
  

Ada User Journal Volume 29, Number 2, June 2008 

ADA 
USER 
JOURNAL 

Volume 29 
Number 2 
June 2008 

 

Contents 
Page 

Editorial Policy for Ada User Journal 74 

Editorial 75 

News 77 

Conference Calendar 98 

Forthcoming Events 106 

Proceedings of the 13th International Real-Time Ada Workshop 

 A. Burns, A. Wellings 
“Session: Implementation Experience with Ada 2005” 112 

 S. Urueña, J. Pulido, J. Redondo, J. Zamorano 
“Implementing the New Ada 2005 Real-Time Features on a Bare Board Kernel” 114 

 M. Aldea Rivas, M. González Harbour 
“Operating System Support for Execution Time Budgets for Thread Groups” 120 

 J. Real, S. Michell 
“Session: Beyond Ada 2005” 124 

 A. Wellings, A. Burns 
“Beyond Ada 2005: Allocating Tasks to Processors in SMP Systems” 127 

 M. Ward, N. C. Audsley 
“Suggestions for Stream Based Parallel Systems in Ada” 133 

Ada Gems 140 

Ada-Europe Associate Members (National Ada Organizations) 144 

Ada-Europe 2008 Sponsors  Inside Back Cover 

 



74  

Volume 29, Number 2, June 2008 Ada User Journal 

Editorial Policy for Ada User Journal 
Publication 
Ada User Journal — The Journal for 
the international Ada Community — is 
published by Ada-Europe. It appears 
four times a year, on the last days of 
March, June, September and 
December. Copy date is the last day of 
the month of publication. 

Aims 
Ada User Journal aims to inform 
readers of developments in the Ada 
programming language and its use, 
general Ada-related software 
engineering issues and Ada-related 
activities in Europe and other parts of 
the world. The language of the journal 
is English. 

Although the title of the Journal refers 
to the Ada language, any related topics 
are welcome. In particular papers in 
any of the areas related to reliable 
software technologies. 

The Journal publishes the following 
types of material: 

• Refereed original articles on 
technical matters concerning Ada 
and related topics. 

• News and miscellany of interest to 
the Ada community. 

• Reprints of articles published 
elsewhere that deserve a wider 
audience. 

• Commentaries on matters relating 
to Ada and software engineering. 

• Announcements and reports of 
conferences and workshops. 

• Reviews of publications in the 
field of software engineering. 

• Announcements regarding 
standards concerning Ada. 

Further details on our approach to 
these are given below. 

Original Papers 
Manuscripts should be submitted in 
accordance with the submission 
guidelines (below). 

All original technical contributions are 
submitted to refereeing by at least two 
people. Names of referees will be kept 
confidential, but their comments will 
be relayed to the authors at the 
discretion of the Editor. 

The first named author will receive a 
complimentary copy of the issue of the 
Journal in which their paper appears. 

By submitting a manuscript, authors 
grant Ada-Europe an unlimited license 
to publish (and, if appropriate, 
republish) it, if and when the article is 
accepted for publication. We do not 
require that authors assign copyright to 
the Journal. 
Unless the authors state explicitly 
otherwise, submission of an article is 
taken to imply that it represents 
original, unpublished work, not under 
consideration for publication else-
where. 

News and Product Announcements 
Ada User Journal is one of the ways in 
which people find out what is going on 
in the Ada community. Since not all of 
our readers have access to resources 
such as the World Wide Web and 
Usenet, or have enough time to search 
through the information that can be 
found in those resources, we reprint or 
report on items that may be of interest 
to them. 

Reprinted Articles 
While original material is our first 
priority, we are willing to reprint (with 
the permission of the copyright holder) 
material previously submitted 
elsewhere if it is appropriate to give it 
a wider audience. This includes papers 
published in North America that are 
not easily available in Europe. 
We have a reciprocal approach in 
granting permission for other 
publications to reprint papers originally 
published in Ada User Journal. 

Commentaries 
We publish commentaries on Ada and 
software engineering topics. These 
may represent the views either of 
individuals or of organisations. Such 
articles can be of any length – 
inclusion is at the discretion of the 
Editor. 
Opinions expressed within the Ada 
User Journal do not necessarily 
represent the views of the Editor, Ada-
Europe or its directors. 

Announcements and Reports 
We are happy to publicise and report 
on events that may be of interest to our 
readers. 

Reviews 
Inclusion of any review in the Journal 
is at the discretion of the Editor. 
A reviewer will be selected by the 
Editor to review any book or other 
publication sent to us. We are also 
prepared to print reviews submitted 
from elsewhere at the discretion of the 
Editor. 

Submission Guidelines 
All material for publication should be 
sent to the Editor, preferably in 
electronic format. The Editor will only 
accept typed manuscripts by prior 
arrangement.  
Prospective authors are encouraged to 
contact the Editor by email to 
determine the best format for 
submission. Contact details can be 
found near the front of each edition. 
Example papers conforming to 
formatting requirements as well as 
some word processor templates are 
available from the editor. There is no 
limitation on the length of papers, 
though a paper longer than 10,000 
words would be regarded as 
exceptional. 
 
