

Ada User Journal Volume 28, Number 1, March 2007

ADA
USER
JOURNAL

Volume 28
Number 1

March 2007

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

News 5

Conference Calendar 38

Forthcoming Events 45

Articles

 C. Comar, R. Berrendonner
“ERB : A Ravenscar Benchmarking Framework” 53

Ada-Europe 2006 Sponsors 64

Ada-Europe Associate Members (National Ada Organizations) Inside Back Cover

2

Volume 28, Number 1, March 2007 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal – The Journal for the
international Ada Community – is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the first of the
month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 3

Ada User Journal Volume 28, Number 1, March 2007

Editorial
In the foreword to volume 28 of the Ada User Journal, which commences with the present issue, our memory goes to one
very good and one very sad news that opened the year 2007 by occurring in the short span of two calendar days: On January
24, the Amendment to ISO/IEC 8652 (which we call and will keep calling ‘Ada 2005’ in the vernacular) was finally approved
by ISO. All nations who participate in WG9 voted to approve and no comments were submitted, which were definite tokens
of excellent technical work and also cohesive and determined national support. And that was a very good news indeed. (For
the record, it took in fact another 7 weeks, until March 9, for the Amendment to be finally published on the ISO calatogue.
But then it was.) The sad news came only two days after that. On January 26, Jean Ichbiah, the man who designed Ada,
passed away at 66. I have read many nice words about Jean Ichbiah from various authorities who wrote about him, and more
you will read for yourselves in the News section of this issue. I have to say however that I was most impressed by some
passages of the obituary that the Boston Globe run about him shortly after his death. I wish to share some excerpts of that
with you in this editorial. Jean said in 1984 in an interview to the CACM celebrating the birth of Ada: "I see myself really as
an architect, […] My work was not to invent new things; it was not research work, it was architectural work. I had to
integrate the best available materials to construct the building that would best suit the requirements of the users." He viewed
the Ada language "as a cathedral with all the architectural lines interwoven in a harmonious manner," I find this is a very
good way of remembering who Jean Ichbiah was to the Ada community. It is so very sad that he passed away. It is reassuring
and conforting though that his creature is still well and alive some 30 years after he took it on himself to design it.

Returning to the more mundane task of illustrating the contents of the issue and the plans for the remainder of the volume, I
am pleased to welcome the contribution of Romain Berrendonner and Cyrille Comar of the Paris offices of AdaCore, who
report on the development and experimental use of a software infrastructure commissioned by the European Space Agency
for benchmarking the space and time performance of Ravenscar technology and applications. The report on that project
constitutes the technical matter of the present issue. Future issues will have reports from the IRTAW-13 workshop, which
will take place in April at Woodstock, Vermont, USA (cf. the technical program in this issue) and staggered proceedings of
the industrial track of the Ada-Europe 2007 conference, which will be held in Geneva, CH, in June. The rest of the issue
contains news, and calendar events of interest to the Ada community, as usual, gathered for you from our News and Calendar
editors.

Tullio Vardanega
Padova

March 2007
Email: tullio.vardanega@math.unipd.it

 5

Ada User Journal Volume 28, Number 1, March 2007

News
Santiago Urueña
Technical University of Madrid (UPM). Email: Santiago.Uruena@upm.es

Contents

Ada-related Organizations 5
Ada-related Events 7
Ada and Education 9
Ada-related Tools 9
Ada-related Products 11
And and CORBA 17
Ada and GNU/Linux 17
Ada and Microsoft 18
References to Publications 18
Ada Inside 18
Ada in Context 22

Ada-related
Organizations
Ada-Belgium — Ada 2005
Approved
From: Dirk Craeynest

<Dirk.Craeynest@cs.kuleuven.ac.be>
To: ada-belgium@cs.kuleuven.be
Date: Wed, 24 Jan 2007 21:59:57
Subject: Final ISO/IEC ballot approves Ada

amendment
I am very pleased to announce that JTC1
(the joint technical committee of ISO and
IEC on information technology) approved
the Amendment to ISO/IEC 8652 (the
Ada standard) as submitted by
SC22/WG9 (the Ada Standardization
Working Group).
The Amendment was approved by a vote
of 17-0-5 (yes-no-abstention). All nations
who participate in WG9 voted to
approve. No comments were submitted.
The voting process is now completed.
The only remaining step is actual
publication of the Amendment by ISO.
As mentioned earlier, through your Ada-
Belgium membership, you helped Ada-
Europe to sponsor the production of the
Ada 2005 Language Reference Manual
(LRM), the Annotated Ada 2005
Language Reference Manual (AARM),
and the Rationale for Ada 2005. Chapters
of the latter were published in the Ada
User Journal issues that you received in
2005 and 2006. Ada-Europe also made
the publication possible of the Ada 2005
LRM in Springer's Lecture Notes in
Computer Science series (LNCS).
All those documents remain available
online in various formats at

<http://www.adaic.com/standards/
ada05.html>
SC22/WG9 is already looking at the
future and several activities are currently
underway:
The ARG (Ada Rapporteur Group) now
focuses on (in decreasing order of
priority)
⁃ developing a revision of ISO/IEC 15291
(the ASIS standard), on the one hand to
bring it in sync with the new Ada 2005
standard and on the other hand to provide
a semantic interface at a higher level of
abstraction (i.e. easier to use);
⁃ responding to Defect Reports and/or
Ada Issues on ISO/IEC 8652 (the Ada
standard);
⁃ developing Technical Reports or
Standards improving the Ada libraries,
notably with respect to containers; and
⁃ considering proposals for extending the
language.
The HRG (Annex H Rapporteur Group)
focuses on
⁃ revisiting ISO/IEC 15942 (the report
"Guidelines for use of Ada in High
Integrity Applications") with a view to
updating it for Ada 2005.
The new PRG (Ada-POSIX Binding
Rapporteur Group) focuses on
⁃ maintaining ISO/IEC 14519 (the Ada
Binding to POSIX), as since this
document was standardized there have
been 2 revisions of Ada and 2 of POSIX.
So you see, lots of activities are going on,
and we hope that through your Ada-
Belgium membership you will continue to
support them and that you will be looking
forward to be kept informed, among
others via the 3-monthly Ada User
Journal published by Ada-Europe.
We'd like to thank all our members who
promptly paid their membership renewal
for the year 2007 upon receipt of the
invoice earlier this month. If you haven't
paid yet, we would appreciate it if you
could settle the invoice as soon as
possible.
Thanks once more for your support and
interest.
As always, I will keep you informed of
further progress.
Dirk Craeynest
ISO/IEC JTC1/SC22/WG9, Head of
Delegation, Belgium
Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/-Europe/SIGAda/WG9 mail)

Disclaimer:
http://www.kuleuven.be/cwis/email_discl
aimer.htm
[See also "ARA — Technical Work on
Ada 2005 Standard Completed" in AUJ
27-2 (Jun 2006) p.69 and "Ada 2005
Published by ISO" in this issue —su]

Ada 2005 Published by ISO
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 14 Feb 2007 11:47:59 −0600
Subject: Re: Ada 2005 ISO approval yet?
Newsgroups: comp.lang.ada
> When will Ada 2005 become official?
Not until it is published by ISO. How
long that will take is anyone's guess
(sometimes, it has been over a year). All
of the approval votes have finished,
though, so the remaining wait is purely
administrative.
Randy Brukardt, ARG Editor
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Date: Sun, 28 Jan 2007 20:16:32
Subject: Re: Ada 2005
Newsgroups: comp.lang.ada
Summary: Ada amendment approved by

ISO/IEC
[…] Although the final ISO/IEC ballot
recently approved the Ada amendment, it
only becomes an *official* ISO standard
upon publication. And that hasn't
happened yet.
But for all practical reasons, the updated
Ada language definition has been
accepted at the highest ISO level and thus
can be considered standardized.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Organization: Adalog
Subject: 9 Mars 2007, une date =?ISO-

8859-1?Q?=E0_retenir?=
Date: Mon, 12 Mar 2007 10:09:30 +0100
Newsgroups: fr.comp.lang.ada
[Translated from French. —su]
Message from Jim Moore:
The amendment to the Ada language
standard was published on March 9:
http://www.iso.org/iso/en/CatalogueDetail
Page.CatalogueDetail?CSNUMBER=450
01
« Ada 95 est mort, vive Ada 2005! »

ARA — Ada Conformity
Assessment Test Suite
December 20, 2006

6 Ada-related Organizat ions

Volume 28, Number 1, March 2007 Ada User Journal

Update: Ada Conformity Assessment Test
Suite
ACATS Modification List 2.5N and the
associated test files have been posted.

ARA — Jean Ichbiah passes
away
http://www.adaic.org/news/ichbiah.html
Photo:
http://www.adaic.org/news/images/
ichbiah.gif
Jean Ichbiah (1940–2007)
Jean Ichbiah, from Burlington
(Massachusetts), the chief designer of the
Ada computer programming language,
died on January 26, 2007, after a battle
with cancer.
Jean David Ichbiah was born in Paris in
March 25, 1940. He was a second
generation Frenchman, the grandson of
Sephardic Jewish immigrants from
Greece and Turkey. During World War II
his family was hidden on an estate in
southern France to escape Nazi
persecution.
Mr. Ichbiah attended the prestigious
French engineering school École
Polytechnique in Paris, majoring in Civil
Engineering at the École des Ponts et
Chaussées, after serving in the French
army in Germany. In 1964 he married
Marianne (née Kleen). Soon after his
marriage Mr. Ichbiah enrolled as a
doctoral student at the Massachusetts
Institute of Technology, obtaining a PhD
in Civil Engineering and Operations
Research in only two years.
Returning to France in 1967, Mr. Ichbiah
was employed as a computer scientist by
the then recently formed company CII-
Bull, conceived by President de Gaulle to
give France a leading edge in the
computer industry. It was at CII-Bull,
later associated with Honeywell U.S., that
Mr. Ichbiah did his outstanding work as
the chief designer of Ada, a computer
programming language sponsored by the
U.S. Department of Defense to
incorporate the best features from the
Babel of computer languages that
predominated in the 1970s.
The development of Ada, which was
standardized in 1983 in the U.S. and later
internationally under ISO, advanced the
state of the art in language design and led
to significant cost savings in software
development. Since its inception Ada has
been used for a broad range of
applications ranging from aircraft
avionics to payroll processing, and it is
especially attractive for high-integrity
systems with requirements for safety
and/or security.
As chief designer of Ada, Mr. Ichbiah
succeeded in combining three main goals
into a practical language: program
reliability, readability, and efficiency. Mr.

Ichbiah’s colleagues and collaborators
have described him as a brilliant,
tenacious leader capable of developing a
consensus among several proposals for
solving tricky technical problems.
In 1980 Mr. Ichbiah left CII-Honeywell-
Bull to found the Alsys (Ada Language
Systems) company. As its CEO, he
continued his work on Ada and hired an
international team of over one hundred
computer scientists to implement Ada
development toolsets on a variety of
platforms ranging from PCs to
mainframes. Alsys had offices in the U.S.,
France, England, Germany, and Japan and
was ultimately acquired by Thomson in
1991. Since 1993 the Ichbiah family has
owned Textware Solutions of Burlington,
MA, a company they created when Jean
developed an innovative fast text entry
system for PCs and a virtual keyboard
layout (Fitaly) optimized for handheld
computers.
Jean Ichbiah was a member of the French
Legion of Honor and the French Academy
of Sciences, and he received the “Grand
Prix de la Technologie” from the City of
Paris. He was awarded a Certificate of
Distinguished Service from the U.S.
Department of Defense for his work on
Ada, and he also received an ACM
SIGAda Award for Outstanding Ada
Community Contributions.
Jean and Marianne Ichbiah became
American citizens in 2001. In a recent
article by Mr. Ichbiah published by the
French Academy of Sciences, he extolled
American research and entrepreneurship
suggesting them as a models for the
French universities and research
institutes.
Mr. Ichbiah is survived by his wife
Marianne of Burlington, MA, and also
three children and six grandchildren all
living in France. His son, Emanuel
Ichbiah, is an independent computer
consultant; his two daughters Helena and
Myriam are respectively a graphic art
designer and an executive at l’Oreal.
In a 1984 interview with the Association
for Computing Machinery, Mr. Ichbiah
was asked to express his feelings about
the language he had masterminded. The
response is befitting of a designer trained
in civil engineering and becoming a
preeminent computer scientist: I see Ada
as a cathedral, with all the architectural
lines interwoven in a harmonious manner.
I would not do it differently if I had to do
it over again.
[See also "A tribute to Jean Ichbiah" in
this issue —su]

A tribute to Jean Ichbiah
From: Joyce Tokar <tokar@attglobal.net>
Organization: Pyrrhus Software
Date: Sun, 28 Jan 2007 13:47:16 −0700
Subject: In Remembrance of Jean Ichbiah

Newsgroups: comp.lang.ada
With great sadness I learned from Ben
Brosgol that Jean Ichbiah passed on
Friday, 26 Jan 2007
Ben said that Jean had a brain tumor
around a year ago, and he had a serious
fall last Autumn in which he fractured his
skull. He was in rehab for several months,
and I believe that he had been home (in
Burlington, Mass.) for several weeks.
Funeral services will be held on Tuesday,
January 30, at 12:30 pm:
Temple Shalom Emeth 16 Lexington
Street Burlington, Mass.
To quote John Barnes:
"Jean had an amazing understanding of
the basic concepts concerning what
programming was really about. Ada may
have its flaws but it is a damn sight better
than anything else I know.
Jean will be remembered as the
inspiration for ideas which have driven
many of our careers."
From: Ian Caldwell

<iccaldwell@bigfoot.com>
Date: Mon, 29 Jan 2007 20:32:43 GMT
Subject: Re: In Remembrance of Jean

Ichbiah
Newsgroups: comp.lang.ada
Jean through creating Ada changed my
life. One of my best periods of
employment was when I worked for
Alsys. It's a sad loss.
Ian Caldwell
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Mon, 29 Jan 2007 01:16:42 GMT
Subject: Re: In Remembrance of Jean

Ichbiah
Newsgroups: comp.lang.ada
I'm very sorry to hear this.
I heard Jean say once that Ada was
basically an evolution of LIS, which he
developed in the early 70s. Ada 83 was
ahead of its time, and clearly Jean even
further ahead of his time.
Jeff Carter
From: Jinho Barc <jino@yahoo.co.kr>
Date: 5 Feb 2007 17:25:17 −0800
Subject: Re: In Remembrance of Jean

Ichbiah
Newsgroups: comp.lang.ada
I think his 1983-born child "Ada" was a
beautiful, elegant and tremendous
(expressive power / language complexity)
ratio-ed programming language.
I'm sorry for this sad news. Rest in peace.
From: "Beliavsky" <beliavsky@aol.com>
Date: 15 Mar 2007 15:58:50 −0700
Subject: Re: FYI — Lead Designer of Ada

Dies
Newsgroups: comp.lang.ada
Steve Lionel, for many years a Fortran
compiler developer, once worked on an

Ada-related Events 7

Ada User Journal Volume 28, Number 1, March 2007

Ada compiler, and his tribute to Jean
Ichbiah and the Ada language are at
http://softwareblogs.intel.com/2007/03/05
/a-farewell-to-jean/ , copied below.
By Steve Lionel (6 posts) on March 5th,
2007 at 8:38 am
"If you asked me what my favorite
programming language is, you might be
surprised when I don't say Fortran. No,
my favorite is Ada, the language named
for the first computer programmer and the
result of an international competition
sponsored by the US Department of
Defense. Jean Ichbiah, the creator of the
"Green" language which became Ada,
died January 26 at the age of 66.
I met Jean, briefly, back in 1984 when I
was working on DEC's VAX Ada
compiler project. In March of 1984 I had
the delightful task of traveling to
Versailles, France, to deliver to Ichbiah's
company Alsys a magtape containing the
first beta test version of VAX Ada. I
spent a week with the Alsys team helping
them shake out the compiler, which went
on to be one of the most highly regarded
implementations of the language. My
main assignment from 1983 through 1988
was project leader for VAXELN Ada, a
variant which ran on VAX systems under
the real-time and embedded OS
VAXELN, created by Dave Cutler just
before he left DEC for Microsoft. In
August 1988 I then joined the VAX
Fortran compiler team.
Ada was an elegant and full-featured
language with extremely expressive
declaration features, multitasking,
exception handling, a module facility with
intelligent separate compilation and much
more. The language gave the programmer
the ability to tell the compiler what was
allowed and not allowed to happen in the
program and this enabled the compiler to
do checking at a level rarely seen in other
languages. I liked to say that if you could
get an Ada program to compile, it would
probably run correctly the first time. This,
of course, was one of the things that the
DoD wanted.
The DoD mandate that Ada must be used
in defense contracts was both a blessing
and a curse for Ada. A blessing in that it
jumpstarted the widespread use of the
language, but a curse in that many
developers were dragged kicking and
screaming into the world of Ada and non-
defense programmers often avoided Ada
specifically because of the DoD
connection. After ten years, the
screaming became loud enough that the
DoD dropped the Ada mandate, and Ada
use pretty much dropped out of sight.
The original Ada 83 language was
updated to Ada 88 and again in 1995, but
DEC and most other vendors did not
update their implementations.
What's the relevance of Ada to Fortran?
Some of the major Fortran 90 features,

such as modules and generics, are derived
at least in part from Ada. Fortran's
separate compilation model made it
difficult to implement one of Ada's most
elegant module features, IS SEPARATE,
which permitted the implementation of a
module procedure to be compiled
separately from its declaration. The
"submodules" proposal for Fortran 2008
finally brings that to the language.
So what's my second favorite language?
SNOBOL."
[See also "Jean Ichbiah passes away" in
this issue —su]

ARA — Ada helps a winner
of Sun's Open Performance
Contest
http://www.adaic.com/news/perfcont.html
Date: February 12, 2007
The Ada Resource Association
congratulates Karl Nyberg of Grebyn
Corporation, one of the winners of a
T1000 server of a Sun Microsystems Sun
Fire T1000 server valued at
approximately US $15,000 in Sun
Microsystems Open Performance Contest.
Karl's evaluation of the T1000, based
upon his research "A Constructive
Approach To Integer Factorization"
against the RSA Factoring Challenge, was
written in Ada. The application was
implemented with many tasks working on
parts of the problem simultaneously. Karl
chose Ada for this project because of the
elegance and simplicity of the Ada
tasking model and select / accept
statements. These constructs made
mapping the work to multiple cores
relatively simple, and allowed testing
versions of the application on multiple
platforms, including commodity PCs as
well as the T1000, without modification.
It was very important to Karl to have a
functional implementation of his
algorithm quickly, so he could
concentrate on performance
improvements as his research progressed
and as additional capabilities of the T1000
were understood and taken advantage of.
Ada contributed to this goal.
Karl notes that “Ada just works out of the
box and allows me to focus on the task at
hand and write code that does what I
mean for it to do rather than have to try to
write code to convince the compiler to do
what I want.” You can read more about
Karl's research and his use of Ada in this
contest on his website:
http://www.grebyn.com/t1000/

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to

inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal. —
su]

April 17–19 — 13th
International Real-Time
Ada Workshop
From: Ben Brosgol

<brosgol@adacore.com>
Date: 28 Dec 2006 02:08:55 −0500
Subject: Call for Participation: 13th

International Real-Time Ada Workshop
(Vermont, Apr 07)

Organization: AdaCore
Keywords: Ada, conferenceT
Newsgroups:

comp.lang.ada,comp.realtime,comp.arch
.embedded

IRTAW-13
17–19 April 2007
Woodstock, Vermont USA
For over 20 years the International Real-
Time Ada Workshop series has provided
a forum for identifying issues with real-
time system support in Ada and for
exploring possible approaches and
solutions. Well known for its high
technical quality, the IRTAW series has
attracted participation from key members
of the Ada and real-time communities
worldwide:
The next workshop in the IRTAW series
will be held at the Woodstock Inn, in
Woodstock, Vermont, in the northeast
US, during 17–19 April 2007. To learn
more about this event, including
information about topics of interest and
how to submit a paper, please read the
Call for Participation
(www.adaresource.org/irtaw13/cfp-
irtaw13.pdf). The IRTAW-13
proceedings will be published in the
August 2007 issue of ACM SIGAda's
Ada Letters.
Please note that the deadline for
submitting position papers is 12 January
2007.
Juan Antonio de la Puente, Technical
University of Madrid (Program Chair),
jpuente@dit.upm.es
Ben Brosgol, AdaCore (Local
Arrangements Chair),
brosgol@adacore.com
[See also "Sep 15–19 — 12th
International Real-Time Ada Workshop"
in AUJ 24-4 (Dec 2003), p.196. —su]

June 25–29 — Ada-Europe
2007
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Subject: 2nd CfIP, Reliable Software

Technologies, Ada-Europe 2007
Date: Sun, 24 Dec 2006 15:58:02

8 Ada-related Events

Volume 28, Number 1, March 2007 Ada User Journal

Organization: Ada-Europe, c/o Dept. of
Computer Science, K.U.Leuven

Summary: 17 days until submission
deadline!

Keywords: Conference,tutorials,reliable
software,Ada,industry,LNCS,Geneva,ISO

Newsgroups:
comp.lang.ada,fr.comp.lang.ada,comp.la
ng.misc

This call for industrial presentations is
specifically targeted to those of you who
either work in industrial projects (possibly
Ada-related) where reliable software
technologies are important, or know
people working in such projects.
Please think for a moment what others
might learn from the experience gained in
those projects, and get a one-page
presentation overview submitted by
January 10th, i.e. 2.5 weeks from now.
Many projects could report a lot of
valuable experience: sharing it with others
benefits the whole community and might
provide useful feedback as well.
We're looking forward to receive many
interesting presentations.
Best wishes for the new year,
Dirk Craeynest, Ada-Europe'2007
Publicity Co-chair
2nd Call for Industrial Presentations
12th International Conference on
Reliable Software Technologies — Ada-
Europe 2007
25–29 June 2007, Geneva, Switzerland
http://www.ada-europe.org/
conference2007.html
Organized, on behalf of Ada-Europe, by
Ecole d'Ingénieurs de Genève in
cooperation with ACM SIGAda
General Information
The 12th International Conference on
Reliable Software Technologies (Ada-
Europe 2007) will take place in Geneva,
Switzerland. Following the usual style,
the conference will span a full week,
including a three-day technical program
and vendor exhibitions from Tuesday to
Thursday, along with parallel workshops
and tutorials on Monday and Friday.
Call for Presentations
In addition to the usual call for papers,
and considering the success achieved in
the previous conferences, we are having a
call for presentations primarily aimed at
industrialists who have valuable
experience to report but who do not wish
to write a complete paper.
This separate call for presentations is
made for Experience Reports from
Industrial Projects and/or Experiments,
Case Studies and Comparative
Assessments, Management Approaches,
Qualitative and Quantitative Metrics and
Experience Reports on Education and

Training Activities, with bearing on any
of the conference topics.
See below for further details.
Schedule
10 January 2007: Submission of
presentation proposals
31 January 2007: Notification to authors
8 May 2007: Presentation material
required
25–29 June 2007: Conference
Submission of Presentations
Presenters are invited to submit a one-
page overview of the proposed
presentation to Dominik Madon
(dominik.madon@hesge.ch) by January
10th 2007. The Industrial Committee will
review the proposals.
The authors of selected presentations shall
prepare their final presentation, together
with a short abstract (max 10 lines), by 8th
May 2007; they should aim at a 20
minutes talk. The authors of accepted
presentations will also be invited to derive
articles from them, for publication in the
Ada User Journal.
Exhibition
Commercial exhibitions will span the
three days of the main conference.
Vendors and providers of software
products and services should contact the
Exhibition Chair Neville Rowden
(neville.rowden@siemens.com) as soon
as possible for further information and for
allowing suitable planning of the
exhibition space and time.
Conference Topics
In the last decade the conference has
established itself as an international forum
for providers and practitioners of, and
researchers into, reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development and maintenance of long-
lived, high-quality software systems for a
variety of application domains. The
program will allow ample time for
keynotes, Q&A sessions, panel
discussions and social events.
Participants will include practitioners and
researchers from industry, academia and
government organizations interested in
furthering the development of reliable
software technologies. To mark the
completion of the technical work for the
Ada language standard revision process,
contributions that present and discuss the
potential of the revised language are
particularly sought after.
For papers, tutorials, and workshop
proposals, the topics of interest include,
but are not limited to:
⁃ Methods and Techniques for Software
Development and Maintenance:
Requirements Engineering, Object-
Oriented Technologies, Formal Methods,

Re-engineering and Reverse Engineering,
Reuse, Software Management Issues
⁃ Software Architectures: Patterns for
Software Design and Composition,
Frameworks, Architecture-Centered
Development, Component and Class
Libraries, Component-Based Design
⁃ Enabling Technology: CASE Tools,
Software Development Environments and
Project Browsers, Compilers, Debuggers
and Run-time Systems
⁃ Software Quality: Quality Management
and Assurance, Risk Analysis, Program
Analysis, Verification, Validation,
Testing of Software Systems
⁃ Critical Systems: Real-Time,
Distribution, Fault Tolerance, Information
Technology, Safety, Security
⁃ Distributed Systems: Reliability,
Security, Trust and Safety in Large Scale
Distributed Platforms
⁃ Mainstream and Emerging Applications:
Multimedia and Communications,
Manufacturing, Robotics, Avionics,
Space, Health Care, Transportation
⁃ Ada Language and Technology:
Programming Techniques, Object-
Oriented, Concurrent, Distributed
Programming, Bindings and Libraries,
Evaluation & Comparative Assessments,
Critical Review of Language
Enhancements, Novel Support
Technology, HW/SW platforms
⁃ Experience Reports: Experience
Reports, Case Studies and Comparative
Assessments, Management Approaches,
Qualitative and Quantitative Metrics,
Experience Reports on Education and
Training Activities with bearing on any of
the conference topics
Organizing Committee
Conference Chair
Nabil Abdennadher, University of
Applied Sciences, Geneva, Switzerland,
nabil.abdennadher@hesge.ch
Industrial Committee Chair
Dominik Madon, University of Applied
Sciences, Geneva, Switzerland,
dominik.madon@hesge.ch
Industrial Committee Members
Bouali Amar, Esterel Technologies
Chapman Rod, Praxis HIS
Denker Peter, Parasoft GmbH
Devuns Olivier, Aonix
Gasperoni Franco, AdaCore
Leroy Pascal, IBM Rational
Stråhle Rei, Saab Systems
Thom Francis, Artisan Software
Abdennadher Nabil, Conference Chair
Plödereder Erhard, Ada-Europe
(President)
Craeynest Dirk, Ada-Europe (Vice-
President)
Conference Organization

Ada-related Tools 9

Ada User Journal Volume 28, Number 1, March 2007

Conference Chair
Nabil Abdennadher, University of
Applied Sciences, Geneva, Switzerland,
nabil.abdennadher@hesge.ch
Program Co-chairs
Nabil Abdennadher, University of
Applied Sciences, Geneva, Switzerland,
nabil.abdennadher@hesge.ch
Fabrice Kordon, University Pierre &
Marie Curie, France,
Fabrice.kordon@lip6.fr
Tutorial Chair
Dominik Madon, University of Applied
Sciences, Geneva, Western Switzerland,
dominik.madon@hesge.ch
Exhibition Chair
Neville Rowden, Siemens Switzerland,
neville.rowden@siemens.com
Publicity Co-chairs
Ahlan Marriott, White-elephant,
Switzerland, Ada@White-elephant.ch
Dirk Craeynest, Aubay Belgium &
K.U.Leuven, Belgium,
Dirk.Craeynest@cs.kuleuven.be
Local Chair
Régis Boesch, University of Applied
Sciences, Geneva, Switzerland,
regis.boesch@hesge.ch

Ada and Education
Ada wikibook to be
published
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Wed, 07 Feb 2007 13:22:04 +0100
Subject: [wikibooks] Ada Programming

nominated for "Wikipublish"
Newsgroups: comp.lang.ada
The Wikibook "Ada Programming" [1]
has been nominated to be published and
distributed by the Wikipublish
Wikiproject [2]. In fact: "Ada
Programming" is the first book to be
published.
Work is already on the way — with the
first step of converting the book into
LaTeX and then into PDF [3] which looks
very nice indeed.
Still it is not to late to contribute —
especially the reference section for
pragmas and attributes could do with
some additional work.
Or help out in the publication itself —
You know Ada and LaTeX then go ahead.
[1] http://en.wikibooks.org/wiki/
Ada_Programming
[2] http://en.wikibooks.org/wiki/
Wikibooks:Wikipublish
[3] http://upload.wikimedia.org/
wikibooks/en/9/9c/Dragontamer_Ada.pdf

Ada 95 training course
From: bex <andy.bissell@objektum.com>
Date: 29 Jan 2007 04:40:05 −0800
Subject: Ada 95 training in the UK —

14/02/07 — small group, limited space
Newsgroups: comp.lang.ada
We are running an Ada 95 training course
in SE London, UK from 14th–16th Feb.
2007 for a small number of delegates. If
you wish to make the transition from Ada
83 to Ada 95 or learn Ada 95 from scratch
please see the link below:
http://www.objektum.com/objektum/inde
xcourse.asp?id=451
This course has previously been delivered
to BAE Systems, MBDA, etc with
excellent feedback.
Happy learning!

Praxis HIS — Q3 2007
Courses
Subject: Public Course Dates for 2007 —

UK
URL: http://www.praxis-his.com/

sparkada/training.asp
Course 1 — "Software Engineering with
SPARK"
10th –13th September 2007 at the Praxis
Offices in Bath. Download the booking
form here.
Course 2 — "Black-Belt SPARK"
18th –20th September 2007 at the Praxis
Offices in Bath. Download the booking
form here.

DDC-I — Training
Workshops SCORE
Compilers
Hands-On Training Workshops Available

for Developers using SCORE Compilers
for Wind River Workbench

Phoenix, AZ. January 15, 2007. DDC-I, a
leading supplier of development tools for
safety-critical applications, offers "hands-
on" training for customers using
SCORE® compilers under Wind River
Workbench. Jump Start and Jump Start
Plus from DDC-I are intense multi-day
workshops that provide different levels of
assistance from a formal toolset
introduction to advanced run-time system
tailoring.
"Our training workshops are designed for
engineering teams who want to maximize
their productivity from day one," said
Jennifer Sanchez, Manager of Marketing
Communications for DDC-I. "We want
our customers to know they made the
right choice, and be able to see the value
of their investment immediately. It's just
another example of our ongoing
commitment to exceptional customer
service."

The integration of SCORE Compilers into
the Wind River Workbench environment
enables developers to utilize SCORE
tools to develop mixed Ada, C, and
Embedded C++ applications for
deployment on VxWorks target systems.
The result is a fully integrated solution
which addresses all aspects of safety-
critical application development.
SCORE currently supports VxWorks 6.3
under Wind River Workbench 2.5. Later
this month, DDC-I will announce support
for Wind River's latest version —
VxWorks 6.4 under Wind River
Workbench 2.6 which was just released.
Jump Start and Jump Start Plus training
workshops are available immediately.
Pricing for Intro Classes start at $5000 for
DDC-I Atlas Advantage customers and is
free for DDC-I Atlas Premium customers.

