

Ada User Journal Volume 28, Number 4, December 2007

ADA
USER
JOURNAL

Volume 28
Number 4

December 2007

Contents
Page

Editorial Policy for Ada User Journal 198

Editorial 199

News 201

Conference Calendar 225

Forthcoming Events 232

Articles

 I. Furgel, L. Hanke
“Secure software-download as part of a complex business process” 237

Proceedings of the 13th International Real-Time Ada Workshop

 T. Vardanega, J. F. Ruiz
“Session: Language Issues” 246

 A. Zerzelidis, A. Burns, A.J. Wellings
“Correcting the EDF protocol in Ada 2005” 249

 A. J. Wellings, A. Burns
“Integrating OOP and Tasking – The missing requeue” 253

 S. Urueña, J. Zamorano
“Building High-Integrity Distributed Systems with Ravenscar Restrictions” 259

Ada Gems 267

Ada-Europe Associate Members (National Ada Organizations) 272

Ada-Europe 2007 Sponsors Inside Back Cover

198

Volume 28, Number 4, December 2007 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 199

Ada User Journal Volume 28, Number 4, December 2007

Editorial
This issue closes volume 28 of the Ada User Journal; at the same time as the year 2007 comes to an end. Not looking back,
but forward, for sure the highlight of 2007 was the approval by ISO of the (officially known as) Amendment to ISO/IEC
8652, informally and better known as Ada 2005. Not being a change as extensive as it was Ada 95, there are considerable
improvements to the language, particularly in the Object Oriented and Real-Time Systems domains, allowing us to look
forward to a successful 2008. This approval was the conclusion of a long process that had the contribution of the large
majority of the Ada community. We should acknowledge this effort, but in particular thank the members and editor of the
Ada Rapporteur Group, the main responsibles for “pushing” the process forward. The approval was also the start of a new
process; do not forget that Ada will be what we make it. It is now the job of each one of us to advertise its merits and
encourage its use.

As for this last issue of 2007, I am sure that you will find its contents worthwhile. The first paper is a contribution from the
Industrial Track of the Ada-Europe 2007 conference, by Igor Furgel and Lars Hanke of T-Systems, Germany, describing a
business process for managing secure updates in embedded systems.

Next, and taking the main share of the issue, is the first part of the Proceedings of the 13th International Real-Time Ada
Workshop (IRTAW-13) that, as promised, will be reprinted in the Journal. This issue provides the contents of the first session
of the workshop: Language Issues. The first paper is the session report, which describes the main debate and conclusions of
the session. Afterwards, you can find two papers coming from the University of York, UK. The first paper proposes a
correction to the EDF protocol specification in Ada 2005, while the second proposes to augment Ada 2005 by allowing
requeuing via an interface. Finally, the last paper of the session, coming from the Technical University of Madrid, Spain,
discusses restrictions and additions in order to support high-integrity hard real-time distributed applications.

In this issue we also start publishing contributions from the Gem of the Week series, with the permission of AdaCore, for
which I am thankful. Inaugurating the section is the series of gems concerning Limited Types in Ada 2005, by Bob Duff.
Finally, the News, Calendar and Forthcoming Events sections complete the issue.

Before concluding; some of you may have noticed that there were problems with the printing process of the Journal, which
led to quality problems in some of the copies of the September issue. Unfortunately we did not detect this before shipment,
for which I apologise. For the December issue we introduced an extra verification step in the production process that we hope
will prevent similar problems in the future. In the meanwhile, if you deem necessary please contact the Deputy Editor of the
Ada User Journal, Jorge Real, as we are inquiring the printer on the possibility of printing extra copies.

Concluding this last editorial of 2007, I wish all the Journal collaborators and readers the best for 2008!

Luís Miguel Pinho
Porto

December 2007
Email: lmp@isep.ipp.pt

 201

Ada User Journal Volume 28, Number 4, December 2007

News
Santiago Urueña
Technical University of Madrid (UPM). Email: Santiago.Uruena@upm.es

Contents

Ada-related Events 201
Ada Semantic Interface

Specification 204
Ada and Education 205
Ada-related Tools 206
Ada-related Products 209
Ada and GNU/Linux 215
References to Publications 216
Ada Inside 217
Ada in Context 219

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—su]

Oct 2 — Ada day at Saab
Sweden
From: AdaCore
Date: September 28, 2007
Subjet: Ada day at Saab Sweden
URL: http://www.adacore.com/2007/09/28/

ada-day-at-saab-sweden/
Ada day at Saab Sweden

October 2, Järfälla, Sweden
Agenda Tuesday October 2:
09.30 – 10.30 Quality Assurance with
GNAT Pro
A review of the functionalities of the
GNAT Pro toolsuite that help insure the
quality of generated code. Emphasis will
be put on the creation of coding style
rules, the integration of unit testing and
coverage in the development cycle, and
the generation of metrics and browsable
documentation.
10.30 – 10.45 Break
10.45 – 11.15 Help for Certification with
the GNAT Pro High-Integrity Edition
A presentation of the various
functionalities that can be of interest when
developing software requiring
certification: Coding standard definition
and verification, static worst case analysis
(stack usage and timing), robustness and
consistency testing, source to object
traceability, and runtime footprint and
deactivated code reduction, etc.

11.15 – 11.45 The Double Life of Ada
Created by the DoD, Ada has a worldwide
reference list of being used in large,
embedded aerospace & defence projects.
Less well known is the fact that Ada has a
strong presence outside of these
“traditional” markets.
11.45 – 12.00 Questions and answers
12.00 – 13.00 LUNCH
13.00 – 14.00 The GNAT Pro Foundry
An insight into the software factory that
produces two GNAT Pro releases each
year and a GNAT Pro wavefront every
day on more than 30 different
configurations. The life of an AdaCore
support ticket from its creation in GNAT
Tracker to its complete resolution, and its
participation in the quality of the product.
14.00 – 14.15 Break
14.15 – 14.45 The GNAT Pro Roadmap
New features, new tools, new libraries,
new supported configurations, new
services…
14.45 – 15.00 Questions and answers

Nov 7 — SIGAda Awards
From: John McCormick

<mccormick@cs.uni.edu>
Date: Thu, 20 Sep 2007 14:09:43 −0700
Subject: Call for SIGAda Award

Nominations
Newsgroups: comp.lang.ada
Dear Members of the Ada Community:
On Wednesday, 7 November 2007, the
2007 SIGAda Awards will be presented in
a special morning plenary session at the
SIGAda 2007 conference in Fairfax, VA.
(See http://www.acm.org/sigada/conf/
sigada2007/ if you have somehow missed
announcements of this year's annual
SIGAda international conference.)
We welcome your nominations of
deserving recipients.
The ACM SIGAda Awards recognize
individuals and organizations who have
made outstanding contributions to the
Ada community and to SIGAda. The two
categories of awards are:
(1) Outstanding Ada Community
Contribution Award — For broad, lasting
contributions to Ada technology & usage.
(2) ACM SIGAda Distinguished Service
Award — For exceptional contributions
to SIGAda activities & products.
Please consider who should be nominated
this year. You may nominate a person for
either or both awards, and as many people

as you think worthy. One or more awards
will be made in both categories.
Please visit http://www.acm.org/sigada/
exec/awards/awards.html#Recipients and
peruse the names of past winners. This
may help you think about the measure of
accomplishment that is appropriate. You
may be aware of people who have made
substantial contributions that have not yet
been acknowledged. Nominate them.
Consider what you believe to be the best
developments in the Ada community or
SIGAda in the last year; the last 5 years;
since Ada's inception. Who was
responsible? Nominate them.
Please note that anyone who has received
either of the two awards remains eligible
for the other. Perhaps there is an
outstanding SIGAda volunteer who has
won our Distinguished Service Award
and who has also made important
contributions to the advance of Ada
technology, or visa versa. Nominate him
or her!
The nomination form is available on the
SIGAda website at http://www.acm.org/
sigada/exec/awards/awards.html. (You
need to visit this website to see past award
winners' names, and also a picture of the
statuette which is the award among other
things, so you don't nominate someone
who has already won an award in a
category.) Submit your nomination as an
e-mail or e-mail attachment to
SIGAda-Award@acm.org.
The ACM SIGAda Awards Committee,
comprised of volunteers who have
previously won an award, will determine
this year's recipients from your
nominations.
Call our attention to the people who are
most deserving, by nominating them.
And please nominate by OCTOBER 15!
Your participation in the nominations
process will help maintain the prestige
and honor of these awards.
John McCormick
Chair ACM SIGAda
[See also “15 November — SIGAda
Awards” in AUJ 27.4 (Dec 2006), p.197
—su]

Nov 4–9 — SIGAda 2007
Conference
From: John McCormick

<mccormick@cs.uni.edu>
Date: Fri, 19 Oct 2007 13:04:49 −0700
Subject: SIGAda 2007 extended early

registration rates

202 Ada-related Events

Volume 28, Number 4, December 2007 Ada User Journal

Newsgroups: comp.lang.ada
SIGAda 2007 has extended its early
registration rates through November 1st!
This allows everyone to take advantage of
the lower rates during the time that the
government is working under a
Continuing Resolution (CR) for
appropriations.
Note that current policy regarding a
Continuing Resolution does not prohibit
attendance at conference tutorials,
workshops, and sessions which are
directly related and relevant to current
duties and responsibilities of software
engineers, information technology
specialists, IT security engineers,
managers, etc. Such attendance is justified
and can currently be funded by the federal
government. The SIGAda 2007
conference falls under this policy.
As the SIGAda 2007 conference is
scheduled shortly after the government's
new fiscal year, we encourage all federal
government employees and contractors to
take this opportunity to attend and register
using the early registration rates, now
extended through November 1st to
everyone. More information is available
on our website at
http://www.sigada.org/conf/sigada2007/
SIGAda 2007 includes Tutorials on
Exposing Ada Web Services Using a
Service-Oriented Architecture (SOA),
Ada 2005, Security by Construction, and
Languages for Safety-Critical Software:
Issues and Assessment DO178/DO278. It
also includes Technical Papers such as
High Assurance Profile for CORBA,
Neural Networks, and SPARK Ada.
Exhibitors are Lockheed Martin,
AdaCore, OC Systems, Praxis, Northrop
Grumman, Telelogic, Genco Systems,
ARTiSAN Software, Ellidiss Software,
Aonix, and Integrated Computer
Solutions, Inc.
The workshops include a Two-Day
Summit on Software Analysis sponsored
by NIST and the Department of
Homeland Security. All the Workshops
are free with a minimum one-day
conference registration. The conference
will have a grand Banquet on Tuesday
evening with outstanding Ethnic Cultural
Performances.
As a recent note of interest to the Ada
community, the Federal Aviation
Administration (FAA) has just announced
Government Acceptance of a multi billion
dollar Ada based core Air Traffic Control
System developed on budget and ahead of
schedule (see http://www.faa.gov/news/
fact_sheets/news_story.cfm?newsId=7714
for details).
[See also “12–16 November — SIGAda
2006 Conference” in AUJ 27.4 (Dec
2006), pp.197–198 —su]

Dec 6 — Ada-France 2007
From: Frank Singhoff <singhoff@univ-

brest.fr>
Date: Wed, 14 Nov 2007 00:39:03 +0100
Subject: Programme de la journée Ada-

France 2007: méthodes, processus,
modèles et outils pour l'ingénierie du
logiciel embarqué temps réel critique

Newsgroups: fr.comp.lang.ada
[Translated from French. —su]
Program of the Ada-France technical
Seminar 2007: methods, processes,
models and tools for engineering
embedded critical real-time software
Theme of the Seminar
An embedded system is a coherent set of
components (hardware and software). It is
often invisible to the equipment’s user. It
provides to the equipment the ability to
complete a set of specific tasks by
providing it intelligence. It performs data
processing and manages the equipment’s
exchange of information necessary to
accomplish its tasks. On the other hand,
an embedded computer system faces, in
varying degrees, to real-time constraints
distinguishing the hard or critical real-
time systems (need to meet response time
deadlines, failing which the mission of the
equipment can not be fulfilled) and soft
real-time systems (trying to respect the
constraints where non-compliance causes
temporary dysfunction that does not cause
the failure of the equipment’s mission).
We talk about critical embedded systems
when the equipment performs a mission
whose failure has the potential for a major
impact on the lives, health of people, on
the environment ... more generally on the
fulfillment of the critical missions in
which it participates. Whether because of
their cost of production, their criticality,
their complexity or their inaccessibility
during use, the engineering of such
systems requires the use of specific
methods, processes, models and tools.
Seminar Program
Morning
9 h-9h30. Participants greeting, coffee.
9 h30-10h15. . Premiers retours d'un
chercheur sur l'utilisation de l'IDM pour
le temps réel. Jerome Delatour ESEO
(Angers)
10 h15-11h. AADL: état et perspectives.
Pierre Dissaux, Ellidiss Technologies
(Brest)
11 h-11h45. Validation de systèmes
temps-réel et embarqué à partir d'un
modele MARTE: expérimentation. Eric
Maes, Thales Research and Technology
(Palaiseau)
11 h45-12h30. AUTOSAR: Streamlining
automotive systems and processes.
Francois Dupont, Geensys (Brest)
Afternoon

Lunch, coffee.
14 h30-15h15. Expérimentation d'unités
de preuve pour la validation formelle de
logiciels embarqués critiques. * Philippe
Dhaussy, Pierre Yves Pilain * * Stephane
Kerjean Dominique de Belloy **, Arnaud
du Sorbier Monégier **, Hugues +
Bonnin, Frederic Boniol ***. *
Laboratory DTN, ENSIETA (Brest), **
Thales AIR SYSTEMS (Rungis), + CS-SI
(Toulouse), *** IRIT-ENSEEIHT
(Toulouse).
15 h15-16h. Ada 2005 pour les systèmes
embarqués temps réel. Jose F. Ruiz,
AdaCore (Paris)
16 h-16h45. Les outils de retro-ingénierie
de code Ada. Eric Audrezet, Sodius
(Nantes).
16 h45. End of the seminar, balance and
announce of the next seminar.
--
Registration and information practices
Participation is free. The coffee breaks
and a lunch will be offered by the
sponsors. For reasons of logistics (meals,
rooms), registration is mandatory. The
application deadline is December 1st.
Registration can be made by returning the
form below via email to F. Singhoff
(singhoff@univ-brest.fr). [...]
The [Ada-France] seminar is held at the
ENST. A map (plane, bus, car, train) is
available here:
Http://www.enst-bretagne.fr/ecole/
Campus_de_brest/ plan_d_acces/
--
Sponsors and Partners:
Ada-Core (http://www.adacore.com)
Ellidiss technologies
(http://www.ellidiss.com)
Jessica-France (http://www.jessica-
france.fr/)
Organizing Committee: (http://www.ada-
france.org)
J. Hughes (President of Ada-France,
ENST Paris, hugues@enst.fr)
Y. Kermarrec (Secretary of Ada-France,
Enst-Bretagne, yvon.kermarrec@enst-
bretagne.fr)
F. Singhoff (Treasurer of Ada-France,
LISYC / University of Brest,
singhoff@univ-brest.fr)

Jun 16–20 — Ada-Europe
2008
From: Dirk Craeynest

<Dirk.Craeynest@cs.kuleuven.be>
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc
Subject: Ada-Europe 2008 submission

deadline approaching
Date: Thu, 25 Oct 2007 22:03:36 +0200

(CEST)

Ada-related Events 203

Ada User Journal Volume 28, Number 4, December 2007

Organization: Ada-Europe, c/o Dept. of
Computer Science, K.U.Leuven

Summary: 17 days until submission
deadline!

Keywords: Conference,tutorials,reliable
software,Ada,LNCS,Venice,Italy

 2nd CALL FOR PAPERS
 13th International Conference on
 Reliable Software Technologies —
 Ada-Europe 2008
 16 – 20 June 2008, Venice, Italy
 http://www.ada-europe.org/
 conference2008.html
 Organized by Ada-Europe,
 in cooperation with ACM SIGAda
 (approval pending)
 *** DEADLINE 11 NOVEMBER ***
Ada-Europe organizes annual
international conferences since the early
80's. This is the 13th event in the
Reliable Software Technologies series,
previous ones being held at Montreux,
Switzerland ('96), London, UK ('97),
Uppsala, Sweden ('98), Santander, Spain
('99), Potsdam, Germany ('00), Leuven,
Belgium ('01), Vienna, Austria ('02),
Toulouse, France ('03), Palma de
Mallorca, Spain ('04), York, UK ('05),
Porto, Portugal ('06), Geneva, Switzerland
('07).
General Information
The 13th International Conference on
Reliable Software Technologies (Ada-
Europe 2008) will take place in Venice,
Italy. Following its traditional style, the
conference will span a full week,
including a three-day technical program
and vendor exhibitions from Tuesday to
Thursday, along with parallel tutorials and
workshops on Monday and Friday.
Schedule
⁃ 11 November 2007: Submission of
regular papers, tutorial and workshop
proposals
⁃ 13 January 2008: Submission of
industrial presentation proposals
⁃ 03 February 2008: Notification to all
authors
⁃ 02 March 2008: Camera-ready version
of regular papers required
⁃ 11 May 2008: Industrial presentations,
tutorial and workshop material required
⁃ 16-20 June 2008: Conference
Topics
The conference has successfully
established itself as an international forum
for providers, practitioners and
researchers into reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development and maintenance of long-
lived, high-quality software systems for a
variety of application domains. The
program will allow ample time for
keynotes, Q&A sessions, panel
discussions and social events. Participants

will include practitioners and researchers
in representation from industry, academia
and government organizations active in
the promotion and development of
reliable software technologies.
Prospective contributions should address
the topics of interest to the conference,
which include but are not limited to those
listed below:
⁃ Methods and Techniques for Software
Development and Maintenance:
Requirements Engineering, Object-
Oriented Technologies, Model-driven
Architecture and Engineering, Formal
Methods, Re-engineering and Reverse
Engineering, Reuse, Software
Management Issues
⁃ Software Architectures: Design Patterns,
Frameworks, Architecture- Centered
Development, Component and Class
Libraries, Component-based Design
⁃ Enabling Technology: Software
Development Environments and Project
Browsers, Compilers, Debuggers, Run-
time Systems, Middleware Components
⁃ Software Quality: Quality Management
and Assurance, Risk Analysis, Program
Analysis, Verification, Validation,
Testing of Software Systems
⁃ Theory and Practice of High-integrity
Systems: Real-Time, Distribution, Fault
Tolerance, Security, Reliability, Trust and
Safety
⁃ Mainstream and Emerging Applications:
Multimedia and Communications,
Manufacturing, Robotics, Avionics,
Space, Health Care, Transportation
⁃ Ada Language and Technology:
Programming Techniques, Object-
Orientation, Concurrent and Distributed
Programming, Evaluation & Comparative
Assessments, Critical Review of
Language Features and Enhancements,
Novel Support Technology, HW/SW
Platforms
⁃ Experience Reports: Case Studies and
Comparative Assessments, Management
Approaches, Qualitative and Quantitative
Metrics
⁃ Ada and Education: Where does Ada
stand in the software engineering
curriculum; how learning Ada serves the
curriculum; what it takes to form a fluent
Ada user; lessons learned on Education
and Training Activities with bearing on
any of the conference topics.
Call for Regular Papers
Authors of regular papers which shall
undergo peer review for acceptance are
invited to submit original contributions.
Paper submissions shall be in English,
complete and not exceeding 14 LNCS-
style pages in length. Authors should
submit their work via the Web submission
system accessible from the Conference
Home page. The format for submission is
solely PDF. Should you have problems to

comply with format and submission
requirements, please contact the Program
Chairs.
Proceedings
The authors of accepted regular papers
shall prepare camera-ready submissions in
full conformance with the LNCS style,
not exceeding 14 pages and strictly by *2
March 2008*. For format and style
guidelines authors should refer to:
http://www.springer.de/comp/lncs/
authors.html. Failure to comply and to
register for the conference will prevent
the paper from appearing in the
proceedings. The conference proceedings
will be published in the Lecture Notes in
Computer Science (LNCS) series by
Springer Verlag and will be available at
the start of the conference.
Awards
Ada-Europe will offer honorary awards
for the best regular paper and the best
presentation.
Call for Industrial Presentations
The conference also seeks industrial
presentations which may have value and
insight, but do not fit the selection process
for regular papers. Authors of industrial
presentations are invited to submit a short
overview (at least 1 page in size) of the
proposed presentation to the Conference
Chair by 13 January 2008. The Industrial
Program Committee (yet to be named)
will review the proposals and make the
selection. The authors of selected
presentations shall prepare a final short
abstract and submit it to the Conference
Chair by 11 May 2008, aiming at a 20-
minute talk. The authors of accepted
presentations will be invited to derive
articles from them for publication in the
Ada User Journal, which will host the
proceedings of the Industrial Program of
the Conference.
Call for Tutorials
Tutorials that address subjects in the
scope of the conference may be proposed
as either half- or full-day events.
Proposals should include a title, an
abstract, a description of the topic, a
detailed outline of the presentation, a
description of the presenter's lecturing
expertise in general and with the proposed
topic in particular, the proposed duration
(half day or full day), the intended level
of the tutorial (introductory, intermediate,
or advanced), the recommended audience
experience and background, and a
statement of the reasons for attending.
Proposals should be submitted to the
Tutorial Chair. The providers of full-day
tutorials will receive a complimentary
conference registration as well as a fee for
every paying participant in excess of 5;
for half-day tutorials, these benefits will
be accordingly halved. The Ada User
Journal will offer space for the
publication of summaries of the accepted
tutorials.

204 Ada Semantic Inter face Specif icat ion

Volume 28, Number 4, December 2007 Ada User Journal

Call for Workshops
Workshops on themes in scope of the
conference may be proposed. Proposals
may be submitted for half- or full-day
events, to be scheduled on either ends of
the conference week. Workshop
proposals should be submitted to the
Conference Chair. The workshop
organizer shall also commit to preparing
proceedings for timely publication in the
Ada User Journal.
Call for Exhibitions
Commercial exhibitions will span the
three days of the main conference.
Vendors and providers of software
products and services should contact the
Exhibition Chair for information and for
allowing suitable planning of the
exhibition space and time.
Discounts for Students
A limited number of grants are available
for students who will co-author papers
accepted at the conference. The grant will
entail a reduction of 25% in the
conference fee. Contact the Conference
Chair for details.
Organizing Committee
Conference Chair
Tullio Vardanega, Università di Padova,
Italy (tullio.vardanega@math.unipd.it)
Program Co-Chairs
Tullio Vardanega, Università di Padova,
Italy (tullio.vardanega@math.unipd.it)
Fabrice Kordon, Université P. & M.
Curie, France (fabrice.kordon@lib6.fr)
Tutorial Chair
Jorge Real, Universidad Politécnica de
Valencia, Spain (jorge@disca.upv.es)
Exhibition Chair
Ahlan Marriott, White-Elephant GmbH,
Switzerland (ada@white-elephant.ch)
Publicity Chair
Dirk Craeynest, Aubay Belgium &
K.U.Leuven, Belgium
(dirk.craeynest@cs.kuleuven.be)
Local Chair
Sabrina De Poli, Sistema Congressi srl,
Italy (ae08@sistemacongressi.com)

Objektum — Embedded
Systems Show
From: Objektum News & Events
Date: October 17th, 2007
Subject: Technology and Toolset

Convergence Promoted at ESS 2007
URL: http://www.objektum.com/objektum/

indexnews.asp?NewsID=477
Objektum (www.objektum.com), a
leading provider of tailored training,
consulting and software development for
the aerospace and defence sector is

promoting its vision for Application
Lifecycle Management (ALM) toolset and
technology convergence at the Embedded
Systems Show (ESS) 2007.
Using its unique position in the discipline
of software engineering and its UML /
SysML toolset expertise, Objektum is
working to integrate tools and technology
to maximise the efficiency of managers,
analysts, developers and testers. One such
example is the development of two plug-
ins for the acclaimed ARTiSAN Studio®
toolset.

AdaCore — Systems &
Software Technology
Conference
From: AdaCore Press Center
Date: Wednesday October 24, 2007
Subject: Systems & Software Technology

Conference (SSTC 2008)
RSS: http://www.adacore.com/2007/10/24/

systems-software-technology-conference-
sstc-2008/

Systems & Software Technology
Conference (SSTC 2008)
AdaCore will be exhibiting at this event.

AdaCore — Embedded
Systems Conference Silicon
Valley
From: AdaCore Press Center
Date: Wednesday October 24, 2007
Subject: Embedded Systems Conference

Silicon Valley
RSS: http://www.adacore.com/2007/10/24/

embedded-systems-conference-silicon-
valley-2/

Embedded Systems Conference Silicon
Valley
AdaCore will be exhibiting at this event.

Ada Semantic Interface
Specification (ASIS)
ASIS for Debuggers?
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 26 Oct 2007 12:09:27 +0200
Subject: Re: ASIS?
Newsgroups: comp.lang.ada
> If one were to need an API to fulfill all

requirements by a Debugger, Source
Browser and a Syntax-aware editor
from the IDE, then would ASIS be it?

The debugger does not need all the
capabilities of ASIS; only line numbers
and type descriptions. That's what GDB
gets from the object files generated by
GNAT with -g. The editor does not need
all the capabilities of ASIS. For example,

emacs, GPS and Eclipse all do syntax
highlighting without ASIS.
The source browser is probably the one
component that would benefit from ASIS
the most; however an alternative is
gnatfind which uses the .ali files
generated by GNAT for cross-references.
GPS uses gnatfind, not ASIS, for this
functionality. In contrast, adabrowse
generates an HTML description of a
program, with hyperlinks, using ASIS.
However, the answer to your question is
probably yes: ASIS would provide all the
information needed, and more, to the
debugger, browser and editor, in a single
interface.
> Can a compilation environment just

provide an ASIS interface for third-
party debuggers, source browsers and
syntax-aware editors to plug-in and
work well?

Yes but the word “just” is often the sign
of a mistake and rings an alarm bell in my
head whenever I see or hear it :) In this
case, it hides these problems:
1) The complexity of providing the ASIS
interface and that of using it from all
tools.
2) The ASIS interface can only be
provided on legal, compiling program
text. Any program with compile-time
errors in it would be impossible to browse
(using the source browser) and the editor
would have to be particularly smart in
deciding when to call the compiler to
regenerate the ASIS information.
3) In the worst of cases, regenerating the
ASIS data can cause massive
recompilations and be too slow for
interactive use.
> Is a C interface available?
Not that I know. [...]
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Fri, 26 Oct 2007 19:15:06 −0500
Subject: Re: ASIS?
Newsgroups: comp.lang.ada
> I thought ASIS only has “high-level”

information prior to the target-
dependent object-code generation and
linking. I think the debugger will need
the link map, information about the
stack frame layouts, record layouts, etc,
which is not in the ASIS domain. Am I
wrong?

No. The Rationale for ASIS appendix of
the ASIS standard states “It is not a goal
to support tools having dynamic run-time
requirements (e.g., symbolic debugger).”
It can't be any clearer than that.
(Sorry I can't give you a reference to the
standard so you can see for yourself, as
the ASIS standard is copyright ISO and
thus cannot be made publicly available.)

Ada-and Educat ion 205

Ada User Journal Volume 28, Number 4, December 2007

Ada and Education
Free book on multitasking
From: Bo Sanden <bsanden@acm.org>
Date: Sat, 29 Sep 2007 08:52:12 −0700
Subject: Free book on multitasking
Newsgroups: comp.lang.ada
Title: MULTITHREADING
Version: 0.9 August 2007
Author: Bo Sanden
License: Permission to copy if author,
title and version are acknowledged
Copyright 2007 Bo Sanden, Colorado
Technical University
URL:
http://home.earthlink.net/~bosanden/Multi
threading
This book is intended for designers and
programmers of multitask software. It
introduces the tasking/threading support
in Ada and Java and presents Entity-Life
Modeling, which is an intuitive design
approach for reactive systems.
Reactive systems include those that
operate in real time in the widest sense,
such as embedded control systems as well
as telephone switches; interactive systems
from automated teller machines and gas
pumps to travel reservation systems; and
event-processing systems such as many
games. ELM also applies to discrete-event
simulations based on the process
interaction worldview. ELM finds
multitask solutions to problems that are
inherently concurrent.
With Entity-life modeling, you pattern
tasks on event threads in the problem
domain much as an object-oriented
program is patterned on objects in the
problem domain. Most examples are in
Ada.
Part I: Foundations
1. Introduction
2. Support for multithreading (Ada 2005,
Java and Pthreads)
3. State modeling (practical use of state
machines)
Part II: Entity-life modeling
4. Entity-life modeling
5. State-machine implementations
6. Resource sharing
7. Simultaneous exclusive access to
multiple resources
Part III: Background and discussion
8. Real-time software architectures. Data-
flow design approaches
9. The origins of entity-life modeling

Ada Intern Program
From: AdaCore Developer Center
Date: Tuesday September 18, 2007
Subject: Ada Intern Program

RSS: http://www.adacore.com/2007/09/18/
ada-intern-program/

The new look Ada Intern Program is now
up and running, providing a unique
framework for AdaCore customers to
source Ada-knowledgeable students from
around the world for internship positions.
Customers can post internship offers and
view applicants’ profiles via their GNAT
Tracker account.
Click here
(http://www.adacore.com/home/academia
/intern) for more information.
[See also “AdaCore Partners with Praxis
Critical Systems on a Joint Academic
Initiative” in AUJ 25-4 (Dec 2004),
p.179. —su]

Webminar: GNATbench
From: AdaCore Press Center
Date: Thursday October 25, 2007
Subject: Webinar: GNATbench — The

GNAT Pro Ada plug-in for Wind River
Workbench

RSS: http://www.adacore.com/2007/10/25/
online-event-webinar-gnatbench-the-
gnat-pro-ada-plug-in-for-wind-river-
workbench/

AdaCore has recently launched
GNATbench 2.0, a significant upgrade
with new capabilities in support of Wind
River Systems’ Workbench. The upgrade
provides development teams using
Workbench with advanced Ada language
support and a fully integrated GNAT Pro
Ada toolset to facilitate multi-language
development, sophisticated editing,
browsing, debugging, and comprehensive
compilation. All versions of Ada are
included — Ada 83, Ada 95, and Ada
2005 — for both kernel-module and real-
time process (RTP) applications. Of
special interest is the Code Assist editor
feature that proposes identifier
completions after a dot is entered, and
formal parameter completions after an
opening parenthesis is entered.
This webinar will appeal to Ada
developers that are using, or are interested
in using, GNAT Pro and the Wind River
Workbench development environment in
their projects. For more information on
GNATbench please visit the GNATbench
product page or contact
sales@adacore.com.
From: AdaCore Developer Center
Date: Saturday November 10, 2007
Subject: GNATbench for Workbench

Webinar
RSS: http://www.adacore.com/2007/11/10/

gnatbench-for-workbench-webinar/
The archived training webinar featuring
GNATbench for Workbench is now
available for download. Please [go to
http://www.adacore.com/home/gnatpro/
webinars] to access it.

Webminar: Eclipse
From: AdaCore Press Center
Date: Thursday October 25, 2007
Subject: E-cast: Eclipse: Open standards
RSS: http://www.adacore.com/2007/10/25/

e-cast-eclipse-open-standards/
COTS products come together to
streamline safety-critical and OEM
embedded development.
Summary
Eclipse has promised tools can plug in
and work together, and we’ll see concrete
examples in this live event. Telelogic,
AdaCore, and LynuxWorks are utilizing
the power of the open Eclipse framework
to help integrate and streamline the
process from design to deployment.
Hear Telelogic explain how Rhapsody, a
UML design tool, and DOORS, the
industry standard requirements tool, are
taking advantage of Eclipse to provide an
easy path from design to code. AdaCore
introduces their Eclipse-based
GNATbench and GNAT Pro tool set that
brings both Ada and C/C++ code
together, integrating with the leading
safety critical open-standards based
RTOS — LynxOS. LynuxWorks shows
how their Luminosity tool suite continues
the common look and feel of Eclipse, to
help build, test and deploy safety critical
systems.

Webinar: GNAT Pro for
OpenVMS
From: AdaCore Developer Center
Date: Thursday November 8, 2007
Subject: Webinar: GNAT Pro for OpenVMS

on HP Integrity servers
RSS: http://www.adacore.com/2007/11/08/

webinar-gnat-pro-for-openvms-on-hp-
integrity-servers-2/

GNAT Pro for OpenVMS on HP Integrity
servers training webinar — Nov 20, 2007.
AdaCore’s GNAT Pro for HP OpenVMS
I64 is a full-featured Ada development
environment offering a natural migration
path for Ada applications from other
platforms. It includes a compiler that can
handle all three versions of the Ada
standard — Ada 83, Ada 95, and Ada
2005 — and provides a rich set of
auxiliary tools and an extensive set of
libraries. Ada-aware debugging is
provided through HP’s OpenDebug.
In this half-hour webinar AdaCore, with
HP’s participation, will describe the
features and benefits of the GNAT Pro
Ada development environment on HP
OpenVMS I64 and answer questions from
the audience. A particular focus will be on
how to port Ada code from HP Ada on
VAX and Alpha servers to GNAT Pro on
OpenVMS I64. GNAT Pro supplies an
extensive set of pragmas and attributes
that are compatible with HP Ada, and for
most Ada code the porting process should

206 Ada-related Tools

Volume 28, Number 4, December 2007 Ada User Journal

be reasonably straightforward. For those
situations where the program makes
architectural assumptions that do not
apply to I64 (for example 32- bit
addresses) the webinar will identify the
issues and offer effective solutions.

Webinar: GNAT
Programming Studio
InSight
From: AdaCore Developer Center
Date: Tuesday November 20, 2007
Subject: GNAT Programming Studio InSight

webinar
RSS: http://www.adacore.com/2007/11/20/

gnat-programming-studio-insight-
webinar/

GNAT Programming Studio InSight
webinar
Tuesday, December 11, 2007
9:00 am Pacific Standard Time (GMT
−08:00, San Francisco)
12:00 pm Eastern Standard Time (GMT
−05:00, New York)
6:00 pm Europe Standard Time (GMT
+01:00, Paris)
In this latest webinar in the GNAT Pro
InSight series, we will be demonstrating
several new features present in recent
versions of GPS using our latest release,
GPS 4.2.0. Among the long list of new
features and improvements that we will
focus on are Remote Programming,
Automatic Source Code Completion,
Code Coverage support using gcov, an
improved documentation generator,
support for refactoring Ada sources, and
an improved source code editor with
enhanced source navigation and analysis
capability. To enroll, please [go to
http://adacore.webex.com/... —su]

Ada-related Tools
Artificial Intelligence
libraries
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Thu, 04 Oct 2007 22:02:43 +0200
Subject: Re: Librairies d'IA
Newsgroups: fr.comp.lang.ada
[Translated from French. —su]
> I am in charge of a course of Artificial

Intelligence for engineering students. I
want them to program some heuristic or
other in tutorial classes, and the
language they learn in parallel to the
course is Ada.

> Are Ada libraries in connection with the
AI service for free?

> I am thinking in particular of libraries:
- Genetic algorithms or equivalent (ant
colonies, ...),
- Neural Networks,

- Programming by constraints,
- Planning (A*)

http://sourceforge.net/projects/nocr
[Neuronal Optical Character Recognition:
It's a tool who shows the concepts of a
type of neuronal networks (multi-layers
percetron). —su]
From: Jeffrey R. Carter

<jrcarter@acm.org>
Newsgroups: fr.comp.lang.ada
Subject: Re: Librairies d'IA
Date: Fri, 05 Oct 2007 05:07:14 GMT
> - Genetic algorithms
PragmARC.Genetic_Algorithm
> - Neural Networks,
PragmARC.REM_NN_Wrapper
http://pragmada.home.mchsi.com/
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Newsgroups: fr.comp.lang.ada
Subject: Re: Librairies d'IA
Date: Tue, 09 Oct 2007 15:22:37 −0000
There is also FannAda
(https://sourceforge.net/projects/lfa/),
Ada interface to the Fann (Fast Artificial
Neural Network) library.