 



 75  

Ada User Journal Volume 29, Number 2, June 2008 

Editorial 
This June issue of the Journal is being finalised shortly after the Ada-Europe conference, which took place in the beautiful 
Venice, the 16th to 20th of June. I would like to congratulate the organizers, for the rich and enjoyable conference, not only in 
the contents of the program, but also in the logistics of the conference. As announced during the conference, next year the 
conference will take place in Brest, France, in the second week of June. You can find the preliminary announcement in the 
Forthcoming Events section of this issue. 

Another announcement that was put forward in Venice, and that I am pleased to second here, is the launch of the online 
archive of the Ada User Journal. This archive is still a work-in-progress, but already the Ada community may browse, consult 
and download contents of some of the back issues of the Journal. I invite all of you to the archives, reachable from the Journal 
section of the Ada-Europe webpage at www.ada-europe.org.  

As for the current issue (its contents will be available in the online archives one year from now!); in it we publish two more 
sessions of the Proceedings of the 13th International Real-Time Ada Workshop. The first session provides insight on the 
implementation of the new real-time services in two differente kernels: ORK (a work coming from the Technical University 
of Madrid, Spain) and MarteOS (from the University of Cantabria, Spain). In the second session, the participants started to 
look to future direction for Ada, with a focus on multiprocessing in SMP systems and stream based parallel systems, with two 
papers coming from the University of York, UK.   

To finalise, in the Ada Gems section we provide two gems on Ada and XML, by Pascal Obry and Emmanuel Briot. The 
News, Calendar and Forthcoming Events sections complete the issue. 

 

In memory of Peter Amey. 
Peter Amey passed away last April, shortly after the close of the March issue of the Journal. We express our condolences to 
his family and friends. 

 
Luís Miguel Pinho 

Porto 
June 2008 

Email: lmp@isep.ipp.pt 



 77 

Ada User Journal Volume 29, Number 2, June 2008 

News 
Santiago Urueña 
Technical University of Madrid (UPM). Email: Santiago.Uruena@upm.es 

 

Contents 
 
Ada-related Organizations 77 
Ada-related Events 77 
Ada and Education 80 
Ada-related Resources 81 
Ada-related Tools 81 
Ada-related Products 85 
Ada and Microsoft 88 
References to Publications 88 
Ada Inside 91 
Ada in Context 94 

Ada-related 
Organizations 
ARA — Ada Does  
Multicore Now 
From: Ada Information Clearinghouse 
Subject: Ada Does Multicore Now 
Date: March 19, 2008 
URL: http://www.adaic.com/whyada/ 

multicore.html 
Programming multicore systems is a hot 
topic these days. As Robert Dewar notes 
in his EE Times commentary, “There's 
nothing new about multicore mania”. Ada 
has been supporting multiprocessor, 
multicore, and multithreaded architectures 
as long it has existed. As he notes, 
“decades of experience have been 
accumulated in using Ada to deal with the 
problem of writing programs that run 
effectively on machines using more than 
one processor”. For some reason, many 
pundits are ignoring all of this experience 
and clamoring for new ways to do 
multiprocessor programs. Indeed, 
Microsoft thinks that a programming 
model for multicore systems “will not 
emerge for five to 10 years”, according to 
this Embedded.com article. 
[http://www.embedded.com/news/ 
embeddedindustry/201200461] 
While we're all waiting for that to happen, 
Ada practitioners will be using Ada to 
build high-performance multicore 
applications. For instance, Karl Nyberg of 
Grebyn Corporation won a Sun Fire 
T1000 server in Sun Microsystems Open 
Performance Contest by building a 
parallel application using Ada. No need to 
wait 10 years. 
Overview of Ada's concurrency features 
A concurrent program typically comprises 
active components that interact with each 
other either directly or through shared 

resources. Ada directly supports each of 
these elements. An active component is 
modeled by a task, Ada's unit of 
concurrent execution. Direct 
communication between two tasks is 
achieved by a rendezvous, which provides 
synchronous passing of data. A shared 
resource can be mapped to a protected 
object (which provides mutual exclusion) 
or to other less general features. These 
semantic building blocks are high-level 
enough to be appropriate for modeling the 
architecture of a concurrent program. Ada 
tasks (logical threads of execution) can be 
mapped to multiple processors, to 
multiple threads on a single processor 
(with or without hardware support), or to 
multiple cores of a single processor, 
depending on the compiler and target 
environment. The program need not 
change to run in any of these 
environments. 
Resources on Ada's concurrency features 
A brief overview of Ada tasks and related 
features (with examples) can be found in 
the Tasking section of the Ada 
Programming Wikibook. An equally brief 
introduction can be found in Chapter 19 
of Ada 95: The Craft of Object Oriented 
Programming. Sections can be found in 
other free resources on Ada as well; see 
our free textbooks page for other 
examples. [http://www.adaic.com/free/ 
freebook.html] The “bible” of Ada 
tasking is the book Concurrent and Real-
Time Programming in Ada by Burns and 
Welling. It has recently been revised to 
include Ada 2005 features and recent 
research in the field. 
[See also “There’s nothing new about 
multicore mania — EE Times” in AUJ 
29-1 (Mar 2008), p.17. —su] 