Ada-related Tools
Units of measurement for
Ada
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 16 Jan 2007 20:30:29 +0100
Subject: ANN: Units of measurement for

Ada v2.2
Newsgroups: comp.lang.ada
This new version contains a GTK+
(GtkAda based) widget for interactive
unit selection. A corresponding dialog is
provided as well.
http://www.dmitry-kazakov.de/ada/
units.htm
[See also "Updates for Fuzzy sets for
Ada, and Simple components" in AUJ 27-
2 (Jun 2006) p.72 and "Units of
measurement" in AUJ 26-2 (Jun 2005)
p.75. —su]

NXTAda — Lego
Mindstorms NXT
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Tue, 27 Feb 2007 23:02:24 −0500
Subject: NXTAda
Newsgroups: comp.lang.ada
I setup a Sourceforge project for
controlling the Lego Mindstorms NXT
device via Ada. The project does not
currently intend to do a compiler port. It
allows you to write code on your host
computer (currently only Windows
though I think a port to x86 Linux or x86
OS X would be pretty easy) to control the
NXT module remotely via Bluetooth.
The code is very raw and only in SVN at
the moment (no tar/zip releases yet) but I
thought it was worth posting in case
someone else was thinking of working on
it.
http://nxtada.sourceforge.net/

10 Ada-related Tools

Volume 28, Number 1, March 2007 Ada User Journal

GTKAda contributions
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 16 Jan 2007 20:42:21 +0100
Subject: ANN: GtkAda contributions v1.4
Newsgroups: comp.lang.ada
http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm
Additions:
1. A fully annotated example of custom
tree view model developing
2. Widget and dialogs for measurement
unit selection (requires Unit of
Measurement for Ada).
[See also same topic in AUJ 27-3 (Jun
2004), pp.136. —su]

Qt4Ada — Qt 4 bindings
From: Yves Bailly <kafka.fr@laposte.net>
Subject: Ada2005 binding to Qt4
Date: Sun, 10 Dec 2006 15:40:43 +0100
Newsgroups: comp.lang.ada
I'm quite pleased to announce the 0.1.0
release of Qt4Ada, a hand-made thick
binding in Ada 2005 to Qt 4.2.x. See
http://qt4ada.sourceforge.net for more
details, grab the archive from
http://sourceforge.net/project/showfiles.ph
p?group_id=173821&package_id=19911
6&release_id=470160
Qt4Ada is still in early stages, so it still
lacks 95% of Qt features. However the 14
tutorials have been re-coded in pure Ada,
so I guess it's already usable for very
small and simple programs.
From now on:
⁃ my primary goal will be to provide as
much widgets as possible, which will be
achieved by re-coding the "widgets"
examples;
⁃ the building structure needs
improvements, so I'll start by trying to
recreate a (basic) qmake-like tool;
⁃ the signals/slots implementation mostly
works, though it's not quite satisfactory,
as already pointed by Vadim — in fact,
it's the whole meta- objects structures that
should be ported to Ada.
As I don't have much time to work on
Qt4Ada, choices have to be made. The
last point (about signals/slots), while
annoying, is not my top priority for now.
However any actual and concrete
contribution would be much appreciated.
This library is released under the
CeCILLv2 license, a French, GPLv2-
compatible, open-source license (see
http://www.cecill.info/index.en.html). I
still have plans to provide an alternative
license, allowing to use Qt4Ada in closed-
source software, much like Qt is itself
distributed. This double- licensing should
not be done in the near future, but any
comments or ideas about it are welcome.

Grab it, compile it, enjoy it (I hope) and
provide feedback!
Please don't be too hard, I still lack
experience in Ada programming ☺
[See also same topic in AUJ 27-3 (Jun
2004), pp.138–139. —su]

log4ada — log4j bindings
From: xavier <xavier@ipnnarval.in2p3.fr>
Date: Tue, 06 Feb 2007 15:53:08 +0100
Subject: log4ada
Newsgroups: comp.lang.ada
I have just started a project to connect to a
java log server: log4j. The library is called
log4Ada. It is hosted on the monotone
server of Ada France (thanks Ada France,
Thanks to Ludovic Brenta): org.log4ada
Two tests are available: test_console and
test_socketappender (to connect to a log4j
server).
This library is released under GPL, help
yourself !
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 07 Feb 2007 10:58:28 +0100
Subject: Re: log4ada
Newsgroups: comp.lang.ada
> May I ask where do I find log4ada?

Thanks.
It is a branch named org.log4Ada in Ada-
France's Monotone database. I have just
published an English version of the article
that gives all the details; see
http://www.ada-france.org/article131.html

G2F_IO — ImageMagick
bindings
From: Ali Bendriss

<ali.bendriss@dementia.ion.ucl.ac.uk>
Subject: ANNOUNCE: G2F_IO an Ada 95

binding to the ImageMagick C API
Date: Mon, 8 Jan 2007 12:52:53 +0000
Newsgroups: comp.lang.ada
G2F_IO implement an Ada 95 binding to
a subset of the low-level MagickCore
library. Recently Olivier Ramonat and
Pascal Obry have contributed to binding
to make it running with the current
version of Image Magick (6.x).
With this binding, it's now possible to
⁃ Read/Write image
⁃ Set/Get some image attribute (format,
text, …)
⁃ Create a new image (Canvas)
⁃ Resize images and produce thumbnail
⁃ Work at the Pixels level (read/write on
the cache-view of the image)
The Project is now hosted on GNA:
https://gna.org/projects/g2f/ You can
download the current source code using
subversion

⁃ Checkout over SVN protocol (TCP
3690):
svn co svn://svn.gna.org/svn/g2f/trunk g2f
⁃ Checkout over http:
svn co http://svn.gna.org/svn/g2f/trunk
g2f
You may read this if you want to know
more about ImageMagick:
http://imagemagick.org/script/
architecture.php
The home page will be updated soon
http://home.gna.org/g2f/
Enjoy!
PS: I would like to create a high level API
on top of G2F_IO (more Ada/Ada 2005?
like) if you want to join please help
yourself: https://mail.gna.org/listinfo/g2f-
developers/
[See also "AdaMagick — ImageMagick
Bindings" in AUJ 25-2 (Jun 2004), p.51.
—su]

pgAda — PostgreSQL
bindings
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Tue, 23 Jan 2007 15:30:47 +0100
Subject: Ada and PostgreSQL
Newsgroups: comp.lang.ada
I must have been quite a pain for you
recently with my questions and nit-
picking ;-), but at the end I have finished
my exercise and built a *very* simple
Ada client library for PostgreSQL. You
can find it here:
http://msobczak.com/prog/bin/pgAda.tar.
gz
Please consider it as a starting point for
what should be a *true* database library,
but there are also chances that in simpler
projects it might be exactly what is
needed.
Your comments are of course welcome.
[See also same topic in AUJ 25-3 (Sep
2004), p.123. —su]

Self Booting Hello World
From: freejack <freejack@tds.net>
Date: 1 Feb 2007 16:52:29 −0800
Subject: Self Booting "Hello World" Ada

example code?
Newsgroups: comp.lang.ada
Has anyone written a simple self booting
(i.e. off a floppy or some such) "Hello
World" example program strictly in Ada?
I've been googling around the web to see
how this is done, and haven't found any
actual code.
I'd like to play around with doing bare-
bone Ada hacking. Maybe even write a
small hobby kernel. Just looking for some
example code to get me started.
Any pointers would be appreciated.

Ada-related Products 11

Ada User Journal Volume 28, Number 1, March 2007

From: Pascal Obry <pascal@obry.net>
Date: Fri, 02 Feb 2007 08:14:33 +0100
Subject: Re: Self Booting "Hello World"

Ada example code?
Newsgroups: comp.lang.ada
Yes, look in the archive for the Toy
Lovelace project. You'll find reference to
it or wait for Xavier Grave response in
this group.

Ada-related Products
AdaCore — GNAT Pro 6.0.1
Date: March 7, 2007
Subject: AdaCore Announces First to

Market Full Ada 2005 Development
Environments

RSS: www.adacore.com/category/press-
center/feed/

Wednesday March 7, 2007
AdaCore Announces First to Market Full
Ada 2005 Development Environments
NEW YORK and AMSTERDAM,
Netherlands, March 7, 2007 — Avionics
Exhibition and Convention — AdaCore,
provider of the highest quality Ada tools
and support, announces the first to market
Ada 2005 language development
environment, with the release of GNAT
Pro version 6.0.1. Ada 2005, ISO/IEC
8652, was formally approved by ISO
SC22/WG9 in January 2007. From the
start AdaCore has actively participated in
the ISO language standard revision
process. This has enabled us to be at the
forefront in supporting our customers and
their use of the new Ada 2005 language
standard.
“AdaCore has established a strong
reputation of providing the industry’s
highest quality Ada tools and support for
our customers,” said Robert Dewar,
President of AdaCore. “We are proud to
be the first company to provide complete
support for Ada 2005. AdaCore is now
unique in the industry as the only vendor
to support all three ISO versions of the
Ada language. We support our customers
working on existing long-lived Ada 83
systems. We support development teams
using the current Ada 95 language. And
we are now the first to support customers
who want to start using the new ISO Ada
2005 language standard.”
Ada 2005 is a refinement on an already
strong foundation. The original Ada 83
language version introduced new
programming language concepts
including built in exception handling,
generic program templates and multi
processing tasks. Ada 95 added to this
foundation by adding new deterministic
task communication and Object Oriented
programming features, making it the first
ISO OO language standard. It also added
special needs annexes to meet different
industries’ requirements, such as the

Safety and Security Annex. This annex in
particular standardized capabilities to
further support an area where the
language had already proven itself to be
extremely valuable. This support has
made Ada a leading language for avionics
safety critical systems, such that it is now
in use on almost every modern military
and commercial aircraft flying or under
development.
The new Ada 2005 language offers
significant enhancements to software
developers in several areas.
Improvements in the language’s Object-
Oriented Programming features include
the addition of Java-like interfaces and
traditional “object.operation” syntax.
More flexible program structuring allows
mutually dependent package
specifications and makes it easier to
interface with languages such as Java.
Real-time system support includes
additional task dispatching policies such
as Earliest Deadline First, execution-time
clocks, and handlers for task termination.
The concurrency and object-oriented
features are successfully unified through a
new interface feature that allows
implementation through either a
sequential or concurrent type.
Support for safety and security is
enhanced with the inclusion of the
Ravenscar Profile (a tasking subset that is
amenable to safety certification), syntax
that avoids some common Object-
Oriented Programming errors with
inheritance, and a mechanism for defining
language profiles. Other enhancements
increase the language’s general
expressiveness, for example by allowing
nested subprograms to be passed as run-
time parameters, and by extending the
predefined environment with new
functionality, such as a Containers library.
The 6.0.1 release also includes an
enhanced version of the GNAT
Programming Studio (GPS) IDE. GPS
4.1.0 offers programmers improved
usability and efficiency through an
advanced Outline View complete with
new design and new features. Python and
pygtk enable powerful scripting and
customized dialog capabilities and are
now supported on all platforms.
Developers can make use of a wider range
of plug-ins more effectively from within
GPS thanks to enhanced support. A more
intelligent smart completion engine
coupled with automatic fixing for more
compiler messages enables an all round
smoother development process.
Pricing and Availability
Pricing for GNAT Pro subscriptions starts
at $14,000. Please contact AdaCore
(sales@adacore.com) for the latest
information on pricing and supported
configurations.
About AdaCore

Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, a modern programming language
designed for large, long-lived applications
where reliability, efficiency and safety are
critical. AdaCore’s flagship product is
GNAT Pro, which comes with expert
online support and is available on more
platforms than any other Ada technology.
AdaCore has customers worldwide; see
http://www.adacore.com/home/company/
customers/ for more information.
Use of Ada and GNAT Pro continues to
grow in high-integrity and safety-critical
applications, including commercial and
defence aircraft avionics, air traffic
control, railroad systems, financial
services and medical devices. AdaCore
has North American headquarters in New
York and European headquarters in Paris.
www.adacore.com
Press Contact
Jessie Glockner Rainier Corporation (for
AdaCore) Tel: 978-464-5302 x140 e-
mail: adacore@rainierco.com
From: Romain Berrendonner

<berrendo@adacore.com>
To: announce@adacore.com
Date: Thu, 15 Feb 2007 18:53:43 +0100
Subject: [AdaCore] Announcing the

immediate availability of GNAT Pro
6.0.1

AdaCore is pleased to announce the
immediate availability of GNAT Pro
6.0.1.
GNAT Pro 6.0.1 is a major release
introducing many new features, notably,
complete support for Ada 2005 and a new
code generator for most platforms. Other
improvements and new features are
described in the release note section in
GNAT Tracker and in the files features-
Ada 2005 and features-60 distributed with
the release.
GNAT Pro 6.0.1 is available for the
following platforms:
 alpha-tru64
 ia64-hp_linux
 ia64-hpux
 ia64-sgi_linux
 pa-hpux
 ppc-aix
 mips-irix
 sparc-solaris
 sparc64-solaris
 x86_64-linux
 x86-linux
 x86-solaris
 x86-windows
 ppc-elf-windows
 ppc-elf-solaris
 ppc-vxw-solaris
Other platforms will follow in the coming
weeks.
Further announcements:
Please note that with the introduction of
the remote programming function, the

12 Ada-related Products

Volume 28, Number 1, March 2007 Ada User Journal

GNAT Programming Studio IDE is now
available to all customers (except
OpenVMS) for use on your local
Windows or GNU/Linux machines. For
more information on this innovative
capability, please visit:
www.adacore.com/home/gnatpro/remote-
programming
Support is available for two separate
native SPARC Solaris platforms:
 ⁃ 32-bit SPARC Solaris
 ⁃ 64-bit SPARC Solaris.
Both products includes a GNAT shared
run-time.
Support for XML/Ada, the Ada library for
processing XML streams, is now included
as part of the general GNAT Pro
subscription package. If you are interested
in adding support for XML/Ada to your
account, please contact
sales@adacore.com.
All distributions can be downloaded as
usual using GNAT Tracker. We
encourage you to install and start using
this latest version of the GNAT Pro tool
suite. As always, for questions, or to
inform us of issues that you encounter,
please let us know through the GNAT
Tracker report facility or by email to the
usual report@adacore.com address.
[See also "AdaCore — GNAT Pro
Preview release" in AUJ 27-3 (Sep 2006)
p.142 and "AdaCore — GNAT Pro
5.04a1" in AUJ 27-3 (Sep 2006), p.143.
—su]

AdaCore — gprmake
improved
New features for multi-language tool
http://www.adacore.com/2007/01/15/

new-features-for-multi-language-tool/
Monday January 15, 2007
AdaCore’s multi-language program build
tool, gprmake, has been updated to
provide a number of important
enhancements. These include:
⁃ support for Ada, C and C++ by default
⁃ support for multi-language libraries
⁃ support for new languages and/or
toolchains through configuration files
⁃ independence from a specific GNAT Pro
version (that is, the same gprmake will
work with different GNAT Pro releases)
A beta program for the new gprmake will
be initiated later in 2007 and will be open
to all AdaCore customers.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Organization: Adalog
Subject: AdaControl V1.6 released
Date: Wed, 06 Dec 2006 16:44:39 +0100
Newsgroups: comp.lang.ada

Adalog is pleased to announce the release
of version 1.6r8 of AdaControl, the free
rule checker for Ada.
Thanks to the support of our new
customer SAGEM-DS and contributions
from R. Toy, AdaControl now offers 216
possible checks.
Of special interest are rules to check that
header comments match a given pattern,
indication of possible false positive and
false negative due to non-statically
analyzable constructs, fine definition of
constructs allowed in entry barriers
(including the one of the Ravenscar
profile), even better integration into GPS,
and much much more.
As usual, AdaControl is provided under
the GMGPL license, and can be
downloaded from
http://www.adalog.fr/adacontrol2.htm.
AdaControl is a commercial product of
Adalog; for information about support
and assistance with AdaControl or more
generally issues related to coding rules
enforcement, please write to
info@adalog.fr
http://www.adalog.fr

Aivosto — Visustin v4
Visustin v4 Flow chart generator
Visustin icon Visualize your source code
with flow charts. Open up your code in
Visustin to see its flow chart or UML
Activity Diagram.
Visustin is the ideal diagramming tool for
software developers and document
writers. Visustin diagrams Ada, ASP,
assembly language, BASIC, C/C++, C#,
Clipper, COBOL, Fortran, Java, JSP,
JavaScript, LotusScript, Pascal/Delphi,
Perl, PHP, PL/SQL, PowerScript,
PureBasic, Python, QuickBASIC,
REALbasic, T-SQL, VB, VBA, VB.NET
and Visual FoxPro code.
Save your documentation efforts by
automatic charting! Visustin reverse
engineers your source code and visualizes
it as flow charts or UML Activity
Diagrams. Visustin reads the if and else
statements, loops and jumps and builds a
diagram — fully automated. No manual
drawing is required. Your existing code is
all you need. If you see a real complex
case, print it out as a big mosaic and hang
it on your wall.
Diagrams help you know your code. With
your in-depth knowledge you fix bugs and
write improvements faster than ever
before. Review algorithms. Verify
program logic. Document complex
functions. Restructure incomprehensible
code.
Automated layout. Visustin creates an
optimal visual layout automatically. Just
hit one key and you're done — no need to
adjust the charts.

Flow charts include all of your code,
optionally the comments as well. Create
large master charts or small charts with
just the important logic.
UML Activity Diagrams do the same in
UML style. New! Pick your preference or
do both UML and flow charts.
Multi-page print. Print large flow charts
on multiple pages, or squeeze to fit on one
sheet.
Save graphs. Use flow charts in your
project documentation in GIF, PNG,
BMP, JPG, PCX, TGA, PPM, PGM,
WMF, EMF or PS image format.
Visio export [Pro Edition] Export your
flow charts to Visio 2002/2003. Save your
drawing efforts by converting code to
Visio diagrams. Edit and adjust the charts.
More about Visio exportPopup link
Bulk charting [Pro Edition] Flowchart all
your source files in one run. Also exports
Visio .vsd files.
PowerPoint export. Create flow chart
slide shows. New!
Web publish. Save flow charts as web
pages or MHT web archives.
Word export. Create flow chart .doc's.
New!

Aonix — ObjectAda
RAVEN for PikeOS
Aonix Releases ObjectAda® Real-Time

RAVEN™ for PikeOS
Aonix is pleased to announce the release
of ObjectAda Real-Time RAVEN V8.2
for Intel-based Linux platforms targeting
PowerPC/PikeOS. ObjectAda’s
significantly enhanced compiler and
debug technology works with PikeOS, a
product of SYSGO, the European vendor
of reliable device software. PikeOS is a
real-time separation microkernel
technology for safety-critical systems,
which allows separation of costly DO-
178B Level A certifiable code from other
portions of the application. The
implementation makes full use of
PikeOS’ virtualization capabilities, thus
allowing real-time applications such as
Ada and traditional Linux to run reliably
side by side in different partitions.
PikeOS controls microkernel access to the
hardware and allows multiple software
partitions to execute on a single CPU with
strict separation between them. Each
partition can either run application
programs or an entire operating system
such as Linux, POSIX or ARINC653.
This flexibility enables control of
applications running under these uniquely
different systems to execute in parallel
with visualization software under Linux
or Java™. Sophisticated, but potentially
untrusted applications such as Linux, can
be separated from critical components and
can therefore be integrated in a safety-
critical system. If certification is required,

Ada-related Products 13

Ada User Journal Volume 28, Number 1, March 2007

only the safety-critical components need
to be certified.
 “The safe code structures of ObjectAda
Real-Time RAVEN are invaluable to
safety-constrained applications,” states
Torsten Voegler, marketing manager at
SYSGO. “By combining the Aonix
safety-critical development and runtime
environment with our multipartition
strategy, developers are empowered to
build more elegant systems with standard,
off-the-shelf components and still meet
stringent certification requirements. The
combination of ObjectAda Real-Time
RAVEN and the PikeOS microkernel
provides the solution many of our
customers have requested.”
ObjectAda Real-Time RAVEN for
Intel/Linux targeting PowerPC/PikeOS is
an embedded Ada development system
that allows engineers to build applications
in a Linux environment for deployment in
appropriately configured partitions of
PikeOS running on a PowerPC platform.
The product consists of a fully compliant
ACATS 2.5 Ada 95 compiler with
supporting tools including a build/bind
tool, library tool and debugger, and
delivered with a predefined program
library which conforms to the Ravenscar
profile subset of the full predefined
language. It is compatible with PikeOS
1.3 and the PowerPC OEA CPU
architecture.

Aonix — AonixADT 3.2
Aonix Delivers ADT, an Eclipse-based Ada

IDE for Windows, Linux, and Solaris
Platforms

Aonix is pleased to announce the release
of AonixADT™ Version 3.2.1 —an
Eclipse-based Integrated Development
Environment (IDE) for the Ada language.
Building on the wealth of available plug-
ins for Eclipse, Aonix has further
extended the AonixADT (Ada
Development Toolkit) to support
ObjectAda Versions 8.2, and 8.3, and
GNAT version 5.03a+.
In addition to adding support for Sparc
Solaris and Intel Linux platforms, the
latest major release of AonixADT
includes improved Code Assist
functionality, enhanced debugger support
including low-level debugging, debugging
of already running processes and
extended breakpoint functionality,
configurable toolchain customization and
configurable file creation wizards.
AonixADT provides Ada-project
awareness, an Ada-language sensitive
editor, Ada-language compile and build
capabilities, along with a complete Ada
debugger interface. ADT project
awareness allows full library hierarchy
manipulation and Ada program units can
be conveniently inserted or removed from
Ada projects. The language-sensitive
editor provides complete language

awareness with syntax color coding and
template completion. Symbolic debugging
is integrated within the Ada-language
sensitive editor. The build interface offers
complete access to the Aonix ObjectAda
compile and build capabilities.

Aonix — ObjectAda
RAVEN for PowerPC
Aonix Enhances ObjectAda Real-Time and

Safety-Critical Products New features
provide “no-cost” Eclipse plug-ins to
Embedded Developers

Embedded World, Nürnburg, Germany,
February 13, 2007
Aonix®, a provider of solutions for
safety- and mission-critical applications,
announced the release of ObjectAda Real-
Time RAVEN V8.3 for Windows
platforms targeting PowerPC. ObjectAda
Real-Time Raven implements the
Ravenscar profile, a restricted subset of
the standard Ada runtime environment for
applications requiring safety certification
or a high-level of confidence in proven
and fully tested runtime execution
predictability.
ObjectAda Real-Time RAVEN V8.3
continues the Aonix legacy of delivering
certifiable applications to both
commercial and government safety-
critical projects in avionics, space, high-
speed rail, and nuclear industries. Aonix
gained its solid reputation in the safety-
critical field by designing tools that
comply with market standards and has
provided safety-critical solutions to a
myriad of commercial and defense
projects including International Space
Station, Boeing 777, Rafale Multi-Role
Combat Fighter, C130-J Hercules, Airbus
A 330-340, and NH90 Helicopter. For
systems not requiring formal certification,
ObjectAda Real-Time Raven provides the
assurance that the Ada runtime used in
resource-constrained systems has been
rigorously proven and tested.
ObjectAda Real-Time RAVEN V8.3
allows developers to choose between the
traditional Aonix IDE for development
and the new AonixADT™ Eclipse plug-
in. Geared to maximize developer ease
and efficiency, AonixADT incorporates
Ada-project awareness, an Ada-language
sensitive editor, Ada-language compile
and build capabilities, and a complete
Ada debugger interface, enabling Ada
developers to enjoy state-of-the-art
interface capabilities. AonixADT is being
added to ObjectAda at no additional cost.
“Continued improvement of the
ObjectAda product in support of the
Ravenscar profile demonstrates Aonix’s
commitment to support complex and
rigorously stressed mission-critical
systems with standard software
development platforms,” noted Gary
Cato, Aonix Director of Strategic
Alliances. “Full Eclipse support for hard

real-time and safety-critical embedded
development adds another great
development asset to our product line that
our customers are eager to use. Such
standard platforms take COTS integration
to a new level of easy to use and cost-
effective solutions.”
AonixADT implements plug-ins
compatible with Eclipse standards V3.1,
3.1.1 and 3.1.2. Eclipse is an open-source
software development project dedicated to
providing a robust, full-featured,
commercial-quality, industry platform for
the development of highly integrated
tools. A strong supporter of the Eclipse
Foundation, Aonix has gone to great
lengths to lock-step with evolving Eclipse
specifications. Aonix has released ADT
plug-ins with ObjectAda V8.2 native
development products for Windows,
Intel/Linux, and Sparc/Solaris platforms.
Shipping and Availability
ObjectAda Real-Time Raven for
Windows platforms targeting the
PowerPC processor family is immediately
available. Prices range from $15,000 to
$30,000 in the U.S. depending on bundle
options plus runtime license fees.
Quantity discounts are available. DO-
178B certification materials are available
and priced based on board support
package and other project-specific
requirements.
About Aonix
Aonix offers mission- and safety-critical
solutions primarily to the military and
aerospace, telecommunications and
transportation industries. Aonix delivers
the leading high-reliability, real-time
embedded virtual machine solution for
running Java™ programs deployed today
and has the largest number of certified
Ada applications at the highest level of
criticality. Headquartered in San Diego,
CA and Paris, France, Aonix operates
sales offices throughout North America
and Europe in addition to offering a
network of international distributors. For
more information, visit www.aonix.com.

Aonix — “zero-cost” license
model ObjectAda for Linux
Aonix Shatters Ada Price Barrier for Linux
Eclipse-based ObjectAda for Linux
Available with No-Cost Licensing
San Diego, January 31, 2007
Aonix®, a provider of solutions for
safety- and mission-critical applications,
announced a new “zero-cost” license
model for its ObjectAda for Linux
product. Recognizing the expectations of
the Linux community, Aonix has
introduced pricing for ObjectAda 8.2 for
Linux that emulates what is used for its
industry-leading PERC product line. This
price model focuses on customer service
packs rather than development licenses.

14 Ada-related Products

Volume 28, Number 1, March 2007 Ada User Journal

ObjectAda 8.2 for Linux provides a full
complement of mature Ada technologies
with an integrated Eclipse-based
environment for Red Hat Enterprise
Linux, Fedora Core and most equivalent
x86 Linux distributions.
In conforming ObjectAda for Linux to the
new Aonix service-pack model, Aonix
has chosen to extend the zero-cost
licensing of its best-selling PERC product
line used by real-time Java developers to
Aonix Ada developers working on the
Linux platform. ObjectAda for Linux
provides a robust development
environment that includes a fully
validated optimizing compiler, library
manager, runtime, configuration
management integrations, life-cycle tools,
and a productivity toolset that includes an
editor, browser, and debugger. Both a
traditional Aonix IDE and the AonixADT
plug-in set for Eclipse are provided. With
this new pricing, Linux developers are
able to choose a service-pack or a
traditional user-based model.
“Aonix is committed to delivery of
products to our customers in a way that
fits the operational mode of the
development community,” said Dave
Wood, Aonix VP Marketing. “Linux
developers are accustomed to service
packs, a pricing model that we have
successfully used with our PERC product
line. Notably, this pricing approach makes
commercial-grade Ada available to the
wider Linux audience, much in the same
way that our groundbreaking ObjectAda
for Windows did for the Windows
community.”
Since Aonix launched it in 1996 with a
Visual C++ style IDE and pricing far
below any previously seen for
commercial Ada products, ObjectAda for
Windows has been by far the top-selling
Ada environment. Its installed base now
includes many tens of thousands of units.
The AonixADT Eclipse environment and
service-pack pricing extend similar
benefits to the Linux community.
AonixADT incorporates Ada-project
awareness, an Ada-language sensitive
editor, Ada-language compile and build
capabilities, and a complete Ada debugger
interface, enabling Ada developers to
enjoy state-of-the-art interface capabilities
geared to maximize developer ease and
efficiency. Developers can focus on
building applications, not on integrating
tools since AonixADT also retains a large
set of existing plug-ins for third-party
tools, including support for source-code
configuration management.
Shipping and Availability
ObjectAda for Linux V8.2 is available
immediately. There is no charge for
annual development licenses with an
active service plan. Service plans are
priced at $3000 for a single user or
$12,000 for a 5-user service pack.

From: Dave Wood
<dave.wood@aonix.com>

Date: 26 Feb 2007 09:22:00 −0800
Subject: Re: recent changes in compiler

pricing
Newsgroups: comp.lang.ada
In the traditional price model, there is a
price paid both for the development
license and also a price paid for annual
support. In the new price model, there is
no charge for the development license.
Hence, the development license is zero
cost. A support subscription, however, is
not free, nor is it claimed as such.
For those who prefer a perpetual
development license with an optional
support contract, we continue to offer the
traditional model as well.
If you are interested in doing a what-if on
which model works best for your
situation, I'd direct you to an Aonix
account manager. If you're interest in the
subject is more "academic", feel free to
email me directly as ordinarily I don't
monitor this group.
Dave Wood, VP Marketing, Aonix

DDC-I — SCORE IDE for
TMS320C40 DSP
DDC-I Announces Availability of SCORE

Integrated Development Environment for
TMS320C40 DSP

Provides seamless upward migration path
from Ada 83 to mixed Ada 95/Embedded
C++ for legacy C40 code
Phoenix, AZ. December 4, 2006. DDC-I,
a leading supplier of development tools
for safety-critical applications, today
announced the availability of its
SCORE® Integrated Development
Environment (IDE) for Texas Instrument's
TMS320C40. The SCORE IDE makes it
easy for C40 developers to take existing
Ada 83 programs developed for the C40,
upgrade them using a mixture of Ada 95
and Embedded C++, and deploy them on
a royalty-free Ada 95 run-time system.
The SCORE IDE also makes it easy for
C40 developers to migrate their code to
other processors such as the PowerPC and
X86, with the unique ability to debug
multiple targets and languages at the same
time.
"There has been a lot of Ada 83 code
developed for the C40, particularly in
defense applications," said Bob Morris,
president and CEO of DDC-I. "SCORE
provides a modern, best-in-class mixed
language development environment that
makes it easy for C40 developers to
upgrade their Ada 83 code and take
advantage of the latest Ada 95 and
Embedded C++ technology. SCORE also
makes it easy for developers to migrate
existing C40 code to new processors."
To support the C40, DDC-I has developed
a new C40 compiler, code generator, and

disassembler. The SCORE IDE provides
full JTAG multiprocessor debugging for
the C40, including trace and the ability to
monitor all registers. SCORE also
provides a PC-based C40 instruction set
simulator.
SCORE® is a mixed-language, object-
oriented IDE for developing and
deploying safety-critical applications.
SCORE provides optimizing compilers
for Ada, C, Embedded C ++, and
Fortran77, all of which pass the
applicable ACATS, PlumHall, Perennial,
and FCVS compiler validation suites.
The SCORE® IDE features an intuitive
GUI with industry leading features such
as a color-coded source editor, project
management support, and automated
build/make utilities. SCORE's mixed-
language, multi-window, symbolic
debugger recognizes C/EC++, Ada and
Fortran syntax and expressions, and can
view objects, expressions, call chains,
execution traces, interspersed machine
code, machine registers, and program
stacks. The debugger supports full Ada-
level debugging, including constraints,
attributes, tasking, exceptions, break-on-
exception and break-on-tasking events.
The debugger is non intrusive, can debug
at the source or machine level, and can be
enabled without changing the generated
code.
SCORE provides versatile run-time target
options, including a bare run-time system
certifiable to Level A of the FCC DO-
178B standard, and an enhanced bare run-
time system for simulated and emulated
environments.
About DDC-I, Inc.
DDC-I, Inc. is a global supplier of
software development tools, custom
software development services, and
legacy software system modernization
solutions, with a primary focus on safety-
critical applications. DDC-I's customer
base is an impressive "who's who" in the
commercial, military, aerospace, and
safety-critical industries. DDC-I offers
compilers, integrated development
environments and run-time systems for C,
Embedded C++, Ada, JOVIAL and
FORTRAN application development.