Fuzzy sets for Ada
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 9 Sep 2007 21:22:47 +0200
Subject: ANN: Fuzzy sets for Ada v5.0
Newsgroups: comp.lang.ada
http://www.dmitry-
kazakov.de/ada/fuzzy.htm
The current version includes distributions
of string edit, interval arithmetic and
simple components packages. It provides
implementations of:
⁃ Confidence factors with the operations
not, and, or, xor, +, *;
⁃ Classical fuzzy sets with the set-
theoretic operations and the operations of
the possibility theory;
⁃ Intuitionistic fuzzy sets with the
operations on them;
⁃ Fuzzy logic based on the intuitionistic
fuzzy sets and the possibility theory;
⁃ Fuzzy numbers both integer and
floating-point ones with conventional
arithmetical operations;
⁃ Dimensioned fuzzy numbers;
⁃ Fuzzy linguistic variables and sets of
linguistic variables with operations on
them;
⁃ Dimensioned fuzzy linguistic variables
and sets;
⁃ String-oriented I/O is supported;
The software is distributed under GM
GPL.
New in this release:
A rich GUI interface based on GTK+
(The GIMP Toolkit portable across many
operating systems including Windows and

Linux). The provided set of widgets and
tree view cell renders covers:
⁃ Indication and editing of truth values;
⁃ Editing and viewing of fuzzy sets,
intuitionistic fuzzy sets and classification
in textual and as a list;
⁃ Editing and viewing sets of linguistic
variables.
The linguistic variables sets editor
features:
⁃ Domain set view representing individual
membership functions of the variables;
⁃ Annotated axes of the domain view;
⁃ Dimensioned domains support;
⁃ Scroll bars of the domain view axes;
⁃ Multiple selection of the variables and
individual points of membership
functions;
⁃ Visual selection of the variables and
points of their membership functions in
the domain;
⁃ Indication of the selected variables;
⁃ Indication of the selected points of the
membership functions of;
⁃ Searching for the points of the
membership functions;
⁃ Indication of an accumulated set of the
linguistic variables;
⁃ Editing of the accumulated sets;
⁃ Zooming the widget along its axis;
⁃ Zooming in and out per selection of a
rectangular area;
⁃ Scrolling the widget;
⁃ Undo/redo buffer for editing;
⁃ A separate undo/redo buffer for all
actions changing the visual appearance of
the widget;
⁃ Tracking the mouse cursor in the
widget;
⁃ Indication and editing the names of the
variables in the set in a tree view;
⁃ Indication and editing the points of the
membership functions of individual
variables in the tree view;
⁃ Checking names for legality and
duplication, indication of illegal names;
⁃ Moving groups of selected points of the
membership functions along the axis per
mouse;
⁃ Adding, removing, moving variables in
the set;
⁃ Adding, removing points of the
variables;
⁃ Applying operations, such as not, and,
or, xor to the selected variables and
inserting the result of.
[See also “Updates for Fuzzy sets for
Ada, and Simple components” in AUJ 27-
2 (Jun 2006), p.72. —su]

Units of measurement for
Ada
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 9 Sep 2007 19:51:11 +0200
Subject: ANN: Units of measurement for

Ada v2.5
Newsgroups: comp.lang.ada
Organization: cbb software GmbH

Ada-related Tools 207

Ada User Journal Volume 28, Number 4, December 2007

The library provides tools for handling
dimensioned values in Ada. Checks are
run-time when not removed by the
compiler. String I/O and GTK+ widgets
based on GtkAda included.
http://www.dmitry-
kazakov.de/ada/units.htm
Changes to the version 2.4:
The procedure Get was added for parsing
measures in the form of a numeral
multiplied by dimensioned scale. The
syntax of input is same as in other
procedures. When possible this procedure
tries to extract the numeral part and the
scale. It also determines whether the input
has any dimension in it.
[See also same topic in AUJ 28-2 (Jun
2007), pp.73–74. —su]

Finite element analysis in
Ada
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Tue, 06 Nov 2007 21:25:01 +0100
Subject: Re: An open source system for

finite element analysis in Ada
Newsgroups: comp.lang.ada
> I am looking for an open source system

for finite element analysis written in
Ada but it seems that no body has
written it yet. Any hint?

> However, if it really doesn't exist then I
will write one.

There is a partial translation of a Finite
Element Kernel there
http://homepage.sunrise.ch/mysunrise/
gdm/gsoft.htm#mathpaqs
The “classic” elements are implemented:
in 1D, 2D, 3D for linear, square and cubic
basis functions.
[See also “Number crunching in Ada” in
AUJ 28-3 (Sep 2007), pp.149–150. —su]

AdaOpenGL and
AdaMultimedia
From: Alexis Muller <xaelis@free.fr>
Date: Wed, 19 Sep 2007 21:11:27 +0200
Subject: AdaOpenGL and AdaMultimedia
Newsgroups: comp.lang.ada
[...] I have worked on the AdaOpenGL
binding. The idea is to use Ada typing
instead of C style (naming convention and
const int). I have also translated in Ada lot
of samples for the OpenGL book. You
can get this work from the project's CVS (
http://sourceforge.net/projects/adaopengl/
), but I need to finish it before doing a
new release.
I have also startd a new project :
AdaMultimedia (
http://sourceforge.net/projects/adamultim
edia/). The goal is to provide a library to
handle multimedia files. Like ffmpeg but
in Ada ;) For now it can decode BMP

pictures, AVI containers and the Cinepak
codec. I am working on jpeg. [...]
From: Alexis Muller <xaelis@free.fr>
Date: Wed, 19 Sep 2007 21:33:03 +0200
Subject: Re: adaopengl et adamultimedia
Newsgroups: fr.comp.lang.ada
[Translated from French. —su]
> What is the difference to the GtkAda

OpenGL part?
The first difference is that this binding is
independent. Then, if I am not mistaken,
the GtkAda OpenGL part is a direct
translation of C to Ada.
The purpose of my changes is to replace
the C style constructions by Ada
constructions. Substituting for example,
the enumerated types by "real" Ada types,
such as:
type PrimitivesType is
 (Points, Lines, Line_Loop,
 Line_Strip, Triangles,
 Triangle_Strip, Triangle_Fan,
 Quads, Quad_Strip, Polygon);

Or to use array types instead of pointers…
[See also “Ada and OpenGL” in AUJ 25-
4 (Dec 2004), p.186. —su]

GTKAda contributions
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 9 Sep 2007 19:28:05 +0200
Organization: cbb software GmbH
Subject: ANN: GtkAda contributions v1.8
Newsgroups: comp.lang.ada
New in this version:
⁃ GLib.Object.Ref_Count function was
added to obtain GTK object's reference
count;
⁃ Get_Tooltips was added to
Gtk_Style_Button;
⁃ The package
Gtk.Main.Router.GNAT_Stack provides
tracing with symbolic traceback of the
call stack and exception propagation
based on GNAT functionality.
http://www.dmitry-
kazakov.de/ada/gtkada_contributions.htm
From: Maxim Reznik

<reznikmm@gmail.com>
Date: Mon, 08 Oct 2007 03:15:55 −0700
Subject: Announce: Binary package for

GtkAda-2.10.0 for Windows
Newsgroups: comp.lang.ada
After unsuccessful looking for binary
distribution of last version of GtkAda I
built it by myself.
The result is on
http://www.ada-ru.org/win_bin_en
named GtkAda-GPL-2.10.0-r2.exe
There are some other binary packages for
MS Windows such as ASIS, Glade
(DSA), PolyORB (and may be more in
the future) there.

The package contains GtkAda, Gtk+
DLL-s built from sources, locale files,
examples, docs and patches used in
compilation.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Organization: cbb software GmbH
Date: Sat, 13 Oct 2007 15:19:45 +0200
Subject: ANN: GtkAda 2.10 support
Newsgroups: comp.lang.ada
GtkAda contributions
http://www.dmitry-
kazakov.de/ada/gtkada_contributions.htm
units of measurement for Ada
http://www.dmitry-
kazakov.de/ada/units.htm
fuzzy sets for Ada
http://www.dmitry-
kazakov.de/ada/fuzzy.htm
are now using GtkAda version 2.10.
An unofficial binary release for Windows
can be found at http://www.ada-
ru.org/win_bin_en. For Linux it is
officially available in sources at
https://libre2.adacore.com, and can be
routinely compiled from.
[See also same topic in AUJ 28-3 (Sep
2007), pp.137–138. —su]

QtAda binding
From: Vadim Godunko

<vgodunko@gmail.com>
Newsgroups: comp.lang.ada
Subject: Announce: QtAda 0.2.0
Date: Fri, 28 Sep 2007 16:58:41 −0000
We are pleased to announce a new release
of QtAda 0.2.0. This is a major feature
release. It includes:
⁃ support for MS Windows/MinGW
(binary packages will be available soon)
⁃ bindings to QAbstractPrintDialog,
QAbstractProxyModel, QColor,
QDockWidget, QKeySequence,
QListWidget, QMessageBox,
QPrintDialog, QSyntaxHighlighter,
QTabBar, QTabWidget, QTextEdit and
QTextFrame classes
⁃ extended support for QPolygonF,
QPainterPath, QPainter, QGraphicsScene
classes
⁃ main window subclassing and dock
widgets use example (examples/
main_windows/dock_widgets)
⁃ many memory leaks fixed
⁃ new implementation of constructors for
“primitive” classes avoids unnecessary
memory allocation/deallocation cycles
(around 27%) and copy operations
QtAda can be downloaded from
SourceForge site:
http://sourceforge.net/projects/qtada/
QtAda is an Ada 2005 language bindings
to Qt 4.2 and Qt 4.3. It allows you to
easily create powerfull graphical user
interface in Ada. QtAda uses a native

208 Ada-related Tools

Volume 28, Number 4, December 2007 Ada User Journal

thread safe signal/slot mechanism,
provides access to more than 120 Qt
classes, provides an Ada-aware meta
object compiler, supports the
development of custom widgets and Qt
Designer's custom widget plugins,
supports loading at runtime GUI forms
from Qt Designer's UI files and so on.
From: Vadim Godunko

<vgodunko@gmail.com>
Newsgroups: comp.lang.ada
Subject: Re: Announce: QtAda 0.2.0
Date: Fri, 05 Oct 2007 18:14:44 −0000
Andry Ogorodnik has contributed MS
Windows binary packages for QtAda!
See QtAda download page on
SourceForge site:
http://sourceforge.net/projects/qtada/
From: Vadim Godunko

<vgodunko@gmail.com>
Newsgroups: comp.lang.ada
Subject: Annonce: QtAda 1.0.0
Date: Tue, 06 Nov 2007 06:24:33 −0000
We are pleased to announce a new
version of QtAda 1.0.0. QtAda is an Ada
2005 language bindings to the Qt
framework. It supports most Qt classes
from QtCore, QtGui, QtSql, QtDesigner
and QtUiTools modules.
QtAda allows you to easily develop cross-
platform powerful graphical user
interfaces completely in Ada 2005. QtAda
programs will have native look and feel
on most popular platforms — Microsoft
Windows, Mac OS X and Linux/Unix —
without any platform specific code. It also
allows to use Qt Designer for rapid visual
GUI development.
For additional information see QtAda
official site: http://www.qtada.com/
[See also same topic in AUJ 28-3 (Sep
2007), p.137. —su]

Hibachi official Eclipse
Open Source Project
From: Tom's Hibachi musings
Date: November 5, 2007
Subject: On our way
RSS: http://hibachitom.blogspot.com/2007/

11/on-our-way
Hibachi is officially an Eclipse Open
Source Project. Since it was approved by
the Eclipse Management Organization,
we've gotten our newsgroup, mailing list
and website set up. We've also gone over
the code and adapted it so that it will pass
Eclipse IP inspection, including swapping
our parser generator for another one.
Since June, I've been trying to build a
diverse community (vendors, open source
projects, universities, third parties,
individuals), and while it took a bit longer
than anticipated, I think the effort will be
worth it in the long run.

I've presented Hibachi at a couple of
conferences (Ada Europe, Ada UK), and
this week I'm giving a Hibachi workshop
at SIGAda with a couple of the
committers helping out.
I also attended the Eclipse Summit in
Ludwigsberg, Germany. It was smaller in
size than EclipseCon, which definitely has
it's advantages in terms of interactions and
access.
So now we're just waiting for the Eclipse
legal department to give us the ok to put
the sources on our server during the
parallel IP process. Then we're on our
way.
From: Adam Haselhuhn

<adam.haselhuhn@aonix.com>
Date: Wed, 24 Oct 2007 15:52:00 −0500
Subject: Re: Update on schedule?
Newsgroups: eclipse.tools.hibachi
> Any further update on the schedule for

providing the initial source code for the
Hibachi project?

We were using ANTLR version 2 to
generate our Ada language parser, but
were required to update to v3. We are
now working on starting the parallel IP
process, which will allow us to commit
the initial code the the Eclipse servers. I'll
send another update when that process is
complete.
Adam Haselhuhn
Hibachi Committer
[See also “Aonix — Eclipse Hibachi
Project Unites Ada Suppliers in Common
Environment” in this issue, “Hibachi
status” in AUJ 28.3 (Sep 2007) p.138 and
“Hibachi — Eclipse Ada Development
Tools” in AUJ 28-2 (Jun 2007) pp.81–84.
—su]

MKUtils — 4NT and Take
Command plugin
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: Write 4NT / Take Command

plugins with Ada
Newsgroups: comp.lang.ada
Date: Tue, 30 Oct 2007 20:47:54 +0100
I just wanted to let you know that I
successfully ported the demo plug-in to
Ada. It worked quite smoothly and so I
even thrown in a multi threading demo for
good measure.
All on all it was quite easy — and
certainly easier the the Delphi version as
Ada features full fledged wide character
support so all that “WideCharToString”
and “StringToWideChar” wasn't needed.
If you want to know more visit the JPSoft
Wiki:http://www.jpsoftwiki.com/wiki/
index.php?title=Ada_Demo_%28plugin%
29

Or download the demo from the Project
homepage:
http://code.google.com/p/mkutils/
From: Martin Krischik

<krischik@users.sourceforge.net>
Newsgroups: comp.lang.ada
Subject: Re: Write 4NT / Take Command

plugins with Ada
Date: Wed, 31 Oct 2007 13:06:12 +0100
> Could you please provide some context

for your post?
From the Web-Site:
MKUtils is currently under development.
Once it is finished it will be a Plug-in for
4NT and Take Command.
Currently a port of the demo plug-in to
Ada is available. It is perfect if you want
to learn how to develop plug-ins for 4NT
or Take Command.
Under development is a ACL (access
control list) support and a trace feature.
Unlike other 4NT and Take Command
this Plug-in is open source so you can
have a look how it is done. You can also
ask to join the project if you have ideas of
your own.
OK, unless you use 4NT or Take
Command [1] the plug-ins are of little
use. Apart perhaps from educational
purpose. One could learn the following
Ada skills: Stand-alone-library,
interfacing with C and usage of
Win32Ada.
[1] http://www.jpsoft.com

An operating system design
From: Archeia
Date: 25 Nov 2007
Subject: An operating system design
RSS: http://www.archeia.com/article-

1196001779.html
Conversations in #Ada on IRC yesterday
turned back to developing an OS in Ada,
this has actually been a goal of mine for
some time. I had written a demo hello
world style kernel in Ada a few years ago,
so I thought I'd try to recompile it using
the newest version of FSF GNAT; this
failed to build.
After looking through the manuals and
finding pragma Restrictions, I stripped out
all the other pragmas I had in there to
reduce the runtime and tried it out using
these pragma restrictions; all compiled ok
and it even booted on QEMU!
So, I decided to try and put together a
high level design document based on
thoughts that I've had over the last 10
years or so, which outlines what I want in
an OS. I may even get started on this
thing!
[http://www.archeia.com/assets/files/os/
highlevel.pdf —su]

Ada-related Products 209

Ada User Journal Volume 28, Number 4, December 2007

Ada-related Products
AdaCore — Support for
.NET
From: AdaCore Press Center
Date: Monday September 10, 2007
Subject: AdaCore First to Bring True .NET

Integration to Ada
RSS: http://www.adacore.com/2007/09/10/

adacore-first-to-bring-true-net-
integration-to-ada/

PARIS and NEW YORK — September
10, 2007 — AdaCore, provider of the
highest quality Ada tools and support
services, today announced that its flagship
GNAT Pro development environment is
now available for Microsoft’s® .NET
Framework. GNAT Pro’s launch on .NET
broadens AdaCore’s expanding portfolio
of Microsoft platforms, which already
includes releases for Windows 2000®,
Windows 2003®, Windows XP®, and
Windows Vista®. Now users of all major
Microsoft platforms can also reap the
productivity and reliability gains enabled
by the Ada language from within the
.NET Framework. This especially benefits
those creating mission-critical
applications, across a broad range of
domains, including communications,
financial software, and other enterprise
systems.
AdaCore’s GNAT Pro launch on .NET
was specifically designed to meet the
demands of the growing .NET user base
around the globe. It is the first
commercial Ada tool to support the .NET
Framework and API — not simply
through “unmanaged” (Windows) code,
but also through managed .NET code. The
product includes an Ada compiler (which
supports the new Ada 2005 standard as
well as previous versions of the
language), a comprehensive toolset, and
supplemental libraries and bindings.
Through GNAT Pro, developers can build
pure Ada applications as well as Ada
components in multi-language systems.
GNAT Pro includes specific features that
bring together the strengths of the Ada
language and .NET. All .NET APIs can
be used directly from Ada through an
automated binding tool that saves time
and enables the re-use of .NET
components. Additionally, since .NET
integrates smoothly with Microsoft Visual
Studio®, developers can now use this
familiar IDE to directly edit Ada code.
“The growth of .NET is making it a major
platform for developers across a whole
range of environments from desktop to
embedded devices,” commented Arnaud
Charlet, .NET Project Manager, AdaCore.
“The launch of GNAT Pro for Microsoft
.NET is a critical part of our commitment
to make Ada a development language of
choice on Microsoft platforms, allowing

users to benefit from the strengths of both
working together.”
With GNAT Pro, developers will now be
able to take advantage of the
complementary features of Microsoft
.NET and Ada. GNAT Pro’s
implementation of Ada 2005 is especially
helpful, since the language’s new object-
oriented features are ideal for interfacing
with the .NET API. The security
constraints within .NET also closely align
with the checks within Ada.
About GNAT Pro
The GNAT Pro development
environment, available on more platforms
than any other Ada toolset, combines
industry-leading technology with an
expert support infrastructure and provides
a natural solution for organizations that
need to create reliable, efficient, and
maintainable code. GNAT Pro is the first-
to-market implementation of the new Ada
2005 standard, allowing users to take
advantage of the many enhancements in
areas such as object-oriented
programming, real-time support, and
predefined libraries.
At the heart of GNAT Pro is a full-
featured, multi-language (Ada, C, C++)
development environment complete with
libraries, bindings and a range of
supplementary tools. All GNAT Pro
technology offers the flexibility and
freedom associated with open source
development, together with the assurance
that comes from knowing that all tools go
through a rigorous quality assurance
process. GNAT Pro is based on the
widely used GCC technology and is
backed by rapid and expert support
service.
.NET, Windows Vista, Windows XP, and
Visual Studio are registered trademarks of
Microsoft Corporation. All other product
or service names are the property of their
respective owners.

AdaCore — GNAT Pro
High-Integrity Edition for
Servers
From: AdaCore Press Center
Date: Tuesday September 18, 2007
Subject: AdaCore Announces GNAT Pro

High-Integrity Edition for Servers
RSS: http://www.adacore.com/2007/09/18/

adacore-announces-gnat-pro-high-
integrity-edition-for-servers/

BOSTON, Mass., September 18, 2007 —
Embedded Systems Conference —
AdaCore, provider of the highest-quality
Ada tools and support services, today
announced its second High-Integrity
Edition product GNAT Pro High-Integrity
Edition for Servers. The High-Integrity
Family was first introduced in June of
2007 with the release of High-Integrity
Edition for DO-178B, a product that
supports safety-critical avionics and

similar standards used in embedded
software development. The new GNAT
Pro High-Integrity Edition for Servers is
fashioned to directly support DO-278,
ESARR 4 and 6 and CAP670/SW01, the
US, European and UK ground Air Traffic
Management (ATM) safety-critical
standards. Its capabilities can also be used
to support any safety-critical, mission-
critical or high reliability system
requirements to run on a native platform.
“AdaCore recognizes that our customers
require off-the-shelf solutions to meet
high-reliability and safety-critical
software development standards,” said
Robert Dewar, President of AdaCore.
“They are relying on us to supply support
for embedded safety-critical software
development. We are now offering this
same support for developers needing
higher reliability for native platform
development.”
About GNAT Pro High-Integrity Edition
for Servers
GNAT Pro High-Integrity Edition for
Servers is an enhanced version of the
GNAT Pro technology, designed for
building safe and secure software. Its
many features help to reduce the cost of
developing and certifying systems that
have to meet native platform safety
standards. The package includes a full
multi-language compile system, a
configurable Ada run-time library, and
integration with best-in-class test
capabilities. The run-time library for the
GNAT Pro High Integrity Edition for DO-
178B has been certified to the highest
safety level for DO-178B, Level A, as a
part of multiple avionics systems. These
life cycle artifacts are available with the
Server package as well and directly
satisfy the DO-278 standard and are
accepted for many other safety standards.
A configurable run-time library
accompanies the High-Integrity Edition
for Servers product. This allows
developers to tailor the run-time based on
the language features required by their
application. It can be configured from a
zero-foot-print (ZFP), Cert library proven
previously for embedded development, to
full Ada depending on the assurance level
requirements for the program. In this way,
projects can enforce language subsets and
reduce the cost of program certification.
The newly released GNATstack static
analysis tool is supplied with this edition.
GNATstack computes and outputs data on
the absolute maximum memory utilization
for programs conforming to the ZFP or
Cert subset program libraries. Maximum
program memory utilization reports are a
common requirement for many safety-
critical standards. The GNAT Pro High-
Integrity Edition for Servers provides
direct support for this requirement.
AdaCore is now leading the industry by
offering both native and embedded safety-

210 Ada-related Products

Volume 28, Number 4, December 2007 Ada User Journal

critical software development solutions.
This product is available for the primary
Unix platforms used in Air Traffic
Management development such as: Linux,
IBM/AIX, HP-UX and Sun/Solaris. It will
be made available on other platforms as
the market demands. Look for further
expansion of the High-Integrity Edition
Family with new safety and security
solutions in the future.
[See also “AdaCore — GNAT Pro for
DO-178B” in AUJ 28-3 (Sep 2007),
pp.138–139. —su]

AdaCore — GNATstack
1.1.0
From: AdaCore Developer Center
Date: Thursday September 20, 2007
Subject: GNATstack 1.1.0
RSS: http://www.adacore.com/2007/09/20/

gnatstack-110/
AdaCore today announced the availability
of GNATstack 1.1.0 to GNAT Pro High-
Integrity customers. GNATstack is a
static analysis tool that computes the
maximum stack usage for a program.
From: AdaCore Press Center
Date: Tuesday September 18, 2007
Subject: AdaCore Announces Innovative

Stack Analysis Tool
RSS: http://www.adacore.com/2007/09/18/

adacore-announces-innovative-stack-
analysis-tool/

BOSTON, Mass. — September 18, 2007
— Embedded Systems Conference —
AdaCore, provider of the highest quality
Ada tools and support services, today
announced the immediate availability of
GNATstack, a static analysis tool that
helps developers predict the maximum
stack usage requirements for their
applications. GNATstack is available
separately or as part of AdaCore’s GNAT
Pro High-Integrity Edition products,
supporting development for DO-178B,
DO-278 and other related safety-critical
standards.
The GNATstack tool statically calculates
the maximum stack space required by
each task in an application. The computed
bounds can be used to ensure that
sufficient space is reserved, thus
guaranteeing safe, predictable execution
with respect to stack usage. GNATstack
uses conservative analysis to deal with
complexities such as subprogram
recursion, while avoiding unnecessarily
pessimistic estimates. The tool’s output
data can be used directly to satisfy DO-
178B requirements (Table A-5, Objective
6, which relates to the Accuracy and
consistency issues itemized in Section
6.3.4f) and the associated sections from
DO-278 for native safety systems.
“AdaCore always strives to reduce the
cost of software development for our
customers,” said Robert Dewar, President
of AdaCore. “GNATstack can save a

large amount of time and effort by
proving what an application’s maximum
memory requirements will be. This
information can be used to select the
appropriate hardware platform. It can also
be used to prove that the selected platform
will meet the application’s memory
requirements, which is required by DO-
178B and similar safety standards where
exhausting available memory is not an
option.”
GNATstack exploits data generated by
the compiler to compute worst-case stack
requirements. It performs per-subprogram
stack usage computation combined with
control flow analysis. GNATstack is a
static analysis tool in that its computation
is based on information known at compile
time. Thus when the tool indicates that the
result is accurate, the computed bound
can never be exceeded.
On the other hand, there may be situations
in which the results will not be accurate
(the tool will indicate such situations)
because of some missing information (due
to subprogram recursion, indirect calls,
etc.). AdaCore provides the infrastructure
to allow users to specify this missing call
graph and stack usage information.
GNATstack’s main output is the worst-
case stack usage for every entry point,
together with the paths that lead to these
stack needs. The list of entry points can
be automatically computed (all the tasks,
including the environment task) or can be
specified by the user (a list of entry points
or all the subprograms matching a certain
regular expression).
Price and Availability
GNATstack is available with all GNAT
Pro High-Integrity Edition Family
products. Please contact AdaCore
(sales@adacore.com) for the latest
information on pricing and supported
configurations.
[See also “AdaCore — GNATstack” in
AUJ 27-4 (Dec 2006), p.205. —su]

AdaCore — GPRbuild
From: AdaCore Press Center
Date: Tuesday September 25, 2007
Subject: AdaCore Launches New GPRbuild

Tool To Speed Multi-Language
Development

URL:
http://www.adacore.com/2007/09/25/gpr
build/

Easy to use tool aims to solve increasing
project complexity
MANCHESTER, UK — Ada Conference
UK — September 25, 2007 — AdaCore,
provider of the highest quality Ada tools
and support services, today announced
GPRbuild, an advanced new software tool
designed to help automate the
construction of multi-language systems.
The first tool of its kind, it removes
complexity from multi-language

development by allowing developers to
quickly and easily compile and link
software written in a combination of
languages, including Ada, assembler, C,
C++ and Fortran. Easily extendable by
users to cover new toolchains and
languages, it is primarily aimed at
projects of all sizes organized into
subsystems and libraries, and is
particularly well-suited for compiled
languages.
Designed to work with any version of
AdaCore’s GNAT Pro development
environment, GPRbuild features a built-in
knowledge base that understands the
characteristics of compilers across a wide
variety of languages. Rather than having
to maintain complex rules for building
each component of a system, developers
simply specify the sources’ location and
compiler options. GPRbuild automatically
manages their integration into a complete
system.
“With more and more projects becoming
multi-language there is a growing need
for a generic build utility that can make
integration a less complex and more
automatic process,” commented Cyrille
Comar, managing director, AdaCore.
“Developed following customer feedback,
GPRbuild is simple and straightforward to
operate, enabling users to concentrate on
development rather than needing to worry
about bringing multi-language
applications together into a single
system.”
Previously developers needed to manually
link components of multi-language
applications, which relied on in-depth
knowledge of each compiler involved as
well as how they interact with each other.
This process had to be repeated if new
versions of compilers were used as there
was no simple way of collecting and
sharing integration data. GPRbuild’s
inherent knowledge base covers most
commonly used toolchains and languages,
but also allows developers to add their
own information to standardize native and
cross-platform configuration.
GPRbuild manages a three-step build
process — compilation, post-compilation
(binding) and linking.
Compilation:
Each compilation unit of every subsystem
is examined in turn, checked for
consistency, and compiled or recompiled
when necessary by the appropriate
compiler. The recompilation decision is
based on dependency information usually
automatically captured by a former
compilation.
Post-compilation (binding):
Compiled units of a given language are
passed to a language-specific post-
compilation tool where it exists. It is also
during this phase that objects are grouped
into static or dynamic libraries as
specified.

Ada-related Products 211

Ada User Journal Volume 28, Number 4, December 2007

Linking:
All units or libraries from all subsystems
are passed to a linker tool specific to the
set of toolchains used together.
GPRbuild takes as its main input a project
file defining the build characteristics of
the system under construction, such as:
which sources to use, where to find them,
where to store the objects produced by the
compiler, and which options the various
tools should be invoked with.
While GPRbuild is generic in the sense
that it provides equivalent build features
for all supported languages, it also allows
the addition of new languages and new
toolchains and provides a means of
configuring aspects, including:
 ⁃ language characteristics (such as
source naming conventions)
 ⁃ toolchain characteristics (such as
compiler invocation)
 ⁃ subsystem characteristics (such as
compiler default options)
 ⁃ source file characteristics (such as file
specific compilation options)
Availability
GPRbuild is immediately available from
October 2007 in beta, as part of the
GNAT Pro subscription. It runs on all
GNAT Pro supported configurations —
please contact AdaCore
(sales@adacore.com) for the latest
information on pricing.

AdaCore — GPS 4.1.3
From: AdaCore Developer Center
Date: Thursday September 20, 2007
Subject: GPS 4.1.3
RSS: http://www.adacore.com/2007/09/20/

gps-413/
AdaCore recently announced the
availability of GPS 4.1.3 for the x86-
windows host. The 4.1.3 version is a
follow up release providing mainly fixes
to the 4.1 technology. GPS 4.1.3 is
compatible with GNAT Pro versions
3.16a1 up to 6.1.0w, and is now fully
compatible with Windows Vista. For a
full list of new features in GPS 4.1, please
[go to
http://www.adacore.com/2007/03/28/
gps-410/ —su].
[See also “AdaCore — GPS 4.1.0” in
AUJ 28-2 (Jun 2007), p.77. —su]

AdaCore — GNAT
Programming Studio IDE
4.2
From: AdaCore Press Center
Date: Tuesday November 6, 2007
Subject: Introducing New Version of GNAT

Programming Studio IDE
RSS:

http://www.adacore.com/2007/11/06/intr
oducing-new-version-of-gnat-
programming-studio-ide/

FAIRFAX, Va., November 6, 2007 —
SIGAda 2007 — AdaCore, provider of
the highest quality Ada tools and support
services, today announced the upcoming
release of GNAT Programming Studio
(GPS) 4.2. This Ada-oriented IDE
(Integrated Development Environment)
accompanies AdaCore’s GNAT Pro
toolset on most platforms.
With an emphasis on helping developers
improve the quality and maintainability of
their software, this GPS release includes a
number of new features, enhancements,
and plug-ins, including support for code
coverage and improved generation of
documentation. The advanced code
coverage feature enables developers to
test code and ensure that the software is
properly covered, with the GPS user
interface allowing them to visualize the
coverage information at different levels of
detail (from project down to source lines
of code). The improved and faster
documentation generator uses Web 2.0
technologies to generate HTML pages,
thus providing a web-based view of
projects.
“As software complexity increases,
developers are looking for an
environment to help them create high
quality code that is straightforward to
produce and understand,” commented
Arnaud Charlet, GPS Project Manager at
AdaCore. “GPS 4.2 delivers these
capabilities. With its many enhancements
based on customer feedback, it continues
to be the environment of choice for
professional Ada development.”
While GPS already supports the Ada 2005
standard, the GPS 4.2 enhancements will
help developers take full advantage of
both the new features as well as the
existing Ada 95 object-oriented
programming facilities. Furthermore, GPS
includes multi-language support
(including Ada, C, and C++) and is
available on a wide range of host
environments. Through its intuitive,
unified visual interface, developers can
access tools from both AdaCore and third
parties, easing both development and
maintenance. New functions in GPS 4.2
include:
 ⁃ Graphical support for code coverage
(gcov)
 ⁃ Improved documentation generation
with faster, improved HTML output using
CSS and javascript
 ⁃ Enhanced code completion, including
support for the Object.Method syntax as
provided in Ada 2005, Java, and C++
 ⁃ Full ability to manage files and
directories from GPS
 ⁃ Source editor improvements — better
tooltips, source navigation and
indentation
 ⁃ Improved handling of dispatching
calls and primitives, enabling better
understanding (prior to run time) of which
subprograms will be executed

New plug-ins, including:
 ⁃ Support for code verification through
gnatcheck and addr2line
 ⁃ Listing of unused entities (replaces
gnatxref)
 ⁃ Display of dependency paths across
files
 ⁃ Ability to cut/copy/paste in contextual
menu
 ⁃ Recomputation of Ada cross
references
 ⁃ Copying of text with line numbers
prepended
 ⁃ The ability to close all editors
As with all GNAT Pro components, GPS
is distributed with full source code and is
backed by AdaCore’s rapid and expert
online support.
About GPS
GPS is a powerful Integrated
Development Environment (IDE) written
in Ada, based on the GtkAda toolkit.
GPS’ extensive source-code navigation
and analysis tools can generate a broad
range of useful information, including call
graphs, source dependencies, project
organization, and complexity metrics. It
also provides support for configuration
management through an interface to third-
party Version Control Systems, and
supports a variety of platforms, including
Altix Linux, IA64 HP Linux, Solaris
(sparc and x86), GNU/Linux (x86 and
x86-64), and x86 Windows (2000, 2003,
XP and Vista). GPS is highly extensible; a
simple scripting approach enables
additional tool integration. It is also
customizable, allowing programmers to
specialize various aspects of the
program’s appearance in the editor for a
user-specified look and feel.
Pricing and Availability
GPS 4.2 is scheduled for release at the
beginning of December 2007, when it will
be available to GNAT Pro customers on
selected platforms. GPS is included with
the GNAT Pro Ada Development
Environment. Please contact AdaCore
(sales@adacore.com) for the latest
information on pricing and supported
configurations.