ARA — Ada Helps Build 
Safe Systems 
From: Ada Information Clearinghouse 
Subject: Ada Helps Build Safe Systems 
Date: May 16, 2008 
URL: http://www.adaic.com/whatsnew.html 
“Ada Helps Build Safe Systems” is a new 
page gathering together articles from the 
trade press on Ada and high-integrity 
systems. 
[http://www.adaic.com/whyada/ 
safety.html —su] 

ARA — Enhance Security 
With Ada 
From: Ada Information Clearinghouse 
Subject: Enhance Security With Ada 

Date: May 23, 2008 
URL: http://www.adaic.com/whatsnew.html 
“Enhance Security With Ada” is a new 
page gathering together articles from the 
trade press on Ada and security. 
[http://www.adaic.com/whyada/ 
security.html —su] 

ARA — ACATS 3.0D 
From: Ada Information Clearinghouse 
Subject: UpDate: Ada Conformity 

Assessment Test Suite 
Date: May 30, 2008 
URL: http://www.adaic.com/whatsnew.html 
ACATS Modification List 3.0D and the 
associated test files have been posted. 
[See also “ARA — ACATS 3.0” in AUJ 
29-1 (Mar 2008), p.5. —su] 

Ada-related Events 
 
[To give an idea about the many Ada-
related events organized by local groups, 
some information is included here.  If you 
are organizing such an event feel free to 
inform us as soon as possible.  If you 
attended one please consider writing a 
small report for the Ada User Journal.   
—su] 

May 18 — Ada-Belgium 
From: Dirk Craeynest 

<Dirk.Craeynest@cs.kuleuven.be> 
Subject: Ada-Belgium Spring 2008 Event, 

incl. Debian packaging workshop 
Date: Sat, 3 May 2008 22:26:51 +0200 

(CEST) 
Organization: Ada-Belgium, c/o Dept. of 

Computer Science, K.U.Leuven 
Newsgroups: 

comp.lang.ada,fr.comp.lang.ada 
A d a - B e l g i u m   S p r i n g   2 0 0 8   

E v e n t 
Sunday, May 18, 2008, 12:00-19:00 

Leuven, Belgium 
including at 14:00 

2008 Ada-Belgium General Assembly 
and at 15:00 

Workshop on Creating Debian Packages 
of Ada Software 

<http://www.cs.kuleuven.ac.be/~dirk/ 
ada-belgium/events/local.html> 

Announcement 
The next Ada-Belgium event will take 
place on Sunday, May 18, 2008 in 
Leuven. 
The Ada-Belgium Board decided to 
propose a more interactive and social 



78  Ada-related Events 

Volume 29, Number 2, June 2008 Ada User Journal 

format than our traditional evening events 
based on a General Assembly followed by 
a technical presentation.  Therefore, this 
event starts at noon, runs until 7pm, and 
includes a barbecue, a key signing party, 
the 15th General Assembly of the 
organization, and a workshop on 
packaging Ada software for Debian 
hosted by Ludovic Brenta, principal 
maintainer of Ada in Debian. 
Schedule 
⁃ 12:00 welcome and getting started 

(setting up computers and preparing 
food — please be there!) 
⁃ 13:00 barbecue 
⁃ 14:00 Ada-Belgium General Assembly 
⁃ 14:45 key signing party 
⁃ 15:00 workshop on creating Debian 

packages of Ada software 
⁃ 19:00 end 
Participation 
Everyone interested (members and non-
members alike) is welcome at any or all 
parts of this event. 
For practical reasons registration is 
required.  If you would like to attend, 
please send an email before Tuesday, 
May 13, to Dirk Craeynest 
<Dirk.Craeynest@cs.kuleuven.be> with 
the subject “Ada-Belgium Spring 2008 
Event”, so you can get precise directions 
to the place of the meeting. 
If you are a member but have not renewed 
your affiliation yet, please do so by 
paying the appropriate fee before the 
General Assembly (you have also 
received a printed request via normal 
mail).  If you are interested to become a 
new member, please register by filling out 
the 2008 membership application form[1] 
and by paying the appropriate fee before 
the General Assembly. After payment you 
will receive a receipt from our treasurer 
and you are considered a member of the 
organization for the year 2008 with all 
member benefits[2].  Early renewal 
ensures you receive the full Ada-Belgium 
membership benefits (including the Ada-
Europe indirect membership benefits 
package). 
As mentioned at earlier occasions, we 
have a limited stock of documentation 
sets and Ada related CD-ROMs that were 
distributed at previous events.  Most 
important are back issues of the Ada User 
Journal[3].  These will be available on a 
first-come first-serve basis at the General 
Assembly for current and new members. 
[1] http://www.cs.kuleuven.be/~dirk/ 

ada-belgium/forms/member-
form08.html 

[2] http://www.cs.kuleuven.be/~dirk/ 
ada-belgium/member-benefit.html 

[3] http://www.ada-europe.org/ 
journal.html 

Barbecue 
The organization will provide food and 
beverage to all Ada-Belgium members.  
Non-members who want to participate at 
the barbecue are also welcome: they can 
choose to join the organization or pay the 
ludicrous sum of TEN EUROS per person 
to the Treasurer of the organization. 
General Assembly 
All Ada-Belgium members have a vote at 
the General Assembly, can add items to 
the agenda, and can be a candidate for a 
position on the Board[4].  See the separate 
official convocation[5] for all details. 
[4] http://www.cs.kuleuven.be/~dirk/ada-

belgium/board/ 
[5] http://www.cs.kuleuven.be/~dirk/ada-

belgium/events/08/080518-abga-
conv.html 

Key Signing Party 
Wouldn't it be nice if a majority of people 
used GPG to sign their email every day so 
that you could send all non-signed email 
into the spam bin?  To make that dream 
come true, please join and expand the 
global Web of Trust! [6] 
What you should bring with you: 
- an official ID card issued by your 

national government; 
- your GPG key fingerprint (i.e. the output 

of gpg --fingerprint) on small paper 
slips; a dozen copies or so should be 
enough. 