DDC-I — SCORE
Compilers for Workbench
2.6 and VxWorks 6.4
DDC-I Announces Support for Enhanced

Wind River Workbench and VxWorks
SCORE Compilers Available for Wind
River Workbench 2.6 and VxWorks 6.4
Phoenix, AZ. February 13, 2007. DDC-I,
a leading supplier of development tools
for safety-critical applications, today
announced support for Wind River
Workbench 2.6 and VxWorks 6.4, both of
which were released in December 2006.

Ada-related Products 15

Ada User Journal Volume 28, Number 1, March 2007

The integration, which marks three
generations of SCORE support for
VxWorks, enables developers working
within Wind River Workbench to utilize
SCORE tools to develop mixed Ada, C,
and Embedded C++ applications for
deployment on VxWorks target systems.
"The latest release of Wind River
Workbench contains significant
enhancements that simplify the
development process and provide access
to the latest Eclipse technology," said Bob
Morris, president and CEO of DDC-I.
"We believe these enhancements will be
very attractive to Workbench developers
who want to utilize our SCORE compilers
to create mixed-language, safety-critical
applications targeting both VxWorks and
bare board run-time systems."
"Wind River is committed to enriching
our customers' overall development
experience by increasing interoperability
with other software tools and fostering
collaboration among hardware engineers,
software developers and testers within a
project team," said Andrew Lyons,
director of tools product management at
Wind River. "The integration of DDC-I's
SCORE tools with our enhanced
Workbench development suite makes it
easier than ever for developers using a
mix of C, C++ and Ada to create reliable,
optimized code for a broad range of
safety-critical applications targeting
VxWorks systems."
Wind River Workbench 2.6 provides a
number of significant enhancements,
including support for the new Eclipse
3.2.1 framework. To support existing
Eclipse users, Workbench can now be
installed as a set of plug-ins to an existing
3.2 installation, thereby enabling users to
preserve existing Eclipse projects and
configurations. Workbench 2.6 also
features new plug-ins for VxWorks,
including support for on-chip debugging,
enhanced performance for projects with a
large number of files, and an enhanced
kernel object viewer.
SCORE provides optimizing compilers
for Ada, C, and Embedded C ++, all of
which pass the applicable ACATS,
PlumHall, Perennial, and FCVS compiler
validation suites. To support VxWorks,
DDC-I has mapped its own bare run-time
system to VxWorks, including all system
calls, multitasking, and interrupt
processing facilities.

Green Hills — AdaMULTI
5.0
Green Hills Software Announces Version

5.0 of its Compiler Suite
New Optimizations Further Lead in
Generating the Best Code SANTA
BARBARA, CA — January 31, 2007—
Green Hills Software, Inc., the technology
leader in device software optimization
(DSO) and real-time operating systems

(RTOS), today announced the release of
its next-generation compiler technology,
part of Green Hills’ integrated
development environment MULTI
version 5.0.
“For twenty-five years, Green Hills
Software has worked diligently to
advance its compiler technology,
incorporating novel techniques that enable
software developers to minimize memory
footprint and power usage as well as
maximize execution speed of their code,”
commented David Kleidermacher, chief
technology officer of Green Hills
Software. “This in turn translates into
reduced production cost and higher
performance of our customers’ end
products. At the same time, companies
rely on Green Hills’ compilers for the
success of their products. Green Hills
compilers build the code that runs many
automotive drive trains, aircraft engines,
medical devices, and other critical
systems.”
The MULTI 5.0 compiler yields a
significant code density and speed
improvement over the previous generation
of Green Hills’ compilers, including a
14% performance improvement in the
EEMBC Telecom benchmark. EEMBC is
an independent consortium of
microprocessor manufacturers that runs
and independently certifies compiler
benchmark scores on all the leading
embedded processors used today. Green
Hills has long been the predominant
compiler selected by microprocessor
vendors to demonstrate the highest
possible performance for their products.
Optimizations
Some of the most important optimization
advancements are inter-procedural:
whereas traditional compilers process one
source code file at a time, the Green Hills
compilers are able to examine the entire
application program in order to locate
optimization opportunities. The new
compiler also provides greatly enhanced
support for profile-driven optimization:
the run-time profile of the user application
can be fed back into the compiler which
will then optimize based on the specific
run-time characteristics of the application.
This enables the Green Hills compiler to
tune itself according to the real-world
execution environment that is most
important to the fielded end product.
The new compiler also provides a number
of new C++ optimizations, including
enhancements in the efficiency of
exception handling and dramatic code
density improvements in programs that
make heavy use of virtual methods,
something commonly found in complex
applications such as software defined
radios. Finally, the MULTI 5.0 compiler
has a wide range of new optimizations
targeting specific microprocessor
families, including Power® Architecture,

ARM, MIPS, V850, ColdFire, Intel® IA-
32, and Blackfin.
Compile Speed
Using MULTI’s integrated distributed
build system, the Green Hills compilers
can build programs in parallel across the
underutilized workstations on a corporate
network. Distributed compilation is easy
to configure and use, with all the details
of source code distribution and parallel
compile management performed on behalf
of the user. The result is a typical 30 to
80% decrease in compilation time for a
full project build.
Standards and Reliability
The Green Hills compiler was the first
compiler for embedded systems to
achieve 100% conformance to ANSI/ISO
standards for C and C++. In addition, the
new compiler supports the latest C99
specification and the latest MISRA C
standard. The Green Hills compilers are
tested against industry standard validation
suites, including Plum Hall, and are also
tested against the industry’s most proven
and extensive regression test suite.
Availability
Green Hills compilers for C, C++, and
Ada are available today.
About Green Hills Software
Founded in 1982, Green Hills Software,
Inc. is the technology leader in device
software optimization (DSO) and real-
time operating systems (RTOS) for 32-
and 64-bit embedded systems. Our
royalty-free INTEGRITY® and
velOSity™ real-time operating systems,
µ-velOSity™ microkernel, compilers,
MULTI® and AdaMULTI™ integrated
development environments and
TimeMachine™ tool suite offer a
complete development solution that
addresses both deeply embedded and
high-reliability applications. Green Hills
Software is headquartered in Santa
Barbara, CA, with European headquarters
in the United Kingdom. Visit Green Hills
Software on the web at www.ghs.com.
Green Hills, the Green Hills logo,
MULTI, INTEGRITY, velOSity, µ-
velOSity, AdaMULTI and TimeMachine,
are trademarks or registered trademarks of
Green Hills Software, Inc. in the U.S.
and/or internationally. All other
trademarks are the property of their
respective owners.

Headway Software —
Structure101 for Ada
From: pth81500@gmail.com
Subject: Analyzing & Measuring the

Architecture or Structure of Your Ada
Code

Date: 11 Jan 2007 00:29:50 −0800
Newsgroups: comp.lang.ada
We are preparing the first release of
Structure101 for Ada, and we would be

16 Ada-related Products

Volume 28, Number 1, March 2007 Ada User Journal

grateful for your feedback on the early
access release.
As the name suggests, Structure101 for
Ada is all about understanding,
controlling and measuring the quality of
your Ada software structure (or
architecture). So if you have any old Ada
code lying around ;-), that you would like
to understand better, give Structure101 for
Ada a whirl and let us know what you
think.
Structure101 for Ada is a third generation
structural analysis product, replacing its
predecessor, Headway Review. It is
mature technology that is easy to get
started with and which delivers immediate
benefits. At least that's what the Java folks
are telling us!
It can be downloaded from here,
http://www.headwaysoftware.com/downl
oads/structure101/ada.php. You will need
to pick up the GNAT based parser and
required version of GNAT at the bottom
of the page, as you will need them to
generate the input for Structure101 from
your Ada code. With the current release
your code is required to compile
(although not necessarily run) with
GNAT.
Note: Once you have downloaded all the
required software you can grab a license
key by clicking on the link on the left
hand side menu of the downloads page or
simply drop us an email.
Your help and feedback would be very
much appreciated.
[See also "Headway Software —
Headway reView" in AUJ 27-3 (Sep
2006), p.144–145. —su]

McKae Technologies —
Avatox 1.4
From: Marc A. Criley <mc@mckae.com>
Organization: McKae Technologies
Subject: Announce: Avatox 1.4 now

available
Date: Wed, 13 Dec 2006 19:23:40 −0600
Newsgroups: comp.lang.ada
Avatox (Ada, Via Asis, To Xml) is an
application that traverses an Ada
compilation unit and outputs the ASIS
representation of that unit structured as an
XML document (Avatox Xml Format,
.axf). The format of the XML in the
document can be configured, and
supplemental source annotations can be
generated.
Changes since version 1.3:
 ⁃ Fixed a bug that caused duplicated
attributes for some elements.
 ⁃ Added additional axfPoint element
types: axfNumber and axfScope.
From: Marc A. Criley <mc@mckae.com>
Organization: McKae Technologies

Date: Sun, 14 Jan 2007 19:48:50 −0600
Subject: Announce: Avatox 1.5 now

available
Newsgroups: comp.lang.ada
Changes since version 1.4:
⁃ Now accepts multiple filenames on the
command line, including wildcarded
filenames.
⁃ Can direct that the supporting units
("withed" units) or closure units of the
explicitly specified units be collected and
transformed into AXF as well.
⁃ Compilation units identified as
supporting or closure units can be filtered
by regexp or file-style wildcard filtering.
⁃ Included an XSL stylesheet,
deleteCLInfo.xsl, to declutter an AXF file
by removing all line and column
information from elements. […]
From: Marc A. Criley <mc@mckae.com>
Date: Sat, 17 Feb 2007 10:29:19 −0600
Subject: Announce: Avatox 1.6 now

available (now with built-in XSLT)
Organization: McKae Technologies
Newsgroups: comp.lang.ada
[…] The ability to perform XSL style
sheet transformations is now built-in so
that transformations can be immediately
performed on the generated AXF files.
Changes since version 1.5:
⁃ Added built-in support for XSL
transformations by specifying a stylesheet
and associated options on the command
line.
⁃ Provides finer control over axfPoint
element generation. Previously it was all
or nothing, now specific axfPoint element
kinds can be selectively generated.
⁃ Fixed a bug when doing multiple file
generation and a units' specs and bodies
were among those for which AXF was
being generated.
(For those who may be interested in
performing XSL stylesheet
transformations in Ada, the
McKae.XML.XSL.* file hierarchy
contains a (very) minimal binding to
libxslt sufficient to take an XML file and
a file containing a stylesheet and perform
the transformation.)
Avatox 1.6 is available at
www.mckae.com/avatox.html.
Marc A. Criley, McKae Technologies
[See also "Avatox — Ada To XML" in
AUJ 27-4 (Dec 2006), p.201. —su]

Praxis HIS — SPARK
Toolset 7.4
From: Rod Chapman

<roderick.chapman@gmail.com>
Subject: ANN: SPARK 7.4 now available
Date: 9 Jan 2007 06:28:01 −0800
Newsgroups: comp.lang.ada

Praxis are pleased to announce the
immediate availability of release 7.4 of
the SPARK language and toolset.
Full details, including the toolset release
note, are available from
www.sparkada.com as usual.
Professional, supported customers will
receive upgrades immediately. Upgrade
packages for for readers of the SPARK
Textbook are also available by download
from http://www.praxis-
his.com/sparkada/sparkbook.asp
Highlights of this release include:
⁃ New "accept" annotation system to
indicate that a particular error or warning
is expected and justified.
⁃ New "Always_Valid" assertion to
indicate that the values read from an
external input are trustworthy.
⁃ Obsolete SPARK83 floating-point
attributes are now acceptable in
SPARK95 mode.
⁃ Better error messages for common
syntax and semantic errors.
⁃ Complete re-implementation of VC
Generation for single- and multi-
dimensional unconstrained array
parameters. Supporting improvements in
the default invariant generator and
Simplifier.
⁃ Conditional data- and information-flow
anomalies are now reported as errors not
warnings.
⁃ Support for System.Bit_Order and
System.Default_Bit_Order in the
configuration file.
⁃ The Examiner now issues a warning if
an Ada 2005 reserved word is used as an
identifier in SPARK95 mode.
⁃ The Simplifier's handling is user-defined
and Examiner-generated proof-rules has
been unified and improved.
⁃ The Simplifier has a new family of proof
tactics for enumerated and integer
inequalities where transitivity of the
relational operators is involved.
⁃ The implementation of the /p=N
(multiprocessor) switch in SPARKSimp
has been re-implemented to make much
better use of all the available processing
resources on multi-core or multi-
processor machines.
⁃ SPARKFormat now has options to
reformat the own, initializes and inherit
annotations.
⁃ SPARKMake can now produce with
absolute or relative pathnames in the
generated index and meta-files.
[See also "Praxis HIS — SPARK Toolset
7.31" in AUJ 27-2 (Jun 2006), p.77. —su]

Ada and CORBA 17

Ada User Journal Volume 28, Number 1, March 2007

Ada and CORBA
GNACK — GNU Ada
CORBA Kit
From: Oliver M. Kellogg

<okellogg@freenet.de>
Date: 31 Dec 2006 05:16:05 −0800
Subject: CORBA Ada bindings
Newsgroups: comp.lang.ada
Version 1.2 of the GNU Ada CORBA Kit
(GNACK) has been released. Main
feature of this version is the switch from
ORBit-1 to to ORBit-2.
http://sourceforge.net/projects/orbitada
[See also "GNACK and ORBit" in AUJ
23-2 (Jun 2002), p.76. —su]

Ada and GNU/Linux
ARM in texinfo
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Thu, 1 Feb 2007 17:07:18 −0600
Subject: Re: Ada Reference Manual in

texinfo format?
Newsgroups: comp.lang.ada
> Is there a texinfo version of the Ada

2005 Reference Manual? I have it on
paper (courtesy of Ada-Europe) but I'd
like to be able to search it from within
Emacs:)
If no such version exists, is anyone
working on one, or considering
working on one?

Stephen Leake did the module for
converting the RM source to Texinfo as
an add-in the processing program for the
RM+Corrigendum version. I didn't try to
maintain that module while working on
Ada 2005, because I don't know anything
about Texinfo. I did talk to Stephen about
it at one point, and we agreed it would be
best to wait until the RM was finished. Of
course that has happened; I don't know if
he is still planning to update his Texinfo
module.
In the mean time, you'll have to live with
the HTML version and its search engine. I
just leave a browser page open to it at all
times (saves reloading it repeatedly).
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Sat, 10 Feb 2007 22:09:06 −0500
Subject: Re: Ada Reference Manual in

texinfo format?
Newsgroups: comp.lang.ada
> I found the sources, at http://www.ada-

auth.org/arm.html
I've downloaded them, and got an
initial compile. Running it on the ARM
sources dies with an error in my info
code. There are several new dispatching
functions I need to implement, so it will
be a while. But I'll work on it.

Well, it turned out to be easier than I
thought. I've posted an initial draft of the
ARM and AARM in Info format on my
website; http://stephe-
leake.org/ada/arm.html
I looked at the places where I needed to
add new code, and spot-checked a few
other things. But I have _not_ read the
whole info output.
I'd like people to compare a couple
sections to the other formats, or just read
some sections, and see if there are any
obvious problems.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Sat, 10 Feb 2007 21:56:14 −0600
Subject: Re: Ada Reference Manual in

texinfo format?
Newsgroups: comp.lang.ada
I'm not too surprised. Many of the new
capabilities are used in the Rationale, or
the ASIS Standard, or in RR's manuals
(that is, not in the RM). For instance, I
don't think there are any pictures (images)
in the RM, while there are some in all of
the other documents.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Mon, 05 Feb 2007 07:55:34 −0500
Subject: Re: Ada Reference Manual in

texinfo format?
Newsgroups: comp.lang.ada
> Thank you! That's a great service to the

Ada community.
You're welcome. It's nice to be
appreciated :).
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: 5 Feb 2007 05:16:21 −0800
Subject: Re: Ada Reference Manual in

texinfo format?
Newsgroups: comp.lang.ada
I'd like to second Bob's kudos, not only
for myself who uses the info version of
the ARM almost daily, but also on behalf
of all users of Debian who get it as part of
the ada-reference-manual package (I'm
not the maintainer of that package;
Florian Weimer deserves the credit for
that).
From: Georg Bauhaus

<bauhaus@arcor.de>
Date: Mon, 05 Feb 2007 15:10:41 +0100
Subject: Re: Ada Reference Manual in

texinfo format?
Newsgroups: comp.lang.ada
Thanks on behalf of the users of Ubuntu
GNU/Linux, too, who also use the nice
Debian packages.

Ada in Debian's Popularity
Contest
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: 5 Feb 2007 08:54:25 −0800
Subject: Ada is popular after all

Newsgroups: comp.lang.ada
I quickly looked at the results of Debian's
Popularity Contest, which ranks packages
in Debian according to their popularity.
(This ranking helps choose which CD-
ROM or DVD-ROM each package ships
on. There are currently 23 CD-ROMs or 3
DVD-ROMs for i386 alone.)
I only looked at the "zen master"
languages and at the "votes" column in
the popularity contest results. Here is
what I found:
Language Package Votes
Ada gnat 98
Pascal fp-compiler 65
Pascal gpc 55
Eiffel smarteiffel 20
Modula-2 m2c 4
Oberon oo2c 1
Granted, the two Pascal compilers
combined beat GNAT, but just look at the
graph on [http://popcon.debian.org] for
the evolution since 2004. Something's
happening.
Another thing that makes Ada trendy
nowadays is the enduring series of articles
by Yves Bailly in GNU/Linux Magazine
France. The December issue contains
article #14 in the series, ending with a
mention of "the next article"…
From: Yves Bailly <kafka.fr@laposte.net>
Subject: Re: Ada is popular after all
Date: Mon, 05 Feb 2007 18:54:58 +0100
Newsgroups: comp.lang.ada
It seems we're many to work hard to
promote Ada in some way or another, so
in the long run there's hope ☺
[…]
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Mon, 05 Feb 2007 21:23:32 +0100
Subject: Re: Ada is popular after all
Newsgroups: comp.lang.ada
> [Package 'gnat'] is an unidentified

version, presumably the default. There's
also
gnat-4.1 97
gnat-3.3 5
gnat-3.4 2
gnat-3.2 1
gnat-4.0 1
How do they fit into this?

Indeed, gnat is the default, per Debian
Policy for Ada. In Sarge, that was GNAT
3.15p but now in Etch, it is almost empty
and provides just one symbolic link:
/usr/bin/gnatgcc -> gcc-4.1. Most
importantly it depends on the actual
compiler package, gnat-4.1.
The other versions (3.3 .. 4.0) are older
and no longer provided in Debian. They
were never supported anyway.

18 Ada Inside

Ada User Journal Volume 28, Number 1, March 2007

Ada and Microsoft
Ada in Windows Vista
From: Wiljan Derks

<Wiljan.Derks@zonnet.nl>
Subject: Re: GNAT and Vista?
Date: Mon, 18 Dec 2006 20:26:37 +0100
Newsgroups: comp.lang.ada
> Has anyone already experience with

GNAT on Windows Vista?
Does it work? And even such tools like
GPS, GVD, AdaGIDE?

I did a test driver with Vista RC2 with
GNAT and our own software. Looks like
Vista is highly compatible with XP. I was
able to build all our software using GNAT
on Vista. I also was able to use our device
drivers build for XP on Vista without
trouble.
There was some trouble however:
⁃ GCC does not seem to be able to find
the compiler gnat1.exe. I fixed this by
adding the containing directory to the
path.
⁃ GPS did not start properly but was still
usable.
⁃ My own software had some problems
with the service interface on Vista.
For the rest all my software seems to be
running fine. That includes quite some
GUI code based on GWindows, some
web servers based on AWS.
My conclusion is that it should be easy to
switch to Vista.
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: Re: GNAT and Vista?
Date: Mon, 18 Dec 2006 16:22:52 +0100
Newsgroups: comp.lang.ada
> Some friends told me that Win32-API

based applications are no longer
supported on Vista (only dot Net).

The Win16-API is not. Win32-API should
be OK.

References to
Publications
Aonix AONews
[Extracts from the table of contents. See
elsewhere in this news section for selected
items. —su]
Welcome to the first Aonix Newsletter of
2007! We have some exciting news and
interesting articles in this issue that we
hope you will find useful and enjoyable.
Hot Topics in this issue: […]
⁃ New product releases, featuring PERC
Ultra 5, the premiere virtual machine for
embedded Java™ developers, ObjectAda
v8.2 with support for the PikeOS RTOS,

and AonixADT v3.2.1, the Eclipse plug-
in technology for Ada development.
⁃ Aonix Customers and how they’re using
Aonix development and execution
technologies including Lockheed Martin
Aegis program and FKI Logistex material
handling control system.
⁃ Partner highlights including Concurrent,
ProSyst and Wind River Systems.
…and much more

Embedded Technology
Journal
Subject: Remote programming in the

Embedded Technology Journal
Date: Tuesday December 19, 2006
RSS: www.adacore.com/category/

press-center/feed/
The latest edition of the Embedded
Technology Journal includes an
interesting article on IDE considerations
for remote programming. You can find
more information on the use of this
technology with GNAT and GPS by
clicking here, or by contacting
sales@adacore.com.

Military Embedded Systems
Magazine
SPARK in Military Embedded Systems

Magazine
Military Embedded Systems magazine
features SPARK in "Building secure
software: Your language matters!" co-
authored by SPARK team's Roderick
Chapman and AdaCore's Robert Dewar.
(A recent version of Adode PDF Reader
is required to open the PDF of this
article).

EE Times Online
Subject: Ada enhances embedded-systems

development
Date: Tuesday December 19, 2006
RSS: www.adacore.com/category/

press-center/feed/
Check EE Times Online, at
http://www.industrialcontroldesignline.com/
showArticle.jhtml?articleID=196800890

AdaCore — The Military
Technologies Conference
2007
http://www.adacore.com/2007/01/05/the-

military-technologies-conference-2007/
Friday January 5, 2007
The Military Technologies Conference
2007
AdaCore CEO, Robert Dewar will give a
talk entitled “Why High Integrity
Software Requires Open Source Tools.”

AdaCore presentations in
Ada Europe 2007
From: AdaCore Press Center
Date: Tuesday February 13, 2007
Subject: Ada Europe 2007, 12th

International Conference on Reliable
Software Technologies

RSS: www.adacore.com/category/
press-center/feed/

AdaCore co-authored papers:
⁃ “Precise Garbage Collection”
Francisco García, Javier Miranda and José
Fortes Gálvez
⁃ “Implementation of new Ada 2005 real-
time services in MaRTE OS and GNAT”
Mario Aldea-Rivas and Jose F. Ruiz
Industrial session:
⁃ “Towards Certification of Object-
Oriented Code with the GNAT Compiler”
Javier Miranda
Tutorials:
⁃ “Building interoperate distributed
applications with PolyORB”
Thomas Quinot
AdaCore will also be exhibiting at this
event.

AdaCore — Software
Technology Conference
(SSTC 2007)
Subject: Software Technology Conference

(SSTC 2007)
Date: Tuesday February 13, 2007
RSS: www.adacore.com/category/

press-center/feed/
18–21 June 2007, Tampa Bay, Florida,
USA
Ben Brosgol will be giving a talk entitled
“Designing High-Security Systems: A
Comparison of Programming Languages”.
AdaCore will also be exhibiting at this
event.

AdaCore — DASIA 2007
Subject: DASIA 2007
Date: Friday March 9, 2007
RSS: www.adacore.com/category/

press-center/feed/
29th May – 1st June 2007, Naples, Italy.
Jose Ruiz will present a talk on
“Preventing Stack Overflow using Static
Analysis” (paper written by Jose F. Ruiz,
Eric Botcazou, Olivier Hainque, and
Cyrille Comar).

Ada Inside
Tomahawk Cruise Missile Mission Planning
http://www.aonixnews.com/jan07/

inthefield.htm#Tomahawk_

Ada Inside 19

Ada User Journal Volume 28, Number 1, March 2007

Boeing Selects Aonix ObjectAda for
Tomahawk Cruise Missile Mission
Planning Software
As a historical leader in mission critical
Ada technologies, Aonix is pleased to
announce the selection of ObjectAda by
Boeing for the Tomahawk Cruise Missile
program. Boeing plans to use Aonix’s
ObjectAda for Windows for ongoing
software development and for migration
tasks on the Tomahawk Mission Planning
(TMP) Software Platform. Boeing’s
interest in Aonix’s ObjectAda for
Windows hinges on several technical
factors, including its full compatibility
with Microsoft’s .NET platform.
Facing legacy obsolescence and
diminishing support for their existing Ada
development environment, Boeing’s TMP
group initiated a full-scale evaluation of
available Ada compiler and tool solutions.
Their challenge was to find an Ada
vendor with compiler technology able to
support a very large Ada source code
base, meet stringent performance and
functionality requirements, and efficiently
support a large software development
team. In order to port a large code base
without requiring a large investment of
new engineering resources, Boeing’s
TMP group needed a multilanguage
development environment to
accommodate existing C, Fortran, and
.NET software assets.
 “Aonix rose to all the challenges we laid
out,” noted Dan Turpin, TMP Systems
Engineer. “They accommodated specific
requirements critical to our success, such
as performing specific debugger and
compiler performance improvements that
we needed.”
Similarly, Ben Ralston, TMP’s compiler
technical evaluator, stated, “As an
engineer, I realize it was no small feat to
accomplish technical changes of this
magnitude to their compiler, especially in
such a short time frame. Aonix met all of
our objectives.”
In integrating current Windows
improvements with the Aonix Ada 95
compiler, Aonix has delivered
enhancements to the object code and
symbolic debugging information
generation and provided full compatibility
with the Microsoft Visual Studio .NET
2003 development tools. Recognizing the
growing number of large-scale Ada
projects, ObjectAda for Windows offers
dramatic performance improvements for
developers linking executable files or
initiating debugging sessions for large
programs. As part of the ObjectAda
family, ObjectAda for Windows allows
developers to choose between the
traditional Aonix IDE for development
and the new AonixADT™ Eclipse plug-
in. AonixADT incorporates Ada-project
awareness, an Ada-language sensitive
editor, Ada-language compile and build
capabilities, and a complete Ada debugger

interface, enabling Ada developers to
enjoy state-of-the-art interface capabilities
geared to maximize developer ease and
efficiency.

C-130 AMP aircraft
Tuesday December 12, 2006
AdaCore Celebrates C-130 AMP’s Maiden

Flight
New York and Paris, December 12, 2006
— AdaCore joins The Boeing Company,
Smiths Aerospace and Wind River
Systems in celebrating the successful first
flight of the C-130 Avionics
Modernization Program (AMP) aircraft,
which took place on September 19.
AdaCore serves as a key member of
Smiths Aerospace’s development team for
the C-130 AMP’s Mission Processor
(MP). The MP provides primary
computing capability for the cockpit
display generation, and extensive video
processing, which supports the
manipulation and distribution of new and
legacy video sources to all aircraft
displays. The U.S. Air Force initiated the
C-130 AMP to standardize
configurations, lower the cost of
ownership, and increase survivability of
its aging C-130 aircraft. It is the most
comprehensive C-130 avionics
modification ever conducted.
The MP’s critical infrastructure software
is a combination of Wind River’s
Platform for Safety Critical ARINC-653
real-time commercial operating system
and development tools, AdaCore’s GNAT
Pro Ada 95 compiler and development
environment for PSC ARINC-653
(including GPS) and Smiths Aerospace’s
infrastructure software. The Software
Common Operating Environment (SCOE)
delivery provides the C-130 AMP team
with an ARINC-653 software partitioned
operating system, as well as a full set of
“partitioning aware” tools to support
software development and debug for the
PowerPC.
As part of the Smiths Aerospace contract,
AdaCore ported the compiler, tools and
run-time libraries to work with PSC
ARINC-653. AdaCore also provided an
Ada binding to the ARINC-653 APEX
facilities for partitioned operating
systems, as provided in PSC ARINC-653.
New debugging modes were supported as
well. The company developed an Ada
run-time library certifiable to avionics
safety standard DO-178B Level A, and
worked with Verocel to develop
certification evidence for it.
“AdaCore was specifically selected by
Smiths’ mission processor development
team for its superior technical expertise
with both Ada compilation systems and
with avionics application development
environments,” said Dudrey Smith, chief
software technologist at Smiths
Aerospace. “With fast compilation speed,

quality code generation, and an extensive
set of switches and pragmas, AdaCore’s
GNAT Pro specifically addressed the
mission processor’s need for mission-
critical robustness and flexibility.”
“The MP project is a perfect illustration
of how mission-critical aerospace systems
should be architected,” said Robert
Dewar, CEO of AdaCore. “Turnkey
avionics configurations, like the SCOE,
facilitate the integration of future
upgrades and minimize the impact of
obsolescence.”

SAAB Signs Corporate Wide
Software License
Subject: March 7, 2007
Date: SAAB Signs Corporate Wide Software

License with AdaCore
RSS: www.adacore.com/category/

press-center/feed/
AMSTERDAM, Netherlands, March 7,
2007 — Avionics Exhibition and
Convention — Agreement delivers
volume subscription to leading Ada
development environment across Saab
Group
Saab, one of the world’s leading high-
technology companies, today signed a
corporate wide licensing agreement with
AdaCore. Saab will adopt AdaCore’s
GNAT Pro development environment for
projects across the organisation and will
standardise on GNAT Pro.
The €340,000 annual agreement provides
Saab with a volume subscription for all its
developers, rather than access to AdaCore
tools and support on a project by project
basis. GNAT Pro is available to Saab on a
number of architectures and has been
ported to more platforms, both native and
embedded, than any other Ada
technology.
The Ada programming language is
designed specifically for large, long-lived
applications where reliability, efficiency
and safety are critical. AdaCore has been
closely involved with the Ada language
since its inception and its GNAT Pro
development environment combines
market-leading technology with an expert
support system to provide a natural
solution where efficient and reliable code
is critical.
The agreement, signed by AdaCore’s
Swedish distributor Asplund Data AB,
demonstrates the importance of the Ada
programming language to Saab. By using
Ada Saab benefits from a high-integrity
and high-quality programming language
that enables it to develop safety-critical
systems for projects across the whole
group
Saab has benefited from AdaCore’s
combination of an advanced software
development environment with expert
support for over 7 years. It is currently
being used by around 250 developers on

20 Ada Inside

Volume 28, Number 1, March 2007 Ada User Journal

projects that range from the Electronic
Warfare System (EWCS) for the JAS 39
Gripen fighter to the GFORCE ship
control system and Taurus, MPS and
METEOR missiles. Divisions such as
SaabTech, Saab Bofors Dynamics, Saab
Microwave Systems, Saab Avitronics, and
Saab Systems Pty Ltd are currently using
Ada and GNAT Pro. By now
standardising on AdaCore Saab will cost-
effectively extend these benefits across
the entire group.
“This agreement demonstrates the
increasing importance of Ada to Saab’s
development of world-leading defence
and avionics systems,” commented
Franco Gasperoni, Managing Director,
AdaCore. “This is part of a growing trend
of companies adopting AdaCore as a
corporate standard. By moving to an
organisation-wide licensing model, they
are now benefiting from significant
efficiencies and cost-savings as well as
access to our advanced tools and
support.”
About Saab
Saab is one of the world’s leading high-
technology companies, with its main
operations focusing on defense, aviation
and space. The Group covers a broad
spectrum of competence and capability in
systems integration.

