding
Date: 26 Oct 2006 12:12:00 -0700
Newsgroups: comp.lang.ada
> What's Cairo?
Cairo is a slick 2D graphics library (not a
GUI toolkit). Information can be had at
http://www.cairographics.org.
Interesting things to note are that it is
cross-platform, can output to several
different formats including SVG and
PDF, and is well on its way to being
hardware accelerated through OpenGL.
Downside? It's written in C. ;)
From: Damien Carbonne

<damien.carbonne@free.fr>
Date: Thu, 26 Oct 2006 23:14:20 +0200
Subject: Re: Cairo Ada binding
Newsgroups: comp.lang.ada
> Providing a .tar.gz would be good; it's

far easier to browse code on my
computer than on the web. Especially if
it compiles.

You can download current version of the
binding here :
http://damien.carbonne.free.fr/download/
Some of the possible changes I could
make are listed in the TODO file. Using
Cairo with GtkAda needs the addition of a
small package (Gdk.Cairo) that needs to
be written. I expect to put everything soon
on Cairo official site.

GLOBE_3D — 3D Engine
From: Gautier de Montmollin

<gdemont@hotmail.com>
Subject: Ann: GLOBE_3D, Upload: 14-Oct-

2006
Date: Sat, 14 Oct 2006 21:35:05 +0200
Newsgroups: comp.lang.ada
GLOBE_3D means "GL Object Based
Engine for 3D".
News
- GLOBE_3D is now independent of CPU
architecture; runs on Macintosh (Mac OS
X - PPC)
- binary Input-Output of 3D objects or
linked groups of objects implemented
- Binary Space Partition (BSP), for
quickly locating a point in a group of
objects

- tool: level-to-Ada translator for Doom 3,
Quake 4 and other games
GLOBE_3D is an open-source software.
It allows an easy and fast real-time
display of objects, of any kind, or groups
of connected objects like a series of
rooms with open doors.
One single source set – without any
conditional compilation – for all target
platforms and compilers. Works on
- operating systems: Windows, Linux,
Mac OS X
- compilers: GNAT, ObjectAda
More details here:
http://homepage.sunrise.ch/mysunrise/
gdm/g3d.htm
Newsletter on demand.
[See also same topic in AUJ 27-2 (Jun
2006), p.72. —su]

Vim Ada-Mode
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: [Vim] Ada language Mode.
Date: Sun, 08 Oct 2006 17:55:34 +0200
Newsgroups: comp.editors,comp.lang.ada
I have created a new language mode for
Ada and would like anybody who
interested in Ada and Vim to comment
on.
The new mode offers:
* Support for Ada 2005 keywords.
* Improved syntax highlight (Including
all standard Pragmas and Attributes).
* User completion (Keyword, Pragmas,
Attributes)
* Omni completions (using ctags or gnat
xref).
* Tag search (using ctags or gnat xref).
* Unified on-line help (One ada.txt for
all).
* Compiler support for GNAT and Dec
Ada (using an extensible OO-Design).
* Three different folding mechanisms.
* All function are autoloaded.
* Optimised for Vim 7
The aim is to replace the Ada language
mode, which is currently part of the
standard run-time, with this new mode.
http://www.vim.org/scripts/script.php?scri
pt_id=1609
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: Vim Ada Mode: first upstream step
Date: Sun, 12 Nov 2006 19:51:00 +0100
Newsgroups: comp.lang.ada
To keep you updated: The new Vim Ada
mode did its first upstream step – that is
Bram accepted the patches and uploaded
them to the ftp server.
ftp://ftp.vim.org/pub/vim/runtime/

[See also same topic in AUJ 27-3 (Sep
2006), pp.139-140. —su]

Regular Expressions in Ada
From: Matthias Kistler

<matthias.kistler@gmx.de>
Subject: Regular Expressions in Ada 2005?
Date: 8 Nov 2006 12:53:02 -0800
Newsgroups: comp.lang.ada
Does anybody know, if it's possible to use
regular expressions in Ada 2005? I come
from Perl and I'm very interested in Ada
but it's useless for me without the
possibility of using regular expressions
similar to Perl.
I found a GNAT-package providing only
a regex-matcher. But I also need a
replacer. Otherwise it'd be useless for me.
Does anybody know about regular
expressions in Ada 2005? Is there any
tutorial? Is there at least an Ada-library?
Or can just anybody explain to me, how
to use regexes in Ada?
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Wed, 08 Nov 2006 22:14:51 +0100
Subject: Re: Regular Expressions in Ada

2005?
Newsgroups: comp.lang.ada
Ada comes with a rich set of string
manipulation packages, Ada.Strings.*,
Ada.Characters.*, Ada.*Text_IO.Editing.
They cover a fair bit of what you would
do using Perl's expressions and translation
operators in a sane way.
The GNAT packages do provide scanning
and replacement. There is a tutorial in the
package specifications.
Example programs:
http://shootout.alioth.debian.org/gp4/benc
hmark.php?test=regexdna&lang=gnat&id
=3
http://shootout.alioth.debian.org/gp4/benc
hmark.php?test=regexdna&lang=gnat&id
=4
#3 uses Unix style regular expressions.
#4 uses SPITBOL regular expressions.
SPITBOL patterns are quite powerful and
fast, in fact you can write an entire
program just as a pattern. But don't do
that.
From: Pascal Obry <pascal@obry.net>
Date: Wed, 08 Nov 2006 22:49:50 +0100
Subject: Re: Regular Expressions in Ada

2005?
Newsgroups: comp.lang.ada
You have seen GNAT.Regexp but
probably not GNAT.Regpat. The later
does support replacement. As noted by
others there is also GNAT.Spitbol.

204 Ada-related Products

Volume 27, Number 4, December 2006 Ada User Journal

From: Jeffrey R. Carter
<jrcarter@acm.org>

Subject: Re: Regular Expressions in Ada
2005?

Date: Thu, 09 Nov 2006 00:13:38 GMT
Newsgroups: comp.lang.ada
You can also look at
PragmARC.Regular_Expression_Matcher
(and its instantiation for Character and
String, PragmARC.
Character_Regular_Expression_Matcher).
The demo program, strm_sub, is a
matching and replacing filter.
http://pragmada.home.mchsi.com/

Player-Ada — Robotic
Platform Binding
From: Alex R. Mosteo

<alejandro@mosteo.com>
Subject: [ANN] Player-Ada 2.0.3.0 released
Date: Thu, 26 Oct 2006 19:51:01 +0200
Newsgroups: comp.lang.ada
Player-Ada is a binding for the
Player/Stage robotic platform.
Player-Ada is a not-so-thin binding to the
libplayerc client library that is distributed
as part of the Player/Stage multi-robot
interface/simulator software.
It currently implements the following
interfaces: blobfinder, gps, laser, localize,
planner, position2d, simulation.
Binding homepage: http://ada-player.sf.
net/
Player homepage:
http://playerstage.sf.net/
From: Alex R. Mosteo

<alejandro@mosteo.com>
Subject: Re: [ANN] Player-Ada 2.0.3.0

released
Date: Fri, 27 Oct 2006 10:42:27 +0200
Newsgroups: comp.lang.ada
> Hardware?
The binding has only been tested in Linux
with GNAT, but it's supposed to be pure
Ada 95 without using GNAT extensions.
Quoting Player FAQ:
"Player runs on pretty much any POSIX
platform, including embedded systems
(Player has been cross-compiled to run on
several ARM- and PPC-based Linux
systems). Specifically, Player's
requirements are:
* POSIX development environment, with
threads (pthreads)
* TCP stack
* A compiler with both C and C++ (we
have only tested GCC, but other
compilers may work)
* A bash shell, to run the configure script;
this implies that Player will not build
natively in Windows, though some users
have it running under Cygwin, and there
are rumors of MinGW builds as well."
If you refer to what robots can be
controlled with player:

http://playerstage.sourceforge.net/doc/Pla
yer-cvs/player/supported_hardware.html
I have used it with Pioneer3 DX/AT
robots equipped with sonar and SICK200
lasers.
From: Alex R. Mosteo

<alejandro@mosteo.com>
Subject: Re: [ANN] Player-Ada 2.0.3.0

released
Date: Fri, 27 Oct 2006 12:03:10 +0200
Newsgroups: comp.lang.ada
> If I correctly understood it is not

embedded, the thingy is controlled by a
PC.

Well, no and yes. In our case, the Pioneer
robots have an embedded board with
PC/104 socket that allows to have a x86
platform running linux. Player connects to
the hardware via RS232. But I suppose
you refer to more exotic platforms?
You can check more details here:
http://mobilerobots.com/
From: Alex R. Mosteo

<mosteo@gmail.com>
Subject: Re: Player-Ada 2.0.3.0 released
Date: 28 Oct 2006 02:53:08 -0700
Newsgroups: comp.lang.ada
> Does the robot have to be connected to

the PC (RS232) in order to function?
If your question is if you can flash some
program inside the robot microcontroller
and completely forget about the serial and
external things, I think the answer is no,
or not easily. The robot's microcontroller
is documented and its OS is upgradeable.
I don't think the documentation says
enough to replace the OS with something
else, but certainly this is not the use the
manufacturer has in mind. The intended
use for the robot is via serial. You'd also
have other problems: the microcontroller
has access to wheels and sonars, but not
to laser that is a completely isolated
entity. Maybe you could use the now
unused serial to link these two.
In the other hand, nothing mandates that
the client (user) side of the serial is a PC.
The protocol is documented so you could
use whatever you want. In fact the robot
can be purchased with or without
embedded PC. Without it, you need either
a radio serial, a laptop to put on the robot,
or something else. The advantage of a PC
is that you have out-of-the box the
proprietary software provided, and Player
as an open source option.
If you're concerned with a full real-time
solution, this is doable: the
microcontroller OS is RT and the periods
of wheel encoders and sonars feedback
are documented. So nothing precludes
using some RT-Linux or other RTOS in
the client side.
(Actually, these Pioneer robots are
popular within the robotic community.
You can probably find other PC software

interfaces as well. CARMEN comes to
mind).
http://carmen.sourceforge.net/
hardware.html

Ada-related Products
AdaCore Launches Remote
Programming Solution
URL:

http://www.adacore.com/2006/10/11/ada
core-launches-remote-programming-
solution/

Wednesday October 11, 2006
AdaCore Launches Remote Programming
Solution
Advanced IDE facility brings significant
productivity benefits to software
developers
PARIS / NEW YORK, October 11, 2006
– AdaCore, the leading provider of
commercial Ada development tools, is
pleased to announce the launch of its
Remote Programming solution, an
advanced feature of the company’s
GNAT Programming Studio (GPS) 4.0
Integrated Development Environment
(IDE). The GPS Remote Programming
facility provides a secure, efficient, and
flexible way for software development
teams to reduce costs by taking full
advantage of their desktop computers and
networks.
“Many of our customers have
development teams that use client desktop
PCs connected to a central server,” said
Robert Dewar, CEO, AdaCore. “With
Remote Programming, project members
can utilise their PCs’ full processing and
graphical power to run the GPS IDE, with
program builds launched on the server
and with files automatically synchronised
between client and server.”
How it Works
In traditional software development
scenarios, operations are executed on a
central server. Developers either use an
IDE displayed via an X Window system,
or abandon the IDE all together and resort
to using a text editor and terminal. When
using an IDE, all functions are carried out
on the central server, which requires large
network and power resources, thus
increasing infrastructure costs.
By contrast, AdaCore’s GPS Remote
Programming facility separates the
software development project into a
multiple client, single/multiple server
environment. It makes all project sources
available on both the desktop PC and the
server, which allows IDE-related
operations to be carried out on the local
desktop computer using the local CPU,
display, and memory. As soon as a remote
action is required, such as compilation,
debugging or execution, the IDE

Ada-related Products 205

Ada User Journal Volume 27, Number 4, December 2006

automatically connects to the remote
machine, synchronises the files when
necessary, and performs the action.
Limiting the number of operations carried
out on the remote server significantly
reduces the amount of required network
and power usage.
Features/Benefits
AdaCore’s GPS Remote Programming
feature offers the major benefits of the
“one server/multiple clients” solution,
including:
* Greater control of the development
environment, ensuring that the code that
is tested will be exactly the production
code that will run.
* Easier installation of node-locked
software, and easier sharing of project
sources and builds.
* Ability to develop software that is
portable from desktop PCs to several
platforms.
Pricing and Availability
Remote Programming is available in
GNAT Programming Studio (GPS) 4.0
that accompanies the GNAT Pro
development toolset. Contact AdaCore for
the latest information on pricing and
supported configurations.
(sales@adacore.com)
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, a modern programming language
designed for large, long-lived applications
where reliability, efficiency and safety are
critical. AdaCore’s flagship product is
GNAT Pro, which comes with expert
online support and is available on more
platforms than any other Ada technology.
AdaCore has customers worldwide; see
http://www.adacore.com/home/company/
customers/ for more information. Use of
Ada and GNAT Pro continues to grow in
high-integrity and safety-critical
applications, including commercial and
defence aircraft avionics, air traffic
control, railroad systems, financial
services and medical devices. AdaCore
has North American headquarters in New
York and European headquarters in Paris.
www.adacore.com

AdaCore — GNATstack
Tuesday October 31, 2006
AdaCore Announces New Software Stack
Analysis Tool
GNATstack ensures safe stack calibration
in software systems; creates audit trail for
certified applications
NEW YORK and PARIS, October 31,
2006 – AdaCore today launched
GNATstack, a software analysis tool that
enables software development teams to
accurately predict the maximum size of
the memory stack required to host an
embedded software application.

GNATstack is an important component of
AdaCore’s High-Integrity solution
(GNAT Pro HIE), which is an enhanced
Ada development environment used for
building safety-critical, embedded
software applications that require
certification. The tool is targeted at
system designers creating high integrity
and high reliability embedded
applications.
“Manually calculating the amount of
memory that should be allocated to a
memory stack increases the risk that an
embedded application will use more
memory on the stack than is available,
which can result in memory corruption,
unpredictable execution, or a fatal system
crash,“ said AdaCore senior software
engineer Jose Ruiz. “GNATstack uses
data generated by the compiler to
determine the worst-case stack
requirements. This output is used to
ensure that sufficient memory is reserved
for the stack(s), and to guarantee that the
software application executes safely.”
About GNATstack
GNATstack calculates the worst-case
stack requirements for every stack entry
point by performing per-subprogram stack
usage as well as control flow analysis.
The tool provides an audit trail for the
certification of high integrity and high
reliability applications, and can detect and
display a list of potential problems when
calculating the stack requirements,
including:
- Indirect (including dispatching) calls:
the tool will indicate the number of
indirect calls made from any subprogram.
- External calls: the tool displays all the
subprograms that are reachable from any
entry point that does not have a stack or
call graph information.
- Unbounded frames: the tool displays
each reachable subprogram that has an
unbounded stack requirement. The
required stack size depends on the
arguments passed to the subprogram.
- Cycles: the tool can detect all the cycles
in the call graph.
Availability and Pricing
GNATstack is available in the GNAT Pro
HIE package and as an add-on for GNAT
Pro. For more information on GNATstack
features, please visit
http://www.adacore.com or contact
AdaCore (sales@adacore.com).

AdaCore — PyGTK
URL:

http://www.adacore.com/2006/11/22/pyg
tk-a-testing-solution-for-gps/

PyGTK: A testing solution for GPS
Wednesday November 22, 2006
The GNAT Programming Studio,
AdaCore’s IDE, has been enhanced to

allow python scripts that use PyGTK’s
interface to the GTK+ toolkit to interact
with it.
GPS architecture allows the user to
interact with the GUI by means of scripts
written in either the simple GPS script
language or in python. Current versions of
GPS offer the possibility, for example, to
open a new source editor and move the
cursor to the end of the buffer by writing:
* ed = GPS.EditorBuffer.get (GPS.File
(”src.adb”))
* ed.current_view().goto
(ed.end_of_buffer())
What PyGTK brings is the ability to
simulate user-level actions such as mouse
clicks or key strokes, to manipulate
complex widgets such as GTK’s
TextView and TreeView, to activate
contextual menus, etc.
This is a revolution as far as GPS testing
is concerned because it allows most
actions that previously required human
interaction to be completely automated.
For example, let’s assume an action opens
a dialog containing an OK button.
Simulating a mouse click on it is as
simple writing:
* ok_button.clicked()
PyGTK allows automatic testing of
everything including the most complex
GUI aspects such as focus issues, signal
handling, etc.

AdaCore — Transition to
GCC 4.1 backend
New stage in the transition to GNAT Pro

based on gcc 4.1 backend
Friday November 17, 2006
We are in the process of transitioning the
GNAT Pro technology to a new compiler
back-end based on GCC 4.1 which we
expect to bring significant performance
improvements to user applications. Our
goal is to have several of our supported
configurations on this back-end for the
next major GNAT Pro release scheduled
early 2007. We have been able to make
significant progress in the areas of general
stability and in the support for numerous
platforms thanks to invaluable input
provided by our customers. This latest
beta version includes support for most of
the new Ada 2005 features and is our
most advanced Ada 2005 technology.
Please do not hesitate to contact us if you
have any questions concerning this
program.

AdaCore — Ada 2005
support in gnatpp
Partial support for Ada 2005 features in

gnatpp
Tuesday November 7, 2006

206 Ada-related Products

Volume 27, Number 4, December 2006 Ada User Journal

A new -gnat05 option is added to gnatpp.
When called with this option, gnatpp can
process Ada sources containing some Ada
2005 features:
- overriding indicators
- null subprograms
- interface types
- generalized anonymous access types
- null exclusion
- tagged incomplete types
- limited aggregates (’<>‘ in component
 associations)
- subprogram calls given in
 Object.Operation notation
- limited and private with clauses
- raise with string message
- formal abstract subprograms
- partial parameter lists for formal
 packages
A future gnatpp version will fully support
Ada 2005.

AdaCore — New Version
Numbering for GNAT Pro
New Version Numbering for GNAT Pro
Friday November 10, 2006
In 2007 AdaCore will be moving to a new
numbering scheme for product releases.
Instead of two-part version numbers such
as 3.15a or 5.04a1, we will be using the
more common convention of three
numbers separated by dots. The first
number, as at present, will identify a
major release and will thus indicate the
introduction of significant new
functionality. The second number will
correspond to the digits after the dot in the
current scheme. And the third number
will replace the suffix (such as “a” or
“a1”) used at present. “0” as the third
number will be used for a beta version,
“1” for an initial release, and higher
numbers for subsequent releases.
In order to acknowledge the full support
for the new Ada 2005 features, the GNAT
Pro major version number is moving to
the 6 series. More specifically, the version
scheduled for Q1 2007 will be 6.0.1, and
the follow-up release scheduled for later
in the year will be 6.0.2. The planned
releases in 2008, incorporating
enhancements to be made during 2007,
will then be 6.1.1 and 6.1.2.
Customers can find more information in
the “Our support policy” on GNAT
Tracker.

Adalog — AdaControl
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Subject: AdaControl V1.5 released
Date: Wed, 11 Oct 2006 19:03:44 +0200
Organization: Adalog
Newsgroups: comp.lang.ada
Adalog is pleased to announce the release
of a new version of AdaControl, the free
tool for checking Ada programming rules.

Usually, this kind of announcement lists
the improvements over the previous
version, but we won't do it this time; there
are too many!
Suffice it to say that AdaControl features
now 45 rules, with many sub-rules,
making a grand total of 156 different
checks available!
Usability has improved a lot too, with a
complete integration into GPS.
To learn more about AdaControl, (and
download it), go to
http://www.adalog.fr/adacontrol2.htm
Parts of the new developments have been
supported by EuroControl, BelgoControl
and CSEE-Transport.
As always, AdaControl is provided under
the GMGPL license, which allows you to
use it, or any part of it, without
restrictions.
Adalog provides commercial support for
AdaControl and can develop new rules
that fit your particular needs; it also
provides consultancy about coding
standard. If you are interested, please
write to info@adalog.fr
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Subject: AdaControl V1.6 released
Date: Wed, 06 Dec 2006 16:44:39 +0100
Organization: Adalog
Newsgroups: comp.lang.ada
Adalog is pleased to announce the release
of version 1.6r8 of AdaControl, the free
rule checker for Ada.
Thanks to the support of our new
customer SAGEM-DS and contributions
from R. Toy, AdaControl now offers 216
possible checks.
Of special interest are rules to check that
header comments match a given pattern,
indication of possible false positive and
false negative due to non-statically
analyzable constructs, fine definition of
constructs allowed in entry barriers
(including the one of the Ravenscar
profile), even better integration into GPS,
and much much more.
As usual, AdaControl is provided under
the GMGPL license, and can be
downloaded from
http://www.adalog.fr/adacontrol2.htm.
AdaControl is a commercial product of
Adalog; for information about support
and assistance with AdaControl or more
generally issues related to coding rules
enforcement, please write to
info@adalog.fr
[See also “AdaControl” in AUJ 26-4 (Dec
2005), p.239. —su]

Aivosto — Visustin v4
Visustin v4 Automates Flowcharting and
UML Diagramming

November 30, 2006

Aivosto has updated Visustin, an
automated software diagramming utility.
With Visustin, software developers can
reverse engineer their source code into
flow charts and UML activity diagrams,
saving their manual drawing efforts.
Users can print the diagrams or export to
Visio, PowerPoint and Word.
The new Visustin v4 visualizes programs
at three levels: a detailed flow chart, a
"bird's eye" overview and a codeless
mode showing program structure only.
Recent improvements include flow chart
metrics, UML activity diagrams and
support for 29 programming languages.
"Visustin makes flowcharting painless",
said Tuomas Salste, President of Aivosto.
"With the click of a button, you diagram
an entire class or a module. Developers
can spend their time developing, not
drawing. Automated diagramming
ensures documents will be up-to-date
rather than lagging behind development."
Visustin v4 supports a total of 29
programming languages: Ada, ASP,
BASIC, C/C++, C#, Clipper, COBOL,
Fortran, Java, JSP, JavaScript,
LotusScript, MASM, MSP430, NASM,
Pascal/Delphi, Perl, PHP, PL/SQL,
PowerScript, PureBasic, Python,
QuickBASIC, REALbasic, T-SQL, VB,
VBA, VB.NET and Visual FoxPro.
Supported operating systems:
Windows
95/98/ME/NT/2000/XP/2003/Vista.
Supports DOS and Mac code.
Visustin home page:
http://www.aivosto.com/visustin.html
About Aivosto:
Aivosto Oy is an innovative producer of
software development tools. Established
in 1997 in Helsinki, Finland, Aivosto
specializes in utilities for software
documentation, optimization, quality
assurance and productivity.
[See also “Aivosto — Visustin v3.1
connects with Project Analyzer” in AUJ
27-1 (Mar 2006), p.12. —su]

Aonix — AonixADT Eclipse
Toolkit
From: Tom Grosman <grosman@aonix.fr>
Subject: ANN- AonixADT Ada Development

Toolkit for Eclipse v. 3.11
Date: Fri, 15 Sep 2006 17:36:38 +0200
Organization: Aonix
Newsgroups: comp.lang.ada
Aonix is pleased to announce the release
of AonixADT 3.11, the first publicly
available version of our commercial
quality Ada Development Toolkit for
Eclipse.
AonixADT is a freely available plugin for
Ada language development in Eclipse. In
addition to supporting standard Eclipse

Ada-related Products 207

Ada User Journal Volume 27, Number 4, December 2006

functionality and views, AonixADT also
provides:
Support for Multiple Ada Compilers and
Tools
* ObjectAda toolchain support
* GNAT toolchain support
Ada Project Navigator
* Ada-specific navigation of project files
and folders with expansion of files to
show internal constructs (variables,
subprograms, types, etc.)
* Navigation to and from source code in
the Ada Editor.
Ada 95 Colorizing Editor
* Customizable colorization of Ada
source code
* Editor support for configurable code
indentation while new code is written.
* Automatic parenthesis matching, block
matching, etc.
* Semantic, project-wide navigation of
Ada objects (variables, units, etc.) from
editor including opening of the spec and
body declaration and searching for
references.
* Syntactic and Semantic Code Assist for
Ada constructs as well as application
objects such as variables, packages,
procedures, functions, types, exceptions,
and tasks.
Build Automation
* Automatic, incremental builds of
projects.
Configuration File
* Storage of all project build properties in
ASCII text files which can be put under
CM control along with source files.
Navigation to Compilation Errors
* Build errors are displayed in Problems
view with navigation to errors in source
code.
Navigation to ARM
* Build errors allow easy navigation to
relevant section of hypertext Ada 95
Reference Manual for ObjectAda.
Pretty Printing
* Whole file source code reformatting to
match project-customizable preferred
format.
* Support for gnatpp pretty printer.
Multiple Partitions
* Support projects that contain software
for more than one partition. This means
the ability to build more than one
executable in one project space.
Eclipse Wizards
* Ada Project Wizards
* File, Package, Procedure, Function
creation wizards.
Compatibility with Other Languages
* Support for multi-language projects
using CDT and other Eclipse plugins.

Configurable Toolchains
* Support for configuration of multiple
Ada toolchains.
Multi-language Graphical Debugger
* Support for configuring and debugging
of executables and attaching to already
running processes.
AonixADT v311 is available at
http://www.aonix.com/adt.html.
Aonix is an Add-in Provider Member of
the Eclipse Foundation.
From: Tom Grosman <grosman@aonix.fr>
Subject: Re: ANN- AonixADT Ada

Development Toolkit for Eclipse v. 3.11
Date: Fri, 15 Sep 2006 17:44:33 +0200
Organization: Aonix
Newsgroups: comp.lang.ada
Our website currently has
AonixADTv311 for Windows 2000 and
XP, with Linux and Solaris versions to be
made available shortly.
ObjectAda 8.2+ as well as various
flavors/versions of GNAT are supported.
The Quickstart guide available in pdf
from the ADT download page will should
give you a good idea of the functionality
and look and feel of ADT.
From: Tom Grosman <grosman@aonix.fr>
Subject: [ANN]- AonixADT for Eclipse now

available for Intel/Linux and
Sparc/Solaris for GNAT

Date: Mon, 30 Oct 2006 18:19:06 +0100
Organization: Aonix
Newsgroups: comp.lang.ada
Aonix is pleased to announce AonixADT
v311, the first publicly available release
of our Eclipse Ada Development plugin
for Intel Linux and Sparc Solaris. In
addition to introducing support for Linux
and Solaris, version 3111 updates
AonixADT for Windows by adding
support for low-level debugging
operations and other enhancements.
AonixADT supports GNAT and
ObjectAda toolchains and includes
support for
Ada Project Navigation
Ada Semantic Browsing
Ada 95 Colorizing Editor
Ada Semantic Code Assist
Multilanguage Development
Multiple Build Configurations
File Creation Wizards
Code Formatting
Native Debugging from within Eclipse
More information about AonixADT and
downloads are available at
http://www.aonix.com/adt.html.
From: Tom Grosman" <gros...@aonix.fr>
Subject: Re: Eclipse Plug-In
Date: Thu, 17 Aug 2006 13:18:22 +0200
Organization: Aonix
Newsgroups: comp.lang.ada
> Any chance of it working on Mac OS

X?