What you will go home with: 
- signatures from all other participants; 
- automatic inclusion in the global Web of 

Trust; 
- the ability to digitally sign or encrypt 

anything you like. 
[6] http://en.wikipedia.org/wiki/ 

Web_of_Trust 
Workshop: Packaging Ada Software for 
Debian 
Debian[7], “The Universal Operating 
System”, is simply the best platform for 
the enthusiast Ada developer.  The 
features that distinguish Debian from the 
rest are: 
- a binary distribution that avoids the need 

to recompile Florist, ASIS, GtkAda and 
all other Ada packages; 

- a large number of packages intended for 
Ada developers; 

- a clear and consistent policy[8] making 
all packages integrate seamlessly and 
interoperate; 

- outstanding support for the Ada part of 
the GNU Compiler Collection (GCC) 
with unique innovations like libgnatvsn 
and libgnatprj not found anywhere else; 

- backports of bug fixes from the bleeding 
edge of GCC development into the safe 

and stable compiler used for all Debian 
packages; 

- support for more hardware architectures 
than any other Ada distribution: alpha, 
amd64, hppa, i386, ia64, kfreebsd-i386, 
powerpc, s3980 and sparc (with mips, 
mipsel and ppc64 added recently). 

- a choice between “stable”, “testing” and 
“unstable” versions of Debian to suit 
personal preferences; 

- Debian is the mother of Ubuntu, 
Knoppix and dozens of other 
distributions which sometimes 
incorporate the Ada packages. 

The goal of the workshop is to help 
people participate in this effort to bring 
even more Ada software to Debian, or to 
help maintain the existing packages. 
What you should bring with you: 
- your computer, already installed with 

Debian unstable or with an unstable 
chroot already created (see below); 

- network cables (or WiFi already 
configured); 

- monitor and keyboard, if your computer 
is not a laptop; 

- power cables; 
- some Ada software you would like to 

see in Debian but is not there (not 
necessarily software that you wrote; any 
software with a license permitting 
redistribution in source and binary form 
will do). 

Note 1: if your computer does not run 
Debian as its main operating system, you 
can install Debian in a virtual machine 
(VMWare or other), in a jail on a 
FreeBSD system (Debian kfreebsd-i386), 
or in a chroot on any other distribution.  
Danny Beullens will offer help and 
assistance to those who would like to 
install Debian in a VMWare virtual 
machine. 
Note 2: if you would like to install Debian 
as your main operating system but are 
uncomfortable doing so by yourself, 
please get in touch with your nearest 
Linux User Group (e.g. 
http://www.bxlug.be in Brussels). 
What Ludovic Brenta will do for you: 
- set up a local Debian mirror, so you can 

install or upgrade packages necessary 
for Ada package development; 

- explain how to package Ada software 
for Debian; 

- help you package your own program or 
library; 

- answer questions about GNAT, GCC, 
Debian, etc.; 

- if your package is suitable for inclusion 
in Debian, sponsor it for you. 

What you will go home with: 
- your own .deb packages installed on 

your computer; 



Ada-related Events 79  

Ada User Journal Volume 29, Number 2, June 2008 

- better understanding of how packaging 
works; 

- better understanding of the Debian 
Policy for Ada; 

- if your package is suitable, your name 
on the Debian Package Tracking System 
and your package on the next Debian 
DVD or CD-ROM distribution. 

[7] http://www.debian.org/ 
[8] http://www.ada-france.org/ 

debian/debian-ada-policy.html 
Directions 
To permit this more interactive and social 
format, the event takes place at private 
premises in Leuven.  As instructed above, 
please inform us by e-mail if you would 
like to attend, and we'll provide you 
precise directions to the place of the 
meeting.  Obviously, the number of 
participants we can accommodate is not 
unlimited, so don't delay... 
Looking forward to meet many of you in 
Leuven! 
[See also “Jun 12 — Ada-Belgium” in 
AUJ 28-2 (Jun 2007), pp.70–71. —su] 

Jun 16–20 — Ada-Europe 
2008 
From: Dirk Craeynest 

<Dirk.Craeynest@cs.kuleuven.be> 
Subject: Press Release — Reliable Software 

Technologies, Ada-Europe 2008 
To: Ada-Europe-attendees@cs.kuleuven.be 
Date: Sun, 8 Jun 2008 21:44:40 +0200 