International Space Station
(ISS)
From: R. B. Love <rblove@airmail.net>
Date: Sat, 17 Feb 2007 17:41:34 −0600
Subject: Ada downsizing in space
Newsgroups: comp.lang.ada
[..] I have to believe that the International
Space Station (ISS) was one of the
biggest Ada projects in the world,
employing people in several nations
writing Ada. NASA has decreed that
there must be a 15% reduction in
spending on ISS and Boeing responded
Friday with layoff notices going to
between 140 and 180 people. A good
many of them are Ada programmers.
All the work I see being done for CEV is
C or C++. LockMart, the same people
who spiked Ada for with the Secretary of
the Air Force on SBIRS, seems
determined to make everything C++.
Now some of us will be employed for
years maintaining existing ISS code. The
transition from development to
maintenance had to come someday.
It would be very interesting to hear about
new, large Ada projects anywhere. Does
someone still maintain a list? […]
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Sun, 18 Feb 2007 09:58:33 −0500
Subject: Re: Ada downsizing in space
Newsgroups: comp.lang.ada

[…] NASA appears to have abandoned
Ada around 10 years ago (That is not to
say that nothing was being done in Ada
— just most high visibility things that
you'd hear about were not done in Ada). I
think it was part of their Better, Faster,
Cheaper (Choose any 0 of them) plan.
[…]
Boeing appears to at least maintain some
interest in Ada as the C-130 and 7E7
announcements indicate.
Since Ada is no longer "buzzword
compliant" I don't think (most) people
using it are really into press release
engineering anymore.
From: R.B. Love <rblove@airmail.net>
Date: Sun, 18 Feb 2007 11:15:46 −0600
Subject: Re: Ada downsizing in space
Newsgroups: comp.lang.ada
> Do you have first hand knowledge that

ISS has a lot of Ada?
[…] There are between 45–50 flight
computers on board the ISS on various
US components. They are all
programmed in Ada. I believe the
Russian flight computers use C. The
onboard, hand held PCs are mostly
C/Linux. The large trainers for ISS use
Ada almost exclusively. That was
another 1–2 dozen programmers. Some
of the foreign trainers use Ada.

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —su]
Job Description:
Looking for a software project manager
for a large airspace management defense
system. Will be responsible for project
planning, statusing, reporting and staffing.
Will have a lot of interfacing with the
program office, customers, engineering
managers and software developers.
Requires knowledge of earned value
management process (stated on resume)
and detailed planning with PERT charting
tools. Must have software development
experience, as there will be involvement
in project technical decision making.
Needs excellent presentation skills. May
require occasional travel internationally.
Required Skills:
Must have experience in software
development and management of large
software-intensive programs. Excellent
communication skills, both verbally and
in writing.
Desired Skills:
Hands on experience with real-time
software and military programs is a plus.
Experience with Ada programming
language.
Required Education(including Major):

BS Computer Science or Engineering.
Job Description:
Software Engineer needed for software
development and integration position on
the Airspace Command and Control
(AC2) Product Line (APL). Engineer will
participate in all aspects of the APL
software development process for the
surveillance components including Track
Management, Identification, Tracking,
and Airspace Management.
Initial responsibilities will be to learn the
application's surveillance domains and the
APL software development environment.
After initial training, opportunities in the
following will be available for multiple
projects:
⁃ Update existing surveillance
components
⁃ Design new capabilities and
enhancements
⁃ Implement and Integrate software
upgrades and changes
⁃ Support software deployment
throughout the world
Candidate should have some familiarity
with ground based radar systems and a
desire to learn how AC2 systems interface
with these radars and other data sources to
produce an integrated air picture.
Candidate will be developing software in
the Ada programming language. No
relocation costs.
SECRET security clearance preferred,
Eligibility required.
Required Skills:
2–3 years experience developing real time
software. Experience with Object
Oriented Design and Ada programming
languages. Experience with Unix and
Linux operating systems. Sound
reasoning, keen attention to detail and the
ability to deliver reliable software
products. Willingness to travel under
business trip status for site integration
tasks. Number of trips per year will vary
but the trips are generally two to four
weeks in duration.
Desired Skills:
Ability to apply Object Oriented Design
techniques to the large scale software-
based product line environment. Prior
experience with large software
applications. Prior experience with
surveillance systems. Applied
mathematics experience. Experience with
Rational APEX environment.
Required Education (including Major):
BS Computer Science.
Job Description:
Looking for a software engineer who is
interested in developing HMI (Human
Machine Interface) code for multiple air
defence programs. Candidate will develop
code, test, and integrate. Candidate will

Ada Inside 21

Ada User Journal Volume 28, Number 1, March 2007

be developing code using Ada, C, C++,
and Java. Must be able to travel
internationally. Business trips can be
expected to last 1–3 weeks and can occur
several times a year. Candidate must be
able to obtain a secret clearance (no dual
citizens). Preference will be given to
candidates with an existing secret
clearance.
Required Skills:
Must have 2 years (post graduate)
experience working on large software
programs. Must have at least 1 year Ada
programming experience and 1 year Java
programming experience. Must also have
C/C++ and UNIX experience. Must have
good communication skills, both verbally
and in writing. Willingness to travel under
business trip status for site integration
tasks.
Desired Skills:
GUI experience. Knowledge of X
Windows/Motif. Experience with
Rational APEX environment.
Required Education (including Major):
BS Computer Science.
Job Description:
[…] Looking for Senior System /
Software Engineers responsible for design
and development of data link systems for
military applications. Responsibilities
include developing concepts of operation,
interoperability and technical execution,
judgment of a variety of technical inputs
from subject-matter experts, customer
interface and technical presentations. Will
participate in Ada software design,
development and maintenance for the
Links Software component of APL. Links
consists of capabilities which interface
with adjacent air defence systems, radar
sites and supporting aircraft while
maintaining system-wide integrity.
Participate in full life cycle software
development — design, code, unit test,
integration and maintenance. Perform
software problem investigation and
resolution. Produce documentation of
software artefacts. Desired for candidate
to be a self-starter who routinely acts
independently to uncover and resolve
issues on programs and is able to
communicate well with software and
system engineering disciplines in
evaluating potential software issues.
Excellent problem-solving ability. Will
need to multitask in order to support
multiple programs and priorities.
Candidate should have hands on
experience or knowledge of integrating
hardware equipment in the lab. Where
necessary will work with the customer.
Understanding of military tactical data
links such as Link 11A, 11B, 16 required
and military certification processes such
as AFSIT, OT&E, DT&E desirable. The
candidate must be able to work well under
pressure and work long hours

occasionally to meet schedules.
Relocation not included.
Required Skills:
The candidate must have at least 7–15
years of experience on large software
intensive systems. Experienced with
UNIX or LINUX operating systems.
Experienced with external Interfaces in
the Links area. Must have domain
knowledge of Links applications in Air
Defence systems. Strong appreciation for,
or experience in, software engineering
and configuration management practices
and procedures. Good communication
skills and ability to work well in a team
environment. L11/11B and/or L16
experience required either in SW
development or integration. Must have an
existing secret clearance.
Desired Skills:
Candidate should be familiar with the SW
development lifecycle, Rational APEX.
Proficiency in Ada a plus; C++, Java
helpful. Candidate to be familiar with
requirements flowdown and testing in a
lab environment. Proven ability to work
within a large and diverse organization.
Link Simulator experience highly desired.
Understanding of military certification
processes such as AFSIT, OT&E, DT&E
desirable. Ability to travel to support the
on-site testing a plus.
Required Education (including Major):
BS Computer Science.
Job Description:
Looking for a Software Requirements
Specification (SRS)/Interface
Requirements Specification (IRS)
Engineer for the Software Requirements
team in the APL (Air Defense Systems
Product Line) department. Candidate
must have experience in generating either
SRS and IRS specifications for large
software intensive systems. […]
Requirements team supports the software
generation. At the beginning of a project,
the System Specifications are analyzed
and then broken down into lower level
specifications that the software engineers
can code to. We are looking for engineers
for software requirements team. This is
not a software development position or a
hardware position. No relocation costs.
Required Skills:
Must have 5–7 years of professional
experience in an aerospace/defense
oriented engineering environments in any
of the following disciplines: software
requirements development, SRS/IRS
writing, software requirements analysis,
software development, systems
engineering, and tactical data
links/communications. Candidate must
have experience in generating either SRS
and IRS specifications for large software
intensive systems. Eligibility for a US
SECRET security clearance required (NO

dual citizens) must be able to work on
multiple projects concurrently. Excellent
written and verbal communication is
required.
Desired Skills:
Hands on experience with real-time
software and military programs is a plus.
Proficiency with the DOORs
requirements management tool is desired.
Familiarity with military command and
control systems (C2), tracking software
and algorithms, and surveillance and
identification (ID) functionality in C2
systems is also a plus. Existing US
SECRET clearance preferred. Experience
with UML, C, C++, or Ada languages,
Linux and Unix operating system is
desired.
Required Education (including Major):
BS/MS/MA in Electrical Engineering,
Mathematics, Physics, and/or Computer
Engineering.
Job Description:
This position will focus on a broad
spectrum of Systems Engineering tasks on
a large, air defense command and control
system software development, integration,
and evaluation project. Working directly
with principal systems engineers, this
individual will support and perform tasks
to include requirements analysis and
maintenance, system design, software
system integration, and system test and
evaluation. This position has no hardware
content or Automated Test Equipment
(ATE) involvement. The ideal candidate
is a Systems Engineer who has experience
and familiarity with software
development, code, and test. The software
system includes code written primarily in
C/C++ and ADA, as well as Government-
furnished code in UML, operating in
Linux and Unix environments.
For system requirements analysis and
maintenance, this individual will translate
customer needs into well-written
requirements from which systems and
subsystems can be architected and
designed. This task also involves
maintaining system-level requirements
with the DOORs tool throughout the
product life-cycle and assessing the
system impact as requirements change.
In support of system integration and
test/evaluation, the individual will assist
principal systems engineers with
development and implementation of
software system integration plans and the
allocation of system level requirements to
tests, developing test plans and
procedures, conducting tests, and
documenting the results in test reports and
presentations. This individual will be
tasked with developing and executing
software system performance evaluation
plans and procedures and
collecting/analyzing software technical
performance metrics. In the performance

22 Ada in Context

Ada User Journal Volume 28, Number 1, March 2007

of these duties, the individual will be
expected to become a subject matter
expert in one or more of the functional
areas comprising command and control
software systems, including tracking
software and algorithms, surveillance and
identification (ID), and/or system control.
This task will involve troubleshooting
challenging problems of broad technical
scope which arise as a result of the system
requirement analysis, integration, test and
performance evaluation. Accordingly, this
individual may be required to seek and
synthesize expert advice from other TRS
engineers or suppliers/vendors in order to
recommend corrective actions.
This position may require occasional
domestic travel of short duration (3-4
days) to customer facilities to support
technical interchange meetings.
Occasional long hours (> 40 per week)
may be required to meet program needs
and schedules.
Required Skills:
Six years experience in an
aerospace/defence-oriented, systems
engineering environment (requirements
analysis and maintenance, system design,
software system integration, system test
and evaluation, or system performance
measurement and analysis). Eligibility for
a US SECRET security clearance required
(no dual citizens). Although this is a
Systems Engineering position, experience
with C or C++ programming languages,
Linux and Unix operating systems is
required. Experience with coding,
compiling, and testing software is
required. Proficiency with the DOORs
requirements management tool is
required.
Desired Skills:
Familiarity with large-scale software
systems, UML and/or Ada code, and
software integration and development
processes (such as the Spiral development
process) is a plus. Familiarity with
military command and control systems
(C2), tracking software and algorithms,
and surveillance and identification (ID)
functionality in C2 systems is also a plus.
Existing US SECRET clearance
preferred. Proficiency with the MS Office
Tool Suite (Excel, Powerpoint, and Word)
is desired.
Required Education (including Major):
BS Electrical Engineering, Computer
Science/Engineering, Systems
Engineering, Physics, or Mathematics.
Job Description:
 […] One of our most aggressive projects
is producing a web-based, multi-media
contact center solution written in Ada. To
help us accomplish this goal, we are
hiring additional Ada developers to add to
our existing staff spread out over 3
countries.

Candidate must be self-motivated, able to
take an abstract idea or process, and both
design and implement an accurate
corresponding solution. Must be able to
work both individually as well as part of a
team.
Must be able to program for UNIX or
Linux operating systems. Linux preferred.
Willing to consider this as a full-time
remote/telecommuting permanent
position. Most of our development staff
are remote workers, however, our
preference is for someone to eventually
relocate to the Phoenix Area.
Some call center knowledge, especially in
predictive dialers, would be a definite
plus, but not required. So if you are a self-
motivated developer, we look forward to
you joining our energetic team.

Ada in Context
Physical comparison of
Ada 95 and Ada 2005
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Sun, 21 Jan 2007 15:29:15 +0200
Subject: A physical comparison of Ada 95

and Ada 2005
Newsgroups: comp.lang.ada
A few days ago I received an eagerly
awaited Springer hard-copy of the Ada
2005 LRM (courtesy of Ada Europe, to
whom many thanks). Being less busy than
usual I have had some time to study this
work and compare it to the earlier
Springer LRM for Ada 95, with the
following results:
 Ada 95 Ada 2005
Weight (g) : 985 1205
Thickness (mm) : 32 27
The height and width are the same, so the
overhead in terms of desk-top area is
unchanged, which is good. The result of
this comparison is thus that Ada 2005 is
44.9% denser than Ada 95, as represented
by their respective LRMs. The analogous
comparison based on the text of the
LRMs was not in scope for this study ☺

Official name of Ada
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Date: Fri, 23 Feb 2007 14:04:02
Subject: The Ada 2005 name (was: Re: Bug

in GNAT GPL 2006?)
Newsgroups: comp.lang.ada
Summary: Recommended informal name for

latest standard is Ada 2005
I notice that once in a while there appears
to be some confusion about how to refer
to the latest Ada language definition.
FYI, the internationally accepted
recommendation is to use the name
"Ada 2005".

Obviously the official name of the
language is Ada, but when referring to
previous "instances" of the standard, the
Ada community has been using Ada 83
and Ada 95 as informal or "vernacular"
names.
In an attempt to avoid possible confusion
about how to refer to the amended Ada
language definition, the ISO working
group on Ada (WG9) discussed this issue
during its June 2005 meeting in York.
Various proposals were made and many
arguments were presented. For those of
you who are interested: a summary of the
discussion is available in the minutes of
that meeting [1].
Finally, the following recommendation
was accepted *unanimously*:
 “Recognizing that ISO's publication date
will differ from the date of technical
completion in 2005, and recognizing that
the term "Ada 2005" is widely used in the
community, WG9 recommends that an
appropriate vernacular designation for the
amended language should be "Ada
2005".” [2]
That's why in most literature, marketing
material, communications, etc, we refer to
the amended language as "Ada 2005".
This includes e.g. the ARA announcement
"Ada 2005 on Track for Formal ISO
Approval" [3], Ada-Europe's press release
"Technical Work on Ada 2005 Standard
Completed" [4], and the title "Ada 2005
Reference Manual. Language and
Standard Libraries" of the book recently
published by Springer in its LNCS
(Lecture Notes in Computer Science)
series [5].
[1] <http://www.open-std.org/jtc1/sc22/
wg9/n451.htm#VernName>
[2] <http://www.open-std.org/jtc1/sc22/
wg9/n451.htm#r5>
[3] <http://www.adaic.com/news/
iso-Ada05.html>
[4] <http://www.ada-europe.org/
Ada_2005_Press_Release.pdf>
[5] <http://www.springer.com/
home?SGWID=5-102-22-173712407-0>
We may all have our personal preferences
about how to name things, but in the
interest of global understandability and to
avoid creating confusion, may I suggest
we all abide to that recommendation of
the ISO working group on Ada?
So, when referring to the language in
general, use "Ada", and when referring to
the recently amended language definition
in particular, use "Ada 2005".

Future of Ada-POSIX
Binding
From: Stephen Michell

<stephen.michell@maurya.on.ca>
Date: Thu, 04 Jan 2007 22:09:20 −0500

Ada in Context 23

Ada User Journal Volume 28, Number 1, March 2007

Subject: Participation in Ada POSIX
Binding Working Group

Newsgroups: comp.lang.ada
Ada-POSIX Binding Rapporteur Group
Interest
Dear All,
I have been named the Rapporteur of the
Ada-POSIX Binding Rapporteur Group
by ISO/IEC/JTC1/SC22/WG9. This
Rapporteur Group (hereafter called the
PRG) is charged with assisting the editor
of IS14519 Ada Binding to POSIX in the
maintenance of this document.
IS14519 was completed (revised from an
earlier version to accommodate Ada 95)
and standardized in 1998 (2001 for ISO)
reflecting the POSIX version of the time.
Since that time there have been 2
revisions of Ada and 2 of POSIX.
The changes to Ada and to POSIX may
have significant impact on the binding.
⁃ POSIX has had major revisions, with
most of the documents (except the Ada
binding and the real time extensions)
being folded into a single 4-part
document.
⁃ Ada has added new capabilities in areas
that directly impact the POSIX binding,
adding
⁃ Directories,
⁃ Synchronized, protected and task
interfaces,
⁃ Events, Timers, and new task scheduling
paradigms
A study that the Canadian delegation did
for WG9 (WG9 document N477r)
indicates that the existing POSIX C-
language interfaces that IS14519 relies
upon has not changed in many significant
ways. This may mean there is little to be
done to the interface.
An alternative position could be that we
have an opportunity to bring the Ada-
POSIX binding into IS8652. It may be
possible to modify the binding so that
they are all children of Ada.Interfaces and
it may be possible to deprecate interfaces
where functionality is now provided by
the language itself.
As I currently see the situation, we could
do one of the following:
1. Leave it alone
2. Perform a minimal amendment to
include new exceptions, possibly changed
behaviours, and possibly a few new
capabilities
3. Perform an amendment and move all
capabilities into Ada.Interfaces but
largely leave them alone except to add
material from 2 above.
4. Perform a larger amendment or a
revision to update Ada's interface to
POSIX needs for Ada 2005 to POSIX
2008, possibly deprecating capabilities in

favour of Ada's capabilities and possibly
adding capabilities if needed.
5. Do an OS interface that replaced
POSIX with one that was Windows and
POSIX compatible.
What we do will depend upon the level of
interest that we have and the perceived
need. Options 4 and 5 are significantly
larger activities, would need considerably
more resources but could have a larger
payoff.
To that end, we are having the first
meeting of the PRG in Tallahassee,
Florida February 19–21. One of the major
discussions will be the level of effort and
the kind of amendment/revision that we
will propose.
If you are interested in participating in the
PRG, please contact me directly at
stephen.michell@maurya.on.ca
Thanks you
Stephen Michell, Rapporteur,
ISO/IEC/JTC1/SC22/WG9/PRG

Ada.Command_Line and
wildcards
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Wed, 21 Feb 2007 21:43:41 +0100
Subject: Ada.Command_Line and wildcards
Newsgroups: comp.lang.ada
I was surprised to see
Ada.Command_Line in GNAT (3.15p and
2006 GPL) serving the command-line
argument "*.adb" indeed as N arguments,
the list of files with an "adb" extension!
ObjectAda gives the argument as-is. Who
is right then ?
It's annoying if the wildcard expansion is
done a priori, because I would like to
have it done by Ada.Directories, for a
generic command-line tool…
From: Gautier de Montmollin

<gdemont@hotmail.com>
Subject: Re: Ada.Command_Line and

wildcards
Date: 22 Feb 2007 00:16:09 −0800
Newsgroups: comp.lang.ada
[…] I tested both programs on both
Windows 98 and XP. In both systems, the
OA-compiled program gives "*.adb" and
the GNAT- compiled the list of files with
".adb" extension. To Adrian, enclosing
with '"' works, thanks, but then the syntax
differs from the usual one for a command-
line tool…
I am just surprised by the GNAT
behaviour, for two reasons:
 ⁃ I did not find (or missed) something
about it in the RM (95)
 ⁃ there is also a GNAT.Command_Line
that explicitly intends to do wildcard
expansions; so why also GNAT's
Ada.Command_Line should do it
silently?

From: "Marc A. Criley" <mc@mckae.com>
Organization: McKae Technologies
Date: Wed, 21 Feb 2007 19:13:54 −0600
Subject: Re: Ada.Command_Line and

wildcards
Newsgroups: comp.lang.ada
> This is an OS (shell) issue, surely?
I was surprised as well, and I took it to be
a shell issue as well.
I found that just wrapping the wildcard in
quotes as Adrian suggested passes it in as
typed (with tcsh on Linux, anyway). I've
got Avatox able to accept either the
wildcard or the list of files.
From: "Alex R. Mosteo"

<devnull@mailinator.com>
Subject: Re: Ada.Command_Line and

wildcards
Date: Thu, 22 Feb 2007 12:02:07 +0100
Newsgroups: comp.lang.ada
It would be in Unix. There, wildcard
expansion is a shell matter. Windows only
half-faked it.
What I mean is that if your code is to be
run outside of a windows platform, you'll
not see wildcards in your arguments
(unless you quote them, as someone else
has pointed elsethread).
But if GNAT is deliberately doing
expansion to emulate Unix behavior, I
guess that should be documented in
Windows platforms…
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Organization: Adalog
Date: Thu, 22 Feb 2007 12:19:12 +0100
Subject: Re: Ada.Command_Line and

wildcards
Newsgroups: comp.lang.ada
I think it is a GCC feature. Because GCC
is often used to port Unix applications to
Windows, the GCC library emulates Unix
behaviour on Windows.
Too bad that Unix behaviour was wrong
in the first place…
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: Re: Ada.Command_Line and

wildcards
Date: Sat, 24 Feb 2007 07:34:35 +0100
Newsgroups: comp.lang.ada
[…] The VMS also won't expand
wildcard. In fact Unix shells are pretty
alone here. And they got it wrong. Bot
DOS and VMS will warn you on:
DEL *.*
but not on
DEL Some_File.Txt
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Thu, 22 Feb 2007 14:49:37 +0100
Subject: Re: Ada.Command_Line and

wildcards
Newsgroups: comp.lang.ada

24 Ada in Context

Volume 28, Number 1, March 2007 Ada User Journal

I don't understand. Shell uses some
special characters to make it easier for the
user to type commands. (Shells can
compete on how well they do this job.)
Wildcards are just an example. Consider
this:
$ cat *.ads *.adb | wc -l > loc.txt
If you claim that * above should be
passed "as is" to the program (cat), so that
the program can figure out on itself what
to do with it, then you might as well argue
that the program should figure out
everything above. Obviously, that
wouldn't be funny.
From: Larry Kilgallen

<Kilgallen@SpamCop.net>
Subject: Re: Ada.Command_Line and

wildcards
Date: 22 Feb 2007 09:12:05 −0600
Newsgroups: comp.lang.ada
> I claim it would be easier to provide a

function that expands parameters, than
to force expansion. Or maybe just
provide another function that provides
the raw parameters.

That is what VMS provides, and what one
calls from DEC Ada on VMS. Using the
OS-provided code is essential, as
interpreting rooted directory multivalued
logical names is just too complex for
private implementations.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Subject: Re: Ada.Command_Line and

wildcards
Date: Thu, 22 Feb 2007 17:20:15 +0100
Organization: Adalog
Newsgroups: comp.lang.ada
> There are three such "other functions":

$ cat '*.ads *.adb' | wc -l > loc.txt
$ cat "*.ads *.adb" | wc -l > loc.txt
$ cat *.ads *.adb | wc -l > loc.txt

So could you please explain why you
think the Unix behaviour is "wrong"?

No, that's from the user's side, not from
the program's side. It should be up to the
program to decide whether "*" is to be
interpreted as a wild-card or not.
For example, I have a utility where I pass
Ada unit names (not file names), but
wildcarding is allowed for the unit names
(handled by the program). If by chance I
have a file that matches the wildcard in
the current directory, I get an absolutely
useless parameter. And I hate having to
tell the user (even if I am the only known
user of the program ☺ that the parameters
must be quoted.
From: "Randy Brukardt"

<randy@rrsoftware.com>
Subject: Re: Ada.Command_Line and

wildcards
Date: Thu, 22 Feb 2007 19:01:22 −0600
Newsgroups: comp.lang.ada
> Actually it is. In

find . -name '*.txt'

the program 'find' decides to do the
wildcard expansion on '*'. The wildcard
expansion the shell does, is just an
additional service. You can just not use
it, by enclosing every word on the
command line in "'"

You're missing the point. The "Find"
program can't decide anything; it has to
require the user to quote everything. If the
user doesn't quote it, they'll get garbage
(precisely why I could never remember
how find was supposed to work on Unix
— I ended up writing shell scripts to
cover up this obnoxious behaviour.
It is never sensible to force clients to be
aware of things that they should not
logically have to care about. Whether the
shell or the program wants to expand file
names is completely irrelevant to the user
— it simply should not matter to the use
of a program.
This is exactly the same reason that
anonymous access types are not a usable
replacement 'in out' parameters in
functions. Using them requires the client
to do various handstands (use 'Access,
declare the object as aliased) for no
benefit at all to the client. That is silly; it
breaks encapsulation.
Thus I conclude that the Unix shell
behaviour (especially as it is not
consistent, in that an exec'd program
doesn't get the benefit, so the application
has to be prepared to handle wildcards
anyway — or be stupidly fragile) is
harmful, as it makes the user care about
irrelevant implementation details.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Subject: Re: Ada.Command_Line and

wildcards
Date: Fri, 23 Feb 2007 12:34:38 +0100
Organization: Adalog
Newsgroups: comp.lang.ada
> But if the programs do the expansion,

you can be certain that the expansion
will differ from program to program.

Why? Assume that your OS provides a
function for doing the expansion.
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Subject: Re: Ada.Command_Line and

wildcards
Date: Sat, 24 Feb 2007 14:40:18 +0100
Newsgroups: comp.lang.ada
Because some programmers will prefer
one of the available functions for doing
the expansion, and other programmers
will prefer some of the other available
functions for doing the expansion.
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: Re: Ada.Command_Line and

wildcards
Date: Sun, 25 Feb 2007 17:57:41 +0100
Newsgroups: comp.lang.ada

Well, all VMS programs I know of —
apart from GNV [1] applications —
expand the same way including
[…]*.TXT expanding recursively.
Something you won't get in Unix where
you need to guess which -r, -R, --
recursive option gets you recursive
behaviour. Actually: none — you will
need:
find . -iname "*.TXT" -print0 | xargs --
null --no-run-if-empty my_command
(did you always remember to use: "--no-
run-if-empty").
Again: the Unix way is convenient at start
but does not scale all that well for more
complex problems.
[1] Note: GNAT for VMS is GNV
application :-/
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Subject: Re: Ada.Command_Line and

wildcards
Date: Sat, 24 Feb 2007 14:24:40 −0500
Newsgroups: comp.lang.ada
There's lots of stuff I don't like about
VMS, but it does handle wildcards
without overflowing some buffer than can
never be the right size. And it doesn't
suffer from the windows problem of every
program having it's own notion of
wildcards.
From: "Adam Beneschan"

<adam@irvine.com>
Subject: Re: Ada.Command_Line and

wildcards
Date: 22 Feb 2007 09:07:52 −0800
Newsgroups: comp.lang.ada
[…] This has been one of my pet peeves
with Unix for a long time. With other
operating systems I've worked with, you
can enter a command like
 rename *.ads *.ada
for instance, to rename a bunch of files.
Unix makes this difficult. (Yes, I know
how to use "foreach" in csh… but still…)
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Mon, 05 Mar 2007 13:16:22 +0100
Subject: Re: Ada.Command_Line and

wildcards
Newsgroups: comp.lang.ada
> Get a real shell !
[…] Many essential shell scripts are built
around Unix shell details. E.g. software
configuration scripts tend to stubbornly
use a mix of bash (sic, not sh, not ksh, not
SUN sh), m4, sed, C helpers, etc etc. In
particular, they require the Unix process
model.
See the current difficulties in translating
recent GCC in a MinGW environment.
Suppose you want to port some piece of
Unix software to some other system, a
text processing tool, say. The C source is
in fact perfectly portable ANSI C. But it
can be real hard to get the C source

Ada in Context 25

Ada User Journal Volume 28, Number 1, March 2007

through the configure stage only because
configuration _depends_ on original style
Unix shells and the Unix process model
(e.g. piped processes "within" a backtick
(yes, I know $(), not the point), result to
be assigned to some variable. The GNU
"standard" config.guess is such a thing.)
On occasions like these the choice of a
shell matters. It is less relevant what you
or I would choose, because we don't have
a choice! (Other than occasionally ask the
developers to consider the consequences
of a larger Unix dependence graph when
they claim their program is portable to
non-Unix systems.) […]
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Tue, 06 Mar 2007 13:56:12 +0100
Subject: Re: Ada.Command_Line and

wildcards
Newsgroups: comp.lang.ada
> Most (auto-) configuration concepts are

really bad hacks. They are hardly Unix
design choices. The wrong place to fix
that is to change the shell or the process
model.

Right. But don't you think that this kind of
use of Unix tools must be investigated
such that the Unix design choices are
taken into account while doing so? What
is the reason that the Unix design choices
do not help prevent complex, strongly
coupled, highly dependent pieces of shell
programming? Will REXX programs look
the same?
Unlike Ada, Unix favors the *writer*
over the reader. No surprise I think. But
damn right?
When it comes to echo *.ads, a decision
was necessary as to what should happen
when there is no matching file name. The
choice was not: reflect this fact and
produce the empty result. This might have
had other consequences somewhere else.
Instead, it was to produce the pattern
itself—which is very different from a file
name. echo(1) is a highly overloaded
function, so to speak, very flexible. So
flexible indeed that it takes some time to
learn how this one command interacts
with all sort of things Unix.
That's unlike what ls produces. But it is
consistent with ls and with the other uses
of echo by 1..* mental indirections. Now,
what might be an alternative design
choice?
I wouldn't mind programs that just read
their arguments unexpanded and call the
OS expansion service, an iteration device
for example. And if there is no matching
thing, then *every* program consistently
produces empty results! One difference,
then, is that an ls will consistently
produce nothing for no argument. This
will require more typing when you want
something, for example ls -d "*". I don't
think any Unix programmer will see the
benefits of more typing. But having gone

some way through the Ada experience I
think this the right thing.
Or with this change, if calls to the
expansion service should not be part of
Unix programs, why not have
$ ls $(expand "*.ads")
It isn't more difficult to understand, and it
doesn't work with large directories either.
It requires that shell commanders say
what they want, though. (I'm not a fan of
large directories when we do have a
hierarchical filing system, but again, who
am I to suggest that a program be
redesigned to use a hierarchy of
directories for file storage.)
There was a time when you knew that
logging into a Unix system (HP, BSD,
etc.) would give you a very basic setup.
But you could use the entire Unix
Toolbox, without surprises. Reaping the
benefits of some shell programming
would give you a productive environment.
Today, the new Unix hackers try to give
you a "productive" environment by
default. You may have to expect AI-
driven completion, and lots of aliases, and
not only will learning some Unix shell
programming still be profitable, but in
addition you have to learn how to bridle
typical default shell setups. Unix used to
be configurable (after mastering the
design choices). Now it is pre-
configured… I guess the consequence is
that many users think they won't need to
learn shell programming.
From: "Randy Brukardt"

<randy@rrsoftware.com>
Date: Fri, 9 Mar 2007 20:12:01 −0600
Subject: Re: Ada.Command_Line and

wildcards
Newsgroups: comp.lang.ada
> I wouldn't want to use Ada as an

interactive command language.
Well, I would. Down with all non-Ada
syntaxes!! ;-)
Seriously, we did in fact design an Ada
command language for our debugger. It
works quite well. (I think others have
done similar things.) Of course, it's
neither full Ada and it allows leaving out
"noise" characters. And I believe we
required one statement per line (that
allows a lot more abbreviations). You can
type:
 Step_Line (Count => 20);
or
 sl 20
(abbreviated command name; unneeded
parens and semicolon omitted) Of course,
if something is ambiguous, you have to
use a longer form.
We originally did this because we wanted
the macro language for the debugger to be
as close to Ada as possible — that makes
the macros readable and maintainable.

Usually, you use shorter forms from the
command line (typing too much awful).