Aonix — ObjectAda
RAVEN for VxWorks 653
From: Aonix Press Releases
Date: September 18, 2007
Subject: Aonix Releases Next-Generation

Safety-Critical Platform
URL: http://www.aonix.com

/pr_09.18.07b.html
ObjectAda® RAVEN™ supports Wind
River VxWorks® 653
Embedded Systems Conference, Boston
— September 18, 2007 — Aonix®, a
provider of solutions for safety- and
mission-critical applications, announced
the release of ObjectAda RAVEN for

212 Ada-related Products

Volume 28, Number 4, December 2007 Ada User Journal

Windows targeting the Wind River
VxWorks 653 multi-partition RTOS for
PowerPC. ObjectAda RAVEN features an
enhanced safety-critical Ada runtime that
communicates to the underlying RTOS
through the ARINC-653 APEX interface
available in the Wind River VxWorks 653
environment — enabling high execution
and safety certification efficiency.
ObjectAda RAVEN is an embedded Ada
development system that enables
engineers to isolate and build applications
for deployment in one or more VxWorks
653 execution partitions. This ability to
segment code into separate execution
partitions has significant impact to the
cost of safety-critical certification since
developers can separate the code subject
to the highest levels of criticality from
less-critical code and thereby separately
test and scrutinize it for the appropriate
level of certification. In addition, Wind
River VxWorks 653 includes DO-178B
Level A qualified development tools that
further reduce the testing burden of
updated code and modified
configurations. With standard industry
costs to create certification evidence
starting at $45 and often creeping into the
hundreds of dollars per application source
line, any reduction or separation of lower-
criticality code yields dramatic savings.
ObjectAda RAVEN for Windows
targeting VxWorks 653/PowerPC consists
of a fully compliant ACATS 2.5 Ada 95
compiler with supporting tools including
a build/bind tool, library tool and
debugger, and delivered with a predefined
program library which is based on the
Ravenscar profile subset of the full
predefined language. The Ravenscar
profile, adopted at the Eight International
Real-Time Ada Workshop (IRTAW-8),
Ravenscar UK, and subsequently made
part of the Ada 2005 specification,
accommodates certification requirements
for high-integrity (safety-critical) real-
time systems. The ObjectAda RAVEN
runtime environment is certifiable to DO-
178B Level-A while supporting task
execution through the underlying
VxWorks 653 RTOS and board support
services.
“The Aonix ObjectAda RAVEN
product’s integration with Wind River
VxWorks 653 gives the aerospace and
defense industry a very powerful
platform,” noted Chip Downing, Senior
A&D Industry Marketing Manager at
Wind River. “The Aonix Ada runtime
combined with the Wind River VxWorks
653 platform make the ObjectAda
RAVEN solution highly portable and very
appealing to safety-critical developers
needing to deploy the latest industry
standards.”
“Support for Wind River’s world-class
time and space partitioned RTOS is taking
Aonix to a new level in the safety-critical
space,” said Gary Cato, director of

strategic alliances at Aonix. “Certifying
applications is expensive in both human
capital investment and time to market. By
providing developers with products that
improve code reliability, reduce testing
overhead and shorten certification cycles
we help customers realize significant
savings.” Aonix ObjectAda products give
developers the choice between the
traditional Aonix IDE for development
and the new AonixADT™ Eclipse plug-
in. Developers also gain full access to the
Wind River Workbench environment
including Ada debug and the ability to
debug across multiple languages.
Shipping and Availability
ObjectAda Real-Time RAVEN for
Windows targeting VxWorks
653/PowerPC is immediately available.
Prices range from $15,000 to $25,000 for
a single seat license depending on bundle
options. Certification evidence is
available based on demand and will be
priced at that time. Quantity discounts are
available.
About Aonix®
Aonix offers mission- and safety-critical
solutions primarily to the military and
aerospace, telecommunications and
transportation industries. Aonix delivers
the leading high-reliability, real-time
embedded virtual machine solution for
running Java™ programs deployed today
and has the largest number of certified
Ada applications at the highest level of
criticality. Headquartered in San Diego,
CA and Paris, France, Aonix operates
sales offices throughout North America
and Europe in addition to offering a
network of international distributors. For
more information, visit www.aonix.com.
[See also “Aonix — ObjectAda RAVEN
for PikeOS” in AUJ 28-1 (Mar 2007),
pp.12–13 and “Aonix — ObjectAda
RAVEN for PowerPC” in AUJ 28-1 (Mar
2007) p.13. —su]

Aonix — Eclipse Hibachi
Project Unites Ada Suppliers
in Common Environment
From: Aonix Press Releases
Date: November 5, 2007
Subject: Eclipse Hibachi Project Unites Ada

Suppliers in Common Environment
URL: http://www.aonix.com/

pr_11.05.07.html
Aonix, DDC-I, CohesionForce, and other
suppliers providing industry support
SIGAda Conference, Fairfax, VA,
November 5, 2007
The Eclipse Foundation today announced
the creation of a new open-source project
called Hibachi. The Hibachi project
provides an industrial-strength, vendor-
neutral Ada integrated development
environment (IDE) that also serves as a
platform for other contributors to provide

value-added functionality for Ada
developers. Hibachi is a sub-project of the
Eclipse Tools Project, and it parallels and
complements CDT, the C/C++
Development Tooling project, providing a
multi-language native embedded software
development environment. The name
Hibachi is an anagram honoring the late
Jean Ichbiah, lead designer of the Ada
language.
To initiate the project, Aonix has
contributed the source code of
AonixADT, an existing commercial
Eclipse plug-in technology that supports
Aonix ObjectAda as well as GNAT tool
chains on a variety of host and target
platforms, as the initial code for the
project. AonixADT is based on JDT and
CDT, the Java and C Eclipse development
toolkits. Additional contributions to
Hibachi are being actively solicited by the
project team.
Tom Grosman of Aonix was selected as
project lead, supported by Adam
Haselhuhn of Aonix, Lisa Jett of DDC-I,
Mandy McMillion and David Philips of
CohesionForce, and other industry
participants. Other organizations planning
to contribute to Hibachi include OC
Systems, Praxis High Integrity Systems,
existing opensource Ada projects, as well
as universities and interested individuals.
The Hibachi Project is mentored by CDT
Project Lead Doug Schaefer of QNX and
DSDP Lead Doug Gaff of Wind River.
“The Eclipse Hibachi project will
promote wider adoption of Eclipse-based
development by the Ada community,
which includes many major high-integrity
projects worldwide,” said Mike
Milinkovich, executive director of the
Eclipse Foundation. “Formally adopting
Ada functionality into Eclipse will
encourage easier integration of Ada
development alongside other development
tools and language platforms supported
by Eclipse. Eclipse provides an ideal
solution, giving Ada developers a
universal open-source platform with a
broad ecosystem of plug-ins.”
“Aonix is excited to play a central role in
Hibachi and to extend our involvement in
the Eclipse community for the benefit of
our customers and Ada users in general,”
said Dave Wood, Aonix VP marketing.
“For years, we have been committed to
Eclipse solutions for the benefit of our
Java and Ada customers, and our ability
to provide proven sources and project
leadership to help launch the Hibachi
project represents the next stage of our
commitment.” Major Hibachi
functionality includes:
 ⁃ Ada editor with semantic navigation,
code assist, structural representations, and
formatting
 ⁃ Build configurations
 ⁃ Debugging support
 ⁃ Refactoring
 ⁃ Support for multiple tool chains

Ada-related Products 213

Ada User Journal Volume 28, Number 4, December 2007

 ⁃ Native or embedded launch capability
 ⁃ Wizards and templates
The Hibachi project aims to become the
benchmark Ada IDE, by which all other
Ada environments are measured, and the
first choice for Ada developers.
Functionally, Hibachi will shadow the
ongoing development evolution of CDT.
The first year development will focus on
supporting multiple Ada compiler
technologies, offering closer evolution
with the CDT architecture, providing
useful and stable APIs, and integrating
with the Eclipse DSDP/TM and
DSDP/DD projects. Subsequent phases
will emphasize implementation of new
and improved functionality, such as
refactoring and analysis tools, and ever-
increasing integration with more varied
tools.
Support for toolchain extension points
with integrations available from multiple
Ada vendors is anticipated early in 2008.
Re-architecture work to take advantage of
the latest CDT developments and create
robust and stable APIs will result in
incremental releases in mid-2008, and the
first major version (v1.0) is scheduled to
take advantage of improvements of DSDP
in the Ganymede update later in the year.
In addition, Hibachi will provide an open
framework for the integration and use of
other tools used during the lifecycle of
large-scale Ada application development.
These tools include but are not limited to
analysis, modeling, testing, verification,
documentation, refactoring, and
configuration management.
About the Eclipse Foundation
Eclipse is an open source community
whose projects are focused on providing
an extensible development platform and
application frameworks for building
software. Eclipse provides extensible
tools and frameworks that span the
software development lifecycle, including
support for modeling, language
development environments for Java,
C/C++ and others, testing and
performance, business intelligence, rich
client applications and embedded
development. A large, vibrant ecosystem
of major technology vendors, innovative
start-ups, universities and research
institutions and individuals extend,
complement and support the Eclipse
Platform.
The Eclipse Foundation is a not-for-profit,
member supported corporation that hosts
the Eclipse projects. Full details of
Eclipse and the Eclipse Foundation are
available at www.eclipse.org.
[See also “Hibachi official Eclipse Open
Source Project” and “DDC-I Joins Eclipse
Hibachi Project” in this issue. —su]

DDC-I Joins Eclipse Hibachi
Project
From: DDC-I Press Releases
Subject: DDC-I Joins Eclipse Hibachi

Project
Date: November 5, 2007
URL: http://www.ddci.com/display_news_

item-filename-news_
EclipseHibachiProject_release.htm

New Initiative Will Unite Ada Suppliers
in Common Environment and Extend Ada
Ecosystem
SIGAda Conference, Fairfax, VA,
November 5, 2007 — DDC-I, a leading
supplier of development tools for safety-
critical applications, today announced that
it has joined the Eclipse Foundation’s new
open-source Hibachi project.
DDC-I, a founding member of the
Hibachi Workgroup, will work closely
with other project members to develop a
common Eclipse-based Ada environment
that can accommodate Eclipse-based Ada
tools, application software, and other
plug-ins from multiple suppliers. DDC-I
will also work to provide Hibachi
compatibility for its Eclipse-based
SCORE®-Ada and OpenArbor mixed
language development tools, which are
optimized for safety-critical applications.
Hibachi is a sub-project of the Eclipse
Tools Project. Its mission is to develop an
industrial-strength, vendor-neutral Ada
integrated development environment
(IDE) that provides a benchmark for
measuring all other Ada environments.
The open Eclipse-based IDE will also
serve as a platform for integrating value-
added Ada plug-ins from other vendors,
thereby enhancing and extending the Ada
ecosystem.
“We are very excited to have DDC-I
participate and contribute in the Eclipse
Hibachi project”, said Mike Milinkovich,
executive director of the Eclipse
Foundation. “It is also an important
statement of support for Hibachi that
DDC-I will be supporting their
commercial products on this platform.”
DDC-I is a long-time Eclipse member and
a pioneer in the development of standard
C, Ada, and Java tools and run-time
platforms for safety-critical applications.
DDC-I introduced the first real-time Ada
debugger, the first validated 1750A Ada
compiler, the first FAA-certified
multitasking run-time system, the first
ANDF Ada 95 compiler, and the first
compiler to pass Ada Conformity
Assessment Test Suite. DDC-I is also a
member of the Safety-Critical Java Expert
Group (JSR 302), whose mission is to
create a subset of real-time Java suitable
for safety-critical applications requiring
FAA certification. “DDC-I looks forward
to working with the Eclipse and Hibachi
community to develop a common Eclipse-
based Ada environment that fosters multi-

vendor interoperability, simplifies mixed-
language development, and makes it easy
for safety-critical developers to combine
our best-of-breed development tools with
top-notch tools from other vendors,” said
Bob Morris, president of DDC-I. “We are
committed to offering the industry’s most
advanced Eclipse-based compiler and
debug technology for developing mixed-
language Ada, C, and Java safety-critical
applications.”
[See also “Hibachi official Eclipse Open
Source Project” and “Aonix — Eclipse
Hibachi Project Unites Ada Suppliers in
Common Environment” in this issue.
—su]

DDC-I — OpenArbor
Eclipse Development Suite
From: DDC-I Press Releases
Subject: DDC-I Announces Eclipse-Based

Mixed Language Development Suite for
Real Time Embedded Development

Date: October 15, 2007
URL: http://www.ddci.com/

display_news_item-filename-
news_Eclipse-
BasedMixedLanguage_release.htm

New IDE simplifies mixed C, Embedded
C++, Ada and real-time Java development
and software migration
Phoenix, AZ. October 15, 2007. DDC-I, a
leading supplier of development tools for
safety-critical applications, today
announced the first Eclipse-based mixed-
language development and run-time
environment to integrate C, Embedded
C++, Ada, and real-time Java. Known as
OpenArbor, the new IDE makes it
possible to develop hard real-time
applications that combine Java, C, EC++,
and Ada.
“OpenArbor is the only Eclipse-based
IDE that supports true mixed language C,
Embedded C++, Ada, and real-time Java
development,” said Bob Morris, president
and CEO of DDC-I. “OpenArbor
addresses all aspects of real-time mixed
language application development,
debugging, testing, and deployment on
the target system.”
“Mixed language development is
becoming increasingly prevalent,
particularly for applications requiring the
migration of existing code,” said Steve
Balacco, Director, Venture Development
Corp (VDC). “OpenArbor’s Eclipse
packaging and unified mixed language
capability should make it easier for
developers to migrate, maintain, and
upgrade existing code while utilizing
emerging languages like real-time Java
for new development projects.”
OpenArbor is a mixed-language, object-
oriented IDE for developing and
deploying real-time, safety-critical
applications. The core environment
combines optimizing compilers and

214 Ada-related Products

Volume 28, Number 4, December 2007 Ada User Journal

libraries for C and EmbeddedC++ with
the SCORE multi-language debugger.
The SCORE debugger features an
intuitive multi-window GUI, project
management support, and automated
build/make utilities. SCORE’s symbolic
debugger recognizes C/EC++, Ada and
Fortran syntax and expressions, and can
view objects, expressions, call chains,
execution traces, interspersed machine
code, machine registers, and program
stacks.
OpenArbor provides separate Eclipse
plug-ins for Ada and Java development.
These plug-ins can also be used with
popular IDEs such as Wind River
Workbench and LynuxWorks Luminosity.
The Ada plug-in, known as SCORE®-
Ada, features an optimizing Ada compiler
and run-time environment optimized for
safety-critical embedded Ada projects.
The SCORE-Ada debugger supports full
Ada-level debugging, including
constraints, attributes, tasking, exceptions,
break-on-exception and break-on-tasking
events. The debugger is non intrusive, can
debug at the source or machine level, and
can be enabled without changing the
generated code.
OpenArbor’s real-time Java plug-in,
known as Scorpion, is the only real-time
Java that provides deterministic garbage
collection, a prerequisite for executing
bounded, hard real-time applications.
Scorpion features a Java compiler, a
builder for ahead-of-time Java file
compilation, and a virtual machine
(ScorpionVM) for executing real-time
Java applications. Scorpion also features a
smart linker that reduces code size (up to
80%) by removing unused objects from
closed systems, and a profiler that helps
optimize speed/size tradeoffs by
determining the best mix of compiled and
interpreted code.
Scorpion is also available with an Eclipse
plug-in that automatically maps Java
native method calls directly to existing
Ada/C code. This unique tool enables
Java programs to call existing C and Ada
programs, thereby simplifying mixed
language development and the migration
of legacy C/Ada code.
OpenArbor provides versatile run-time
target options, including a bare run-time
system certifiable to Level A of the FCC
DO-178B standard, an enhanced bare run-
time system for simulated and emulated
environments, and popular RTOSes such
as Wind River’s VxWorks, LynuxWorks
LynxOS-178 and Ardence’s RTX real-
time extensions for Windows.
OpenArbor is available immediately.
Pricing for the core configuration starts at
$5,000.
About DDC-I, Inc.
DDC-I, Inc. is a global supplier of
software development tools, custom
software development services, and

legacy software system modernization
solutions, with a primary focus on safety-
critical applications. DDC-I's customer
base is an impressive “who's who” in the
commercial, military, aerospace, and
safety-critical industries. DDC-I offers
compilers, integrated development
environments and run-time systems for
real-time Java, C, Embedded C++, Ada,
and JOVIAL application development.
For more information regarding DDC-I
products, contact DDC-I at 1825 E.
Northern Ave., Suite #125, Phoenix,
Arizona 85020; phone (602) 275-7172;
fax (602) 252-6054; e-mail
sales@ddci.com

Lattix — Lattix 3.5
From: Lattix News
Subject: Lattix Releases Lattix 3.5
Date: September 19, 2007
URL: http://www.lattix.com/news/articles/

Lattix35.php
Award-winning software architecture
management solution now available for
complex C/C++ and Ada embedded
systems
BOSTON, MA — September 19, 2007 —
Lattix Inc., the leading provider of
innovative software architecture
management solutions, today at the
Embedded Systems Conference
announced the release of its newest
solution, Lattix 3.5. This solution features
new C/C++ and Ada modules which
enable architects, developers and
managers to visualize, test, and maintain
the architecture of their complex
embedded systems.
Lattix has pioneered the Dependency
Structure Matrix (DSM) approach which
uses dependencies to create the most
accurate and scaleable blueprint of
software applications, databases and
systems. Lattix 3.5 enables this approach
for embedded systems by introducing new
C/C++ and Ada modules which integrate
with Understand, the popular reverse
engineering tool and IDE from Scientific
Toolworks.
“We think the DSM technology from
Lattix is already incredibly useful for
C/C++ projects, said Ken Nelson,
president of Scientific Toolworks.
“Combining it with Understand’s code
analysis technology makes it faster and
more accurate for very large C/C++
programs.”
“Our integration with Understand
addresses the need for a more complete
and scalable solution for large C/C++ and
Ada systems” explains Neeraj Sangal,
president and founder of Lattix. “Our
customers can now quickly achieve
measurable results at any stage of
development by understanding and
improving the architecture, eliminating
rogue dependencies, expediting
refactoring efforts, and reducing defects.”

In addition to the new C/C++ and Ada
modules, Lattix 3.5 provides these unique
capabilities:
 ⁃ Compact DSM visualization of the
architecture and dependencies of systems
comprised of applications, databases,
frameworks, and services
 ⁃ Powerful DSM algorithms to analyze
and specify structure, identify
opportunities for refactoring, and perform
impact analysis before making changes to
the code
 ⁃ Automatic updating of architectural
changes to immediately alert for
violations of the architecture and
dependency rules
Lattix 3.5 is available immediately with
modules for Ada, C/C++, Java, .NET,
Oracle, Spring, Hibernate, and LDI.
Lattix 3.5 also provides support for full
web-based reporting of architectural
metrics, violations, and incremental
changes. For more information, please
visit http://www.lattix.com/products/
LDM.php. A free evaluation license is
also available for download from
http://www.lattix.com/dl/
gettingstarted.php.
Lattix 3.5 enables companies to improve
and maintain quality, enhance testability,
lower costs through more effective
development, and manage risks by
understanding the impact of proposed
changes.
About Lattix
Lattix is the leader of software
architecture management solutions that
deliver higher software quality and lower
risk throughout the application lifecycle.
Lattix LDM provides a powerful new
approach of utilizing dependency models
for automated analysis and enforcement
of architectures. Lattix is located in
Andover, MA. More information about
Lattix can be found at
http://www.lattix.com.

RTI — DDS-Compliant
Real-Time Middleware
From: RTI News Releases
Subject: Working With Saab, RTI Integrates

Support for Ada with DDS-Compliant
Real-Time Messaging Middleware

Date: November 12, 2007
URL: http://www.rti.com/corporate/news/

saab.html
Industry’s first Ada bindings for
AdaCore’s GNAT Pro Compiler for
development of high-performance
distributed real-time applications
SANTA CLARA, CA — November 12,
2007 — Real-Time Innovations (RTI),
The Real-Time Middleware Experts,
today announced that it has integrated
RTI Data Distribution Service with an
industry-leading Ada compiler, GNAT
Pro from AdaCore Inc. Working closely
with software engineers at Saab Systems,

Ada and GNU/Linux 215

Ada User Journal Volume 28, Number 4, December 2007

RTI has developed the first Ada bindings
to support middleware compliant with the
Data Distribution Service (DDS) for Real-
Time Systems standard. For the first time,
software developers can combine the
unsurpassed messaging performance of
RTI middleware, the portability and
interoperability provided by the DDS
standard, and the powerful development
environment of AdaCore’s GNAT Pro to
build high-performance, fully standards-
compliant distributed applications.
“RTI middleware with Ada integration is
helping our developers build complex
applications that require real-time data
availability and response across large
distributed systems,” said Thomas
Jungefeldt, senior systems engineer, Saab
Systems, Naval Systems Division. “A
major advantage of this approach is our
ability to support and develop
applications in a heterogeneous COTS-
based environment requiring simple and
straightforward integration of legacy code
with newly developed systems.”
“Adoption of the DDS standard is
growing across a wide range of real-time
distributed environments from desktop to
embedded devices, particularly in defense
and aerospace applications,” commented
Thomas Quinot, middleware specialist,
AdaCore. “The integration of GNAT Pro
with RTI’s industry-leading real-time
middleware is a critical part of our
ongoing commitment to make Ada a
development language of choice in high-
performance distributed applications,
allowing users to benefit from the
strengths of both working together.”
“The demand for DDS support from the
Ada community is continuing to grow,”
explained David Barnett, vice president of
Product Management at RTI. “AdaCore’s
GNAT Pro is available on more platforms
than any other Ada technology, and we
are excited to be the first to allow
distributed application developers to take
advantage of Ada technology in
conjunction with RTI Data Distribution
Service and the DDS standard.”
About RTI Data Distribution Service
RTI Data Distribution Service is a high-
performance messaging and data-caching
solution for the development and
integration of applications that require
low latency, high throughput, high
scalability, deterministic responses and
minimal consumption of network,
processor and memory resources. RTI
Data Distribution Service is an open-
architecture platform that complies with
the Object Management Group’s
(OMG’s) DDS for Real-Time Systems
standard. About GNAT Pro
The GNAT Pro development
environment, available on more platforms
than any other Ada toolset, combines
industry-leading technology with an
expert support infrastructure and provides

a natural solution for organizations that
need to create reliable, efficient and
maintainable code. GNAT Pro is the first-
to-market implementation of the Ada
2005 standard, allowing users to take
advantage of many enhancements in areas
such as object-oriented programming,
real-time support and predefined libraries.
At the heart of GNAT Pro is a full-
featured, multi-language (Ada, C and
C++) development environment complete
with libraries, bindings and a range of
supplementary tools. All GNAT Pro
technology offers the flexibility and
freedom associated with open-source
development, together with the
confidence that comes from knowing that
all tools go through a rigorous quality-
assurance process. GNAT Pro is based on
the widely used GCC technology and is
backed by rapid-response, expert support
service.
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, a modern programming language
designed for large, long-lived applications
where reliability, efficiency and safety are
critical. AdaCore’s flagship product is
GNAT Pro, which comes with expert
online support and is available on more
platforms than any other Ada technology.
AdaCore has customers worldwide;
please visit
http://www.adacore.com/home/company/
customers for more information. Use of
Ada and GNAT Pro continues to grow in
high-integrity and safety-critical
applications, including avionics, defense,
air traffic control, railroad systems,
financial services and medical devices.
AdaCore has North American
headquarters in New York and European
headquarters in Paris. www.adacore.com.
About Saab Systems
Saab Systems offers integrated command
and control system solutions and civil
security solutions, along with further
development and adaptations of existing
command and control systems. Saab
Systems is a business unit within the Saab
group and has around 1,200 employees in
Australia, Denmark, Finland, South
Africa and Sweden.
About RTI
Real-Time Innovations (RTI) provides
high-performance infrastructure solutions
for the development, deployment and
integration of real time, data-driven
applications. RTI’s messaging, caching,
Complex Event Processing (CEP) and
visualization capabilities deliver dramatic
improvements in latency, throughput and
scalability while slashing cost of
ownership. The company’s software and
design expertise have been leveraged in a
broad range of industries including
defense, intelligence, simulation,
industrial control, transportation, finance,

medical and communications. Founded in
1991, RTI is privately held and
headquartered in Santa Clara, CA. For
more information, please visit
www.rti.com.

Ada and GNU/Linux
Debian transition to GCC
4.2
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 10 Oct 2007 00:34:03 +0200
Subject: Ada in Debian: transition to GCC

4.2
Newsgroups: comp.lang.ada
The transition of Debian to GCC 4.2 has
started. Debian Unstable deserves its
name.
Thanks to massive help from Xavier
Grave, gnat-4.2 now provides a version of
the Ada run-time using the
setjump/longjump exception handling
mechanism. This new run-time library is
only provided in static form as an
alternative to the existing zero-cost
exception handling mechanism, which is
still provided as both static and shared
libraries.
The SJLJ version of the run-time is
particularly important for Annex E
distributed systems. In addition to his
work on gnat-4.2, Xavier Grave has also
updated the gnat-glade package to version
2007, using the SJLJ library. His initial
testing shows quite an improvement over
gnat-glade 2006 using the ZCX
mechanism. gnat-glade is almost ready
for upload but still needs a little polishing.
We will upload it in a few days.
Before gnat-glade, I will upload a new
and final gnat-4.1 which no longer
provides libgnatprj-dev or libgnatvsn-dev.
These packages are now provided by
gnat-4.2 instead. Once that's done, a new
upload of gcc-defaults will make gnat-4.2
the new default compiler.
After that, I will update and re-upload all
Ada packages over the course of several
months, as my free time permits.
I intend to work in roughly this order:
gnat-glade (upgrade to 2007 with SJLJ
exceptions)
gnat-gdb (upgrade to 6.4+2007)
asis (upgrade to 2006 or 2007, whichever
works best)
adacontrol (upgrade to 1.7)
libgtkada2 (upgrade to 2.10)
libtemplates-parser (upgrade to a recent
CVS snapshot)
libxmlada2
gnat-gps
libaws
gnade
libflorist
libaunit

216 References to Publ icat ions

Volume 28, Number 4, December 2007 Ada User Journal

libopentoken
libtexttools
If you would like to help, please read this
introduction:
English: http://www.ada-france.org/
article131.html
French: http://www.ada-france.org/
article130.html
[See also same topic in AUJ 28-3 (Sep
2007), p.143. —su]
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 10 Oct 2007 12:00:57 +0200
Subject: Re: Ada in Debian: transition to

GCC 4.2
Newsgroups: comp.lang.ada
> I'm using GLADE with ZCX without

trouble since long time... So, just
curious, what is the relation between
SJLJ and Annex-E ? What problem did
you have ?

Xavier knows more about this. It has to
do with propagating exceptions across
partitions; the ZCX mechanism is
apparently not supported or very buggy.
[...]
> [...] note that AWS comes with the

templates_parser engine, so above
libtemplates-parser is the standalone
version, right?

In Etch, this is a snapshot of the
standalone version which also works with
AWS and GPS; both use slightly different
versions of it. I intend to do the same for
Lenny.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Newsgroups: comp.lang.ada
Subject: Re: Ada in Debian: transition to

GCC 4.2
Date: Fri, 12 Oct 2007 02:11:31 +0200
> Templates_Parser and AWS have been

moved to Subversion on Libre site
since some time now. There is no more
CVS repositories for those projects.

Thanks for the info; I had noticed that the
CVS server was down last week but not
that you had moved some projects to
Subversion. Now I see that AdaCore
have in fact moved most of the projects to
Subversion (the only ones still in CVS
seem to be GLADE and GDB).
This has allowed me to make a long-
standing dream come true: I have tailored
the full history into a Monotone database.
This db is private for now, but I can
merge it into the Ada-France database if
anyone is interested.
The down side is that the Subversion
interface no longer allows me to see the
tags; this is a result of Subversion's
broken working model (tags are
directories) and of the fact that the tags
directory in the AdaCore repo is private.

References to
Publications
AdaCore — GNAT Pro
Insider
From: AdaCore Press Center
Date: Monday November 19, 2007
Subject: Nov 2007 Contents
RSS: http://www.adacore.com/2007/11/19/

nov-2007-contents/
⁃ Gnat Pro High-Integrity Family
Expanding to Servers
⁃ US Navy Policy Recognizes Open-
Source Software
⁃ Current Releases
⁃ In the Pipeline
⁃ Spotlighting a GAP Member
⁃ Interview with Gregory Gicca
⁃ Webinar Schedule
⁃ AdaCore Partner Praxis High Integrity
Systems Makes SPARK/Ada a Language
to Depend on
⁃ Conferences/Events
http://www.adacore.com/
wp-content/uploads/2007/11/
adacore_news_1107_web.pdf
[See also “GNAT Pro Insider newsletter”
in AUJ 28-3 (Sep 2007), p.144 —su]

Embedded System
Engineering — “Ada for
certified safety-critical
systems”
From: AdaCore Press Center
Date: Thursday September 27, 2007
Subject: Ada for Safety-Critical Systems
URL: http://www.adacore.com/2007/09/27/

ada-for-safety-critical-systems/
Embedded System Engineering
“Ada for certified safety-critical systems”
by Dr. Jose F. Ruiz, Senior Software
Engineer, AdaCore.
[See http://www.esemagazine.com/...
—su]

GNC — “The 10 percent
rule of system upgrades”
From: Tom Panfil <tapanfil@ieee.org>
Organization: ACM SIGAda
Date: Mon, 19 Nov 2007 00:37:18 GMT
Subject: ACM SIGAda 2007 Wednesday

Keynote Talk Covered by GCN
Newsgroups: comp.lang.ada
Joab Jackson of Government Computer
News attended much of ACM SIGAda
2007 and published a little teaser story
based upon the presentation of our second
Keynote Speaker. This is a prelude to
more extensive coverage planned for the
11 DEC issue. At least one of my photos
will probably be used. You can read the
teaser at:

http://www.gcn.com/blogs/tech/
45407.html
Note that the story includes a link to the
SIGAda website, which provides links to
both the SIGAda 2007 and 2008
conference sites.
Consider writing a paper or developing an
experience report and making a
presentation at SIGAda 2008. It is
planned to be held in Oregon in October.
Tom Panfil — Registration Chair —
ACM SIGAda 2007
[See also “Nov 4–9 — SIGAda 2007
Conference” in this issue —su]

Embedded Real-time
Software
From: AdaCore Press Center
Date: Wednesday November 21, 2007
Subject: Embedded Real-time Software

(ERTS) 2008
RSS:

http://www.adacore.com/2007/11/21/em
bedded-real-time-software-erts-2008/

4th European Congress ERTS
AdaCore is a major sponsor of this event
and Franco Gasperoni will be presenting
the paper “Free Software and Leveraged
Service Organizations”.

Ada-France 2007
From: AdaCore Press Center
Date: Monday November 19, 2007
Subject: Ada France Technical seminar
RSS: http://www.adacore.com/2007/11/19/

ada-france-technical-seminar/
Ada France will be hosting a one day
technical seminar on the topic of methods,
processes, models, and tools for the
development of hard real-time embedded
applications. The event will be hosted by
the ENST Bretagne in Brest, France.
AdaCore is sponsor of this event and Dr.
Jose F. Ruiz will be presenting a paper on
“Ada 2005 for Real-time Embedded
Systems”.
For more information, please
[http://www.ada-france.org/
article137.html]
[See also “Dec 6 — Ada-France 2007” in
this issue —su]

Avionics '08
From: AdaCore Press Center
Date: Wednesday November 21, 2007
Subject: Avionics 08
RSS: http://www.adacore.com/2007/11/21/

avionics-08/
AdaCore is a major sponsor of this event
and will be pleased to meet you on our
booth F19.
Michael Friess will be presenting a
workshop on “Easing the Development of
Certified Avionics Software with Ada”.

Ada Inside 217

Ada User Journal Volume 28, Number 4, December 2007

AdaCore will also be participating in the
Wind River led master class “Next
Generation Design Airflow”.

Wind River EMEA
Aerospace and Defence
Seminars
From: AdaCore Press Center
Date: Wednesday September 21, 2007
Subject: Wind River EMEA Aerospace and

Defence Seminars
RSS: http://www.adacore.com/2007/09/12/

wind-river-emea-aerospace-and-
defence-seminars-3/

Wind River EMEA Aerospace and
Defence Seminars
AdaCore is Gold sponsor of these events.
As such we will be exhibiting and
presenting a demo of our toolset.
To register for these events, please [go to
http://www.windriver.com/... —su]
[See also same topic in AUJ 28-2 (Jun
2007), p.87. —su]

Ada Inside
Ada helps win Cryptography
Challenge
From: Ada Information Clearinghouse
Date: November 2007
Subject: Ada helps win WWII Cryptography

Challeng
URL: http://www.adaic.org/news/

crypto.html
Ada helps win WWII Cryptography
Challenge
Joachim Schueth, a German amateur radio
enthusiast from Bonn, won a challenge to
crack secret messages encoded by a
World War Two cipher.
His program, written in Ada especially for
the challenge, cracked the supposedly
hardest part of the challenge —
deciphering the code of a Lorenz SZ42
encryptor, which has approximately 16
million million million permutations — in
just 46 seconds. He completed the entire
challenge in less than two hours.
Reuters quoted Andrew Clark, director of
Britain's National Museum of Computing,
as saying “It's a brilliant piece of work,
really really impressive”.
We here at the AdaIC would like to think
that his choice of programming language
had something to do with his success.
Schueth's web site describes Ada as a
“powerful and beautiful language [which]
has become my favourite”, a sentiment
shared by many Ada programmers.
For news reports on the challenge, see
German amateur cracks WWII mega-code
in 46 seconds [Reuters] and German
amateur code breaker defeats Colossus
[The Register].

Also see Joachim Schueth's web site on
the challenge.
[References:
⁃ Source code:
http://www.schlaupelz.de/SZ42/
SZ42_software.html
⁃ The Register:
http://www.theregister.co.uk/2007/11/16/
german_code_breaker_defeats_colossus/
⁃ Reuters
http://www.reuters.com/article/mapNews/
idUSL1665121720071116
—su]
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Fri, 16 Nov 2007 04:51:11 −0800

(PST)
Subject: Ada helps win WWII Crypto

challenge!
Newsgroups: comp.lang.ada
[...] That's got to be worth some
marketing mileage to the Ada
community!
Well done Joachim, if you're reading
this!!
From: Ian Clifton

<ian.clifton@chemistry.oxford.ac.uk>
Newsgroups: comp.lang.ada
Subject: Re: Ada helps win WWII Crypto

challenge!
Date: 16 Nov 2007 16:09:00 +0000
This was mentioned, and that Ada was
used, on the BBC's flagship “Today”
news programme this morning.
From: Larry Kilgallen

<Kilgallen@SpamCop.net>
Subject: Re: Ada helps win WWII Crypto

challenge!
Date: 16 Nov 2007 18:05:07 −0600
Newsgroups: comp.lang.ada
> From the article:
> “Schüth wrote specialist software in the

tricky language of Ada....”
> Dunno what to say.
You say “writing in Ada qualifies one as a
true expert” :-)
From: Manuel Gomez

<mgrojo@gmail.com>
Date: Sat, 17 Nov 2007 06:15:33 −0800

(PST)
Subject: Re: Ada helps win WWII Crypto

challenge!
Newsgroups: comp.lang.ada
Choosing well the language has not being
his only skill. See this quote from
[Reuters:]
“It's a brilliant piece of work, really really
impressive,” said Andrew Clark, director
of Britain's National Museum of
Computing, which designed the challenge
and is overseeing the running of Colossus,
based at Bletchley Park outside London.

“He's used a program that is highly
optimized for this task and he's designed
it very well.”

U.S. Air Force T25 SECT
Electronic Combat Trainer
From: AdaCore Press Center
Date: Tuesday September 18, 2007
Subject: AdaCore Helps AAI Upgrade the

T25 SECT Electronic Combat Trainer
RSS: http://www.adacore.com/2007/09/18/

adacore-helps-aai-upgrade-the-t25-sect-
electronic-combat-trainer/

BOSTON, Mass. — September 18, 2007
— Embedded Systems Conference —
AdaCore, provider of the highest quality
Ada tools and support services, today
announced another successful deployment
of a mission-critical system using its
GNAT Pro development environment.
AAI Services Corporation utilized GNAT
Pro as part of an overall upgrade to the
U.S. Air Force T25 Simulator for
Electronic Combat Training (SECT)
system. The T25 SECT system is a
software-based training aid that uses
interactive combat laboratory exercises
and simulated training missions to teach
the principles of electronic
countermeasures. As part of the upgrade,
AAI Services updated one processor on
the system’s student station from an SGI
VME-based computer to a single board
computer running Windows. The original
software for the updated processor was
ported to a different host and a new
development station was added to the
existing Training System Support Center.
AAI Services used GNAT Pro for
Windows along with a variety of AdaCore
partner software to satisfy the T25 SECT
program upgrade demands. AAI Services
ported and developed new software using
a powerful collection of software libraries
that is uniquely available with the GNAT
Pro development environment, including:
 ⁃ GNAT Pro
 ⁃ OpenGL (Open Graphics Library)
 ⁃ GLUT (OpenGL Utility Toolkit)
 ⁃ FreeGLUT
 ⁃ Win32 Bindings
 ⁃ Touch screen driver from ELO
“AdaCore is pleased to have provided
software solutions to meet the T25 SECT
program upgrade requirements,” said
Robert Dewar, President of AdaCore.
“We strive to offer exceptional software
tools, libraries, and services. In addition,
we have established relationships with
other best-in-class partners that enable us
to provide complete solutions for our
customers.”
About the T25 SECT System
The T25 SECT provides computer
simulations consisting of interactive,
electronic combat lab exercises and
simulated training missions. It provides a
full range of electronic combat (EC)

218 Ada Inside

Volume 28, Number 4, December 2007 Ada User Journal

training from basic threat recognition to
complex real-world EC airborne mission
scenarios. The T25 SECT trains students
in all fundamental aspects of EC,
including the operation and utilization of
a wide variety of generic, representative
EC equipment. SECT provides full-scale
mission simulations for typical operations
such as strategic/covert penetration,
standoff jamming/direct support
(SOJ/DS), electronic intelligence
(ELINT) collection, and suppression of
enemy air defenses (SEAD).
The T25 SECT port required moving one
processor in the student station from a
VME-based SGI (circa 1993) running
IRIX to a VME-based single board
computer (SBC) running Windows 2000.
The specific platform was a General
Micro Systems, Inc. (GMS) V265 Condor
SBC that has an Intel Pentium M
Processor 1.00 GHz AT/AT Compatible
with 515440 KB RAM and an Intel
82852/82855 GM/GME Graphics
Controller. The application used SGI’s
GL calls to accomplish drawing graphics
primitives. The GL to OpenGL porting
guide was used to translate the GL calls to
the Windows implementation of OpenGL
drawing primitives.
AAI Corporation also designed and
developed the original SECT system for
the U.S. Air Force in the 1990s, replacing
the AAI-developed Simulator for
Electronic Warfare Training (SEWT),
which had been in operation since the
1970s.
About AAI Services Corporation
AAI Services Corporation, headquartered
in Hunt Valley, MD, is a wholly owned
subsidiary of AAI Corporation providing
government and commercial customers
with responsive, efficient and effective
technical services covering a wide variety
of technologies and equipment
worldwide. AAI Services Corporation’s
managers, engineers, operators,
maintainers, instructors, and logisticians
are experts in structuring innovative,
performance-based solutions for life cycle
support, supply chain management,
obsolescence, operational enhancement
and skills development for customers’
systems, facilities and equipment.

TOPCASED Project
From: AdaCore Press Center
Date: Monday October 29, 2007
Subject: AdaCore Joins TOPCASED Project
RSS: http://www.adacore.com/2007/10/29/

adacore-joins-topcased-project/
PARIS and NEW YORK, October 29,
2007 — AdaCore, provider of the
highest-quality Ada tools and support
services, today announced its
participation as a member of the
TOPCASED Project (Toolkit in Open
Source for Critical Applications &
System Development).

Initiated in 2004, the TOPCASED Project
brings together a consortium of
commercial, scientific, and academic
partners, ranging from consulting
companies to large industrial groups,
including Airbus, Thales, Siemens VDO,
CNES, Rockwell Collins, EADS Astrium,
CS, Atos, SOPRA, and many more. Its
goal is to provide an open-source
development environment for producing
software that meets the requirements of
safety-critical embedded systems. This
major cooperative project, which will
produce an environment covering the full
spectrum of software development, from
requirements specification to
implementation, is being funded with the
help of the French General Business
Directorate, or DGE.
The complexity of embedded systems
used in the avionics, space and
transportation industries places unique
demands on development tools, which the
traditional off-the-shelf software market
alone cannot fulfill. For example, the
lifetime of aerospace products can often
be as long as 10 to 30 years and,
currently, no software products company
can commit for such a prolonged period
of time at a realistic cost.
To reach the necessary quality levels of
safety-critical embedded systems and
increase the productivity of developers,
system engineering methods and tools
need to be improved. By using an open-
source approach, the TOPCASED Project
hopes to ensure the availability of reliable
tools over a long period of time, to share
the development costs among all those
involved, and to make use of valuable
tools already available.
AdaCore is leveraging its experience in
safety-critical and embedded software
engineering to bring TOPCASED users
an advanced Eclipse-based environment
for developing Ada applications.
“AdaCore’s reputation in the open-source
industry meant that we were keen to
secure its participation in TOPCASED,”
said Patrick Farail, Head of Software
Development Methods Support, Airbus
France. “We felt that AdaCore’s approach
to embedded development for avionics, its
history of working on large, complex and
safety-critical projects, and the company’s
impressive list of commercial and military
avionics customers made it the perfect
partner for the project,” he added.
“AdaCore understands the unique
challenges of the embedded aerospace
market, and we are excited to be an active
member of TOPCASED, working with
industrial and academic partners. Our
company has a longstanding commitment
to open-source, safety-critical, and
embedded software development, as
evidenced by our support for the Ada
community,” said Nicolas Setton,
AdaCore’s TOPCASED Project Manager.