Unless you're talking about Eclipse
running in a Windows emulator on the
MAC, then I'm afraid the answer is no.
While AonixADT is of course written
mostly in Java, there are some bits that
are system dependant, including pre-built
executables.
From: Tom Grosman <grosman@aonix.fr>
Subject: Re: ANN- AonixADT Ada

Development Toolkit for Eclipse v. 3.11
Date: Mon, 9 Oct 2006 17:47:08 +0200
Organization: Aonix
Newsgroups: comp.lang.ada
> I don't understand is why a Java plugin

for an IDE written in Java wouldn't run
on all platforms automatically. I
understand that the SWT GUI stuff is
platform specific, but I would think that
would mean just recompiling.

FWIW, JDT and CDT (in addition to
Eclipse itself) also have separate plugins
for different platforms.

Aonix — ObjectAda for
Windows 8.2
From: Owner-Intel-ObjectAda <owner-

intel-objectada@aonix.com>
To: intel-objectada@aonix.com
Date: Thu, 12 Oct 2006 17:25:24 -0700
Subject: Intel-OA: New ObjectAda 8.2

Update
A new update for Aonix ObjectAda for
Windows 8.2, 1102V82-U5, is now
available at
http://www.aonix.com/ada_patches.html.
Please see the Release Notes for further
details on the corrections made and
installation instructions. The release
notes can be viewed at
ftp://ftp.aonix.com/pub/adats/outgoing/11
02/8.2/U5/1102V82-U5.Release_Notes.
Downloading ObjectAda updates requires
a password which can be obtained from
your local Aonix Customer Support
department. Please note that a current
maintenance agreement is required to
obtain the password.
For information on obtaining or renewing
a maintenance agreement, please contact
your nearest Aonix Sales office. For
contact information see
http://www.aonix.com/contact_us.html.
[See also same topic in AUJ 27-3 (Sep
2006), p.143. —su]

DDC-I — SCORE for Texas
Instrument's DSP
DDC-I Announces Availability of SCORE

Integrated Development Environment for
TMS320C40 DSP

Provides seamless upward migration path
from Ada 83 to mixed Ada 95/Embedded
C++ for legacy C40 code.

208 Ada and GNU/Linux

Volume 27, Number 4, December 2006 Ada User Journal

Phoenix, AZ. December 4, 2006. DDC-I,
a leading supplier of development tools
for safety-critical applications, today
announced the availability of its
SCORE® Integrated Development
Environment (IDE) for Texas Instrument's
TMS320C40. The SCORE IDE makes it
easy for C40 developers to take existing
Ada 83 programs developed for the C40,
upgrade them using a mixture of Ada 95
and Embedded C++, and deploy them on
a royalty-free Ada 95 run-time system.
The SCORE IDE also makes it easy for
C40 developers to migrate their code to
other processors such as the PowerPC and
X86, with the unique ability to debug
multiple targets and languages at the same
time.
"There has been a lot of Ada 83 code
developed for the C40, particularly in
defence applications," said Bob Morris,
president and CEO of DDC-I. "SCORE
provides a modern, best-in-class mixed
language development environment that
makes it easy for C40 developers to
upgrade their Ada 83 code and take
advantage of the latest Ada 95 and
Embedded C++ technology. SCORE also
makes it easy for developers to migrate
existing C40 code to new processors."
To support the C40, DDC-I has developed
a new C40 compiler, code generator, and
disassembler. The SCORE IDE provides
full JTAG multiprocessor debugging for
the C40, including trace and the ability to
monitor all registers. SCORE also
provides a PC-based C40 instruction set
simulator.
SCORE® is a mixed-language, object-
oriented IDE for developing and
deploying safety-critical applications.
SCORE provides optimizing compilers
for Ada, C, Embedded C ++, and
Fortran77, all of which pass the
applicable ACATS, PlumHall, Perennial,
and FCVS compiler validation suites.
The SCORE® IDE features an intuitive
GUI with industry leading features such
as a color-coded source editor, project
management support, and automated
build/make utilities. SCORE's mixed-
language, multi-window, symbolic
debugger recognizes C/EC++, Ada and
Fortran syntax and expressions, and can
view objects, expressions, call chains,
execution traces, interspersed machine
code, machine registers, and program
stacks. The debugger supports full Ada-
level debugging, including constraints,
attributes, tasking, exceptions, break-on-
exception and break-on-tasking events.
The debugger is non intrusive, can debug
at the source or machine level, and can be
enabled without changing the generated
code.
SCORE provides versatile run-time target
options, including a bare run-time system
certifiable to Level A of the FCC DO-
178B standard, and an enhanced bare run-

time system for simulated and emulated
environments.
The SCORE IDE is available immediately
for the TMS320C40. Pricing starts at $
5000.
About DDC-I, Inc.
DDC-I, Inc. is a global supplier of
software development tools, custom
software development services, and
legacy software system modernization
solutions, with a primary focus on safety-
critical applications. DDC-I's customer
base is an impressive "who's who" in the
commercial, military, aerospace, and
safety-critical industries. DDC-I offers
compilers, integrated development
environments and run-time systems for C,
Embedded C++, Ada, JOVIAL and
FORTRAN application development.

McKae Technologies —
XML EZ Out
From: Marc A. Criley <mc@mckae.com>
Date: Sun, 24 Sep 2006 13:54:26 -0500
Subject: Announce: XML EZ Out 1.05

Available
Newsgroups: comp.lang.ada
XML EZ Out is a small set of packages
intended to aid the creation of XML-
formatted output from within Ada
programs. It basically wraps the tags and
data provided to it with XML syntax and
writes them to a user-supplied medium.
This medium can be any sort of writable
entity, such as a file, a memory buffer, or
even a communications link, such as a
socket. The only functionality required of
the medium is that it supply a meaningful
"Put" (for writing a string) and
"New_Line" procedure.
Simply "with" the desired package,
instantiate it if necessary, and then "use"
it. The XML EZ_Out packages are
explicitly designed to have "use" clauses
applied.
Version 1.05 adds a couple features, one
to let applications set and change the style
of the generated XML, either as indented
or continuous, during run-time instead of
as a parameter of the instantiation.
The other addition controls the presence
of attributes that have no content, i.e, an
empty string. By default the attribute is
not output in this situation, but setting
Default_Output_Null_Attributes to True
forces those attributes having empty
content to be output. [Suggested by
Niklas Holsti.]
Licensing is GMGPL.
www.mckae.com/xmlEz.html

Ada and GNU/Linux
Ada support in Ubuntu
From: Marc A. Criley <mc@mckae.com>

Organization: McKae Technologies
Subject: Re: ubuntu gcc
Date: Sat, 11 Nov 2006 09:06:44 -0600
Newsgroups: comp.lang.ada
> Does the GCC that comes with Ubuntu

GNU/Linux support Ada (with
appropriate packages installed)?

Yes, "gnatmake -v" for Ubuntu 6.06
shows:
GNATMAKE 4.0.3 (Ubuntu 4.0.3-
1ubuntu5)
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: ubuntu gcc
Date: Sat, 11 Nov 2006 17:01:28 +0100
Newsgroups: comp.lang.ada
I recommend against it; in Ubuntu 6.06
"Dapper Drake" I recommend using the
"gnat" package from universe instead.
This is GNAT 3.15p and it comes with
the full complement of libraries, like in
Debian.
Ubuntu 6.10 "Edgy Eft" contains all the
Ada packages transitioned to GCC 4.1.1,
also by means of package "gnat", also in
universe.

AdaControl Linux package
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: AdaControl V1.5 released
Date: 25 Oct 2006 08:11:20 -0700
Newsgroups: comp.lang.ada
> Adalog is pleased to announce the

release of a new version of AdaControl,
the free tool for checking Ada
programming rules.

And AdaControl 1.5 has now reached
testing in Debian, meaning it will be in
the next stable release, Etch.
Do other distributions carry AdaControl?
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: AdaControl V1.5 released
Date: 26 Oct 2006 01:50:58 -0700
Newsgroups: comp.lang.ada
> Ubuntu Edgy Eft have version 1.4 in

Universe.
Well that's my package, since Ubuntu is a
derivative of Debian. In fact, the Ubuntu
folks asked me to provide gnade 1.6.1 and
gnat-glade 2006-3 before it became
available in Debian so they could include
it in Edgy Eft, which will be frozen Real
Soon Now.

Debian build scripts
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Announce: Debian build scripts on

a public Monotone server
Date: Mon, 25 Sep 2006 22:18:15 +0200
Newsgroups: comp.lang.ada
As most of you know, all Debian build
scripts are public; you can download them

Ada and GNU/Linux 209

Ada User Journal Volume 27, Number 4, December 2006

from Debian's many mirrors, change
them, and run them to build binary
packages. Now, you can also follow their
development almost in real-time thanks to
Monotone, a powerful distributed version
control system.
About Debian source packages
A Debian source package consists of three
files:
* {package}_{version}.orig.tar.gz — the
pristine upstream sources. The directory
tree in the tarball always starts from
{package}-{version}.orig (note: '_' in the
tarball name but '-' in the directory name).
* {package}_{version}-{revision}.diff.gz
— a compressed patch which applies to
the above directory tree extracted from
the tarball. This patch brings in all of the
Debian build scripts, Debian-specific
files, and patches. The {revision} is
specific to Debian, too, and changes with
every upload. The most important file
brought by the patch is debian/rules,
which is executable and builds the
package. Usually (and always for the Ada
packages), debian/rules is a Makefile.
* {package}_{version}-{revision}.dsc —
a short text file containing the MD5 sums
of the two above files, and which is
signed with the maintainer's private GPG
key.
In order to build the set of binary
packages for a source package, one must
therefore:
$ tar xzf {package}_{version}.orig.tar.gz
$ zcat {package}_{version}-
 {revision}.diff.gz | patch -p0
$ mv {package}-{version}.orig
 {package}-{version}
$ cd {package}-{version}
$ debian/rules binary
All these steps, and then some, are
automated by apt-get:
$ apt-get source --build {package}
So, what's the problem?
With the above system, you can download
and rebuild from source any Debian
package from your current distribution
(stable, testing, unstable, or
experimental). You can change the
package itself, or the build scripts. But
you cannot:
- use older versions of the build scripts
- use newer build scripts that have not yet
been published to the Debian archives
- submit your changes to the maintainer in
a clean, efficient and automated way (the
official way is by opening a bug report).
These problems become critical for the
many packages that are maintained by
teams rather than individuals.
A version control system allows the in-
development build scripts to become
public, so that team maintenance is
possible. For the Ada packages, I would

like to encourage people to look at the
scripts and propose improvements; maybe
even form a team and benefit from each
other's experience? [...]
[See also “Monotone — A Distributed
Revision Control System” in this issue —
su]

Monotone — A Distributed
Revision Control System
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Announce: Debian build scripts on

a public Monotone server
Date: Mon, 25 Sep 2006 22:18:15 +0200
Newsgroups: comp.lang.ada
[See also “Debian build scripts” in this
issue —su]
[...] Many Debian packages have project
pages on Alioth[1], and use one of
Subversion, GNU Arch, Bazaar-NG or
GIT as their version control system.
Since I do most of my Debian work on
the train and without any network
connection, I require a _distributed_
version control system. After evaluating
several candidates, I settled on Monotone
several months ago.
http://www.ada-
france.org/debian/distributed-version-
control-systems.html
Why Monotone?
I believe that Monotone is the Ada of
version control systems, so it is only
appropriate that I use it for my Ada work.
Monotone is safe, correct and powerful
by design. It uses cryptographic keys
to authenticate changes. It is written by
elite programmers who, despite using
C++, have the "Ada attitude": no pointers,
one assert() every 9 lines of code, massive
use of generics (templates), and not a
single critical bug in 3 years. The slides
at [its web page] and my own tests
convinced me to switch from Meta-CVS
several months ago for my Debian
packages, as well as for other work.
A Monotone database consists of one
single file; this is very convenient for
maintenance. A Monotone database takes
only a fraction of the disk space required
for an equivalent database in any other
system I've tried (Subversion, Bazaar-NG,
Mercurial, CVS), which is also an
important consideration for me.
(I like to think that CVS is the "C" of
version control systems, Subversion is the
"C++" designed to replace the "C", GIT is
the "assembly language" who needs
cogito to be useable, Bazaar-NG is the
"perl", grossly inefficient and completely
baroque, Mercurial is the "Eiffel" i.e the
second best, Monotone is the "Ada", i.e.
the best, even if not perfect)
(I particularly dislike Subversion and its
distributed derivative, SVK. I do not
recommend them because their working

model is inherently broken, IMHO. A
branch is NOT a directory, and a tag is
NEITHER a branch NOR a directory.
And Subversion does not even try to keep
track of merges; just like C++ does not
even try to multitask.)
What's in the Ada-France database?
The database that I just published on Ada-
France is a replica of the one I work on
every day. It contains one branch
(sometimes a couple of branches,
actually) for each package I work on.
Each published upload of each package
also has a tag. You can browse the whole
history of all changes, with comments.
The size of the database is about 1.7 Mb.
As of today, "mtn list branches" says:
org.debian.adacontrol
org.debian.asis
org.debian.asis-doc
org.debian.asis.2005
org.debian.gnat-gdb
org.debian.gnat-glade
org.debian.gnat-gps
org.debian.libaunit
org.debian.libaws
org.debian.libflorist
org.debian.libgtkada2
org.debian.libopentoken
org.debian.libtemplates-parser
org.debian.libtexttools
org.debian.libxmlada1
org.debian.libxmlada2
The list of tags ("mtn list tags") would be
too boring for this post.
Each branch contains a "debian" directory
and, in most cases, a "patches" directory.
I use Quilt to manage the patches.
http://savannah.nongnu.org/projects/quilt
If you extract an upstream source tarball,
and checkout from Monotone into the
source tree, you're ready to build the
package.
The database does not contain the
upstream tarballs (.orig.tar.gz); these are
available from Debian mirrors anyway or,
if not yet published in the Debian archive,
from http://www.ada-
france.org/debian/pool .
How to use Ada-France's Monotone
database
If you want to *read* from the database:
1. Install Monotone, version 0.26 or later
(the server is currently running 0.28).
2. Create a key pair:
 $ mtn genkey your@email.address
3. Create a new, local database:
 $ mtn --db=debian.mtn db init
(I like to keep all my databases in
/var/lib/monotone, but you can place your
database anywhere; remember: it's a
single file anyway. You can, of course,
have as many databases as you want.)
4. Pull all branches starting with
"org.debian":

210 Ada and GNU/Linux

Volume 27, Number 4, December 2006 Ada User Journal

 $ mtn --db=debian.mtn pull www.ada-
france.org 'org.debian.*'
5. Create a working copy:
 $ tar xzf
 {package}_{version}.orig.tar.gz
 $ mv {package}-{version}.orig
 {package}-{version}
 $ cd {package}-{version}
 $ mtn --db=../debian.mtn checkout --
 branch=org.debian.{package} .
6. Now you can build the package, change
the scripts, add new patches and whatnot.
More importantly, you can *check in*
into your local database, keeping track of
your own changes. You can even create
sub-branches at will, if you wish your
changes to remain separate.
(the above commands have abbreviations,
e.g. -d for --db=, -b for --branch=, etc..
Also, --db= and --branch= are
unnecessary in a working copy, because
the working copy remembers the database
and branch it was checked out of.)
If you want to *write* into Ada-France's
database:
You can "push" your changes directly to
the Ada-France database, too. But I will
allow you to do so only if you identify
yourself :-) You will need a GPG keypair,
signed and part of the Debian Web of
Trust, in addition to your Monotone
keypair. You need not be a Debian
Developer; you only need to be
authenticated. (The recent debates about
copyright law made it plain that
anonymous contributions are quite
dangerous in fact).
1. Extract your public key from your
Monotone database:
 $ mtn --db=debian.mtn pubkey
 {your@email.address} >
 your_public_key
 (your_public_key will be a short plain-
text file).
2. Send me your public key in a GPG-
signed email (signed with your public
GPG key, that is).
3. Wait until I reply to tell you you're
good to go.
4. Push your changes:
 $ mtn --db=debian.mtn push
 (the database remembers where it was
"pulled" from, so by default Monotone
will "push" there. You can change that if
you wish).
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: Announce: Debian build scripts

on a public Monotone server
Date: Tue, 26 Sep 2006 07:13:25 +0200
Newsgroups: comp.lang.ada
> Thanks for the access to the Debian

scripts AND the information on
Monotone. Just looking at Monotone's
web site and how organized it is (along

with your recommendation), is going to
make me quit thinking of Subversion as
the "successor" to CVS.
A quick glance at Monotone's change
control history looks like they try to
ensure that existing projects can move
forward through their improvements.
Do you consider Monotone as "safe"
for production environments, even
though they're not at "release 1.0" yet?
Would you recommend them as an
alternative to CVS for new projects
needing a version control system, but
wanting to be comfortable that they'll
not regret entrusting their project to
Monotone?

Yes, definitely. They've had zero data-
loss bugs in their entire history, despite
changing the database schema a couple of
times, and the netsync protocol another
couple of times. So, yes.
> Comparing Monotone to Ada to me is

high praise. If I understood you
correctly, you seem to be saying that
even though Monotone is only at
version 0.30, Monotone's "standards"
and professionalism make their v0.30
"better" than a lesser tools' 1.0+
version. Is that true?

Yes, it is true. Their emphasis on
correctness is simply astounding. It's the
attitude, man :)
> Bringing us back to Ada: Is Monotone

relatively Ada friendly? Does it handle
Ada "projects" and source code
naturally?

Yes; it handles renames and complex
directory structures well, even across
merges. It also handles file attributes (e.g.
executable), and there is even a
monotone.el for us Emacs fans.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: Announce: Debian build scripts

on a public Monotone server
Date: 26 Sep 2006 00:32:44 -0700
Newsgroups: comp.lang.ada
I'd like to add that my confidence in
Monotone is not just because I like the
developers' attitude; it is also because:
- Monotone stores the SHA1 sum of
everything in the database, and verifies
the sum when checking out, updating,
merging, or syncing between databases.
Any data corruption _will_ be detected,
and Monotone _will_ crash rather than
corrupt data (never happened to me
though). (indeed, revision IDs are SHA1
sums, not "monotonic" numbers that
would make no sense in the context of a
distributed version control system).
- all commits to a database are signed by a
crypto key, and so authenticated in a
tamper-proof way.
- the database is an SQLite database; one
can always retrieve the data using SQL
commands, if things came to worst. In
fact, I have already, and successfully,

tampered with some trial databases using
SQL commands. That's the almost only
way one can delete data, BTW.
Now Monotone is not perfect, and not 1.0
yet. The areas where perhaps it might be
weak is scalability and performance. In
my experience, it shines both for small
projects and for large projects with short
histories (few revisions). But, apparently,
as the number of revisions grows,
Monotone scales less than linearly.
They're working on it at the moment, with
the first notable scalability improvements
in the latest version, 0.30.
From: Pascal Obry <pascal@obry.net>
Date: Tue, 26 Sep 2006 19:33:50 +0200
Subject: Re: ANN: Debian build scripts on a

public Monotone server
Newsgroups: comp.lang.ada
> (I particularly dislike Subversion and its

distributed derivative, SVK. I do not
recommend them because their working
model is inherently broken, IMHO. A
branch is NOT a directory, and a tag is
NEITHER a branch NOR a directory.
And Subversion does not even try to
keep track of merges; just like C++
does not even try to multitask.)

Tracking merges is planed for version 2.0.
We need to give time to Subversion. It
used to be a CVS "like" project for
compatibility issued. Subversion 2.0 is on
the way and the developers are going to
do things as it should have been done
now. So Subversion 2.0 will probably
break compatibility with current version
for good!
Let's not dismiss such a nice tool so easily
;)
From: Samuel Tardieu <sam@rfc1149.net>
Subject: Re: Announce: Debian build scripts

on a public Monotone server
Date: 27 Sep 2006 16:23:49 +0200
Newsgroups: comp.lang.ada
> Mercurial is second best after

Monotone, IMHO. And a worthy
runner-up at that. The reason is that I
dislike its model of "a repository is a
branch is a working copy". I insist on
having my repository separate from my
working copies, and I insist on having
as many branches as I need in one
repository.

When I started using GNU Arch and
Darcs, I thought like you that a separate
repository was best for backups purpose.
As the time went, I started to like the
"repository = branch = working copy"
model, as it makes it easy for me to clone
a repository on any machine I'm working
on without having to create a db, get the
keys and so on.
> It scales performance-wise, yes, but not

in terms of disk space requirements.
Branches are expensive, especially if
you change many files in the working
copy. By contrast, Monotone does that
very well.

Ada and GNU/Linux 211

Ada User Journal Volume 27, Number 4, December 2006

What version did you test? Mercurial uses
hard links when you work on the same
file system, making cloning a very cheap
operation. Moreover, since Mercurial 0.9
is out, the disk usage has been cut by
40%.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: Announce: Debian build scripts

on a public Monotone server
Date: Wed, 27 Sep 2006 16:56:16 +0200
Newsgroups: comp.lang.ada
The advantage disappears as soon as you
modify a file: Mercurial then breaks the
hard link and duplicates the entire history
for the file. In my trials with GCC, many
files were changed between each version,
so the space advantage was almost
completely lost, even if the changes to
each file were actually small.
The use of hard links is a poor kludge to
minimise the impact of unshared histories.
> Moreover, since Mercurial 0.9 is out,

the disk usage has been cut by 40%.
I tried 0.8.1 and my test consumed 686
megabytes. If I take your word and
reduce it by 40%, I get 411.6 Mb, which
is still much, much more than Monotone's
183 megabytes (in Monotone 0.24) or 166
megabytes (in 0.26).
I stand by my opinion that Mercurial is
only second best, after Monotone.

GNAT Split in Gentoo
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: "Split GNAT compilers" in Gentoo
Date: 31 Oct 2006 03:48:03 -0800
Newsgroups: comp.lang.ada
I am intrigued by what you just said in
another thread:
> I need to finish with the transition to

split GNAT compilers (should be soon
finally — only a few libs left): in
Gentoo you have the ability to have
multiple gnat implementation installed
side-by-side and switch them on the fly.

Could you please elaborate on this? I
understand how you can install several
versions side by side, but what do you
mean by "split[ting]" the compilers? What
is the impact on libraries? Also, could you
explain why you need a "transition", i.e.
what is the current state in Gentoo?
Also, what in your opinion is the benefit
of being able to switch compilers on the
fly if they're binary-incompatible?
From: george@gentoo.org
Subject: Re: "Split GNAT compilers" in

Gentoo
Date: 31 Oct 2006 14:33:11 -0800
Newsgroups: comp.lang.ada
Well, I think I mentioned this shortly once
here already, but at that time it was in a
long thread on some hot topic :). So, I'll

try to elaborate. Brace yourself though —
it is not going to be short.
I'll start with the past situation with gnat
in Gentoo, which was pretty
straightforward. We had gnat-3.15p and
some work was done on newer gnat
versions. However, even though some
were added to the tree, they were not
considered "stable". Incidentally this was
during the period of Ada "stagnation" —
when FSF did not yet pick up on active
Ada maintainership. Correspondingly
single gnat package was enough and the
libs could be built against it in a normal
manner, pretty much the way you have it
in Debian. Later, when I picked up Ada
maintainership again (after the developer
I recruited has gone MIA :), at least on
Ada packages) the situation with gnat was
much better — FSF was issuing working
and frequently updated versions and ACT
just produced gnat-2005. Therefore I took
a plunge and decided to implement the
idea we have been discussing for a long
time before, — automating parallel
installs of different gnats and making Ada
libs play nicely with the compilers.
Now I need to do a little explanation of a
few features unique to Gentoo. The
situation when we provide multiple major
versions of some package (meaning
change in API, — being primarily "from
source" we do not worry about ABI as
much) is not uncommon in Gentoo. In
fact we have a well established
mechanism of dealing with different
major versions of the same package. We
have a special SLOT variable tracking
API version which is taken into the
consideration by our package manager, so
all the dependencies can be resolved
correctly for the packages that depend on
a particular version of some lib (e.g. gtk1
vs gtk2 or kdelibs-3.4 vs kdelibs-3.5, etc).
The package itself is installed in a way to
avoid collisions between different
SLOTted variants (usually not an issue
with shared libs that are done right, but
may require some installation trickery for
the packages providing executables or
some data files) and, if necessary, some
switcher app is provided (nowadays this is
standardized via providing a new module
for an eselect package). For example we
had a SLOTted GCC for ages now. To
give you an idea, here is an output of the
query for the provided GCC versions:
[I] sys-devel/gcc
 Available versions:
 (2.95) [P]2.95.3-r9
 (3.1) [P]3.1.1-r2
 (3.2) [P]3.2.2 [P]3.2.3-r4
 (3.3) [P]3.3.2-r7 [P]3.3.5-r1
[P]3.3.5.20050130-r1 [P]3.3.6 [P]3.3.6-r1
 (3.4) [P]3.4.1-r3 3.4.4-r1 3.4.5
3.4.5-r1 3.4.6 3.4.6-r1 3.4.6-r2
 (4.0) *4.0.2-r3 *4.0.3
 (4.1) 4.1.0-r1 4.1.1 4.1.1-r1
 (4.2) [M]4.2.0_alpha20061014

The numbers in brackets are SLOT
versions.
The situation with GNAT was somewhat
complicated by the fact that we now have
two upstream groups that provide gnat:
ACT and FSF. Therefore, upon discussing
how to better package gnat, we decided to
split it into two packages: gnat-gcc for
FSF's versions and gnat-gpl for ACT's. It
is possible to add more. For example,
should ACT desire to have the package
for gnat-pro we can add it to the tree
(since we do not distribute binaries –
strictly speaking we only provide
installation instructions, – we have the
ability to provide ebuilds for commercial
packages (there are mechanisms to restrict
access to sources (force manual
download) or just mirroring)).
When I was speaking about "split" I was
primarily referring to this situation,
however this is only half of the story. The
other half (and the one really requiring
"transition") concerns how the Ada libs
are dealt with. Apparently, having the
ability to switch gnat compiler on the fly
is great of itself, however this can screw
your compiled libs if you just keep the
original ebuilds. To resolve this situation I
created gnat.eclass (eclasses are our way
to do OOP in bash :)) that handles all the
major parts of lib installation. Basically
libs are compiled for all the installed
gnats (different SLOTs or variants, thus if
you have gnat-gcc-3.4.6, gnat-gcc-4.1.1
and gnat-gpl-3.4.6.2006 installed you will
get your lib compiled three times) and
then binaries are put in a SLOT/gnat
name regulated locations. Common files
(sourced, docs, etc) are of course shared.
The same eselect-gnat module that
switches compilers also activates the
corresponding version of the libs. Thus
you have a consistent system at any point
in time (as long as you use Gentoo
provided tools of course) but can easily
switch between the installed variants. One
"exception" is ASIS — it is built once for
a corresponding compiler only and is
installed at the compiler location.
Now I am at the point of having
transitioned the compilers, ASIS and
roughly half of the libs (packages under
dev-ada category). I still need to finish the
few libs that are left. There is also one
unresolved (well, postponed but that
needs eventual resolution) issue. Looks
like we even have it easy with Ada, as
compared to other languages. You may
take a look at this bug if you are
interested:
https://bugs.gentoo.org/show_bug.cgi?id=
151343
I would like to hear any input you may be
willing to provide ;).
The binary incompatibility is taken care
of as described above, now on to the
benefits :). The most obvious one (to me
at least) is "following the Gentoo spirit"

212 Ada Inside

Volume 27, Number 4, December 2006 Ada User Journal

 — that is providing as much choice as
practical.
You can quickly test various compilers
(given general adherence to ARM of Ada
packages it even may be possible to add
non-gnat compilers to this mix) and how
the libs behave when built with, say, gnat-
gcc-4.1.1 vs gnat-gpl-3.4.6.2006. Now
that the infrastructure is in place you can
even easily create the ebuild for your own
package and enjoy this automation.
OK, this is already quite long, so I'll stop
here. You may also take a look at
https://bugs.gentoo.org/show_bug.cgi?id=
111340
this is the bug where most of the design
discussion took place. Beware — it is
quite a bit longer than even this
description :).
Oh, one more thing (to avoid possible
misconceptions). That long list of
different gcc SLOTs I cited above does
not mean that you can mix and match gcc
version like the gnat ones — there is no
Gentoo-wide setup like I just described
for gnat (and it would not make sense
system-wide). So, practically speaking
with gcc you do have the flexibility of
building your system with any of them,
but you pretty much have to stick to a
particular version. Although you *can*
occasionally use some other version for a
particular package.