Text Insertions
From: Pascal Obry <pascal@obry.net>
Date: Wed, 21 Feb 2007 20:07:58 +0100
Subject: Re: Text Processing in Ada 95
Newsgroups: comp.lang.ada
> Currently I'm using Ada.Text_IO which

means I have to copy the whole thing
into memory, insert the line then over
write the file with new contents.
Ada.Direct_IO is not an option (varying
string lengths)
What alternatives should I consider for
making insertions faster? (NB retrieval
of a line needs to be fairly quick as
well).

Use Text_IO OK, but why copy all in
memory? Just write to a temp file, delete
the original one and rename the temp file.
If you have a lot of modifications to do on
the file, then you probably need to read all
the file in memory to have good
performances. In this case, read file in
blocks using Ada.Stream_IO. Do the
changes in memory and write it back in
blocks using Ada.Stream_IO.
From: Larry Kilgallen

<Kilgallen@SpamCop.net>
Date: 22 Feb 2007 08:02:20 −0600
Subject: Re: Text Processing in Ada 95
Newsgroups: comp.lang.ada
Or use an operating system feature that
allows insertions. GNAT Ada 95 on
VMS is supposed to emulate DEC Ada
features, so that should include the
Mixed_Indexed_IO package. There will
be more overhead in disk files but for
large files it is much better for inserting
data in the middle.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 21 Feb 2007 14:16:01 −0600
Subject: Re: Text Processing in Ada 95
Newsgroups: comp.lang.ada
An insertion into a file requires that you're
going to have to rewrite everything after
the insertion anyway. So there isn't any
way to do that cheaply if you have to do it
one insertion at a time. Thus my
recommendation is to not do it — that is,
find a better way to accomplish whatever
it is you need to do. For instance, create a
file listing the insertions as an adjunct to
the original file, and do the merge only on
rare occasions. That would allow copying
the file only rarely, and allows doing a
large number of insertions at once.
If you absolutely have do this as you
described, Pascal Obry's suggestions are
probably the best. My Trash Finder spam
filter has to do this to add header lines to
stored messages, and it uses Stream_IO to
read and write the file (that can be much
cheaper than using Text_IO, because it
does not need to look for the ends of lines

26 Ada in Context

Volume 28, Number 1, March 2007 Ada User Journal

once it has determined the insertion
point).
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Fri, 23 Feb 2007 08:51:23 −0500
Subject: Re: Text Processing in Ada 95
Newsgroups: comp.lang.ada
> Thanks everyone for the input.

I suspected as much that I would have
to do some stream_io.
Unfortunately I can't do things any
other way. The requirement is for a text
file :(

Just be cause the file is "text" on the disk,
doesn't mean you have to use
Ada.Text_IO to read and write it.
Ada.Stream_IO reads and writes "text"
files perfectly well.
If you were writing this program in C,
you would have no choice other than the
C equivalent of Ada.Stream_IO, and no
one would claim you were not using
"text" files.
And what is a "text" file, precisely?
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Thu, 22 Feb 2007 23:19:58 −0600
Subject: Re: Text Processing in Ada 95
Newsgroups: comp.lang.ada
> Actually Direct_IO is an option, and

probably the fastest way to handle the
operation.
It's kind of messy to deal with the
content of a text file in a buffer, and
will not work on systems with
structured files (like VMS) but will
work on most modern systems.

That's how you'd do it in Ada 83, but
that's an awful lot of unnecessary
complication in Ada 95 (not to mention
Ada 2007). Just use Stream_IO for this,
and you don't need instances to fill and
write your buffer. (And you can easily
start in the middle of the file and only
read part of it if that works for your
application.)
I.e.
> Step 1. Determine the initial file size
Use Stream_IO.Size(File).
> Step 2. Allocate a buffer that is the

size of the file plus the size of the string
you want to add (including a line
terminator)

Buffer : Stream_Element_Array (1 ..
Size); -- But you can make it bigger.
> Step 3. Create an instance Direct_IO

that is the file size
null;
> Step 5. Read the file into the start of

the allocated buffer in one gulp.
Stream_IO.Read (File, Buffer, Last);
> Step 6. Insert your string in the buffer

(a little tricky, but doable).
Exercise for the reader. ;-)

> Step 7. Create an instance of
Direct_IO that is the size of the buffer
with the new string.

null;
> Step 8. Write the buffer to a file as one

operation.
Stream_IO.Set_Mode(File, Out_File); --
Or Reset.
Stream_IO.Write(File, Buffer);
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: Fri, 23 Feb 2007 08:53:19 +0100
Subject: Re: Text Processing in Ada 95
Newsgroups: comp.lang.ada
I would first of all consider using
POSIX.Memory_Mapping.Map_Memory
to get access to the complete file as an in-
memory string. Here is a piece of code I
wrote recently for that purpose: [see
comp.lang.ada —su]
My reason for suggesting that you map
the file into memory is that you can avoid
messing with buffers, caching and several
copies of the file content.
If you need to make lots of insertions,
then I would consider mapping the lines
into a insertion-friendly data structure
such as a linked list. This data structure
should keep track of 'First and 'Last for
each line in the file. Inserting new lines
would simply be a matter of writing the
text of the lines to the end of the "Text"
string, and inserting a pointer at the
appropriate place in the data structure
keeping track of the lines.
The costly part of this method is to write
back the lines to the file. Since it will
have to be done one line at a time.
Depending on the number of insertions
needed, it may be cheaper simply to do
the insertions with plain string slices on
"Text".

End_of_File deprecated
From: Adam Beneschan

<adam@irvine.com>
Subject: End_Of_File but not really
Date: 7 Dec 2006 10:00:26 −0800
Newsgroups: comp.lang.ada
This is based on some of the things I've
been saying on Maciej's thread about the
Get_Line problem. I ran this test using
GNAT. Note that my input file is a disk
file, to avoid the additional issues that
arise with interactive files.

with Ada.Text_IO;
use Ada.Text_IO;
procedure IOTest is
 Line : String(1..100);
 Last : Integer;
 F : File_Type;
 EOF : Boolean;
begin
 Open(F, In_File, "f1");

 loop
 begin
 EOF := End_Of_File (F);
 Get_Line (F, Line, Last);
 if EOF then
 Put_Line ("End_Of_File
 returned TRUE but Get_Line did not
 raise an exception");
 exit;
 end if;
 exception
 when End_Error =>
 Put_Line ("End_Error
 raised");
 exit;
 end;
 end loop;
end IOTest;

If I try this on Linux, on a file whose
bytes are abc<LF><LF>, then the
message "End_Of_File returned TRUE
but Get_Line did not raise an exception".
This strikes me as bizarre — if
End_Of_File returns True, then a
subsequent read operation should raise an
End_Error, but that isn't what's
happening. One of these must be true:
(1) The RM does not allow this behavior,
and GNAT is broken.
(2) This behavior is what the RM
requires. To me, this means the RM is
broken — it just doesn't make sense to me
that End_Of_File would return True if
there is more information in the file to get
with Get_Line (even if the information is
"the presence of a blank line"). But
perhaps it's my own understanding that is
broken; perhaps my understanding of
what End_Of_File is supposed to do is
wrong, even though I think it's what a
reasonable person would expect a
function called "End_Of_File" to do.
(3) The behavior is implementation-
defined according to the RM (because the
nature of terminators is implementation-
defined), and it's possible to have an
implementation that never displays this
message and an implementation that is
capable of displaying message both
conforming to the RM. In this case,
though, I'd say (3a) the RM is a little bit
broken, because even though the
representation of terminators is
implementation-defined, it would seem
that the definitions of End_Of_File and
End_Error ought to conform to each
other, so that the above message could
never appear, and (3b) GNAT is broken,
because even though the RM allows it to
implement Text_IO in a way that causes
the above message to appear, it shouldn't
because it doesn't make sense.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: End_Of_File but not really
Date: Thu, 7 Dec 2006 18:29:52 −0600

Ada in Context 27

Ada User Journal Volume 28, Number 1, March 2007

Newsgroups: comp.lang.ada
[Number (2) above] is exactly the state.
It's the way these things were defined in
Ada 83, and required by the ACATS since
the very beginning. I'd be very surprised if
you found any Ada compiler that doesn't
have this behavior (didn't you try it on
your compiler to cross-check)?
As I noted before, there is absolutely no
chance that this behavior (or any behavior
of Text_IO) would be changed, because
there's no possible way for such a change
to be compatible. If the program "knows"
about the "lost" blank line, it might fail
badly if the definition was to be changed.
So it's 23 years too late to fix Text_IO.
The moral is simply to never use
Text_IO.End_of_File, but rather handle
End_Error instead. If you try to use
End_of_File, you have the potential of
"losing" the last line of the file, you still
can have End_Error raised if you call Get
or Get_Line when there is no <LF>
character at the end of the file, your
program will run slower, and your
program won't be able to read
interactively from the keyboard. It's not
worth it, no matter what you think about
using exceptions for non-errors.
From: Adam Beneschan

<adam@irvine.com>
Subject: Re: End_Of_File but not really
Date: 8 Dec 2006 09:02:53 −0800
Newsgroups: comp.lang.ada
[…] It might have made sense to provide
a version of Get_Line with an
"End_Of_File" OUT Boolean parameter;
this version would behave exactly like the
other Get_Line except that it would set
this parameter to True instead of raising
End_Error. That would have satisfied
people who don't like exceptions, while
avoiding the hokey semantics of the
End_Of_File function (and not requiring
Text_IO to do any look ahead). Of course,
anyone can easily write their own version
of Get_Line that works like that. I agree
that, based on the discussions in this
thread, the Text_IO.End_Of_File function
should just be avoided.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: End_Of_File but not really
Date: Fri, 8 Dec 2006 17:02:17 −0600
Newsgroups: comp.lang.ada
> […] I was under the impression that,

since the definitions of the terminators
were left up to the implementation, it
would be possible for an
implementation to define them in a way
so that things would work "correctly"
(i.e. in a way that would make sense to
me). But I guess that's not possible, or
in any case implementations aren't
expected to do this. Thanks.

No, it's not possible. That's because of the
definition of writing files.

Recall that closing a file adds (logical)
line and page terminators before the file
terminator if they are not present. Let's
show these terminators as
<EOL><EOP><EOF> (the real
representation doesn't matter).
Now consider the program:

Create (File1, …);
Close (File1);

File1 will contain just
<EOL><EOP><EOF> after this program.
Now consider the similar program:

Create (File2, …);
New_Line (File2);
Close (File2);

File 2 will *also* contain just
<EOL><EOP><EOF>.
But clearly, when you re-read these two
files, you'd expect different behavior. The
first should return End_of_File = True
immediately and raise End_Error if you
call Get_Line, and the second should
return End_of_File = False and allow a
single call to Get_Line. But these files
have the exact same contents! There is no
possible way for them to have different
behavior, even though they're clearly
different from a user perspective.
It appears that Ada 83 chose End_of_File
= True and a single call to Get_Line to
work in order that the most important
feature of each of these files works as
expected. (That is, if the last line of a file
that you write is a blank line, you can read
a blank line; and that a Get(char)
following End_of_File = False will
always work.) But the result of that is that
neither file will read quite as expected!
IMHO, it would have been better to
define End_of_File such that a subsequent
Get_Line would always raise End_Error
(it does mean that for Get(char)). But such
hindsight is 20-20.
Since these two files are identical to the
language, and certainly the ACATS could
check that they're considered identical (it
makes similar checks, I don't know if this
exact one is made), no amount of
implementor tricks can make things work
sensibly. In our implementation, the two
files would indeed have different contents
(the first would be empty and the second
would have an explicit <CR><LF> [or
just <LF>, depending on the target]}. But
that doesn't help, because we have to
consider them logically the same, since
the language does — indeed, it makes it
more complex than simply writing out all
of the markers. (Depending on all of the
markers to be present would make
Text_IO useless on files written by
something other than Ada, which would
be unusable even if it is technically
correct.)
From: Randy Brukardt

<randy@rrsoftware.com>

Subject: Re: End_Of_File but not really
Date: Mon, 11 Dec 2006 16:49:46 −0600
Newsgroups: comp.lang.ada
> Actually… couldn't the "Form" option

that is passed to Open include an option
that changes the end of file behavior?
That wouldn't break old code, but
would make new code easier.

I suppose, but it wouldn't help much,
because there is no "Form" for
Standard_Input (it's already open). So the
behavior of that can't be changed — but
that's where the worst problem is. So it's
not clear that a new "Form" would be
very useful (remember that the default
behavior would still have to be the "bad"
behavior).
It's also clear that the bad behavior is
inevitable with the current model of
terminators. So we'd need a new
underlying model, which sounds like a
mess. Besides, getting programmers
comfortable with using exceptions is a
good thing: I/O can fail in many ways
other than reaching the end, it's hardly
sensible to write any I/O without some
handlers. So I'd be more inclined to make
the End_of_File function Obsolescent —
it's much like the Constrained attribute
and specific Suppress (which are already
Obsolescent): it seems like they should
work, but they don't.
Net result: it's probably not worth the
headache.

Normalize_Scalars vs.
Initialize_Scalars
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Wed, 07 Feb 2007 14:33:29 +0100
Subject: Normalize_Scalars
Newsgroups: comp.lang.ada
[…]
error: some but not all files compiled with
Normalize_Scalars
files compiled with Normalize_Scalars
 hello.adb
files compiled without Normalize_Scalars
 ada.ads
 system.ads
 s-stalib.adb
 s-memory.adb
 […]
gnatmake: *** bind failed.
Wow.
I guess I have to recompile the world to
be able to benefit from
Normalize_Scalars. Any fast path for
dummies or should I be disappointed? ☺
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: 7 Feb 2007 05:59:13 −0800
Subject: Re: Normalize_Scalars
Newsgroups: comp.lang.ada

28 Ada in Context

Volume 28, Number 1, March 2007 Ada User Journal

> I guess I have to recompile the world to
be able to benefit from
Normalize_Scalars. Any fast path for
dummies or should I be disappointed?
☺

In a configuration pragma file I have:
pragma Initialize_Scalars;
-- pragma Normalize_Scalars; -- For all
units!
Probably it is a thing to look at.
From: Gautier de Montmollin

<gdemont@hotmail.com>
Subject: Re: Normalize_Scalars
Date: 7 Feb 2007 06:15:44 −0800
Newsgroups: comp.lang.ada
BTW
⁃ it seems that Normalize_Scalars is in
Ada 95, Initialize_Scalars is GNAT-only.
⁃ combine with -gnatVa and you'll see
bugs falling in clouds…
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: 7 Feb 2007 07:36:04 −0800
Subject: Re: Normalize_Scalars
Newsgroups: comp.lang.ada
> Portable code? ☺

But to be frank, I'm fine with GNAT-
only Initialize_Scalars. Thank you for
pointing me in this direction.

Anyway, you are not obliged to pollute
your code with testing and/or unportable
pragmas. You can put them in a file like
"debug.pra" and compile with -
gnatecdebug.pra
Advantages:
⁃ all your sources will be compiled with
the pragma
⁃ you can keep a debug/test version and
also have a fast one without changing
source.
⁃ you can use also another Ada compiler
for release (or not…).
From: Simon Wright

<simon.j.wright@mac.com>
Date: Wed, 07 Feb 2007 22:12:13 +0000
Subject: Re: Normalize_Scalars
Newsgroups: comp.lang.ada
> But bear in mind they do opposite

things!
Normalize_Scalars: "This pragma ensures
that an otherwise uninitialized scalar
object is set to a predictable value, but out
of range if possible.' (ARM95)
Intialize_Scalars: "This pragma is similar
to Normalize_Scalars conceptually …"
(GNATRM)
From: "Alex R. Mosteo"

<devnull@mailinator.com>
Newsgroups: comp.lang.ada
Subject: Re: Normalize_Scalars
Date: Thu, 08 Feb 2007 11:43:30 +0100
Mmmm, I had the following idea about
them:

⁃ Normalize_Scalars should tries to cause
an exception as soon as possible, because
it initializes to an /invalid/ value.
⁃ OTOH, Initialize_Scalars will use a
/valid/ value for the initialization.
So the former should expose bugs and the
latter hide them, for programs that don't
do proper initializations.
But I've seen after your warn that
Initialize_Scalars is tailored by the user,
so my remembrances can come from a
particular use of this pragma…

Deallocating list of
polymorphic objects
From: Michael Rohan <mrohan@acm.org>
Subject: Deallocating list of polymorphic

objects?
Date: 30 Nov 2006 15:40:27 −0800
Newsgroups: comp.lang.ada
I would like to construct a list of
polymorphic objects that, as part of the
list's finalization, deallocates the objects
on the list. Basically, I have a vector of
pointers to Object'Class. The objects are
added to the list via procedures defined
for the list, e.g., append an integer,
append a floating point. These append
procedures allocate objects derived from
the base Object type for the type being
appended, e.g., Integer_Object, which is
private to the list package.
Since I want the deallocation to be
dispatching, it needs to take an access
parameter which is then converted to a
pointer for the object being deallocated,
e.g., an Integer_Pointer, and then passed
to an Unchecked_Deallocation procedure.
[…]
However, I have a feeling there is
something "bad" about this type of
deallocation, probably related to storage
pool but I'm not familiar enough with
storage pools to be sure.
Would anyone care to comment on how
safe/unsafe this deallocation scheme is?
From: Robert A Duff
Subject: Re: Deallocating list of

polymorphic objects?
Date: Thu, 30 Nov 2006 19:05:07 −0500
Newsgroups: comp.lang.ada
You don't need to do all that by hand. It's
OK to pass access-to-classwide to
Unchecked_Deallocation. It will do the
necessary dispatching internally.
But, to be safe, you should ensure that the
result type of each "new" is the same as
the type passed to
Unchecked_Deallocation.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Deallocating list of

polymorphic objects?
Date: Thu, 30 Nov 2006 19:24:06 −0600
Newsgroups: comp.lang.ada

To deallocate the elements, then just
doing it should work fine:
 procedure Free is new
Ada.Unchecked_Deallocation
(Object'Class, Object_Pointer);
Unchecked_Deallocation of the Objects
will call Finalize on them, so that any
internal cleanup can be done. (That's
presuming that Object is also derived
from Controlled, but IMHO that should
be true of virtually all complex types in
new Ada code. Remember that Object can
still be abstract even if derived.) You
could also uses a separate "Ready-me-for-
Deallocation" dispatching routine, but that
is neither as safe nor fool-proof as just
letting Ada do it: there are special rules in
the language that insure that Finalize is
always called at least once.
The important thing here is that (using the
terminology of the Ada 2007 predefined
containers) the container is responsible
for deallocating the elements as a whole,
but any internal cleanup is the
responsibility of the elements themselves.
It's not possible (in general) to have
objects that deallocate themselves — but
that's actually a good thing: an object
should be responsible for cleaning its
contents up, but only the client can know
how that object is going to be used, and
thus how the memory should be
deallocated. Otherwise you have
unnecessary coupling between the object
and its clients: the object type cannot be
reliably used to declare objects on the
stack (or in the predefined containers, or
anywhere that non-standard storage pools
are used, etc.).
Summary: The objects and the list are
separate abstractions and should be kept
separate. The list should allocate and
deallocation elements (objects); the
objects themselves should do any internal
cleanup needed.
From: Matthew Heaney

<matthewjheaney@earthlink.net>
Date: Fri, 01 Dec 2006 12:33:35 GMT
Subject: Re: Deallocating list of

polymorphic objects?
Newsgroups: comp.lang.ada
> Can it be called more than once?
Yes. When you write Finalize you must
write it in such as way as to ensure that it
can be safely called a second time.
From: Matthew Heaney

<mheaney@on2.com>
Subject: Re: Deallocating list of

polymorphic objects?
Date: 1 Dec 2006 06:56:38 −0800
Newsgroups: comp.lang.ada
> Could you please throw some paragraph

numbers from AARM that are relevant
to this? I would like to take a closer
look at this subject. The assertion that
Finalize has to be safe w.r.t. multiple
calls is a very important one and I don't

Ada in Context 29

Ada User Journal Volume 28, Number 1, March 2007

seem to remember it being mentioned
anywhere (including The book).

I just used the search again here:
http://www.adaic.com/standards/05aarm/h
tml/AA-SRCH.html
to search for a page with all of the words
"finalize" and "twice" and this page
dropped out:
http://www.adaic.com/standards/05aarm/h
tml/AA-7-6-1.html
See RM05 7.6.1, Note 22.
You could also use Google groups to
search CLA for posts with "finalize" and
"twice" and you'll get other hits. This
subject came up a lot after Ada 95 was
released.
From: Georg Bauhaus

<bauhaus@futureapps.de>
Subject: Re: Deallocating list of

polymorphic objects?
Date: Fri, 01 Dec 2006 20:03:57 +0100
Newsgroups: comp.lang.ada
[…] Cohen's Ada as a Second Language
has many pointers. One is an index entry,
entitled "finalization invoked twice for the
same object", which leads to Controlled
types, and also to deferred abortion.
From: Matthew Heaney

<matthewjheaney@earthlink.net>
Subject: Re: Deallocating list of

polymorphic objects?
Date: Fri, 01 Dec 2006 03:52:44 GMT
Newsgroups: comp.lang.ada
The easiest way to do [that list of
polymorphic objects] is using the
indefinite form:

With Ada.Containers.
 Indefinite_Vectors;
package Object_Vectors is new
 Ada.Containers.Indefinite_Vectors
(Object'Class);

As others have pointed out, the Ada run-
time properly handles deallocation of
objects having a class-wide type, so
there's nothing special you need to do.

Unicode pitfalls
From: "Hyman Rosen"

<hyman.rosen@gmail.com>
Subject: Re: Ada generics
Date: 27 Dec 2006 11:06:36 −0800
Newsgroups: comp.lang.ada
> The "encoding language" is outside the

programming language, so it is not the
language problem

Remember that Ada wishes to be case-
insensitive, so it cannot ignore Unicode
issues if it wishes to allow Unicode
characters in identifiers. Not to mention
"normalization form KC". […]
From: Georg Bauhaus

<bauhaus@arcor.de>
Subject: Re: Ada generics
Date: Thu, 28 Dec 2006 18:35:06 +0100

Newsgroups: comp.lang.ada
> Which is a BAD idea, IMO.

We cannot know anything about
properties of letters in Klingon. As a
practical example consider Russian
where e can be used (and is) in place of
ё see […], but not reverse. Or, maybe
we should make Ada compilers capable
to detect program written by Germans
to consider ü and ue same?

Writing source code is a question of being
practical, which is probably not easily
formalized… An international character
set for portable programs seems to leave
only some choices open when they should
be practical, does it not? Naturally,
mathematical fancies like being complete,
free of contradictions, etc. are out of the
question when it comes to writing for
both humans and computers. What's the
point of having a high level language
when you are only allowed identifiers that
the most simplistic mechanical interpreter
can "understand"?
Why is it that programmers become
somewhat irrational and impractical when
it comes to character sets? They do try to
devise all kinds of pattern recognition
algorithms, tricky transformations, get the
best out of fuzzy measurement
procedures, and so on. But not so with
character sets. No no, every school child
knows that characters must be such and
such … (maybe the early exposition to
characters is to be held accountable here,
everyone is an expert ☺
Anyway, do we have some data that we
could discuss that would explain the
practical importance of Unicode/casing
issues? Or, do we have programmers who
are well versed in using a keyboard
connected to a computer and still can't
write a program that can tell apple
characters from orange characters?
GNAT already supports the detection of
identifiers that were spelled similarly. In
case of errors, it lists their "relatives".
Surely a helpful feature, and a proof that
practical handling of natural language
identifiers is possible. As an example, as
you have been referring to German,
consider that sharp s, 'ß', is usually written
"SS" when capitalized. So "Straße" tends
to become "STRASSE". Now if you have
a composite word that has
⁃ a 'ß', and
⁃ an 's' right after it,
such as "Maßstab" (= scale, rule,
yardstick), then from a simple minded
formalist's perspective I could argue:
 "Using Unicode is nonsense because
there is no 1:1 mapping for the German
word 'Maßstab' which will become
'MASSSTAB'. "SSS" is ambiguous, it
could be "sß" or it could be "ßs". That's
too big a challenge for a compiler write.
So leave me alone with your Unicode and
case insensitivity."

Is that what computer science has to
answer when asked about characters
handling?
Challenge: Try to find a significant
number of German words that have an 's'
before a 'ß'. What's the consequence of
your findings? Even if there are
ambiguities in other languages,
ambiguities are not new to Ada (and C++,
IIRC), and they have been addressed.
(It seems that the introduction of Unicode
to Scheme 6 has recently made Lisp case
sensitive based on arguments such as the
one above. To me this shows
"practicality" on the part of the language
designer, vulgo just compiler writer's
laziness.)
If the programmers' representatives (the
ARG for example) agree that it is
practical to exclude some casing rules or
"representation rules", such as "ue" <->
'ü', I'm perfectly happy. Because the rule
is practical, it helps work, and to hell
with mathematical fancies and game
theoretic character shuffling possibilities,
when they do not really matter.
> What about parsing the source right to
left, or top to bottom?
The writing direction problem is solved.
Similarly, it seems possible and practical
to connect big endian and little endian
computers, and have them cooperate
using algorithms. Both exist, as do apples
oranges, bananas, and pineapples. We can
make nice fruit salads.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Ada generics
Date: Fri, 29 Dec 2006 20:25:28 −0600
Newsgroups: comp.lang.ada
For what it's worth, Ada says that all three
of [Maßstab, Masßtab, and MASSSTAB]
represent the same identifier. That's not
ideal, but it's the best that we can do
without dropping into the character
handling mess ourselves.
This is even more interesting when you
consider that there are alternative
spellings for reserved words. For instance
"acceß" is identical to "access". (See
2.3(5.c/2) in the AARM for more
examples). We wrestled with that quite a
while before deciding that such identifiers
had to be illegal (2.3(5.3/2)); we didn't
want them appearing in programs in place
of reserved words.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Ada generics
Date: Wed, 3 Jan 2007 19:09:17 −0600
Newsgroups: comp.lang.ada
> Would "acce?" with Greek beta (?) and

"if" with Cyrillic ? in it be valid
identifiers?

Sure, the upper case of a Greek beta is
still a Greek beta, it's not "SS" (and
doesn't look anything like "ss", either). I

30 Ada in Context

Volume 28, Number 1, March 2007 Ada User Journal

don't know much about Cyrillic, so I don't
know the answer to that (but I suspect you
do).
I would guess that you'll want some
external style rules to prevent bogus
mixing of letters from different character
sets. That's not any worse that the style
rules for capitalization and indentation
that GNAT can enforce.
I've always limited myself to using the
characters commonly available on
Windows systems (roughly 680 glyphs),
and there needs to be something that
checks for use of letters that won't
necessarily display well. But all of that is
outside of the language.
It should be pointed out that one of the
reasons for Ada's support of Unicode is
that we had a long discussion of how to
support Latin-9 (which contains the euro
symbol). Eventually, we decided that that
way lies madness — at least by using
Unicode, there is only one definition to
worry about, rather than a set of them. My
only regret is that we didn't find a way to
include real runtime UTF-8 support in the
language: it's wasteful to store everything
as 32-bit characters.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Ada generics
Date: Thu, 4 Jan 2007 19:32:26 −0600
Newsgroups: comp.lang.ada
> My God. A good third of the Latin and

Cyrillic glyphs are same. Practically all
vowels are. That means that *any*
reserved word of Ada can be spelt as a
proper identifier!

Yes, and so what? There would be little
ambiguity introduced by using (say)
"overriding" as an identifier, so the
meaning would be obvious to the reader,
and it won't confuse the compiler (usually
it's more confusing to the writer who
didn't remember that some word is
reserved). There are some of them that
should be avoided, of course, but there
aren't many of those.
However, you alluded to a real concern in
another message. That is, it's possible to
write two different identifiers that look
the same. That would be confusing and
possibly cause problems. But that's
already possible (depending on the font),
so it just is a slight expansion of a
problem that already exists. And it
certainly can be handled with style
checkers (identifiers containing mixes of
Latin, Cyrillic, or Greek characters are
suspicious, as are identifiers differing
only by the replacement of Latin
characters with Cyrillic equivalents).
If that is a real concern, just insist that all
of your programs are edited with a 1984-
vintage MS-DOS editor (like I do ;-), and
you won't possibly be able to have a
problem. Indeed, I expect most
programmers will continue to do this (use

tools that don't support Unicode), so any
new problems will be limited.
> (and of course, there is no any chance to

reverse this nightmare…)
I don't see a nightmare, but I do see a
need to have decent style rules around the
writing of identifiers. That's necessary
even in Ada 83, they're just more complex
now.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Organization: Adalog
Subject: Re: Ada generics
Date: Fri, 05 Jan 2007 10:08:32 +0100
Newsgroups: comp.lang.ada
☺ This check is already implemented in
the wavefront version of AdaControl (not
yet in the public version).
From: Georg Bauhaus

<bauhaus@arcor.de>
Subject: Re: Ada generics
Date: Fri, 29 Dec 2006 20:39:05 +0100
Newsgroups: comp.lang.ada
> [Computer Science] is all about

introducing formal languages in place
of natural ones, for obvious reasons.

But Unicode and/or ISO 10646 *are*
formal things.
> Corollary: never ever make a formal

language (Ada) dependent on a natural
one (German). That would make the
former natural.

I don't see how identifier rules are natural
(not formal), whatever the natural
language is that guides the choice of
names in a particular program. Because of
I18N efforts tool makers can do some
work to make programming easier for
humans, even if this means supporting
more than the most trivial interpretation
of character bit patterns.
Take Google as an example of why
finding things that were spelled
"incorrectly" is so immensely useful. And
successful.
From: Georg Bauhaus

<bauhaus@arcor.de>
Subject: Re: Ada generics
Date: Sat, 30 Dec 2006 15:53:24 +0100
Newsgroups: comp.lang.ada
> Because these rules are subject of

endless chaotic political changes.
I don't know about ISO or ARG political
changes — besides the rather interesting
glimpses at language debates during Ada
9X in the archives, if you want to call this
politics.
But where is the chaos in the simplified
Unicode rules that have been adopted for
Ada 2005 (or 2007)? You won't need
thermodynamics to find out whether or
not a given word is an identifier?
Should the characters '1' and 'l' be
removed from the Ada standard
characters because that's a similar chaos?

Should there be a ruling about
Finalisation versus Finalization?
> Do you want programming languages
acting as Google?
No, by referring to the usefulness of
Google search I meant that
 ⁃ People value Google search service
because it finds things, even noticing
possible spelling errors, and it overcomes
lack of structure of "the Internet".
 ⁃ Programs have spelling errors, lack
perfect structure.
 ⁃ Program analysis will provide better
errors/warnings/info if identifier spelling,
syntax, languages, etc. are given the
attention they deserve instead of asking
humans to always provide proper, clean,
simplified input.
Perhaps compilers can profit from a
notion of Almost-Homograph. Something
like soundex. When "overriding" is
missing, this circuitry could warn
programmers of too similar identifiers. Or
of a possible misspelling of Finalisation.
Or was it Finalization?
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Ada generics
Date: Thu, 28 Dec 2006 18:09:20 −0600
Newsgroups: comp.lang.ada
> As a practical example consider Russian

where e can be used (and is) in place of
ё see […], but not reverse. Or, maybe
we should make Ada compilers capable
to detect program written by Germans
to consider ü and ue same?