Please see: http://www.topcased.org/ for
further details about The TOPCASED
Project.

Raytheon’s SSDS
From: AdaCore Press Center
Date: Tuesday November 6, 2007
Subject: GNAT Pro Provides Multi-

Language Support aboard Raytheon’s
SSDS

RSS: http://www.adacore.com/2007/11/06/
gnat-pro-provides-multi-language-
support-aboard-raytheons-ssds/

FAIRFAX, Va., November 6, 2007 —
SIGAda 2007 — AdaCore, provider of
the highest quality Ada tools and support
services, today announced that Raytheon
has delivered the Ship Self-Defense
System (SSDS) Mk 2 using GNAT Pro
for LynxOS within its multi-language
software development environment.
SSDS Mk 2 is a combat system that
integrates and coordinates the sensors and
weapons systems aboard a US Naval
vessel to provide a coherent tactical
picture for situational awareness,
command and controls, and quick-
reaction self-defense. It is a single-source
baseline that supports multiple system
configuration modifications (MODs) for
large deck ship classes (aircraft carriers
and amphibious ships). GNAT Pro was
specifically used on the SSDS Mk 2 to
support Ada application development on
the Intel processors and the LynxOS
operating system.
“SSDS Mk 2 is a modular distributed
program consisting of C, C++, and Ada
software components,” said Mark A.
Hodge, SSDS Mk 2 Technical Director
for Raytheon Integrated Defense Systems.
“LynxOS for x86 was selected because of
its real-time determinism as we migrated
from an older operating system towards a
more mainstream OS. The AdaCore
GNAT Pro compile system was selected
both for its support for LynxOS and its
association with GNU, which is being
used for the C and C++ application
components.”
“AdaCore’s GNAT Pro tool set provided
Raytheon with the seamless
interoperability it required to support the
inherently mixed-language development
of SSDS Mk 2,” said Robert Dewar,
President of AdaCore. “On large,
mission-critical systems, Ada is often
used in conjunction with other languages,
and the Ada design specifically caters to
such usage. AdaCore provides complete
support for compilation with multi-
language build and debug for all GNAT
Pro environments.”
SSDS Program Description
On many of today’s amphibious ships and
aircraft carriers, the radar and anti-air
weapons used for self-defense are
installed as stand-alone systems. As a
result, considerable manual intervention is

Ada in Context 219

Ada User Journal Volume 28, Number 4, December 2007

required to complete the detect-to-engage
sequence against anti-ship cruise missiles
(ASCMs). SSDS Mk 2 is designed to
expedite that process. Consisting of
software and commercial-off-the-shelf
(COTS) hardware, SSDS Mk 2 integrates
radar systems with anti-air weapons, both
hardkill (missile systems) and softkill
(decoys).
SSDS Mk 2 includes embedded doctrine
to provide an integrated detect-through-
engage capability with options ranging
from use as a tactical decision aid to use
as an automatic weapons system to
respond with hardkill and softkill systems.
Although SSDS Mk 2 will not improve
the capability of individual sensors, it
enhances target tracking by integrating
the inputs from several different sensors
to form a composite track. For example,
SSDS Mk 2 will correlate target
detections from individual radars, the
electronic support measures (ESM)
system (radar warning receiver), and the
identification-friend or foe (IFF) system,
combining these to build composite tracks
on targets while identifying and
prioritizing threats. Similarly, SSDS Mk 2
will not improve the capability of
individual weapons, but should expedite
the assignment of weapons for threat
engagement, and provide a “recommend
engage” display for operators, or if in
automatic mode, initiate weapons firing,
ECM transmission, chaff or decoy
deployment, or some combination of
these.
SSDS Mk 2 integrates previously “stand-
alone” sensor and engagement systems
for aircraft carriers and amphibious
warfare ships, thereby supporting the
Joint Vision 2010 concept of full-
dimensional protection, by providing a
final layer of self-protection against air
threat “leakers” for individual ships. By
ensuring such protection, SSDS Mk 2
contributes indirectly to the operational
concept of precision engagement, in that
strike operations against targets are
executed from several of the platforms
receiving SSDS Mk 2.

Ada in Poland
From: Adrian Hoe <abyhoe@gmail.com>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Tue, 18 Sep 2007 08:26:14 −0000
> What kind of military software is

developed in Ada in Poland?
They are into both military and civil.
Michal Nowak (you can google his name
in C.L.A.) is a close friend of mine and he
is working in one of the company now.
Real safety critical stuff involving
ARINC! And two company in Poznan
doing some contract work for two
aerospace industries in USA!

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —su]
Job Description: Maryland
[..] small 8(a) company based in
Maryland. We have more than a decade of
experience with custom programming and
database development. Our current focus
has been on data visualization, modeling
and simulation. We are currently in the
DoD Mentor/Protégé program with the
Navy. This means that they are putting a
lot of money into helping us grow our
business. Anyone looking to make a
change to a position with a lot of growth
potential should consider this opportunity.
If you don't meet the minimum
requirements below, you will not be
considered.
Project:
The Radar Digital Signal Injection
System (RDSIS) is a system where by an
artificial signal is projected for reception
by a radar system. This allows testing of
the radar, missile systems, and personnel
without having to physically perform a
scenario or alter the radar system.
Additional features will be added to this
system in addition to porting the original
system from Ada to C++, and SGI/Irix to
possibly IBM Blade Server/Linux.
Programmer requirements:
Minimum: 3–4 yrs experience, Ada, C++,
clearable to DoD Secret
Preferred:
5–10 yrs experience, Ada, C++,
embedded programming, multi-threading,
multi-processor, parallel processing, real-
time systems, radar experience,
Unix/Linux experience, DoD Secret
clearance [...]
Job Description: Germany
[...] we are looking for a Software
Engineer.
Requirements:
- Software update according to
programming rules
- Software Detailed Design Document
generation based on Prototype Code
- Performance of design and code reviews
to check compliance with standards
- Hardware/Software Integration
- Hardware/Software Integration Testing
- Software Acceptance Testing
Required skills:
- Programming language Ada 83 or 95
- Generation of software detailed design
documentation
- Software development according to
RTCA/DO-178B
- Motorola Controller MPC565
- Lauterbach BDM and/or NEXUC
debugger

Recommended skills:
- Greenhills MULTI Ada
- DOORS
- DIMENSIONS
- LDRA Testbed
Start: asap
Duration: 6 months with possible
extension
Location: Munich Germany
Language: English

Ada in Context
ARM in info format
Newsgroups: comp.lang.ada
Subject: Ada reference manual source

processing program
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Fri, 28 Sep 2007 03:22:04 −0400
I've finally gotten around to posting the
source for the Ada code that produces the
Ada Reference Manual, in several output
formats (including Emacs info), on my
web page:
http://stephe-leake.org/ada/arm.html
I fixed a bug in the info version in
September; the current version of the info
manuals is arm2005-20070928.tar.gz
At Randy Brukardt's request, the source
zip does not include the actual ARM
sources; you can get those directly from
the official ARM website http://www.ada-
auth.org/arm.html

ARM in LaTeX
From: Randy Brukardt

<randy@rrsoftware.com>
Newsgroups: comp.lang.ada
Subject: Re: ARM and AARM pdf's: no

bookmarks
Date: Wed, 14 Nov 2007 23:25:55 −0600
> When using ARM and AARM pdf's

from AdaIC site, they show no
bookmarks in Adobe Reader. Many
modern books come with bookmarks
for chapters and subchapters, which are
shown hierarchically in PDF viewers,
allowing for quick jump to a section of
interest. Who should be contacted to
suggest the official pdf's are processed
to get such bookmarks?

You'd probably want to ask me.
But I have absolutely no idea of how to
add bookmarks to the PDF in an
automated way, given that the original
files are processed through Microsoft
Word. (Adding them by hand surely won't
be practical.) The existing table-of-
contents information doesn't seem to
make bookmarks when the document is
printed to Distiller. I've tried some of the
other conversion plugins, but they don't
seem to be able to use the proper fonts

220 Ada in Context

Volume 28, Number 4, December 2007 Ada User Journal

(which makes the Unicode examples
unreadable). We don't have the budget to
spend time figuring this out (we have no
requirement to make PDFs for anyone).
In any case, we produced the PDF
versions solely for the purpose of printing
the standard. If you want a version with
links, use the HTML version (which also
gives you access to a decent search
facility and a fully linked syntax).
If you really, really wanted to upgrade the
PDFs, I'd suggest downloading the
Standard's construction tools and doing
this yourself. I'd be happy to give you
some pointers if you wanted to do that
(and the handful of hand-corrections that
are needed to make the document
printable).
Randy Brukardt, ARG editor; Editor,
ISO/IEC 8652
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Thu, 15 Nov 2007 04:41:13 −0500
Subject: Re: ARM and AARM pdf's: no

bookmarks
Newsgroups: comp.lang.ada
> But I have absolutely no idea of how to

add bookmarks to the PDF in an
automated way, given that the original
files are processed through Microsoft
Word. (Adding them by hand surely
won't be practical.)

That's partly why I started a LaTeX
version of the ARM; LaTeX to PDF can
produce bookmarks, as well as all the
other hyperlinks.
But it's a big job.
See http://stephe-leake.org/ada/arm.html
for the version of the construction tools
with a start on LaTeX output.

Localization and Ada
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Fri, 19 Oct 2007 12:23:45 −0000
Subject: Re: Ada and locale
Newsgroups: comp.lang.ada
> I would like to know how I can benefit

from the locale support in my operating
system. By locale I mean the set of
properties of the I/O system that allow
to customize formatting of numbers,
collating, character classification and
such.

ARM don't define any way for application
localization. You must use some external
library.
GUI toolkits usually include such support.
I don't known about GTK, but Qt have
QLocale class for numeric formatting
customization and support characters and
strings operations through QString and
QChar classes.
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: Fri, 19 Oct 2007 23:06:55 +0200

Subject: Re: Ada and locale
Newsgroups: comp.lang.ada
For example using the package
GtkAda.Intl (which only covers basic
“gettext” stuff).

Allocators and exceptions
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 10 Sep 2007 21:36:56 −0500
Subject: Re: Allocators and exceptions
Newsgroups: comp.lang.ada
> What happens when during the

initialization of the newly allocated
object an exception is raised?

> I cannot find anything in the AARM
that covers this case. What I want to
find exactly is the *guarantee* that the
allocated memory is automatically
reclaimed. Any relevant paragraph
numbers are highly welcome.

(1) Nothing in the Ada standard is about
“goodness”. In particular, there is nothing
anywhere in the standard that resources
like memory ever get reclaimed. I suspect
most implementers will in fact do
reclamation (and avoid leaks), but it is not
part of the Ada language as described by
the standard.
(2) I believe that the current wording of
the standard *requires* that reclamation
not be performed in examples like this,
at least if there are any controlled
components in the type. That's because
there is no permission in Ada to do
finalization early — it has to be done only
if the object is explicitly destroyed or
when the master goes out of scope —
which for an allocated object is when the
type goes out of scope.
(Not everyone agrees with the above
opinion, but everyone does agree that it is
an issue in some cases. But there is
nothing close to an agreement on how to
fix the standard, so don't hold your breath
waiting for a fix...)
Yes, this also means that an Ada compiler
implementing garbage collection is
mostly likely incorrect. It's highly
unlikely, however, that anyone will be
testing for such “errors” formally. I did
write an ACATS-style test for a case like
this and determined that most compilers
do in fact finalization the object at the
appropriate time: which suggests that they
leak memory in this case.
Moral: Never, ever, write code that
intentionally raises an exception during an
allocator. (Unintentional exceptions are
just plain bugs and ought to get fixed in
testing.) Better still, don't use any
allocators at all (use the predefined
containers if you need dynamic memory
management).
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Mon, 10 Sep 2007 14:48:56 −0700

Subject: Re: Allocators and exceptions
Newsgroups: comp.lang.ada
> [...] Exceptions in constructors is a bad

idea.
No, it's a very good idea. Otherwise you
have to deal with half-baked objects,
which is Even Bigger Mess (tm). [...]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 11 Sep 2007 11:16:31 +0200
Organization: cbb software GmbH
Subject: Re: Allocators and exceptions
Newsgroups: comp.lang.ada
This is what you get when the exception
is propagated out of a constructor. It
breaks the abstraction, necessarily. You
cannot handle this unless you accept the
idea that one can always view an object as
an aggregate of other objects. This in turn
would imply 1) types matched by
structure, 2) broken encapsulation. You
want the compiler to invent partial
constructors/destructors, it is a difficult
problem, probably undecidable.
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Wed, 12 Sep 2007 05:36:54 −0700
Subject: Re: Allocators and exceptions
Newsgroups: comp.lang.ada
> C++ doesn't seem to handle

deallocation etc. of sibling components
either, so I'm not sure I understand.

It does. In case of exception the already
constructed components are rolled back.
This works for components of array as
well. [...]
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 12 Sep 2007 17:19:01 −0500
Subject: Re: Allocators and exceptions
Newsgroups: comp.lang.ada
Ada does of course finalize any
components that have already been
constructed. It doesn't just drop them on
the floor!! The problem (if you can call it
that) with Ada is that is clearly defines
when that will happen. You want it to
happen *earlier* than that definition.
One could argue that that definition is
wrong, but it is what it is.
For what it's worth, the definition you
seem to want would be extremely
expensive to implement in Janus/Ada:
every allocated component would need a
dedicated (compiler generated) exception
handler in order to be able free the
associated memory immediately. The
effect would be to make allocators 10
times bigger and possibly 10 times
slower. (It surely would be that much for
our [obsolete] MS-DOS compilers, which
used a heap of our own design; I'm not
sure how expensive the Windows heap
allocations are so it might be somewhat
less.) Programs that do a lot of allocation
could have a pretty significant

Ada in Context 221

Ada User Journal Volume 28, Number 4, December 2007

performance impact (and that would
include the containers libraries).
From: Simon Wright

<simon.j.wright@mac.com>
Date: Wed, 12 Sep 2007 21:53:24 +0100
Subject: Re: Allocators and exceptions
Newsgroups: comp.lang.ada
[...] It certainly seems a bad idea to allow
a Constraint_Error to propagate
unhandled. But what would be wrong
with dealing with the problem and then
raising an appropriate exception from the
constructor? (even Constraint_Error if
gnat makes sense).
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 12 Sep 2007 17:32:52 −0500
Subject: Re: Allocators and exceptions
Newsgroups: comp.lang.ada
Because Ada *requires* storage leakage
in such cases (although some compilers
ignore the language definition and finalize
anyway). An allocated object cannot be
finalized until it's *type* is finalized or
until an Unchecked_Deallocation is called
— and an Unchecked_Deallocation is not
going to be called if a constructor
propagates an exception. So the
(inaccessible) object is supposed to hang
around for a long, long time.
The “proper” way to handle this is to
ensure that default initialize of an object
never propagates an exception, and then
wrap the allocator properly:
type Access_T is access all T;
procedure Free is new
Unchecked_Deallocation (T, Access_T);
function Alloc_Object (...) return
 Access_T is
 A_T : Access_T := new T; -- Default
 -- initialized.
 begin
 A_T.all := <constructor>;
 return A_T;
 exception
 when others => Free(A_T);
 return null;
 end Alloc_Object;

But I'm not going to argue that this is an
ugly and complex way of handling this.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 12 Sep 2007 22:36:05 −0500
Subject: Re: Allocators and exceptions
Newsgroups: comp.lang.ada
For what it's worth, the rule in the RM is
7.6.1(10), which says:
“Immediately before an instance of
Unchecked_Deallocation reclaims the
storage of an object, the object is
finalized. If an instance of
Unchecked_Deallocation is never applied
to an object created by an allocator, the
object will still exist when the
corresponding master completes, and it
will be finalized then.”
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Thu, 13 Sep 2007 02:43:41 −0700

Subject: Re: Allocators and exceptions
Newsgroups: comp.lang.ada
Yes, this is a very reasonable approach. I
would even propagate (or translate) the
exception out instead of returning null —
this can make it more plausible to work
with at the call site.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 12 Sep 2007 22:42:27 −0500
Subject: Re: Allocators and exceptions
Newsgroups: comp.lang.ada
> I guess I had misunderstood what's

meant by 'constructor', because this is
just what I had in mind ... and there are
far worse things to leak than memory,
such as locks, file handles, data
structure integrity etc, and those we can
handle even in a constructor (i. e.
function returning a value of the type
rather than a pointer to a new value of
the type).

The problem with this sort of construction
(besides that it is clunky) is that it doesn't
work for limited types without breaking
abstraction. OTOH, the leak in this case
doesn't bother me too much, because
constructor failure ought to be rare and it
is also rare to be creating a lot of objects
— so it usually doesn't matter. Moreover,
safety critical applications aren't going to
be using allocators in the first place, and
very long-running applications are likely
to have problems with memory
fragmentation even if they don't leak any
memory — unless they have a lot more
memory available than they're going to
need. Still, the leak is uncomfortable — it
doesn't match Ada's goals.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Wed, 12 Sep 2007 08:29:08 −0400
Subject: Re: Allocators and exceptions
Newsgroups: comp.lang.ada
> In this case I want the constructor to be

rolled back. Without exceptions (and
rollback) the only option for handling
errors in initialization of
(sub)components is to leave them half-
baked.

The point is that the constructor itself
must do the roll-back, and leave the object
in a consistent state.
The rule should be:
Constructors should not propagate
exceptions up; they must handle all
exceptions internally.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 12 Sep 2007 17:25:07 −0500
Subject: Re: Allocators and exceptions
Newsgroups: comp.lang.ada
> What should the constructor do *after*

handling the exception? Leave the
object half-baked?

No, unbaked.

> Do you want to introduce additional
states to the object design just to handle
the “oops I'm not initialized” case?

No, because you must have those states
anyway. Ada allows an object to be
finalized multiple times (either by an
explicit call to Finalize, or in some
obscure cases involving aborts), so you
have to have an invalid (not between
initialization and finalization) state in any
Ada controlled object. (Blindly doubly
finalizing an object is likely to be a
serious bug, because of calling
Unchecked_Deallocation twice on the
same object or similar gaffes.) Any
controlled type that doesn't have an “I'm
not valid” state is wrong, period.
Once you have such a state, having an
uninitialized object is not a disaster.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 12 Sep 2007 17:45:07 −0500
Subject: Re: Allocators and exceptions
Newsgroups: comp.lang.ada
> How to reconcile this with:
> 1. objects allocated on the stack
> 2. all sorts of temporal objects the

compiler is allowed to create (and thus
allocate somehow, somewhere)

> 3. a permission given to collect
garbage?

That's the *real* problem: Ada has no
such permission when it comes to objects
with non-trivial finalization. It is defined
precisely where they are going to be
finalized, and there is no permission to do
it early without an explicit call (which
doesn't exist).
As it stands, a compiler that does the right
thing (in the sense of avoiding a memory
leak when it is certain that no reference to
the object remain) is actually wrong vis-a-
vis the language definition.
> Anyway, presuming that the constructor

shall clean its mess before propagating
any exceptions, there is no any object
here to “deallocate” (I would say
“destroy”).

Surely the top-level object's memory was
allocated, and there is no place in the
language that would ever require
Deallocate to be called. Moreover, even a
friendly compiler could not do that
without violating the language definition.
> A related issue, why on earth “new” is

allowed to propagate anything but
Storage_Error or else Program_Error?

“new” doesn't propagate anything other
than Storage_Error or Program_Error.
The initialization expression, OTOH, can
propagate anything it wants. Those are
separate things from a language
perspective; the problem is that you can't
write them separately.
From: Maciej Sobczak

<maciej@msobczak.com>

222 Ada in Context

Volume 28, Number 4, December 2007 Ada User Journal

Date: Mon, 10 Sep 2007 05:16:07 −0700
Subject: Re: Allocators and exceptions =>

Read Me First
Newsgroups: comp.lang.ada
> pragma Restrictions

(Immediate_Reclamation) ;
It does not apply to objects created by the
allocator.
It is useful only for those objects that are
created implicitly, for example return
values of unconstrained types. [...]

Emmett Paige's 1997 DoD
Memo
From: Richard Riehle

<adaworks@sbcglobal.net>
Newsgroups: comp.lang.ada
Subject: Re: History of Ada — and about the

NYU DOS version
Date: Fri, 02 Nov 2007 13:51:48 GMT
> The DOD decided to use more cheaper

versions of computer languages, such
as C.

The DoD did not decide to use cheaper
languages such as C. This incorrect
assessment of Mr. Paige's (then Assistant
Secretary of Defense) memo lifting the
Ada mandate has been widely
disseminated. Rather, Mr. Paige opened
the door to the use of other languages so
Ada would compete on its merits instead
of on a strict policy level.
In Mr. Paige's memo, he even cited Ada's
success along with his belief that, since
Ada had proven to be a valuable tool for
DoD software, it was now able to stand
on its own in the competitive environment
of programming language choice.
Mr. Paige expressed the hope that Ada
would continue to be used for vital DoD
software.
Many in the DoD and elsewhere
misinterpreted Mr. Paige's memo lifting
the Ada mandate. Unfortunately, this
misinterpretation is now so widespread
that many DoD personnel are of the
opinion that Ada has been “forbidden” for
military software. Somehow, the simple
lifting of the mandate has gone through a
series of stages: Ada is no longer
required; Ada is no longer supported
(closing of the AJPO); Ada is no longer to
be used; Ada is now forbidden.
The reality is that Mr. Paige, and his
original DoD memo, foresaw Ada as
continuing to serve the needs of military
software far into the future, but more as
one of a set of options than as the sole
[mandated] option.
Ada continues to be used for DoD
software systems, though not as widely as
it once was, primarily due to the
misinterpretation of Mr. Paige's memo.
[See also same topic in AUJ 28-3 (Sep
2007), pp.159–161 —su]

TIOBE Programming
Community Index
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: TIOBE Programming Community

Index for November 2007
Newsgroups: comp.lang.ada
Date: Sun, 04 Nov 2007 18:56:29 +0100
[..] I don't like the index, but it is there,
widely used and I think we have to deal
with it.
And currently we deal badly — place 20
— one down and we are off the scale:
http://www.tiobe.com/tpci.htm
[...] But then it shows that they have a
dedicated comunity which can fix
something. Why can't we? [...]
From: Martin Krischik

<krischik@users.sourceforge.net>
Newsgroups: comp.lang.ada
Subject: Re: TIOBE Programming

Community Index for November 2007
Date: Mon, 05 Nov 2007 08:27:03 +0100
[...] it they just count hits. If you got to
google [...] you get 220.000 pages. Note
the use of +"Ada programming” —
without the + and the " it would be a lot
more. I think adding:
<META NAME="KEYWORDS"
CONTENT="Ada programming">
to every Ada related page would do the
trick.
From: Martin Krischik

<krischik@users.sourceforge.net>
Newsgroups: comp.lang.ada
Subject: Re: TIOBE Programming

Community Index for November 2007
Date: Mon, 05 Nov 2007 10:35:26 +0100
> Just “Ada” isn't enough? I think I have

no single “Ada programming” on my
pages.

The way they described it you will need
the exact string “Ada programming” with
one space in between. The main reason
why we chosen “Ada programming”
when we renamed the wikibook. Or
created a category “Category:Ada
programming” on Wikipedia. Or have you
noticed the “Ada programming, ©
2005,2006 the Authors, Content is
available under GNU Free Documentation
License.” on all the other Wiki pages.
And for a short time it worked moving
Ada up 2 .. 3 places. But not in the long
run — you need to keep momentum. But I
already tweaked most of the pages I have
access to.
BTW: there is a reason for it. Just
searching Ada programming on YouTube
gives you lots of hits on women
forenames and/or TV programs.
From: Manuel Gómez

<mgrojo@gmail.com>
Date: Mon, 05 Nov 2007 11:46:02 −0800

Subject: Re: TIOBE Programming
Community Index for November 2007

Newsgroups: comp.lang.ada
They say:
 “From this month on, we have stopped
monitoring Google groups because it is
not representative anymore. Instead we
have added YouTube for a small
percentage. The choice for YouTube
might seem strange but it is now #4 on the
Alexa.com chart and people tend to
upload lectures and “how to” videos on
this site. The top 3 programming
languages on YouTube is Java, C++, and
(surprisingly) Python.”
Given that they have added YouTube we
should think on uploading some videos to
that site. Some old ones can be found in
[http://www.adapower.com/...]
AdaCore has a great repository of Ada
videos but I wonder whether they would
like that people upload their videos to
YouTube.

Protected Objects in
Ravenscar
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Organization: cbb software GmbH
Date: Wed, 5 Sep 2007 09:46:39 +0200
Subject: Re: Ravenscar-compliant bounded

buffer
Newsgroups: comp.lang.ada
> While I don't know much about the

Ravenscar profile (other than what it is)
I am familiar with the use of protected
types.

> The sample code is a good illustration
of “abstraction inversion”. [...] The
code uses a high level abstraction
“protected type” to create a low level
abstraction “Binary_Semaphore”. The
code uses two semaphores to restrict
access to the bounded buffer. In this
simple example it is easy to follow, but
in a more complex example pairing
Acquire's and Release's can be a chore.

That is because of the Ravenscar
limitation of one entry per protected
object. The solution Maciej presented is
based on splitting one protected object of
two entries into two, each controlling
access to its end of FIFO. Protected
objects don't compose so the result. [...]
From: Robert A Duff <duff@adacore.com>
Newsgroups: comp.lang.ada
Subject: Re: Ravenscar-compliant bounded

buffer
Date: Thu, 06 Sep 2007 22:36:59 −0400
[...] simpler run-time system means easier
to verify that it does what's intended. I
suppose that's good for users of it, unless
they need re-implement all of Ada “by
hand” on top of the supposedly simpler
run-time system.
> [...] the point about abstraction

inversion stands.

Ada in Context 223

Ada User Journal Volume 28, Number 4, December 2007

Agreed. As I said, it's a choice. If you
really need to put multiple tasks on entry
queues, then you probably don't want
Ravenscar. If you can easily live with the
limitations of Ravenscar, you might
benefit from the simplicity.
From: Robert A Duff <duff@adacore.com>
Newsgroups: comp.lang.ada
Subject: Re: Ravenscar-compliant bounded

buffer
Date: Thu, 06 Sep 2007 10:06:51 −0400
> Ada 83 was restrictive in ways that

were found to be overly restrictive for
practical application. Some of these
restrictions were relaxed with Ada 95.
Perhaps the next round of Ravenscar
will do the same.

I don't see any need to relax Ravenscar,
because if you want to use features not
allowed by Ravenscar, you don't have to
restrict yourself to Ravenscar. It's a free
choice. I suppose we could argue about
whether the exact set of restrictions is
appropriate, but the whole point is to be
restrictive, so the run-time system can be
simplified (as compared to a run-time
system that supports full Ada).
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Newsgroups: comp.lang.ada
Subject: Re: Ravenscar-compliant bounded

buffer
Date: Wed, 05 Sep 2007 10:30:09 +0200
Organization: Adalog
[...]
The limitation on only one task per queue
is intended to guarantee bounded waiting
time. Any solution that tries to work
around the Ravenscar rules in order to
have longer queues will violate this
restriction at some point, or have to
manage explicit lists — thus violating the
spirit of the profile!
[See also “Why is task termination
disallowed in Ravenscar?” in AUJ 28-1
(Mar 2007), pp.31–32. —su]

Allocation of large objects
From: Pascal Obry <pascal@obry.net>
Date: Tue, 30 Oct 2007 08:28:37 +0100
Subject: Re: Largest size array in Gnat

2005 for the PC?
Newsgroups: comp.lang.ada

> What is the largest array (in storage
units) that you can declare in Gnat 2005
for the PC?

> Does pragma Storage_ size affect this
and if so where would you place it in a
procedure?

It depends if you want to allocate it on the
stack or on the heap. The stack is often
smaller but the size can be changed at link
time. The heap can use all the memory
(physical + virtual) that you have on your
computer. There is a limit in the size
allocated by a single object imposed by
the OS depending on the architecture
(32bits / 64bits).
From: Stefan Bellon <sbellon@sbellon.de>
Date: Tue, 30 Oct 2007 16:00:21 +0100
Organization: Comp.Center (RUS), U of

Stuttgart, FRG
Subject: Re: Largest size array in Gnat

2005 for the PC?
Newsgroups: comp.lang.ada
> > I am using the stack. how do I change

this at link time using GPL?
> There is no option for that use “new” to

allocate the array instead of declaring it
on the stack.

While I agree with the given suggestion to
allocate large objects on the heap instead
of the stack, there is a way to increase the
stack size on Windows. We use
something like the following in our
projects where we need a larger stack on
Windows:
package Linker is
 case OS is
 when "Unix" =>
 null;
 when "Windows_NT" =>
 for Default_Switches ("ada") use
 ("--stack=0x2000000,0x10000");
 end case;
end Linker;

From: Stefan Bellon <sbellon@sbellon.de>
Date: Wed, 31 Oct 2007 10:22:13 +0100
Organization: Comp.Center (RUS), U of

Stuttgart, FRG
Subject: Re: Largest size array in Gnat

2005 for the PC?
Newsgroups: comp.lang.ada
> I tried the linker switch -Wl,--

stack=0x10000000 in GPL but what is
the second number “0x10000” for?

The first is the stack reserve and the
second is the stack commit size.
Specifying the commit size is optional.

Default are 2 MB/4 KB respectively, the
above values are factor 16 to the default.
From: Adam Beneschan

<adam@irvine.com>
Date: Tue, 30 Oct 2007 12:06:39 −0700
Subject: Re: Largest size array in Gnat

2005 for the PC?
Newsgroups: comp.lang.ada
> [...] if your CPU and operating system

is limited to 32 bits then GNAT
defines:

> System.Memory_Size : constant := (
2 ** 32) ;

I should point out that you should *not*
use System.Memory_Size for this purpose
unless you're using GNAT and are
absolutely certain your code will not be
compiled with another compiler. The
original definition of Memory_Size had to
do with the amount of available memory,
not the amount of memory that could be
accessed with an address (whether the
memory existed or not); starting with Ada
95, the AARM has said:
It is unspecified whether this refers to the
size of the address space, the amount of
physical memory on the machine, or
perhaps some other interpretation of
“memory size.” In any case, the value has
to be given by a static expression, even
though the amount of memory on many
modern machines is a dynamic quantity in
several ways. Thus, Memory_Size is not
very useful. [13.7(33.a)]
From: Stefan Bellon <bellon@software-

erosion.org>
Date: Thu, 1 Nov 2007 09:44:20 +0100
Subject: Re: Largest size array in Gnat

2005 for the PC?
Newsgroups: comp.lang.ada
> If GNAT placed

“IMAGE_FILE_LARGE_ADDRESS_
AWARE” in the process headers for
GNAT executables then you could use
up to 3GB of memory.

> Seems like a simple thing to implement.
package Linker is
 case OS is
 when "Unix" =>
 null;
 when "Windows_NT" =>
 for Linker_Options use
 ("-Wl,--large-address-aware");
 end case;
end Linker;

Conference Calendar 225

Ada User Journal Volume 28, Number 4, December 2007

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2008

January 07-09 9th International Conference on Verification, Model Checking, and Abstract Interpretation

(VMCAI'2008), San Francisco, California, USA. Co-located with POPL'2008. Topics include: program
verification, program certification, model checking, static analysis, type systems, etc.

☺ January 10-12 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL'2008), San Francisco, California, USA. Topics include: fundamental principles and important
innovations in the design, definition, analysis, transformation, implementation and verification of
programming languages, programming systems, and programming abstractions.

January 07-08 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM'2008). Topics include: program analysis, program generation and program
transformation.

January 13 2008 International Workshop on Foundations of Object-Oriented Languages (FOOL'2008), San
Francisco, California, USA. Topics include: language semantics, type systems, program analysis and
verification, concurrent and distributed languages, language-based security issues, etc.

January 16 2nd International Workshop on Variability Modelling of Software-intensive Systems
(VaMoS'2008), Essen, Germany.

☺ January 24 Software-Workshop - Effiziente Entwicklung zuverlässiger Software und methodisches
Instrumentarium, Karlsruhe, Germany. Organized among others by Ada-Deutschland and Fachgruppe
Ada of the Gesellschaft für Informatik (GI). Includes: talks on "Ada 2005 for real-time, embedded and
high-integrity systems" by José Ruiz, AdaCore France, and "Hibachi -the Eclipse Ada Development
Toolset" by Tom Grosman, Aonix.

February 12-14 IASTED International Conference on Parallel and Distributed Computing and Networks
(PDCN'2008), Innsbruck, Austria. Topics include: Parallel Programming, Parallel Processing,
Reusability, Reliability, Scheduling, Modelling and Simulation, Distributed Real-Time Systems,
Compilers, Fault Tolerance, Performance Evaluation, Real-Time and Embedded Systems, Applications,
etc.

February 12-14 5th IASTED International Conference on Software Engineering (SE'2008), Innsbruck, Austria.
Topics include: Software Design and Development, Software Tools, Software Maintenance, Software
Metrics and Testing, Reliability, Quality Assurance, Software Evaluation, Reusability, Verification and
Validation, Fault Tolerance, Object-Oriented Analysis and Design, Security, Software for Parallel and
Distributed Systems, Education, Model-Driven Development, etc.

February 13-15 16th Euromicro International Conference on Parallel, Distributed and Network-based Processing
(PDP'2008), Toulouse, France. Topics include: Parallel Computer Systems (embedded parallel and
distributed systems, fault-tolerance, ...); Models and Tools for Parallel Programming Environments;
Advanced Applications (numerical applications with multi-level parallelism, real time distributed
applications, ...); Languages, Compilers and Runtime Support Systems (object-oriented languages,
dependability issues, scheduling, compilers for multicore architecture, ...); etc.

February 18-21 7th IEEE/IFIP Working Conference on Software Architecture (WICSA'2008), Vancouver, BC,
Canada. Topics include: Software Architecture Modeling and Analysis Methods and Tools; Architecture
Description Languages and Model Driven Architecture; Software Architecture for Legacy Systems and
Systems Integration; Education, and Certification of Software Architects; Industrial case studies; etc.

226 Conference Calendar

Volume 28, Number 4, December 2007 Ada User Journal

February 25-26 3rd International Workshop on Systems Software Verification (SSV'2008), Sydney, Australia.
Theme: "Real Software, Real Problems, Real Solutions". Topics include: static analysis, model-driven
development, embedded systems development, programming languages, verifying compilers, software
certification, software tools, experience reports, etc. Deadline for registration: January 11, 2008.

February 25-29 7th International Conference on Composition Based Software Systems (ICCBSS'2008), Madrid,
Spain. Theme: "Weaving Composite Systems". Topics include: composibility and integration scenarios,
open source ecosystems, species of legacy systems, technologies for interoperability, standards, legal
issues (including FOSS), etc.

March 02-07 14th Conference on Languages and Models with Objects (LMO'2008), Montréal, Québec, Canada.
Topics include (in French): Programmation par objets: langages, interprétation, compilation; objets et
types; environnements de programmation; ... Composants, Services et Objets distribués: modèles;
intergiciels; raisonnement compositionnel; parallélisme; interopérabilité; ... Génie des objets et des
modèles: cycle de vie des objets et des modèles; évolution, rétro-conception, réutilisation, versions;
sûreté de fonctionnement, spécifications formelles; processus de développement; hiérarchies,
frameworks, patterns; ertc. Applications: objets et algorithmique; objets métier; objets pour les IHM, les
télécommunications, les systèmes embarqués, le multimédia, la chimie, etc.

☺ March 04-07 CISIS2008 - International Workshop on Multi-Core Computing Systems (MuCoCoS'2008),
Barcelona, Spain. Topics include: programming languages and models; performance modeling and
evaluation of multi-core systems; tool-support for multi-core systems; compilers, runtime and operating
systems; etc.

☺ March 12-14 SIAM Conference on Parallel Processing for Scientific Computing (PP'2008), Atlanta, Georgia,
USA. Topics include: Programming languages, models, and compilation techniques; The transition to
ubiquitous multicore/manycore processors; Tools for software development and performance
evaluation; Parallel computing in industry; Distributed/grid computing; Fault tolerance; etc.

☺ March 12-15 39th ACM Technical Symposium on Computer Science Education (SIGCSE'2008), Portland, Oregon,
USA. Visit the ACM SIGAda booth!

March 16-20 23rd ACM Symposium on Applied Computing (SAC'2008), Fortaleza, Ceara, Brasil.

☺ Mar 16-20 Track on Object-Oriented Programming Languages and Systems (OOPS'2008).
Topics include: Design and implementation of novel abstractions, constructs and
mechanisms; Multi-paradigm features; Language features in support of adaptability;
Component-based programming; Generative programming; Program structuring,
modularity; Distributed objects and concurrency; Middleware; Compilation techniques;
etc.

Mar 16-20 Technical Track on Software Verification. Topics include: Data flow analysis, control
flow analysis, type effect systems, constraint systems and abstract interpretation
techniques for verification; Techniques to validate system software (such as compilers)
as well as assembly code or bytecode; Software certification and proof carrying code;
Integration of formal verification into software development projects; etc.