(MEST) 
FINAL Call for Participation 

13th International Conference on 
Reliable Software Technologies — Ada-

Europe 2008 
16 – 20 June 2008, Venice, Italy 

http://www.ada-europe.org/ 
conference2008.html 

Press release: 
Ada-Europe Conference on Reliable 
Software Technologies 
International experts meet in Venice 
Venice (8 June 2008 21:00) — Ada-
Europe, in cooperation with ACM's 
Special Interest Group on Ada, organizes 
the “13th International Conference on 
Reliable Software Technologies — Ada-
Europe 2008” from 16 to 20 June in 
Venice, Italy. 
The conference offers two days of 
tutorials, a full technical program of 
refereed papers, a collection of industrial 
presentations reflecting current practice 
and challenges, an educational track, three 
invited speakers, an industrial exhibition, 
and a social program. 
The 10 excellent tutorials on Monday and 
Friday cover a broad range of topics: 
AADL — Architecture Analysis and 

Design Language, A Practical 
Introduction to Model-Driven Software 
Development using Eclipse, The Best of 
Ada 2005, Object-Oriented Programming 
in Ada 2005, Preserving Model-Asserted 
Properties at Run Time for High-Integrity 
Systems, Technical Basis of Model 
Driven Engineering, Languages for 
Safety-Critical Software — Issues and 
Assessment, Service-Oriented 
Architecture Concepts and 
Implementations, Verification Techniques 
for Dependable Systems, and Real-Time 
Scheduling Analysis of Ada Applications. 
The technical program presents 20 
refereed and carefully selected papers on 
the latest research, new tools, applications 
and industrial practice and experience, a 
collection of 11 industrial presentations 
reflecting current practice and challenges, 
and 4 presentations plus a panel 
discussion on Ada and Education. 
Springer Verlag publishes the proceedings 
of the conference, as LNCS Vol. 5026. 
Three international experts present invited 
lectures on the topics: Embedded 
Software Design: Art or Science?, Lost in 
Translation, and Three Ways to Improve 
SOA Reliability. 
The exhibition opens in the mid-morning 
break on Tuesday and runs continuously 
until the end of the afternoon break on 
Thursday. The exhibitors include the 
following vendors: AdaCore, Aonix, 
Ellidiss Software, Praxis High Integrity 
Systems, Rapita Systems, and Telelogic. 
The social program includes on Tuesday 
evening a welcome reception at Palazzo 
Cavalli-Franchetti on the Grand Canal, 
accompanied by musical entertainment by 
members of the conference community, 
and on Wednesday evening a private boat 
trip along the Grand Canal to the 
conference banquet in the renowned 
“Osteria Ponte del Diavolo” restaurant at 
Torcello, the farthest island of the lagoon. 
The conference takes place at the Centro 
Culturale Don Orione Artigianelli, at 
Zattere Dorsoduro 909/A, at the south end 
of Venice, some 15 minutes of leisurely 
walk from Piazza San Marco, perhaps the 
most renowned spot of the city. The full 
program is available on the conference 
web site. Registration is still open. 
Latest updates: 
- The “Final Program” is available on the 

conference web site <http://www.ada-
europe.org/conference2008.html> and 
directly at 
<http://www.math.unipd.it/ae2008/ 
final_program.pdf>. 

- Check out the 10 tutorials in the final 
program and at 
<http://www.math.unipd.it/ae2008/pro-
tus.html>. 

- The proceedings, published by Springer 
Verlag as Lecture Notes in Computer 
Science Vol. 5026, are ready and will be 

distributed at the conference. More info 
is available at 
<http://www.springeronline.com/978-3-
540-68621-7>. 

- Registration fees are very reasonable 
and the registration can be done on-line 
(preferred) or by faxing a filled-out 
form to the conference secretariat. For 
all details, see 
<http://www.math.unipd.it/ae2008/ 
re.html>. Don't delay! 

- For the latest information consult the 
conference web site. 

Jun 20 — SC22/WG9 
meeting 
From: Dirk Craeynest 

<Dirk.Craeynest@cs.kuleuven.be> 
Subject: Review of Ada Issues for June 2008 

SC22/WG9 meeting (fwd) 
To: Ada-Belgium mailing list <ada-

belgium-info@cs.kuleuven.be> 
Date: Fri, 28 Mar 2008 00:15:21 +0100 

(MET) 
As you may know, there is an upcoming 
meeting of ISO's Ada language working 
group (ISO/IEC JTC1/SC22/WG9) 
scheduled at the end of the Ada-Europe 
2008 conference next June in Venice, 
Italy. 
The Chairman of the Ada Rapporteur 
Group (ARG) of WG9 informed the 
Heads of Delegation that the Ada Issues 
(AIs) listed below have entered Editorial 
Review, and are intended to be submitted 
to WG9 for approval at the above 
mentioned meeting. 
The AIs can be found at <http://www.ada-
auth.org/AI05-SUMMARY.HTML>. 
AI05-0004-1/11   2008-02-21 — 
Presentation issues in the Standard 
AI05-0006-1/03   2007-11-29 — Nominal 
subtypes for all names 
AI05-0013-1/11   2008-02-21 — 
No_Nested_Finalization is difficult to 
enforce 
AI05-0022-1/03   2007-11-20 — 
Container tampering should be checked 
for formal subprograms 
AI05-0023-1/05   2008-02-21 — 'Read on 
records with variant parts 
AI05-0026-1/03   2007-11-20 — Missing 
rules for Unchecked_Unions 
AI05-0027-1/03   2007-11-20 — 
Behavior of containers operations when 
passed finalized container objects 
AI05-0029-1/03   2008-02-08 — Meaning 
of 12.5(8) 
AI05-0030-2/03   2008-02-25 — Requeue 
on synchronized interfaces 
AI05-0032-1/02   2007-11-11 — 
Extended return statements for class- 
wide functions