References to
Publications
AdaCore — GNAT Pro
Insider
RSS Feed: AdaCore Developer Center
GNAT Pro Insider Nov 2006 issue
available
Thursday November 30, 2006
The November 2006 issue of the GNAT
Pro Insider newsletter is available for
download. Contents:
* GNAT Pro and Ada 2005 Coming to
.NET
* GNATstack Tool Available
* New GCC Technology
* What’s Coming in GNAT Pro 6.0.1
* New Version of gprmake
* New Version of GNAT Tracker
* Spotlighting a GAP Member
* AdaCore at Conferences
* Interview with Bob Duff
* Public Courses at AdaCore New York
* New Target Platforms for GNAT Pro
* More Ada 2005 Features Available in
GNAT Pro
To download the newsletter please [go to
http://www.adacore.com/home/company/
press-center —su]

AdaCore — Ada 2005 for
High-Integrity Real Time
Systems

Ada 2005 for High-Integrity Real Time
Systems (Video)

Monday September 25, 2006
An in-depth presentation by AdaCore
senior software engineer, José F Ruiz, on
Ada for embedded high-integrity real-
time systems.
The talk covers:
 * The Ravenscar tasking profile
 * Flexible real-time scheduling
 algorithms
 * CPU clocks and timers
 * Timing events
 * Flexible object-oriented features

Ada-Belgium — UML2
profile enforcing the
Ravenscar Computational
Model
URL: http://www.cs.kuleuven.ac.be/~dirk/

ada-belgium/whatsnew.html
2006-11-08
The slides of the technical presentation at
the previous Ada-Belgium event are now
available: "Correctness by construction:
UML2 profile enforcing the Ravenscar
Computational Model", June 2006
(Adobe Portable Document Format, pdf,
1520 KB). Updated the main page for the
2006 Ada-Belgium General Assembly +
technical presentation and the full
announcement of the technical
presentation as well as the Ada-Belgium
Meetings and Conferences page.

CrossTalk — AdaCore
Quality Process

http://www.adacore.com/2006/10/31/ada
core-quality-process/

AdaCore Quality Process
Tuesday October 31, 2006
The Nov 2006 online issue of CrossTalk
sees an interesting article on AdaCore’s
quality assurance processes and tools:
“A software product is rarely a static
artefact resulting from a one-time effort; it
needs to evolve via periodic updates, to
correct defects or meet new requirements,
and it may need to be ported to multiple
machines and/or operating systems. The
development team might be distributed
geographically, requiring careful
coordination. A software producer must
have well-defined processes for dealing
with these issues, to ensure that its
products successfully meet users’ needs.”
The full article is available here
[http://www.stsc.hill.af.mil/crosstalk/2006
/11/0611dewar.html]

The Register —
Mathematical Approaches to
Managing Defects
September 20, 2006
SPARK is featured in the article
Mathematical Approaches to Managing
Defects on The Register's developer site.

Embedded Systems Design
— Programming Real-Time
with Ada 2005
September 19, 2006
The article Programming Real-Time with
Ada 2005 appears in Embedded Systems
Design.

Safety-Critical Systems
Symposium 2006
URL: http://www.adacore.com/2006/10/24/

safety-critical-systems-symposium-2006/
Tuesday October 24, 2006
Safety-Critical Systems Symposium 2006
AdaCore will present the following
papers at this event:
Ada 2005 for High-Integrity Systems
By Jose F. Ruiz.

Embedded Systems
Conference
URL: http://www.adacore.com/2006/10/24/

embedded-systems-conference-2/
Tuesday October 24, 2006
Embedded Systems Conference
AdaCore’s CEO, Dr. Robert B.K. Dewar
will present a 90 minute class on:
Safety-Critical Design Techniques for
Secure and Reliable Systems
AdaCore will be exhibiting at DSO world
(station #3 in the DSO Pavilion) April 6
Franco Gasperoni will be presenting the
following paper at the 12th IEEE Real-
Time and Embedded Technology and
Applications Symposium (taking place in
parallel to ESC) April 4–7, 2006,
Fairmont Hotel, San Jose, CA:
Safety, Security and Object Oriented
Programming
http://www.embedded.com/esc/sv/

Ada Inside
BAE Systems uses
VectorCAST for testing
http://www.vectors.com/pdf/bae_pr.pdf
BAE Systems uses VectorCAST for
testing
Mission critical Software

Ada Inside 213

Ada User Journal Volume 27, Number 4, December 2006

North Kingstown, RI – September 2006 –
Vector Software Inc., a leading provider
of software test tools for embedded
systems, today announced that BAE
Systems has successfully used its
VectorCAST product for testing safety
critical software applications for the
Hawk and Eurofighter aircraft.
BAE Systems has been using
VectorCAST since July 2003, for module
and SW-integration testing. The software
tested with VectorCAST is primarily
written in Ada and Ada 95, and runs on
PowerPC targets.
According to Bill McCaffrey, Director of
Sales for Vector Software, Inc., “We are
extremely proud of our role as a
technology supplier to BAE Systems.
VectorCAST was specifically designed to
support testing of complex avionics
projects. Our robust integration with the
Green Hills crossdevelopment tools, and
the uniquely position VectorCAST to
support projects such as Hawk and
Eurofighter."
About Hawk
The Hawk aircraft, is an advanced two-
seat weapons systems trainer with
enhanced ground attack capability. The
aircraft provides fighter lead-in training
and navigator and weapons systems
operator training.
About Eurofighter Typhoon
Eurofighter Typhoon is the world’s most
capable and dynamic swing-role combat
aircraft. Developed by Germany, Italy,
Spain and the UK, the Eurofighter
Typhoon will fulfill European Air Force
requirements well into the mid-21st
Century. The aircraft is in full production
and has been in service with all partner
Air Forces since 2004. 638 aircraft are
under contract for the four Nations and
Austria, the first export customer.
About BAE Systems
BAE Systems is an international company
engaged in the development, delivery, and
support of advanced defence and
aerospace systems in the air, on land, at
sea, and in space. The company designs,
manufactures, and supports military
aircraft, surface ships, submarines, radar,
avionics, communications, electronics,
and guided weapon systems. It is a
pioneer in technology with a heritage
stretching back hundreds of years and is
at the forefront of innovation, working to
develop the next generation of intelligent
defence systems.
About Vector Software
Vector Software, Inc. is a leading
independent provider of automated test
tools for software developers. Established
in 1989 as a consulting and service
organization, Vector's product focus is to
empower software professionals to deliver
the highest quality software in the least
amount of time. Vector's "VectorCAST"

line of products, reduce the burden placed
on individual developers by automating
and standardizing application component
level testing. This innovative technology
developed by Vector represents the "next
generation" of intelligent embedded
software test tools. The tools support Ada
83/95, C/C++ and Embedded C++
(EC++).
The market focus of Vector is on
companies performing embedded systems
development for aerospace, military,
medical, telecom, and process control
related projects.
Vector Software’s Product Family
VectorCAST/Ada
VectorCAST/C
VectorCAST/RSP
VectorCAST/Cover
MC/DC add-on capabilities
DO-178B Qualification Packages

Aonix Listed With Top
Wind River Software
Partners
http://www.aonix.com/pr_09.25.06a.html
Aonix Advances to Wind River Platform
Partner Status
Aonix Listed With Top Wind River
Software Partners
San Diego, CA, September 25, 2006
Aonix®, today announced a decision to
strengthen its long-time partnership with
Wind River Systems, Inc. (NASDAQ:
WIND), the global leader in Device
Software Optimization (DSO). Aonix is
the provider of the PERC® real-time
virtual machines and ObjectAda® real-
time and safety-critical solutions for
embedded targets. After years of serving
as a Community Partner, Aonix will
become a Wind River Platform Partner,
the highest level of corporate partnership
that Wind River extends to software
companies. The Platform Partner level of
participation is by invitation only, and
requires Platform Partners' technologies to
be aligned with Wind River products from
roadmap through development, QA, and
test to ensure seamless integration.
Platform Partnership strategically
positions Aonix with select upper-tier
partners focused on driving joint business
through one or more of Wind River’s
vertical market segments. Aonix
addresses Wind River’s Aerospace and
Defence segment and offers years of
servicing many customers with Ada real-
time and DO-178B certified development
solutions. Now, as a Platform Partner,
Aonix is closely aligned with Wind River
strategic direction for Java developers,
providing industry-leading real-time
virtual machines and tools tightly coupled
with the Wind River development and
execution environment.

“It is an honor to be selected by Wind
River as a Platform Partner,” stated Gary
Cato, Aonix manager of strategic
alliances. “Plans are already underway for
a joint safety-critical Java solution.
Current Ada customers are enquiring
about the potential of PERC, and C/C++
developers are eager for a better solution
for their mission- and safety-critical
applications as well. We look forward to
expanding this interest to the larger Wind
River audience.”
“Safety critical expertise and ability to
address customers with large or complex
projects sets Aonix apart from other
vendors,” said Chip Downing, aerospace
& defence industry marketing manager at
Wind River. “Aonix’ development tools,
especially the newer PERC real-time and
safety-critical products, offer significant
help to VxWorks platform users wanting
to move up to a more modern, cost-
effective development solution for ever-
increasing levels of complexity.”
PERC Ultra is the ideal solution for
embedded applications of high
complexity, thanks to PERC Ultra’s
predictable performance and its extensive
support of off-the-shelf J2SE libraries and
components. Its sister product, PERC
Pico, meets the needs of resource-
constrained hard real-time applications,
featuring performance and footprint
characteristics comparable to C. PERC
Pico is smaller and faster than any other
real-time virtual machine, yet it preserves
key virtues of Java™ such as portability,
reliability, and scalability.
PERC Ultra and PERC Pico are
interoperable within a single application.
For the first time, it is now possible for
Java developers to create complete
complex applications from infrastructure
to the device level, without resorting to
the use of other languages with less
portability and robust memory use for
specialized components.
Shipping and Availability
PERC Ultra for VxWorks 6.x is shipping
now for Windows and Solaris hosts and
PowerPC targets with AOT and JIT
compilation. PERC development tools are
available at no charge in combination
with a maintenance contract. Target
execution and deployment license pricing
is based on projected volume. ObjectAda
Real-Time for VxWorks is shipping now.
About ObjectAda®
ObjectAda provides an extremely
effective solution for developing portable,
highly reliable, and efficient applications.
Based on Ada 95, the first and only
internationally standardized object-
oriented programming language
(ANSI/ISO), ObjectAda is a truly multi-
lingual environment. ObjectAda allows
you to easily integrate Ada components
with components written in Java, C, C++,
FORTRAN, and other languages for

214 Ada in Context

Volume 27, Number 4, December 2006 Ada User Journal

multi-lingual development. And
ObjectAda works directly with
commercial off-the-shelf libraries,
components, and APIs.
For any platform, ObjectAda features a
fast, open library model that is fully
compatible with other languages, high-
speed intelligent compilation, hyperlinked
semantic browsers, syntax-directed
editors, integration with configuration
managers, and instant access to standard
APIs. On all platforms, application
generation is optimized for reliable,
seamless execution of thread-aware
applications within a safe and secure
operational environment.
About PERC®
First introduced nine years ago, PERC is
the most widely used real-time Virtual
Machine available for Java developers,
with fielded installations in
telecommunications, telematics, avionics,
deep space exploration, and office
automation applications. PERC supports
most major real-time operating systems
and a variety of target processors
including PowerPC, XScale, ARM, and
Intel x86 architectures.
PERC Ultra is a virtual machine and
toolset expressly created for demanding
embedded and real-time systems requiring
J2SE™ support. PERC Ultra delivers the
ease and efficiency of Java™ Standard
Edition support without sacrificing
integrity, performance, or real-time
behavior. It offers AOT and JIT
compilation, remote debug support,
deterministic garbage collection, standard
graphics and extended commercial RTOS
support. The PERC product line also
features PERC Pico, a virtual machine
designed for hard real-time applications
requiring fast execution, small footprint,
and access to low-level devices.
PERC Ultra is available for Wind River
VxWorks 6.x. PERC Ultra is the industry-
leading real-time virtual machine,
featuring the predictable performance
critically needed for complex embedded
applications. PERC Ultra offers the
predictable performance and high levels
of reliability fundamental to the military
and aerospace markets where the
VxWorks device software platform
dominates. The high productivity required
for these markets is supported by broad
off-the-shelf Java™ component access
made possible with PERC Ultra.
About Aonix
Aonix is a leading global supplier of
technologies supporting the development
of sophisticated applications primarily in
the real-time and embedded domains. Our
mission- and safety-critical solutions
serve industries such as
telecommunications, military and
aerospace, and transportation. Aonix
delivers the leading high-reliability, real-
time embedded virtual machine solution

for running Java™ programs deployed
today and has the largest number of
certified Ada applications at the highest
level of criticality. Aonix also offers the
TeleUSE line of Motif graphical user
interface development solutions.
Headquartered in San Diego, CA and
Paris, France, Aonix operates sales offices
throughout North America and Europe in
addition to offering a network of
international distributors. For more
information, visit www.aonix.com.

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —su]
[...] Advanced programmer/analyst
needed who will perform software
development or software development
support activities using the Ada
programming language.
Needs to be an experienced user of UNIX
and Ada, and have solid programming
experience in large scale development.
Knowledge of air traffic control systems
development a plus.
Candidate must have experience
developing large systems and be able to
work with a large team of developers.
Candidate must have knowledge of
software development methodologies.
BS degree in Computer Science, IT, or
other technical field required.
Within our aeronautics skills centre, we
need Ada 83 or 95 software engineers
specialised in Ada design and
development.
Projects are varied and could reach
managerial responsibilities depending on
your experience.
You will be part of engineers team
designing and developing new
architectures, or working on others
projects involving methodology and
quality.
Experienced in Ada design, we propose
you to join our team working on most
challenging projects, in the highest speed
area (space and avionics) and the railway
sector. Knowledge in aeronautic or
military standards or railway standards is
a plus.
Profile:
You are Industrial Engineer (Ing) or Civil
Engineer (IR) with good knowledge &
experience in Ada 83/95 (min 3 years).
Very good communication skills and
English speaking are mandatory as the
development is done on a very
international and multi-site basis, with
frequent meetings and close interactions.
Besides a personalised career plan with
real evolution prospects, we offer you an

attractive treatment and various
advantages which include a company car,
a GSM and standard benefits such as
luncheon vouchers, Group insurance,
extra legal medical insurance,
supplementary days off.
Several developers are needed to increase
staffing levels on an air traffic control
program in development (planned to go
operational in the USA in 2009). The
software is primarily written in Ada but
also has interfaces with C++ components.
The work consists of a mix of debugging
and fixing problems, and new
development. At least 6 months of Ada
experience is essential.
From: jtg <jtg77@poczta.onet.pl>
Subject: Some Ada jobs statistics
Date: Sat, 04 Nov 2006 10:42:43 +0100
Newsgroups: comp.lang.ada
Some interesting Ada statistics gathered
from job advertisements with "Ada"
requirement.
http://www.itjobswatch.co.uk/contracts/
uk/ada.do
http://www.itjobswatch.co.uk/jobs/
uk/ada.do

Ada in Context
Consolidated Ada 2005
Standard
URL: http://adaic.com/whatsnew.html
November 10, 2006
The final version of the consolidated
standards for Ada 2005 was posted. These
documents combine the Ada 95 Standard,
Technical Corrigendum 1, and
Amendment 1.

When was Ada first
standardized?
From: "Jeffrey R. Carter"

<jrcarter@acm.org>
Subject: Re: Basic Explaination of OO in

Ada
Date: Tue, 19 Sep 2006 20:33:14 GMT
Newsgroups: comp.lang.ada
> C was invented 1973 and Ada 1983
MIL-STD-1815: The Ada Programming
Language; 1980 Dec 10.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Basic Explaination of OO in

Ada
Date: Wed, 20 Sep 2006 20:37:46 -0500
Newsgroups: comp.lang.ada
> Well that makes it 3 years for Ada to

move from the it's beginnings to ISO-
Standard — and 16 years for C.

The ISO standard for Ada was approved
in 1987; it was the MIL-STD-1815A that
was approved in 1983. While the content

Ada in Context 215

Ada User Journal Volume 27, Number 4, December 2006

was identical, it took 4 extra years for ISO
approval.

About the Abs operator
From: Robert A Duff
Subject: Re: Why is abs an operator, not a

function?
Date: Wed, 18 Oct 2006 21:45:24 -0400
Newsgroups: comp.lang.ada
> Why is abs an operator and not a

function? Just wondering.
An operator _is_ a function. So the
question really is, why is the name of the
abs function an operator symbol (a
reserved word) rather than an identifier?
In early (pre-1983) versions of Ada, Abs
was not an operator — just a normal
function with identifier Abs as its name. I
think it was changed to make
implementations easier —
implementations usually special-case the
overloading resolution for operator
symbols, since they are so heavily
overloaded. Maybe the fact that all
predefined functions are operators
simplifies that. Not a big deal, but it does
have a certain uniformity — e.g. "not" is
an operator symbol, too, and works the
same way as "abs".

Ada vs. Fortran
performance
From: Duncan Sands <baldrick@free.fr>
Subject: Re: GNAT compiler switches and

optimization
Date: Fri, 20 Oct 2006 13:42:23 +0200
Newsgroups: comp.lang.ada
> I'm a bit stuck trying to figure out how

to coax more performance out of some
Ada code. I suspect there is something
simple (like compiler switches) but I'm
missing it. As an example I'm using a
simple matrix multiply and comparing
it to similar code in Fortran.
Unfortunately the Ada code takes 3–4
times as long.

GNAT GPL 2006 is based on gcc 3.4.6.
For fortran you are using gcc 4.2.0. Try
using comparable compiler versions, eg:
an Ada aware gcc 4.2.0 (several linux
distributions provide this) or a gcc 3.4.6
version of fortran (i.e. some version of
g77).
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: Re: GNAT compiler switches and

optimization
Date: Fri, 20 Oct 2006 17:41:12 +0200
Newsgroups: comp.lang.ada
Indeed:
GNAT/GPL: 12.265258000 sec.
GNAT/GCC: 10.631787000 sec.
So who said the 4.1.x compiler are
slower.
From: Samuel Tardieu <sam@rfc1149.net>

Subject: Re: GNAT compiler switches and
optimization

Date: 20 Oct 2006 14:09:45 +0200
Newsgroups: comp.lang.ada
> Running them on 800×800 matrices (on

my 2GHz laptop) for Ada: "tst_array
800" runs in 18 seconds for Fortran
"tst_array 800" runs in 6 seconds
(if I use the fortran "matmul" intrinsic
the fortran time drops to 2.5 seconds).
Note, I tried reordering the loops,
removing the random calls, etc. none
of which made huge changes. There is
something killing performance and/or a
switch or two that I'm missing, but I
can't seem to find it. Any thoughts?

First of all, what you measure is not only
the matrix multiplication time but also the
operation of filling the matrices with
random numbers. I've moved the "start"
initialization after the matrices
initialization.
The following optimizations make the
difference smaller (9.47 seconds for
Fortran vs. 11.90 seconds for Ada on my
machine):
- use -fomit-frame-pointer on gnatmake
command line (this doesn't change
anything in the Fortran case)
- add: pragma Convention (Fortran,
Real_Matrix) to invert the storage method
(line vs. column); I guess this helps
maintaining more data in the cache
- use 1 .. N as loop indices instead of
A'Range (1) and friends; this is more
equivalent to the Fortran code you posted
Still, this is a huge penalty for Ada.
Unfortunately, I don't have the time to
investigate further right now. However, I
would be interested in other people
findings.
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Fri, 20 Oct 2006 14:12:26 +0200
Subject: Re: GNAT compiler switches and

optimization
Newsgroups: comp.lang.ada
One thing is already that you start the
timer at the wrong place. You should start
it after filling your array with random
numbers. In the present state you compare
the random generator, then your matrix
multiplication. It is possible that
Ada.Numerics.Float_Random.Random
takes significantly more time due to Ada's
quality requirements in the random
generation.
On the other hand, switches you can try
are:
-O2 instead of -O3, -funroll-loops
(usually good) -ffast-math, for both Ada
and Fortran -gnatn, for Ada
Since you are measuring real time and not
CPU time, you might want also to take a
bit larger matrices in order to have disk
swaps and rests of initializations effects
statistically small.

From: Gautier de Montmollin
<gdemont@hotmail.com>

Subject: Re: GNAT compiler switches and
optimization

Date: Fri, 20 Oct 2006 21:51:13 +0200
Newsgroups: comp.lang.ada
Just a detail (should not make much, but
who knows with Ada.Text_IO): the timer
should be stopped just after the
multiplication and before any output. This
little bug is in both Fortran and Ada code
(in the Ada code the finish time is even
taken twice).
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Fri, 20 Oct 2006 21:32:26 +0200
Subject: Re: GNAT compiler switches and

optimization
Newsgroups: comp.lang.ada
> In some cases, -O3 is slower than -O2.

You could try that experiment.
Is the Fortran compiler generating
array-bounds checks? If not, pragma
Suppress(All_Checks) in the Ada
version will make the test more fair.

Thomas mentioned the -gnatp option, that
has the same effect as "pragma
Suppress(All_Checks)" in the source.
From: Samuel Tardieu <sam@rfc1149.net>
Subject: Re: GNAT compiler switches and

optimization
Date: 20 Oct 2006 14:18:14 +0200
Newsgroups: comp.lang.ada
Oh, also this one lowers the Ada
execution time by around 10%: do not use
an unconstrained type and do not use
pointers.

N: constant Positive :=
 Positive'Value (Argument (1));
G : Ada.Numerics.Float_Random.
 Generator;
type Real_Matrix is array
 (1 .. N, 1 .. N) of Float;
pragma Convention (Fortran,
 Real_Matrix);
A,B,C : Real_Matrix;

And as Duncan says, you should try with
a newer backend for Ada.
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Fri, 20 Oct 2006 11:56:50 -0400
Subject: Re: GNAT compiler switches and

optimization
Newsgroups: comp.lang.ada
I built the gcc "head" from gcc SVN with
GNAT and Fortran to compare the same
versions (at least as much as possible).
I moved the start timing calls after the
array allocation and filling so we just
timing the matrix multiplication
I moved the timing calls to make sure we
were not timing IO in either case (both
original versions were timing part of the
"put").

216 Ada in Context

Volume 27, Number 4, December 2006 Ada User Journal

I replaced the "random" data with some
fixed sane data just to be sure there was
no funky "denormal" stuff happening that
changed the speed.
Very little change in the order of
magnitude that the original poster was
seeing (I pretty much get results with
GNAT running about 2.6 times slower) so
it was time to look at the assembly.
I find it easier to read ass.embly using sse
math so building Gnat via
gnatmake -g -f -gnatp -O3
 -march=pentium4 -fomit-frame-pointer
 -mfpmath=sse tst_array
and Fortran via:
gfortran -O3 -g -march=pentium4 -fomit-
 frame-pointer -mfpmath=sse –c
 tst_array.f95
and then using
objdump -D -S tst_array.o
to look at them, you pretty quickly can
see the problem.
The "inner loop" of the sse math [is 28
Instructions] vs. 8 for Fortran. [...]
The GNAT version never stood a chance.
It really seems like GNAT is dropping the
ball here.
Granted small benchmarks can really lead
one to believe things are better or worse
than the truth but I don't think there is
really an excuse in this case for this sort
of performance.
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Fri, 20 Oct 2006 19:52:54 -0400
Subject: Re: GNAT compiler switches and

optimization
Newsgroups: comp.lang.ada
Note, I am the first one to jump to the
defence of "Ada" in general but in this
case, GNAT just plain sucks compared to
GNU Fortran as it does a poor job on (at
least) the inner loop (verified by looking
at the output assembly)
Jeff's (the other jeff :) modified version
looks a little cleaner and actually runs
faster (than even old "fixed version" that
did not time the IO and made sure to just
time the matrix multiply in both versions)
but it does not time the zeroing of the
elements of C which would be required if
this were a real matrix multiply routine
and not some test driver.
However, even having said that, this not
really equivalent version runs about 2x
slower than the Fortran (with the same
version of GCC)
I don't see any meaningful excuse for why
GNAT should be slower in this case but it
clearly is.
I tried looking at the tree dump generated
by the front ends prior to going to the
optimizer step (not something I have a lot
of experience at) . One thing is clear is the
trees generated by GNAT is quite a bit

uglier and more verbose so it is not
surprising that the optimizer is unable to
fully clean things up resulting in the
explosion of instructions at the assembly
level.
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Sat, 21 Oct 2006 12:35:54 -0400
Subject: Re: GNAT compiler switches and

optimization
Newsgroups: comp.lang.ada
> There is something strange. Martin

Krischik was able to trim the overall
time for the Ada code down to 24% of
the first version (GNAT/GCC 4.1.1).
This should make the Ada program as
fast as the Fortran one, shouldn't it ?
Maybe it's because the test is done on a
64 bit machine ? It needs some
reconciliation. A good thing in that
discussion would be that everybody
shows each time
- which GCC version
- which machine
- the execution time of the
multiplication for both Ada and Fortran
- which version of the Ada code (matrix
on stack/heap, Fortran or Ada
convention)

I'd certainly be willing to run a few
benchmarks but the important thing here
is that rather innocent looking code is
running 2-4x slower than it "should".
There are things that I think we can really
rule out as being "the" factor.
1) Random number generator — I did
timings (for both the Ada and Fortran)
with timing moved to only cover matrix
multiply.
2) Difference GCC versions — I built a
fresh GCC from the GCC trunk for both
Ada and Fortran
3) The Machine — I am running both on
the same machine, though I suppose there
could be differences in 32 bit v.s. 64 bit
comparisons.
4) Runtime checks — both the original
author (and I) ran with checks suppressed
5) O2/O3 — Actually, I could look at this
some more with some other versions but a
quick look when I first started seemed to
indicate this was not the issue.
A few other thoughts.
Once the timing is limited to just the
matrix multiply the stack/heap thing
'should' generally not matter.
Some of the changes made to the Ada
version make it not really the same
program as the Fortran version and the
same changes made to the Fortran one
would also cause it to speed up (e.g. not
counting the the zeroing of the target
array during the accumulation phase).
I have certainly seen some amazing
performance from some Ada compilers in
the past and in general, on non-trivial
benchmarks I am usually pretty happy

with the output of GNAT as well but in
this case it is not great.
Further, I tried playing a bit with the new
autovectorization capability of the near
4.X series of GCC (has to be specifically
enabled) and found that even very very
trivial cases would refuse to vectorize
under Ada (though after I submitted the
bug report to GCC, I found that Fortran
fails to vectorize these too).
One thing everyone needs to remember is
that this example was (probably) not
"Find the way to get the smallest value
out of this test program" because there are
always ways of doing some tweaks to a
small enough region of code to make it
better. If there is a 2-4x global slowdown
in your 100KLOC program, you will
never "get there" following the
conventional wisdom of profiling and
looking for the problems.
Now, I am not suggesting that GNAT is
globally 2–4x slower than GFortran or
anything like that (since that does not line
up with what I have generally seen on
larger code bases), but, if I were a
manager picking a new language based on
a set of long term goals for a project and
saw that GNAT was running 2–4x slower
and was still running 1.X to 3X slower
after 2 days of Ada guru's looking at it, I'd
probably jettison Ada (I know, I am
mixing compilers and languages here, but
in reality, that is what happens in the real
world) and go with something else.
And before the chorus of "processors are
so fast that performance does not matter
as much as safety and correctness" crowd
starts getting too loud, let me point out
that there are still many segments of the
industry where performance does still
indeed matter. Especially when one is
trading adding a second processor to an
embedded box against a vague promise of
"betterness" in terms of safety down the
road. Ok …Off the soapbox.
So, in closing, if someone thinks they
have "the best" version of that program
they want timed against gfortran, post it
here and I'll run them.
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Sat, 21 Oct 2006 17:22:05 -0400
Subject: Re: GNAT compiler switches and

optimization
Newsgroups: comp.lang.ada
> The first thing is to be sure that we are

running the same program.
Running your program with the
following changes (as done in Fortran):
1. Using Sum tmp var for the
computation
for I in A'range (1) loop
 for J in A'range (2) loop
 Sum := 0.0;
 for R in A'range (2) loop
 Sum := Sum + A (I, R) * B (R, J);
 end loop;
 C (I, J) := Sum;
 end loop;
end loop;
2. Using Long_Float instead of Float (I

Ada in Context 217

Ada User Journal Volume 27, Number 4, December 2006

think Fortran float is a Long_Float, to
be checked).
I went from 7.8s to 4.8s (with 1) and to
4.2s (with 2).