Mar 16-20 Track on Software Engineering (SE'2008). Topics include: Component-Based
Development and Reuse; Dependability and Reliability; Fault Tolerance and
Availability; Maintenance and Reverse Engineering; Verification, Validation, Testing,
and Analysis; Formal Methods and Theories; Empirical Studies, Benchmarking, and
Industrial Best Practices; Applications and Tools; Distributed, Embedded, Real-Time,
High Performance, Highly Dependable Systems; etc.

Mar 29 – Apr 06 European Joint Conferences on Theory and Practice of Software (ETAPS'2008), Budapest,
Hungary.

Mar 29–Apr 6 11th International Conference on Fundamental Approaches to Software
Engineering (FASE'2008). Topics include: SE as an engineering discipline,
Specification and design, Software evolution, Validation and verification, etc.

April 05 8th Workshop on Language Descriptions, Tools and Applications (LDTA'2008).
Topics include: Program analysis, transformation, generation and verification; Reverse
engineering and reengineering; Refactoring and other source-to-source transformations;

Conference Calendar 227

Ada User Journal Volume 28, Number 4, December 2007

Language definition and language prototyping; Debugging, profiling and testing; IDE
construction; Compiler construction; etc.

Mar 31 – Apr 04 7th International Conference on Aspect-Oriented Software Development (AOSD'2008), Brussels,
Belgium.

Mar 31 – Apr 04 15th Annual IEEE International Conference and Workshops on the Engineering of Computer
Based Systems (ECBS'2008). Belfast, Northern Ireland. Topics include: Component-Based System
Design; Design Evolution; Distributed Systems Design; ECBS Infrastructure (Tools, Environments);
Education & Training; Embedded Real-Time Software Systems; Integration Engineering; Model-Based
System Development; Modelling and Analysis of Complex Systems; Open Systems; Reengineering &
Reuse; Reliability, Safety, Dependability, Security; Standards; Verification & Validation; etc. Deadline
for early registration: February 26, 2008.

☺ April 01-04 3rd European Conference on Computer Systems (EuroSys'2008), Glasgow, UK. Topics include: All
areas of operating systems and distributed systems; Systems aspects of: Dependable computing, Parallel
and concurrent computing, Distributed algorithms, Programming language support, Real-time and
embedded computing, Security, ...; Experience with existing systems; Reproduction or refutation of
previous results; Negative results; Early ideas.

April 01-04 12th European Conference on Software Maintenance and Reengineering (CSMR'2008), Athens,
Greece. Theme: "Developing Evolvable Systems". Topics include: Software migration strategies and
technologies; Empirical studies in maintenance and reengineering; Experience reports on evolution,
maintenance and reengineering; Education in maintenance and reengineering; etc.

April 01-04 6th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA'2008),
Doha, Qatar. Topics include: Parallel programming models, Programming environments and tools,
Parallelizing compilers, Distributed systems, Parallel embedded systems, Formal Methods for Security,
Software Design and Development, Model-Driven Development, Fault Tolerant Software Systems,
Formal Methods, Verification, Validation, etc.

April 09-11 2nd International Conference on Tests And Proofs (TAP'2008), Prato (near Florence), Italy.

☺ April 14-18 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS'2008), Miami,
Florida, USA. Topics include: all areas of parallel and distributed processing, such as Applications of
parallel and distributed computing; Parallel and distributed software, including parallel programming
languages and compilers, runtime systems, middleware, libraries, and programming environments and
tools, etc.

☺ April 14-18 9th International Workshop on Parallel and Distributed Scientific and Engineering
Computing (PDSEC-08). Topics include: parallel and distributed computing techniques
and codes, practical experiences using various parallel and distributed systems, task
parallelism, compiler issues for scientific and engineering computing, applications, etc.

Apr 29 – May 02 Systems and Software Technology Conference (SSTC'2008), Las Vegas, Nevada, USA.

☺ May 05-07 11th IEEE International Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC'2008), Orlando, Florida, USA. Topics include: Programming and system
engineering (ORC paradigms, languages, RT Corba, UML, model-driven development of high integrity
applications, specification, design, verification, validation, testing, maintenance, system of systems,
etc.); System software (real-time kernels, middleware support for ORC, extensibility, synchronization,
scheduling, fault tolerance, security, etc.); Applications (embedded systems (automotive, avionics,
consumer electronics, etc), real-time object-oriented simulations, etc.); System evaluation (timeliness,
worst-case execution time, dependability, fault detection and recovery time, etc.); ...

May 07-09 7th European Dependable Computing Conference (EDCC-7), Kaunas, Lithuania. Topics include:
Architectures for dependable systems; Fault tolerant distributed systems; Fault tolerance in real-time
systems; Hardware and software testing, verification, and validation; Formal methods for dependability;
Safety-critical systems; Software reliability engineering; Software engineering for dependability; etc.

☺ May 10-18 30th International Conference on Software Engineering (ICSE'2008), Leipzig, Germany. Topics
include: Software components and reuse, Theory and formal methods, Engineering secure software,
Software dependability, safety and reliability, Reverse engineering and maintenance, Software
economics and metrics, Empirical software engineering, Engineering of distributed/parallel software

228 Conference Calendar

Volume 28, Number 4, December 2007 Ada User Journal

systems, Engineering of embedded and real-time software, Software tools and development
environments, Programming languages, etc.

May 20 ICRA2008 - 3rd Workshop on Software Development and Integration in Robotics (SDIR-III), San
Diego, CA, USA. Topics include: Analysis of issues and challenges in robotic software development;
Architectural models that lead to reusable robotic software design; Middleware services and reusable
components for real time robot software systems; Description of state-of-the art research projects,
innovative ideas, field-based studies; Identifying real-time requirements for robotic applications;
Comparing existing development approaches for real-time applications; etc. Deadline for submissions:
January 10, 2008.

May 25-29 10th International Conference on Software Reuse (ICSR'2008), Beijing, China. Topics include:
Confidence Ensuring and Evaluating Methods; Processes to identify and select OTS components;
Software integration and evolution problems; Software variability management; Software generators
and domain-specific languages; Component-based software engineering; Evolution of component-based
software systems; Lightweight approaches to software reuse; Benefit and risk analysis of reuse
investments; Generation of non-code artifacts; Quality aspects of reuse, e.g. security and reliability;
Success and failure stories of reuse approaches from industrial context; etc.

May 26-30 15th International Symposium on Formal Methods (FM'2008), Turku, Finland. Topics include: all
aspects of formal methods research, both theoretical and practical, in particular the experience of
applying formal methods in practice.

☺ May 27-30 DAta Systems In Aerospace (DASIA'2008), Palma de Majorca, Spain.

June 04-06 10th IFIP International Conference on Formal Methods for Open Object-based Distributed
Systems (FMOODS'2008), Oslo, Norway. Topics include: Semantics and implementation of object-
oriented programming and (visual) modelling languages; Formal techniques for specification, design,
analysis, verification, validation and testing; Model checking, theorem proving and deductive
verification; Model transformations and refactorings; Applications of formal methods; Experience report
on best practices and tools; etc. Deadline for submissions: January 8, 2008 (abstracts), January 15, 2008
(papers).

June 04-06 8th IFIP International Conference on Distributed Applications and Interoperable Systems
(DAIS'2008), Oslo, Norway. Topics include: innovative distributed applications; models and concepts
supporting distributed applications; middleware supporting distributed applications; software
engineering of distributed applications; etc. Deadline for submissions: January 8, 2008 (abstracts),
January 15, 2008 (papers).

☺ June 09-11 8th International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP'2008), Cyprus. Topics include: Multi-core Programming and Software Tools, Parallel
Programming Paradigms, Tools & Environments for Parallel & Distributed Software Development, etc.
Deadline for submissions: January 7, 2008 (papers, tutorials). Deadline for early registration: March 15,
2008.

June 09-12 4th European Conference on Model Driven Architecture Foundations and Applications
(ECMDA'2008), Berlin, Germany. Topics include: Model Transformation - languages and tools;
Reverse Engineering; MDA for Complex Systems and Systems of Systems; MDA for Embedded
Systems and Real-Time Systems; MDA for High-Integrity Systems, Safety-Critical, and Security-
Critical Systems; MDA in the Automotive, Aerospace, Telecommunications, Electronics Industries;
MDA for Legacy Systems; MDA and Component-Based Software Engineering; etc. Deadline for
submissions: January 2, 2008 (workshops), January 28, 2008 (abstracts), February 5, 2008 (papers),
April 7, 2008 (tools and posters). Deadline for early registration: March 15, 2008.

♦ June 16-20 13th International Conference on Reliable Software Technologies – Ada-
Europe 2008, Venice, Italy. Organized and sponsored by Ada-Europe, in cooperation
with ACM SIGAda (approval pending). Deadline for submissions: January 13, 2008
(industrial presentations).

June 17-19 2nd IEEE & IFIP International Symposium on Theoretical Aspects of Software Engineering
(TASE'2008), Nanjing, China. Topics include: Specification and Validation, Component-based
Development, Model Checking for Software, Software Architectures and Design, Software safety and
reliability, Reverse Engineering and Software Maintenance, Embedded and Real-time Software, Model-

Conference Calendar 229

Ada User Journal Volume 28, Number 4, December 2007

driven Development, Parallel and Distributed Computing, Program Analysis, Semantics and Design of
Programming Languages, etc. Deadline for submissions: January 21, 2008 (abstract), January 28, 2008
(papers).

June 17-20 28th International Conference on Distributed Computing Systems (ICDCS'2008), Beijing, China.
Topics include: theoretical foundations, reliability and dependability, security, middleware, etc.

June 25-27 Code Generation 2008, Cambridge, UK. Topics include: Tool and technology adoption, Defining and
implementing modelling languages, Language evolution and modularization, Runtime virtual machines
versus direct code generation, etc. Deadline for paper submissions: January 18, 2008.

☺ June 27 DSN2008 - Workshop on Architecting Dependable Systems (WADS'2008), Anchorage, Alaska,
USA. Topics include: everything related to software architectures for dependable systems, such as:
Rigorous design: architectural description languages, formal development, ...; Verification & validation:
theorem proving, type checking, ...; Fault tolerance; System evaluation; Enabling technologies;
Application areas: safety-critical systems, embedded systems, ...; etc. Deadline for submissions: March
7, 2008.

June 30 – July 02 13th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2008), Madrid, Spain.

☺ June 30 – July 04 Technology of Object-Oriented Languages and Systems (TOOLS Europe'2008), Zurich, Switzerland.
Topics include: all modern approaches to software development, with a special but not exclusive
emphasis on O-O and components. Deadline for technical paper submissions: February 8, 2008.

July 06-13 35th International Colloquium on Automata, Languages and Programming (ICALP'2008),
Reykjavik, Iceland. Topics include: Principles of Programming Languages; Formal Methods and Model
Checking; Models of Concurrent and Distributed Systems; Models of Reactive Systems; Program
Analysis and Transformation; Specification, Refinement and Verification; Type Systems and Theory;
Foundations of Secure Systems and Architectures; Specifications, Verifications and Secure
Programming; etc. Deadline for submissions: February 10, 2008 (papers).

☺ July 07-10 2008 International Conference on Software Engineering Theory and Practice (SETP'2008),
Orlando, FL, USA. Topics include: Case studies, Component-based software engineering, Critical
software engineering, Distributed and parallel software architectures, Education aspects of software
engineering, Embedded software engineering, Model Driven Architecture (MDA), Model-oriented
software engineering, Object-oriented methodologies, Program understanding, Programming languages,
Quality issues, Real-time software engineering, Real-time software systems, Reliability, Reverse
engineering, Software design patterns, Software maintenance, Software reuse, Software safety and
reliability, Software security, Software specification, Software tools, Verification and validation of
software, etc. Deadline for submissions: February 4, 2008 (draft papers).

☺ July 07-11 22nd European Conference on Object Oriented Programming (ECOOP'2008), Paphos, Cyprus.
Topics include: analysis, design methods and design patterns; concurrent, real-time or parallel systems;
distributed systems; language design and implementation; programming environments and tools; type
systems, formal methods; compatibility, software evolution; components, modularity; etc.

July 07-13 20th International Conference on Computer Aided Verification (CAV'2008), Princeton, USA. Topics
include: Algorithms and tools for verifying models and implementations, Program analysis and software
verification, Applications and case studies, Verification in industrial practice, etc. Deadline for
submissions: January 28, 2008 (papers, CAV Award nominations).

July 15-18 9th International Conference on Mathematics of Program Construction (MPC'2008), Marseille
(Luminy), France. Topics of interest range from algorithmics to support for program construction in
programming languages and systems, such as type systems, program analysis and transformation,
programming-language semantics, etc. Deadline for submissions: January 14, 2008 (abstracts), January
21, 2008 (full papers).

July 16-18 Static Analysis Symposium (SAS'2008), Valencia, Spain. Topics include: abstract interpretation,
compiler optimizations, control flow analysis, data flow analysis, model checking, program
specialization, security analysis, type based analysis, verification systems, etc. Deadline for
submissions: January 12, 2008 (abstracts), January 19, 2008 (full papers).

230 Conference Calendar

Volume 28, Number 4, December 2007 Ada User Journal

☺ August 26-29 14th European Conference on Parallel and Distributed Computing (Euro-Par'2008), Las Palmas de
Gran Canaria, Spain. Topics include: all aspects of parallel and distributed computing, such as Support
tools and environments, High performance architectures and compilers, Parallel and distributed
programming, Theory and algorithms for parallel computation, etc. Deadline for submissions: January
25, 2008 (papers, workshops).

☺ September 03-05 7th International Conference on Distributed and Parallel Systems (DAPSYS'2008), Debrecen,
Hungary. Topics include: Distributed and Grid middleware, Parallel and distributed programming
languages and algorithms, Formal models for parallel and distributed computing, Software engineering
and development tools, etc. Deadline for paper submissions: March 15, 2008. Deadline for early
registration: May 8, 2008.

☺ September 07-10 9th Conference on Communicating Process Architectures (CPA'2008), York, UK. Topics include:
Theoretical approaches to concurrency, and formal languages supporting these approaches, including
the integration of existing formal notations; Modelling of, and model-driven development of concurrent
software architectures; Verification and analysis of concurrent systems; Model-checking techniques and
tools for development and analysis; Tools and languages for hardware-software co-design;
Programming languages and environments for concurrent systems; Programming and implementation
issues for concurrent languages, such as deadlock-freedom by design, starvation, and efficient inter-
process communication architectures; System issues for programming languages supporting
concurrency, such as multithreading kernels and interrupt architectures; Applications that exploit, or rely
on, concurrency; etc. Deadline for paper submissions: April 25, 2008. Deadline for early registration:
June 30, 2008.

☺ September 08-12 International Conference on Parallel Processing (ICPP'2008), Portland, Oregon, USA. Topics
include: Compilers and Languages, Software Systems and Tools, etc. Deadline for paper submissions:
February 4, 2008.

October 06-10 2nd IFIP Working Conference on Verified Software: Theories, Tools, Experiments (VSTTE'2008),
Toronto, Canada. Topics include: all aspects of verified software, theoretical as well as experimental,
such as specification languages and case-studies, programming languages, language semantics, software
design methods, automatic code generation, type systems, verification tools (static analysis, dynamic
analysis, model checking, theorem proving, satisfiability), integrated verification environments, etc.
Deadline for submissions: April 30, 2008.

October 15-17 7th International Conference on Software Methodologies, Tools, and Techniques (SoMeT'2008),
Sharjah, UAE. Topics include: Software methodologies, and tools for robust, reliable, non- fragile
software design; Automatic software generation versus reuse, and legacy systems, source code analysis
and manipulation; Intelligent software systems design, and software evolution techniques; Software
optimization and formal methods for software design; Software security tools and techniques, and
related Software Engineering models; End-user programming environment; etc.

♦ Oct 26-30 2008 ACM SIGAda Annual International Conference (SIGAda'2008), Portland,
Oregon, USA. Sponsored by ACM SIGAda (approval pending). Topics include: Safety,
security and high integrity development issues; Language selection for a high
reliability system; Use of ASIS for new Ada tool development; Mixed-language
development; High reliability software engineering education; High reliability
development experience reports; Static and dynamic code analysis; Use of new Ada
2005 features/capabilities; etc. Deadline for submissions: May 10, 2008 (technical
articles, extended abstracts, experience reports, workshops, panel sessions, and
tutorials).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

232 Forthcoming Events

Volume 28, Number 4, December 2007 Ada User Journal

13th International Conference on
Reliable Software Technologies

Ada-Europe 2008

Venice, Italy
16-20 June 2008

http://www.ada-europe.org/conference2008.html

Forthcoming Events 233

Ada User Journal Volume 28, Number 4, December 2007

Highlights

•First-class keynote speakers
•Enjoyable, contentious, visionary

•A rich technical program
•Currently in the making

•An outstanding social program
•Including one for accompanying persons

•A very special venue
•A former monastery dating
 back to the 14th century
 in the heart of Venice

234 Forthcoming Events

Volume 28, Number 4, December 2007 Ada User Journal

Call for Technical Contributions
Submission Due Date: May 12, 2008

SIGAda Annual International Conference: Toward Safe, Secure, Reliable Software
October 26-30, 2008

University Place Hotel and Conference Center, Portland, Oregon, USA
http://www.acm.org/sigada/conf/sigada2008/

(ACM Approval Pending)

SUMMARY: Reliability, safety, and security are among the most critical requirements of contemporary software. The
application of software engineering methods, tools, and languages all interrelate to affect how and whether these
requirements are met.
Such software is in operation in many domains of application. Much has been accomplished in recent years, but much
remains to be done. Our tools, methods, and languages must be continually refined; our management process must remain
focused on the importance of reliability, safety, and security; our educational institutions must fully integrate these concerns
into their curricula.
The conference will gather industrial and government experts, educators, software engineers, and researchers interested in
developing, analyzing, and certifying reliable, safe, secure software. We are soliciting technical papers and experience reports
with a focus on, or comparison with, Ada. We are especially interested in experience in integrating these concepts into the
instructional process at all levels.
CONFERENCE LOCATION: Portland is the attractive, livable “City of Roses” in the Pacific Northwest. The weather in
October is usually cool and often beautiful. University Place is a modern and reasonably-priced hotel located within walking
distance of the central business district, the lively riverfront area, and the Portland State University campus.
HOW YOU CAN CONTRIBUTE: SIGAda 2008 solicits contributions in six major categories: Technical Articles,
Extended Abstracts, Experience Reports, Workshops, Panel Sessions, and Tutorials. Contributions from students and faculty
are actively solicited. Final acceptance will be contingent on a commitment to present the contribution at the Conference.
POSSIBLE TOPICS include but are not limited to:
• Transitioning to Ada 2005
• Educational challenges for developing reliable, safe,

secure software
• Ada and SPARK in the classroom and student

laboratory
• Language selection for highly reliable systems
• Mixed-language development
• Use of high reliability subsets or profiles such as

MISRA C, Ravenscar, SPARK
• High-reliability standards and their issues

• Software process and quality metrics
• Analysis, testing, and validation
• Use of ASIS for new Ada tool development
• High-reliability development experience reports
• Static analysis of code
• Integrating COTS software components
• System Architecture & Design
• Information Assurance
• Ada products certified against Common Criteria /

Common Evaluation Methodology

TECHNICAL ARTICLES present significant results in research, practice, or education. These papers will be double-blind
refereed and published in the Conference Proceedings and in Ada Letters. Articles are typically 10-20 pages in length.
Through the widely-consulted ACM Digital Library, the Proceedings will be accessible online, to university campuses and to
ACM's 80,000 members.
EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature. If your
abstract is accepted, you will be expected to produce a full paper, which will appear in the proceedings. Extended abstracts
will be double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its relationship with previous work by
you and others (with bibliographic references), results to date, and future directions.
EXPERIENCE REPORTS present timely results on the application of Ada and related technologies. Submit a 1-2 page
description of the project and the key points of interest of project experiences. Descriptions will be published in the final
program or proceedings, but a paper will not be required.

Forthcoming Events 235

Ada User Journal Volume 28, Number 4, December 2007

PANEL SESSIONS gather a group of experts on a particular topic who present their views and then exchange views with
each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic, coordinator, and potential
panelists.
WORKSHOPS are focused work sessions, which provide a forum for knowledgeable professionals to explore issues,
exchange views, and perhaps produce a report on a particular subject. A list of planned workshops and requirements for
participation will be published in the Advance Program. Workshop proposals, up to 5 pages in length, will be selected by the
Program Committee based on their applicability to the conference and potential for attracting participants.
TUTORIALS offer the flexibility to address a broad spectrum of topics relevant to Ada, and those enabling technologies
which make the engineering of Ada applications more effective. Submissions will be evaluated based on relevance, suitability
for presentation in tutorial format, and presenter’s expertise. Tutorial proposals should include the expected level of
experience of participants, an abstract or outline, the qualifications of the instructor(s), and the length of the tutorial (half-day
or full-day). Tutorial presenters receive complimentary registration to the other tutorials and the conference.
HOW TO SUBMIT:
Send contributions by May 12, 2008, in Word, PDF, or text format as follows:
Technical Articles, Extended Abstracts, Experience Reports, and Panel Session Proposals: Program Chair, Leemon C.
Baird III (leemon.baird@usafa.edu).
Workshop proposals: Workshops Chair, Bill Thomas (Bthomas@MITRE.org).
Tutorial proposals: Tutorials Chair, David A. Cook (Dcook@AEgisTG.Com).
OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper selected by
the program committee as the outstanding student contribution to the conference.
SPONSORS AND EXHIBITORS: Please contact S. Ron Oliver (SROliver@CSC.CalPoly.Edu) or Greg Gicca
(gicca@adacore.com) for information about becoming a sponsor and/or exhibitor at SIGAda 2008.

IMPORTANT INFORMATION FOR NON-US SUBMITTERS:
General Visa Information: The sites http://www.UnitedStatesVisas.gov and http://travel.state.gov have information about
obtaining a visa for those traveling to the United States. Both sites have links to websites for U.S. embassies and consulates
worldwide. The embassy and consulate websites have helpful information about procedures, timelines, communities served,
required documentation, and fees.
Letters from ACM: International registrants should be particularly aware and careful about visa requirements, and should plan
travel well in advance. All visa inquiries must be handled by ACM Headquarters. Please send your request for a letter in
support of a visa application to Ashley Cozzi (acozzi@acm.org), and include your name, mailing address, and fax number, as
well as the name of the conference you are attending. Authors should also include the title of their contribution. Please note
that ACM does not issue formal “letters of invitation” to any of its conferences.
Please submit any questions on the conference to the Conference Chair, Michael Feldman (mfeldman@gwu.edu).
CONFERENCE COMMITTEE:
Conference Chair
Michael Feldman
George Washington Univ. (retired)

Program Chair
Leemon C. Baird III
US Air Force Academy

Exhibits and Sponsors
S. Ron Oliver
caress Corporation

Publicity
Ron Price
Consultant

Treasurer
Martin C. Carlisle
US Air Force Academy

Exhibits and Sponsors
Greg Gicca
AdaCore

Workshops
Bill Thomas
The MITRE Corporation

Proceedings and Webmaster
Clyde Roby
Institute for Defense Analyses

Local Arrangements
Elizabeth Adams
James Madison University

Registration
Thomas A. Panfil
US Department of Defense

Tutorials
David A. Cook
AEgis Technologies Group, Inc

Local Arrangements
Geoff Smith
Lightfleet Corporation

SIGAda Chair
John W. McCormick
University of Northern Iowa

SIGAda Vice Chair, Mtgs & Confs
Ricky E. Sward
The MITRE Corporation

 237

Ada User Journal Volume 28, Number 4, December 2007

Secure software-download as part of a complex
business process
Igor Furgel, Lars Hanke
T-Systems GEI GmbH, Rabinstraße 8, D-53111 Bonn; E-Mail: Lars.Hanke@T-Systems.com

Abstract
As embedded systems become more powerful,
concepts known from the personal computer market
are ported to reliable systems. Updatable multi-
application systems can be technically realized and
can enable new business fields. This article shows
that the requirements concerning upgrade security
imposed by reliable systems may be entirely different
from the PC market. The influence on the design of an
upgrade business process, technical and
organizational infrastructure, and on the total cost
are analyzed.
Keywords: Software Update, Security, Operating
System, Security Domains, Business Process, Risk
Analysis

1 Introduction
Embedded systems have penetrated all aspects of critical
control systems such as vehicle and airplane electronics,
industrial automation and health-care systems. The option
to easily repair devices, enable add-on functionality or
integrate additional services gives rise to marketing
requests for software updates of such systems in the field.
Usually, the main focus is set on technical issues
concerning specific protocols. In this paper we focus on the
business case related to updates of reliable software and in
particular on the required infrastructure for its
implementation, which is always assumed in the technical
papers. We show that most of the business process must be
defined before development begins and that it rigidly
defines organizational and technical infrastructure as well
as development overhead. From a commercial point of
view the decision whether or not software updates shall be
at all supported may be more crucial than how technical
details shall be implemented.

There are two main reasons for software changes. First, the
original software may contain errors, which influence the
functionality of the device, or even the safety of the
system’s users. Repairing such faults by a software update
offers considerable cost-benefits. Techniques like online
updates may even render certain product recalls
unnecessary.

Second, software updates enable an entire market of value
added services. Using the same hardware for different
models or even entirely different control-units, and

configure these by software for the specific task and model,
can greatly reduce the total hardware development cost.

Software updates for virtually all of these purposes
currently have a long tradition in the environment of
personal computers (PC). The PC market differs in at least
three vital aspects from the reliable systems’ market.

1. Customers in the PC market are mostly able to
establish online connections to the software
developer at any time, and they are expected to
perform the update or maintenance procedure by
themselves.

2. The hardware platform used in the PC market is a
multi-purpose platform. The configuration of a PC
is generally unknown, and different vendors
compete for market shares for the same type of
software.

3. Failure in PC systems rarely induces any liability
exceeding the software price. In particular, PC
systems are never considered as relevant to life
safety.

These aspects give rise to the key issues when devising a
business process for updating reliable embedded systems:

1. How is the update data transported to the system?

2. Who will perform the update installation?

3. How to enforce reliability after the update?

4. How to protect intellectual property?

After defining a generic model of an update business
process we discuss the security requirements imposed by
the implementation of an upgrade option. We classify
infrastructure requirements by upgrade data transport.
Regarding the desire to integrate third party products and
value-added functionality we finally discuss an open
platform reliable system. In complex reliable systems the
underlying technologies may also be vital in order to yield
a testable system even if no upgrade functionality is
foreseen.

2 Update Business Process
The business process for software updates must cover the
software life-cycle. It should be designed such that it covers
the following aspects:

1. Software development including change
specification and final testing.

238 Secure software-download as part of a complex business process

Volume 28, Number 4, December 2007 Ada User Journal

2. Maintenance of compulsory approvals for both
functional aspects and security requirements, if
applicable.

3. Distribution of the update to the customer and
installation. This also includes licensing and
payment aspects.

4. Deactivation or destruction of software with
respect to expired licenses or security breaches.

The business process must coordinate the activities of
several roles as sketched in figure 1. The relevant roles can
be structured as listed below:

I: The software issuer manages the distribution of the
updates to the installation sites and all licensing
aspects. In case that the software requires deactivation
or destruction, the issuer is responsible for enforcing
such.

O: The original equipment manufacturer (OEM) creates
the hardware and distributes it with initial software as
supplied by the issuer.

D: The software developer creates the original software
according to specifications supplied by the issuer and
the OEM. The developer also produces update data
according to specifications supplied by the issuer or the
developer himself. The latter case mostly applies to
bug fixes, the former to change requests and value
added services.

S: The installer installs the update delivered by the issuer
into the embedded system. The installer may be service
personnel, the customer himself, an automatic
procedure built into the system, or in most cases some
combination of all of it.

U: The end user, who pays the issuer for the particular
service or relies on the system functionality for his
safety.

The list above has been sorted in order to avoid using
undefined roles. This order reveals that the business
process is determined by I, who should therefore own the
process. Hence, I is responsible to run the largest part of
the process’ infrastructure. The infrastructure is
significantly determined by the distribution method chosen
by the issuer (sec. 4). The infrastructure in turn defines its
necessary technical support in hard- and software, and

should be specified before development begins; ideally
even before O starts developing the hardware.

Although this key role of I for the upgrade business process
appears evident, it is found as process owner only if
software updates form the key business model, which is
rarely the case with reliable systems. In security and safety
markets this role often is even undefined or postponed for
later definition. I should diligently examine, if the business
case for the reliable system does actually exist. When
postponing the definition of I, it should be considered that
implementing the option for field updates produces
considerable cost, even if the option is never used.

Parallels to the PC market are mostly deceiving. Software
in the PC market virtually cannot be tested, since the
system configuration is unknown. This is not acceptable
with reliable systems and the classical hot-fix should not be
of key relevance for a business case.

Development of a static product is much cheaper than a
product, which is updatable in the field. These additional
costs also add to the upgrade price. Furthermore, reliable
systems often undergo formal approvals. The upgrade
frequency cannot exceed the approval cycle. The costs for
the infrastructure are thus distributed to only a few
upgrades and each upgrade will additionally cause approval
costs.

An interface for software updates may be misused by
attackers. Misuse may cause system failure. Even if
liability can be mitigated, damage to the brand may be
severe. Therefore, this interface necessarily introduces
security requirements as discussed in section 3. These
requirements in itself may exceed the original system
requirements.

3 Security Requirements
Security deals with the protection of assets by management
of trust. A trusted instance is any instance able to
compromise assets, unless it plays by the rules. Therefore,
security is no property of the product delivered, but of the
entire integrated system and processes. I trusts that the
device produced by O runs a well defined software
produced by D. In general also O trusts I to correctly
specify the software and test benches.

Security introduces the role of an attacker A, who will
intentionally attempt to compromise assets. A may be
anything from competitors attempting to obtain intellectual
property to end users trying to modify the system for their
own needs, e.g. car tuners in the automotive market.

Software assets can be easily sketched by imagining the
effects of the device to malfunction or being entirely out of
service. With respect to modern networked system
architectures, such faults may have more severe impact
than obvious at first sight. As an example imagine a CAN
node assuming a dominant ID and flooding the bus with
garbage.

Figure 1: Roles in the business process. The end user buys

the device from the OEM and contracts for upgrades with the
issuer.

I . Furgel , L. Hanke 239

Ada User Journal Volume 28, Number 4, December 2007

3.1 Issuer and Infrastructure
The required level of security cannot be covered by a
blanket policy. Instead the issuer has to determine the
required objectives from the following factors:

1. Compulsory requirements enforced by legal
authorities.

2. Liability issues in case of product failure or
misuse.

3. Protection of intellectual property.

4. Policy and brand issues.

The analysis of the security needs may yield formal
requirements imposed by legal authorities as well as a
financial risk figure summarizing the commercial threats.
Unless there are no formal requirements and the risk figure
is negligible, the issuer is advised to protect the distribution
of updates (sec. 4).

To devise a business process for protected updates, it is
necessary to define, who shall be trusted to which extent.
The most trusted instance should be some organizational
instance of the issuer himself. This security architecture
shall be implemented using technical and organizational
measures, which are visible by protocols. Protocols may
range from signing-in for entering some room to technical
measures in hard- and software. Since numerous
publications on specific protocols exist, this paper does not
focus on particular protocols.

The issuer being commercially responsible shall set up a
business process, which adequately distributes cost into
development and launching cost, maintenance cost for
running the infrastructure, and additional cost per product
for supporting the security architecture. The optimal
security architecture will adapt this cost frame to the
estimated product sales and life-time. Beyond these
immediate costs the issuer shall estimate the financial risk
of any of the trusted instances to be compromised.

In order to assess whether the business case is sound, these
full costs may be distributed on the estimated updates on
top of the immediate cost to program and release a
particular update. If the intended frequency of updates is
low, the immediate programming costs are easily
outweighed.

Whichever process the issuer sets-up, he will end
responsible for at least the root anchor of trust, usually
implemented as a root secret. The issuer must keep in mind
that the confidentiality and in most cases also the
availability of this root secret condenses all the risks
formerly assessed and is therefore worth whatever
maximum risk figure has been estimated. Security of this
key asset should be designed as if the corresponding
amount in cash were to be stored. Equally, delegation of
trust should be regarded as distribution of this amount. The
infrastructure shall be reconsidered, if the cost saving by
this delegation does not exceed the qualified risk figure.

Independent from the infrastructure of the delivery process
I has to delegate the entire trust to D. If the final product
offers back-doors or weakness due to wrong
implementation of protocols, this may cause the entire
infrastructure to fail. Therefore, the trust delegated to D
shall be valued as much as the anchor of trust controlled by
I himself.

3.2 Software Development
The developer is trusted to neither intentionally nor
negligently compromise the infrastructure ran by the issuer.
In fact, there is no process to avoid this trust except product
testing and review.

Testing and reviewing a product for security requirements
is different from functional tests. As a rule of thumb,
functional testing shall demonstrate that the product offers
some known functionality. Security testing shall
demonstrate that the product does not offer unknown
functionalities.

The effort of security testing generally scales with the
complexity of the product specification. This assumes that
the product is designed to be testable with respect to
security requirements, which in most cases requires a
rigidly defined modular design with module boundaries
cleanly reproducing the security protocols (sec. 5.1). It is
not economically feasible to perform a black-box test on
any modern IT product, in order to yield a qualified
statement concerning product security.

In case the issuer and the developer are different entities or
the issuer is not determined about the security
implementation balancing the risk figure, it is strongly
recommended to include a trusted third party, e.g. an
accredited test laboratory, in order to mitigate the unlimited
trust the issuer must delegate to the developer. Security
certification schemes reflect the requirements for
hierarchical trust management down to the implementation
of protocols. A security certificate is one of the standard
instruments to make design and implementation quality
transparent to the issuer.

Using conventional system design, the rigid modular
structure of the product limits the choices of updates
beyond bug fixes. Actually, any type of imagined extension
of the product must be considered during initial product
design in order to have adequate structures available, when
the extension is finally to be loaded into the device. This
may be achieved by implementing well defined pluggable
interfaces to connect future extension to. Such
implementations reflect a security domain model as
discussed in section 5.1.

Since I provides the specification to D it must define
potential add-on upgrades before development. The choice
of features to include in the business case is rarely
extensible once the devices are in the field. Furthermore, as
shown in section 5 software considerations may give rise to
hardware requirements.

There is no test plan, which is suitable to reveal intentional
loopholes in the software, particularly if the test plan is

240 Secure software-download as part of a complex business process

Volume 28, Number 4, December 2007 Ada User Journal

known in advance. Software development of trusted
components should be performed by trusted personnel in
adequately secured environment. This simple statement
clearly limits the choice of outsourcing decisions and
thereby may raise the cost of a complex product
considerably. Again, imagine the pile of cash from your
risk estimation lying on some table at the development site.
Furthermore, the costs for changing the developer
throughout the product life-cycle are biased at least by the
risk induced by broadening the delegated trust. Even after
switching to a new developer the old developer may keep
adequate knowledge of your product to significantly
compromise trust.

3.3 Revision Control Infrastructure
As mentioned in section 1, update processes with reliable
systems differ from updates in the PC market in that the
system configuration may be completely known. This is a
crucial advantage, if the system is expected to stay reliable
after the update.

Actually, this insight is well known in the PC market
yielding the two standard update models: online updates
with the issuer querying the detailed system configuration
before updating, and complete image updates entirely
replacing previous versions.

Since online updates require a two way communication
(sec. 4.2) the complete image method has been frequently
selected (sec. 4.1). However, in practice this method
assumes that data formats and memory layouts remain
constant throughout the entire product life-cycle. Also, the
required bandwidth, i.e. update time and resources, grows
linearly with system complexity. Worse, if the
configuration is not well defined, the software for the
reliable system shall be tested with all possible
configurations, no matter how senseless they may appear at
first.

As soon as version or configuration specific parts are
included in the update, e.g. a data conversion tool, the
update shall be considered as partial, even if the entire
program code of the embedded system is replaced as one
single block. With respect to the required security
infrastructure there is no difference to an update that
attempts to patch some single byte in a well defined binary.
The update procedure shall be robust with respect to update
data, which were originally considered for a different
product configuration or version. Even if all relevant
updates have been distributed to all end users, it cannot be
assumed that the updates were actually installed.

In order to support partial updates I and D must enforce a
release process. Release testing shall include the update
process, which in turn requires an appropriate archiving
process for software and specifications.

With rising frequency of upgrades or configuration
diversity of the target systems, the robustness of the
platform with respect to inadequate updates must be
increased. The corresponding mechanisms shall exist in the
originally deployed version already.

4 Distribution and Infrastructure
A key issue with the distribution of partial upgrades and
upgrades, which are intended for a limited selection of end
users U, is the method of distribution. Since distribution
channels have a quite generic relation to the infrastructure
to be implemented by I, we discuss this aspect in more
detail.

Distribution channels are classified into one-way
communication I→U, which we call broadcasting
disregarding the number of immediately addressed
instances of U, and two-way communication. The latter
falls into online methods, which establish a synchronous
communication I↔U, and offline communication, which
implement some kind of stored back-channel characterized
by I→S↔U. We show that for critical updates in the field
there are virtually no sensible alternatives to end-to-end
security I↔U. In particular, all second best choices
produce about the same overhead for infrastructure.