80 Ada and Educat ion  

Volume 29, Number 2, June 2008 Ada User Journal 

AI05-0033-1/02   2007-11-09 — Rules 
for non-library level interrupt handlers 
AI05-0034-1/04   2007-11-26 — 
Categorization of limited views 
AI05-0036-1/01   2007-01-18 — Number 
of characters to be output for Text_IO for 
enumerations 
AI05-0038-1/03   2007-11-26 — Minor 
Errors in Ada.Text_IO. 
AI05-0039-1/02   2007-11-27 — User-
defined stream attributes cannot be 
dynamic 
AI05-0041-1/06   2008-02-22 — Can a 
derived type be a partial view? 
AI05-0042-1/02   2007-11-28 — 
Overriding versus implemented-by 
AI05-0044-1/03   2007-11-29 — 
Equivalence and equality in containers 
AI05-0045-1/04   2007-11-28 — 
Termination of unactivated tasks 
AI05-0047-1/05   2008-02-26 — 
Annoyances in the array packages 
AI05-0048-1/02   2007-11-29 — 
Redispatching is not expected in 
language-defined subprograms 
AI05-0052-1/05   2008-02-24 — 
Coextensions and distributed overhead 
AI05-0053-1/04   2008-02-25 — Aliased 
views of unaliased objects 
AI05-0058-1/01   2007-08-01 — 
Abnormal completion of an extended 
return statement 
AI05-0060-1/05   2008-02-26 — The 
definition of Remote access types is too 
limiting 
AI05-0062-1/02   2007-11-29 — Null 
exclusions and deferred constants 
AI05-0063-1/03   2008-02-24 — Access 
discriminants on derived formal types 
AI05-0064-1/01   2007-09-13 — 
Redundant finalization rule 
AI05-0065-1/02   2007-12-03 — Remote 
access types should be defined as 
externally streamable 
AI05-0066-1/04   2008-02-22 — 
Temporary objects are required to live too 
long 
AI05-0068-1/02   2007-11-29 — 
Inherited subprograms may be both 
abstract and requires overriding 
AI05-0070-1/01   2007-10-24 — 
Elaboration of interface types 
AI05-0072-1/01   2007-10-24 — 
Termination only signals 'Terminated 
when it is True 
AI05-0073-1/03   2007-12-03 — 
Questions about functions returning 
abstract types 
AI05-0076-1/02   2008-02-25 — Meaning 
of “function with a controlling result” 

AI05-0077-1/02   2008-02-25 — The 
scope of a declaration does not include 
any context_clause 
AI05-0078-1/02   2008-02-22 — 
Alignment need not match for 
Unchecked_Conversion 
AI05-0079-1/02   2008-02-26 — An 
other_format character should be allowed 
wherever a separator is allowed 
AI05-0080-1/02   2008-02-22 — “view 
of” is not needed when it is clear from 
context 
AI05-0082-1/02   2008-02-22 — 
Accessibility level of generic formal types 
AI05-0084-1/02   2008-02-26 — Pragma 
Remote_Types for Container library units 
AI05-0086-1/01   2008-01-28 — 
Statically compatible needs to take null 
exclusions into account 
AI05-0087-1/02   2008-02-22 — Formal 
nonlimited derived types should not have 
limited actual types 
AI05-0088-1/01   2008-01-30 — Only the 
value of “**” is equivalent to repeated 
“*”s 
Those AIs are now being circulated 
within the Ada community for review, 
with the intention to return comments to 
the ARG in time to properly answer them 
before the WG9 meeting. 
Comments for the Belgian delegation 
should be sent to me at 
<Dirk.Craeynest@cs.kuleuven.be>.  The 
deadline is 18:00 GMT+2, Tuesday, May 
13th, 2008.  Early comments are 
encouraged. 
Dirk Craeynest 
ISO/IEC JTC1/SC22/WG9, Head of 
Delegation, Belgium 
Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/-Europe/SIGAda/WG9 mail) 
[See also “Ada-Belgium — Upcoming 
SC22/WG9 meeting” in AUJ 28-2 (Jun 
2007), pp.69–70. —su] 

Oct 15 — SPARK User 
Group 2008 
From: Rod Chapman 

<rod.chapman@praxis-cs.co.uk> 
Subject: SPARK User Group 2008 
Date: Mon, 28 Apr 2008 09:02:07 −0700 

(PDT) 
Newsgroups: comp.lang.ada 
We're pleased to announce that the next 
SPARK User Group meeting will be held 
in Bath, UK, on Wednesday 15th October 
2008. 
Booking a place 
Capacity is limited, so priority will be 
given to our supported customers, other 
clients, tool partners and academic users. 
If you have not already received an 
invitation, then please contact us via 
sparkinfo@praxis-his.com. 