Actually, the original poster's Ada
program had the temp var and all of my
comparisons of programs that I have
asserted were "the same" used the
temporary.
As for Long_Float v.s. Short_Float,
gfortran is using 32 bit floats (as verified
by dumping the tree representation and
assembly language).
Since we are all getting a bit confused by
specific versions and numbers I thought
I'd post a summary and create a way of
tracking more global performance issues
at the gnuada.sf.net wiki.
The direct link to these test results are
here:
http://gnuada.sourceforge.net/pmwiki.php
/Main/Oct2006CLAGFORTRANCompari
son
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Sat, 21 Oct 2006 23:03:14 -0400
Subject: Re: GNAT compiler switches and

optimization
Newsgroups: comp.lang.ada
Actually, as a result of this, I submitted a
bug report to the GCC bugzilla list. You
can follow progress on it here:
http://gcc.gnu.org/bugzilla/show_bug.cgi?
id=29543
Interesting initial feedback is that
1) Not an Ada bug.
2) Is a Fortran bug
3) Is a backend limitation of the
optimizer.
Of course, the Fortran one still runs
correctly so I don't think most users will
care that it is because of a bug :)
From: Thomas Krauss

<thomas.krauss@gmail.com>
Date: 22 Oct 2006 04:48:36 -0700
Subject: Re: GNAT compiler switches and

optimization
Newsgroups: comp.lang.ada
> If I inline the inner Multiply, or put

equivalent code in the task and the
outer Multiply, the time is much more
than for the sequential version,
presumably due to cache effects.
Since it appears you have 2 physical
processors ("Dual Xeon 2.8 Ghz"), I
would be interested in seeing what
effect this concurrent version has on
that platform. I also wonder how easy
such a version would be to create in
Fortran.

It's funny that you mention tasking since
that's what got me started on this in the
first place. I was introduced to OpenMP
as a simple method of parallelizing code
in fortran. Unfortunately it seems to be
"tricky" to really get things in parallel
(what data is shared, multiple tasks doing

the same thing with the same memory,
access violations, etc.) I remembered that
Ada had tasking built in so I started
playing with that. Now, as you can
probably tell from my code, I haven't
touched Ada in a _very_ long time, but it
was surprisingly easy set up a simple two-
task test program.
Anyway, using the latest code from
Jeffrey Creem it looks like the execution
time (on my machine) has been cut in
half (9 seconds). The threaded version
runs in nearly the same time for smaller
problems but dies with a stack overflow
for larger. I see a comment in the
Bugzilla recommending a similar
construct

type Real_Matrix is array
 (1 .. N, 1 .. N) of Float;

That takes the memory from the stack
rather than the heap though, no? I assume
there is a compiler switch to increase the
stack size so the code wouldn't die, but is
that the "normal" way of allocating
memory? I'm trying to not look like
too much of an Ada neophyte :)
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Sun, 22 Oct 2006 14:31:05 +0200
Subject: Re: GNAT compiler switches and

optimization
Newsgroups: comp.lang.ada
> Adding the Sum variable makes an

important difference, as others have
reported, in my case from 5.82 to 4.38
s. Hoisting the indexing calculation for
the result (C) matrix location is a basic
optimization, and I would be surprised
if it isn't done. The only thing I can
think of is that it's a cache issue: that all
3 matrices can't be kept in cache at
once. Perhaps compiler writers would
be able to make sense of this.

The Sum variable was *removed* by
someone at some point of the discussion
in order to challenge a bit more the Ada
compiler's optimizer. If you replace a
good algorithm by a bad one, don't be
surprised that the program is slow. At
some point of bad coding the best code
optimizer won't be able to help you.
Eventually the optimizer will transform
this:

for R in A'range (2) loop
 C (I, J) := C (I, J) +
 A (I, R) * B (R, J);
end loop;

into something like:
Sum:= C (I, J); -- hopefully a Sum is
 --+ mapped to a register
for R in A'range (2) loop
 Sum := Sum + A (I, R) * B (R, J);
end loop;
C (I, J):= Sum;

but in that case it probably won't be able
to guess that the C(I,J) was zeroed before
and replace the first line by:

Sum:= 0.0;

sparing the reading of C(I,J) (must cost
much time). If you are luckier, the
optimizer will do

Sum:=0.0;
for R in A'range (2) loop
 Sum := Sum + A (I, R) * B (R, J);
end loop;
C (I, J):= C (I, J) + Sum;

But still, it won't spare the time lost to fill
the C matrix with zeros. If you want to do
a benchmark with Fortran, it's really not a
good idea to begin with "pessimizing" the
Ada code.
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Sun, 22 Oct 2006 20:26:41 GMT
Subject: Re: GNAT compiler switches and

optimization
Newsgroups: comp.lang.ada
I did that in my 1st version. I wanted to
see if the optimizer would result in
equivalent code. No such luck. [...]
The initialization of C is static, so a good
optimizer could. They're hard to find,
though. [...]
I'm more interested in seeing what makes
a difference in the Ada. In this case, the
high-level features that let you write less
code.
From: Tom Moran <tmoran@acm.org>
Date: Sun, 22 Oct 2006 13:01:53 -0500
Subject: Re: GNAT compiler switches and

optimization
Newsgroups: comp.lang.ada
Each 800×800 Float matrix is about 2.5
megabytes so I would expect two threads
to be fighting each other over the cache.
What are the single vs. dual threaded
times for, say, 250x250 arrays and a 1
MB cache on your machine, and on the
dual Xeon machine?
Curiously, on a 3 GHz Pentium 4 with 1
MB cache and compiling with -O2 -gnatp
using the venerable gnat 3.15p, I get
Time: 8.511855190 800 1 thread
Time: 5.682686332 800 2 threads
for a speedup of 33%
Time: 0.092724434 200 1 thread
Time: 0.059209520 200 2 threads
for a speedup of 36%
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Sun, 22 Oct 2006 11:57:16 -0400
Subject: Re: GNAT compiler switches and

optimization
Newsgroups: comp.lang.ada
Followup on the bug report.
One of the comments asserted that the
two programs were not equivalent though
I am not yet 100% convinced that I
believe it yet.
His recommendation was to remove a
level of indirection by changing the way
the array is declared.

N : Positive := Positive'Value
 (Argument (1));

218 Ada in Context

Volume 27, Number 4, December 2006 Ada User Journal

G : Ada.Numerics.Float_Random.
 Generator;
type Real_Matrix is array
 (1..N, 1..N) of Float;
type Matrix_Access is access
 Real_Matrix;
A,B,C : Matrix_Access;
Start, Finish : Ada.Calendar.Time;
Sum : Float := 0.0;
begin
 A := new Real_Matrix;
 B := new Real_Matrix;
 C := new Real_Matrix;

This does indeed substantially improve
the performance (still not quite to Fortran
levels). The reason I question the
equivalence is that in the original version,
the array could have been passed to a
procedure that took in an unconstrained
array (which is pretty much what I think
the Fortran version would allow) while
this new version would not do that.
A quick check shows the Fortran is now
only 1.2 times faster (did not do the
multiple run thing yet). Perhaps tonight.
I'll also attempt to take one of the
threaded ones and include that as well.
Can someone that understands Fortran
better make an argument about the
"closeness" of this approach vs. the other?
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Mon, 23 Oct 2006 07:55:49 -0400
Subject: Re: GNAT compiler switches and

optimization
Newsgroups: comp.lang.ada
> I doubt if anything will beat matmul

(short of 640_000 processors). But Ada
with explicit loops and Fortran with
matmul are hardly equivalent. You
need to convention-Fortran the Ada
array type, import matmul, and call it to
get a fair comparison. There shouldn't
be much difference.

I looked at the gcc Fortran matmul.
Unless there some additional trickery
going on behind the scenes, it is not
anything magical. It looks like a matmul
implemented in C with manual array
subscripting logic (i.e. uses a single
dimensional array overlay).
In any case, it is not so much matmul I am
trying to make faster here but rather just
the nature of 2d array traversals in native
language structures.
I just included the Fortran matmul to be
"more than fair" to Fortran as I am in no
way trying to bash Fortran.
The speedup for the tasks is quite odd
though. I'll need to disassemble it tonight.
I also just finished a 4.0.2 install last night
so I'll get those numbers to see if all of
this mess is simply a regression
someplace in the compiler.
From: Dr. Adrian Wrigley

<amtw@linuxchip.demon.co.uk>
Date: Sat, 21 Oct 2006 12:39:30 GMT
Subject: Re: GNAT compiler switches and

optimization

Newsgroups: comp.lang.ada
When I started using Ada, I found exactly
the same thing. Programs ran slower.
Sometimes much slower. Perhaps this is
the biggest single disadvantage of Ada
(GNAT) in practice, particularly for
heavy numerical codes (compared to
Fortran or C).
Looking closer, I found the assembly
output was sometimes littered with
apparently redundant or unintended
function calls, extra checks and other
baggage.
The prevailing claims at the time were
that Ada was roughly as fast as C,
sometimes faster (because of deeper
semantics). Whenever logically identical
code was compared, however, the output
assembly code was often identical, giving
the same performance.
In real code, I found big differences when
using enumerations instead of integers,
multi-dimensional arrays etc. And
language-defined maths libraries, random
number generators, I/O etc. all risked
major slow-downs.
The only solution I found was to examine
the output code, and modify the source
until I got code that was acceptable.
Sometimes this meant dropping useful
language features, or using less clear
constructs.
This is a real problem with the language
(Ada using GNAT). For a lot of
applications, the optimisation effort isn't
worth it. And even for performance
critical applications, most code is outside
of any hot-spots.
I get the impression that Fortran is an
excellent language for getting efficient
code easily. C is also quite good. But
C++ and Ada both seem to "hand-
holding" to keep them efficient. Perl is
the worst I know(!)
If you really care about performance,
you'll check the assembly code or
compare against expectations. As you fix
unexpected bottlenecks, you'll find out
what type of code compiles well with
your compiler, and write future code
avoiding the problem areas. Of course,
when the compiler changes, you may find
the rules change and your old code
appears quaint or idiosyncratic.
The other posters to this thread have
given some useful optimisations to your
original code. Let us know whether this
bridges the performance gap for you!

Programmer productivity in
Ada 2005
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: Re: Ada 2005 language update(s)

& programmer productivity
Date: Sat, 04 Nov 2006 19:12:20 +0100
Newsgroups: comp.lang.ada

> What Ada 2005 language update(s) will
turn out to have the biggest impact on
programmer productivity?

Depends on the field in which the
programmer works. My top three with a
target desktop applications would be:
1) Interfaces
2) Container Classes Library
3) Anonymous Access Types
But if you do i.e. real-time work it will be
something else. Ada is designed as a multi
paradigm language from the beginning
and as far as I know only Oz supports
more paradigms as language feature (as
opposed to library features). So in every
domain programmers will choose their
favourite new feature.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Ada 2005 language update(s)

& programmer productivity
Date: Mon, 6 Nov 2006 20:47:50 -0600
Newsgroups: comp.lang.ada
I agree with this; real-time programmers
have very different requirements than
those on desktops or even soft-real time
servers.
I would probably say "limited with"
(because it allows a natural structuring of
interrelated packages that wasn't possible
in Ada 95) and the containers library
(because it makes something powerful
available to everyone in a standard way).
But it's probably a little early to say (for
instance, I haven't used any new Ada
features in programs yet). The biggest
value may be in something that appears
less critical now.

About Ada Object-
Orientation features
From: Jeffrey R. Carter

<jrcarter@acm.org>
Subject: Re: Basic Explanation of OO in

Ada
Date: Mon, 18 Sep 2006 20:25:44 GMT
Newsgroups: comp.lang.ada
> I'm new to Ada, having to learn it for

work, and I am beginning to understand
the language, I think. However, coming
from C (and family) and Java and other
"modern" languages, I can't seem to
wrap my head around Ada's OO
methods. Is it that there is simply
nothing like a class in C++ or Java?

You should realize that what you're
asking about is not OO, but programming
by extension. Because "OO" became a
synonym for "good", and early examples
of OO were shown in languages that
supported (or required) programming by
extension, programming by extension got
called OOP, but that is a misnomer.
Programming by extension does not
necessarily have anything to do with
object orientation. Programming by
extension is an implementation technique.

Ada in Context 219

Ada User Journal Volume 27, Number 4, December 2006

Object orientation is a design attribute and
may be implemented without using
programming by extension.
From: Lucretia <lucretia9@lycos.co.uk>
Subject: Re: Basic Explanation of OO in

Ada
Date: 18 Sep 2006 20:32:15 -0700
Newsgroups: comp.lang.ada
This is very true and a lot of programmers
don't realise they can develop in an OO
way in asm or C (or any procedural
language).
From: Jeffrey R. Carter

<jrcarter@acm.org>
Subject: Re: Basic Explanation of OO in

Ada
Date: Tue, 19 Sep 2006 20:45:56 GMT
Newsgroups: comp.lang.ada
OO is encapsulation of data and the
operations on those data. In Ada 83, this
was done through abstract state machines
(package as object) or abstract data types
([limited] private type and corresponding
operations). In assembler or C it's done
through discipline.
Programming by extension is the use of
type extension (type X is new
Tagged_Type with ...;), also called
inheritance. Dispatching (also called
polymorphism) can also be part of this,
but in Ada, much of what would be
dispatching calls in other languages are
static.
Ada also has package extension (child
packages) as a form of programming by
extension.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: Basic Explanation of OO in

Ada
Date: 19 Sep 2006 08:31:20 -0700
Newsgroups: comp.lang.ada
> So basically, OO is the principles:

* polymorph,
* encaps,
* inheritance.
And Programming by extension is the
way to do it in Ada, as class something:
{}
would be in C++?

Not exactly. That construct in C++
corresponds to several of Ada's
constructs:
- a class in C++ is a unit of encapsulation,
since it has public, private and protected
parts. In Ada, packages, not types, are the
units of encapsulation; they have public,
body and private parts (respectively).
- a class T in C++ corresponds to a tagged
type in Ada, but it also implicitly declares
a pointer type (T*) and a reference type
(T&) which correspond to Ada's class-
wide access types; thus:
class T {};
is equivalent to

package P is
 type T is tagged null record;

 type Pointer_To_T is access
 all T'Class;
 type Reference_To_T is access
 all T'Class;
end P;

Programming by extension does not
necessarily involve inheritance. Consider:

package Pak2 is
 type T is private;
 -- not necessarily tagged
 procedure Proc (Object : in T);
private
 type T is ...
end Pak2;
package Pak2.Extensions is
 procedure Additional_Operation
 (Object : in out T);
 type Extended is record
 Base : T;
 Additional_Data : ...;
 end record;
end Pak2.Extensions;

This is extension by composition, as
opposed to inheritance. Of course, you
already understand how to program by
extension by means of inheritance. there
are still other ways, like "mix-ins", which
combines composition and inheritance.
> One thing I'm still confused on is the

use of access objects versus/with the
use of object'Class. I understand using
object'Class for polymorphism and
inheritance, but can access objects be
used in a similar manner?

I think about it this way. An object of a
class-wide type is indefinite; we do not
know its size, because its specific type
may be anywhere in the inheritance tree.
In contrast, an access-to-class-wide-object
has a known size (usually just that of an
address). As a consequence, you can
create arrays of access values, but not
arrays of class-wide objects.
So, access types are not necessary to
achieve polymorphism; the following
achieves polymorphism without an access
type:

package Pak is
 type T is tagged private;
 procedure P (Object : in out T);
 -- primitive operation
end Pak; -- body omitted
with Pak;
procedure Test
 (Object : in out Pak.T'Class) is
begin
 Pak.P (Object);
-- dynamic dispatch
--+ achieves polymorphism
end Test;

Access types come in handy if you want a
collection of class-wide objects; the
collection is said to be polymorphic:
with Pak;

package Collection is
 type Ref is access Pak.T'Class;
 -- access-to-class-wide-objects
 type Vector is array
 (Positive range <>) of Ref;
 -- polymorphic vector
 procedure Traverse
 (V : in Vector);
end Collection;
package body Collection is
 procedure Traverse
 (V : in Vector) is
 begin

 for J in V'Range loop
 if V (J) /= null then
 Pak.P (V (J).all);
 -- dispatches on the
 --+ specific type of the object
 end if;
 end loop;
 end Traverse;
end Collection;

From: Maciej Sobczak
<maciej@msobczak.com>

Subject: Re: Basic Explaination of OO in
Ada

Date: Wed, 20 Sep 2006 09:16:22 +0200
Newsgroups: comp.lang.ada
> Here's another interesting tip for C++

programmers. In C++, once you declare
a member function to be "virtual", all
calls to that member function dispatch
dynamically, across the entire program.

Except when you ask it otherwise by
qualifying the function name at the call
site, see below.
> Conversely, if a member function lacks

the "virtual" keyword, calls to it are
always static. The only way you can
determine whether calls dispatch
statically or dynamically is by looking
at the declaration of the member
function. Things can become quite
nasty if a class overrides an inherited,
non-virtual member function, and
makes it virtual.

Yes, it becomes nasty. It's a classical no-
no for C++ programmers.
> I'm not even sure what the language

rules are in this case.
The static type used to call determines
whether it dispatches or not, because it's
the static type (of the pointer or reference)
that allows to check whether the function
is virtual.
> In contrast, in Ada, you do not declare

primitive operations as "virtual", or
"dynamic" or whatever. Instead, you
choose *at the point of call* whether or
not the call dispatches. Consider:
with Pak; use Pak;
procedure Test
 (Object : in out T'Class) is
begin
 P (Object); -- dynamic dispatch
 P (T (Object)); -- view conversion to
 --+ a specific type =>
 --+ static dispatch
end Test;

Similar for C++:
p->fun(); // dynamic dispatch if in *p fun
 // is virtual
p->BaseClass::fun(); // no dynamic
 // dispatch
> Consequences:

- you always know whether or not the
call dispatches dynamically by just
looking at the call
- you can choose how to dispatch based
on your requirements
- a primitive operation cannot be
"virtual" in some contexts and "non-

220 Ada in Context

Volume 27, Number 4, December 2006 Ada User Journal

virtual" in others. It is always
"potentially virtual".

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Subject: Re: Basic Explanation of OO in
Ada

Date: 19 Sep 2006 09:06:33 -0700
Newsgroups: comp.lang.ada
> Although you can only have vanilla

arrays of definite types, you can have
more sophisticated containers (for
example
Ada.Containers.Indefinite_Vectors)
that store class-wide types in Ada 2005:
package Pak_Vectors is new
 Ada.Containers.Indefinite_Vectors
 (Positive, Pak.T'Class);
In this case, however, you store copies
so some overhead can occur, but in
many cases it can be more convenient
than starting to play with pointers.

Doesn't
Ada.Containers.Indefinite_Vectors have
to declare a class-wide access type for its
internal use? I'd guess so. But, it hides the
access type from the user, and that's
encapsulation at its best.
In Ada, one rarely needs access types at
all. The only justification for declaring
one is because you're doing some kind of
dynamic data structure and allocating
dynamically on the heap. With the
standard Ada.Containers, you'd need
access types even less often.
That's why in my examples I did not
declare an access type along with the
tagged type (in package P); instead, I
declared an access type in another
package (package Collection) because
that package absolutely needed one.

Porting Ada code to Linux
From: Bill <william.lugg@cisf.af.mil>
Subject: Porting Ada code to Linux
Date: 31 Oct 2006 06:17:46 -0800
Newsgroups: comp.lang.ada
We have some code (about 60K lines)
that was written for use on the Win95
platform as a collection of DLLs. We are
now in the process of porting the parent
application to Linux and would like to
reuse the Ada code. The legacy code was
written using the Aonix ObjectAda
compiler/IDE and references packages
like Win32 and Win32.Windef.
We have been able to move the code over
to the Linux side and compile using the
GNU Ada compiler. However, to get this
far we also had to copy the
aforementioned "Win" packages over too.
Clearly, this seems like the wrong thing to
do, but it did get the compile to work.
The problem is that we are receiving a fair
number of linker errors that seem to point
to the file winbase.h.
So, it seems like there should be a Linux
equivalent of Win32, but we have not
been able find it. Can anyone point us to

a replacement for these packages that will
make the compiler AND the linker
happy? Is there anything else we should
know about in our effort to complete this
port?
From: Howard

<Howard.Parrish@peterson.af.mil>
Subject: Re: Porting Ada code to Linux
Date: 31 Oct 2006 09:38:14 -0800
Newsgroups: comp.lang.ada
I work with Bill, and I wanted to provide
a more detailed expansion of our
situation;
We are porting from a Windows-95
"legacy" system to a new Linux one. The
code we are re-writing is Visual Basic,
and we are translating it into C++. But,
the VB code had a dependency on a
considerable amount of Ada 95 code that
the VB code interfaced with via DLLs.
We need to port this Ada code over, also.
We have decided, given that there is
between 45 and 55 thousand lines of Ada
code, with its attendant complexity, to
simply use the Ada code as is without re-
writing it into C++. This Ada code
depends on some files, also written in
Ada, that then have some pragmas to a
Visual C++ library, "winbase.h"...
The Ada libs are;
Win32
Win32-Utils
Win32-Winbase (pragmas to VCPP
winbase.h lib)
Win32-Windef
Win32-Winnt
Stdarg
Stdarg-Impl
Stdarg-Inst
Stdarg-Machine
These are all Ada packages, and these
name represent specs, and bodies, so
named.
So, we are going to have to compile the
Ada code, then link it with the new C++
code. We are using the GNU-G++
compiler linker, and we will need to be
able to link in the Ada object files with
our C++ files. We have to find a way to
replace, or port, the mentioned Ada libs.
The "Winbase" dependency on the Visual
C++ files is problematic, at best.
So, again, any insight that can be
provided would be greatly appreciated.
You can write me directly.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: Re: Porting Ada code to Linux
Date: Wed, 1 Nov 2006 10:03:24 +0100
Newsgroups: comp.lang.ada
OK, that's Windows API interface. It is no
language issue.
Depending on what was used in the
application, there might be no chance to
port it at all. It is not Ada, but an OS-
specific problem. Honestly, I know no
way to port, say, Window's SendMessage

to Linux. It is just a totally different
architecture. Firstly you need Windows
expertise. Your question suggests that you
don't have it. This makes the chances even
lower than zero. So, probably, as others
have proposed, you should redesign the
program with OS-portability in mind. Ada
offers you an excellent support here.
There is another option, not mentioned
before. I can't tell how realistic it is, but
anyway, there are Windows emulators for
Linux. Wine is one. I never used Wine,
but it looks that apart from its main
purpose of being a Windows emulator,
Wine also supports porting [for lazy ones
(:-))]. I'd suggest you to take a look at
Winelib
http://www.winehq.org/site/docs/winelib-
guide/index
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Tue, 31 Oct 2006 21:29:06 +0100
Subject: Re: Porting Ada code to Linux
Newsgroups: comp.lang.ada
> They are not Ada libraries but Ada

bindings. And the real problem you are
going to have is to find a replacement
for the Libraries those binding are
binding to.
i.e. for Win32* you will need a Linux
replacement for "win32.dll".
I like to point out that you would have
the same problem if the code was
written in C (so it would be unfair to
say "damn you Ada") in which case you
would look for a replacement of
"windows.h" and it's friend. It's low
level operating system access and it just
isn't there in Linux.
The bad news is: You need to replace it
all with low level Linux access.

And also to be mentioned, the good news
are: most of the code (the parts not bound
to Win32) will be very easy to port, and
that is because it is in Ada.
From: Steve <steved94@comcast.net>
Subject: Re: Porting Ada code to Linux
Date: Tue, 31 Oct 2006 19:28:41 -0800
Newsgroups: comp.lang.ada
My first response is: it is unfortunate that
the Ada code was programmed with direct
dependencies to these interface modules
(apparently) scattered about the system.
A better approach is to create a more
generic binding to the system dependent
interfaces to ease porting.
Given that you are talking about tens of
thousands of lines of code, I would
suggest attempting to create such an
interface module with the existing code.
Remove all references to the existing
Win32 and Stdarg stuff. The compiler
will help by telling you where things need
to be "fixed up".
While this may sound like a daunting
approach, in my experience this approach
is not as bad as it sounds. It's a bit
tedious, but really doesn't take that long.