The Unicode standard has grappled with
these issues and produced results which
are useful for the vast majority of
languages. Surely Ada is not going to
repeat that work (and arguments). And
Ada is not going to drop case insensitivity
and start claiming that "this" and "This"
are somehow different.
> They reap what they sowed. Should
Ada or C++ go into that mess?
Well, that's irrelevant because they have.
Ada 2005 says that the semantics of a
program not in Normalization form KC
are implementation-defined. (2.1(4.1/2)).
That was done because there was concern
about programs that are represented
differently being treated the same (we
originally considered requiring converting
into that form).
Similarly, upper case conversion is
defined by various Unicode properties
(such as Upper Case Mapping) (2.1(5/2)).
It should be noted that such conversions
aren't necessarily reversible, but that's
irrelevant to identifier equivalence.
Identifier equivalence is defined in 2.3(5
– 5.3/2).
This is more complicated than the
English-only definition, but it was thought
to be mandatory to get approval of a new

Ada in Context 31

Ada User Journal Volume 28, Number 1, March 2007

standard. (This sort of internationalization
is being required of all languages: C++
has a number of proposals on the table for
handling this as well.) It's also a
ramification of case insensitivity — the
only alternative would be to completely
abandon it, and that would be very bad for
compatibility with Ada 95.
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Ada generics
Date: Fri, 29 Dec 2006 20:40:46 −0600
Newsgroups: comp.lang.ada
> I don't see why letters of identifiers

must be all Unicode letters. I wouldn't
allow anything but Latin. In any case it
just cannot be open-ended.

Because higher ups at ISO/IEC has said
that such things need to be allowed. If you
want an ISO/IEC standard, you have to be
responsive to their wishes. Personally, I
think anything beyond 8-bit characters is
going too far (even for strings): if it's not
worth doing in English, its not worth
doing! [For me, the universe revolves
around Madison, WI and everyone should
speak (American) English (dropping all of
those other archaic languages) so that
everyone can communicate without
unnecessary barriers. This is very similar
to my stand on Ada vs. other
programming languages. But I'm not
particularly surprised when someone
disagrees with any of those positions… ;-
)]
And it's not "open-ended". It follows a
published standard (Unicode), just like the
earlier versions of Ada followed other
published standards (ISO/IEC 10646 in
the case of Ada 95).
In any case, Unicode identifiers are part
of the Ada Amendment. And I would be
very surprised if we went backwards on
that; such a change would be very
incompatible. (I personally don't believe
that many programs will use Unicode
identifiers, but it's likely to be non-zero,
maybe 5%.)

Why is task termination
disallowed in Ravenscar?
From: Ludovic Brenta

 <ludovic@ludovic-brenta.org>
Date: Mon, 29 Jan 2007 20:53:34 +0100
Subject: Re: Ravenscar — program

termination
Newsgroups: comp.lang.ada
> The N442 document states that

Ravenscar profile forbids task
termination. I understand that task
termination is the fact of a task
finishing its job and completing.
Do I understand correctly that
Ravenscar programs are by definition
running forever? What about programs
that are expected to finish?

Yes, it is my understanding as well, and
I'm happy with that.

I remember being impressed with Ada
because you could write an infinite loop
without a faked up condition. The idea
being that in Ada the typical infinite loop
would normally be terminated by
detonation. —Larry Wall
The Ravenscar profile is specifically
targeted at high-integrity systems, where
infinite loops are, I think, the norm.
From: Matteo Bordin

<matteo.bordin@gmail.com>
Date: 30 Jan 2007 06:24:44 −0800
Subject: Re: Ravenscar — program

termination
Newsgroups: comp.lang.ada
> Sorry, but I don't see anything in the

concept of high-integrity software that
would make it a norm. High-integrity
software is a set of quality objectives,
whereas infinite loops are (or aren't)
part of system requirements. These
should stay independent, even though I
understand that expectations for both
often come in pairs.

The Ravenscar profile is aimed to high-
integrity real-time systems. A static set of
working tasks is a requirement to perform
sound feasibility analysis (at least within a
given execution mode).
> Still, it looks like I cannot say:

pragma Profile(Ravenscar);
in my Hello World program even
though this program meets the
objectives of the profile. That's not fair!
☺

On real-time kernels supporting the
Ravenscar profile, even the main
procedure must contain an infinite loop.
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: Wed, 31 Jan 2007 09:12:40 +0100
Subject: Re: Ravenscar — program

termination
Newsgroups: comp.lang.ada
> If Ravenscar really requires that the

main procedure be non-terminating, I'm
happy to learn that. From a very formal
point of view I guess this requirement
means that the kernel need not
implement "await for task termination"
even in the environment task.

Indeed, one of Ravenscar's goals is to
make the necessary kernel easy to certify
to the most stringent safety standards. As
with all high-integrity software, the best
way to achieve this is to make things
small and simple. So, not only does
Ravenscar avoid the need to wait for task
termination, but also the tasking model
(priority ceiling inheritance) avoids the
need for locks completely. Imagine a
tasking kernel with no mutexes ☺
Ravenscar is beautiful, IMHO.
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Tue, 30 Jan 2007 17:48:52 GMT

Subject: Re: Ravenscar — program
termination

Newsgroups: comp.lang.ada
> Well, it terminates. What does

termination mean in a "high integrity"
embedded system — does the hardware
go away? ☺ I think if someone wants to
shutdown such a system the thing
happening is, that every task goes into
idle mode and the last thing a
controlling task does, is, to display (or
otherwise indicate) "you may now shut
off power, the countdown to eject the
warp core has been stopped" or
something like this.

Termination in an embedded system often
means the processor no longer has power
☺
From: Ludovic Brenta

<ludovic@ludovic-brenta.org>
Date: Wed, 31 Jan 2007 10:59:03 +0100
Subject: Re: Ravenscar — program

termination
Newsgroups: comp.lang.ada
> I wrote a Hello World program and I

want to impress my boss telling him
that my program complies with
Ravenscar recommendations. That
sounds much more serious than a plain
dumb Hello World program!

A high-integrity "hello world"? With
tasking? ☺

pragma Profile (Ravenscar);
with Ada.Text_IO;
with Ada.
 Synchronous_Task_Control;
procedure Hello is
 Blocker : Ada.
 Synchronous_Task_Control.
 Suspension_Object;
begin
 Ada.Text_IO.Put_Line("Hello
 Ravenscar!");
 -- loop
 -- null;
 Ada.
 Synchronous_Task_Control.
 Suspend_Until_True (Blocker);
 -- end loop;
end Hello;

That should solve your CPU utilisation
problem ☺
> OK, back to serious mode.

One of the Ravenscar objectives is to
allow implementations to provide
stripped-down runtime when the profile
is requested. This is a nice feature, even
for programs that are not safety-critical
in nature. How does GNAT handle
this? Can I expect it to build smaller
(faster?) executables when I say
pragma Profile(Ravenscar) provided
that the program complies to all the
restrictions anyway?

32 Ada in Context

Volume 28, Number 1, March 2007 Ada User Journal

I'm not sure how GNAT handles this, and
I think it depends on the target. It makes
no sense at all to write high-integrity
software running on a low-integrity
operating system (not to mention low-
integrity hardware); the intention is that
the high-integrity Ravenscar run-time
kernel *is* the operating system.
As a consequence, Ada.Text_IO in a
high-integrity system makes little sense,
unless you have a high-integrity console
driver. Since the console driver would be
hardware-dependent, you'd have to write
your own to complement GNAT's
minimal Ravenscar tasking kernel.
I think that's why, in effect, high-integrity
implies embedded.
In low-integrity, non-embedded software,
you cannot benefit from the "minimal
kernel", "lock-free operation" or
"configurable scheduling policies", but
you can benefit from other inherent
properties of the tasking model, which
reduce the opportunities for deadlocks.
PS. Keep in mind that calls to
Ada.Text_IO.Put_Line are "potentially
blocking", so you cannot call them from a
protected object in Ravenscar. See ARM
9.5.1(8, 10), D.13.1(4/2), H.5(5/2).
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Tue, 30 Jan 2007 21:15:18 +0200
Subject: Re: Ravenscar — program

termination
Newsgroups: comp.lang.ada
> On real-time kernels supporting the

Ravenscar profile, even the main
procedure must contain an infinite loop.

[…] I have seen a Ravenscar Ada
implementation that requires the main
procedure to end with an infinite loop, but
I think that is a non-standard requirement.
A trivial one, of course.
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Wed, 31 Jan 2007 09:53:53 +0200
Subject: Re: Ravenscar — program

termination
Newsgroups: comp.lang.ada
> Then what would happen if there were

no tasks other than the environment
task?

OK, good point. If a Ravenscar program
has no tasks (other than the environment
task) then the main procedure must not
terminate, agreed. (Also there must *be* a
main procedure.)
> The RM wording says "all tasks", and
that includes the environment task.
If I remember correctly the
documentation for that implementation
said that it was a non-standard
requirement. The reason given for this
requirement was very implementation-
dependent: the main procedure became
the "idle task" for the scheduler, which
required that the idle task be always

"ready", therefore the main procedure was
not allowed to terminate. But of course
the documentation may have been wrong
to say it was non-standard.
If Ravenscar really requires that the main
procedure be non-terminating, I'm happy
to learn that. From a very formal point of
view I guess this requirement means that
the kernel need not implement "await for
task termination" even in the environment
task.

GNU/Linux Magazine
France Ada series
From: Yves Bailly <kafka.fr@laposte.net>
Date: Mon, 05 Feb 2007 18:54:58 +0100
Subject: Re: Ada is popular after all
Newsgroups: comp.lang.ada
[…]
> Another thing that makes Ada trendy

nowadays is the enduring series of
articles by Yves Bailly in GNU/Linux
Magazine France. The December issue
contains article #14 in the series,
ending with a mention of "the next
article"…

Thanks for noting them ☺ I hope you
found them valuable enough, you most
probably didn't learn anything, but
hopefully some might "see the light". I
can say that I received numerous feedback
for those articles (asking for source code,
more details, etc.), already more than for
my serie on Qt (C++, 24 on Qt3, 8 on
Qt4). So yes, it seems that Ada is rather
popular after all.
If you have any comment about the
articles, please let me know.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Mon, 05 Feb 2007 21:28:09 +0100
Subject: Re: Ada is popular after all
Newsgroups: comp.lang.ada
Just one: they're really good. I bought all
issues of GMLF where they appear,
except for Jan and Feb 2007 because I
couldn't find them in Brussels. Keep up
the good work!
At a local GNU/Linux copy party, I once
introduced Ada to two students in CS, and
noted that "unfortunately Ada is not a
fashionable language". One of the
students said: "oh yes, it is fashionable,
what with all these articles in GNU/Linux
Magazine France!"
I hope you find more to say about Ada in
future articles. It seems you've now
covered pretty much everything about the
language, but maybe (just a suggestion)
you might like to extend the series with
Toy Lovelace, Qt4Ada or GtkAda?
From: Frederic Praca

<frederic.praca@freebsd-fr.org>
Date: Mon, 5 Feb 2007 22:05:49 +0100
Subject: Re: Ada is popular after all
Newsgroups: comp.lang.ada

And (another suggestion) why not talking
about Open Ravenscar
(http://polaris.dit.upm.es/~ork/) or
MarteOS (http://marte.unican.es/) which
allow to code in Ada for Real Time
embedded systems ?
From: Yves Bailly <kafka.fr@laposte.net>
Subject: Re: Ada is popular after all
Newsgroups: comp.lang.ada
Date: Tue, 06 Feb 2007 00:11:53 +0100
About ToyLovelace, I'm trying to
convince Xavier Grave (the author) to
write something about it by himself.
Qt4Ada is not yet enough advanced I'm
afraid (but it's improving). And there has
been already an article about GtkAda in
GLMF:
http://www.fdn.fr/~sdescarp/realisations/a
rticles/LM66/LM66_Ada GTK+, le duo
gagnant.html Also, I don't know Gtk well
enough to write anything sensible about
it.
I was trying to write something about
Annex E, using Glade, but with no luck. It
seems there are some problems in the
latest Glade, at least it's what have been
said in this forum (the thread starting at
"Help with Glade (Annex E) on
Windows" by Gene).
About OpenRavenscar or MarteOS (to
answer Frederic), I have absolutely *no*
experience in real-time or embedded
programming, so I won't write anything
about it. But if you wish to write
something yourself, I'd be glad to
introduce you to GLMF's redactor-in-
chief. […]

Ada and microcontrollers
From: "Talulah"

<paul.hills@uk.landisgyr.com>
Subject: Re: Translating an embedded C

algorithm
Date: 17 Jan 2007 05:31:28 −0800
Newsgroups: comp.lang.ada
[…] Since the majority of embedded RT
projects ARE written in C, then the
majority audience for the book will be
interested in seeing examples written in
C. That is no reflection on the "quality" of
the language, but is just facing facts. […]
This is not a safety-critical product at all,
but one which in those volumes must be
designed for the lowest cost possible.
Hence the use of 4 diodes as a
temperature sensor, and hence (this may
get more argument) the use of C rather
than Ada. Crossing an 8k ROM boundary
(the current code is just over 32kbytes)
adds 3 pence (UK) to the cost on this
microcontroller (Renesas H8/3827).
Multiply that by 18 million and the
resulting half million UK pounds is the
reason I program in C. Thirdly, I am
thick-skinned enough to brush off
rudeness from newsgroup posters, it is
just a shame that you decided not to post
any useful comments.

Ada in Context 33

Ada User Journal Volume 28, Number 1, March 2007

[…] It hopefully will allow readers to see
the advantages that Ada can give them,
and encourage them to research Ada as a
possible language for future products that
would benefit from these advantages, but
also to understand the disadvantage of
code size and speed (hard hat firmly in
place after that!).
I understand now that a direct translation
of the code into Ada would not be a good
illustration of the Ada language, and that
an example which performed the same
calculation, but added the additional
useful features would better serve. I have
been sent an example written by a
member of your newsgroup which does
this, introducing better protection. I will
also write a section in the text describing
why a direct translation is a bad idea, and
demonstrate how the extra features have
made the code much more reliable. […]
From: Talulah

<paul.hills@uk.landisgyr.com>
Date: 18 Jan 2007 06:19:26 −0800
Subject: Re: Translating an embedded C

algorithm
Newsgroups: comp.lang.ada
[…]
> Where we have hard data, they show

that Ada reduces development costs by
1/2 over C, reduces post-deployment
errors by 1/4, and reduces the cost to
fix an error by 1/10.

I accept that may be the case. However,
there are no Ada tools for very many
microcontrollers. The cost drives the
choice of microcontroller, and the
microcontroller then drives the choice of
development system.
> There is a least one documented case of

Ada producing smaller code than hand-
optimized assembler.

I love these statistics. There's a Java
vendor who reckons the byte code runs
faster than C as well. You can prove
anything if you have choice over the tools
that you use to produce the results. This
"hand coded assembler" could mean
anything — it could mean taking Ada
compiled code and ADDING instructions
to it!
Thinking logically, if the assembler coder
was any good, he can always produce
code of equal size to compiled code, and
should always produce tighter code. It just
depends what he is trying to prove, and
who has sponsored him to do the work!
> Dewar has a number of examples of

equivalent Ada and C code that produce
identical object code. Thus, the
assumption that C is necessary to keep
costs down is unsupported, a fact that
anyone qualified to choose the
language for such SW should know.

When was the last time you wrote an Ada
program to run on a microcontroller such
as a PIC or ATMega48, i.e. something
around the $0.50 price mark? And can

you tell me a compiler vendor? C
compilers are available for both these
devices. Therefore most embedded
developers (who are not in the military
market and where cost is the greatest
issue) cannot choose the language they
develop in. […]
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Fri, 19 Jan 2007 04:52:22 GMT
Subject: Re: Translating an embedded C

algorithm
Newsgroups: comp.lang.ada
> There is Ada for every microcontroller

with an ANSI C compiler. See
http://sofcheck.com/products/adamagic.
html

I've seen the compiler in use at Praxis,
precisely to allow high-integrity SW in
SPARK to target a microprocessor
without a dedicated Ada compiler. It
worked much like any other compiler.
From: Warner BRUNS

<Warner.Bruns@cern.ch>
Date: Fri, 19 Jan 2007 11:13:47 +0100
Subject: Re: Translating an embedded C

algorithm
Newsgroups: comp.lang.ada
I have purchased the AdaMagic Ada to C
translator from SofCheck, after trying it
out for some weeks. I am using it since
several years as my main Ada compiler. I
did not get it via a download but I did
send an email, stating my requirements,
and they could be met.

Checks in Ada and C
From: Larry Kilgallen

<Kilgallen@SpamCop.net>
Subject: Re: C compiler warnings
Date: 4 Dec 2006 22:24:24 −0600
Newsgroups: comp.lang.ada
> […] It seems to show that while Ada is

going in one direction (strict compiler
checking of code), C is going in the
opposite direction (assume the
developer knows what he/she is doing).

The quote does not say "C" is going in the
opposite direction from Ada. It shows at
most that a particular implementation of
"C" is going that way. The HP (nee
Compaq (nee DEC)) C compiler on VMS
has been steadily getting more and more
checks added to find programmer errors.
Of course it can never do so much as an
Ada compiler, but it is not the case that all
C compilers are decreasing their level of
checking.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: Re: C compiler warnings+0100
Newsgroups: comp.lang.ada
> Going in the opposite direction? C's

basic design philosophy has always
been to make that assumption. It seems
to me that the C compilers with

extensive warnings are the ones going
in an unusual direction.

The initial C design was. But its further
evolution has always been in the direction
of becoming more contract-based, more
like Ada. The difference though was in
the treatment of contracts. In C
traditionally less attention was paid to
enforcing the contract on both parties.
The contract (nonull) was assumed on the
callee's side, but ignored on the caller's
one. The rationale probably was that C
usually does not try to enforce the
contracts at run-time (Ada does). This can
explain why nonull was not attempted to
check. It is not fully statically checkable.
So why should we bother?
> I wish they'd all get rid of the warnings;

then maybe more people would use a
well designed language.

I don't think so. They just would use more
and more tools instead. It is the tool
chains which compensate language
deficiencies. Just look around, people are
ready to invest into tools, which should by
sole magic compensate for everything,
from the use of C++ to mismanagement.
A tool might cost several thousands of
dollars, and it could be dozens of them.
Try to sell a compiler for that money.
Something is deeply wrong in all this.

Embedded Ada learning
From: "Mike Silva"

<snarflemike@yahoo.com>
Date: 22 Feb 2007 16:59:09 −0800
Subject: Preferred OS, processor family for

running embedded Ada?
Newsgroups: comp.lang.ada
[…] I'm a long-time embedded
programmer and a dabbler in Ada (I'd use
it more if I could get paid for it). Now I'd
like to play around with Ada on a single-
board computer. I have no particular
goals in mind other than to try something
"neat". So, what is likely to be the
quickest, most foolproof way for me to
get from here to there?
I'm assuming I'll want an OS on the board
for the runtime stuff. Would one of the
*BSDs or Linux be the way to go? If so
and given my intentions, would there be a
reason to choose one over the other? My
contrary side wants to try a *BSD, but I
have no experience in any of them _or_
Linux.
And what about processor family? I was
thinking ARM or Coldfire or PPC
(something in the MPC5xx family
maybe). Again, would there be an Ada-
or OS-related reason to choose one over
the others?
I did ask an abbreviated version of this
question at the bottom of another thread,
but I'm hoping this thread will have more
visibility. So, is all of this do-able by a
mere mortal? Many thanks for any
advice!

34 Ada in Context

Volume 28, Number 1, March 2007 Ada User Journal

From: "Mike Silva"
<snarflemike@yahoo.com>

Subject: Re: Preferred OS, processor family
for running embedded Ada?

Date: 23 Feb 2007 05:13:13 −0800
Newsgroups: comp.lang.ada
[…] I was asking in terms of what OSes
and/or processors might have better
support, or fewer gotchas. What I want to
avoid is the situation where some port or
feature X has not been kept up to date, or
is known to have problems. For example,
I believe I remember some years back that
there was a problem or poor performance
with some version of Linux threads. That
kind of thing. What I want to do is not
accidentally drift so far out of the
mainstream that I cause myself grief.
> For getting quickly and easily into

embedded Ada, you could try Lego
Mindstorms. There's a free Ada =>
NQC compiler available. This is not the
preferred way, of course, but it is a
way.

I appreciate that suggestion, but I'd like to
work with a 32-bit mainstream processor
family. While my goal now is just to play
around, if I could use what I learn in some
real products down the line so much the
better. It's that hopeful thing about maybe
getting paid to do Ada (after I first have
some fun with it).
From: Steve <steved94@comcast.net>
Subject: Re: Preferred OS, processor family

for running embedded Ada?
Date: Thu, 22 Feb 2007 20:41:57 −0800
Newsgroups: comp.lang.ada
Two free RTOS I am aware of are
RTEMS and MaRTE:
http://www.rtems.com/wiki/index.php/
RTEMSAda
and:
http://marte.unican.es/
These both work with GNAT.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Subject: Re: Preferred OS, processor family

for running embedded Ada?
Date: Fri, 23 Feb 2007 08:56:00 −0500
Newsgroups: comp.lang.ada
[…] There are several readily available
solutions to the requirements as you state
them.
They all cost money, several thousands of
dollars. You don't say how much money
you are willing to spend; is $10k too
much?
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Sat, 24 Feb 2007 05:45:37 −0500
Subject: Re: Preferred OS, processor family

for running embedded Ada?
Newsgroups: comp.lang.ada
> As this is just a hobby/learning thing at

the moment, $10k is way, way too
much. I'd like to keep the cost including

SBC under, say, $1000. Do I dream the
impossible dream? I hope not, because
I'd really like to give this a try and
perhaps learn enough to use embedded
Ada commercially down the line (at
which time somebody else could fork
up the $10k).

My main job at work is building a satellite
simulator (GDS;
http://fsw.gsfc.nasa.gov/gds/). It's a hard
real-time system. Some people would say
it's not "embedded" because it has an
Ethernet connection to a sophisticated
user interface, but that's another
discussion.
I develop all of the software for GDS on
Windows. I've written emulation
packages for some of the hardware. I do
this because it's easier to debug top level
code without the hardware getting in the
way, and the development tools (Emacs,
GNAT, GDB) work better on Windows
than on the target OS (Lynx). Once it's
working on the emulator, then I run it on
the real hardware. Sometimes it Just
Works, sometimes I have to get out the
scope and see what's going on. In that
case, I try to fix the emulator so I won't
have to use the scope again ☺ Using the
scope can be fun, but it's always way
slower than using gdb or higher-level
tests.
So I suggest you take a similar approach.
Make up some hardware that you'd like to
play with, and write an emulator for it.
Then write some code to make that
hardware dance. […]
If I was hiring (which I'm not), I'd look
for someone who can implement
algorithms from simple problem
descriptions. That's my biggest need.
Understanding how to use a scope to
debug hardware problems is also good,
but not as important. It's easier to learn
that on the job.
If you want to expand into "real
hardware", there are data acquisition and
control devices that plug into PCI slots,
and come with Windows drivers. I don't
use them, but I think they are fairly
inexpensive. Anything for Windows is
going to be the cheapest solution, because
of economies of scale. And they are "real-
time" enough to get your feet wet.
From: "Mike Silva"

<snarflemike@yahoo.com>
Date: 24 Feb 2007 11:11:04 −0800
Subject: Re: Preferred OS, processor family

for running embedded Ada?
Newsgroups: comp.lang.ada
> You can do all of that on free software

and cheap hardware.
It's that "make the hardware dance" part
that seems much more complicated with
Ada than with C-plus-an-OS (but the
benefits seem much greater as well). That
is to say, choosing an underlying runtime
enviornment and getting it not only set up

on the hardware, but integrated with the
GCC Ada compiler. So, ignoring the
question of preferred processor families
(least amount of unnecessary gotchas),
I'm still wondering about which OS is the
best choice to get something up and
running. Can anybody comment on the
relative merits and troubles of running
Ada on Linux, one of the *BSDs, and
RTEMS?
> Another area to explore is FPGA

programming. […] FPGA development
relies heavily on simulation, which
does not require real hardware.
If you are ambitious, you can try to tie
the ghdl simulator to your Ada code, to
allow testing the Ada interface to the
FPGA in simulation. I haven't done that
yet, but I wish I could.
Someone who can do both Ada and
VHDL would be a very valuable
person!

Well, I did pick up a VHDL book a while
back. Maybe it's a sign ☺ But first I want
to get Ada running on a SBC.
From: "Mike Silva"

<snarflemike@yahoo.com>
Subject: Re: Preferred OS, processor family

for running embedded Ada?
Date: 1 Mar 2007 12:22:05 −0800
Newsgroups: comp.lang.ada
[…] I've ended up going down a
somewhat different path, for now at least.
I've gotten this board
http://www.olimex.com/dev/lpc-
e2294rb.html because it has just about the
right mix of horsepower and features for
some ideas I have. I know this board isn't
big enough to run Linux or FreeBSD, so I
am going to look at Ada on RTEMS
instead. But again, thanks for the follow-
up, and I am going to look up the UNC90
as well.

Ada and VHDL
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Sat, 24 Feb 2007 07:27:01 −0500
Subject: Re: Preferred OS, processor family

for running embedded Ada?
Newsgroups: comp.lang.ada
> Someone who can do both Ada and

VHDL would be a very valuable
person!

I'm always surprised that VHDL
engineers are not more open to Ada given
how close the syntax is. The standard joke
where I work is that VHDL is just like
Ada except the capslock is always stuck
on and comments are apparently
forbidden ;)
From: "Dr. Adrian Wrigley"

<amtw@linuxchip.demon.co.uk.uk.uk>
Subject: Re: Preferred OS, processor family

for running embedded Ada?
Date: Sat, 24 Feb 2007 22:10:22 GMT
Newsgroups: comp.lang.ada

Ada in Context 35

Ada User Journal Volume 28, Number 1, March 2007

I came to Ada from VHDL. When I first
encountered VHDL, my first though was
"Wow! You can say what you mean
clearly". Features like user defined types
(ranges, enumerations, modular types,
multi-dimensional arrays) gave a feeling
of clarity and integrity absent from
software development languages.
So when I found that you could get the
same benefits of integrity in software
development from a freely available
compiler, it didn't take long to realize
what I'd been missing! Ada is without
doubt the language at the pinnacle of
software engineering, and infinitely
preferable to Pascal, C++ or Modula 3 as
a first language in teaching.
But I have ever since wondered why the
VHDL and Ada communities are so far
apart. It seems like such a natural
partnership for hardware/software co-
development. And there is significant
scope for convergence of language
features — fixing the niggling and
unnecessary differences too. Physical
types, reverse ranges, configurations,
architectures, defered constants and ultra-
light concurrency come to mind from
VHDL. And general generics, private
types, tagged types, controlled types from
Ada (does the latest VHDL have these?)
Perhaps a common denominator language
can be devised which has the key features
of both, with none of the obsolescent
features, and can be translated into either
automatically? Something like this might
allow a "rebranding" of Ada (i.e. a new
name, with full buzzword compliance),
and would be ideal to address the "new"
paradigm of multicore/multithreaded
processor software, using the lightweight
threading and parallelism absent from
Ada as we know it. For those who know
Occam, something like the 'PAR' and
"SEQ" constructs are missing in Ada.
While the obscenities of C-like languages
thrive with new additions seemingly
every month, the Pascal family has
withered. Where is Wirth when you need
him?
(Don't take it that I dislike C. Or
assembler. Both have their legitimate
place as low-level languages to get the
machine code you want. Great for
hardware hacking. Lousy for big teams,
complex code.)
One can dream…
From: Rod Chapman

<rod.chapman@praxis-cs.co.uk>
Subject: Re: Preferred OS, processor family

for running embedded Ada?
Date: 25 Feb 2007 05:10:51 −0800
Newsgroups: comp.lang.ada
> Where is Wirth when you need him?
In retirement. He did give the after-
dinner speech at the VSTTE conference in
Zurich in 2005, and he was brilliant. I
wish I could remember exactly what he

said about C++ — I think the word
"abomination" was in there somewhere…
☺
I met him afterwards and had a brief
chance to chat and thank him for his
influence on SPARK.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Sun, 25 Feb 2007 10:08:57 −0500
Subject: Re: Preferred OS, processor family

for running embedded Ada?
Newsgroups: comp.lang.ada
I haven't actually studied the additions in
VHDL 2003, but I don't think most of
these Ada features make sense for VHDL.
At least, if you are using VHDL to
program FPGAs.
And reverse ranges make things
ambiguous, especially for slices of
unconstrainded arrays. So I don't want to
see those in Ada.
One big problem with VHDL is that it
was not actually designed for
programming FPGAs; it was designed as
a hardware modeling language. People
discovered that you can sort of use it for
FPGA programming, and it was the only
standard language available for that
purpose. There are many things that you
can say in VHDL that make no sense in
an FPGA, so each compiler vendor picks
a slightly different subset of VHDL to
support for FPGAs, and gives things
different meanings.
Why would you want to translate [Ada
and VHDL] into each other? The
semantics of VHDL are _significantly_
different from Ada. A VHDL process is
not an Ada task.
Although I suppose if you decided to use
VHDL to write code for a CPU instead of
an FPGA, you could decide that they were
the same.
From: "Dr. Adrian Wrigley"

<amtw@linuxchip.demon.co.uk>
Date: Mon, 26 Feb 2007 21:18:20 GMT
Subject: Re: Preferred OS, processor family

for running embedded Ada?
Newsgroups: comp.lang.ada
> Have you looked at AADL?
I hadn't seen this. Interesting.
It looks quite similar in some respects to
what I was thinking of. Particularly the
emphasis on multiple representations of
the underlying program (graphical, XML,
plain text etc).
It looks like it draws together aspects of
VHDL and Ada without really being
based on either. Is it going to be the next
Big Thing?
From: Jerome Hugues

<hugues@antigone.enst.fr>
Subject: Re: Preferred OS, processor family

for running embedded Ada?
Date: Wed, 28 Feb 2007 12:25:22 +0000

(UTC)
Newsgroups: comp.lang.ada

> A lot of people is trying to make this
happen ☺ In an nutshell, AADL is a
design language at system level; many
concepts are inherited from Ada, and
you'll find many Ada people involved
(Joyce Tokar did the Ada binding), as
well as AADL presentations at Ada
conferences.

AADL is not just a design language, it
also allows you to perform a wide range
of checks and code generation on high
level models, or some refinements of
them.
We, at ENST, are developping Ocarina,
that includes an AADL-to-Ada code
generator. We got some interesting results
in generating Ada code that matches
many restrictions from the HIS annex
from AADL models.
See http://ocarina.enst.fr/ for more details
Also, Cheddar, the scheduling tool-suite,
has some support for AADL, same goes
for STOOD from Ellidiss.
Which means, as stated by Jean-Pierre,
that the Ada community is also involved
in this language, and that links between
the two are strong.

Structured exception
information
From: Robert A Duff
Subject: Re: Structured exception

information
Date: Mon, 15 Jan 2007 12:28:14 −0500
Newsgroups: comp.lang.ada
> If there are problems during the

execution of the constructor function,
the exception is raised, so that there is
no X object in a bad state. How can I
pass some error information from the
constructor function out, so that it's
used when the exception is handled?

There is no good way to do this in Ada.
You can attach any information you like
to an exception, if you are willing to
encode it as a String — but then you lose
static type checking. You can put the info
in a global variable, but that's bad for
several reasons (not task safe, can be
accessed outside of any handler …). You
can put the info in a Task_Attribute, but
that's rather a pain — verbose and
inefficient.
From: Robert A Duff
Subject: Re: Structured exception

information
Date: Mon, 15 Jan 2007 17:32:37 −0500
Newsgroups: comp.lang.ada
> We did look at this issue when working

on the Amendment. The "obvious"
answers seem to have issues with
visibility and compatibility with
existing Ada.Exceptions mechanisms.