Programme 
The provisional list of speakers includes: 
Guest speaker: Duncan Brown (Rolls-
Royce plc). 
“Formal Methods and DO-178C” 
Industrial case-study: Neil White 
(iFACTS Team, Praxis). 
“The iFACTS project” 
Research report: Dr Paul Jackson, 
(University of Edinburgh) 
“Using SMT Solvers to Prove SPARK 
VCs” 
R&D Report: Rod Chapman (Praxis) 
“SPARK Update and Release 7.6 
Highlights” 
[See also “SPARK-related events” in AUJ 
28-3 (Sep 2007), p.134. —su] 

Oct 26–30 — SIGAda 2008 
From: Michael Feldman 

<mfeldman@gwu.edu> 
Date: Fri, 09 May 2008 12:26:01 −0700 
Subject: SIGAda 2008 Conference 

Submission Deadline EXTENDED to 
May 31, 2008 

Newsgroups: comp.lang.ada 
I just want to take a minute of your time 
to let you know the submission deadline 
has been extended to May 31 for the 
ACM SIGAda 2008 International 
Conference, which will take place in 
Portland, Oregon, Oct. 26–30, 2008. 
The Call for Participation is on the web at 
http://www.acm.org/sigada/conf/ 
sigada2008/ 
We are soliciting Technical Articles, 
Extended Abstracts, Experience Reports, 
Workshops, Panel Sessions, and 
Tutorials. 
Contributions from practitioners, 
researchers, students and faculty are 
actively solicited. Note that educator 
grants are available to cover conference 
and tutorial registration. 
Thanks for your time; I hope to see you at 
the conference! 
Michael Feldman 
The George Washington University 
(emeritus) 
Conference Chair, SIGAda 2008 

Ada and Education 
New Ada 2005 textbook 
From: John McCormick 

<mccormick@cs.uni.edu> 
Date: Mon, 17 Mar 2008 06:16:59 −0700 

(PDT) 
Subject: Re: Textbooks 
Newsgroups: comp.lang.ada 



Ada-related Tools 81  

Ada User Journal Volume 29, Number 2, June 2008 

For novice programmers have a look at 
my CS1 and CS2 books: 
- “Programming and Problem Solving 

with Ada” by Dale, Weems, and 
McCormick.  Jones and Bartlett, 2000.  
ISBN 0-7637-0792-9. 

- “Ada Plus Data Structures” by Dale and 
McCormick.  Jones and Bartlett, 2007.  
ISBN 0-7637-3794-1. 

Webminar: GPS InSight 
From: AdaCore Developer Center 
Date: Tuesday March 11, 2008 
Subject: GNAT Pro 6.1 InSight webinar 
RSS: http://www.adacore.com/2008/03/ 

11/gnat-pro-611-insight-webinar/ 
Tuesday, May 6, 2008: 8:00 am PST / 
11:00 am EST / 17:00 CET 
Summary 
The latest version of the GNAT Pro Ada 
toolset sees over 150 enhancements to the 
technology including: 
- Additional GNAT Pro platforms 

incorporating the gcc 4.1 code generator 
(this code generator will now be 
included on most platforms) 

- Upgrade of the debugging engine, based 
on gdb 6.6 

- Improvement in robustness and 
efficiency for Ada 2005 features 

- Better real-time support on win32 
platforms 

- Thread-safe profiling with gprof, on 
several platforms 

- Increased coverage analysis support for 
Ada in the gcov tool 

- New warnings to help programmers 
detect errors earlier 

- GNAT Pro companion tools such as 
gnatcheck, gnatpp and gnatmetric are 
being enhanced to support a wider 
variety of coding styles and coding 
standards. 

The next webinar in the GNAT Pro 
InSight series will describe and demo 
some of the new features introduced in 
6.1. As always, we will allow a question 
and answer session at the end enabling 
you to talk directly with the designers of 
GNAT Pro. 
Greg Gicca and Cyrille Comar will 
present this webinar and answer your 
questions. To register for this webinar, 
please [go to 
https://adacore.webex.com/adacore/ 
onstage/g.php?t=a&d=719427150 —su] 
From: AdaCore Developer Center 
Date: Monday May 12, 2008 
Subject: GNAT Pro 6.1 InSight webinar 

archive 
RSS: http://www.adacore.com/2008/05/12/ 

gnat-pro-61-insight-webinar-archive/ 

The recently held GNAT Pro InSight 
webinar featuring GNAT Pro 6.1 is now 
available for viewing at: 
www.adacore.com/home/gnatpro/ 
webinars 
[See also same topic in AUJ 29-1 (Mar 
2008), p.7. —su] 

Ada-related Resources 
Ada sub-Reddit 
From: Marc A. Criley <mc@mckae.com> 
Date: Thu, 29 May 2008 19:51:44 −0500 
Subject: Ada sub-Reddit created 
Newsgroups: comp.lang.ada 
An Ada programming language specific 
sub-Reddit has been created at: 
 http://reddit.com/r/ada 
Since mentioning “Ada” in a 
Programming Reddit submission almost 
(but not always) guarantees downvotes, 
it's hoped an Ada-specific sub-reddit will 
maintain a bit more visibility for items of 
interest. 
The sub-reddit is only a day old, so 
submissions are a little lean so far :-) 
[See also “Ada Social Networks” in AUJ 
29-1 (Mar 2008), pp.7–8. —su] 