Ada in Context 221

Ada User Journal Volume 27, Number 4, December 2006

For example eliminating the "With"
statements will immediately identify
things that need to be re-defined in an OS
independent manner. The first compile
may give you a LOT of errors, but often
fixing one error fixes many. When a
problem is identified, similar problems
may often be corrected with a search and
replace in an editor.
From: Dr. Adrian Wrigley

<amtw@linuxchip.demon.co.uk>
Subject: Re: Porting Ada code to Linux
Date: Tue, 31 Oct 2006 20:21:36 GMT
Newsgroups: comp.lang.ada
Rather than trying to convert the VB into
C++, keep the Ada, convert the Ada into
Linux and glue the C++ to the Ada, why
don't you convert the VB into Ada?
You don't seem to have a strong technical
reason to combine C++ and Ada, since
C++ isn't a current implementation
language. Because C++ and Ada have
similar capabilities ("modern" compiled
OO languages), the technical advantages
of mixing them in new code are minimal.
Mixing languages always has a cost –
staff training, reduced compiler support,
tricky interfaces, whatever.
Since you plan to convert to C++, you
must have good reasons. Political? Skills
sets? Anyone well skilled in both C++
and Ada would keep it all in the same
language (Ada), or have a really good
justification already for mixing
(interfacing to existing, complex C++
libraries without Ada bindings, perhaps).
But since you haven't chosen the Linux
libraries yet, this can't be why.
I suspect you want to move to C++ for a
mixture of political and skills reasons, but
this really warrants planning to rewrite
all the Ada, in due course. History
suggests this is an unsound approach
when existing code works broadly as
needed. If politics is absent, do it all in
Ada, getting necessary skills from
outside.

How to use anonymous
access types
From: Pascal Obry <pascal@obry.net>
Date: Sun, 19 Nov 2006 23:07:58 +0100
Subject: Re: generic question
Newsgroups: comp.lang.ada
[...] There is no way to instantiate
Unchecked_Conversion with an
anonymous access type. This is something
I found quite irritating in Ada 2005.
From: Pascal Obry <pascal@obry.net>
Date: Tue, 21 Nov 2006 08:04:56 +0100
Subject: Re: generic question
Newsgroups: comp.lang.ada
> Storage pools are associated with

named access types. (I think it's
possible to allocate using an
anonymous access type, but to me that's

thoroughly confusing and so I have
never attempted to do so.)

Yes of course:
 C : access Integer;
 ...
 C := new Integer'(12);
> With anonymous access types the

programmer must maintain the
association between allocated instance
and its pool. You can only allocate
from a pool, and you must deallocate to
the same pool from which you
allocated, so at some point there needs
to be a conversion between the
anonymous access type and the named
access type (with which the storage
pool is associated).

I do not follow. The conversion will
change nothing:
1. you allocate an anonymous access from
a "compiler specific pool A"
2. you convert the anonymous access type
to a named access type : NAT
3. you deallocate NAT from a "compiler
specific pool B"
This will allocate and deallocate on
different pool. And AFAIK there is no
way to specify the anonymous access type
pool.
I don't see a solution to that problem at
the moment ... or I'm confused :)
From: Pascal Obry <pascal@obry.net>
Date: Tue, 21 Nov 2006 18:12:54 +0100
Subject: Re: generic question
Newsgroups: comp.lang.ada
[...] You are saying that for every
anonymous access type you need to
declare a named access type from which
allocate/deallocate. One point of the
anonymous access type was to avoid
proliferation of named access type.
I find anonymous access type less useful
this way. Why even bother with them?
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: generic question
Date: Wed, 22 Nov 2006 17:58:24 -0600
Newsgroups: comp.lang.ada
> Because you can derive pointers

without allocation.
E.g. self references of limited types.

Well, that's one use. There are three
others, IMHO:
* To stand in for the lack of "in out"
parameters on functions;
* To avoid unnecessary type conversions
between access-to-declared-in-limited-
with;
* To stand in for the lack of subprogram
types (anonymous access-to-subprogram
parameters).
That's it. All other uses (especially
controlling access parameters) are junk
and should be avoided.

In part, that follows from my opinion that
there should be no access types in the vast
majority of reusable Ada packages (if the
user needs dynamic allocation, they can
provide it). Of course, the implementation
of the such a package might have some
access types, but those might as well be
named (there is no need for implicit
conversions there).
One of the reasons I feel this way that
access types are inherently less safe than
direct use of objects (because of the
possibility of dangling pointers). And they
force the customer of an abstraction to do
memory management (or unsafe
programming with very ugly calls) even
when an stack-based allocation is fine.
The reason anonymous access parameters
were invented was because some people
wanted to copy dubious OO designs from
C++ directly into Ada without appropriate
conversion. Which just brings the flaws of
those designs into Ada — yuck. And, yes,
I was against the expansion of the uses of
anonymous access types in Ada 2007. I
lost that discussion primarily because I
didn't have a reasonable alternative for the
second bullet above.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: generic question
Date: Tue, 28 Nov 2006 15:23:07 -0600
Newsgroups: comp.lang.ada
> Was it so important to compensate for

all disadvantages access types bring
with?

I guess so. The second bullet is about
cases where an access type needed to be
exported anyway; there's no expansion in
use implied. Limited with doesn't allow
exporting an access type (and we tried a
number of ways to allow that, but they
didn't work without causing
implementation and use problems — for
instance, it wasn't possible to determine
the appropriate storage pool). One could
argue that programmers shouldn't be
exporting access types in the first place,
but that would not reflect the way many
programmers use Ada. And efforts to
force people to do the right thing tend to
be doomed – better to avoid hamstringing
people (which might cause them to
change to a less well-designed language).
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: generic question
Date: Wed, 22 Nov 2006 18:02:55 -0600
Newsgroups: comp.lang.ada
> The factory function (called by a user of

the package to create instances of this
specific type) should return an
anonymous access type as its return
type.

I don't think a factory function should
ever return an access-to-object: it should
return the object itself. If the client needs
to allocate that dynamically, it can; else it

222 Ada in Context

Volume 27, Number 4, December 2006 Ada User Journal

can use the function for an appropriate
static initialization.
It has been argued that sometimes you
don't want those constructors to be
inherited. In that case, it should return a
classwide type, because even access-to-
object is considered primitive and thus
inherited.
But, of course, YMMV.

User interfaces in AJAX
From: Lucretia <lucretia9@lycos.co.uk>
Subject: Should a GUI be separated from

the application?
Date: 26 Sep 2006 10:16:11 -0700
Newsgroups: comp.lang.ada
When developing an application it is
mostly combined with the GUI, a lot of
toolkits do this. You would extend a UI
tagged-type (or class, or whatever your
language uses) and include the code
inside the new tagged-type, an example
would be a toolkit which provides event
handler callbacks via primitive types (a la
CLAW) thus forcing you to include your
application code into the new derived
type.
Is this the best thing to do? Should I give
the users the option?
From: Tom Moran <tmoran@acm.org>
Date: Wed, 27 Sep 2006 13:26:36 -0500
Subject: Re: Should a GUI be separated

from the application?
Newsgroups: comp.lang.ada
> The users have the option of making the

"application code" in the GUI
framework just communicate with the
real application, via rendezvous,
sockets or whatever.

Agreed. It depends on the complexity and
the timing requirements. If the response to
a human-caused event can be done in a
fraction of a second, the code might be
included in the GUI event handler, while
responses that take a long time should be
separate to avoid blocking other events.
If the complexity of communication is
low — updating a percent complete
display for example — then it's easy to
separate app and GUI code and
communicate with something simple like
a protected object. If the communication
is very complex, your user may find even
rendezvous difficult and want to put the
app code inside the event handler. One
size doesn't fit all.
From: Simon Wright

<simon@pushface.org>
Subject: Re: Should a GUI be separated

from the application?
Date: Thu, 28 Sep 2006 07:09:19 +0100
Newsgroups: comp.lang.ada
> What other design would you offer?
What about having a browser as the GUI
and using AJAX-style HTTP for the
comms? The back-end would be

something like AWS or my EWS
(http://embed-web-srvr.sourceforge.net).
It does mean programming your GUI in
HTML/JavaScript which I can agree is
less than pleasant, but I'm not at all sure
that GUI programming in Ada is any less
tedious, and it certainly makes you think
about separation of concerns!
I have yet to get to grips with XML-
formatted (i.e., structured) responses.
Perhaps I'm reading the wrong book
(Professional AJAX from Wrox).
From: Pascal Obry <pascal@obry.net>
Date: Thu, 28 Sep 2006 18:52:10 +0200
Subject: Re: Should a GUI be separated

from the application?
Newsgroups: comp.lang.ada
Indeed, a very nice way to deal with GUI.
This is what I call pluggable-GUI !
You can use AJAX-XML based control of
the GUI. See the AWS's AJAX Web
Elements demos. The application only
output XML actions. No HTML or
Javascript messing, the framework is
already done by AWS.
From: Pascal Obry <pascal@obry.net>
Date: Fri, 29 Sep 2006 19:54:18 +0200
Subject: Re: Should a GUI be separated

from the application?
Newsgroups: comp.lang.ada
> I suppose that the _necessary_ JS is

created by AWS, then.
AWS comes with an AJAX runtime.
> Doesn't that make it hard to use a

'standard' web designer to create the
pages and just add a little interaction
here & there?

It must depend on the way you work.
Usually that's not that hard.
From: Pascal Obry <pascal@obry.net>
Date: Thu, 28 Sep 2006 20:46:50 +0200
Subject: Re: Should a GUI be separated

from the application?
Newsgroups: comp.lang.ada
> Could you make a Pong game that way?

Or a music synthesizer? Or does "GUI"
mean a limited subset of graphical user
interfaces?

I think with the current state of the
technology a "limited subset" only. But in
some years from now, we a nice SVG
support... who knows! At least with
AJAX the limited subset is far more
advanced than it used to be.

Are Ada 2005 containers
thread safe?
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Fri, 24 Nov 2006 09:51:24 +0100
Subject: Multitasking and containers
Newsgroups: comp.lang.ada
Paragraph 3 in Annex A says that it's OK
to call any standard subprogram from
concurrent tasks as long as the parameters

do not overlap. John Barnes
("Programming in Ada 2005") suggests
that in order to (for example) read from
the same container, the operations need to
be protected "by using the normal
techniques such as protected objects".
But reading from the protected object is
not mutually exclusive (many readers are
allowed) — so where's the gain? What's
the difference between concurrent reads
of, say, a Vector via a protected object vs.
direct access?
From: Matthew Heaney

<matthewjheaney@earthlink.net>
Date: Fri, 24 Nov 2006 12:02:31 GMT
Subject: Re: Multitasking and containers
Newsgroups: comp.lang.ada
The reason is a conflict between safety
and flexibility, a conflict that was
resolved in favor of safety.
The container must set some internal state
to indicate that Query_Element is
executing, in order to prevent you from
doing things inside Query_Element that
would potentially destroy the element
(such as Delete'ing it).
Even though Query_Element is
technically a read-only operation, that's
true only in the logical sense, not the
physical sense. It doesn't look like
Query_Element modifies the container,
but it really does modify the container, to
set some state that indicates a
Query_Element is in progress.
Yes, it would seem as if it should be
possible for multiple tasks to all be
reading from the container
simultaneously. But it's impossible to do
that and also satisfy the requirement that
the container detect potentially harmful
manipulation of the container while
Query_Element is executing.
So multiple tasks — even tasks only
calling (logically) read-only operations —
cannot simultaneously call container
operations without also synchronizing the
tasks, by wrapping the container inside a
protected object, using a critical section,
etc.
From: Matthew Heaney

<matthewjheaney@earthlink.net>
Date: Fri, 24 Nov 2006 12:12:13 GMT
Subject: Re: Multitasking and containers
Newsgroups: comp.lang.ada
> That would be interesting, but would

break apart when encapsulated within a
protected object, because there multiple
readers would be allowed.

But I think that's true only when multiple
readers are calling protected functions.
(There is a subtle difference in semantics
between protected functions and protected
procedures.) It does seem you'd need to
use a protected procedure when
manipulating a container nested inside a
protected object, since a protected
function wouldn't provide the level of
synchronization required.

Ada in Context 223

Ada User Journal Volume 27, Number 4, December 2006

> Having a mutex for readers sounds like
a concurrency killer and relying on
protected wrappers seems to be fragile
because of this possible mutability. So
— what is The Solution (tm) for
multiple tasks reading from the same
container?

Declare the container object inside a
protected object, and use protected
procedures to manipulate the container.
Protected wrappers should be fine, as long
as you use protected procedures, not
protected functions.
> Let's say you want to have N worker

tasks consulting a shared dictionary
(map) that was initialized before the
tasks started their work. How would
you solve this?

As above: declare the container object
inside a protected object, and use
protected procedures to manipulate the
container.
From: Matthew Heaney

<matthewjheaney@earthlink.net>
Date: Fri, 24 Nov 2006 12:13:32 GMT
Subject: Re: Multitasking and containers
Newsgroups: comp.lang.ada
> Write your own container. Parallel

systems require delicate handmade
work.

Horrible advice. Just declare the container
inside a protect object, and manipulate the
container by calling protected procedures.
Works great...
From: Jeffrey R. Carter

<jrcarter@acm.org>
Subject: Re: Multitasking and containers
Date: Mon, 27 Nov 2006 04:17:11 GMT
Newsgroups: comp.lang.ada
Not at all, even for sequential systems.
Standard libraries are necessarily
compromises among various concerns
such as safety, performance, ease of use,
and so on. Specific projects may, and
sometimes will, have requirements that
are not met by such libraries. In such
cases, custom versions are needed.
In this case, we may have an instance of
premature optimization; the OP seems to
be worrying about the overhead of
wrapping a container in a protected object
without any evidence that this approach
won't meet the project's requirements
(indeed, it seems there is no project and
no specific requirements are involved). In
that case, it probably will "work great".
But in specific cases a custom version that
does allow unprotected multiple readers
may be required.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: Re: Multitasking and containers
Date: Mon, 27 Nov 2006 19:57:39 +0100
Newsgroups: comp.lang.ada
I also agree with your point about
premature optimization. It is a common
disease, which costs much work and

many bad designs, which in the end turn
neither efficient nor clean. I suffer it as
well, this in a human nature of many
programmers.
From: Matthew Heaney

<mheaney@on2.com>
Subject: Re: Multitasking and containers
Date: 27 Nov 2006 11:45:08 -0800
Newsgroups: comp.lang.ada
> I guess we have different interpretations

of "delicate handmade work". I took it
simply to mean custom
implementations tailored to the specific
project (such as a container that does
not need protection for reads).

But that's the same as saying you can not
use anything in the predefined library. If
so then the container library is the least of
your problems!
From: Simon Wright

<simon@pushface.org>
Subject: Re: Multitasking and containers
Date: Mon, 27 Nov 2006 21:15:29 +0000
Newsgroups: comp.lang.ada
If the predefined library doesn't meet your
needs you do indeed have a lot of work
ahead of you; often small beer in the
overall scope (e.g., safety-related systems
with SIL4 software => no runtime at all
— GNAT high integrity edition for
example— highly desirable if not
absolutely necessary precondition for
certification).
But if it does meet your needs you're
crazy not to use it!
From: Matthew Heaney

<mheaney@on2.com>
Subject: Re: Multitasking and containers
Date: 28 Nov 2006 09:12:27 -0800
Newsgroups: comp.lang.ada
> Using a protected object's

procedure/entry would kill concurrency
by serialization of the action to
undertake.

There is a difference between
"synchronizing access to a shared
resource" and "waiting for a resource to
become available".
Calling a protected function or procedure
is an example of the former. Calling a
protected procedure would hardly "kill
concurrency". In a monitor there is only
synchronization. (I think it's the case that
the task stays in a running state.)
Calling a protected entry whose barrier
condition is false is an example of the
latter. If the barrier condition were false
this would mean the task waits (it
transitions to a blocked state). I would be
loathe to say that that would "kill"
concurrency since in typical designs that's
exactly what the task is supposed to do.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: Re: Multitasking and containers
Date: Tue, 28 Nov 2006 19:21:42 +0100
Newsgroups: comp.lang.ada

In absence of preemptive scheduling.
No difference if the above premise holds,
i.e. no task switches as long as the barrier
is closed.
But, the above is true *only* for a single-
CPU system. So for a truly parallel
system it could become a problem. Dual-
cores aren't that expensive these days. [...]
From: Matthew Heaney

<mheaney@on2.com>
Subject: Re: Multitasking and containers
Date: 28 Nov 2006 11:17:33 -0800
Newsgroups: comp.lang.ada
> Further, even on a single CPU, where

protected functions and procedures are
equivalent, the requirement "no task
switches while lock held" might be
unacceptable if you hold it for too long.

But this is already a precondition for
using a protected object as a monitor.
The RM makes it clear that you shouldn't
be doing anything that takes "too long"
inside a protected operation.
> Searching a container within a protected

action ... well, one should be a quite
strong believer for this.

If this is an associative container then no
problem. If this is a sequence container
with many elements, well that's another
story.
> I wouldn't dismiss it completely, but I

definitely don't like it. For hashes I
would at least take one with an external
hash function computed outside the
protected action.

The issue with hash tables is not the
computation of the hash value, but rather
if the hash function is poor and there are
many collisions.
If that's the case then the time to compare
the key to items already in that bucket
will be large compared to the cost of
computing the hash value itself.

About Compiler Directives
From: Adam Beneschan

<adam@irvine.com>
Subject: Re: gnade error
Date: 14 Nov 2006 09:52:51 -0800
Newsgroups: comp.lang.ada
> A pragma Inline should not cause a

compilation error. The presence or
absence of a pragma should not change
a legal program to an illegal program
nor illegal to legal.

This really isn't true. First of all, many
pragmas defined by the language have
legality rules, and using a pragma that
violates the legality rules makes your
program illegal. As for Inline, there's a
legality rule that the names listed need to
be callable entities, plus there are rules
about where Inline pragmas can be
placed. Violating those rules will make
your program illegal.

224 Ada in Context

Volume 27, Number 4, December 2006 Ada User Journal

The RM says that Inline is a
recommendation that an implementation
is free to ignore. Using an Inline that will
get ignored will not make your program
illegal according to the RM, but that is
not the same as saying that it shouldn't
cause a compilation error; there are plenty
of reasons why users might want a
compiler to reject a legal program, and
using an ignored Inline might be one
reason, especially if a warning message
might get missed during a "make".
Maybe one of the GNAT flags Brian used
told it to reject pragmas it couldn't handle.
I don't know GNAT very well so I can't
say.
Finally, the statement "The presence or
absence of a pragma should not change a
legal program to an illegal program nor
illegal to legal" isn't true even for
implementation-defined pragmas. 2.8(17)
does say an implementation-defined
pragma should not make an illegal
program legal, but it also lists a couple
exceptions to this rule. 2.8 also implies
that a pragma that is not defined by the
language nor by the implementation is
ignored, but syntax rules still apply.
However, if you use an implementation-
defined pragma but violate the
implementation-defined rules for that
pragma, there's nothing I can see in 2.8
that says your program is still legal. That
decision is left up to the implementation.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Subject: Re: gnade error
Date: Wed, 15 Nov 2006 09:28:26 -0500
Newsgroups: comp.lang.ada
> OK, a *legal* pragma should not ...
There are many pragmas that cause other
parts of the program to be illegal. Pragma
Restrictions, for example, has that as its
main purpose. A pragma that goes the
other direction (causes an otherwise
illegal program to be legal) is in rather
poor taste, but there are some cases of
that, too — rather obscure cases.
But you're right about pragma Inline — a
pragma Inline cannot affect the legality of
the program (so long as the pragma itself
obeys the rules, such as the names have to
denote subprograms).
However, many compilers have switches
that invoke non-standard modes. In
GNAT, you can tell it to warn about
pragmas Inline that are not obeyed, and
you can also tell it to treat warnings as
errors (-gnatwe switch). In this non-
standard mode, a pragma Inline that does
not inline makes the program illegal.

Managing large data
structures
From: Alex R. Mosteo

<alejandro@mosteo.com>
Subject: Re: exception access violation
Date: Wed, 15 Nov 2006 10:58:09 +0100

Newsgroups: comp.lang.ada
> I must adjust the stack size either

through gnatbind or gnatlink. Not sure
what is best.

If you're managing large data structures
(over 4MB in size), I'd go for a heap-
based solution using controlled types. In
my experience, abusing the stack is a
source of headaches sooner or later
(specially if you are doing something
portable).
Note that ill-managed recursion can also
be a source of stack overflows, and you
can check this in GNAT with -fstack-
check. Without it, stack overflows are
sometimes reported as violations instead.
From: Alex R. Mosteo

<alejandro@mosteo.com>
Subject: Re: exception access violation
Date: Wed, 15 Nov 2006 14:32:11 +0100
Newsgroups: comp.lang.ada
> Why is using the heap + controlled for

larger data structures more portable
than using the stack? I know that
GNAT needs to be talked into
providing sufficient space on the stack.
You might be that running into this
kind of stack trouble only when you
port from another compiler to GNAT?

I have no experiences out of GNAT, that
be said first.
In past times, I had to deal with implicit
limits in Linux/ld (I seem to remember it
was 2MB. This has changed with kernels
and is no longer an issue). Because of
this, porting from Windows to Linux was
somewhat painful because problems not
arising in Windows did arise in Linux
(even using the usual linker stack options,
so I had to dig for even more obscure
switches). Other languages don't exploit
so much the stack, so it is more difficult
to find experiences in the area from other
developers.
Other point that may be relevant: by
default, GNAT doesn't release memory
historically claimed by stacks, contrarily
to heap-allocated one. Couple this with
lots of tasks or recursion and quickly
memory can start to be an issue. (I'm not
sure if this is Linux 2.6 default behavior
or GNAT management of secondary
stacks, couldn't locate it in the docs).
Finally is the trap I always fall for: "This
is small enough to be in the stack". And
then it grows, and then it starts to be a
problem, or some recursive algorithm
can't recur enough, and you end changing
it or having humongous stacks or
reworking algorithms.
Of course, in real-time environments
you'll prefer to know your memory needs
from the start.
> Should the decision whether some

object lives on the heap or on the stack
be based on compilers' support for
dynamically sized local data structures?

As long as compilers are not perfect, I
suppose it is at least an extra factor to
consider. Also, I'd not limit it only to
dynamically sized data.
I've been bitten several times by stack-
related problems when using GNAT,
that's all I wanted to transmit (hence the
'in my experience' remark). If you don't
have desires to learn about system
internals, GNAT primary/secondary
stacks and so... use the heap, Luke ;)
It is worrisome that I'm saying all this,
because I find much more comfortable
using the stack than any heap
management.
From: Kevin K <kevink4@gmail.com>
Subject: Re: exception access violation
Date: Wed, 15 Nov 2006 23:43:01 GMT
Newsgroups: comp.lang.ada
Some operating systems put smaller than
you would expect limitations on the
environment stack. And while you can
change it in some cases, while playing
around, I found that Mac OS X, for
example, seemed to have a 16MB limit
(going by memory). And since task
stacks were put on this stack instead of in
the heap, that further limited it. If I was
writing stuff from scratch that was also
going to run on it, I would work on
putting the data on the heap.

AdaCore —
Internationalization in Ada
2005
Internationalization in Ada 2005
Monday September 18, 2006
There are three aspects to making a
language truly usable internationally.
First, which almost goes without saying,
is that there should be an international
standard for the language that has been
carefully reviewed by the international
community. This is most certainly true of
Ada, and specifically the draft standard
for Ada 2005 has been approved by a vote
of ISO member countries and is well on
its way to getting the final stamp of
approval. That vote was the critical one,
it’s all smooth sailing from here and we
may even have a formal standard before
the end of the year. We were not sure if
this would happen in 2006 or 2007 (which
is one of the reasons we chose 2005 for
the name). Of course once the standard is
issued, the name of the language becomes
simply Ada, since this name always refers
to the current standard. It is notable that
Java lacks such a standard, and has as a
result been almost entirely a US-driven
design.
Second, you want to be able to write
programs that will handle foreign
languages in a comprehensive manner.
The standardization of international
character sets has taken a huge stride
forward in the last few years with the

Ada in Context 225

Ada User Journal Volume 27, Number 4, December 2006

approval of the new ISO 10646 standard
that is unified with Unicode. This is a 32-
bit standard which covers all languages in
the world, as well as specialized character
sets for such applications as music
notation. Smooth integration of this
standard is not trivial in a language
design. It is certainly not sufficient to just
include a 32-bit character type. You need
as well full integration of library functions
that deal with characters and strings.
Given the participation of the
international community in the Ada 2005
design, it is no surprise that Ada 2005
accommodates this new standard fully
and cleanly. The new types
Wide_Wide_Character and
Wide_Wide_String are first-class citizens
in Ada 2005, and fully supported in the
library and the language design. Ada-
2005 compilers, notably GNAT Pro, fully
support this language feature, and support
not only the standard UTF encoding of
such characters, but also locally used
encodings such as Shift-JIS, which is still
used in Japan.
Third, you would like to be able to write
programs with comments and identifiers
in non-Roman scripts. A very important
part of the Ada design is dedicated to
making highly readable source programs.
Choosing good identifier names is a
critical element of readability, so for non-
English speaking programmers, it can be
extremely valuable to support a full range
of character sets for this purpose. It’s not
by any means trivial to design such a
feature. For example, exactly how should
case equivalence be handled in a locale-
independent manner? Again, the Ada
2005 design (and GNAT Pro) fully
support the use of foreign languages for
identifiers and in comments. The
implementation of this was by no means a
trivial task, but it is now complete in the
current versions of GNAT Pro.
In short, once again Ada leads the way in
language design, and fully addresses the
difficult issues of smoothly integrating all
written languages of the world, allowing
for truly international use of Ada.

Announcements by Ada
Vendors
From: <adaworks@sbcglobal.net>
Subject: Re: ANN- AonixADT Ada

Development Toolkit for Eclipse v. 3.11
Date: Sat, 07 Oct 2006 07:19:54 GMT
Newsgroups: comp.lang.ada
> Aonix is pleased to announce the

release of AonixADT 3.11, the first
publicly available version of our
commercial quality Ada Development
Toolkit for Eclipse.