If we had done it right in Ada 95, we
wouldn't have had the Ada.Exceptions
kludge in the first place, so no need to be
compatible with it. […]

36 Ada in Context

Volume 28, Number 1, March 2007 Ada User Journal

The attitude about this feature during Ada
9X seemed to be:
1. Folks should not overuse exceptions. (I
agree.)
2. Therefore, we should make exceptions
painful to use. (Sorry, that does not
follow.)
The problem with (2) is: what about the
cases where exceptions ARE appropriate?
Pushing people in the direction of
encoding information un-type-safely as
Strings, or using global variables, or
whatever is not helpful. It's like removing
the guard rail from a dangerous curve in
order to make drivers slow down.
The language designer should always
assume that programmers are competent
— in this case, that they can decide
whether exceptions are appropriate in any
given case — and not try to prevent
people from doing bad things.
(Preventing people from doing bad things
by accident, however, is Good Language
Design.)
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Structured exception

information
Date: Tue, 16 Jan 2007 16:36:13 −0600
Newsgroups: comp.lang.ada
> I don't know what the visibility issues

were, so I can't comment on that. Do
you happen to know which AI this
was?

Not off-hand, but it only takes a minute to
look up…
It was AI-264, "Exceptions as types". The
title alone suggests trouble: the main issue
is to provide type-safe data along with
exceptions. The minor issue is a better
way to deal with sets of exceptions.
Neither of those necessarily require
making exceptions into types.
My personal feeling is that we solved a lot
of the problems that we had with the
exception proposal when we dealt with all
of the issues that nested tagged types
brought up. When we considered AI-264,
we hadn't yet gone through that exercise,
and the entire thing looked impossible.
Having solved some of the related issues,
it would be easier to deal with now. It
would be even easier if we had a
mechanism for user-defined 'Image
(which would allow automatic converting
to strings to keep the existing
Ada.Exceptions routines working).

From: Robert A Duff
Date: Sat, 20 Jan 2007 17:07:18 −0500
Subject: Re: Structured exception

information
Newsgroups: comp.lang.ada
[…]
> If you look into the details of

"structured exception handling" in other
languages and implementations, they
have bugs, and fundamental flaws in
design.

C++ always had finalization (destructors).
Later on, exceptions were added. There
was much moaning and gnashing of teeth
from implementers, claiming "exceptions
are hard to implement properly".
Ada always had exceptions. Later on,
finalization was added. There was much
moaning and gnashing of teeth from
implementers, claiming "finalization is
hard to implement properly".
The truth is, the interactions between
exceptions and finalization are nasty, and
hard to get right.
From: Georg Bauhaus

<bauhaus@arcor.de>
Subject: Re: Structured exception

information
Date: Wed, 31 Jan 2007 19:58:10 +0100
Newsgroups: comp.lang.ada
[…] I worked on a system involving 3
companies where one style of exception
handling was to be silent about them
(empty handlers). Another style was to
write a few words that could be
understood by the programmer who wrote
the handler because he knew the context.
These were (are, I think the programs are
still up and running) communicating
programs, no source code was exchanged.
But when the exceptions were reported as
strings into some log some of us on all
sides were out of luck. Strings are too
easy to write. People didn't give them
enough attention, and they didn't create
exception types either even when this was
possible (in Java). And you don't ask for
education across company borders if there
is a hierarchy. Let alone speak of
education!
> The system design says exception

handlers only have to add information,
never subtract it.

Adding information is good, and the
advice also needs to mention that
exceptions raised *do* have to provide
some information ☺

[…] I'm not so sure what is easier to do,
write a good exception message or build
up an exception object containing the
necessary information about what
happened. It seems easier to just write an
exception message string. Easy
programming. But once it is written, the
information is as inflexibly coded as can
be: You need parsing if you have to
extract it. I need to extract it if and when I
cannot change what a 3rd party library is
reporting. There just is no "education" or
telling them what they should write in
exception messages. […]
From: Robert A Duff
Subject: Re: Structured exception

information
Date: Fri, 19 Jan 2007 10:45:30 −0500
Newsgroups: comp.lang.ada
Building strings is fine. Requiring clients
to parse them is evil — not type safe.
The whole point of exceptions is to
separate the detection of potential errors
from the handing of them. A well-
designed exception mechanism would
allow the client to make these decisions:
Is this condition really an error?
If so, is it a recoverable error, or is it a
plain old bug?
If recoverable, what should I do?
If it's a bug, should I print out useful
information? Useful to the user, or useful
to the programmer who wants to fix the
bug (or both)? (Example: if the GNAT
front end detects a bug in itself, it prints
out the line number it was processing at
the time, which is useful to the user who
wants to find a workaround.)
Granularity of handling — do I want to
handle all I/O errors, or just the "disk full"
error?
Etc.
Constructing a string at the "raise" point is
wrong because it presumes that the client
wants to print a string and exit, and it
presumes the format of that string. If that
were OK, then why have exceptions —
why not make the code that detects the
error print a string and exit?
Suppose we want to print error messages
in French. If the "raise" point constructs a
message in English, the client can't make
that decision.

38 Conference Calendar

Volume 28, Number 1, March 2007 Ada User Journal

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on items
marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific Ada focus.
Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conference announcements for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full announcements,
calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2007

☺ April 03-06 13th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'2007),

Bellevue, Washington, USA. Topics include: embedded and open real-time systems and computing.

♦ April 17-19 13th International Real-Time Ada Workshop (IRTAW'2007), Woodstock, VT,
USA. Topics include: early experiences in using Ada 2005 for the development of real-
time systems and applications; implementation approaches for the new real-time
features of Ada 2005; developing other real-time Ada profiles in addition to the
Ravenscar profile; implications to Ada of growing use of multiprocessors in
development of real-time systems; paradigms for using Ada 2005 for real-time
distributed systems; definition of specific patterns and libraries for real-time systems
development in Ada; how Ada relates to the certification of safety-critical and/or
security-critical real-time systems; current ISO reports related to real-time Ada and
new secondary standards or extensions; status of the Real-Time Specification for Java
and other languages for real-time systems development, and user experience with
current implementations and with issues of interoperability with Ada in embedded
real-time systems; lessons learned from industrial experience with Ada and the
Ravenscar Profile in actual real-time projects.

April 25-27 Software & Systems Quality Conferences (SQC'2007), Duesseldorf, Germany.

☺ May 07-09 10th IEEE International Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC'2007), Santorini Island, Greece. Topics include: Programming and system
engineering (ORC paradigms, languages, RT Corba, UML, model-driven development of high integrity
applications, specification, design, verification, validation, testing, maintenance, system of systems,
etc.); System software (real-time kernels, middleware support for ORC, extensibility, allocation,
scheduling, fault tolerance, security, etc.); Applications (embedded systems (automotive, avionics,
consumer electronics, etc), real-time object-oriented simulations, etc.); System evaluation (timeliness,
worst-case execution time, dependability, fault detection and recovery time, etc.); ...

☺ May 20-26 29th International Conference on Software Engineering (ICSE'2007), Minneapolis, Minnesota, USA.
Theme: "Developing Dependable Software".

☺ May 21-22 1st International Workshop on Aerospace Software Engineering. Theme: "Managing
the Complexity of Aerospace Software". Topics include: tools and methods for the
effective modeling, analysis, development and maintenance of aerospace software;
systems and applications; etc.

☺ May 22 1st Workshop on Assessment of Contemporary Modularization Techniques
(ACoM.07). Topics include: Lessons learned from assessing new modularization
techniques, Empirical studies, Comparative studies between new modularization
techniques and conventional ones, Software metrics and quality models, etc.

☺ May 26 4th International Workshop on Software Engineering for Automotive Systems
(SEAS'2007). Topics include: all aspects of software engineering for automotive
systems, specifically all facets of integration of independently developed software parts
to one system with emphasis on the following aspects: software quality, safety /
reliability / robustness, component orientation in embedded systems, maintenance of the

Conference Calendar 39

Ada User Journal Volume 28, Number 1, March 2007

integrated embedded software system and compatibility of its components over the
lifecycle, etc.

May 27-30 7th International Conference on Computational Science (ICCS'2007), Beijing, China. Theme:
"Advancing Science and Society through Computation".

☺ May 27-30 4th International Workshop on Practical Aspects of High-level Parallel
Programming (PAPP'2007). Topics include: high-level parallel language design,
implementation and optimisation applications in all fields of high-performance
computing (using high-level tools), benchmarks and experiments using such languages
and tools; etc.

☺ May 28-31 5th Object Oriented Technologies conference (OOT'2007), Plzen (Pilsen), Czech Republic. Topics
include: Software Engineering (software components, large-scale software, multi-language
programming); Parallel and Distributed Computing (multithreading, distributed applications, ...);
Programming Languages and Techniques (object-oriented techniques, programming paradigms,
assertion support); Educational Aspects (teaching object-oriented paradigm, educational software);
Software Security; Development on Different Platforms; Industrial Applications of Object Oriented
Technologies; etc.

☺ May 29-06/01 DAta Systems In Aerospace (DASIA'2007), Naples, Italy.

June 06-08 1st IEEE & IFIP International Symposium on Theoretical Aspects of Software Engineering
(TASE'2007), Shanghai, China. Topics include: Specification and Validation, Component-based
Development, Software safety and reliability, Reverse Engineering and Software Maintenance,
Embedded and Real-time Software, Model-driven Development, Parallel and Distributed Computing,
Program Analysis, Semantics and Design of Programming Languages, Type Theory, etc.

☺ June 09-16 3rd History of Programming Languages Conference (HOPL-III), San Diego, CA, USA.

☺ June 11-14 7th International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP'2007), Hangzhou, China. Topics include: Distributed & Parallel Middleware, Parallel
Programming Paradigms, Tools & Environments for Parallel & Distributed Software Development, etc.

June 13-15 1st IFAC Workshop on Dependable Control of Discrete Systems (DCDS'2007), Paris, France. Topics
include: specification, design, implementation and operation of dependable controllers for critical
discrete systems.

☺ June 14 PLDI2007 - ACM SIGPLAN Workshop on Programming Languages and Analysis for Security
(PLAS'2007), San Diego, California, USA. Topics include: the use of Programming Language and
Program Analysis Techniques to improve the Security of Software Systems; Language-based techniques
for security; Program analysis techniques for discovering security vulnerabilities; Specifying and
enforcing security policies for information flow and access control; etc.

June 18-21 Systems and Software Technology Conference (SSTC'2007), Tampa Bay, Florida, USA.

☺ June 24-28 Technology of Object-Oriented Languages and Systems (TOOLS Europe'2007), Zurich, Switzerland.
Topics include: all aspects of object technology and neighbouring fields, in particular model-based
development, component-based development, and patterns (design, analysis and other applications);
more generally, any contribution addressing topics in advanced software technology.

June 25-27 12th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2007), Dundee, Scotland, UK.

June 25-28 2007 World Congress in Computer Science, Computer Engineering, and Applied Computing
(WORLDCOMP'2007), Las Vegas, USA.

♦ June 25-29 12th International Conference on Reliable Software Technologies - Ada-
Europe'2007, Geneva, Switzerland. Sponsored by Ada-Europe, in cooperation with
ACM SIGAda.

June 25-29 27th International Conference on Distributed Computing Systems (ICDCS'2007), Toronto, Canada.
Topics include: all aspects of distributed and parallel computing.

40 Conference Calendar

Volume 28, Number 1, March 2007 Ada User Journal

☺ June 27 DSN2007 - Workshop on Architecting Dependable Systems (WADS'2007), Edinburgh, Scotland,
UK. Topics include: everything related to software architectures for dependable systems, such as:
Rigorous design: architectural description languages, ...; Verification & validation; Fault tolerance;
System evaluation; Enabling technologies; Application areas: safety-critical systems, embedded
systems, ...; etc.

☺ July 01-02 12th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2007),
Berlin, Germany. Affiliated with CAV'2007. Topics include: Design, specification, code generation and
testing with formal methods; Verification and validation of complex, distributed, real-time systems and
embedded systems; Verification and validation methods that aim at circumventing shortcomings of
existing methods with respect to their industrial applicability; Tools for the design and development of
formal descriptions; Case studies and project reports on formal methods related projects with industrial
participation (e.g. safety critical systems, mobile systems, object-based distributed systems); Application
of formal methods in standardization and industrial forums. Deadline for submissions: April 6, 2007
(papers).

July 02-06 6th International Conference on Integrated Formal Methods (IFM'2007), Oxford, UK.

July 03-05 20th Conference on Software Engineering Education and Training (CSEET'2007), Dublin, Ireland.

☺ July 05-08 6th International Symposium on Parallel and Distributed Computing (ISPDC'2007), Hagenberg,
Austria. Topics include: Parallel Computing; Algorithms, Models and Formal Verification; Tools and
Environments for Program Analysis; Task and Communication Scheduling and Load Balancing; Real-
time Systems; Distributed Software Components; Real-time Distributed Systems; Security; Fault
Tolerance; Applications and Case Studies; etc.

☺ July 09-12 2007 International Conference on Software Engineering Theory and Practice (SETP'2007),
Orlando, FL, USA. Topics include: all areas of Software Engineering and all related areas, such as:
Component-based software engineering; Critical and embedded software design; Distributed and
parallel systems; Distribution and parallelism; Education (software engineering curriculum design);
Embedded and real-time software; Empirical software engineering and metrics; Evolution and
maintenance; High assurance software systems; Interoperability; Legal issues and standards; Object-
oriented techniques; Program understanding issues; Programming languages; Quality management;
Real-time software engineering; Reliability; Reverse engineering and software maintenance; Software
architectures and design; Software components and reuse; Software cost estimation techniques;
Software design and design patterns; Software engineering methodologies; Software engineering versus
systems engineering; Software policy and ethics; Software reuse; Software safety and reliability;
Software security; Software testing, evaluation and analysis technologies; Software tools and
development environments; Survivable systems; Technology adoption; Verification, validation and
quality assurance; etc.

☺ July 22-25 2nd International Conference on Software and Data Technologies (ICSOFT'2007), Barcelona, Spain.
In conjunction with ENASE'2007. Topics include: Programming Languages (Object-Oriented
Programming, Languages and compilers, ...); Software Engineering (Reliable software technologies,
Dependable computing, Software components, Software maintenance, Real-time software, Software
economics, ...); Distributed and Parallel Systems; etc.

July 23-25 2nd International Working Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE'2007), Barcelona, Spain. In conjunction with ICSOFT'2007. Topics include:
Model driven engineering; Software components and component-based software engineering;
Generative software development; Evolutionary design; New methodologies, practices, architectures,
technologies, tools, metrics; etc. Deadline for registration: May 31, 2007.

☺ July 30-08/03 21st European Conference on Object-Oriented Programming (ECOOP'2007), Berlin, Germany.
Topics include: all areas relevant to object technology. Deadline for submissions: April 18, 2007
(student volunteers).

☺ July 30 11th Workshop on Pedagogies and Tools for the Teaching and Learning of Object
Oriented Concepts. Topics include: successfully used exercises, examples, and
metaphors; approaches and tools for teaching (basic) object-oriented concepts; teaching
refactoring and/or design patterns; misconceptions related to object technology; etc.
Deadline for position paper submissions: May 13, 2007.

Conference Calendar 41

Ada User Journal Volume 28, Number 1, March 2007

☺ July 30 17th Doctoral Symposium and PhD Students Workshop. Topics include: Design
Patterns; Components, Modularity; Concurrency, Real-time, Embeddedness,
Distribution; Domain Specific Languages, Language Workbenches; Adaptability;
Generative Programming; Language Design, Language Constructs, Static Analysis;
Language Implementation; Model Engineering, Design Languages; Software Evolution,
Versioning; Formal methods; Tools, Programming environments; etc. Deadline for
submissions: May 1, 2007.

August 12-15 26th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2007), Portland, Oregon, USA.

☺ August 21-24 5th International Symposium on Parallel and Distributed Processing and Applications (ISPA'2007),
Niagara Falls, Ontario, Canada. Topics include: Tools and environments for software development;
Distributed systems and applications; Reliability, fault-tolerance, and security; High-performance
scientific and engineering computing; etc.

☺ August 21-24 13th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA'2007), Daegu, South Korea. Topics include: Real-Time Systems (Scheduling,
Fault-tolerance, Programming languages and run-time systems, Middleware systems, Design and
analysis tools, Formal methods, Case studies, Applications, etc.); Embedded Systems (Scheduling,
HW/SW co-design, Embedded system design practices, etc.); etc.

August 25-31 2nd International Conference on Software Engineering Advances (ICSEA'2007), Cap Esterel, French
Riviera, France. Topics include: Advances in fundamentals for software development; Advanced
mechanisms for software development; Advanced design tools for developing software; Open source
software; Software deployment and maintenance; Software economics, adoption, and education; etc.

☺ August 28-31 13th International Conference on Parallel and Distributed Computing (Euro-Par'2007), Rennes,
France. Topics include: the promotion and advancement of all aspects of parallel and distributed
computing, such as support tools and environments, distributed systems, parallel and distributed
programming, etc. Deadline for submissions: April 2, 2007 (workshops).

☺ August 28 Workshop on Highly Parallel Processing on a Chip (HPPC'2007). Topics include:
(parallel) programming paradigms, languages, libraries, and support tools for efficient
and manageable exploitation of highly parallel multi-core architectures; etc. Deadline
for submissions: June 22, 2007.

☺ Aug 28 – Sept 01 International Workshop on Multicore and Hybrid Systems for Numerically Intensive
Computations (MHSN'2007), Niagara Falls, Ontario, Canada. In conjunction with The 5th International
Symposium on Parallel and Distributed Processing and Applications (ISPA'2007). Topics include:
parallel programming models, compiler technology, runtime systems and libraries, etc. Deadline for
submissions: April 10, 2007.

☺ September 03-07 9th International Conference on Parallel Computing Technologies (PaCT'2007), Pereslavl-Zalessky,
Russia. Topics include: New trends and models in Parallel Programming; All aspects of the applications
of parallel computer systems; Languages, environment and software tools supporting parallel
processing; General architecture concepts, enabling technologies; Teaching parallel processing; etc.

☺ September 04-07 International Conference on Parallel Computing 2007 (ParCo2007), Juelich & Aachen, Germany.
Topics include: all aspects of parallel computing, including applications, hardware and software
technologies as well as languages and development environments. Deadline for submissions: April 8,
2007 (mini-symposia), May 15, 2007 (presentations), July 31, 2007 (full papers).

September 04-07 18th International Conference on Concurrency Theory (CONCUR'2007), Lisbon, Portugal. Topics
include: all areas of semantics, logics, and verification techniques for concurrent systems, related
verification techniques and tools, related programming models, etc. Deadline for submissions: April 6,
2007 (abstracts), April 9, 2007 (papers).

☺ September 10-14 5th IEEE International Conference on Software Engineering and Formal Methods (SEFM'2007),
London, UK. The aim is to advance the state of the art in formal methods, to scale up their application in
software industry and to encourage their integration with practical engineering methods. Topics include:
software specification, validation and verification; programming languages and type theory; program
analysis; fault-tolerant computing; embedded systems; real-time and hybrid systems theory; software

42 Conference Calendar

Volume 28, Number 1, March 2007 Ada User Journal

architectures and their description languages; CASE tools and tool integration; applications of formal
methods and industrial case studies; etc. Deadline for submissions: April 14, 2007 (papers), June 25,
2007 (tutorials).

☺ September 15-19 16th International Conference on Parallel Architectures and Compilation Techniques (PaCT'2007),
Brasov, Romania. Topics include: Compilers and tools for parallel computer systems; Support for
correctness in hardware and software (esp. with concurrency); Parallel programming languages,
algorithms and applications; Middleware and run time system support for parallel computing; High
performance application specific systems; etc. Deadline for submissions: April 1, 2007 (papers), April 2,
2007 (workshops).

☺ September 18-21 26th International Conference on Computer Safety, Reliability and Security (Safecomp'2007),
Nuremberg, Germany.

September 20-21 1st International Symposium on Empirical Software Engineering and Measurement (ESEM'2007),
Madrid, Spain. Incorporating ISESE and Metrics. Topics include: Evaluation and comparison of
techniques and models; Reports on the benefits derived from using certain technologies; Empirically-
based decision making; Industrial experience in process improvement; Quality measurement and
assurance; Evidence-based software engineering; Effort and cost estimation, defect rate and reliability
prediction; etc Deadline for submissions: April 13, 2007 (short papers), May 15, 2007 (posters).

September 25 Ada UK Conference 2007, Manchester, UK. This UK-based Ada conference is being
organised to promote awareness of the Ada 2005 language revision, and to highlight
the increased relevance of Ada in safety-critical programming.

☺ September 26-28 3rd Latin-American Symposium on Dependable Computing (LADC'2007), Morelia, Mexico. Topics
include: Dependability Modeling, Prediction and Evaluation; Dependable Applications; Distributed
Systems; Parallel, Clustered and Grid Systems; Real-Time and Embedded Systems; Safety-Critical
Systems; Security of Computing Systems; Software Engineering of Dependable Systems; Software
Reliability; Software Testing, Validation and Verification; Survivability of Computing Systems; etc.

Sept 30 - Oct 01 7th IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM'2007), Paris, France. Co-located with ICSM'2007 Deadline for submissions: April 23, 2007
(abstracts), April 30, 2007 (full papers).

October 02-05 23rd IEEE International Conference on Software Maintenance (ICSM'2007), Paris, France. Topics
include: software and systems maintenance, evolution, and management. Deadline for submissions:
April 6, 2007 (research papers), May 4, 2007 (industrial applications, tool demonstrations, doctoral
symposium), May 28, 2007 (working sessions).

☺ October 15-17 1st Workshop on Advances in Programming Languages (WAPL'2007), Wisla, Poland. Within the
framework of the International Multiconference on Computer Science and Information Technology
(IMCSIT). Topics include: Compiling techniques; Domain-specific languages; Formal semantics and
syntax; Generative and generic programming; Languages and tools for trustworthy computing;
Language concepts, design and implementation; Metamodeling and modeling languages; Model-driven
engineering languages and systems; Practical experiences with programming languages; Program
analysis, optimization and verification; Program generation and transformation; Programming tools and
environments; Proof theory for programs; Specification languages; Type systems; etc Deadline for
submissions: June 25, 2007 (full papers).

☺ October 16 International Workshop on Real-Time Software (RTS'2007), Wisla, Poland. Within the framework
of the International Multiconference on Computer Science and Information Technology (IMCSIT).
Topics include: real-time system development, real-time scheduling, safety, reliability, dependability,
fault-tolerance, standards and certification, software development tools, model-based development,
automatic code generation, real-time systems curricula, etc. Deadline for submissions: June 25, 2007
(draft papers).

☺ October 21-25 22nd Annual Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA'2007), Montreal, Canada. Topics include: programmer productivity, secure and reliable
software, changing hardware platforms, ultra-large scale systems, improve programming languages,
refine the practice of software development, etc. Deadline for submissions: July 2, 2007. (Posters,
Demonstrations, Doctoral Symposium, Onward! Films, Student Research Competition, Student
Volunteers.)

Conference Calendar 43

Ada User Journal Volume 28, Number 1, March 2007

☺ October 30-31 4th Workshop on Object-oriented Modeling of Embedded Real-Time Systems (OMER-4),
Paderborn, Germany. Topics include: Architectures/frameworks for platform independent, reusable
software components; Formal verification at the model and code level; Software components as
products; Software quality; Standards and guidelines (e.g., AUTOSAR, IEC 61508, MISRA, UML, ...);
Respective trends in automotive software development; etc. Deadline for paper submissions: July 1..

Nov 04-08 2007 ACM SIGAda Annual International Conference (SIGAda'2007),
Washington, DC, USA. Sponsored by ACM SIGAda (ACM approval pending), in
cooperation with SIGAPP, SIGCAS, SIGCSE, SIGPLAN, SIGSOFT, Ada-Europe, and Ada
Resource Association (Cooperation approvals pending). Topics include: Safety,
security and high integrity development issues; Language selection for a high
reliability system; Use of ASIS for new Ada tool development; Mixed-language
development; High reliability software engineering education; High reliability
development experience reports; Static and dynamic code analysis; Use of new Ada
2005 features/capabilities; etc. Deadline for submissions: May 16, 2007 (technical
articles, extended abstracts, experience reports, workshops, panel sessions, and
tutorials).

November 05-09 18th IEEE International Symposium on Software Reliability Engineering (ISSRE'2007),
Trollhaettan, Sweden. Topics include: Reliability, availability and safety of software systems;
Quality/reliability-related security issues; Verification and validation; Industrial best practices;
Empirical studies of those topics; etc. Deadline for submissions: April 2, 2007 (abstracts), April 16,
2007 (full papers).

November 07-09 6th International Conference on Software Methodologies, Tools, and Techniques (SoMeT'2007),
Rome, Italy. Topics include: Software methodologies, and tools for robust, reliable, non-fragile software
design; Automatic software generation versus reuse, and legacy systems, source code analysis and
manipulation; Intelligent software systems design, and software evolution techniques; Software
optimization and formal methods for software design; Software security tools and techniques, and
related Software Engineering models; End-user programming environment; Software Engineering
models, and formal techniques for software representation, software testing and validation; etc. Deadline
for submissions: May 15, 2007.

☺ December 03-06 28th IEEE Real-Time Systems Symposium (RTSS'2007), Tucson, Arizona, USA. Topics include: all
aspects of real-time systems design, analysis, implementation, evaluation, and case-studies. Deadline for
submissions: May 18, 2007.

☺ December 03-06 8th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2007), Adelaide, Australia. Topics include: Formal methods and programming
languages, Software tools and environments, Component-based and OO Technology,
Parallel/distributed algorithms, Task mapping and job scheduling, High-performance scientific
computing, etc. Deadline for submissions: June 5, 2007.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2008

☺ January 10-12 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL'2008), San Francisco, California, USA. Topics include: fundamental principles and important
innovations in the design, definition, analysis, transformation, implementation and verification of
programming languages, programming systems, and programming abstractions.

May 07-09 7th European Dependable Computing Conference (EDCC-7), Kaunas, Lithuania. Topics include:
Architectures for dependable systems; Fault tolerant distributed systems; Fault tolerance in real-time
systems; Hardware and software testing, verification, and validation; Formal methods for dependability;
Safety-critical systems; Software reliability engineering; Software engineering for dependability; etc.
Deadline for submissions: September 20, 2007.

June 13th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2008), Madrid, Spain.

 53

Ada User Journal Volume 28, Number 1, March 2007

ERB : A Ravenscar Benchmarking Framework
Cyrille Comar, Romain Berrendonner
AdaCore SAS, 8 rue de Milan, F-75009 Paris; Tel: +33 1 49 70 67 16 ; email : {comar,berrendo}@adacore.com

Abstract
This paper first describes the ESA Ravenscar
Benchmark (ERB), an execution-time and memory
consumption benchmark originally developed for the
Ada Ravenscar implementations running on the
ERC32 processor. Then, after explaining how difficult
it is to compare different tool-chains, three different
usages of the framework are show-cased. In the first
scenario, ERB is used to compare the evolution of the
GCC technology in terms of performance over time.
In the second scenario, ERB is used to compare
GNAT Pro performance on different target platforms.
In the third, ERB is used for monitoring the impact of
the day-to-day development of the compiler
technology in terms of performance of the generated
code. All these activities are of interest for compiler
vendors.
Keywords: Ravenscar profile, Benchmarking, ERC32,
Compilation technology, performance, code quality.

1 Introduction
The question of selecting a particular development tool-
chain is always a difficult one. A number of issues must be
taken into account, and they are particularly difficult in
long-lasting projects with many constraints, such as space
systems. Among those issues, one can cite the choice of
programming language, target processor, runtime
environment and subset of the selected language developers
will be allowed to use.

For ESA, the target processor question has been solved,
and a decision has been made to promote the ERC32
family, a range of space-hardened SPARC processors
including the ERC32 SPARC V7 processor, and the Leon
SPARC V8. The choice of programming language and a
particular tool-chain was more delicate, though, due to a
rich offer on this target: on the Ada side, AdaCore, Aonix
and XGC provide commercial solutions; the ORK tool-
chain, a spin-off from the GNAT compiler, is also available
unsupported from the University of Madrid; on the C side,
the RTEMS environment is available.

ESA was therefore interested in understanding the
differences between these tool-chains. The point was not to
make absolute performance comparison, but rather to
identify noticeable differences between them so that project
managers could issue useful programming and architectural
guidelines. For this to happen, it initiated the ESA
Ravenscar Benchmark (ERB) project and contracted
AdaCore to write an Ada 95 benchmark framework
compatible with the Ravenscar profile. A number of
constraints were placed on the development of the project.

In the first place, ERB is an analytic benchmark, like the
PIWG [4]or ACES [5]. This means that the test base aims
at testing individual features rather than whole applications.
The goal is to truly evaluate the cost/benefit ratio for all
tested features, rather than giving a global mark. In the
context of a given project, the best approach for improving
performance is to use the whole application as a
benchmark. For compiler developers however, the situation
is different since we are not interested in evaluating the
direct compiler performance itself but the code it generates
for any kind of applications. Analytic tests therefore enable
us to make a link between performance variations and
specific language constructs.

Secondly, ERB features both execution time measurement
and memory measurements, namely runtime system
footprint measurement and stack consumption. Space
systems are actually very constrained both in terms of time
and memory, and any evaluation of generated code
“performance” must take this into account.

Thirdly, ERB is the first Ada benchmark targeting
applications following the Ravenscar profile. This profile
aims at defining a safe subset of the Ada language suited
for use on high-integrity real-time systems. With efficiency
and safety of use in mind, it sets restrictions on the tasking
and synchronization features that one can use. Memory and
execution time efficiency is improved by removing high
overhead or complex features, and reliability and
predictability are increased by removing nondeterministic
and non-analyzable features. It is therefore particularly
interesting for embedded real-time applications such as in
space systems.

The last important design feature of ERB is that it aims to
compare programs written in Ada and C. This is a difficult
task as the semantics of the languages are very different,
but ESA was nonetheless interested in having an insight
into the possible differences between the two languages.

The Final Report of the ERB project [6] answers most of
these questions. However, the present paper has a different
goal. It aims to explain how compiler vendors can use a
benchmarking technology for their own purposes. After
making a detailed technical presentation of the ERB
benchmark, it goes on to present a number of user-cases.
.ERB was actually designed with AdaCore’s particular
needs in mind. In particular, it was written for maximum
portability so that it could be used on the very large set of
platforms supported by AdaCore. In the present paper, we
showcase results obtained from the original ESA study
complemented by internal studies made in other contexts.

54 ERB: A Ravenscar Benchmarking Framework

Volume 28, Number 1, March 2007 Ada User Journal

2 The ERB Framework
Before looking at how to take advantage of the framework,
let us portray its main capabilities. The harness is described
first. The measurement methods for execution times, the
memory consumption measurement and the test base come
next. The end of this section contains a description of the
potential difficulties encountered when trying to interpret
the results of a benchmarking suite.

2.1 The ERB Harness
The ERB harness is the main program that ERB users
invoke to run the test suite whole. It is written in Ada 2005,
using a very simple design layout, and calls external
programs to carry out tasks like compiling the tests,
measuring the footprint, or checking the environment.

The ERB harness is able to carry out a number of different
measurements. Three timing methods are implemented,
namely the dual-loop, external and semi-external methods.
Two memory measurement methods are implemented, one
using the static information contained in binary files to
provide an estimate of the footprint, and the other using a
dynamic watermarking method to compute an estimate of
the stack consumption.

In addition, the harness currently supports not only a
number of existing Ada 95 ERC32 tool-chains but also C
on RTEMS. Comparing two languages, in particular when
they are as different as Ada and C, is always a difficult
task; the semantics of the languages greatly differs, leading
to portability issues with the tests. To work around this, the
ERB harness includes a C library emulating most of the
Ada semantics for tasking and protected object use, written
on top of the RTEMS native threading library. However, it
was not possible to develop emulation libraries for all the
other Ada 95 features, such as exceptions, generic or object
orientation. This choice results in a trade off made with the
interests of ESA in mind. In any event, the extensibility of
ERB makes such additions possible in the future.