4.1 Broadcasting methods
In simple broadcasting distribution I sends the same
product to all customers U. It does not matter, if the
information is actually sent to all U or a selection of U.
Provided that U are no instances of trust, the information is
likely to be copied. From a security point of view, it
virtually makes no difference, whether 10% of the
customers receive a CD or all customers receive the update
by satellite down-link. Chances are near certainty that at
least one customer will allow someone to copy the CD. On
the other hand, apart from a customer database in case of
sending CD per mail, there is not much infrastructure
required to implement the simple broadcasting distribution.

At the first glance, broadcasting appears as the distribution
of choice for elementary bug fix updates. Considering
reliable embedded systems and the corresponding business
models there are obvious backsides.

Elementary bug fixes without the need of subscription are
mostly distributed for functions, which have immediate
impact on product liability. Relying on U to actively install
an update available immediately puts U on the list of
trusted instances and he will become part of the risk
analysis of the issuer. This may be solved by enforcing
automatic upgrades, which on the other hand requires some
transmission of information without customer interaction,
e.g. a GSM receiver. Since with broadcasting there is no
back-channel, the requirements for tolerance concerning
wrong versions are high. This may lead to systems refusing
any further critical upgrade once they missed a revision for
some reason.

In case the software contains commercial assets, attackers
might use this broadcast information for compromising the
latter. Reverse engineering of updates or modification of
updates open up a variety of attack paths. Effective
protection against modification of update data already
requires simple cryptographic infrastructures enabling more
sophisticated distribution methods.

I . Furgel , L. Hanke 241

Ada User Journal Volume 28, Number 4, December 2007

Upon closer analysis the simple broadcasting method is
only suited for value added services running in so called
sandboxes (sec. 5.2), i.e. all kind of malfunction will not
impact the function of the reliable host device.

The next more sophisticated method may be called
protected broadcasting. This distribution method ensures
that the update data can neither be reverse engineered nor
be compromised in their integrity. This is often achieved by
encrypting and signing the update data.

At least in order to decrypt the update data, the product
must contain some kind of secret key. It does not matter
whether this key is immediately used to decipher the data
or to derive or import the actual decryption key. Simply
from the fact that with broadcasting distribution all devices
receive the same data, consequentially all devices must
contain the same secret, i.e. a trusted system wide key.
Attackers may be able to extract this key from any device
deployed in the field, even if it must be severely damaged
for the attack to succeed. Furthermore, such a key may leak
from the developer or issuer site, unless properly protected.

Experience in security engineering shows that any system
wide key cannot be properly protected in the field without
bespoke hard- and software, if attackers estimate the
market worth to perform sophisticated attacks. The issuer
should take into account that the attackers’ market is the
same as his and offers fractions of the intended profits as
funds for performing attacks. The simple infrastructure of
protected broadcasting is always paid with unit cost for key
protection. However, if reverse engineering of upgrade data
may be tolerated, asymmetric cryptography schemes may
enable bug-fix style upgrades on more standard hardware.

Putting this all together it seems sensible to use device keys
for individual broadcasting. In individual broadcasting all
devices receive different information. Depending on the
communication channel there are two sub-categories of this
scheme; the devices will either receive entirely different
information or will receive a common block and only a
minor individual part, e.g. an individually encrypted
decryption key.

Common to both schemes I has to maintain a key
infrastructure, which must, of course, be synchronized with
the customer database. Effectively, the issuer must
implement device tracking and must store or derive the
individual secrets. This database in turn must be adequately
protected throughout the entire product life-cycle. The
infrastructure only puts the assets under control of I instead
of U as all previous broadcasting schemes.

If only key information is sent individualized, the
individual broadcasting reflects the common pay-TV
architecture. The vulnerability is well known. If any of the
receivers can be made to leak the plain text, the plain text is
known for all devices in the field. For the embedded market
this means that hacking a single device will compromise
the update key for each update batch. On the other hand
hacking the device in general must not destroy it, as was
acceptable for retrieving the system wide keys used with
protected broadcasting.

If the entire information is individualized, all update
messages for each customer must be created and
transported separately. Simple media like CD are rather
unsuited for this type of distribution. Depending on the data
size even online distribution may run into severe bandwidth
limitations. This is why pay-TV implements partially
individualized broadcasting.

Individualized broadcasting, if implemented correctly,
offers a rock solid business process even for high-security
applications. Attacks to devices in the field or the update
data are virtually useless and attacks on system level can
only originate from I. However, I is required to run an
infrastructure, which is comparable to two-way
communication schemes.

4.2 Online methods (synchronous communication)
Online methods comprise requiring the customer calling
some hotline in order to retrieve an activation code, up to
online wireless protocols, which may be entirely hidden
from the customer. From the security point of view the
existence of some back communication channel enables to
authenticate the end user and to retrieve configuration
information, which is impossible in broadcasting schemes.

The infrastructure required to be run by the issuer does not
differ significantly from individualized broadcasting. In
order to authenticate end user, they must be registered and
equipped with individual secrets.

The major advantage is constituted by the time of control of
copies. When using broadcasting methods, attacks using
illegal copies can at best be identified in case of suspicion
by post-mortem forensics. This in turn requires a
considerable robustness of the system’s security. Online
methods offer to control the product state at least at the
point of updating, and if properly implemented require an
attacker to communicate with the issuer’s back-end system.
This enables I to react much more flexible to new threats.
The back-end system is, furthermore, able to gather any
relevant auditing information in order to identify points of
attack and to counteract by legal and organizational means.

Effectively online methods allow adapting the trusted
instances throughout the life-cycle of the product by using
trusted communication channels. The design of an
infrastructure must enforce that this power for adaptation
remains at the issuer. Most of the remaining potential
compromise of trust can be reacted to on demand. This of
course can significantly simplify product level protocols
and therefore reduce product cost.

This saving of unit cost on the other hand generates cost for
the infrastructure. The back-end system must allow end
users to connect, which in turn may introduce
vulnerabilities immediately to the trusted back-end system.
Since the benefit arises from auditing and risk analysis in
the back-end system, it must be implemented.

Obvious benefits exist, if U has many equally licensed
products. This is particularly interesting, if the online
communication is established with service personnel I↔S.
In this case the infrastructure can be of small scale and I

242 Secure software-download as part of a complex business process

Volume 28, Number 4, December 2007 Ada User Journal

implicitly delegates trust to S to correctly use the update
information. It shall be considered that the risk rises
exponentially with the number of trusted S or U,
respectively.

Online methods are explicitly the method of choice, if the
devices deployed in the field are expected to be equipped
with a large number of different configurations, which have
impact on the data required for updating. Such methods
have been implemented and tested for a decent period of
time in the PC market, e.g. for updates of operating systems
(sec. 5.4). In this case the devices send the configuration
data to the back-end system, which in turn compiles
dedicated update data for the particular device. End-to-end
security using effective authentication and encryption
schemes is easily implemented and ensures that the back-
end system is aware of the actual configuration of all
devices deployed in the field.

4.3 Offline methods (asynchronous
communication)
Offline methods are a generalization of online methods.
With offline methods there is no immediate bidirectional
communication channel I↔U, but S performs the update
locally at the end user. This trusted instance uses some
stored online information such that the trust is limited to the
amount of online information stored.

S may range from service personnel supplied by I or a
trusted workshop to some kind of smart media secure
storage. The idea is to chain two or more online
connections to finally build a trusted path I↔Si↔U. The
trust delegated to Si shall decrease with rising i≤f. The final
Sf is equipped only with the information necessary to
perform the final online connection with U, or decline the
update, if the information is insufficient. In fact, completely
individualized broadcasting (see section 4.1) may be
considered as an offline method. However, we shall
consider the mutual authentication as pre-requisite of
offline methods, i.e. Sf must be able to withhold any
information, if the authenticity of U cannot be established.

Offline methods are extremely powerful especially with a
large number of end users in order to distribute the work
load or bandwidth. Offline infrastructures can be designed
to update millions of devices within a couple of hours. The
infrastructure on the other hand comprises all secondary
systems and their protocols and may even comprise the
development of adequate smart media.

The discussion of offline infrastructures, which are tightly
bound to specific business processes, is beyond the scope
of this article. The general idea is similar to online schemes
and the effective end-to-end security I↔U provides a major
design goal.

5 Updating complex systems
Reliable systems are often networked modules as
components of some encompassing at least partially
reliable system. A key feature of reliable systems is that
these do not rely on external systems. This, too, is a
security requirement in that reliable systems must not be

perturbed in their functionality disregarding misuse of
external interfaces. Security engineering mandates that no
assumptions may be made concerning the data supplied on
the interfaces and still the system shall be reliable.

In practice, assumptions are frequently implied. In this
case, the external configuration of the encompassing
system becomes part of the configuration to be considered
for the upgrade. The design shall ensure that third party
devices are not required to deliver critical information.
Critical configuration information imported from other
devices shall be protected or are put to the risk of alteration
by A.

The same concept applies for an entirely different task: the
integration of non-critical value added applications onto a
reliable platform. In particular, where complex reliable
systems are deployed in mass markets such integration is
often the dominant driver for the implementation of field
upgrades.

In section 5.1 we define this concept of security domains,
and discuss their application to upgrade processes in the
following subsections of section 5.

5.1 Security Domains
A security domain D is a confined physical and logical unit
where a single and homogeneous security policy is valid
and applied. This security policy controls the security
behaviour of application services Ai

D being provided in the
context of this security domain.

The main generic characteristics of a security domain D
with applications Ai

D and ∈< Dni ℕ are the following:

• a security domain as a whole represents an
encapsulated unit and can be considered as an
object;

• internal and externally visible actions and
reactions of this unit represent its well-defined
properties (see also test aspects in section 3.2);

• communication between such objects occurs by
well-defined (i.e. syntactic and semantic)
messages and implements the relationships
between the objects.

In case a security domain comprises more than one
application, i.e. nD>1 and direct communication is
possible, e.g. A1

3↔A2
3 in figure 2, these applications shall

be considered as a single application, whereas if this
communication is impossible, e.g. A1

4↮A2
4, these

applications are separated in the sense used in this paper.

Since Ai
D↮Aj

E is a core requirement for separation of D
and E, obviously the separating instance must be granted
extended access rights with respect to the applications.

In case of physical separation all communication passes
through the external bus and the requirement is trivial. This
also holds, if the external bus is integrated into a multi-core
micro-controller. Figure 2 A1

1 depicts a physically
separated application.

I . Furgel , L. Hanke 243

Ada User Journal Volume 28, Number 4, December 2007

In case of logical separation this requires the OS to be of a
different nature than Ai

D. This may be achieved by
interpreting OS kernels, e.g. Java, or by hardware support,
e.g. a supervisor mode and MMU support. Figure 2 A1

2, Ai
3

depicts a logical separation scheme.

With respect to updates each security domain D running
critical services Ai

D shall offer an application registration
service (ARS). Update data shall include an application
installation license (AIL), which is understood by the ARS.
The ARS verifies the license, accepts or rejects the update
data, and performs all necessary installation and
configuration tasks depending on the AIL. The AIL shall
contain the application identifier, version information
(sec. 3.3), and the domain identifier (sec. 3.1), where the
application has to be installed. The AIL may furthermore
contain security certificates (sec. 3.2), (re-)configuration
information for the security domain, copyright and usage
restrictions, etc. Finally, an AIL shall be uniquely
associated with the update data to process, e.g. contain a
cryptographic hash, and all these data shall be digitally
signed with respect to the issuer key associated with the
security domain in order to provide end-to-end security
(sec. 4).

If there is more than one application within same security
domain (nD > 1), and communication Ai

D↔Aj
D is possible,

the interaction between each pair Ai
D,Aj

D must be analyzed.
Therefore, if an application shall often be updated, it is
recommended placing it solely within a security domain
(nD = 1) in order to avoid this analysis. This model is
considered in section 5.3.

While physical separation requires more hardware, the
hardware and especially the operating system may be much
less complex. The design of multi-application OS is in
itself complex and may induce considerable requirements
to the hardware (MMU, performance, etc.). Both, physical
and logical separation are viable. However, if requirements
shall consider the attacker role, there are hardly any out-of-
the-box solutions currently available.

5.2 Application separation
With the growing power of embedded systems, designers
have integrated various services Ai

D on the same hardware.
These applications are rarely separated in the way depicted
in figure 2 Ai

4, but often are even interwoven with the OS.

The potential interactions in between several tasks increase
the system’s complexity quadratically. In the end, it is
simply impossible to predict, how the system will react to
untested parameters, and by the same reason it is also
impossible to test the system for all parameters. When
considering upgrades, varying versions of Ai

D add another
dimension to complexity. In order to retrieve any valid
statement about failure risks, both functional and security
risks, it is therefore mandatory to technically reduce the
complexity of the system.

At this point functional requirements of O and D, and
security requirements of I converge. For I it is vital to test
an update with respect to the final product configuration
(sec. 3.3). If the separation is effective, each object can be
tested by its properties. Upgrades leaving the properties
unchanged or adding new objects will have no impact on
the remaining system.

We stress that implementing applications as objects is a
pre-requisite for versatile embedded systems, in particular
if weakly controlled applications are considered. The
design of an operating system supplying so-called
sandboxes for objects is a complex task and is likely to be
economically inadequate for any single device. Hence, the
decision for the implementation of a logically sandboxed
system shall be of strategic nature rather than be governed
by operative desires. Physical separation may be more
suitable, if the count of security domains is small.

5.3 Trust separation
With complex applications it is rarely the case that any part
of the application can leverage the entire risk associated
with the business process. In general, major parts of the
application have virtually no impact on the assets at risk.
The parts imposing security requirements are usually
smaller and change at much slower frequency than value-
added end user features. In vehicles the calculation of the

Figure 2: Implementation of security domains by physical separation A1

1 and A4
i , and logical separation A2

1 and A3
i in an

environment of networked modules.

244 Secure software-download as part of a complex business process

Volume 28, Number 4, December 2007 Ada User Journal

current speed is likely to never change, the maps used for
the navigator will change regularly. The business case for
frequent, individual updates is rarely found in critical
functionality.

However, using the standard approach to embedded
programming this insight does not immediately lead to
benefits. Any change in non-critical functionality has the
power to affect all critical functionality, e.g. an ill defined
stop criterion while calculating routes in the navigator
might inhibit speed information to the motion control
system; left alone program crashes with uncontrolled
memory access.

If the critical (trusted) parts run in a different security
domain than non-critical parts, cost for releasing updates
for the latter may drop to the immediately obvious cost of
implementation and functional testing. This particularly
applies to systems subject to compulsory requirements. A
proper separation of security relevant parts from the rest
may enable update processes, which do not require official
reassessment.

5.4 Updating OS
So far the ARS was considered to install new applications
Ai

D according to an AIL. What if the OS core with the ARS
shall itself be updated? The corresponding vulnerability is
again well known from the PC market as root-kits, which
put the entire infrastructure at risk.

Severe damage of brand names and a considerable rate of
licensing fraud has forced the big players in the PC market
to consider alternatives. The major outcome are structures,
which are summarized under the term trusted computing.

Trusted computing describes schemes for authentication of
software layers rooting in a primary hardware layer. This
layered structure is the key design feature of trusted
computing platforms (TCP). In summary, trusted
computing architectures put the system under control of I
instead of U, which is a main cause for the vivid discussion,
since the PC is considered a multi-purpose device owned
and consequentially controlled by U.

Although the trusted computing approach to PC systems is
questionable, it exactly fits the requirements for embedded
applications in reliable devices. In general, U does not
request full control concerning the configuration of e.g. his
ABS, but he expects a vehicle to reliably stop. The idea of
trusted computing should therefore be considered as a
blueprint for designing more or less versatile, updatable
embedded products.

A fundamental conclusion from trusted computing schemes
is that the anchor of trust per device shall be located in the
hardware. This is fairly easy to understand, because if the
software is changed, the anchor of trust is lost as well.
There is no system effectively able to verify its own
integrity or existence, if any of the latter cannot be assumed
in advance. On the other hand, if the hardware is changed,
obviously an entirely different product has been substituted.
Still, in a networked environment, this kind of substitution
can be recognized and counteracted.

In case of integration of networked modules of the same
security domain there shall be a root module, which will
authenticate and enable further modules of the same
primary security domain, e.g. constituted by O, I. This root
module in turn shall have its anchor of trust implemented in
hardware.

6 Conclusion
The integration of a field-upgrade option into a reliable
system greatly exceeds the efforts for the immediate
functional implementation. Overhead for implementation of
upgrade support and the corresponding infrastructure shall
be considered. This overhead often exceeds the immediate
cost for the system without upgrade option.

If field-upgrades are to be supported, these shall be
regarded as a business process with its own cost and risk
management. The role of the upgrade issuer as a
commercially responsible entity shall be defined, before the
actual product development begins. The issuer shall devise
a business process defining the trust management and in
turn the technical and organizational requirements for its
implementation. He shall maintain the anchor of trust
during the entire product life-time. It is advised to
diligently compare the total cost of an upgrade business
process to conventional product replacement.

If critical functionality is involved, the infrastructure for
upgrade distribution shall ensure end-to-end security. If
reverse-engineering using upgrade data shall not be
tolerated, this will require a two-way communication
between the issuer and the end-user for each update, or
bespoke hardware.

A domain model using trusted computing principles may be
considered as a common prototype for all types of update
policies. Implementation costs of such a platform are
estimated to exceed the development budget of any single
product and shall be rated as a strategic decision. There are
similar models for layers of trust in systems constituted by
networked modules.

Enforcing trust separation by a domain model may avoid
compulsory (re-)assessments of software, if uncritical
functionality is upgraded, only. Without trust separation the
overhead for compulsory assessments shall be considered
in the business process before deciding in favour of an
upgrade option.

In any trust management scheme the software and
hardware developers constitute entities trusted
unconditionally. Diligent choice of developers and external
review can greatly reduce the corresponding risks, which
are beyond the control of the update issuer.

 245

Ada User Journal Volume 28, Number 4, December 2007

* The complete Proceedings of the 13th International Real-Time Ada Workshop previously appeared in ACM Ada Letters, Volume XXVII, Number 2,
August 2007; reprinted with permission.

13th International Real-Time Ada Workshop

17-19 April 2007

Woodstock, Vermont
USA

Session: Language issues

from the Proceedings* edited by: Juan Antonio de la Puente

Program Committee
Alan Burns Javier Miranda José F. Ruiz
Ben Brosgol b Luis Miguel Pinho Tullio Vardanega
Michael González Harbour Juan Antonio de la Puente a Andy Wellings
Stephen Michell Jorge Real

a Program Chair b Local Chair

Workshop Participants

Name Institution
Mario Aldea Rivas Universidad de Cantabria, Spain
Neil Audsley University of York, UK
Ben Brosgol AdaCore, USA
Alan Burns University of York, UK
Michael González-Harbour Universidad de Cantabria, Spain
J. Javier Gutiérrez Universidad de Cantabria, Spain
Stephen Michell Maurya Systems, Canada
Brad Moore General Dynamics, Canada
Juan Antonio de la Puente Universidad Politécnica de Madrid (UPM), Spain
Jorge Real Universidad Politécnica de Valencia, Spain
José F. Ruiz AdaCore, France
J.C. Smart Department of Defense, USA
Santiago Urueña Universidad Politécnica de Madrid (UPM), Spain
Tullio Vardanega University of Padua , Italy
Andy Wellings University of York, UK
Rod White MBDA, UK
Curtis Winters Aonix, USA
Juan Zamorano Universidad Politécnica de Madrid (UPM), Spain

Sponsors

246

Volume 28, Number 4, December 2007 Ada User Journal

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

Session: Language Issues
Chair: T. Vardanega
Rapporteur: J. F. Ruiz

1 Introduction
This session focused on discussing open issues that arose
from consideration of the real-time part of the Ada 2005
LRM. Three issues were table for the workshop to discuss.
Accordingly, the goals of the session were to:

• Agree on proposed correction to EDF semantics

• Agree on resolution to requeue problem

• Review Ravenscar extensions for 2005 and consider
extensions for distributed systems

2 Correcting the EDF definition in
Ada 2005
The first part of this session addressed a problem in the
current description of the Earliest Deadline First (EDF)
dispatching protocol in the Ada 2005 standard. The
difficult part in the definition of the EDF policy is the
description of Ted Baker’s Stack Resource Policy (SRP)
for resource sharing [1].

The problematic wording is in the definition of the rules of
EDF dispatching [3, D.2.6]. In that clause, the active
priority of a task T when first activated or while it is
blocked is defined as the maximum of the following:

• 24/2 the lowest priority in the range specified as
EDF_Across_Priorities that includes the base priority
of T,

• 25/2 the priorities, if any, currently inherited by T,

• 26/2 the highest priority P, if any, less than the base
priority of T such that one or more tasks are executing
within a protected object with ceiling priority P and
task T has an earlier deadline than all such tasks.

Clause 26/2 contains the key semantics, and it is intended
to ensure the behavior required by Baker’s algorithm. Its
current wording implies that a task could be placed on a
ready queue above one on which a task with a shorter
deadline is placed. Alan Burns described one scenario (the
full details are in their position paper [2]) showing that the
current wording is not in full accordance with Baker’s
protocol.

Alan Burns then illustrated a simple rewording to 26/2
which makes the rule stricter and achieves correct EDF
dispatching in full adherence with Baker’s SRP algorithm.
The proposed rewording is as follows:

• 26/2* the highest priority P, if any, less than the base
priority of T such that one or more tasks are executing

within a protected object with ceiling priority P and
task T has an earlier deadline than all such tasks and all
other tasks on ready queues with priorities strictly less
than P.

The workshop agreed that the current wording in 26/2 is
not correct, approved the proposed reworking of it and
tasked Alan Burns (as a member of the ARG) to produce an
Ada Issue (AI) to illustrate the problem and propose the fix
to it.

Michael González Harbour proposed to use a model
checker to ensure that the definition complies with the
intended semantics.

3 Requeuing via interfaces
The second part of the session discussed the possibility of
allowing, in some form, requeuing via synchronized
interfaces.

Timed and conditional entry calls, as well as asynchronous
transfers of control (ATC), can use an interface as the
target and the triggering event respectively, so it seems
natural to allow requeue to an interface, both for
completeness and consistency.

Andy Wellings explained that, as stated in their position
paper [4], if requeue to an interface were allowed there are
four cases whose semantics need to be defined:

• Requeue to an entry. This would follow normal re-
queue semantics.

• Requeue to a function (inside or outside a protected
object). This would be an error condition that can be
caught at compile time, because there are no
circumstances whereby a function in an interface can
be implemented by an entry. This is similar to the
illegal case where a function call is used as the target
of a timed/conditional entry call or as a triggering
event in a select-then-abort statement.

• Requeue to a protected procedure. If a protected
procedure is used as the target of a timed/conditional
entry call or as a triggering event in a select-then-abort
statement then the protected procedure is executed
immediately, as if it were an entry with a “when True”
barrier. Semantics for requeuing would be the same.

• Requeue to a “regular” procedure. If a procedure is
used as the target of a timed/conditional entry call or as
a triggering event in a select-then-abort statement then
the procedure is executed immediately. It would
appear natural to do likewise when requeuing, but that

T. Vardanega, J. F. Ruiz 247

Ada User Journal Volume 28, Number 4, December 2007

would mean that the procedure would be executed at
the ceiling priority of the original protected type (or
priority of the original rendezvous), which is wrong.

The workshop agreed that requeue through synchronized
interfaces is a useful and desirable primitive and should be
supported in Ada so as to further the integration between
object orientation and concurrency in Ada.

It was also agreed that the definition of requeue to an
interface should be consistent with the use of interfaces in
timed and conditional entry calls and asynchronous
transfers of control. Consequently:

• Requeuing to an entry should follow normal requeue
semantics.

• Requeuing to a function should be an error condition
that can be caught at compile time.

• Two possible solutions exist to address requeues to
both protected and regular procedures, which are
discussed below:

- A static scheme in which procedures within
an interface can be identified as being
“implemented as an entry” (by means of
either a pragma, an “entry” identifier, or any
other allowable mechanism), and requeues
would only be accepted to procedures marked
in that manner (which can be statically
detected at compile time). If this approach
were adopted, the semantics of
timed/conditional entry calls and the select-
then abort statement might need to be
revisited to make the operations illegal on
procedure calls.

- A dynamic scheme in which these calls are
detected at run time, and then the calling
task/protected objects accept statement/entry
code’s body is “completed, finalized and left”
(see [3, 9.5.4, par. 7]) before the procedure is
called.

The workshop agreed that the preferred option would be
the static scheme. If this option were not viable then the
dynamic scheme could be considered, if the
implementation (run-time) overhead was found to be
reasonable.

Andy Wellings will ask Javier Miranda to develop a
prototype implementation to evaluate the impact of the
considered options.

4 Distributed systems with Ravenscar
The final part of the session discussed extensions to the
Ravenscar profile to address high-integrity distributed
systems. The use of the Distributed Systems Annex (DSA)
for high-integrity systems is very appealing because it is
very easy to use and static analysis can be performed
among partitions.

DSA has not been widely used in high-integrity systems
because it is not real-time and, in the Ada 95 version, it

uses Ada.Streams (which is not recommended for high-
integrity systems). However, there are DSA
implementations compliant with the Ravenscar profile
(PolyORB [6] can be configured that way), real-time DSA
(such as RT-GLADE [7]), and the new Ada 2005 standard
does not require Ada.Streams. Hence, there are good
foundations to build on, but high-integrity systems would
require an additional set of restrictions to guarantee the
required degree of predictability, efficiency, and simplicity.

Santiago Urueña then presented the list of restrictions
proposed in their position paper [5], categorized into a set
of mandatory and optional restrictions. The set of
mandatory restrictions would be made up by the following:

• No remote access types. This would allow the static
creation of every required connection for each remote
operation. Stephen Michell commented that this
restriction will also avoid problems with the variable
size of attribute ’External_Tag. He also indicated that
we should probably go further and forbid remote types
(because they require Ada.Streams). Andy Wellings
pointed out that it must be taken into account that
restricting this will imply disallowing object-oriented
programming in distributed systems altogether, which
seems beyond what a Ravenscar-like profile should
sanction.

• No concurrent remote calls. It would ensure that no
remote operation can be called while processing a past
invocation, thereby simplifying response time analysis
analysis. Michael González Harbour pointed out that
research works exist which target distributed systems
showing how to take into account request queues in the
analysis, so this restriction would not be strictly
needed. He indicated also that the RPC receivers could
be made more visible so that they can be dimensioned
by the user and included in the analysis.

• Coordinated elaboration of partitions. The distributed
application would not start until all its partitions have
been elaborated, thereby improving determinism.

A further set of optional restrictions was also proposed that
would simplify the implementation and facilitate response
time analysis: no synchronous communication, no variable
size messages, and no remote nested calls.

The workshop felt that there is a need to address high
integrity real-time distributed systems, and Ada is very well
placed for that (it would be an interesting topic for next
IRTAW).The workshop encouraged people to work on this
topic in order to be able to define the list of requirements
for such systems and the model to support them.

5 Summary
The following summarizes the positions taken by the
workshop during this session:

• An Ada Issue (AI) should be produced to fix the
definition of the EDF protocol.

• Requeue through synchronized interfaces should be
supported in Ada. A static and a dynamic scheme were

248 Session: Language Issues

Volume 28, Number 4, December 2007 Ada User Journal

proposed (consistent with the use of interfaces in timed
and conditional entry calls and asynchronous transfers
of control) that need to be evaluated.

• There is a need to investigate models to support high-
integrity real-time distributed systems.

References
[1] Baker, T. P. Stack-based scheduling of realtime
processes. In Real-Time Systems, 3(1), March 1991.

[2] Zerzelidis, A., Burns, A., Wellings, A. J. Correcting the
EDF protocol in Ada 2005. (this issue).

[3] Taft, S.T., Duff, R.A., Brukardt, R.L., Ploedereder, E.,
Leroy, P., eds.: Ada 2005 Reference Manual. Language
and Standard Libraries. International Standard ISO/IEC
8652/1995(E) with Technical Corrigendum 1 and
Amendment 1. Number 4348 in Lecture Notes in Computer
Science. Springer-Verlag (2006).

[4] Wellings, A. J., Burns, A. Integrating OOP and Tasking
– The missing requeue. (this issue)

[5] Urueña, S., Zamorano, J. Building High-Integrity
Distributed System with Ravenscar Restrictions. (this issue)

[6] Vergnaud, T., Hugues, J., Pautet, L., Kordon, F.
PolyORB: a Schizophrenic Middleware to Build Versatile
Reliable Distributed Applications. In Proceedings of the 9th
International Conference on Reliable Software Techologies
Ada-Europe 2004 (RST’04), volume LNCS 3063, pages
106119, Palma de Mallorca, Spain, June 2004. Springer
Verlag.

[7] López Campos J., Gutiérrez, J. J., González Harbour,
M. The chance for Ada to support distribution and real-
time in embedded systems. In Proceedings of the 9th
International Conference on Reliable Software Techologies
Ada-Europe 2004 (RST’04), volume LNCS 3063, pages
91-105, Palma de Mallorca, Spain, June 2004. Springer
Verlag.

 249

Ada User Journal Volume 28, Number 4, December 2007

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

Correcting the EDF protocol in Ada 2005
A. Zerzelidis, A. Burns, A.J. Wellings
Real-Time Systems Research Group, Department of Computer Science, University of York, UK.

Abstract
Earliest Deadline First (EDF) dispatching has been
introduced into the Ada 2005 definition. Included in
this definition is support for Baker’s protocol for
preemption level control over access to protected
objects. Unfortunately the current model fails to
implement all the situations covered by Baker’s
approach. A counter example is provided that
illustrates this deficiency with the language as
currently defined. A minor change to the language
definition is proposed that removes the flaw.

1 Introduction
One of the major enhancements contained within the Ada
2005 definition, in terms of the language’s support for real-
time applications, is the introduction of Earliest Deadline
First (EDF) dispatching. Ada is the first mainstream
engineering language to support this scheduling algorithm.
EDF has been proven to be the most effective such
algorithm available, in the sense that if a set of tasks is
schedulable on a single processor by any dispatching policy
then it will also be schedulable by EDF. Support for EDF
requires two language features:

• representation of deadline for a task,

• representation of preemption level for a protected
object.

The first is obviously required; the second is the EDF
equivalent of priority ceilings and allows protected objects
to be ‘shared’ by multiple tasks [1].

A deadline is usually defined to be absolute if it refers to a
specific (future) point in time; for example there is an
absolute deadline on the completion of this paper by 12th
January 2007. A relative deadline is one that is anchored to
the current time: “We have one month to finish this paper”.
Obviously, if the current time is known then a relative
deadline can be translated into an absolute one (and vice
versa). Repetitive (periodic) tasks often have a static
relative deadline (for example 10ms after release) but will
have a different absolute deadline every time they are
released. The EDF scheme is more accurately expressed as
earliest absolute deadline first.

The need to support preemption levels comes from the
application of Bakers’s protocol for controlling access to
shared entities (see following discussion). Unfortunately,
the language’s support for this protocol is not complete.
There are situations in which the behaviour of an Ada
program will not follow the protocol and will therefore

perform sub-optimally.

In this paper we illustrate this problem with the language as
currently defined, and show how the problem can be
rectified with a simple change to the wording of one
paragraph in the Reference Manual. First however, Baker’s
protocol is defined and in Section 3 the EDF language
features of Ada 2005 are described.

2 Baker’s Preemption Level Protocol for
Protected Objects
One of the major features that Ada 95 provided is support
for monitors via the introduction of the protected object.
Although the rendezvous is a powerful synchronization and
communication primitive, it does not easily lead to tight
scheduling analysis. Rather a more asynchronous scheme is
desirable for real-time applications. The protected object
provides this form of communication. With this construct,
and the use of fixed priorities for tasks and a priority
ceiling protocol for protected objects, it is possible to
predict worst-case completion times for tasks.

With standard fixed priority scheduling, priority is actually
used for two distinct purposes:

• to control dispatching, and

• to facilitate an efficient and safe way of sharing
protected data.

The latter is often known as the priority ceiling protocol (in
Ada it is called the ceiling locking policy). In Baker’s
stack-based protocol, two distinct notions are introduced
for these policies [1]:

• earliest deadline first to control dispatching1,

• preemption levels to control the sharing of protected
data.

With preemption levels (which is a very similar notion to
priority), each task is assigned a static preemption level,
and each protected object (shared unit) is assigned a ceiling
value that is the maximum of the preemption levels of the
tasks that call it. At run-time, a newly released task, T1 say,
can preempt the currently running task, T2, if and only if:

• the absolute deadline of T1 is earlier (i.e. sooner) than
the absolute deadline of T2, and

• the preemption level of T1 is higher than the ceiling
preemption level of every locked protected object.

1 His paper actually proposes a more general model of which EDF
dispatching is an example.

250 Correct ing the EDF protocol in Ada 2005

Volume 28, Number 4, December 2007 Ada User Journal

With this protocol it is possible to show that, on a single
processor, mutual exclusion (over the protected object) is
ensured by the protocol itself (in a similar way to that
delivered by fixed priority scheduling and ceiling
priorities)2. Baker also showed, for the classic problem of
scheduling a fixed set of periodic or sporadic tasks, that if
preemption levels are assigned according to each task’s
relative deadline then a task can suffer at most a single
block from any task with a longer deadline. Again this
result is identical to that obtained for fixed priority
scheduling. Note preemption levels must be assigned
inversely to relative deadline (the smaller the relative
deadline, the higher the preemption level).

3 Supporting EDF Scheduling
It is an anomaly that Ada 95’s support for real-time does
not extend as far as having a direct representation for
‘deadline’, but Ada 2005 has rectified this by providing the
following package:

with Ada.Real_Time; with Ada.Task_Identification;
package Ada.Dispatching.EDF is
 subtype Deadline is Ada.Real_Time.Time;
 Default_Deadline : constant Deadline :=

Ada.Real_Time.Time_Last;
 procedure Set_Deadline(
 D : in Deadline;

T: in Ada.Task_Identification.Task_ID :=
 Ada.Task_Identification.Current_Task);
 procedure Delay_Until_And_Set_Deadline(
 Delay_Until_Time : in Ada.Real_Time.Time;
 Deadline_Offset : in Ada.Real_Time.Time_Span);
 function Get_Deadline(
 T : Ada.Task_Identification.Task_ID :=
 Ada.Task_Identification.Current_Task)
 return Deadline;
end Ada.Dispatching.EDF;

The meaning of most of the operations of this package
should be clear. A call of Delay_Until_And_Set_Deadline
delays the calling task until time Delay_Until_Time. When
the task becomes runnable again it will have deadline
Delay_Until_Time + Deadline_Offset. The inclusion of this
procedure reflects a common task structure for periodic
activity. Note all tasks are given a deadline -if one has not
been explicitly set then Time_Last (the far distant future) is
given as the default.

 A pragma is also provided to give an initial relative
deadline to a task to control dispatching during activation.

To keep language changes to a minimum, Ada 2005 does
not attempt to define a new locking policy but uses the
existing ceiling locking rules without change. Priority, as
currently defined, is used to represent preemption levels.
EDF scheduling is defined by a new dispatching policy.
pragma Task_Dispatching_Policy (EDF_Across_Priorities);

2 This property requires that there are no suspensions inside the protected
object – as is the case with Ada’s protected objects.

In Ada 95, dispatching is defined by a model that has a
number of ready queues, one per priority level. Each queue,
for the standard model, is ordered in a FIFO manner. Tasks
have a base priority (assigned by pragma Priority and
changed, if desired, by the use of Dynamic_Priority.Set_
Priority). They may also have a higher active priority, if
they inherit such a value during, for example, a rendezvous
or execution within a protected object. Preemptive behavior
is enforced by requiring a context switch from the current
running task, if there is a higher priority non-empty ready
queue. This is known in Ada as a Dispatching Point. At
any dispatching point, the current running task is returned
to its ready queue and another task (or indeed the same task
if appropriate) is taken from its ready queue and executed.
It should be noted that this is an abstract model of the
required behavior; an implementation does not need to
deliver the required semantics in this way. This also applies
to the new model defined below.

3.1 The Rules of EDF Dispatching
The basic preemption rule given earlier for Baker’s
protocol, whilst defining the fundamental behavior, does
not give a complete model. For example, it is necessary to
define what happens to a newly released task that is not
entitled to preempt. A complete model, within the context
of Ada’s ready queues, is defined by the following rules
from the Ada 2005 reference manual (see paragraphs 17/2
to 28/2 of section D.2.6 of the manual).

When EDF_Across_Priorities is specified for priority
range Low..High all ready queues in this range are ordered
by deadline. The task at the head of a queue is the one with
the earliest deadline.

A task dispatching point occurs for the currently running
task T to which policy EDF_Across_Priorities applies:

• when a change to the deadline of T occurs;

• there is a task on the ready queue for the active
priority of T with a deadline earlier than the deadline
of T; or

• there is a non-empty ready queue for that processor
with a higher priority than the active priority of the
running task.

In these cases, the currently running task is said to be
preempted and is returned to the ready queue for its active
priority.