This announcement is good news.
We seldom hear from Aonix anymore.
For that matter, we don't see information
from many other Ada compiler
publishers. It would be nice to get more

announcements of this kind in this forum
so we would know who is still supporting
Ada.
Where is DDC-I? OC Systems? ICC?
Any other Ada compiler publishers? Ada
tool publishers? Is Rational still in the
business of providing Ada compilers and
tools now that they are captives of IBM?
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Sat, 07 Oct 2006 08:38:07 -0400
Subject: Re: ANN- AonixADT Ada

Development Toolkit for Eclipse v. 3.11
Newsgroups: comp.lang.ada
I am starting to think that only us old
timers even know about Usenet anymore.
DDC-I came out with an Eclipse
environment months ago. Nothing posted.
Greenhills still has no Ada Eclipse but
continues to update their Ada offerings
(though their 2005 plans still seem in
doubt). Though they tend to be aggressive
in sales you never see a new product
announcement here.
Rational/IBM seems to have the problem
that they are so big one can never be sure
if they sell any tool anymore (not just
Ada) since stuff is so bogged down in the
"software is a service/craft you a solution"
mentality.
Of course it could be that the vendors got
tired of getting yelled at for commercial
postings on Usenet. We are a hard group
of people to please.
From: Marco

<prenom_nomus@yahoo.com>
Subject: Ada vendors - Re: ANN- AonixADT

Ada Development Toolkit for Eclipse v.
3.11

Date: 15 Oct 2006 10:27:38 -0700
Newsgroups: comp.lang.ada
Let's not bash Greenhills. They have
provided good Ada support over the
years. Ada 2005 updates should be
customer driven, let's face it you can
hardly buy a complete C99 compliant
compiler 7 years later.
Rational/IBM still sells Ada but hasn't
updated their products in years, unless
you have to, I think it would be foolish to
get Ada from them now.
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Sun, 15 Oct 2006 18:13:20 -0400
Subject: Re: Ada vendors - Re: ANN-

AonixADT Ada Development Toolkit for
Eclipse v. 3.11

Newsgroups: comp.lang.ada
Not sure I was really trying to bash them.
They do have an aggressive sales force.
This is not entirely a bad thing. Often we
do want to buy something. It is nice to
find someone who wants to sell it!
As for the Ada 2005 support... It would be
nice to see some mention of it on their
site. I have asked about it (as a customer)
in the recent past and been told that they

were waiting to see what happened with
the standard. That is a fair point, however
the technical aspects have been nailed
down now so I'd like to see something
about it (i.e. Announcement —
"Greenhills announces future availability
of Ada 2005 support" — yes, they often
pre-announce).
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Ada vendors - Re: ANN-

AonixADT Ada Development Toolkit for
Eclipse v. 3.11

Date: Mon, 16 Oct 2006 20:10:03 -0500
Newsgroups: comp.lang.ada
I can't speak to their products, but several
IBM/Rational people were instrumental in
developing Ada 2005 — which is more
that I can say about several other Ada
compiler companies. I have to think that
they are doing more than sitting on their
hands between ARG meetings.
I do know that they don't have anyone
turning out PR for the Ada group. (In
IBM, it takes a lot of approvals to get PR
allowed.) That might make updated
products invisible.
From: Tom Grosman <grosman@aonix.fr>
Subject: Re: [ANN]- AonixADT for Eclipse

now available for Intel/Linux and
Sparc/Solaris for GNAT

Date: Tue, 31 Oct 2006 14:21:09 +0100
Organization: Aonix
Newsgroups: comp.lang.ada
> I'd like to say Thank You to those who

made this plugin!
You're welcome !
> It has feature that impress me. Many

other plugins provide little more than
syntax highlighting.
What could be an incentive to the
business entity Aonix so they add all
kinds of "free" to their product?

AonixADT when used with ObjectAda of
course does not restrict project size. Mark,
if you can show us a valid business model
where we invest development resources to
provide a free Eclipse interface for a
competitor's product, we're willing to
consider other approaches. We think that
the limitation on project size means that
the ADT is useful for smaller projects and
especially in academic settings, without
the Add-on. Judging from the number of
students and faculty downloading the
plugin, that may be the case. Because the
downloadable version includes all
features, we also think that users can get a
good idea of whether it meets their
professional development needs before
requesting the Add-on.
> Will they have reason to think about

conditions for projects that seem less
self-interested and closed source, but
rather seem good and profitable for
everyone, including Aonix?

We are actively involved in projects like
that. If you know of other such projects,

226 Ada in Context

Volume 27, Number 4, December 2006 Ada User Journal

please let us know. We've been Ada
advocates for 25 years. Still are.
From: Marc A. Criley <mc@mckae.com>
Organization: McKae Technologies
Subject: Re: [ANN]- AonixADT for Eclipse

now available for Intel/Linux and
Sparc/Solaris for GNAT

Date: Tue, 31 Oct 2006 19:30:35 -0600
Newsgroups: comp.lang.ada
> [Marc], if you can show us a valid

business model where we invest
development resources to provide a free
Eclipse interface for a competitor's
product, we're willing to consider other
approaches. We think that the limitation
on project size means that the ADT is
useful for smaller projects and
especially in academic settings, without
the Add-on.

Perhaps not a "business model", but
instead a "business _opportunity_ model".
All Ada software I've developed outside
of my day job has been possible due to
AdaCore's compilation tools, and the
generosity of numerous other software
developers in the Ada community. I've
never used an Aonix product, but not
because I have anything against the
company (quite the contrary, I've been
aware of, and appreciated, Aonix' Ada
advocacy over the years).
I'm a serious, self-motivated Ada
developer, as are many others in this
forum, so any tool or product that I use
has to be capable of performing
effectively and efficiently in my
development environment.
AonixADT for GNAT is too capability-
limited for my activities, therefore I won't
spend time giving a serious look to a tool
that I can't properly evaluate in my real-
world environment. So Aonix loses an
opportunity to gain some mindshare and
some hand's-on experience with me.
And without that mindshare and
experience, there's no basis for me to
recommend the product to others,
including my day job employers. Fair or
not, individuals tasked with
recommending tools can't help but be
biased towards those they're already
familiar with.
At a former employer that was
transitioning from a defunct Ada 83
compiler to Ada 95, it was my
responsibility to make the technical case
for the compiler choice—and clearly my 5
years of experience at that time with
GNAT influenced my analysis. More
recently, my experience with the free
distribution of the Perforce Source
Control tool (www.perforce.com) to small
development organizations led me to
recommending Perforce (over CVS and
ClearCASE, which I also had significant
experience with) to an employer that was
upgrading from an ancient version of
SourceSafe.

Hand's on exposure to fully capable tools,
or those that are limited in a non-intrusive
way (e.g., the free Perforce is limited to
two users—not much of an impediment to
a One Map Shop :-) gain mindshare for
the product and the company. While _I_
may find it infeasible to drop $5000 for an
Aonix Ada compiler on Linux, that's not
to say I won't give it a fair hearing to an
employer based on what I've learned
about the company's products, quality,
and service gained by the use of their
other products—such as AonixADT.

Ada and High-Integrity
Systems
From: Maciej Sobczak

<maciej@msobczak.com>
Subject: Reference-oriented language and

high-integrity software
Date: Fri, 03 Nov 2006 09:03:07 +0100
Newsgroups: comp.lang.ada
John Barnes in "Programming in Ada
2005", in the introductory section in the
chapter devoted to access types, writes:
"Java is currently popular. It has pointers
which are called references. In fact almost
everything is declared using references
although this is hidden from the user. This
means that Java is inappropriate for high
integrity applications."
What is interesting is the following
implication which John Barnes leaves
without explanation:
references => no high integrity
It's also clear that the above statement
applies not only to Java in particular, but
to every other language that is similarly
"reference-oriented".
My question is: where this implication
comes from?
Taking into account that JB also wrote a
book about SPARK, some reasoning can
be found there and my understanding
(simplified) is that reference-oriented
language implies a heavy use of dynamic
memory, which makes it
impractical/impossible to perform any
static analysis of memory consumption.
Garbage collectors add their own factors
to the problem.
Is the above a reasonable explanation? Is
it the only one? What else makes the
reference-oriented languages
inappropriate for high-integrity software?
And last but not least, how does the JB's
statement stand in front of things like
Real-Time Java or even HIJA (High-
Integrity Java)?
From: Rod Chapman

<roderick.chapman@gmail.com>
Subject: Re: Reference-oriented language

and high-integrity software
Date: 3 Nov 2006 01:43:18 -0800
Newsgroups: comp.lang.ada

The provision of _sound_ (i.e. no false
negatives) and _fast_ aliasing analysis a
key factor, even in the absence of
dynamic memory and garbage collection.
The soundness (and efficiency) of the
information flow analyser and the VC
Generator (which is basically an
implementation of Hoare's assignment
axiom) depend on this property.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: Reference-oriented language

and high-integrity software
Date: Fri, 03 Nov 2006 09:58:51 +0100
Newsgroups: comp.lang.ada
The other part of the explanation, AFAIU,
is that a reference can go wrong, i.e. point
to deallocated memory, to unallocated
memory, or to the wrong piece of
memory. References also introduce
aliasing, i.e. two references can point to
the same item. All these make it almost
impossible to statically prove that no
unintended side effects ever occur in the
program (correctness means: do what
you're supposed to do; safety means: do
not do what you're not supposed to do. It
is this latter part that matters to the
present discussion).
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: Reference-oriented language

and high-integrity software
Date: Fri, 03 Nov 2006 12:15:44 +0100
Newsgroups: comp.lang.ada
> This can be rebutted on the basis that

those languages ensure that nothing like
this happens (no pointer arithmetic +
garbage collector).

And your rebuttal can be rebutted at the
highest criticality levels where you do not
certify the source text, but the object code
emitted by the compiler. In those
contexts you do not even trust the
compiler. References make the object
code even more difficult to certify.
> This makes sense in case of Java, but

one could also argued that immutability
of objects – a common feature in some
reference-oriented languages — can
make it less severe.

Yes, provided you trust the compiler —
which you don't in high-integrity
software.
> So — let's imagine a language, which is

reference-oriented with all objects
immutable. Apart from dynamic
memory, is there any problem?

Yes. Tracing the object code to the
source text, and certifying the object code.
I'm not saying it's impossible to do; just
that it's unacceptably expensive to do.
From: Dr. Adrian Wrigley

<amtw@linuxchip.demon.co.uk>
Subject: Re: Reference-oriented language

and high-integrity software
Date: Fri, 03 Nov 2006 15:27:56 GMT

Ada in Context 227

Ada User Journal Volume 27, Number 4, December 2006

Newsgroups: comp.lang.ada
> Neither Real-Time Java nor HIJA can

reasonably be described as Java. The
last time I looked, both required special
compilers; were designed to produce
native machine code not an interpreted
J code; allocated objects on the stack
rather than heap; and had no garbage
collection. The restrictions mean that
you cannot use any of the standard
libraries and don't get platform portable
code; the two primary attraction of Java
in the first place. What you do have is
two new languages that just happen to
have a Java-like syntax. The
modifications required to give these
new languages their real-time and high
integrity credentials are precisely
aligned with John Barnes's objections
to them.

So the advantage is that you can attempt
use existing programmers for writing high
integrity/real-time software. And the
code produced can even be executed with
standard compilers/runtimes, albeit
without the benefits of the HI/RT
environment. And of course, all the IDEs,
code analysis tools can be used. Sounds
rather useful.
The sceptics are saying the only benefit is
better buzz-words. But then SPARK Ada
is based on the same philosophy
(restricted language, compiler, run-time to
achieve tougher HI/RT goals).
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Subject: Re: Reference-oriented language

and high-integrity software
Date: Fri, 03 Nov 2006 18:30:56 +0100
Organization: Adalog
Newsgroups: comp.lang.ada
Experience shows that people over-
estimate the time to learn a new language,
and under-estimate the time to train
people to the constraints of writing high
integrity/real-time software. Better take
an experienced real-time programmer and
teach them Ada, than the other way
round!

Costs of Commercial Open
Source Software
From: Larry Kilgallen

<Kilgallen@SpamCop.net>
Subject: Re: Why is OSS Commercial

Software So Expensive?
Date: 12 Oct 2006 05:07:36 -0500
Newsgroups: comp.lang.ada
> well, but what if I want just a compiler

without any support and just for 3
seats... not for 5, and not with GPL?

The president of AdaCore has said that
below a certain level it is _more_
expensive for them to support a smaller
number of users than a larger number.
When one gets to 5 users, there is some
self-help provided between people in the
customer organization.

From: Pascal Obry <pascal@obry.net>
Date: Thu, 12 Oct 2006 20:28:17 +0200
Subject: Re: Why is OSS Commercial

Software So Expensive?
Newsgroups: comp.lang.ada
> Well, not only, AdaCore also sells a

non-GPL version of the compiler with
the guarantee that it is ok to use it in a
proprietary context.

Isn't this the case with GNAT/FSF too ?
We already had this debate here, and I
certainly do not want to restart it. But we
have 3 GNAT compilers : GNAT Pro,
GNAT GPL, GNAT/FSF. I think that
every needs are covered. Not talking
about other vendor's offerings. I find it
hard to believe that some people can't find
the right tool for their work.
From: Pascal Obry <pascal@obry.net>
Date: Fri, 13 Oct 2006 18:36:11 +0200
Subject: Re: Why is OSS Commercial

Software So Expensive?
Newsgroups: comp.lang.ada
> The FSF doesn't give you a *guarantee*

(in the form of a signed document). If
someone stands up and says "you
cannot use this part of GNAT in a
proprietary context because I have a
copyright on this part and didn't allow it
to be used in such context", AdaCore
would handle the problem and deal
with the claim (if you have the signed
guarantee), while you have no such
guarantee with the FSF.

Ok, ok and millions of people are
developing software with C/C++ using
GCC/FSF without trouble :)
From: Björn Persson

<rombo.bjorn.persson@sverige.nu>
Subject: Re: Why is OSS Commercial

Software So Expensive?
Date: Sat, 14 Oct 2006 10:34:26 GMT
Newsgroups: comp.lang.ada
> Well, perhaps millions of people were

freely using Linux without trouble until
SCO made some claims.

Yes, SCO tried to persuade GNU/Linux
distributors into providing just the kind of
indemnification that Samuel mentioned.
And how successful were they?
I seem to recall that they did manage to
trick a couple end users into buying their
license, but millions minus two is still
millions.
From: Michael Bode <m.g.bode@web.de>
Subject: Re: Why is OSS Commercial

Software So Expensive?
Date: Mon, 16 Oct 2006 22:35:59 +0200
Newsgroups: comp.lang.ada
I don't want to criticize anyone, there
simply is something I don't understand: it
is said that the customers of some Ada
toolset are glad to pay $$$$ for the
excellent support. If they need this kind of
support to maintain their productivity,
they would not buy the same toolset
without support even if it would be sold

for $$, right? After all it's the support that
they need.
So selling the same software for $$ would
not result in lost revenue, because existing
and new customers in need for support
would buy the $$$$ version anyway. It
would not result in additional support
cost, because there is no support. It would
not result in additional development cost,
because the software is already there. It
would not result in additional distribution
cost, because there is already a download
site for a GPL version. The only
additional cost I can see is the cost of
collecting the money from buyers.
Assuming $$ is more than what it costs to
cash in $$ there is some (maybe small)
net profit and a chance to get more people
interested in commercial development
with said Ada toolset. Where is my error?
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Why is OSS Commercial

Software So Expensive?
Date: Mon, 16 Oct 2006 19:57:09 -0500
Newsgroups: comp.lang.ada
I think you're working from a fallacy here.
You cannot sell software without at least
limited support. When you sell
something, it has to (within reason) do
what it is supposed to do. That's likely to
require at least fixing some bugs (or
refunding some payments). And that will
cost some money. Whereas, when you get
it for free, there is no such implied
expectation — if the compiler you
download won't compile a generic, you
just have to work around it or pay
someone for support.
Now, you might say that Microsoft
doesn't seem to do that. But that's not
really relevant (and they do provide some
limited support, too) — they are in a
much better position to deal with any
legal issues and/or customer unhappiness
issues that come up. Smaller companies
simply can't afford it — unhappy
customers are very bad for business.
So, I expect that AdaCore thinks that
selling compilers with limited support for
$$ will either cannibalize they're other
business (because some of those
customers only need the limited support)
or that they will need to provide $$$
worth of support — which doesn't make
sense. "No support" is only an option for
"free", not $$.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Sat, 14 Oct 2006 03:41:37 -0400
Subject: Re: Why is OSS Commercial

Software So Expensive?
Newsgroups: comp.lang.ada
> OK, but if I want to buy licence for 2

seats with no support at all I can't.
What does this mean?

228 Ada in Context

Volume 27, Number 4, December 2006 Ada User Journal

GNAT is GMGPL or GPL; there is no
license to buy. The only thing you can
buy is support.
If you don't need support, just use a
publicly released version of GNAT, either
from https://libre2.adacore.com/, or from
an FSF GCC distribution.
Hmm. The latest public GNAT from
https://libre2.adacore.com/ is under the
GPL license. Perhaps you mean you want
GMGPL instead of GPL; is that the issue?
In that case, you can use the FSF GCC
distribution of GNAT; it is GMGPL.
However, it is pretty broken, compared to
the https://libre2.adacore.com/
distribution. But that just means you
actually do need support, and we are back
to option 1 :).
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Thu, 12 Oct 2006 14:39:46 -0400
Subject: Re: Why is OSS Commercial

Software So Expensive?
Newsgroups: comp.lang.ada
> In my opinion AdaCore is not asking

too much for commercial support.
I agree whole-heartedly; the support they
provide is well worth it.
I wish the other companies I deal with had
an option to pay more for better support.
Instead, I have to spend my time hassling
them to let me talk to the people who
actually know something, instead of the
front-end support filter people. It ends up
costing me more than AdaCore does.
> Being a small company, of course, will

have to consider spending so much that
is over budget!

I do have the luxury of working for a big
company; NASA. Sometimes, we manage
to do things right :).

The Ada mindset
From: Jeffrey R. Carter

<jrcarter@acm.org>
Subject: Re: basic basic ada question
Date: Fri, 20 Oct 2006 05:10:05 GMT
Newsgroups: comp.lang.ada
> Dijkstra wrote an interesting paper

called "Why numbering should start at
zero", which you can find via Google.
I don't buy it — I like to number most
things starting at 1, despite his fairly
reasonable arguments to the contrary.

I've seen it, and I don't buy it, either. My
experience is that fewer mistakes are
made when the numbering from the
domain is used. Some of his arguments,
such as ease of calculating the length of a
sequence, are things that the language
should do for you. There should be
'Length for discrete subtypes; it returns
the number of values in the subtype.
> It's interesting that for enumeration

types, T'Pos starts numbering at 0.

Yes. They're not Pos-itions, they're
offsets. Positions should start at 1. If they
did, then T'Base'First could be 0. That
might be useful in some cases.
> Why should one think in C or Ada?

There are lots of concepts that
transcend the languages. After all, both
languages have subroutines, parameter
passing, stack/heap allocation, etc, etc.

The Ada mindset is essentially the same
as the SW engineering mindset.
From: Maciej Sobczak

<maciej@msobczak.com>
Subject: Re: basic basic ada question
Date: Fri, 20 Oct 2006 09:13:00 +0200
Newsgroups: comp.lang.ada
Cool sentence, but I know another:
"Computers think in C".
Both are good (and actually used) in
flame-wars.
From: Jeffrey R. Carter

<jrcarter@acm.org>
Subject: Re: basic basic ada question
Date: Fri, 20 Oct 2006 20:39:55 GMT
Newsgroups: comp.lang.ada
Computers don't think, but they follow
instructions in object code. "Real men
write object code."
It indicates a good point: SW engineers
deal with abstraction and try to ignore or
hide implementation details as much as
possible. Coders like to try to do
everything at a low level.
From: Maciej Sobczak

<maciej@msobczak.com>
Subject: Re: basic basic ada question
Date: Fri, 20 Oct 2006 09:25:44 +0200
Newsgroups: comp.lang.ada
> Most of what you know from C/++ is

wrong for Ada.
It's a bit of overstatement and I,
personally, don't find it to be the case. I
would rather claim that if someone brings
some bad habits from C or C++ to Ada,
they were already bad habits in C and
C++ anyway.
> The sooner you can stop thinking in

C/++ and start thinking in Ada, the
easier you will find it.

Thinking in Ada is probably the same bad
idea as thinking in C or C++ — at least if
the final goal is not to have fun with the
language (that's also a valid reason to
write programs, really), but rather to build
good final software. In this latter case
thinking in terms of good engineering
principles is the keyword — and then
either any given language makes the
implementation of these principles
possible or not. This means that
"thinking" in any particular language is
already a bad idea and *using* the
language to implement the chosen
engineering principles is much more
correct.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Subject: Re: basic basic ada question
Date: Fri, 20 Oct 2006 20:54:51 GMT
Newsgroups: comp.lang.ada
Overstatement tends to attract the
attention, and thus get the reader to think
about it. Saying "Ada is different from C"
is obvious, and will be ignored. You'll
still get Ada-C, with pointers everywhere.
Saying "Everything you know from C is
wrong" might get him looking for ways to
do things differently.
I should have said "the Ada mindset",
which is also known as "the SW
engineering mindset", but when you're
knocking out these posts you often don't
have time to perfect your wording. But ...
Thinking in terms of the language is not
as good as thinking in SW engineering
concepts, but when a person is thinking in
C/++, thinking in Ada is much closer to
those concepts than the way the person is
thinking. Getting a coder to consider
thinking in such concepts is harder than
getting him to consider thinking in
another language. Once he starts thinking
in Ada, the final step is much easier.

Event mechanisms for GUIs
From: Lucretia <lucretia9@lycos.co.uk>
Subject: Event mechanisms for GUI's
Date: 26 Sep 2006 10:28:04 -0700
Newsgroups: comp.lang.ada
My wxAda project stalled due to a
problem with C++. I'm starting on a new
project to see if I can do better than
wxAda using native Ada and binding only
where necessary. It will do what
wxWidgets does and provide native
controls for different platforms, i.e.
GTK+-2.x for Linux, Win32 API, etc. I'll
be implementing it in Ada 2005 as well,
as long as the FSF GNAT doesn't cause
too many problems.
I'm currently thinking of the event
handling mechanism, I started to think
about using the listener/subject pattern,
but then started to wonder about the
alternatives:
1) Event loops
This would be painful as there'd be a lot
of case statements.
2) Signals & slots
This just seems to be a simplification of
(5), where instead of using an observer
interface you just pass a function pointer
and the signal can contain many of these
function pointers.
Can be implemented using generics to
provide type safety.
3) Extension of tagged-types (like
CLAW)
Not a bad idea, just override the
subprograms you want to know about.
4) Ada.Real_Time interrupts

Ada in Context 229

Ada User Journal Volume 27, Number 4, December 2006

I don't know enough about this, so I won't
even comment.
5) Listeners/Subjects
I'm not too sure how Java handles this
with their Listener interfaces, I can only
think of having a listener/subject pair per
event type and then having something
similar to the listener interfaces that Java
has by calling specific procedures in the
interface'class from the listener's update
procedure.
So, there would possibly be 3 types:
observer (abstract tagged), subject
(tagged), listener (interface). Then the
control (e.g. a window) would then have
to implement an
"Add_<whatever>_Listener" per event
type, which would add a
<whatever>_Listener to a
<whatever>_Observer. Seems overly
complex to me.
The one thing that Ada would have over
the Java implementation is the use of null
subprograms in the interface, therefore an
adapter type would not be necessary as
you would be able to implement only the
subprograms you are interested in.
From: Jeffrey R. Carter

<jrcarter@acm.org>
Subject: Re: Event mechanisms for GUI's
Date: Tue, 26 Sep 2006 20:39:27 GMT
Newsgroups: comp.lang.ada
The best way is to have a protected event
queue for each window. There should be
mechanisms to specify what events are
and are not put on the queue, and for
combining the queues for multiple
windows into one queue.
There's nothing wrong with case
statements. They're very clear and easy to
read and understand. Remember Ada's
explicit design goal: "[E]mphasis was
placed on program readability over ease
of writing." [ARM Introduction] If you
have a problem with writing case
statements, then you probably haven't
adopted The Ada Way yet.
From: Tom Moran <tmoran@acm.org>
Subject: Re: Event mechanisms for GUI's
Date: Tue, 26 Sep 2006 18:18:10 -0500
Newsgroups: comp.lang.ada
> There's nothing wrong with case

statements. They're very clear and easy
In small quantity, yes. But many-
branched, nested, case statements with a
lot of near duplication are not so clear or
maintainable. They are a very low
abstraction level, computer-centric,
device.
If This_Window is for showing danger
warnings in big red letters to the reactor
operator, and That_Window is for
showing daily power demand over the last
month, a mouse click in either is similar
from a computer-centric view, but vastly
different in the problem space. Having
This_Window_Type objects and

That_Window_Type objects as
descendants of Basic_Window_Type
(inheriting what they have in common)
makes them different objects, and a
dispatching call on
When_Left_Button_Down(The_Clicked_
Window) is in effect a succinct
abbreviation for a case statement on the
type of Window, implemented efficiently
and without forgetfulness or typing errors,
automatically by the compiler.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Event mechanisms for GUI's
Date: Wed, 27 Sep 2006 18:05:22 -0500
Newsgroups: comp.lang.ada
First of all, there is no simple or even
satisfactory solution to this problem. The
trouble is that handling asynchronous
events in a sequential programming
language (or even a high-level parallel
one like Ada) is a poor match. You
complained about "a subprogram being
called when a framework pleases", but
you have the same effect with any
mechanism — the order of operations
depends on the events, not on the
program. And any well-designed
framework will make it clear when
subprograms will be called and by which
task.
Second, explicit event handling is among
the worst solutions, because it requires an
explicit response to every possible event.
A real GUI system will have dozens, if
not hundreds, of possible events for each
Window. It's easy to forget to handle
some of those events; moreover any
explicit code necessary to do the
default action reduces the readability of
the system. And the easiest solution (the
others clause) completely eliminates the
main advantage of using case statements
— the completeness check.
I'm not convinced that the "subprogram
extension" solution used by Claw is the
best one, and I'm certainly not convinced
that the multi-task arrangement used by
Claw is a good idea. (For a lot of systems,
a single task solution with an explicit call-
me-now routine would be easier to work
with. But it would also make it a lot easier
to starve the GUI – a problem that explicit
events certainly have as well.)
My final conclusion is that all of the
solutions have severe trade-offs; none is
anywhere near optimal. My advice to the
OP is to select a strategy that works well
for the problems that they want to solve,
and not worry too much about "goodness"
— it's not going to happen in a GUI (that's
why GUI builders are so indispensable).

Building a Library in Ada
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: GNAT, shared libraries,

building in different
directories...madness!

Date: Sat, 30 Sep 2006 20:07:15 +0200
Newsgroups: comp.lang.ada
> Can somebody please post an example

Makefile that can be used to build a
library and link the source to an
example app without recompiling the
library source. I would prefer not to use
project files if possible as they just
don't provide enough flexibility.