2.2 Footprint Measurements
The first relevant factor in memory management of
embedded applications is the footprint of the program,
which is defined as the amount of memory required to store
the code of the program (often in the text section in ELF
binaries) and its associated data. Data in ELF binaries is
mostly contained in the .data and .rodata sections, which
contains both the initialized variables and the initialized
constants. The .bss section contains usually the
uninitialized data as well as the execution stacks of the
various tasks. The heap, used for dynamic memory
management, is either defined as a part of the .bss or as
the remainder of the memory space. It also contains the
execution stacks on some systems such as ORK.

ERB is able to provide an estimate of this footprint and it is
able to discriminate between the user code contribution on
the one hand and the contribution coming from kernel code
or runtime code on the other. This information is computed
directly from the ELF object files. It is an approximation,

since some runtime code might be inlined, but it has proved
sufficiently accurate to provide exploitable results.

2.3 Stack Consumption Measurement
ERB is also able to provide an estimate of the stack
consumption by a program in a portable fashion through a
pattern filling technique, better known as “watermarking”.
With this system, the memory is filled with a known
pattern, before execution of the test. When execution is
completed, the memory is read to determine the areas that
have been modified. The memory can be filled either
externally, by a debugger, or internally, by calling a support
library.

This method has several known inaccuracies, but they are
compatible with ERB measurement requirements and can
be precisely estimated. These inaccuracies are mainly
caused by the effects on the stack of the instrumentation
routines themselves. Our findings show that they are
between 100 and 220 bytes depending on the target. In
addition, it is necessary to put a number of constraints on
developers to avoid other potential issues like stack
overflow and use of pattern in data structure.

This implementation is fully portable on all Ada
implementations. Only one parameter of the
instrumentation code is likely to change with each
configuration: it indicates whether the stack grows up (from
low addresses to high addresses) or down. The code is
designed as a general stack usage measurement library
usable not only for benchmarking purposes but also for
evaluating the stack usage of the tasks of any Ada
application. This technique has proven so successful that it
has been included as a standard GNAT Pro feature and can
now be triggered by gnatbind’s –u switch.

2.4 Timing Measurement
Timing measurement is a critical factor for hard real-time
systems as it makes it possible to compute upper bounds for
execution times. In some cases the whole execution time of
the application is a sufficient measure; sometimes it is more
useful to time specific sequences of code within the
application. However, not every part of the code can easily
be accessed. For instance, it is difficult to evaluate the
initialization and elaboration code in an Ada program
because of its implicit nature. In order to provide a
complete analysis tool, ERB provides three different timing
methods: the dual-loop, the semi-external and the external
methods.

External Method. The first method that comes to mind for
measuring execution time is very simple. For instance, with
the ERC32V simulator, once the test program is compiled,
the executable is loaded and run, and one can use the
simulator timing facility to retrieve the execution time. In
order to make sure that the results are statistically
meaningful, the harness can repeat the test a number of
times. Unfortunately this approach alone is too coarse-
grained for our requirements. It makes no distinction, for
example, between user code, elaboration code and
finalization code, and just provides a global figure
including them all.

C. Comar, R. Berrendonner 55

Ada User Journal Volume 28, Number 1, March 2007

Semi-external method. The second strategy that comes to
mind is slightly more evolved. Instead of just getting the
simulated execution time, the program is instrumented by
fetching the time, using the target environment timing
facility, at the beginning and at the end of the main
program. The harness is responsible for repeating the test a
number of times, so that it is possible to make statistically
sure that the results are meaningful. This method
complements the previous one very well; the
instrumentation surrounds the user code and provides
timing information naturally excluding the elaboration and
finalization code. On the other hand, this kind of
measurement is very sensitive to specific inaccuracies that
can affect the timing facility of a computer, like the jitter or
cache effects. It is also very sensitive to compiler
optimizations that can just move out of the instrumented
part, some of the code one wants to measure.

Dual-Loop. The most sophisticated method was originally
developed as part of the ACES [5] project and
demonstrated to be an appropriate solution to avoid the
errors we just described. It is based on a careful analysis of
the possible systematic inaccuracies related to such timing
systems: the jitter, which is basically the random variation
of clock precision; and the quantization error, which is
mostly caused by the analog-digital conversion of the
physical phenomenon used to generate the clock signal.

The first step of the dual loop strategy is to evaluate the
combined order of magnitude of these errors, as measured
by a program executed on the target. The basic idea of this
method is to count the number of elementary ticks that can
fit into a known duration of, for example, one second:

Time := Clock;
Nb_Elementary_ticks := 0;
while Time = Clock loop
 Nb_Elementary_ticks := Nb_Elementary_ticks + 1;;
end;

An estimate of the combined effect of jitter and
quantization is then provided by multiplying the standard
deviation of the number of elementary ticks into one
second by the estimated duration of an elementary tick.

Once the errors are estimated, the dual loop strategy repeats
each test case a number of times, so that the overall
execution time is significantly longer than the possible
systematic errors estimates. Obviously, this must be gauged
against execution time constraints and meaningfulness: a
low value such as 10 microseconds is likely to provide
unstable measurements, while a large figure like 10.000
would result in impractically long execution times. As the
duration of the test is not known in advance, the harness
increases the number of iterations until it meets this
criterion.

This very short presentation should not hide the fact that
the ACES [5] has demonstrated that the dual loop method
provides very good results, thanks to a number of advanced
heuristics to handle optimizations, processor cache issues
and memory paging. But despite those efforts, the dual loop
method still has some limits. In particular, it is not well
suited for user code that cannot be freely repeated without
changing the behaviour of the program, for instance
because of a side effect, or for measuring elaboration code.
All three are required to make a thorough analysis of some
tests, in particular when side effects are present or when
information on elaboration is needed.

2.5 The Test Suite
The ERB test suite is divided into 12 different chapters.
Each chapter is specialized in a particular kind of testing:
arithmetic, tests for estimating the impact of implicit Ada
checks, arrays, access types, exception handling, high-level
algorithms (DES, FFT, Dhrystone …), iterations and loop
tests, miscellaneous tests (in particular measurement of
interrupt handling times, estimate of minimal and maximal
footprints), object-oriented programming, subprograms
tests, tasking and protected objects.

Not all the tests could be ported to C on RTEMS. In
particular, we could not afford to develop our Ada
semantics emulation library to support other advanced Ada
features such as object-oriented programming, generics and
exceptions. We preferred to focus on the most interesting
aspects of Ada semantics for space applications, which is
undoubtedly embodied by the Ravenscar profile.

2.6 Interpreting the Results
Producing results is only a first step. Interpreting them is
almost as difficult.

The first difficulty is the amount of data that a
benchmarking suite like ERB can produce. In the
framework of the ESA study for instance, 15,000 different
figures were produced and had to be analyzed. This amount
of data comes from the many different parameters that can
change at the same time: the tool-chain and the test cases of
course, but also the optimization level, the kind of test
(stack, footprint, dual-loop, external, semi-external).

In order to analyze so much data, we decided to compare
things ceteris paribus, meaning that only one parameter
could change at the same time. For instance, when
comparing GNAT Pro and ORK, we would stick to
optimization level O2 on both targets. This is not always
easy; for optimization again, there is no warranty that O2
includes the same optimizations on two different tool-
chains.

56 ERB: A Ravenscar Benchmarking Framework

Volume 28, Number 1, March 2007 Ada User Journal

Once one knows what is to be compared, it is best, in our
experience, to use graphs to find interesting data points
worth analysis. But making such graphs is not easy either.
The execution times range from a few milliseconds up to
several minutes and it is not meaningful to display absolute
values. We prefer to take a baseline tool-chain A, order the
test cases by increasing the value for A, and then display
for another tool-chain B the ratio B/A between the result of
A and the result of the reference tool-chain. Anything
below 1 means that tool-chain B is faster; anything above
that it is slower. For memory tests, presenting the ratio is
not as useful as the values fit in a smaller interval.

An example of such graphs can be found in Figure 5.

3 The ERB Framework at Work
ERB has shown to be useful in three different contexts.
First, it has allowed comparing over long periods of time
the evolution of a given technology. Second, it has been
used to compare the same tool-chain on different target
platforms. And finally it will be used for the daily work on
a given technology, making sure that no performance
regressions appear.

3.1 Comparing various instances of GCC
The first use for a benchmark that proved useful is
comparing different evolutions of the same technology over
a long period of time.

The ERB study provided an ideal context as four different
tool-chains for the ERC32 target were based on different
stages of the GCC technology: XGC actually is based on

version 2.7, ORK is based on version 2.8, the version of
gcc provided for the version of RTEMS we benchmarked
was 2.95 and the most up-to-date GCC-based tool-chain
was GNAT Pro 5.03a1, which uses GCC 3.2.3. This
provides a 10 years span of technical evolution on the GCC
technology.

We will focus in the following section on our finding
regarding GNAT Pro, RTEMS and ORK. However, one
have to keep in mind that those versions belong to different
branches of the GCC technology. ORK for instance is a
derivative of GNAT 3.13p and includes an Ada Compiler
and an Ada run-time. The C compiler for RTEMS is a pure
C compiler derived from regular FSF tree. We demonstrate
how measurement methods provide interesting results on
the evolution of the GCC technology of the time, but in
from different points of view. This should not be perceived
as a limitation: depending on one’s own focus, it is possible
to get information on the aspects that we will leave aside.
The only limiting factor here is time, as understanding such
differences requires an in-depth technical understanding of
the tests and tool-chains and careful investigation.

Stack Consumption
The first area of interest for the ERB study was the stack
consumption. Our first hypothesis here was that stack
consumption was unlikely to change significantly between
the variants of GCC student in the project.

Figure 1 presents the results of the stack measurements for
the GNAT Pro, ORK and RTEMS tool-chains. In the first
place, one can observe that, as expected, the three tool-

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Tests

St
ac

k
C

on
su

m
pt

io
n

(B
yt

es
)

GNAT Pro ORK RTEMS

Figure 1: Stack consumption on GNAT Pro, ORK and RTEMS

C. Comar, R. Berrendonner 57

Ada User Journal Volume 28, Number 1, March 2007

chains provide very similar results in most cases. These
results are not surprising, not only because RTEMS, ORK
and GNAT Pro are based on different stages of the GCC
technology: as the calling convention for subprograms is
mostly defined by the processor ABI it leaves little
initiative to implementors. The compilers still have a
number of possibilities to improve the handling of stack:

� They can inline the function call. This means that the
code for this function is expanded within the code of the
calling frame, without any stack frame of its own.

� They can use frameless functions instead of regular
functions, putting in registers which usually go on the
stack frame, like the return address of the function and
the parameters.

A limited number of tests display evidence of significantly
different behaviour in this respect.

The first category is representative of what can be obtained
with the tests which do not need much stack. For these the
measurement does not correspond to the real use of stack
but more to the lower limit of what the instrumentation can
measure. Those tests are located on the left hand side of
Figure 1. The test featuring five successive additions of
integers consumes, like most of the arithmetic tests,
virtually no stack. It is interesting to study, because it
shows the limits of what can be measured with the
watermarking technology developed in ERB.

The accuracy of this method is of course limited by the
space taken on the stack by the instrumentation routine
itself. On RTEMS and ORK, it turns out that the
measurement threshold is 208 and 288 bytes respectively,

while it is slightly lower on GNAT Pro with 112 bytes. A
detailed analysis of this test showed that the difference was
due to a different layout of the stack frame of the
instrumentation routine filling the stack. On RTEMS, the
pattern area is located 100 bytes above the beginning of the
frame; but it is located 116 bytes after the frame pointer on
ORK, and only 12 bytes in GNAT Pro. The only thing we

can say about all the tests whose measurements are equal to
112 bytes on GNAT Pro (208 on ORK and 288 on
RTEMS) is that they use less stack than this amount.

Some other tests, on the other hand, are well above this
threshold. This is the case, for example, of the tests dealing
with various read and write accesses to protected objects
from a number of tasks. We will describe later how
implementations specifically targeting the Ravenscar
profile can take advantage of this time-wise. In terms of
stack consumption, though, the RTEMS task creation
routine is able to support dynamic task creation. With
GNAT Pro, on the other hand, tasks are statically allocated
so task creation is a simpler process which indirectly uses
less stack. Interestingly, the results of ORK and RTEMS in
this area are strictly parallel.

The conclusion of this quick study of the stack
consumption evolution of the GCC technology over time is
that it is a stable area and is subject to little change over
time. In the particular case of space applications, where
memory is often very constrained, this is an interesting
property.

1000

10000

100000

1000000

10000000

100000000

1000000000

Tests

Ti
m

e
(m

ic
ro

s)

gnatpro_result ork_result rtems_result

Figure 2: External Timing Measurement with GNAT Pro, ORK and RTEMS

58 ERB: A Ravenscar Benchmarking Framework

Volume 28, Number 1, March 2007 Ada User Journal

Elaboration Times
Another parameter of interest is the amount of time spent
on elaboration, which can be obtained by comparing the
results of the external and semi-external methods. Figure 2
displays the results of testing with the external method on
the RTEMS, ORK and GNAT Pro tool-chains. At first
glance, the tests can be divided into two categories with all
tool-chains:

The first category includes test cases where the duration of
the test section is short with respect to the initialization and
elaboration code. This is the case, for instance, for most of
the arithmetic and iteration tests. Such tests are very
simple, and the execution time of the main program is
considerably shorter than the time required by elaboration.

The second category of tests includes test cases where the
initialization code in the test is significant compared to the
elaboration time. The test doing a tree sort of a 5000-node
tree is an example of this: before the actual test section is
started, the program initializes the tree by picking up 5000
random numbers, which takes a significant amount of time.
When this section is suppressed, the external measurement
goes from 226 ms down to 39.3 ms with GNAT Pro.

It is interesting to understand where these differences come
from. As all the tool-chains are open-source, it is possible
to look at their code and understand how elaboration code
works on GNAT Pro and ORK, and initialization code
works on RTEMS.

It turns out that RTEMS has the longest initialization time
because it includes a wide range of features (such as a file
system driver, a message queue and semaphore library)
which need to be initialized. Such features have no
counterparts in ORK and GNAT Pro. Of course, some of
these “monitors” can safely be removed, depending on user
needs and skills. However this requires a good
understanding of the tool-chain.

The difference between GNAT Pro and ORK can also be
easily explained: GNAT Pro features a dedicated
Ravenscar runtime with minimal elaboration needs. This
runtime is defined as a high-integrity run-time and includes
only a carefully crafted subset of the Ada standard,
sufficient to implement the Ravenscar profile and keep the
certification process easy. The ORK run-time, on the other
hand, is a full Ada run-time. As a consequence, it does not
take advantage of the restrictions inherent to the Ravenscar
profile. For instance, tasks are known statically at compile
time under this profile, but ORK uses the general-purpose
task creation routines anyway.

Tasking
The semi-external method provides a good tool for
validating the theory that a runtime specifically designed to
target the Ravenscar profile should improve performance.
This method is actually used by the task-switching tests,
which are presented in Figure 3. The first bar gives the
results for a test featuring 6 tasks with the same priority
performing 2000 yields. The second bar features the same

test with increasing priorities, and the last one features the
same test with decreasing priorities.

Figure 3 clearly shows that GNAT Pro is faster than ORK
which in turn is faster than RTEMS. This difference can be
attributed to several factors. One of particular interest is
the use of Ravenscar specific optimizations, such as
accessing protected objects by raising the priority of the
active task rather than using explicit locking thanks to the
FIFO_Within_Priorities policy or reorganizing the task
queues so that the most common operations are done in
constant time.

Without going into the details of the RTEMS run-time
implementation, one can guess that RTEMS pays the price
for implementing non-restricted threading features. In
particular, dynamic task creation and task termination are
fully supported. The richer semantics they provide has a
cost in terms of code which appears in our findings.

So far, the differences that we have found were mostly
accountable to the runtime. It is a reasonable assumption to
expect code generation improvements in more recent
versions of the GCC technology. ERB, and in particular the
dual-loop measurements, provide a way to validate this
hypothesis.

Compiler And Code Generation
Figure 4 displays a comparison between ORK and GNAT
Pro on all the tests where the dual-loop method makes
sense, using GNAT Pro as the baseline. The results can be
divided into three categories. For the first 2 tests, ORK is
much faster than GNAT Pro. In the next 133, the two tool-
chains provide reasonably close results: the difference is
less than 50%. In the last 120 tests, GNAT Pro is from 50%
to 522% faster. This general trend mostly indicates code
generation enhancements with more recent versions of
GCC.

One can notice in particular that tests where GNAT Pro is
at least twice as fast as ORK include most tests in the
arithmetic, data structure, high level algorithm and tasking
chapters. The explanations that we have provided for better

GNAT Pro ORK RTEMS
10

100

1000

10000

Figure 3: Task-Switching times with GNAT Pro, ORK
and RTEMS

C. Comar, R. Berrendonner 59

Ada User Journal Volume 28, Number 1, March 2007

tasking with GNAT Pro can be applied to these tests as
well.

The results of the arithmetic tests show that 32-bits integer
arithmetic is faster with GNAT Pro than ORK thanks to
back-end improvement between GCC 2.8.1 and 3.4. The
mod, rem, Rotate_Left and division operations are, for
instance, all faster.

It also proves that the general layout of data structures is
more efficient with a recent GCC back-end. The test
featuring the assignment of a packed record of three
integers is more efficient with GNAT Pro than ORK
because it uses half-word store operations while ORK uses
bytes.

Alignment issues are, however, particularly delicate and the
test featuring a packed record of three floats is among the
two tests where ORK generates better code. It appears that
in this particular case, the GNAT Pro compiler uses an
alignment of 1 byte and therefore needs to copy 12
elements, while the ORK compiler uses an alignment of 4
bytes and only needs three copies. Interestingly, when
compensating for the inefficient default alignment selected
by the compiler using a “for <type>’Alignment use 4;”
clause to the code, GNAT Pro generates better code than
ORK again.

To summarize, code generation appears to be considerably
better with later generation backend. However, we have
been able to identify and fix a number of cases where code
generation evolution went in the wrong direction. Such
regressions can be worrisome and we will see in section 3.3
how ERB can be used to address this issue.

3.2 Comparing GNAT Pro on different platforms
Another interesting usage of ERB can be found in the work
AdaCore was contracted to do by a hardware manufacturer.
The task involved performing a study whose goal was to
help select the best hardware configuration for a final
customer developing and maintaining a long-lived
application with GNAT Pro. Here it was therefore a matter

of comparing the performances of the same technology on
different platforms.

The “best hardware configuration” is defined in this context
in terms of quality of the GNAT Pro port on this particular
configuration, minimization of the compilation time and
performance of the resulting application. Of particular
interest to the manufacturer were practical results showing
if a server with many relatively slow CPUs could compete
with a server with few very fast CPUs.

Concerning compilation time, ERB does not provide the
necessary harness to conduct performance analysis of the
tool-chain usage itself. Even if it had such a capability, it is
probable that the results would not have been relevant since
it would have computed the performance of the toolset
when compiling many small or medium tests whereas we
were interested here in the performance of the toolset when
building few very big applications.

The situation was different for the part of the study
interested in the performance of the generated code. The
reasoning of the previous paragraph would have pushed us
to compare the performance of the application itself on the
different target platforms if it was possible. This would
have required a full port and qualification of the end-user

0

1

2

3

4

5

Tests

R
at

io

Figure 4: Dual-loop measurements for ORK and GNAT Pro (GNAT Pro base 1)

60 ERB: A Ravenscar Benchmarking Framework

Volume 28, Number 1, March 2007 Ada User Journal

applications on each target. Even though the porting effort
is very much simplified by the usage of a language such as
Ada, designed to help code portability, and by the use of
the same version of the GNAT Pro toolset on all platforms,
such an option was not on the table for several reasons:
given the size and complexity of the application, the
porting effort remained prohibitive in the context of this
study. Furthermore, code porting is not the only element to
be taken into account: availability and access to the
environment of the data and databases is also critical and
often difficult to simulate outside of the end-user setup.
Even had we overcome all the above issues, code needs to
have specific characteristics and needs to be manually
instrumented in order to benefit from accurate
measurements such as those given by the dual loop method,
as described in the previous chapter.

ERB proved useful in quickly giving a general idea of the
performance trend on the various platforms. Having many
tests, already properly instrumented and known to be non-
deficient for performance comparison, is a big asset.
Having many tools available to make the analysis of the
produced timing results easier was an even more important
factor of suitability for using ERB in this context.

For example, Figure 5 shows the comparative results on a
logarithmic scale of the chapter implementing high-level
algorithms on the three platforms being tested. The green
platform is used as a reference and we see immediately that
the blue platform is significantly slower (more than 10
times slower on 2/3 of the results). The first two tests are
worth additional analysis since they are the only tests that
show at the same time the smallest difference between the
blue and green platforms while showing the highest
difference between the green and red. More detailed
analysis will show that the specific test cases have a high
number of active tasks and thus automatically take
advantage of the higher number of processors on the blue

platform without compensating completely for the slowness
of the CPUs.

The comparison of the green and red platform is also of
interest since they share the same hardware and only vary
by their Operating System. Comparable performance could
be naively expected for all tests. So many differences for
almost all tests requires some explanation especially since
it would be difficult to blame OS itself when these tests do
not use any OS services except implicitly through the Ada
runtime for actions such as for file IO and thread
management. A more detailed analysis of the most
important performance differences shows that there are
significant differences between GNAT Pro ports on these
two systems. Many small differences favouring the green
platform can be attributed to a difference of ABI: the green
platform using a recent x86 64bit ABI while the red one
uses the standard x86 32 bit ABI. Most of the other
differences can be attributed to a different exception
handling mechanism, as is made obvious by the specific
results on the exception chapter shown in Figure 6: the
mechanism used by the red platform (based on
setjmp/longjmp) is extremely efficient for exception
propagation but incurs a significant distributed overhead
for each handled sequence of statement. This explains why
the red platform is much faster for the tests concentrating
on exception propagation and slower in most other cases.

The other rare cases where the red platform was faster can
be traced to specific deficiencies of the 64bit code
generator which shows the powerfulness of such a test suite
for code generation tuning.

3.3 Regression Testing
This section describes the last user case for a benchmarking
technology: using it for non regression on a daily basis. The
goal is to make sure that the bug fixes and new features
regularly introduced in the compiler do not cause

Figure 5: High-Level Algorithms Execution Times

C. Comar, R. Berrendonner 61

Ada User Journal Volume 28, Number 1, March 2007

performance regressions like the one discussed above.
Unlike the previous user cases, this is still work in progress
at AdaCore and the method presented in this section is
likely to be adjusted according to future findings.

Non-regression testing is well-known good practice for
software development: a base is created and progressively

updated with tests exercising all previously fixed problems.
This whole test base is executed on a regular basis, every
night at AdaCore, to make sure that recent changes do not
cause old problems to reappear. However, the current
regression test suite leaves performance apart. Each test
provides an output, which is compared to an expected
output to make sure there is no regression. The execution
time information is neither measured nor stored, nor is the
memory consumption. It is interesting to have other means
of checking the impact of changes on these parameters. We
are therefore discussing performance regression testing.

AdaCore is planning to use ERB for this purpose and
leverage on the porting effort to non ERC32 targets. The
basic idea is to run the ERB benchmark every night with
the freshly built version of the compiler and compare the
results with respect to a baseline to identify tests that have
changed significantly. In particular, one could compare the
results of a given day with the results of the day before and
issue a report with all the performance regressions
imputable to the changes introduced in those 24 hours.

This raises a number of issues, though. This would be a
valid approach for stack measurements and footprint
measurements, as they are completely deterministic, but
would be much harder for execution time measurements.
On native platforms, the latter are subject to small
variations that make strict equality comparison pointless.

Those variations are due to machine load changes , network
activity or any other system event that may perturb the
measurement beyond what the dual loop method can handle
seamlessly. In order to avoid this, one could either run the
benchmark only on simulated platforms like the ERC32
with TSIM [7], or use another metric to identify significant

changes to test results.

On the one hand, running the ERB test suite only on a
simulated platform is not satisfactory, because AdaCore
supports only a limited number of such platforms, all of
them using restricted runtimes such as the Zero Footprint
run-time or the Ravenscar run-time. It would mean that all
the ports on which such run-times do not figure could not
be properly tested. This approach is too restrictive for
complete performance testing on a tool-chain supporting
many platforms and several run-times.

On the other hand, finding alternative metrics addressing
those issues is delicate. For instance, one could consider
that a test whose timing result is in a 10% range around the
result of the day before should not be reported as a
regression. That seems a simple way of dealing with small
unrelated variations but this is not reliable enough: a
situation where successive changes would cause several 5%
drifts would not be caught even though it creates a
significant difference after a while.

To avoid this, one could reconsider the baseline used for
the comparison; instead of using the compiler built on the
previous day, one could use the previous stable release as a
baseline. After all, the goal of such benchmarking is to
make sure that the next release will be as good, or better,
than the previous ones. It is not to detect random variations
between development versions. All results would therefore

Figure 6: Comparison of exception tests

62 ERB: A Ravenscar Benchmarking Framework

Volume 28, Number 1, March 2007 Ada User Journal

be expressed as a fraction of the results obtained with the
reference release of GNAT Pro.

Now that the baseline is determined, we need to determine
the threshold which will be used to identify regressing tests.
A number of issues have been identified and we propose
here a method to solve them.

To do this, we propose to dynamically adapt the threshold
used by a test to the history of results. At the beginning, the
threshold would be determined by past results and then be
adjusted according to daily results.

Let T1… TN be the tests inside the ERB test-suite and G1,
G2 … GM the set of GNAT Pro compilers which will form
the initial comparison base. G1 … GM would be, for
instance, all daily development versions built in the
previous year. We first make the assumption that the
evolution of the results obtained with this subset of
compilers is representative of the future evolution of
results. This assumption is probably valid in the short term.
The method we propose also makes it valid in the long term
as new data is fed to the model.

During an initialization phase, tests T1 … TN will be run
against all G1… GM compilers, producing a huge two-
dimensional matrix of results that can be noted R(1,1) …
R(N,M). For each test TJ we will compute over R(J,1) …
R(J,M) the 10th percentile of the results and the 90th
percentile of the results. Any result above and beyond these
limits will be considered as significantly different and be
reported to developers.

Such a method can be used dynamically. Once we have the
results for the past, it is possible to dynamically adapt the
database, adding the results vector R(1,M+1)…R(N, M+1)
every day and computing the thresholds again . However,
we want regressions to remain apparent. If they are fed
back to the base, the regressions will introduce a bias and
may, ultimately, no longer be reported. In order to avoid
this, reported regressions are not fed back to the result base
unless it is traced as a necessary loss of performance related
to a new feature, rather than a bona-fide regression.

The dimensions of the problem need to be checked for
feasibility. If AdaCore implements this for a number P of
platforms, the amount of data to be stored is the following
is D = T x M x N x S, where S is the size in bytes of the
output of a test. If T is 3 (for instance Linux, Windows and
ERC32), M is 365, N is 266 and S is 20, the “knowledge
base” would be in the order of magnitude of 5.8 Mbytes
and the daily increase of data would be about 15 Kbytes.
On a recent GNU/Linux machine, running ERB takes
roughly one hour and a half. This means that the reference
base needs around 22 days to be fully built, and therefore
must be run on a dedicated machine.

A similar situation occurs with tests that have volatile
results. This can happen, for instance, for tests that depend
on the operating system load, either because they involve
tasking or because they last a long time. The system we
propose should be able to handle such tests quite
seamlessly because regressions would be reported only if

the results fall in a statistically exceptional area. This is the
main advantage of this method: regression is not detected
through a binary decision mechanism, but rather by an
adaptable system that detects exceptional results by
comparing them with history.

Conclusion
This paper first discussed the various challenges of creating
a reliable benchmarking framework for compilers in a
Ravenscar context. We then described very different
situations where this benchmarking suite has been useful.
Having access to such a tool is a good way to answer
specific performance oriented questions. It is much more
difficult, on the other hand, to answer general questions
such as which of two completely different technologies is
the best one.

In any event, any careful analysis requires a very good
understanding of the underlying technology, which is why
such a tool is of particular interest for compiler vendors.
ERB will therefore be made available to any interested
party on AdaCore libre site [2] with full sources and
documentation, under the terms of the General Public
Licence [1] so that everyone can find answers to their own
questions.

References
[1] Free Software Foundation (1991), The General Public

Licence, version 2
Available at http://www.gnu.org/licenses/gpl.txt

[2] The AdaCore libre site
Available at http://libre.adacore.com/

[3] R. Berrendonner and J. Guitton (2005) The ESA
Ravenscar Benchmark, Springer-Verlag, LNCS 3555,
Proceedings of Reliable Software Technology-Ada
Europe 2005.

[4] Performance Issues Working Group (PIWG), The
PIWG benchmark
http://unicoi.kennesaw.edu/ase/support/cardcatx/piwg.
htm

[5] High Order Language Control Facility (2003), Ada
Compiler Evaluation system Reader’s Guide for
Version 2.1
Available at http://www.adaic.org/compilers/aces/aces-
intro.html

[6] AdaCore (2007), ESA Ravenscar Benchmark Final
Report, ESA Contract No. 16962/02/NL/LvH/bj

[7] Jiri Gaisler (2003), TSIM Simulator User’s Manual,
Gaisler Research
Available at http://www.gaisler.com

[8] J. A. de la Puente, J. Ruiz and J. Zamorano (2000), An
Open Ravenscar Real-Time Kernel for GNAT,
Springer-Verlag, LNCS 18455, Proceedings of
Reliable Software Technology-Ada Europe 2000.

[9] Ravenscar profile for high-integrity systems
Available at http://www.ada-auth.org

64

Volume 28, Number 1, March 2007 Ada User Journal

Ada-Europe 2006 Sponsors

8 Rue de Milan, F-75009 Paris, France AdaCore
Contact: Zépur Blot Tel: +33-1-49-70-67-16

Email: sales@adacore.com
Fax: +33-1-49-70-05-52
URL: www.adacore.com

66/68, Avenue Pierre Brossolette, 92247 Malakoff, France Aonix
Contact: Jacques Brygier Tel: +33-1-41-48-10-10

Email : info@aonix.fr
Fax: +33-1-41-48-10-20
URL : www.aonix.com

Dolphin House, St Peter Street, Winchester, Hampshire, SO23 8BW, UK Green Hills Software Ltd
Contact: Christopher Smith Tel: +44-1962-829820

Email :
Fax: +44-1962-890300
URL : www.ghs.com

1 Cornbrash Park, Bumpers Way, Chippenham, Wiltshire, SN14 6RA, UK I-Logix
Contact: Martin Stacey Tel: +44-1249-467-600

Email : info_euro@ilogix.com
Fax: +44-1249-467-610
URL : www.ilogix.com

20 Manvers Street, Bath, BA1 1PX, UK Praxis High Integrity
Systems Ltd
Contact: Rod Chapman

Tel: +44-1225-466-991
Email : sparkinfo@praxis-his.com

Fax: +44-1225-469-006
URL : www.sparkada.com

Triad House, Mountbatten Court, Worrall Street, Congleton, CW12 1DT, UK Ellidiss Software
TNI Europe Limited
Contact: Pam Flood

Tel: +44-1260-29-14-49
Email: info@tni-europe.com

Fax: +44-1260-29-14-49
URL: www.ellidiss.com

	Contents
	Editorial
	News
	Conference Calendar
	ERB : A Ravenscar Benchmarking Framework