For a task T to which policy EDF_Across_Priorities
applies, the base priority is not a source of priority
inheritance; the active priority when first activated or while
it is blocked is defined as the maximum of the following:

• the lowest priority in the range specified as
EDF_Across_Priorities that includes the base priority
of T;

• the priorities, if any, currently inherited by T;

• the highest priority P, if any, less than the base
priority of T such that one or more tasks are
executing within a protected object with ceiling

A. Zerzel id is , A. Burns, A.J. Wel l ings 251

Ada User Journal Volume 28, Number 4, December 2007

priority P and task T has an earlier deadline than all
such tasks.

When a task T is first activated or becomes unblocked, it is
added to the ready queue corresponding to this active
priority. Until it becomes blocked again, the active priority
of T remains no less than this value; it will exceed this
value only while it is inheriting a higher priority.

When the setting of the base priority of a ready task takes
effect and the new priority is in a range specified as
EDF_Across_Priorities, the task is added to the ready
queue corresponding to its new active priority, as
determined above.

In addition, there is a rule (paragraph 30/2 of section D.2.6)
that no protected object can have a ceiling of value Low –
when EDF_Across_Priorities is specified for priority range
Low..High.

Rule 26/2 (the one in bold in the above quote) contains the
key semantics, and is intended to ensure the behaviour
required by Baker’s Algorithm. Whilst in most cases this is
true there is a circumstance in which tasks can execute in
the wrong order. This is illustrated by Scenario 2 in the
following example.

Example behaviour
Consider the following scenarios. Remember in all of these
descriptions, the running task is always returned to its ready
queue whenever a task arrives. A task (possibly the same
task) is then chosen to become the running task following
the rules defined above.

The system contains four tasks: T1, T2, T3 and T4 and
three resources that are implemented as protected objects:
R1, R2 and R3. Table 1 defines the parameters of these
entities (in this table, D is relative deadline, L is preemption
level, U is the resources used, t is the arrival time and A the
absolute deadline.

Task D L U t A
T1 100 1 R1,R3 0 100
T2 80 2 R2,R3 2 82
T3 60 3 R2 4 64
T4 58 4 R1 8 66

Table 1 A task set

We are concerned with just a single invocation of each
task. The arrival times have been chosen so that the tasks
arrive in order of lowest preemption level task first etc. We
assume all computation times are sufficient to cause the
executions to overlap.

The resources are all used by more than one task, but only
one at a time and hence the ceiling values of the resources
are straightforward to calculate. For R1, it is used by T1
and T4; hence the ceiling preemption level is 4. For R2, it
is used by T2 and T3; hence the ceiling value is 3. Finally,
for R3, it is used by T1 and T2; the ceiling equals 2 (see
Table 2).

Protected Object Ceiling Value
R1 4
R2 3
R3 2

Table 2 Ceiling Values

To implement this set of tasks and resources will require
ready queues at level 0 (value of Low in this example) and
values up to 4. Scenario 1 runs through a possible
behaviour of the tasks set and illustrates the correct
behaviour of the Ada 2005 protocol.

Scenario 1
At time 0, T1 arrives. All ready queues are empty and all
resources are free so T1 is placed in queue 0. It becomes
the running task. This is illustrated in the following where
‘Level’ is the priority level, ‘executing’ is the name of the
task that is currently executing, and ‘Ready Queue’ show
the other non-blocked tasks in the system.

Level Executing Ready Queue

 0

 At time 2, T2 arrives and is added to ready queue 0 in front
of T1 as it has a shorter absolute deadline. Now T2 is
chosen for execution.

 0

Assume at time 3, T2 calls R3. Its active priority will rise to
2.

 2

 0

 At time 4, T3 arrives. Task T2 is joined by T3 on queue 2,
as T3 has an earlier deadline and a higher preemption level;
T3 is at the head of this queue and becomes the running
task.

 2

 0

At time 8, T4 arrives. Tasks T3 and T2 are now joined by
T4 as it has a deadline earlier than T2 and a higher
preemption level (than 2). Task T3 remains the running
task, and will execute until it completes.

 2

 0

Scenario 2 -Incorrect Behaviour
Here we make the simple change that, at time 3, T2 calls
R2 instead of R3. Its active priority will rise to 3. Now
when T3 arrives at time 4, it will not have a high enough
preemption level to join ready queue 3 and will be placed
on the lowest queue at level 0 (but ahead of T1). Task T2
continues to execute.

At time 8, T4 arrives. It passes both elements of the test and
is placed on the queue at level 3 ahead of T2 and therefore
preempts it.

T1

T2 T1

T2

T1

T3

T1

T2

T3

T1

T4 T2

252 Correct ing the EDF protocol in Ada 2005

Volume 28, Number 4, December 2007 Ada User Journal

 3

 0

The result of this last modification is that T4 is executing
even though T3 is in the system and has an earlier deadline
than T4. This is not in accordance with Baker’s protocol.
To force compliance with the protocol the following
change has to be made.

4 Correcting the Definition
The problem with the current language definition is that
Rule 26/2 is not strong enough: task T must have an earlier
deadline than all tasks not only at level P but at all lower
levels. So the final part of the rule to determine the active
priority of a task (i.e. 26/2):

• 26/2 the highest priority P, if any, less than the base
priority of T such that one or more tasks are executing
within a protected object with ceiling priority P and
task T has an earlier deadline than all such tasks.

must become:

• 26/2* the highest priority P, if any, less than the base
priority of T such that one or more tasks are executing
within a protected object with ceiling priority P and
task T has an earlier deadline than all such tasks and
all other tasks on ready queues with priorities strictly
less than P.

Now Scenario 2 described above will behave as follows: at
time 8, T4 will ‘fail’ 26/2* and will be placed on the level 0
queue between T3 and T1.

 3

 0

T2 will continue until it completes its execution in the
protected object. Its priority will then fall to 0 and T3 will
preempt it. All tasks now execute in deadline order –
earliest first.

 A formal proof of the revised protocol is not possible
within the space allocated to this paper, however a key
property can be explored via the following considerations.
Strict EDF dispatching is ensured as long as a task T1 with
an absolute deadline d1 is never on a ready queue below
that of task T2 with absolute deadline d2 when d1<d2
unless T2 is using a shared resource and as a result has an
inherited preemption level. This follows from the fact that
ready queues are dispatched in priority order. There are two
cases to consider:

Task T1 arrived before T2: T2 cannot be placed above T1
(in the ready queue order) if it arrived later and d1 is
before d2 – direct consequence of 26/2*.

Task T1 arrived after T2: note, T2 has no inherited
preemption level. As T1 has an earlier deadline than T2
it would be placed on the same queue as T2 (or higher)
unless it has a lower preemption level. If it have a lower
preemption level then we have the properties: T1
arrives after T2, has an earlier deadline than T2, but a
lower preemption level. This is in direct contradiction to
the preemption level allocation algorithm required by
Baker (see discussion at the end of Section 2). Hence
T1 cannot have a lower preemption level and would
thus be placed on an equal or higher ready queue to that
of T2.

5 Conclusion
The inclusion of EDF dispatching into the Ada language is
a major enhancement. Ada becomes the first main stream
engineering language to support this common protocol for
controlling the execution of real-time activities. Operating
systems, as well as languages, at best support only fixed
priority dispatching. But for many resource restricted
applications, the extra performance one can get from EDF
scheduling is a major attraction. Ada’s move to support
EDF and fixed priority dispatching, and their integrated use
within the same program will therefore open up the use of
Ada in a number of new fields including mobile computing.

Although the definition contained within the Ada 2005
definition attempted to implement Baker’s preemption-
level protocol within the existing rules for priority ceiling
locking for protected objects, the current model is not
entirely satisfactory. The problem has been identified in
this paper. Fortunately a minor rewording of one paragraph
is all that is needed to remove the flaw and complete the
protocol’s definition.

Acknowledgements
The authors would like to thank Ted Baker for useful
discussions on his protocol. Also John Barnes for
comments on an earlier draft of the paper. The work
reported in this paper is funded, in part, by the EU project
ARTIST.

References
[1] T.P. Baker. Stack-based scheduling of realtime

processes. Real-Time Systems, 3(1), March 1991.

T4

T3

T2

T1

T2

T4 T1T3

 253

Ada User Journal Volume 22, Number 1, Apr i l 2007

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

* This work has been undertaken within the context of the EU ARTIST2

project.

Integrating OOP and Tasking – The missing
requeue*

A. J. Wellings, A. Burns
Real-Time Systems Research Group, Department of Computer Science, University of York, UK; email:
{andy,burns}@cs.york.ac.uk

Abstract
Ada 2005 has provided limited integration between its
object-oriented programming and tasking facilities.
The compromise has been to allow tasks and
protected types to support interfaces but not
inheritance. Whilst the language supports
timed/conditional entry calls and the select-then-abort
statement using interfaces, it does not allow the target
of a requeue statement to be determined via an
interface. This paper argues that this design decision
needlessly limits the expressive power of the
language. A motivating example is used to illustrate
the case, and the semantics of the proposed language
extension are discussed.

1 Introduction
One of the topics that has been covered by past workshops
has been the integration of Ada 95 object-oriented
programming features with the Ada tasking model [1, 2, 5].
Full integration would add significant complexity to the
language (for example, see the suggested models [4, 8, 7, 6,
3]), and proposals for language changes did not receive
widespread support. Ada 2005 has added Java-like
interfaces to the OOP model and has used this opportunity
to provide limited integration. The compromise is to allow
task and protected types to implement some types of
interfaces but still not to be tagged types. Hence inheritance
is not supported but run-time dispatching is.

A side effect of the Ada 2005 approach is that it is now
possible to make timed (or conditional) entry calls or use
the select-then-abort statement whose target entries are
based on normal Ada procedures (if they implement part of
a limited, synchronized, protected or task interface). The
language defines that when such a call is issued it is
deemed to happen immediately and hence no timeout or
wait occurs, and in the case of the select-then-abort
statement, no abortable code is started. Whilst these side
effects might seem strange, it is a consequence of the
decision taken that interfaces that have some
synchronization implied should be identified explicitly. In
this way, the programmer knows that calls are potentially
suspending and can add timeouts if necessary. It is also
necessary to more easily identify potentially suspending

calls from within a protected action. In contrast, Java
adopts the approach where interfaces have no
synchronization constraints identified, even though the
encapsulated methods can be implemented by synchronized
methods. But then Java does not provide an avoidance
model for condition synchronization; instead it uses
conditional waits within a synchronized method (where
timeouts can be added if needed).

Although Ada 2005 has gone a long way to integrating its
access to entries via interfaces, it has shied away from
allowing a requeue operation via an interface. The
following is taken from the minutes of the ARG Paris
meeting (Feb. 2005) under a discussion on AI-397:

“Steve Baird asks if you can requeue on a
synchronized procedure. No, we don ’t allow that,
because the synchronized procedure doesn’t
necessarily denote an entry. And what such a
requeue would do if the procedure wasn’t an entry
is rather unclear.”

This paper suggests that this decision should be revisited.
In section 2, we briefly review the Ada 2005 OOP and
tasking integration, and examine the general role of re-
queue. In section 3, we present a motivating example for
why requeue should be allowed to occur via a synchronized
(or task or protected) interface. Then, in section 4, we
define the semantics of such an operation. Finally, we draw
our conclusions.

2 Tasking, OOP and Requeue
An interface is a type that has no state. It is essentially an
abstract tagged typed with null components. All primitive
operations on an interface type must be abstract or null.

Although the inspiration for Ada interfaces comes from the
Java language, they cannot be used in exactly the same way
as Java interfaces but should be thought of as abstract
types. In particular, it is not possible to define an arbitrary
subprogram that takes as a parameter an interface (as can
be done in Java). The equivalent in Ada 2005 is to define
the parameter type as a class-wide type or class-wide
access type rooted at the Ada interface. Hence, Ada
requires you to distinguish between a classwide type and a
specific type. This has the advantage of allowing
differentiation between dispatching calls and non-
dispatching calls at the source level.

254 Integrat ing OOP and Tasking – The missing requeue

Volume 28, Number 4, December 2007 Ada User Journal

Formally, a tagged type can be derived from zero or one
parent tagged type plus zero of more interface types. If a
non-interface tagged type is present it must be the first in
the list. Hence interfaces themselves can be derived from
other interfaces.

2.1 Limited interfaces
In Ada, a limited type is a type that does not support the
assignment statement and has no predefined equality
operator. Interfaces can be limited; they are, however, not
limited by default. A non-limited interface has a predefined
equality operator available, whereas a limited interface
does not.

A new interface can be composed of a mixture of limited
and non limited interfaces but if any one of them is non
limited then the resulting interface must be specified as non
limited. This is because it must allow the equality and
assignment operations implied by the non-limited interface.

Similar rules apply to derived types that implement one or
more interfaces. The resulting type must be non limited if
any of its associated interfaces are non limited.

2.2 Synchronized, protected and task interfaces
In order to provide integration between Ada’s concurrency
and OOP models, Ada 2005 provides three further forms of
limited interfaces: synchronized, protected and task.

The key idea of a synchronized interface is that there is
some implied synchronization between the task that calls an
operation from an interface and the object that implements
the interface.

Synchronization in Ada is achieved via two main
mechanisms: the rendezvous and the protected action (call
of an entry or protected subprogram). Hence, a task type or
a protected type can implement a synchronized interface.
The rendezvous provides control-oriented synchronization
and the protected type provides data-oriented
synchronization. Where the programmer is not concerned
with the type of synchronization, a synchronized interface
is the appropriate abstraction. For situations where the
programmer requires control-oriented (or data-oriented)
synchronization, task interfaces (or protected interfaces)
should be used explicitly.

In summary:

• All task and protected interfaces are also synchronized
interfaces, and all synchronized interfaces are also
limited interfaces.

• A synchronized interface can be implemented by either
a task or protected type.

• A protected interface can only be implemented by a
protected type.

• A task interface can only be implemented by a task
type.

• The controlling (dispatching) parameter in a
synchronized (or protected or task) interface must be
the first parameter. Furthermore, if the operation is to

be implemented as an entry (either protected or task)
then it should be an “out”, an “in out” parameter or an
“access” parameter.

There is a hierarchy in the types of limited interfaces:
limited comes before synchronized, which comes before
task/protected. Task and protected interfaces have equal
position in the hierarchy. Two or more interfaces can be
composed as long as the resulting interface is not before
any of the component interfaces in the hierarchy. Hence a
limited interface cannot be composed from a synchronized,
protected or task interface. A synchronized interface cannot
be composed from a task or protected interface; and a task
or protected interface cannot be composed from each other.

Calling operations on objects that implement
limited interfaces
Operations on interfaces that are defined as limited,
synchronized, protected or task may be implemented
directly by a protected or task type. The following should
be noted.

1. A call to any operation on an object that implements a
synchronized (or protected or task) interface may be
blocked until the right conditions are in place for that
operation to be executed. If the operation is
implemented by a protected procedure or function then
this blocking will be bounded. If the operation is
implemented by a task or a protected entry then the
blocking may be indefinite. Consequently, Ada 2005
allows a call to an operation defined by a synchronized
(or protected or task) interface to be placed in a “timed
or conditional entry call” statement or in a “select then
abort” statement.

2. A task or protected type can also implement a limited
interface. Consequently, call to objects that implement
limited interfaces may also block! Ada 2005, therefore,
allows them to be placed in a timed or conditional
entry call statement or in a select-then-abort (ATC)
statement.

3. Any call to an operation on an object that implements a
limited (or synchronized or protected or task) interface
that dispatches to a non-entry call, is deemed to have
been “accepted” immediately and, therefore, can never
time-out.

2.3 Tasks and interfaces
A task type in Ada 2005 can be declared to “implement”
zero, one or more combinations of limited, synchronized
and task interfaces. Task interfaces allow programmers to
specify interfaces that must be implemented by tasks.
Hence they allow the programmers greater control over
expressing their intentions. However, as already mentioned,
it is not possible for tasks to be derived from other tasks.
Obtaining a semantic model for this is challenging given an
already-existing language.

A. J. Wel l ings, A. Burns 255

Ada User Journal Volume 28, Number 4, December 2007

2.4 Protected types and interfaces
Protected interfaces are interfaces that can only be
implemented by protected types. Protected interfaces
should be used when

• the programmer wants data-oriented rather than control
oriented synchronization,

• there is a level of indirection between the tasks needing
the synchronization, or

• the programmer wishes to ensure that the required
synchronization is implemented by a passive
synchronisation agent rather than an active one.

2.5 Synchronized interfaces
Task and protected interfaces are the correct abstractions to
use when the programmer wishes to commit to a particular
implementation strategy. In some circumstances, this may
not be appropriate. For example, there are various
communication paradigms that all have at their heart some
form of buffer. They, therefore, all have buffer-like
operations in common. Some programs will use these
paradigms and will not care whether the implementation
uses a mailbox, a link or whatever. Some will require a task
in the implementations, others will just need a protected
object. Synchronized interfaces allow the programmer to
defer the commitment to a particular paradigm and its
implementation approach.

2.6 Requeue
Ada allows requeues between task entries and protected
object entries. A requeue can be to the same entry, to
another entry in the same unit, or to another unit altogether.
Requeues from task entries to protected object entries (and
vice versa) are allowed. However, the main use of requeue
is to send the calling task to a different entry of the same
unit from which the requeue was executed. It is important
to appreciate that requeue is not a simple call. If procedure
P calls procedure Q, then, after Q has finished, control is
passed back to P. But if entry X requeues on entry Y, then
control is not passed back to X. After Y has completed,
control passes back to the object that called X. Hence,
when an entry or accept body executes a requeue, that body
is “completed, finalised and left” (ARM, Section 9.5.4).

One consequence of this is that when a requeue is from one
protected object to another then mutual exclusion on the
original object is given up once the task is queued. Other
tasks waiting to enter the first object will be able to do so.
However, a requeue to the same protected object will retain
the mutual exclusion lock (if the target entry is open).

Finally, when requeuing from one protected object to
another it is important to understand that while the call is
being evaluated a mutual exclusion lock is held on both
protected objects. It is therefore a bounded error to execute
an external requeue request back to the requesting object (it
would inevitably lead to deadlock). Moreover, the
programmer cannot assume, when a requeue has taken
place from one protected object to another, that any tasks
released in the original object will execute before the entry

in the destination object. Consider the following contrived
example that consists of two protected objects.

protected Original is
 entry One;
 entry Two;
private
 Go : Boolean := False;
end Original;

protected Target is
 entry One;
end Target;

In the body of this, a call to Original.One is requeued to
Target.One:

protected body Original is
 entry One when True is
 begin
 Go := True;
 requeue Target.One;
 end One;
 entry Two when Go is
 begin
 Go := False;
 Put_Line("Original Two executed");
 end Two;
end Original;

protected body Target is
 entry one when True is
 begin
 Put_Line("Target One executed");
 end One;
end Target;

Now consider a case where a task (A) is already queued on
the Original.Two entry when another tasks (B) calls
Original.One. As the barrier on Original.One is open, the
entry is executed and Go flag is set to true, and the call is
requeued on Target.One. First the lock on the Target
protected object is obtained, and then the barrier is tested. If
the barrier on Target.One was false, task B needs to be
queued and then the Original.One entry needs to be
finalized which involves task B executing the entry
Original.Two on behalf on task A. Hence, the lock on the
Target protected object is maintained until this finalization
code has been executed; task B is then placed on the entry
queue. If the barrier on Target.One is True (as it is in this
case), task B executes the Target.One entry code and then
finalizes that entry. It then finalizes the Original.One entry
and executes the Target.One entry code and then finalizes
that entry. Hence in the above example, the output “Target
One executed” appears before “Original Two executed”.

3 A Motivating Example
Although requeuing to the same entity represents the
normal use of requeue, there are situations in which the full
generality of this language feature is useful.

256 Integrat ing OOP and Tasking – The missing requeue

Volume 28, Number 4, December 2007 Ada User Journal

Consider the situation in which resources are controlled by
a hierarchy of objects. For example, a network router might
have a choice of three communication lines on which to
forward messages: Line A is the preferred route, but if it
becomes overloaded Line B can be used; if this also
becomes overloaded Line C can be used. Each line is
controlled by a server task; it is an active entity as it has
housekeeping operations to perform. A protected unit acts
as an interface to the router; it decides which of the three
channels should be used and then uses requeue to pass the
request to the appropriate server. The structure of the
solution is given in the program fragment is given below:

type Line_Id is (Line_A, Line_B, Line_C);

type Line_Status is array (Line_Id) of Boolean;

task type Line_Controller(Id : Line_Id) is
 entry Request(...);
end Line_Controller;

protected Router is
 entry Send(...);
 procedure Overloaded(Line : Line_Id);
 procedure Clear(Line : Line_Id);
private
 Ok : Line_Status := (others => True);
end Router;

La : Line_Controller(Line_A);
Lb : Line_Controller(Line_B);
Lc : Line_Controller(Line_C);

task body Line_Controller is
 ...
begin
 loop
 select
 accept Request(...) do
 - - service request
 end Request;
 or
 terminate;
 end select;
 - -housekeeping including possibly
 Router.Overloaded(Id);
 - -or
 Router.Clear(Id);
 end loop;
end Line_Controller;

protected body Router is
 entry Send(...) when Ok(Line_A) or
 Ok(Line_B) or Ok(Line_C) is
 begin
 if Ok(Line_A) then
 requeue La.Request with abort;
 elsif Ok(Line_B) then
 requeue Lb.Request with abort;
 else

 requeue Lc.Request with abort;
 end if;
 end Send;

 procedure Overloaded(Line : Line_Id) is
 begin
 Ok(Line) := False;
 end Overloaded;

 procedure Clear(Line : Line_Id) is
 begin
 Ok(Line) := True;
 end Clear;
end Router;

Now consider the generalization of code to allow a router
to support any type of network interface controller. First, it
is necessary to define the interface that all line controllers
must support:

package Network_Interface is
 type Line_Interface is task interface;

 procedure Request(LI: in out Line_Interface)
 is abstract;

 type Any_Line_Interface is access all
 Line_Interface’Class;
end Network_Interface;

Any line controller can be defined, as long as it supports
this interface:

type Line_Id is (Line_A, Line_B, Line_C);

type Line_Status is array (Line_Id) of Boolean;

task type Line_Controller(Id : Line_Id) is new
 Line_Interface with
 overriding entry Request(...);
end Line_Controller;

Now a general purpose router can be defined that will work
with any line controller

protected type Router(LA: Any_Line_Interface;
 LB: Any_Line_Interface;
 LC: Any_Line_Interface) is
 entry Send(...);
 procedure Overloaded(Line : Line_Id);
 procedure Clear(Line : Line_Id);
private
 Ok : Line_Status := (others => True);
end Router;

However, the body of this protected type causes a problem:

protected body Router is
 entry Send(...) when Ok(Line_A) or
 Ok(Line_B) or Ok(Line_C) is
 begin
 if Ok(Line_A) then
 requeue LA.Request with abort; - -** NOT LEGAL
 elsif Ok (Line_B) then

A. J. Wel l ings, A. Burns 257

Ada User Journal Volume 28, Number 4, December 2007

 requeue LB.Request with abort; - -** NOT LEGAL
 else
 requeue LC.Request with abort; - -** NOT LEGAL
 end if;
 end Send;
 - -as before
end Router;

What this example shows is two things:

1. Requeing from one task/protected type to another is an
integral part of the Ada model and one that gives it
great power and flexibility.

2. Requeuing via interfaces is a necessary facility if
interfaces are to be fully integrated with tasks and
protected types.

4 Proposed Revised Requeue Semantics
Section 3 has illustrated the need to allow the use of re-
queue with interfaces. In this section we consider the
semantics for the situation where the target requeue is not
an entry call. There are three possible situations.

1. The target is a function inside or outside a protected
object – this is an error condition that can be caught at
compile time; there are no circumstances whereby a
function in an interface can be implemented by an
entry. This is similar to the illegal case where a
function call is used as the target of a timed/conditional
entry call or as a triggering event in a select-then-abort
statement.

2. The target is a procedure inside a protected object –
this is similar to the case where the target of a
timed/condition entry call or select-then-abort
triggering event turns out to be a procedure that has
been implemented inside of a protected type
implementing the associated interface. The
corresponding interpretation would be to view the
procedure as an entry with a “when True” barrier.
Hence, a new protected action is started for the target
protected object and the procedure is executed
immediately (ARM, Section 9.5.4 par 11).

3. The target is a regular procedure (i.e. outside a
protected object/task) – this is similar to the case where
the target of a timed/condition entry call or
select-then-abort triggering event turns out to be a
procedure outside of the protected object/tasks
implementing the associated interface. As this would
succeed in this case, so should it succeed in the
requeue case. However, to execute the procedure
immediately would mean that the procedure would be
executed at the ceiling priority of the original protected
type (or the priority of the original rendezvous). This
would seem to be wrong. Hence, the current protected
action continues and completes before the procedure is
called.

Return again to the example given in Section 2.6, but this
time suppose that the Target is defined as:

type Target is synchronized interface;
procedure One(T: in out Target) is abstract;
type Any_Target is access all Target’Class;

and the Original protected object is now a type
parameterized by the target.

protected Original(Target : Any_Target) is
 entry one;
 entry two;
private
 Go : Boolean := False;
end Original;

protected Target is
 entry one;
end Target;

protected body Original is
 entry One when True is
 begin
 Go := True;
 requeue Target.one;
 end One;

 entry Two when Go is
 begin
 Go := False;
 Put_Line("Original Two executed");
 end Two;
end Original;

Assuming that the target subprogram again outputs the
string “Target One executed”, then if the actually target
One turns out to be an open entry or a procedure then once
again the output would be “Target One executed” followed
by “Original Two executed”. However, if the actual target
One turns out to be a procedure outside of a protected type,
the output would be “Original Two executed” followed by
“Target One executed”. These two cases would need to be
recognised by the run-time system. It is unclear whether
this would impose a significant implementation burden.

Alternative approach
As an alternative to the proposal given above, it could be
argued that attempting to requeue to a non-entry is an error
condition and a run-time exception (Program_Error) should
be raised. As the Ada 2005 designers chose not to do this
for the timed/condition entry call and select-then-abort
cases, we proposed, for consistency, the same model.

Of course, where the programmer knows that the intended
target is an entry, ideally there should be a mechanism to
indicate this (perhaps by a pragma). This would allow the
compiler to check, thereby avoiding the run-time error. If
this approach were adopted, the semantics of
timed/conditional entry calls and the select-then-abort
statement might need to be revisited to make the operations
illegal on procedure calls again. However, given that
limited interfaces can also be implemented by tasks and
protected objects, adding such a pragma would, in effect,
make them synchronized.

258 Integrat ing OOP and Tasking – The missing requeue

Volume 28, Number 4, December 2007 Ada User Journal

5 Conclusions
This paper has argued that it should be possible to execute
a requeue statement (both with and without abort) via a
limited, synchronized, protected or task interface. The
proposed semantics are consistent with those that are
currently defined for conditional and timed entry calls, and
for the use of interfaces with the select then abort
statement. Indeed, given the current semantics there are
obvious counterparts for the requeue case. However, an
implementation must perform the finalization of a called
protected entry in a different order if the target is not
encapsulated within a protected object. The actual overhead
that this incurs are implementation-dependent.

6 Acknowledgements
The authors wish to thank Tucker Taft for a comment on an
early draft of this paper and for helping us refine the
proposed semantics given in Section 4.

References
[1] J. de la Puente. Session summary: Object-oriented

programming and real-time. In Proceedings of
IRTAW8, Ada Letters, pages 11–15, 1997.

[2] J. A. de la Puente. New language features and other
language issues. In Proceedings of IRTAW9, Ada
Letters, Vol XIX(2), pages 19–20, 1999.

[3] R. Garcia and A. Strohmeier. Experience report on the
implementation of EPTs for GNAT. In Proceedings of
IRTAW11, Ada Letters, Vol XX1I(4),pages 22–17,
2002.

[4] O. P. Kiddle and A. J. Wellings. Extended protected
types. In Proceedings of ACM SIGAda Annual
International Conference (SIGAda 98), pages 229–239,
November 1998.

[5] J. L. Tokar. Tasking and object orientation. In
Proceedings of IRTAW10, Ada Letters, Vol
XX1(1),pages 9–10, 2001.

[6] A. J. Wellings, B. Johnson, B. Sanden, J. Kienzle, T.
Wolf, and S. Michell. Integrating object-oriented
programming and protected types in Ada 95. ACM
TOPLAS, 22(3):506–539, 2000.

[7] A. J. Wellings, B. Johnson, B. Sanden, J. Kienzle, T.
Wolf, and S. Michell. Object-oriented programming
and protected objects in Ada 95. Reliable Software
Technologies - Ada-Europe 2000, Lecture Notes in
Computer Science, 1845:16–28, 2000.

[8] A. J. Wellings, B. Johnson, B. Sanden, J. Kienzle, T.
Wolf, and S. Michell. Extensible protected types:
Proposal status. In Proceedings of IRTAW10, Ada
Letters, Vol XX1(1), pages 105–110, 2001.

 259

Ada User Journal Volume 28, Number 4, December 2007

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

* This work has been funded in part by the Spanish Ministry of Science

and Technology (MCYT), project TICTIC2005-08665-C03-01
(THREAD), and by the Council for Education of the Community of
Madrid and the European Social Fund.

Building High-Integrity Distributed Systems with
Ravenscar Restrictions*
Santiago Urueña, Juan Zamorano
Department of Computer Architecture and Technology (DATSI), Technical University of Madrid (UPM), E28660
Boadilla del Monte, Spain; e-mail: Santiago.Uruena@upm.es, JuanRafael.Zamorano@upm.es

Abstract
The Ravenscar profile was a qualitative leap in the
development of single-processor hard real-time
systems with certification requirements. But
nowadays more and more safety-critical systems are
distributed, so a new Adaprofile is needed for multi-
node applications. This work discusses the
restrictions and additions to the language needed to
certify and obtain the required predictability and
timeliness in a high-integrity hard real-time Ada
distributed application.

1 Introduction
Nowadays, several types of High-Integrity Systems
(HIS)—specially safety-critical ones— have hard real-time
requirements and must execute in an embedded distributed
hardware. A distributed system is not only needed when
different parts of the system are physically distant. It also
provides better fault-tolerance, isolates applications with
different criticalities among the nodes, and gives more
processing power than a single CPU.

The Ravenscar profile was designed for HIS with strict
temporal requirements [6], and where response-time
analysis (RTA) methods [10] are needed, easing the
development and certification of those types of systems. It
was one of the major additions to Ada 2005 [1], and there
are multiple commercial implementations [3]. However, the
profile was targeted for mono-processors and thus no
special support was designed for the development of
distributed systems.

Although the Distributed Systems Annex (DSA) is not
forbidden in the Ravenscar profile defined in Ada 2005 [9,
§D.13.1] it presents some problems that make this Annex E
inadequate for hard real-time distributed systems [14]. This
is not surprising because the DSA was designed for general
purpose distributed systems, although the implementators
are allowed to extend and adapt the annex with new
functionality and rules [9, § E.2(14), E.2.1(8.b), E.5(26),
E.5(27.1/2)].

Therefore, Ravenscar applications can currently use the

DSA in a “portable” way only for non real-time
communication with other nodes. The goal of this paper is
to restrict the DSA following the philosophy of the
Ravenscar profile to enable the certification of the
middleware, to achieve the required degree of predictability
and timeliness, and to discuss the most important additions
needed for the development of distributed hard real-time
safety-critical systems.

This paper covers distributed applications running on a
physically distributed system (different computing nodes
connected through a bus or a local network), or on the same
node (logical partitions, like ARINC-653). The existence of
a reliable hard real-time communication network is of
paramount importance. However, this paper is not aimed at
multi-processor systems, except if each partition can
execute only in the same CPU (i.e. no ‘task migration’).

This paper is organized as follows. Section 2 describes the
related work, including the scheduling theory. Section 3
discusses the advantages and disadvantages of different
distribution mechanisms used by the software industry.
Section 4 defines a set of restrictions for building safety-
critical distributed systems, while section 5 talks about the
implementation requirements. Section 6 presents two use
cases. Finally, section 7 summarizes the main conclusions
of this work.

2 Related Work
This paper builds upon current advances in scheduling
theory for distributed hard real-time systems. Tindell and
Clark [24] extended the responsetime analysis techniques
used for single processors to distributed systems,
introducing the concept of holistic schedulability. Later,
Palencia and González Harbour [16] improved the
technique to reduce the pessimism of transactions.

Work about adapting the Ada distributed system annex for
real-time systems includes past IRTAW sessions [14][7]
and two different implementations: RT-GLADE [13], a
research real-timeimplementation of the DSA, and
PolyORB [25], a commercial real-time middleware with
different distribution models, including RT-CORBA and
the DSA.

Finally, there is also some research about the specific topic
of Ravenscar compliant distributed systems. On the one
hand, some middlewares are implemented using the

260 Bui ld ing High-Integr i ty Distr ibuted Systems with Ravenscar Restr ic t ions

Volume 28, Number 4, December 2007 Ada User Journal

Ravenscar profile —PolyORB, mentioned above, and
DEAR-COTS [18], a distribution framework mainly
designed for fault tolerance— and on the other hand work
by Audsley and Wellings [4] in IRTAW 2000 about using
the DSA and Ravenscar for High-Integrity Systems.

3 Selection of a distribution mechanism
Different distribution mechanisms for Ada are currently
used in industry, some of them for specific environments
(e.g. SOIS [19] for the space domain, or MPI [23] for
scientific computations) while others are multi-purpose,
like the Real-Time Common Object Request Broker
Architecture (Real-Time CORBA), the Data Distribution
Service (DDS), or the Distribute Systems Annex (DSA).
The standard distribution mechanism of Ada has different
advantages and disadvantages with respect to other
middlewares.

3.1 DSA advantages
The Distributed Systems Annex is integrated in the
language since Ada 95, and was designed for a wide variety
of distributed systems. It is easy to learn [11], and a full
distributed application can be developed very quickly
adding only some categorization pragmas to specific library
units, and specifying the location of each partition using the
configuration file. Automatic consistency checks at the start
of the application ensure the binary compatibility of each
partition [9,§E.3(6)].

Every distributed application is also a valid centralized
program, therefore the same application can be first
compiled and tested as a single binary and later the exactly
same source code can be compiled as a distributed program
[9, §E(7)]. This is very useful during the development
stage, because debugging a distributed application is far
more difficult than a centralized one. Although this can also
be achieved using other distribution mechanisms it would
require the modification of the source code (and thus bugs
can be introduced in the process).

Other advantages of the distribution model (categorization
pragmas versus the API of other middlewares) are the
compiler checks among partitions for code verification and
optimization [9, § E(8)], and for external tools like the
SPARK examiner[5], which does not need to be modified
to analyze the application. It should be investigated
whether the DSA facilitates writing a tool to obtain the
temporal model of a system from the source code.

The DSA provides multiple communication paradigms
including message passing, distributed shared memory
[12], remote procedure calls, and distributed objects. The
Ada specification specifies a standard communication
subsystem (System.RPC), but implementations are free to
generate calling stubs that leverage other underlying
middlewares [9, § E.5(27.b/2)] (e.g. DSA implementations
exits for CORBA, web services [25] or Java RMI [17]).
Each partition has an independent run-time system thanks
to the purity rules enforced by the categorization pragmas.

3.2 DSA disadvantages
However, the DSA has also some problems. It was not
designed for real-time communication, in opposition with
DDS, RT-CORBA, or SOIS. It has also limited vendor
support, and there are only a few research and commercial
implementations, while CORBA or SOIS have even
implementations for safety-critical software.

Although the Ada 95 language designers created a modular
scheme to encourage that the compiler and communication
subsystem were created by different vendors, in practice
there is no interoperability among the implementations.
And consistency checks make difficult the implementation
of open systems and dynamic services.

Lik ein other distribution mechanisms (e.g. JavaRMI),
remote tagged objects cannot migrate to other nodes (they
must be limited) so remote dispatching operations are
always served by the node that created such tagged object.
However, in RMI there is a default serialization for all
types, but in the DSA the application programmer must
provide the code for the marshalling and unmarshalling of
data involving some access types—e.g. a linked list.

The purity rules are very strict, and only preelaborated
types can be transferred. For example, no standard time
type can be used in a remote operation, the application
programmer is forced to define one. In practice, purity rules
difficult the reuse of code not designed for adistributed
application. However, the same applies to the rest of
distribution mechanisms.

Finally, the DSAdoes not provide the Publish/Subscribe
[20] communication paradigm, in opposition with DDS.
This is an efficient real-time communication paradigm that
allows multicast communications, and thus it is very
interesting for control systems (especially since the
schedulability analysis of multi-event synchronization can
be achieved [8]).

3.3 Distribution mechanism chosen
Some of the above disadvantages are not intrinsic to the
definition of the DSA but implementation dependent, like
interoperability or real-time communication support. The
ARM allows the addition of new rules, categorization
pragmas, or interfaces of new distribution services. But it is
worth noting that if those services are not standarized
vendors have little motivation to implement them.

However, some of those disadvantages are not a problem
for a HIS. For example, although CORBA offers better
interoperability among different vendors this is not usually
a core concern in a HIS because the developers have more
control over the whole software stack. Although complex
distributed high-integrity systems are usually developed by
more than one contractor, each safety-critical subsystem is
made by only one.