Building a library and using it in a
program involves the following steps:
1. Building the object and .ali files for the
library
2. Linking the object files into a shared
library
3. Copying the .ali files to a "deployment"
directory, and making them read-only
4. Building the program, so it sees the .ali
files and the .so file but not the .o files for
the library. Otherwise, gnatmake will link
the library .o files statically into the final
executable.
Since you've chosen a particularly
complex directory structure, your
Makefile will be horrendously complex
— as you yourself say, "madness". I
would really recommend you reconsider
your decision not to use project files;
contrary to what you say, they can be
quite flexible since you can pass variables
to them.
Here is how I would do it: I would have
three project files and one Makefile. The
first project file would build the library,
placing the .o files in the temp directory:

project Build_Adael is
 Compiler := External
 ("COMPILER", "gnat");
 Target := External ("TARGET",
 "linux");
 Build := External ("BUILD",
 "release");
 for Source_Dirs use ("src/adael",
 "src/common",
 "src/generic",
 "src/gtk2",
 "src/" & Target);
 for Object_Dir use
 "build/" & Compiler & "/" & Target
 & "/temp/" & Build;
 package Compiler is
 for Default_Switches ("Ada") use
 ("-fPIC", "-g", "-O2", "-gnatVa",
 "-gnatafno");
 end Compiler;
end Build_Adael;

The second project file would use the
read-only .ali from the deployment
directory, and the source files from the
source directory. You would ship this
project file with your library.

project Adael is
 Compiler := External
 ("COMPILER", "gnat");
 Target := External ("TARGET",
 "linux");
 Build := External ("BUILD",
 "release");
 for Source_Dirs use ("src/adael",
 "src/common",
 "src/generic",
 "src/gtk2",
 "src/" & Target);
 for Object_Dir use

230 Ada in Context

Volume 27, Number 4, December 2006 Ada User Journal

 "build/" & Compiler & "/" & Target
 & "/" & Build; -- no "temp"
 -- No package Compiler, since we
 --+ won't compile the library. But
 --+ we can make it convenient for
 --+ users to link with the shared
 --+ library:
 Linker_Switches := "-ladael";
 package Linker is
 for Default_Switches ("Ada") use
 (Linker_Switches);
 end Linker;
end Adael;

The third project file would build the
samples. You would encourage your
users to write similar project files for their
own programs.

with "adael";
project Adael_Samples is
 Compiler := External
 ("COMPILER", "gnat");
 Target := External ("TARGET",
 "linux");
 Build := External ("BUILD",
 "release");
 for Source_Dirs use
 ("src/samples/**");
 for Object_Dir
 use "build/" & Compiler & "/" &
 Target & "/samples/" & Build;
 for Executable_Dir
 use "build/" & Compiler & "/" &
 Target & "/" & Build;
 package Compiler is
 for Default_Switches ("Ada") use
 ("-g", "-O2", "-gnatVa",
 "-gntafno"); -- no fPIC
 end Compiler;
 package Linker renames
 Adael.Linker;
end Adael_Samples;

Now, the Makefile would glue them all
together, create directories as needed, and
simply call gnatmake:
O mighty Emacs, this is a * Makefile *
..SUFFIXES:
You can override these from the
command line:
COMPILER := gnat
TARGET := Linux
BUILD := debug
Nothing should change past this point
lib_dir :=
build/$(COMPILER)/$(TARGET)/$(BUI
LD)
lib_build_dir :=
build/$(COMPILER)/$(TARGET)/temp/$
(BUILD)
samples_build_dir :=
build/$(COMPILER)/$(TARGET)/sampl
es/$(BUILD)
all: $(lib_dir)/libadael.so
$(lib_dir)/test_app
clean:
 rm -rf build
args := -XCOMPILER=$(COMPILER) -
XTARGET=$(TARGET) -
XBUILD=$(BUILD)
$(lib_dir)/libadael.so: build_adael.gpr |
$(lib_dir) $(lib_build_dir)
 gnatmake -c -Pbuild_adael.gpr

$(args)
 gnatgcc -shared -o $@
$(lib_build_dir)/*.o \
 -Wl,-soname,$(notdir $@) -lgnat
 cp -p $(lib_build_dir)/*.ali
$(lib_dir)
 chmod a=r $(lib_dir)/*.ali
ifeq (release,$(BUILD))
 strip $@
endif
$(lib_dir)/test_app: adael_samples.gpr
adael.gpr
$(lib_dir)/test_app: $(lib_dir)/libadael.so |
$(samples_build_dir)
 gnatmake -Padael_samples.gpr
$(notdir $@) $(args)
ifeq (release,$(BUILD))
 strip $@
endif
$(lib_dir) $(lib_build_dir)
$(samples_build_dir):
 -mkdir -p $@
..PHONY: all clean
I think you *could* do away with GNAT
project files, but that way lies madness.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Subject: Re: GNAT, shared libraries,

building in different
directories...madness!

Date: Sun, 01 Oct 2006 18:28:18 +0200
Newsgroups: comp.lang.ada
> When I have to use a library, ACT

suggest to add a path like:
package Linker is
 for Default_Switches ("ada") use
 ("-g", "--largs",
 "-Ld:/dev/ada/utils/lib",
 "-lmyutils");
end Linker;
This is working, and in your example
you don't specify such a path. What do
you think?

I don't like adding "-L" in project files,
because that would make them inflexible.
Also, remember that the plan is to install
the project file in
/usr/share/ada/adainclude as part of the
library's development package
(presumably, libmyutils-dev), and the
library in /usr/lib, as part of the run-time
library package (presumably,
libmyutils0). If the library is in /usr/lib,
there is no need for "-L" in the first place.
If you build a program that depends on
the library before the library has been
installed in /usr/lib, the best is to pass "-L"
directly to gnatmake, like so:
gnatmake -Pfoo -largs -Lbuild
where "build" is a directory relative to the
Makefile.

Maybe I should have explained that better
in my first reply.
Now, since you seem to be running on an
operating system that has no policy as
regards library placement, maybe it is
necessary to specify a library path at some
point. But the OP did mention Linux, and
to me this implies the GNU linker and
tool-chain, and some sort of conformance
to the file system Hierarchy Standard.
Come to think of it, it is really better not
to write the linker path in the project file,
because the linker path tends to be
system-dependent, whereas the project
file is platform-neutral. I prefer to
provide the necessary "glue" in the
Makefile.
From: Simon Wright

<simon@pushface.org>
Subject: Re: GNAT, shared libraries,

building in different
directories...madness!

Date: Sun, 15 Oct 2006 12:00:43 +0100
Newsgroups: comp.lang.ada
> There is a major problem with this

source directory directive. The generic
directory should contain all source for a
GUI toolkit neutral UI, in a way that
wxWidgets does currently.

We build several executables, each with
its own set of supporting application-,
intermediate- and device-level packages
plus a fair bunch of common stuff. We
have a main GPR for each executable
(which can be extended by anyone who
needs to build test programs), which calls
up a machine-generated GPR (one for the
whole project) which has no associated
source code but instead defines lots of
names for various sets of paths. These
names are what are used by the main
GPRs.
Each executable can be built in various
contexts; variant A or B, runs on the host
or on the target, etc. This is managed
using case statements in the machine-
generated GPR.

Host_Network_Path =
 ("a/b/c", "a/b/d");
Target_Network_Path =
 ("w/x/y", "w/x/z");
case Platform is
 when "host" =>
 Network_Path =
 Host_Network_Path;
 when "target" =>
 Network_Path =
 Target_Network_Path;
end case;

and the main GPR says

for Source_Dirs use
 Network_Path &

232 Conference Calendar

Volume 27, Number 4, December 2006 Ada User Journal

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on items
marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific Ada focus.
Items marked with ☺denote events with close relation to Ada.
The information in this section is extracted from the on-line Conference announcements for the international Ada community at:
http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2007

January 03-06 Software Technology Track of the 40th Hawaii International Conference on System Sciences (HICSS-

40), Waikoloa, Big Island, Hawaii, USA. Includes mini-tracks on: Software Engineering Decision
Support (topics include: Design decisions; Reuse decisions; Maintenance decisions; Selection of
software tool, methods or techniques; ...); Adaptive and Evolvable Software Systems (topics include:
new strategies for improved modularization in order to support adaptations; ...); Components for
Embedded and Real-time Systems (topics include: Component-based product lines for embedded
applications; Real-time issues of component-based software engineering; Case studies and experience
reports; ...); Visual Interactions in Software Artifacts; etc.

January 06-09 6th IEEE/IFIP Working Conference on Software Architecture (WICSA'2007), Mumbai, India. Topics
include: tutorial on Architecting Fault Tolerant Systems, etc.

January 14-16 8th International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI'2007), Nice, France. Co-located with POPL'2007. Topics include: program verification,
program certification, abstract interpretation, static analysis, type systems, etc.

January 15-16 ACM SIGPLAN 2007 Symposium on Partial Evaluation and Program Manipulation (PEPM'2007),
Nice, France. Co-located with POPL'2007. Topics include: program manipulation, partial evaluation,
and program generation. PEPM focuses on techniques, theory, tools, and applications of analysis and
manipulation of programs.

☺ January 16 ACM SIGPLAN Workshop on Types in Language Design and Implementation (TLDI'2007), Nice,
France. Topics include: Typed intermediate languages and type-directed compilation; Type-based
language support for safety and security; Types for interoperability; Type-based program analysis,
transformation, and optimization; Dependent types and type-based proof assistants; Types for security
protocols, concurrency, and distributed computing; Type based specifications of data structures and
program invariants; Type-based memory management; Proof-carrying code and certifying compilation;
etc.

January 16-18 1st International Workshop on Variability Modelling of Software-intensive Systems (VaMoS'2007),
Limerick, Ireland.

January 17-19 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL'2007), Nice, France. Topics include: fundamental principles and important innovations in the
design, definition, analysis, transformation, implementation and verification of programming languages,
programming systems, and programming abstractions.

January 20 POPL'2007 – Workshop on Programming Language Techniques for XML (PLAN-
X'2007). Topics include: Design of programming and query languages for XML;
Compilers and interpreters for XML-aware languages and optimization techniques;
Languages and systems that can cope with XML fragments (messages) or very large
XML instances (beyond main-memory size); Programming language glue between
browsers, web services, and databases; etc.

January 20 2007 International Workshop on Foundations and Developments of Object-Oriented Languages
(FOOL/WOOD'2007), Nice, France. Topics include: language semantics, type systems, program
analysis and verification, concurrent and distributed languages, language-based security issues, etc.

Conference Calendar 233

Ada User Journal Volume 27, Number 4, December 2006

January 22-26 OOP'2007 Conference, Munich, Germany. Topics include: requirements engineering, model-driven
development, UML, Eclipse, security, etc, and applications in automation, automobile, medical,
banking, telecommunications, etc.

Jan. 31-Feb. 2 6th Latin American Conference on Software Engineering and Knowledge Engineering
(JIISIC'2007), Lima, Peru. Topics include: Software Quality, Software Security, Software Architectures
and Design, Software Engineering based on Components, Programming Languages, Software
Maintenance, Software Refactoring, Software Evolution and Re-engineering, Software Aging, Patterns
and Frameworks, Software Tools and Techniques, Software Development Environments, Real-Time
and Embedded Software, Industrial Applications, Parallelism and Distributed Architectures, Software
engineering curricula, Application of new teaching methods or techniques, etc.

☺ February 07-09 15th Euromicro Conference on Parallel, Distributed and Network-based Processing (PDP'2007),
Naples, Italy. Topics include: Advanced Applications (scientific and engineering applications, multi-
disciplinary and multi-component applications, real-time applications, ...); Models and Tools for
Programming Environments; Distributed Systems; Languages, Compilers and Runtime Support Systems
(task and data parallel languages, object-oriented languages, dependability issues, ...); Parallel Computer
Systems.

February 12-14 International Conference on Tests And Proofs (TAP'2007), Zurich, Switzerland.

February 19-23 ARTIST2 Winter School on MOdelling, Testing, and Verification for Embedded Systems
(MOTIVES'2007), Trento, Italy. Organized by ARTIST2 Network of Excellence sponsored by the
6th European Framework Programme. Deadline for registration: January 20, 2007.

March 07-10 38th ACM Technical Symposium on Computer Science Education (SIGCSE'2007), Covington,
Kentucky, USA.

☺ March 11 2nd Workshop on Software Tools for Multi-Core Systems (STMCS'2007), San Jose, CA, USA. In
conjunction with IEEE/ACM International Symposium on Code Generation and Optimization
(CGO'2007). Topics include: Programming models, Managing heterogeneity, Relationship to other
parallel computing strategies, Impact on applications, Run-time management, etc. Deadline for
submissions: January 23, 2007.

March 11-15 22nd ACM Symposium on Applied Computing (SAC'2007), Seoul, Korea.

☺ Mar. 11-15 Track on Object-Oriented Programming Languages and Systems (OOPS'2007). Topics
include: Programming abstractions; Advanced type mechanisms and type safety; Multi-
paradigm features; Language features in support of open systems; Program structuring,
modularity, generative programming; Distributed Objects and Concurrency;
Middleware; Heterogeneity and Interoperability; Applications of Distributed Object
Computing; etc.

☺ Mar. 11-15 Track on Software Engineering (SE'2007). Theme: "Developing Trustworthy Software
Systems". Topics include: Trustworthy Software Systems Development; Software
Testing, Validation and Verification; Model-Driven Architecture and Interface Design;
Software Metrics, Cost Estimations and Benchmarking; Software Reuse and
Component-Based Development; Real-Time Embedded Systems; Software Reliability
Model and Implementation; Software Fault Tolerance and Software Availability;
Reengineering for Safety and Security; etc.

☺ March 21-23 2nd European Conference on Computer Systems (EuroSys'2007), Lisbon, Portugal. Topics include:
All areas of operating systems and distributed systems; Systems aspects of: Programming language
support, Parallel and concurrent computing, Dependable computing, Real-time and embedded
computing, Middleware, Security, ...; etc.

March 21-23 11th European Conference on Software Maintenance and Reengineering (CSMR'2007), Amsterdam,
the Netherlands. Theme: "Software Evolution in Complex Software Intensive Systems". Topics include:
software migration strategies and technologies, experience reports on maintenance and reengineering,
etc.

March 24-April 01 13th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS'2007), Braga, Portugal. Part of ETAPS'2007. Topics include: rigorously based tools

234 Conference Calendar

Volume 27, Number 4, December 2006 Ada User Journal

and algorithms for the construction and analysis of systems; formal methods, software and hardware
verification, static analysis, programming languages, software engineering, real-time systems, etc.

March 25-28 The Conference for Software Practice Advancement (SPA'2007), Cambridge, UK. Topics include:
Novel System Structures, What Really Works and Evolving Systems.

☺ March 26-30 21st IEEE International Parallel and Distributed Processing Symposium (IPDPS'2007), Long Beach,
California, USA. Topics include: Applications of parallel and distributed computing; Parallel and
distributed software, including parallel programming languages and compilers, runtime systems,
middleware, libraries, and programming environments and tools; etc.

☺ Mar. 26-27 15th International Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS'2007). Topics include: Applications and tools; Distributed real-time and
embedded middleware; Soft real-time and mixed-critical systems; QoS based resource
management and real-time scheduling; Programming languages and environments;
Specification, modeling, and analysis of real-time systems; etc.

☺ Mar. 26-30 Workshop on Tools, Operating Systems and Programming Models for Developing
Reliable Systems (TOPMoDelS'2007). Topics include: Tools for recovery in parallel
and distributed systems; Programming models and primitives for reliable distributed
computing; Compilers for languages with primitives for reliability and recoverability;
Compilers for domain specific languages with applications in distributed environments;
Models for distributed systems; etc.

☺ Mar. 26-30 8th International Workshop on Parallel and Distributed Scientific and Engineering
Computing (PDSEC-07). Topics include: parallel and distributed computing techniques
and codes, practical experiences using various parallel and distributed systems, task
parallelism, compiler issues for scientific and engineering computing, applications, etc.

March 27-29 13th Conference on Languages and Models with Objects (LMO'2007), Toulouse, France.

☺ April 03-06 13th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'2007),
Bellevue, Washington, USA. Topics include: embedded and open real-time systems and computing.
Deadline for submissions: February 1, 2007 (work-in-progress papers).

♦ April 17-19 13th International Real-Time Ada Workshop (IRTAW-2007), Woodstock, VT,
USA. Topics include: early experiences in using Ada 2005 for the development of real-
time systems and applications; implementation approaches for the new real-time
features of Ada 2005; developing other real-time Ada profiles in addition to the
Ravenscar profile; implications to Ada of growing use of multiprocessors in
development of real-time systems; paradigms for using Ada 2005 for real-time
distributed systems; definition of specific patterns and libraries for real-time systems
development in Ada; how Ada relates to the certification of safety-critical and/or
security-critical real-time systems; current ISO reports related to real-time Ada and
new secondary standards or extensions; status of the Real-Time Specification for Java
and other languages for real-time systems development, and user experience with
current implementations and with issues of interoperability with Ada in embedded
real-time systems; lessons learned from industrial experience with Ada and the
Ravenscar Profile in actual real-time projects. Deadline for submissions: January 12,
2007 (position papers), March 16, 2007 (final paper).

April 25-27 Software & Systems Quality Conferences (SQC'2007), Duesseldorf, Germany.

☺ May 07-09 10th IEEE International Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC'2007), Santorini Island, Greece. Topics include: Programming and system
engineering (ORC paradigms, languages, RT Corba, UML, model-driven development of high integrity
applications, specification, design, verification, validation, testing, maintenance, system of systems,
etc.); System software (real-time kernels, middleware support for ORC, extensibility, allocation,
scheduling, fault tolerance, security, etc.); Applications (embedded systems (automotive, avionics,
consumer electronics, etc), real-time object-oriented simulations, etc.); System evaluation (timeliness,
worst-case execution time, dependability, fault detection and recovery time, etc.); ...

Conference Calendar 235

Ada User Journal Volume 27, Number 4, December 2006

☺ May 20-26 29th International Conference on Software Engineering (ICSE'2007), Minneapolis, Minnesota, USA.
Theme: "Developing Dependable Software".

☺ May 22 1st Workshop on Assessment of Contemporary Modularization Techniques
(ACoM.07). Topics include: Lessons learned from assessing new modularization
techniques, Empirical studies, Comparative studies between new modularization
techniques and conventional ones, Software metrics and quality models, etc. Deadline
for submissions: February 1, 2007.

☺ May 26 4th International Workshop on Software Engineering for Automotive Systems
(SEAS'2007). Topics include: all aspects of software engineering for automotive
systems, specifically all facets of integration of independently developed software parts
to one system with emphasis on the following aspects: software quality, safety /
reliability / robustness, component orientation in embedded systems, maintenance of the
integrated embedded software system and compatibility of its components over the
lifecycle, etc. Deadline for submissions: January 20, 2007.

May 27-30 7th International Conference on Computational Science (ICCS'2007), Beijing, China. Theme:
"Advancing Science and Society through Computation".

☺ May 27-30 4th International Workshop on Practical Aspects of High-level Parallel
Programming (PAPP'2007). Topics include: high-level parallel language design,
implementation and optimisation applications in all fields of high-performance
computing (using high-level tools), benchmarks and experiments using such languages
and tools; etc.

☺ May 28-31 5th Object Oriented Technologies conference (OOT'2007), Plzen (Pilsen), Czech Republic. Topics
include: Software Engineering (software components, large-scale software, multi-language
programming); Parallel and Distributed Computing (multithreading, distributed applications, ...);
Programming Languages and Techniques (object-oriented techniques, programming paradigms,
assertion support); Educational Aspects (teaching object-oriented paradigm, educational software);
Software Security; Development on Different Platforms; Industrial Applications of Object Oriented
Technologies; etc. Deadline for submissions: February 14, 2007 (abstracts), February 28, 2007 (papers).

☺ May 29-Jun. 01 DAta Systems In Aerospace (DASIA'2007), Naples, Italy.

June 06-08 1st IEEE & IFIP International Symposium on Theoretical Aspects of Software
Engineering (TASE'2007), Shanghai, China. Topics include: Specification and Validation, Component-
based Development, Software safety and reliability, Reverse Engineering and Software Maintenance,
Embedded and Real-time Software, Model-driven Development, Parallel and Distributed Computing,
Program Analysis, Semantics and Design of Programming Languages, Type Theory, etc. Deadline for
submissions: January 22, 2007 (titles and abstracts), January 28, 2007 (papers).

☺ June 09-16 3rd History of Programming Languages Conference (HOPL-III), San Diego, CA, USA. Co-located
with FCRC'2007.

☺ June 11-14 7th International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP'2007), Hangzhou, China. Topics include: Distributed & Parallel Middleware, Parallel
Programming Paradigms, Tools & Environments for Parallel & Distributed Software Development, etc.

☺ June 14 PLDI2007 - ACM SIGPLAN Workshop on Programming Languages and Analysis for Security
(PLAS'2007), San Diego, California, USA. Topics include: the use of Programming Language and
Program Analysis Techniques to improve the Security of Software Systems; Language-based techniques
for security; Program analysis techniques for discovering security vulnerabilities; Specifying and
enforcing security policies for information flow and access control; etc. Deadline for submissions: April
1, 2007.

June 18-21 Systems and Software Technology Conference (SSTC'2007), Tampa Bay, Florida, USA.

☺ June 24-28 Technology of Object-Oriented Languages and Systems (TOOLS Europe'2007), Zurich, Switzerland.
Topics include: all aspects of object technology and neighbouring fields, in particular model-based
development, component-based development, and patterns (design, analysis and other applications);
more generally, any contribution addressing topics in advanced software technology. Deadline for
submissions: February 1, 2007 (technical papers), March 1, 2007 (workshops).

236 Conference Calendar

Volume 27, Number 4, December 2006 Ada User Journal

June 25-27 12th Annual Conference on Innovation and Technology in Computer Science
Education (ITiCSE'2007), Dundee, Scotland, UK.

June 25-28 2007 World Congress in Computer Science, Computer Engineering, and Applied Computing
(WORLDCOMP'2007), Las Vegas, USA. Deadline for submissions: February 20, 2007 (papers).

♦ June 25-29 12th International Conference on Reliable Software Technologies -
Ada-Europe'2007, Geneva, Switzerland. Sponsored by Ada-Europe, in cooperation
with ACM SIGAda. Deadline for submissions: January 10, 2007 (industrial
presentations).

June 25-29 27th International Conference on Distributed Computing Systems (ICDCS'2007), Toronto, Canada.
Topics include: all aspects of distributed and parallel computing.

☺ July 01-02 12th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2007),
Berlin, Germany. Affiliated with CAV'2007. Topics include: Design, specification, code generation and
testing with formal methods; Verification and validation of complex, distributed, real-time systems and
embedded systems; Verification and validation methods that aim at circumventing shortcomings of
existing methods with respect to their industrial applicability; Tools for the design and development of
formal descriptions; Case studies and project reports on formal methods related projects with industrial
participation (e.g. safety critical systems, mobile systems, object-based distributed systems); Application
of formal methods in standardization and industrial forums. Deadline for submissions: March 30, 2007
(abstracts), April 6, 2007 (papers).

☺ July 05-08 6th International Symposium on Parallel and Distributed Computing (ISPDC'2007), Hagenberg,
Austria. Topics include: Parallel Computing; Algorithms, Models and Formal Verification; Tools and
Environments for Program Analysis; Task and Communication Scheduling and Load Balancing; Real-
time Systems; Distributed Software Components; Real-time Distributed Systems; Security; Fault
Tolerance; Applications and Case Studies; etc. Deadline for submissions: January 29, 2007.

☺ July 09-12 2007 International Conference on Software Engineering Theory and Practice (SETP-07), Orlando,
FL, USA. Topics include: all areas of Software Engineering and all related areas, such as: Component-
based software engineering; Critical and embedded software design; Distributed and parallel systems;
Distribution and parallelism; Education (software engineering curriculum design); Embedded and real-
time software; Empirical software engineering and metrics; Evolution and maintenance; High assurance
software systems; Interoperability; Legal issues and standards; Object-oriented techniques; Program
understanding issues; Programming languages; Quality management; Real-time software engineering;
Reliability; Reverse engineering and software maintenance; Software architectures and design; Software
components and reuse; Software cost estimation techniques; Software design and design patterns;
Software engineering methodologies; Software engineering versus systems engineering; Software policy
and ethics; Software reuse; Software safety and reliability; Software security; Software testing,
evaluation and analysis technologies; Software tools and development environments; Survivable
systems; Technology adoption; Verification, validation and quality assurance; etc. Deadline for
submissions: February 1, 2007 (draft papers).

☺ July 22-25 2nd International Conference on Software and Data Technologies (ICSOFT'2007), Barcelona, Spain.
In conjunction with ENASE'2007. Topics include: Programming Languages (Object-Oriented
Programming, Languages and compilers, ...); Software Engineering (Reliable software technologies,
Dependable computing, Software components, Software maintenance, Real-time software, Software
economics, ...); Distributed and Parallel Systems; etc. Deadline for full paper submissions: March 26,
2007.

☺ Jul. 30-Aug. 03 21st European Conference on Object-Oriented Programming (ECOOP'2007), Berlin, Germany.
Topics include: all areas relevant to object technology.

August 12-15 26th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2007), Portland, Oregon, USA.

☺ August 28-31 13th International Conference on Parallel and Distributed Computing (Euro-Par'2007), Rennes,
France. Topics include: the promotion and advancement of all aspects of parallel and distributed
computing, such as support tools and environments, distributed systems, parallel and distributed
programming, etc. Deadline for submissions: January 26, 2007 (full papers), April 2, 2007 (workshops).

Conference Calendar 237

Ada User Journal Volume 27, Number 4, December 2006

☺ September 03-07 16th International Conference on Parallel Architectures and Compilation Techniques (PaCT'2007),
Pereslavl-Zalessky, Russia. Topics include: New trends and models in Parallel Programming; All
aspects of the applications of parallel computer systems; Languages, environment and software tools
supporting parallel processing; General architecture concepts, enabling technologies; Teaching parallel
processing; etc. Deadline for submissions: January 20, 2007 (full papers), February 5, 2007 (extended
abstracts).

☺ September 04-07 International Conference on Parallel Computing 2007 (ParCo2007), Juelich & Aachen, Germany.
Topics include: all aspects of parallel computing, including applications, hardware and software
technologies as well as languages and development environments. Deadline for submissions: March 4,
2007 (abstracts, mini-symposia), May 15, 2007 (presentations), July 31, 2007 (full papers).

☺ September 18-21 26th International Conference on Computer Safety, Reliability and Security (Safecomp'2007),
Nuremberg, Germany. Deadline for submissions: February 2, 2007 (abstracts), March 9, 2007 (full
articles).

☺ September 26-28 3rd Latin-American Symposium on Dependable Computing (LADC'2007), Morelia, Mexico. Topics
include: Dependability Modeling, Prediction and Evaluation; Dependable Applications; Distributed
Systems; Parallel, Clustered and Grid Systems; Real-Time and Embedded Systems; Safety-Critical
Systems; Security of Computing Systems; Software Engineering of Dependable Systems; Software
Reliability; Software Testing, Validation and Verification; Survivability of Computing Systems; etc.
Deadline for submissions: March 20, 2007 (papers, experience reports), May 31, 2007 (tutorials).

♦ November 04-08 2007 ACM SIGAda Annual International Conference (SIGAda'2007),
Washington, DC, USA. Sponsored by ACM SIGAda (Approval pending by ACM).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2008

June 13th Annual Conference on Innovation and Technology in Computer Science Education

(ITiCSE'2008), Madrid, Spain.

244

Volume 27, Number 4, December 2006 Ada User Journal

Using CORBA to Bring New Life to
Legacy Ada: an Experience Report
Jean-Claude Mahieux, Bernard Maudry, Andrew Foster
PrismTech, Parc Fontaine de Jouvence - 4 rue Angiboust 91460 - Marcoussis - FRANCE. email:
jeanclaude.mahieux@prismtech.com

Abstract
In this short paper we report on a successful
experience (of which we were happy protagonists)
with the migration of a sizeable legacy Ada
application to a new execution platform including the
interaction with heterogeneous languages and
components. We briefly illustrate the challenges we
faced and the key choices we made to address them.
We then conclude by drawing some lessons learned
that could be of interest to other users.