Reuse of past code written in different languages is also
desirable, but for HISs the testing and certification steps are
more costly. As said above, the DSA simplifies testing
because exactly the same source code can be tested as a
distributed or centralized program, and certification is

S. Urueña, J. Zamorano 261

Ada User Journal Volume 28, Number 4, December 2007

easier thanks to the whole application checks and because
less code is written due to its higher abstraction level
compared to the others communication mechanism (on the
other hand, if more code is generated the programmer has
less control of the code, so this should be further
investigated).

Some DSA problems found in Ada 95 has been fixed in the
technical corrigendum 1 (like some defects related with
heterogeneous systems [2]) and in Ada 2005 (more
implementation freedom because it is not required to use
the partition communication subsystem interface defined in
System.RPC). In summary, the DSA is a good foundation
for the development of distributed systems, namely HIS
ones. In the next section we will discuss the specific
problems that must be fixed in the DSA to be able to
develop a hard real-time distributed HIS.

4 Restrictions
The Annex E is not disallowed in the Ravenscar profile as
defined in Ada 2005. Moreover, at least one of the DSA
implementations —PolyORB— can be configured to be
Ravenscar compliant. However, the language standard is
not designed for distributed real-time systems, so a set of
changes is needed to adapt the Annex E to safety-critical
distributed systems with hard deadlines.

Some features needed for basic real-time communication
were proposed in the past, like messages priorities [14] or
non-blocking asynchronous RPCs [7]. These were
successfully implemented in RT-GLADE [13], a research
real-time DSA prototype. In the future, another desirable
addition would be Publish/Subscribe, but the compatibility
with the current distribution model should be further
investigated.

But for high-integrity systems additional restrictions are
needed if the code must be certified, and also to predict if
all deadlines will be met. We will restrict the DSA
according to current response time analysis theory for
distributed systems. The objective is to introduce the
minimum restrictions to retain the required programming
expressiveness and to permit the reuse of existing code.

4.1 Compulsory restrictions
The restrictions were designed to obtain the required degree
of predictability and timeliness needed in a hard real-time
system, and to simplify the implementation of a safety-
critical middleware, thus easing its certification. In some
cases, a restriction could also be introduced to increase
performance. And because implementers do not want to
maintain more than one specialized run-time, the
restrictions must also be compatible with the existing
Ravenscar profile. This is the set of restrictions proposed:

• No remote access types: A connection for each
remote operation is created at elaboration time between
the sender and receiver partitions. It is never closed,
and new connections should not be established after
elaboration time to avoid an excessive blocking time
(e.g. similar to the No_Local_Protected_Objects, or
No_Task_Allocators restrictions). Therefore, the exact

number of interconnections must be known at compile
time (actually when the distributed application is
configured [9, §E.1(15)], just before the binary for
each partition is generated). This can be hard to predict
if remote-access-types (access types to remote
subprograms and to remote class-wide-types) are
allowed. Another advantage is that the set of resources
needed for all connections can be predicted at compile
time.

• No concurrent remote calls: For predictability
reasons, a remote operation cannot be called while
processing a past invocation (to the same remote
subprogram). This implies there is no wait queue in
every remote operation, easing the response time
analysis. This is similar to the existing restriction
Max_Entry_Queue_Length => 1. Another advantage
derived from this rule is the absence of loops in the call
graph, so no distributed deadlock can occur [21] if
there is one RPC handler for each operation of the
interface (static allocation of incoming operations, i.e.
there is no thread pool). Violations to this rule cannot
be detected by the compiler, only at run-time or with
tools similar to the SPARK examiner.

• Coordinated elaboration: A distributed application
cannot start until all its partitions had been elaborated.
The DSA is designed for general purpose distributed
systems, where some partitions can start executing
before others, for example in a client-server scheme [9,
§ E.1(13)]. However, in a real-time system it is not
acceptable to enqueue a remote call until the invoked
partition completes its elaboration [9, § E.4(14)]. It
also implies that there is a static number of partitions at
compilation time. This restriction is similar to the
sequential elaboration policy specified by the Ada
2005 pragma Partition_Elaboration_Policy, but it
should be noted that this pragma (from Annex H) is
not required by the Ravenscar profile.

One implication of the first restriction is that it would
disallow the distributed object paradigm. Other concern
about no dynamic connections is how to achieve fault
tolerance, one of the potential advantages of a distributed
system. Transparent partition replication can be the answer
(integrating a framework for fault tolerance directly in the
DSA implementation instead of in each application [18]),
but this issue must be further investigated.

The second restriction is needed for predictability reasons,
as done to protected objects when removing the entry
queue. And if only one task can be associated with a
protected entry, the same also applies with each remote
subprogram. Note that local deadlocks where avoided in
Ravenscar thanks to the Priority Ceiling Protocol, so the
absence of all types of deadlocks is an interesting property
for High-Integrity Systems.

It should be noticed that partition termination is already
disallowed: In the full DSA a partition can terminate either
because all their tasks have finished or when its
environment task is aborted. But this cannot happen in this

262 Bui ld ing High-Integr i ty Distr ibuted Systems with Ravenscar Restr ic t ions

Volume 28, Number 4, December 2007 Ada User Journal

high-integrity DSA because both restrictions are already
enforced by the Ravenscar profile (No_Task_Termination
and No_Abort_Statements). No partition termination
implies that a remote subprogram call cannot be cancelled
[9, §E.4(13)], simplifying the implementation of the
middleware.

4.2 Optional restrictions
Other restrictions were considered but later discarded
because —although useful for some types of high-integrity
systems— are not essential to perform a response time
analysis of the system or to simplify the implementation of
the run-time:

• Synchronous calls: if only asynchronous
communication is allowed then the RTA is simplified,
but this will reduce the programming expressiveness.
Audsley [4] proposed to disallow synchronous calls to
avoid excessive blocking time, but newer RTA
methods reduce the pessimism introduced in that
situations [16]. However, only asynchronous
operations should be used if the distributed application
is implemented in SPARK. Otherwise, an exception
can be raised if there is a communication error while
performing a synchronous call.

• Nested calls: if a synchronous remote subprogram
cannot perform another (blocking) remote call before
returning to the caller (a chain of calls) the response-
time analysis is greatly simplified. However, the
programming expressiveness will be also greatly
reduced, and although no nested calls is a sufficient
condition to avoid distributed deadlocks, they are
already avoided if concurrent calls are disallowed.

• Complex interpartition communication: if
unconstrained types or complex data structures (e.g.
linked list) are used as parameters in a remote
operation, it could be impossible to calculate the size
of the maximum message. But these types (if correctly
used) do not necessarily introduce any schedulability
problems, and the programming expressiveness would
be greatly reduced if this restriction is introduced.

Ravenscar deals with concurrent code, and disallowing the
transmission of these types would be equivalent to restrict a
sequential construct. The application programmer should
be allowed to have dynamic size messages, but depending
on the level of certification required these types can be
disallowed with the aid of external ASIS tools.

It is worth noting that the programmer must provide the
adequate marshalling and unmarshalling code (’Write and
’Read attributes) for types composed by non-remote access
types (see example 1). Therefore the programmer is aware
of the serialization costs, and the run-time does not have to
handle the serialization of complex data (like recursive
types [22]). Note that remote access to wide-access types
has no serialization problems because they must be limited.
They are not disallowed due to serialization costs but to
avoid dynamic connections.

4.3 Supported features
To summarize, thedistribution features supported are:

• Passive partitions: shared passive or pure packages
including atomic and volatile variables, and protected
objects (without entries).

• Static remote subprogram calls: remote type
packages as restricted above, and remote call interface
library units.

• Unconstrained parameters: unconstrained types and
(non-remote) access types are allowed in remote calls.

• Synchronous and asynchronous communication:
Synchronous communication for active and passive
partitions, and pragma Asynchronous to enable
asynchronous communication. Pragma
All_Calls_Remote is also allowed, useful mainly for
code debugging.

5 Implementation requirements
It is desirable that a task invoking a remote operation does
not delegate the message generation (including data
marshalling, message partitioning, composition of message
headers, and even message queueing) to another task to
avoid priority inversion. The network is usually non
preemptable, so total priority inversion is in general not
possible but it can be bounded. The receiver should then
process each call with thepriority specifiedin the message.

Each remote operation should be processed in the called
partition by a specific thread, including each instantiation
of a generic remote call interface (probably each generic
instantiation will be in different active partitions, but when
more than one is located in the same partition a common
thread for each operation is not allowed). Therefore, the
ARM requirement to have a reentrant RPC handler is no
longer needed in this restricted DSA.

The Program_Error exception is sent back to the caller in
the case the destination thread is still processing another
call, as done in the Ravenscar profile for tasks trying to
access an entry of a protected object in which another task
is already waiting. This cannot be detected at the calling
partition, only when the calling petition arrives to the
server, wasting some bandwidth. However, this should only
happen in the testing phase because it implies that the
program is erroneous.

It should be noticed that each partition can still have an
independent run-time system. No clock synchronization is
needed because the communication is message oriented
[15, p. 1.27], but of course a mechanism to obtain a certain
degree of common time is desirable in a real-time system.
This should be further investigated.

The implementation must document the communication
process, specifying if any step is delegated by another task
in the caller or called partition. It must be further
investigated the metrics that should be documented by the
implementation.

S. Urueña, J. Zamorano 263

Ada User Journal Volume 28, Number 4, December 2007

6 Examples
6.1 Fault-Tolerant inter-node communication
In the first use case the Flight Management System
communicates with different nodes, either using a high-
speed network, or through a bus (when the bandwidth
requirements arelow). The communication links are
replicated for fault-tolerance: To recover from transmission
errors, and to tolerate a broken link.

In the code of example 1 the Flight Management System
communicates with the Flight Plan Manager and with the
fuel-level sensor. The fuel-level sensor has low bandwidth
and CPU requirements, executing over a microcontroller
(minimal run-time system, notasking). The sensors are also
replicated. The Flight Plan Manager sometimes has high-
bandwidth requirements because in this example it must
transfer the complete planned route as a linked list to the
Flight Management System.

In our fictitious DSA implementation the middleware
handles transparently the replicated networks. But it should
be noticed that the replicated sensors are managed by
specific application code and not by the DSA
implementation.

6.2 Criticality segregation
Usually, the software of a high-integrity system has
different criticality levels. For example, Level A code is
considered mission critical, while Level B code will not
lead to catastrophic events if the software fails. A lower
criticality level implies less certification requirements, and
thus different verification and validation costs.

In this use case two hypothetical applications of different
criticality levels execute in the same hardware node, a
common approach in Integrated Modular Avionics (IMA).
The RTOS provides a different memory space and CPU
budget for each one, and a shared memory region for
communication between them. In the DSA terminology,
each application is an active partition, while the shared
memory region is a passive partition [9, §E.1(2)].

As can be seen in the example 2, the Flight Management
System writes the telemetry data in the passive partition
(pragma Shared Passive), while a task of the lower
criticality partition updates the displays. In our hypothetical
DSA implementation the Level A partition can be
configured to have R/W access to the passive partition and
read access only to the Level B partition. Therefore both
applications are completely isolated (so they can be
certified at different criticality levels) while the
communication is very fast and completely asynchronous.

7 Conclusions and future work
This position paper has discussed the changes needed in the
Ada Distributed Systems Annex (DSA) for developing
safety-critical distributed systems. Although currently the
DSA cannot be used in a distributed system with hard real-
time communication requirements, itis argued that the
Annex E is more adequate for this kind of High-Integrity
Systems than other industrial middlewares.

This paper briefly describes some of the real-time
capabilities needed for basic real-time communication, and
restricts the DSA to enable certification and to obtain the
required degree of predictability and timeliness. The
resulting profile is compatible with Ravenscar, and it is
believed it has enough programming expressiveness for the
development of complex safety-critical hard real-time
embedded distributed systems.

Finally, some topics like the documentation requirements
and fault-tolerance (probably through transparent
replication) must be further investigated. And a prototype is
needed in the future to validate the proposed distribution
mechanism, and to prove whether it can be successfully
implemented and certified.

References
[2] Ada Rapporteur Group. Ada Issue 249 — Ravenscar

profile for high-integrity systems. Ada Letters,
XXV(3), September 2005.

[3] Ada Issue 208 — What is the meaning of
“samerepresentation” in all partitions?, August 1999.

[4] L. Asplund, B. Johnson, and K. Lundqvist. Session
summary: The Ravenscar profile and implementation
issues. Ada Letters, XIX(25):12–14, 1999. Proceedings
of the 9th International Real-Time Ada Workshop.

[5] N. Audsley and A. Wellings. Issues with using
Ravenscar and the Ada distributed systems annex for
high-integrity systems. In IRTAW ’00: Proceedings of
the 10th international workshop on Real-time Ada
workshop, pages 33–39, New York, NY, USA, 2001.
ACM Press.

[6] J. Barnes. High Integrity Software: The SPARK
Approach to Safety and Security. Addison Wesley,
2003.

[7] A. Burns and A. J. Wellings. Real-Time Systems and
Programming Languages. Addison-Wesley, 3 edition,
2001.

[8] J. J.Gutiérrez and M. González Harbour. Towards a
real-time Distributed System Annex in Ada. Ada
Letters, XXI(1), 2001.

[9] J. J.Gutiérrez, J. Palencia, and M. González Harbour.
Schedulability analysis of distributed hard real-time
systems with multiple-event synchronization. In Proc.
12th Euromicro Conference on Real-Time Systems,
pages 15–24. IEEE CS Press, June 2000.

[10] ISO SC22/WG9. Ada 2005 Annotated Reference
Manual. ISO/IEC 8652:1995(E) with Technical
Corrigendum 1 and Amendment 1, 2006. Available on
http://www.adaic. com/standards/ada05.html.

[11] M. Joseph and P. Pandya. Finding response times in
real-time systems. BCS Computer Journal, 29(5):390–
395, 1986.

[12] Y. Kermarrec. CORBA vs. Ada 95 DSA: a
programmer’s view. In SIGAda’99: Proceedings of the

264 Bui ld ing High-Integr i ty Distr ibuted Systems with Ravenscar Restr ic t ions

Volume 28, Number 4, December 2007 Ada User Journal

1999 annual ACM SIGAda international conference on
Ada, pages39–46, New York, NY, USA, October
1999. ACM Press.

[13] P. Ledru and S. G. Shiva. Interpartition
communication with shared active packages. In TRI-
Ada ’96: Proceedings of the conference on TRI-Ada
’96, pages 57–62, New York, NY, USA, 1996. ACM
Press.

[14] J. López Campos, J. J. Gutiérrez, and M. González
Harbour. The chance for Ada to support distribution
and real-time in embedded systems. In A. Llamosí and
A. Strohmeier, editors, 9th International Conference on
Reliable Software Technologies — Ada-Europe 2004,
number 3063 in LNCS, pages 91–105, Palma de
Mallorca (Spain), 2004. Springer-Verlag.

[15] S. A. Moody. Session summary: Distributed Ada and
real-time. In IRTAW ’99: Proceedings of the ninth
international workshop on Real-time Ada, pages 15–
18, NewYork, NY, USA, March 1999. ACM Press.
Chairman: Michael González Harbour. Rapporteur:
Scott Arthur Moody.

[16] J. C. Palencia Gutiérrez, Análisis de planificabilidad
de Sistemas Distribuidos de Tiempo Real basados en
prioridades fijas. PhD thesis, Universidad de
Cantabria, 1999. Supervisor: Michael González
Harbour.

[17] J. C. Palencia Gutiérrez, and M. González Harbour.
Exploiting precedence relations in the schedulability
analysis of distributed real-time systems. In RTSS
1999: Proceedings of the 20th IEEE Real-Time
Systems Symposium, pages 328– 339, December
1999.

[18] L. Pautet and S. Tardieu. What future for the
distributed systems annex? In SIGAda ’99:
Proceedings of the 1999 annual ACM SIGAda
international conference on Ada, pages 77–82,
NewYork, NY, USA, 1999. ACM Press.

[19] L. M. Pinho and F. Vasques. Using Ravenscar to
support fault tolerant real-time applications. Ada
Letters, XXII(4):47–52,2002.

[20] C. Plummer and P. Plancke. The spacecraft onboard
interfaces, SOIS, standardisation activity. In DASIA
2002 — Data Systems in Aerospace, 2002.

[21] R. Rajkumar, M. Gagliardi, and L. Sha. The real-time
publisher/subscriber inter-process communication
model for distributed real-time systems: design and
implementation. In Proceedings of the First IEEE Real-
Time Technology and Applications Symposium
(RTAS’95), 1995, pages 66–75, Los Alamitos, CA,
USA, May 1995. IEEE Computer Society.

[22] C. Sánchez, H. B. Sipma, Z. Manna, V. Subramonian,
and C. Gill. On efficient distributed deadlock
avoidance for real-time and embedded systems. In
Proceedings of the 20th International Parallel and
Distributed Processing Symposium, 2006. IPDPS
2006. IEEE Computer Society, April 2006.

[23] D. Tejera, A. Alonso, and M. A. de Miguel.
Predictable serialization in Java. In IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC’07), May 2007.

[24] K. Thomas. Parallel programming in Ada 95 and MPI.
Ada User Journal, 21(2):143–152, July 2000.

[25] K. Tindell and J. Clark. Holistic schedulability
analysis for distributed hard real-time systems.
Microprocessing and Microprogramming,
40(2-3):117–134, April 1994. Euromicro Journal
(Special Issue on Parallel Embedded Real-Time
Systems).

[26] T.Vergnaud, J. Hugues, L. Pautet, and F. Kordon.
PolyORB: a schizophrenic middleware to build
versatile reliable distributed applications. In
Proceedings of the 9th International Conference on
Reliable Software Techologies Ada-Europe 2004
(RST’04), volume LNCS 3063, pages 106–119, Palma
de Mallorca, Spain, June 2004. Springer Verlag.

S. Urueña, J. Zamorano 265

Ada User Journal Volume 28, Number 4, December 2007

Example 1. Internode communication. Of course, a
Remote Call Interface is assigned only to one active
partition. A Remote Types unit is needed in this example
because access types cannot be declared in a Remote Call
Interface.

−− Node 1
package Sensors.Fuel is
pragma Remote_Call_Interface;
 type Fuel_Level is delta 0.001 range 0.0 .. 100.0;
 function Current_Fuel_Level return Fuel_Level ;
end ;

−− A Remote Types unit is replicated in every partition
 that includes it (node 2 and 3).
with GPS;
with Ada. Streams;
package Routing is
 pragma Remote_Types;

 type Flight_Plan is private;
 procedure Flight_Plan_Write (
 Stream : not null access
 Ada.Streams.Root_Stream_Type’Class;
 Item : in Flight_Plan);
 procedure Flight_Plan_Read (
 Stream : not null access
 Ada.Streams.Root_Stream_Type’Class;
 Item : out Flight_Plan);
 for Flight_Plan’Write
 use Flight_Plan_Write; - - user−defined marshalling
 for Flight_Plan’Read
 use Flight_Plan_Read ; - - user−defined unmarshalling
private
 type Flight_Plan is record −− Linked list
 Waypoint : GPS.Coordinates;
 Next : access Flight_Plan;
 end record;
end;

−− Node 2
with Routing ;
package Flight_Plan_Management is
 pragma Remote_Call_Interface;
 procedure Planned_Route (
 Route: out Routing.Flight_Plan);
end;

−− Node 3
with Sensors.Fuel;
with Routing;
with Flight_Plan_Management;
procedure Flight_Management_System is
 Fuel : Sensors.Fuel.Fuel_Level;
 Route : Routing.Flight_Plan;
 −− ...
begin
 loop
 −− ...

 Fuel := Sensors.Fuel.Current_Fuel_Level;
 −− ...
 Flight_Plan_Management.Planned_Route (Route);
 −− ...
 end loop;
end;

Example 2. Criticality segregation. A Shared Passive unit
can be assigned only to one partition because it has state
and can declare public variables. It is preelaborated, and
can depend only on Pure units or other Shared Passive
packages.

−− Shared memory area partitions Level A and B
with Instruments;
package Telemetry is
 pragma Shared_Passive;

 Current_Altitude : Instruments.Altitude;
 Current_Latitude : Instruments.Latitude;
 Current_Longitude : Instruments.Longitude;
 Current_TAS : Instruments.True_Airspeed;
 pragma Atomic (Current_Altitude);
 pragma Atomic (Current_Latitude);
 pragma Atomic (Current_Longitude);
 pragma Atomic (Current_TAS);
end;

−− Partition Level B
with Telemetry;
package body Displays is

 task body Display_Manager is
 −− ...
 begin
 loop
 −− ...
 Print_Display1 (Telemetry.Current_Altitude,
 Telemetry.Current_Latitude,
 Telemetry.Current_Longitude,
 Telemetry.Current_TAS);
 −− ...
 end loop ;
 end;
end;

−− Partition Level A
with Telemetry;
with Sensors. Altitude;
procedure Flight_Management_System is
 −− ...
begin
 loop
 −− ...
 Telemetry.Current_Altitude :=
 Sensors.Altitude.Current_Altitude;
 −− ...
 end loop;
end;

 267

Ada User Journal Volume 28, Number 4, December 2007

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Ada Gem #1: Limited Types in Ada
2005 — Limited Aggregates
Bob Duff, AdaCore
Date: 14 May 2007

Abstract: Ada 2005 allows construction of limited objects via
aggregates, thus gaining the advantage of the full coverage
rules, which was previously available only for non limited
types.

Let’s get started…
One of my favorite features of Ada is the “full coverage rules”
for aggregates. For example, suppose we have a record type:

 type Person is
 record
 Name : Unbounded_String;
 Age : Years;
 end record;

We can create an object of the type using an aggregate:

 X : constant Person :=
 (Name => To_Unbounded_String (”John Doe”),
 Age => 25);

The full coverage rules say that every component of Person
must be accounted for in the aggregate. If we later modify type
Person by adding a component:

 type Person is
 record
 Name : Unbounded_String;
 Age : Natural;
 Shoe_Size : Positive;
 end record;

and we forget to modify X accordingly, the compiler will
remind us. Case statements also have full coverage rules,
which serve a similar purpose.
Of course, we can defeat the full coverage rules by using
“others” (usually for array aggregates and case statements, but
occasionally useful for record aggregates):

 X : constant Person :=
 (Name => To_Unbounded_String (”John Doe”),
 others => 25);

According to the Ada RM “others” here means precisely the
same thing as “Age | Shoe_Size”. But that’s wrong: what
“others” really means is “all the other components, including
the ones we might add next week or next year”. That means
you shouldn’t use “others” unless you’re pretty sure it should
apply to all the cases that haven’t been invented yet.

So far, this is old news — the full coverage rules have been
aiding maintenance since Ada 83. So what does this have to do
with Ada 2005?
Suppose we have a limited type:

 type Limited_Person is limited
 record
 Self : Limited_Person_Access :=
 Limited_Person’Unchecked_Access;
 Name : Unbounded_String;
 Age : Natural;
 Shoe_Size : Positive;
 end record;

This type has a self-reference; it doesn’t make sense to copy
objects, because Self would end up pointing to the wrong
place. Therefore, we would like to make the type limited, to
prevent programmers from accidentally making copies. After
all, the type is probably private, so the client programmer
might not be aware of the problem. We could also solve that
problem with controlled types, but controlled types are
expensive, and add unnecessary complexity if not needed.
In Ada 95, aggregates were illegal for limited types. Therefore,
we would be faced with a difficult choice: Make the type
limited, and initialize it like this:

 X : Limited_Person;
 X.Name := To_Unbounded_String ("John Doe");
 X.Age := 25;

which has the maintenance problem the full coverage rules are
supposed to prevent. Or, make the type nonlimited, and gain
the benefits of aggregates, but lose the ability to prevent
copies.
In Ada 2005, an aggregate is allowed to be limited; we can
say:

 X : aliased Limited_Person :=
 (Self => null, - - Wrong!

 Name => To_Unbounded_String (”John Doe”),
 Age => 25,
 Shoe_Size => 10);
 X.Self := X’Access;

We’ll see what to do about that “Self => null” in a future gem.
One very important requirement should be noted: the
implementation is required to build the value of X “in place”;
it cannot construct the aggregate in a temporary variable and
then copy it into X, because that would violate the whole point
of limited objects — you can’t copy them

268 Ada Gems

Volume 28, Number 4, December 2007 Ada User Journal

Ada Gem #2: Limited Types in Ada
2005 — <> Notation in Aggregates
Bob Duff, AdaCore
Date: 21 May 2007

Abstract: The <> notation may be used in aggregates to
request the default value for certain components.

Let’s get started…
Last week [previous gem in this issue —ed], we noted that
Ada 2005 allows aggregates for limited types. Such an
aggregate must be used to initialize some object (which
includes parameter passing, where we are initializing the
formal parameter). Limited aggregates are “built in place” in
the object being initialized.
Here’s the example:

 type Limited_Person is limited
 record
 Self : Limited_Person_Access :=
 Limited_Person’Unchecked_Access;
 Name : Unbounded_String;
 Age : Natural;
 Shoe_Size : Positive;
 end record;
 X : aliased Limited_Person :=
 (Self => null, - - Wrong!

 Name => To_Unbounded_String (”John Doe”),
 Age => 25,
 Shoe_Size => 10);
 X.Self := X’Access;

It seems uncomfortable to set the value of Self to the wrong
value (null) and then correct it. It also seems annoying that we
have a (correct) default value for Self, but in Ada 95, we can’t
use defaults with aggregates. Ada 2005 adds a new syntax in
aggregates — “<>” means “use the default value, if any”.
Here, we can say:

 X : aliased Limited_Person :=
 (Self => <>,
 Name => To_Unbounded_String (”John Doe”),
 Age => 25,
 Shoe_Size => 10);

The “Self => <>” means use the default value of
Limited_Person’Unchecked_Access. Since Limited_Person
appears inside the type declaration, it refers to the “current
instance” of the type, which in this case is X. Thus, we are
setting X.Self to be X’Unchecked_Access.
Note that using “<>” in an aggregate can be dangerous,
because it can leave some components uninitialized. “<>”
means “use the default value”. If the type of a component is
scalar, and there is no record-component default, then there is
no default value.
For example, if we have an aggregate of type String, like this:

 Uninitialized_String_Const : constant String :=
 (1..10 => <>);

we end up with a 10-character string all of whose characters

are invalid values. Note that this is no more nor less dangerous
than this:

 Uninitialized_String_Var : String (1..10); -- no initialization
 Uninitialized_String_Const : constant String :=
 Uninitialized_String_Var;

As always, one must be careful about uninitialized scalar
objects.

Ada Gem #12: Limited Types in Ada
2005 — <> Notation Part 2
Bob Duff, AdaCore
Date: 8 October 2007

Abstract: We show how the <> notation in aggregates may be
used to make better use of record-component default values,
thus avoiding duplication of code.

Let’s get started…
Have you ever written Ada 95 code like this?

 package P is
 type T is private;
 …
 private
 type T is
 record
 Color : Color_Enum := Red;
 Is_Gnarly : Boolean := False;
 Count : Natural;
 end record;
 end P;
 package body P is
 Object_100 : constant T :=
 (Color => Red, Is_Gnarly => False, Count => 100);
 …
 end P;

We want Object_100 to be a default-initialized T, with Count
equal to 100. It’s a little bit annoying that we had to write the
default values Red and False twice. What if we change our
mind about Red, and forget to change it in all the relevant
places?
The “<>” notation comes to the rescue. If we want to say,
“make Count equal 100, but initialize Color and Is_Gnarly to
their defaults”, we can do this:

 Object_100 : constant T :=
 (Color => <>, Is_Gnarly => <>, Count => 100);

On the other hand, if we want to say, “make Count equal 100,
but initialize all other components, including the ones we
might add next week, to their defaults”, we can do this:

 Object_100 : constant T := (Count => 100, others => <>);

Note that if we add a component “Glorp : Integer;” to type T,
then the “others” case leaves Glorp undefined just as this Ada
95 code would do:

 Object_100 : T;
 Object_100.Count := 100;

Think twice before using “others”.

Ada Gems 269

Ada User Journal Volume 28, Number 4, December 2007

Ada Gem #3: Limited Types in Ada
2005 — Constructor Functions
Bob Duff, AdaCore
Date: 28 May 2007

Abstract: Constructor functions may be used to create objects
of limited types. The result of such function calls is built “in
place” in the actual object being created.

Let’s get started…
Given that Ada 2005 allows build-in-place aggregates for
limited types, the obvious next step is to allow such aggregates
to be wrapped in an abstraction — namely, to return them
from functions. After all, interesting types are usually private,
and we need some way for clients to create and initialize
objects.

 package P is
 type T (<>) is limited private;
 function Make_T (Name : String)
 return T; - - constructor function
 private
 type T is limited
 record
 Name : Unbounded_String;
 My_Task : Some_Task_Type;
 My_Prot : Some_Protected_Type;
 end record;
 end P;
 package body P is
 function Make_T (Name : String) return T is
 begin
 return (Name => To_Unbounded_String (Name),
 others => <>);
 end Make_T;
 end P;

In Ada 95, constructor functions (that is, functions that create
new objects and return them) are not allowed for limited types.
Ada 2005 allows fully-general constructor functions. Given
the above, clients can say:

 My_T : T := Make_T (Name => "Bartholomew Cubbins");

As for aggregates, the result of Make_T is built in place (that
is, in My_T), rather than being created and then copied into
My_T. Adding another level of function call, we can do:

 function Make_Rumplestiltskin return T is
 begin
 return Make_T (Name => “Rumplestiltskin”);
 end Make_Rumplestiltskin;
 Rumplestiltskin_Is_My_Name : constant T :=
 Make_Rumplestiltskin;

It might help to understand the implementation model: In this
case, Rumplestiltskin_Is_My_Name is allocated in the usual
way (on the stack, presuming it is declared local to some
subprogram). Its address is passed as an extra implicit
parameter to Make_Rumplestiltskin, which then passes that
same address on to Make_T, which then builds the aggregate
in place at that address. Limited objects must never be copied!
In this case, Make_T will initialize the Name component, and

create the My_Task and My_Prot components, all directly in
Rumplestiltskin_Is_My_Name.
Note that Rumplestiltskin_Is_My_Name is constant. In Ada
95, it is impossible to create a constant limited object, because
there is no way to initialize it.
As in Ada 95, the “(<>)” on type T means that it has
“unknown discriminants” from the point of view of the client.
This is a trick that prevents clients from creating default-
initialized objects (that is, “X : T;” is illegal). Thus clients
must call Make_T whenever an object of type T is created,
giving package P full control over initialization of objects.
Ideally, limited and nonlimited types should be just the same,
except for the essential difference: you can’t copy limited
objects. Allowing functions and aggregates for limited types in
Ada 2005 brings us very close to this goal. Some languages
have a specific feature called “constructor”. In Ada, a
“constructor” is just a function that creates a new object.
Except that in Ada 95, that only works for nonlimited types.
For limited types, the only way to “construct” on declaration is
via default values, which limits you to one constructor. And
the only way to pass parameters to that construction is via
discriminants. In Ada 2005, we can say:

 This_Set : Set := Empty_Set;
 That_Set : Set := Singleton_Set (Element => 42);

whether or not Set is limited. “This_Set : Set := Empty_Set;”
seems clearer to me than:

 This_Set : Set;

which might mean “default-initialize to the empty set” or
might mean “leave it uninitialized, and we’ll initialize it in
later”.

Ada Gem #11: Limited Types in Ada
2005 — Constructor Functions
Part 2
Bob Duff, AdaCore
Date: 1 October 2007

Abstract: We show here how limited constructor functions
can be used in various contexts to build new limited objects in
place.

Let’s get started…
We’ve earlier seen examples of constructor functions for
limited types similar to this:

 package P is
 type T (<>) is limited private;
 function Make_T (Name : String)
 return T; -- constructor function
 private
 type T is new Limited_Controlled with
 record
 …
 end record;
 end P;
 package body P is
 function Make_T (Name : String) return T is

270 Ada Gems

Volume 28, Number 4, December 2007 Ada User Journal

 begin
 return (Name => To_Unbounded_String (Name),
 others => <>);
 end Make_T;
 end P;
 function Make_Rumplestiltskin return T is
 begin
 return Make_T (Name => “Rumplestiltskin”);
 end Make_Rumplestiltskin;

It is useful to consider the various contexts in which these
functions may be called. We’ve already seen things like:

 Rumplestiltskin_Is_My_Name : T :=
 Make_Rumplestiltskin;

in which case the limited object is built directly in a standalone
object. This object will be finalized whenever the surrounding
scope is left.
We can also do:

 procedure Do_Something (X : T);

 Do_Something (X => Make_Rumplestiltskin);

Here, the result of the function is built directly in the formal
parameter X of Do_Something. X will be finalized as soon as
we return from Do_Something.
We can allocate initialized objects on the heap:

 type T_Ref is access all T;
 Global : T_Ref;

 procedure Heap_Alloc is
 Local : T_Ref;
 begin
 Local := new T’(Make_Rumplestiltskin);
 if … then
 Global := Local;
 end if;
 end Heap_Alloc;

The result of the function is built directly in the heap-allocated
object, which will be finalized when the scope of T_Ref is left
(long after Heap_Alloc returns).
We can create another limited type with a component of type
T, and use an aggregate:

 type Outer_Type is limited
 record
 This : T;
 That : T;
 end record;
 Outer_Obj : Outer_Type :=
 (This => Make_Rumplestiltskin,
 That => Make_T (Name => “”));

As usual, the function results are built in place, directly in
Outer_Obj.This and Outer_Obj.That, with no copying
involved.
The one case where we _cannot_ call such constructor
functions is in an assignment statement:

 Rumplestiltskin_Is_My_Name :=
 Make_T(Name => ""); - - Illegal!

which is illegal because assignment statements involve
copying. Likewise, we can’t copy a limited object into some
other object:

 Other : T := Rumplestiltskin_Is_My_Name; - - Illegal!

Ada Gem #10: Limited Types in Ada
2005 — Extended Return
Statements
Bob Duff, AdaCore
Date: 24 September 2007

Abstract: An extended_return_statement may be used to give
a name to the result object being created by a function.

Let’s get started…
A common idiom in Ada 95 is to build up a function result in a
local object, and then return that object:

 function Sum (A : Array_Of_Natural) return Natural is
 Result : Natural := 0;
 begin
 for Index in A’Range loop
 Result := Result + A (Index);
 end loop;
 return Result;
 end Sum;

Ada 2005 allows a notation called the
extended_return_statement, which allows you to declare the
result object and return it as part of one statement. It looks like
this:

 function Sum (A : Array_Of_Natural) return Natural is
 begin
 return Result : Natural := 0 do
 for Index in A’Range loop
 Result := Result + A (Index);
 end loop;
 end return;
 end Sum;

The return statement here creates Result, initializes it to 0, and
executes the code between “do” and “end return”. When “end
return” is reached, Result is automatically returned as the
function result.
For most types, this is no big deal — it’s just syntactic sugar.
But for limited types, this syntax is almost essential:

 function Make_Task (Val : Integer) return Task_Type is
 Result : Task_Type (Discriminant => Val * 3);
 begin
 … - - some statements
 return Result; - - Illegal!
 end Make_Task;

The return statement here is illegal, because Result is local to
Make_Task, and returning it would involve a copy, which
makes no sense (which is why task types are limited). In Ada
2005, we can write constructor functions for task types:

Ada Gems 271

Ada User Journal Volume 28, Number 4, December 2007

 function Make_Task (Val : Integer) return Task_Type is
 begin
 return Result : Task_Type (Discriminant => Val * 3) do
 … - - some statements
 end return;
 end Make_Task;

If we call it like this:

 My_Task : Task_Type := Make_Task (Val => 42);

Result is created “in place” in My_Task. Result is temporarily
considered local to Make_Task during the “… -- some
statements” part, but as soon as Make_Task returns, the task
becomes more global. Result and My_Task really are one and
the same object.
When returning a task from a function, it is activated after the
function returns. The “… -- some statements” part had better
not try to call one of the task’s entries, because that would
deadlock. That is, the entry call would wait until the task

reaches an accept statement, which will never happen, because
the task will never be activated.
While the extended_return_statement was added to the
language specifically to support limited constructor functions,
it comes in handy whenever you want a local name for the
function result:

 function Make_String (…) return String is
 Length : Natural := 10;
 begin
 if … then
 Length := 12;
 end if;
 return Result : String (1..Length) do
 … - - fill in the characters
 pragma Assert (Is_Good (Result)); null;
 end return;
 end Make_String;

272

Volume 28, Number 4, December 2007 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Peter Dencker
Steinäckerstr. 25
D-76275 Ettlingen-Spessartt
Germany
Email: dencker@web.de
URL: ada-deutschland.de

Ada-France
Association Ada-France
c/o Jérôme Hugues
Département Informatique et Réseau
École Nationale Supérieure des Télécomunications
46, rue Barrault
75634 Paris Cedex 135
France
Email: bureau@ada-france.org
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Saab Systems
S:t Olofsgatan 9A
SE-753 21
Uppsala
Sweden
Phone: +46 73 437 7124
Fax: +46 85 808 7260
Email: Rei.Strahle@saabgroup.com
URL: www.ada-i-sverige.se

Ada in Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.org

	Contents
	Editorial
	News
	Conference Calendar
	Secure software-download as part of a complexbusiness process
	13th International Real-Time Ada Workshop
	Session: Language Issues
	Correcting the EDF protocol in Ada 2005
	Integrating OOP and Tasking – The missing requeue
	Building High-Integrity Distributed Systems with Ravenscar Restrictions
	Ada Gems