1 Introduction
In the context of continuously evolving software
technologies, the question of whether to invest in the
preservation of existing Ada software often arises. This
paper will describe how new innovative techniques that use
CORBA can be deployed to extend the lifetime of an
existing Ada system significantly and with low effort.

The paper illustrates an example a combat management
system developed completely in Ada. After describing the
existing system and the key requirements placed on the
upgrade of the system, we discuss how we devised the
notion of a “rich IDL” to easily integrate CORBA in a
legacy system.

2 Status and objectives
The existing system was configured as follows:

• Targeted to HpUX and HpRT

• Written in Ada83

• Using proprietary legacy middleware

• Subject to critical performance requirements.

The following key requirements were instead placed on the
system upgrade:

• Retarget to Linux as the underlying operating
system

• Migrate existing code to Ada95

• Maintain compatibility with the required external
components via the legacy middleware

• Do not incur degradations of system performance

• Add an external Java GUI to facilitate access to
large data structures

• Use COTS components whenever possible.

3 Technical issues
The application was first migrated to Ada 95. CORBA was
immediately recognized as an obvious possible solution to
share data between Java and Ada components in a standard
manner. The PrismTech team (the authors) were invited to
join the project as CORBA experts.

In the system in question the data structures that needed to
be shared were huge, whereby system performance was a
significant issue. It was therefore clear that converting
types between the legacy world and the CORBA world
should be avoided in so far as possible.

Our consideration of the fact that the system
implementation was based on a dictionary of large Ada
types, which was generated from an application
specification lead us to the following conclusions:

• We should try to focus on typing, and try to
replace current typing with an equivalent CORBA
mapping. By doing this, we would be able to
support the legacy Ada code without changes. An
important implication in this regard was that any
previous testing would still be valid.

• We should continue to exploit automatic code
generation, not only for efficiency reasons, but
also to ease integration in the application
generation process.

4 Creation of a “rich” IDL
In order to meet these goals it was decided that the Ada
types dictionary should be expressed in the CORBA IDL.
To achieve this in a controlled fashion, we decided to
implement an Ada to IDL translator.

Most Ada types could find an obvious IDL equivalent,
including packages transposed to IDL modules.

For some Ada constructs that had no direct equivalence in
IDL we introduced pragmas to preserve the Ada type
information in the generated IDL files (e.g., subtypes,
ranges, etc. ...)

J-C Mahieux, B Maudry, A Foster 245

Ada User Journal Volume 27, Number 4, December 2006

The output generated by the ada2idl translator is what we
called a “rich” IDL, which provides all of the information
we required to re-generate ready-to-compile Ada packages.

We illustrate this notion by relating a fragment of the
original Ada code to the corresponding IDL definition:

package X is
 type T_Short is range - 32768 .. 32767;
 type Percent is new T_Short range 0 .. 100;
 subtype Another_Short is T_Short range 0 .. 1000;
end X;

Below we show the output of the ada2idl translator:

module X {
 typedef short T_SHORT ;
 # pragma OrbAda_Directive
 # "Range" "T_SHORT -32768 32767"
 typedef T_SHORT PERCENT;
 # pragma OrbAda_Directive
 # "Range" " PERCENT 0 100"
 # pragma OrbAda_Directive
 # "Insert_Line" "
subtype ANOTHER_SHORT is T_SHORT
 range 0 .. 1000 ;"
} ;

5 IDL to Ada generation
The subsequent step was to enhance our idl2ada compiler
to understand the pragmas retained in the input source, so
that the generated Ada packages would embed all the
original type details.

To illustrate what we wanted to achieve we show below a
sample of the Ada code generated by our idl2ada compiler
from the adove IDL module.

==
-- === Code automatically generated by IDL to Ada
-- === compiler OrbAda-idl2ada
-- === Copyright Top Graph'X 1997-2005
==
-- From IDL file X.idl

with Corba_Ios;
with Corba.Object;

package X is

 type T_SHORT is new Corba.Short
 range -32768 .. 32767 ;
 for T_SHORT'size use 16;

 type PERCENT is new T_SHORT
 range 0 .. 100 ;
 for PERCENT'size use 16;

 subtype ANOTHER_SHORT is T_SHORT
 range 0 .. 1000 ;

end X;

6 Technical considerations and assessment
6.1 Automated control on new typing
To ensure that correct system behaviour was preserved, a
test program was automatically generated, compiled and
built with both the original and the newly generated types.
Both versions of the test program were shown to generate
an equivalent output, thereby proving that no property of
the data types were corrupted by application of the
ada2idl/idl2ada transformations.

6.2 Limitations in the rebuilt application
We did incur some limitations, though, which prevented us
from achieving full preservation of properties. For
example, some arrays where the indexes were enumerated
types could not be expressed in IDL and therefore had to be
expressed as standard arrays. In this case the only
modifications that were necessary in the application code
were with indexes 'pos and 'val. Fortunately, the number of
lines to modify to address the problem was very small
indeed and the application was thus easily rebuilt on top of
the new types dictionary generated by the idl2ada
compiler. As expected, the rebuilt application still ran
correctly.

6.3 Addition of an interface
In order to make the application CORBA-compliant it was
still necessary for us to equip it with a CORBA interface.
This requirement was satisfied by providing a Java GUI
with the ability to register a CORBA callback. By doing
this the GUI would be notified automatically of each track
update.

6.4 The middleware main loops
An important functional requirement on the resulting
application was that is should manage CORBA messages in
parallel with messages generated by the legacy middleware.
To address this need, we contemplated two possible
solutions:

• When the operation of the application is not
thread-safe or else requires polling, then methods:
ORB.work_pending and ORB.perform_work
could be used in combination.

• Otherwise the ORB.run method will block the
current thread and dispatch incoming CORBA
requests.

The latter solution was used in the particular case of our
project.

6.5 Use of IDL by Java/C++ environments
We are very well aware that any user-defined pragmas are
not recognized by third-party idl compilers, and are
consequently ignored. However, they are meant to be Ada
specific and as such it is not required that they should be
understood when compiling the idl to Java or C++
environments. For this reason and for those purposes idl
compilers from other vendors can be used with the idl
unmodified with no problem.

246 Using CORBA to re juvenate an Ada legacy software: an experience report

Volume 27, Number 4, December 2006 Ada User Journal

6.6 Robustness gained in the interface between
Java/C++ and Ada applications
A side effect of supporting a “rich” IDL is that when
CORBA requests from Java/C++ clients are dispatched to
the Ada system with incorrectly initialized parameters, an
Ada exception (“Constraint_Error”) is generated upon
reading the request parameters. The exception is then
caught by the CORBA library, which in turn returns a
standard CORBA exception (“Impl_Limit”) to the client.
This feature does indeed buy some increased robustness to
the system in the regard of the interaction between
heterogenous application components.

7 Summary of key migration points
Overall, we can summarize the key steps we took in
performing the required migrations as follows:

• Develop new ad-hoc tools, such as an Ada to IDL
compiler, to perform the automatic generation of
type-safe IDL specifications for existing Ada
interfaces

• Extend the CORBA IDL to more closely support
the Ada type system. This provision will remove
the need for inefficient data conversions at run

time, thereby preserving system performance and
also permitting legacy Ada interfaces to remain
unchanged

• Add the CORBA bindings required to support the
Ada type system.

Having taken those steps, permitted us to exploit a vast
span of automatic code generation techniques, which made
the task of migrating a huge amount of legacy code
dramatically more efficient.

Furthermore, being able to support the legacy Ada code
without changes also meant that any previous testing was
still valid.

8 Conclusion
By following the approaches and strategy outlined above,
the existing Ada combat management system was
successfully upgraded with minimum cost and, most
notably, within project deadlines.

Consequently, as a result of the project effort, the legacy
Ada application had been “CORBA enabled”, while at the
same time, the original Ada interface had been fully
retained.

248

Volume 27, Number 4, December 2006 Ada User Journal

The Publisher Framework
Judith Klein1, Drasko Sotirovski2
1 Lockheed Martin, 9211 Corporate Boulevard, Rockville, MD 20850, USA. email: judith.klein@lmco.com
2 Raytheon Canada Ltd, #150-13575 Commerce Parkway, Richmond, BC, V6V 2L1, CANADA. email:
drasko@acm.org

Abstract
One of the lasting challenges in building distributed
fault tolerant systems is keeping application code size
and complexity down. This can be done by capturing
the nuances of distributed computing environment
and redundant fault tolerant elements into a common
infrastructure layer, thus factoring the code that
would otherwise need to be written again and again
by each distributed fault tolerant software component.
When the application code has many complexities,
and Air Traffic Control (ATC) is certainly one such
example, achieving this goal becomes paramount.
Under a project called En Route Automation
Modernization (ERAM), the Federal Aviation
Administration (FAA) is developing a replacement for
its aging en route assets. At the same time, a
foundation is being created for the anticipated future
enhancements, driven by the projected increase in air
traffic. At the core of the ERAM design is a
distributed object oriented (OO) framework called
Publisher FrameWork (PFW), which is ERAM’s
answer to the aforementioned OO challenge. This
paper describes the PFW properties, the experiences
with it accumulated through the first build of the
ERAM program, and its applicability to fault tolerant
computing.

1 Introduction
Distributed computing is 20+ years old, but it only took the
main stage with the explosion of networking and the
internet in particular. The outburst of distributed computing
frameworks (CORBA, J2EE, .NET, to name just the few
most popular) is no surprise and one should expect a
plethora of distributed computing environments before
some of the difficult issues in distributing computing are
settled satisfactorily. From this point of view, PFW is no
exception: just one of the many! Although true to an extent,
PFW is also more: an attempt to raise the bar and attack not
only the relatively simple issues of messaging/dispatching,
but also some rather difficult issues related to
encapsulation, extensibility, scalability, performance, and
availability, all with no significant increase in application
code size and complexity. PFW is a lightweight
framework: it enables applications to focus solely on the
application domain.

In the subsequent sections, we describe the software
component methodology we have followed and the
resulting need for publication services, mirror storage and
subscriber synchronization. To keep our experience report

focused, we are not going to compare PFW with CORBA
or J2EE, which have since started including fault tolerant
elements. We hope to provide enough insight into PFW for
the readers to make that comparison on their own. The fact
that PFW provides cross-language support (ERAM
components are split between Ada and C++) was also ruled
outside the scope of this particular discussion.

2 Distributed Software Components
Our expertise is in building large scale, distributed, fault
tolerant, near real-time systems. The application domain
we’ve been concentrating on for over the last 15+ years has
been air traffic control. We, at Lockheed Martin, had
already developed and fielded a robust infrastructure called
FlightDeck™1 (see Figure 1), which provides a rich set of
relevant services. We proceeded to concentrate on the
domain of air traffic control. Here we started with a data
model and ended with a set of software components, a
description of how the components should behave, with a
common behavioral pattern and a strict dependency
hierarchy for ease in building the system. This inevitably2
led to PFW, an infrastructure extension which captures and
reinforces this pattern.

3 Component Definition
A component is a logical grouping of software whose
definition is based on the problem domain. A software
component provides a cohesive set of services, exports a
well defined interface (application programming interface,
API); it encapsulates implementation details (internal
databases, data structures and internal functions are hidden
from the client). Furthermore, software components can be
independently developed and tested.

3.1 Methodology Used to Define Components
Objects in the problem domain (e.g., airport, route, target
report) form natural dependencies and relationships (e.g., a
flight plan has a departure point, a destination and a route).
Following this well established software engineering
principle, we grouped cohesive objects into software
components in a manner in which interfaces between
components were minimized. In the process, we established
dependency rules among components: a hierarchy of
components which is strictly enforced in the build process.

1 FlightDeckTM is a trademark of Lockheed Martin.
2 One of us, while working on the Canadian Automated Air Traffic System
(CAATS), developed a common middleware layer with similar properties
to PFW (see references [1] and [2]), leading us to believe that these system
types are conducive to such software designs.

J Klein, D. Sot irovski 249

Ada User Journal Volume 27, Number 4, December 2006

Figure 1: Side-Bar on FlightDeck Middleware.

Figure 2: FAA En Route Air Traffic Control.

250 The Publ isher Framework

Volume 27, Number 4, December 2006 Ada User Journal

Component definitions are advertised in terms of provided
services on the encapsulated data objects. Added benefits
of this approach are: extensibility (e.g., additional
components are built using existing components, promoting
re-use of existing components) and ease of component
replacement (as long as the API is invariant, the
implementation can change).

4 Component Deployment to Physical
Nodes
An executable is a physical grouping of software, an
independently start-able, stoppable program: with Unix,
this is a single process that may includes multiple threads.
Definition of executables is based on the knowledge of the
physical architecture and with fault tolerance in mind: the
executable is a unit of failure, while a thread is a unit of
concurrency. Executables we build in the air traffic control
domain, follow the event-driven model:

a) Multiple threads of execution are packaged into
the same executable.

b) Each thread of execution is in a forever loop
waiting for events, servicing each event in priority
order, making synchronous (e.g., library calls) and
asynchronous service requests (e.g., to a service
residing on a different node).

c) For asynchronous requests the address of a
callback procedure is provided to the service:
when the service completes, the callback is
invoked with the results.

A component spans executables. Parts of a component can
be bound into a server/publisher executable resident on one
node, while other parts of the same component are bound
into a client/subscriber executable resident on a different
node (this is similar to the J2EE concepts of local and
remote interfaces or CORBA proxies and skeletons). The
data exchange between the publisher of the component and
the subscriber is internal to the component: the format of
that exchange can be modified without impacting the users
of the component’s services (since they access the
component strictly by using the API); in other words,
whether the data is encoded for transmission (a.k.a.
serialized) into XML format, binary format, or something
else, the users of the components are unaffected as long as
the APIs used to access the objects (attributes, methods) are
constant. Publishers of multiple components can be bound
together into a single executable, along with a number of
other components’ client-side code to achieve the
application mission (e.g., detecting conflicts between
aircraft).

We describe the physical software architecture by showing
the placement of defined executables on nodes (processors)
of the hardware architecture and by showing the parts of
components that were bound together to form each
executable.

Lockheed Martin defined and implemented a first version
of the component model (i.e. the collection of components

needed to implement an air traffic control system, along
with their interfaces and interactions) for use in “User
Request Evaluation Tool”. This tool is now deployed
nation-wide; it automatically predicts and notifies
controllers of conflicts between aircraft or special activity
airspace. The system also allows controllers to quickly
determine whether proposed flight path changes will
conflict with en route traffic or airspace. By allowing
controllers to evaluate route change requests and to assign
conflict free routing, the airspace users are able to save
both time and fuel.

For the first implementation each component’s behavior
was described from an architecture standpoint – the pattern
was defined, but no common framework was provided. The
resulting implementation proved that the concepts were
solid. However, we noticed that there was large variation in
the implementation specifics of components, as well as
some degree of code duplication for common component
behavior. We concluded that benefits could be reaped from
factoring out the common behavior into a common
framework:

a) Overall code size could be reduced.

b) Errors in implementing the basics of the
component framework could be eliminated when
correcting them once in the common framework.

c) Components would be more maintainable since
they would be concentrating on the domain
expertise rather than on framework matters.

Such observations led us to the development of the
Publisher FrameWork (PFW) on which most3 components
in the air traffic control domain of ERAM are now built. As
we prototyped PFW, we found more and more common
behavior to be factored and included into PFW, such as
data redundancy for fault tolerance.

5 The Publisher Framework
The Publisher FrameWork (PFW) provides a framework
for uniform, consistent development of software
components. The design pattern (see Figure 3) implements
support for:

a) A server to publish objects to subscribers and to
process requests from clients.

b) An agent acting as a local subscriber to receive
published objects, translate them into messages
and multicast them to all remote subscribers. The
use of multicast mechanism makes PFW scalable
to the hundreds of positions that must be
supported in an en-route center.

c) A proxy to receive multicast messages, translate
them back into objects and republish them to local
clients. The component user, when notified that an
update has arrived, is guaranteed that the mirror is

3 Some legacy components were not converted to using PFW to minimize
change of working components.

J Klein, D Sot irovski 251

Ada User Journal Volume 27, Number 4, December 2006

current, i.e., the update has been applied to the
content of the mirror; therefore the component
user can make queries against the object attributes
from within the context of the call-back.
Additionally, the proxy facilitates requests from
the clients to the server; a watchdog timer is used
to monitor the arrival of a timely reply from the
Server – the client is therefore guaranteed to be
notified either about the completion of the request
or about its timeout.

d) A mirror to augment the proxy by retaining a copy
of the data published by the server for use in local

queries. The existence of the mirror provides the
client with the convenience of accessing the data
not only when the information is received, but also
as part of other processing, such as the expiration
of a timer. In response to a request to update a
server object, the mirror is updated before the
confirmation is delivered to requestor, so that the
requestor can reach into the mirror and access
object attributes and methods with the assurance
that the object is up-to-date.

Figure 3: Anatomy of PFW distributed service.

In ERAM, for which PFW was developed, all the software
components are known – their names (server name,
published data-stream name) and APIs are documented; all
necessary discovery is done by infrastructure alone, which
locates the registered server(s), selects the Primary4
executable of that server, and delivers client requests to the
server.

Note that there is a plethora of requirements implemented
by PFW on behalf of all components that are less
interesting to describe in this paper, yet helpful to the
component implementers just the same; one example is
invoking the recording service and error reporting service
(to log commonly recorded events and data) for detected
errors.

4 See details on Primary vs. Standby in Figure 1: Side-Bar on FlightDeck
Middleware.

5.1 Mirror and Original, Queries and Updates
As introduced above, a mirror encapsulates client-side
storage of object replica matching the original objects of
the server’s internal database. In other words, the client-
side proxy subscribes to (registers interest in) the data-
stream published by the server; when a publication is
received, the proxy first updates the object replica in the
mirror storage; other local clients can then safely be
invoked with the guarantee that the mirror is current and
consistent with the server’s internal database. Having a
mirror presents the advantage of being able to perform
synchronous queries against the local object cache.

Requests for update of an object are asynchronous: the
request is forwarded to the server (whether local to the
executable or remote); a call-back procedure is provided so
that it can be invoked when the results of the asynchronous
update are received. All updates to an object are performed
only by the owner of the object (the server/publisher, not a
mirror – merely a copy of the object is stored in the mirror).

252 The Publ isher Framework

Volume 27, Number 4, December 2006 Ada User Journal

A simple and robust approach insures consistency of the
data throughout.

Finally, local clients can be notified of changes (in addition
to being able to query the local mirror storage). There are
two kinds of registration:

(a) For all objects of a class, resulting in the registrant
being notified whenever an object is created
(added to the mirror storage), deleted (removed
from the mirror storage) or updated (modified in
the mirror storage);

(b) For a specific instance, resulting in the registrant
being notified whenever that instance is modified,
including deletion.

In conclusion, the object replica PFW maintains in the
mirror storage is, from a client’s perspective, virtually
indistinguishable from the original: it can be observed
through registration/notification, queried and updated –
albeit in an asynchronous fashion. This provides near-
perfect object location transparency. Only the fact that
update methods are asynchronous hint to a client that the
target object may or may not be local. In any other respect,
the client-side replica is indistinguishable from the original
object.

5.2 Fault Tolerance
A primary-standby pattern is a standard arrangement for
high integrity systems.

The goal is always one and the same: to provide full
protection from hardware faults and protection from at least
transient software faults. In industrial applications, like
ATC systems, the failure model is always fail-safe, but its
dynamic characteristics vary from component to
component, depending on the component criticality and the
required switchover time. Components in ERAM range
from active fail-silent (all redundant elements are active
and at all times ready to provide services) to passive fail-
stop (redundant elements are available but become active
only after the primary had failed). In other words, primary
provides the service with a (more-or-less hot) standby
ready to replace it in case of a failure. In addition, if a
service fails when no standby is available, the service can
be restored with little or no loss in

functionality from the checkpoint data that the primary and
standby have saved on disk.

When prototyping PFW, we concluded that we can include
support for the required spectrum of Standby designs by
simply making the Standby a Subscriber to the very data-
stream its Primary is publishing, as described in Figure 4.
The essence of PFW fault tolerant behaviour, from a client
perspective, is best described by simply stating: the client
side object replicas are transparently rewired from the
originals in the failed primary to the new originals in the
new primary. This is however, as many a reader will know

from experience, easier said than done. PFW implements
near perfect transparency relative to both outstanding
requests and clients registered for notification. In the
following paragraphs, we describe some of the usual yet
intricate obstacles in achieving these goals (and give the
meaning of ‘near-perfect transparency’, ‘more-or less hot
standby’, etc.).

Not only redundant servers fail, but clients can fail too.
Having no redundancy, such computing elements need to
get back in sync with the rest of the distributed
environment, which poses additional challenges; in
particular for getting the new members back in sync with
no adverse performance impact on the system. PFW
approach to solving this issue is deemed outside the scope
of this particular discussion and readers interested in it are
referred to [3].

5.3 Enhancements under Consideration
At the time the primary service failed, it may have been
processing a request from a client, with more requests stuck
in its input queue. To make the switchover transparent to
clients, all these requests need to be processed, with the
new primary taking over where the old primary stopped.

Obviously, the request being processed at the time the
Primary failed may be the killer request and automatically
reprocessing it exposes the system to the common mode
failure. All other requests are safe to reprocess (in
particular if addressed to other object instances). PFW
currently makes clients with outstanding requests decide.
Clients will receive a time-out on the request and must
decide to resubmit it or not. PFW improvements under
consideration include a means for clients to find out if the
request is suspected to be the killer (i.e. if this very request
was processed when the primary failed) as well as
automatic resubmission of the requests stuck in the input
queue of the primary at the time it died, provided they are
not directed to the same object as the killer request. See
points 1, 2 in Figure 4 PFW Facilitated Switchover of a
Component.

Objects in the server are not only state; in addition to the
state, an object may have some dynamic context, e.g. an
outstanding timer to do something. This dynamic context
can of course be mirrored by the hot standby. However, this
makes primary and standby go through the same
computational history and increases the likelihood of
simultaneous primary-standby failure. For this reason,
many system designs (including PFW) opt for recreating
this dynamic context upon switchover. So far so good, but
processing requests is only possible after the dynamic
context is re-established. Yet re-establishing the dynamic
context for thousands of objects can take a significant
amount of time resulting in an unacceptable hiccup in
system performance immediately after a switchover.
PFW’s answer to this significant challenge is described in
Figure 5 at point points 3, 4.

J Klein, D Sot irovski 253

Ada User Journal Volume 27, Number 4, December 2006

Figure 4: PFW support for fault tolerance.

6 Conclusions
High availability systems have needs above and beyond the
functionality provided by the contemporary commercial
middleware (CORBA, J2EE, .NET, to name a few). ERAM
successfully serves these needs through PFW by extending
the middleware services to provide location transparency
and fault tolerance. As additional common behavioral
patterns become apparent, the authors will consider
incorporating capabilities to address these into future PFW
releases. In return, an important part of common and
intricate implementation is factored while leaving the
application domain to remain focused on solving domain
issues.

Acknowledgements
The authors acknowledge the following people who made
significant contributions to the concept definition,
prototype, design and development of PFW:

• Tim Donovan, Software Architect with Raytheon
Integrated Defense Systems, Tewksbury, MA

• Sam Carnicelli, Chief Designer with Lockheed
Martin Transportation and Security Solutions,
Cato, NY

• This work was performed under the contract from
the Federal Aviation Administration, DTFA01-03-
C-00015. The support and review from Jeff
O’Leary, FAA ERAM Product Team Software
Lead is especially noted and appreciated.

References
[1] [1] Thompson, C., J., Celier, V., DVM: an object-

oriented framework for building large distributed Ada
systems, TRI-Ada '95, Anaheim, CA

[2] [2] Sotirovski, D., Towards Fault-tolerant Software
Architectures, Working IEEE/IFIP Conference on
Software Architecture (WICSA 2001), 28-31 August
2001, Amsterdam, The Netherlands.

[3] [3] Sotirovski, D., Time Horizon in Distributed Object
Societies, a companion paper submitted at SIGADA
2006.

254 The Publ isher Framework

Volume 27, Number 4, December 2006 Ada User Journal

Figure 5: PFW facilitated switchover of a component.

About the Authors
Judith Klein is a certified systems architect at Lockheed
Martin Transportation and Security Solutions. She has 28
years of experience developing distributed real-time
systems of various sizes in different domains; the last 15
years have been focused on air traffic control. She has a BS
in applied mathematics and computer science from
Carnegie Mellon University in Pittsburgh, PA and an MS in
technical management from Johns Hopkins University in
Baltimore, MD. She is a senior member of the IEEE and a
member of the Association for Computing Machinery.

Drasko Sotirovski is a software architect at Raytheon
Systems Canada. He has 27 years of experience in
developing large-scale real-time software for defence,
simulation, transport, and telecommunication systems for
several European and North American customers. His
research interests are software architecture and distributed
object-oriented technologies. He received a BSc in
technical physics and computer science from
Elektrotehnicki Fakultet u Beogradu, Yugoslavia. He is a
member of the IEEE Computer Society and the Association
for Computing Machinery. He is also a PEng with the new
CSED (Computer and Software Engineering Division)
branch of APEG BC.

256

Volume 27, Number 4, December 2006 Ada User Journal

Ada-Europe 2006 Sponsors

8 Rue de Milan, F-75009 Paris, France AdaCore
Contact: Zépur Blot Tel: +33-1-49-70-67-16

Email: sales@adacore.com
Fax: +33-1-49-70-05-52
URL: www.adacore.com

66/68, Avenue Pierre Brossolette, 92247 Malakoff, France Aonix
Contact: Jacques Brygier Tel: +33-1-41-48-10-10

Email : info@aonix.fr
Fax: +33-1-41-48-10-20
URL : www.aonix.com

Dolphin House, St Peter Street, Winchester, Hampshire, SO23 8BW, UK Green Hills Software Ltd
Contact: Christopher Smith Tel: +44-1962-829820

Email :
Fax: +44-1962-890300
URL : www.ghs.com

1 Cornbrash Park, Bumpers Way, Chippenham, Wiltshire, SN14 6RA, UK I-Logix
Contact: Martin Stacey Tel: +44-1249-467-600

Email : info_euro@ilogix.com
Fax: +44-1249-467-610
URL : www.ilogix.com

20 Manvers Street, Bath, BA1 1PX, UK Praxis High Integrity
Systems Ltd
Contact: Rod Chapman

Tel: +44-1225-466-991
Email : sparkinfo@praxis-his.com

Fax: +44-1225-469-006
URL : www.sparkada.com

Triad House, Mountbatten Court, Worrall Street, Congleton, CW12 1DT, UK Ellidiss Software
TNI Europe Limited
Contact: Pam Flood

Tel: +44-1260-29-14-49
Email: info@tni-europe.com

Fax: +44-1260-29-14-49
URL: www.ellidiss.com

	Contents
	Editorial
	News
	Conference Calendar
	Using CORBA to Bring New Life to Legacy Ada: an Experience Report
	The Publisher Framework