Ada-related Tools 
Fuzzy sets for Ada 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Subject: ANN: Some updates 
Date: Sun, 30 Mar 2008 19:13:17 +0200 
Newsgroups: comp.lang.ada 
Tables 1.8 
http://www.dmitry-kazakov.de/ada/ 
tables.htm 
Strings Edit 2.1 
http://www.dmitry-kazakov.de/ada/ 
strings_edit.htm 
Simple components 2.8 
http://www.dmitry-kazakov.de/ada/ 
components.htm 
Fuzzy sets for Ada 5.2 
http://www.dmitry-kazakov.de/ada/ 
fuzzy.htm 
The focus of these releases is UTF-8 
support. New features include 
Tables of case-insensitive tokes, UTF-8 
encoded. Tables can be matched against 
an UTF-8 encoded strings in order to get 
the longest alternative. Chains of blank 
code points can be considered equivalent. 
Code points can be ignored (hyphens, for 
example). Case equivalence is determined 
according to the Unicode categories. 
A fully functional UTF-8 substitute for 
Ada.Strings.Maps is provided. The 

implementation is enhanced in order to 
support sets defined by an indicator 
function additionally to a set of ranges. 
An equivalent to 
Ada.Strings.Maps.Constants is provided 
as well. 
Unicode code points characterization into 
all categories defined by the standard. 
Blocks of Unicode characters as defined 
in the standard. 
The license is as always GM GPL. 
[See also same topic in AUJ 29-1 (Mar 
2008), p.206. —su] 

Simple components 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Subject: ANN: Simple components for Ada 

v3.0 
Date: Sun, 11 May 2008 16:42:00 +0200 
Newsgroups: comp.lang.ada 
This version provides implementations of 
various locking primitives: 
- Plain events which can be signaled, reset 

and awaited for; 
- Arrays of events which can be signaled, 

reset and awaited in any combination of 
in race condition free way; 

- Arrays of reentrant mutexes, deadlock-
free with an enforced order of locking; 

- Race condition free event distributing 
pulsed value to multiple tasks; 

- Reentrant mutexes; 
- Race condition free pulse events. 
The documentation provides a discussion 
of using protected objects in Ada. It 
represents a programming pattern for 
using entry parameter values in the barrier 
and shows a way of avoiding race 
conditions. It also includes 
- A solution of the problem of tasks 

synchronization at a check point based 
on sets of events; 

- A solution of the dining philosophers 
problem based on sets of mutexes. 

http://www.dmitry-kazakov.de/ada/ 
components.htm 
[See also same topic in AUJ 29-1 (Mar 
2008), p.8. —su] 
From: Ada Programming Blog 
Author: Dmitry A. Kazakov 
Date: Monday, May 12, 2008 
Subject: Concurrency in Ada 
RSS: http://ada-programming.blogspot. 

com/2008/05/ concurrency-in-ada.html 
Ada is renown for its concurrency 
support. Parallel programming is a 
difficult issue in all aspects. It is difficult 
to learn, to design, to program, to 
validate, but for all, it is most difficult to 
reuse. 
Yesterday I finished the version 3.0 of the 
Simple Components for Ada, where I 



82  Ada-related Tools 

Volume 29, Number 2, June 2008 Ada User Journal 

tried to summarize my experience and 
ideas in this area. The library among other 
things contains some basic gears for 
dealing with concurrency. 
The section 9 is devoted to 
implementation of some lock-free data 
structures. These become more popular 
with new multi-core architectures. 
Though Ada was not designed to provide 
lock-free primitives on the low-level, for 
that obvious reason that this would be 
non-portable. It still has necessary tools. 
Here I mean the pragma Atomic, which 
allows many interesting things to do. 
The section 10 contains implementations 
of locking synchronization primitives. 
Protected objects introduced in Ada 95 is 
an excellent mechanism of a great power. 
Especially interesting is to explore the 
requeue statement. Events, pulse events, 
arrays of events, mutexes, arrays of 
mutexes let be implemented as protected 
objects. Using the requeue statement one 
can do a lot of things, which appear 
impossible at the first glance. For 
example, this section presents a 
programming pattern for using entry 
parameters in the barriers of. It also 
discusses how race condition and 
deadlocks can be avoided when using 
protected objects. 
Two classical problems are considered on 
examples: the checkpoint synchronization 
problem, and the dining philosophers one. 
It is free as only it can be, the license is 
GMGPL I hope you will enjoy it. 
http://www.dmitry-kazakov.de/ada/ 
components.htm 

Ada support in LLVM 
From: Duncan Sands 

<duncan.sands@math.u-psud.fr> 
Subject: Announcement: GNAT ported to 

LLVM 
Date: Sun, 23 Mar 2008 15:05:59 −0700 

(PDT) 
Newsgroups: comp.lang.ada 
This is to let people know that the 
recently released LLVM 2.2 compiler 
toolkit contains experimental support for 
Ada through the llvm-gcc-4.2 compiler.  
Currently the only platform it works on is 
linux running on 32-bit Intel x86. This is 
because that's what I run, and I'm the only 
one who's been working on this.  I would 
appreciate help from other Ada guys, both 
for porting to new platforms and adding 
support for missing features, not to 
mention testing and bug fixing! 
LLVM (http://llvm.org/) is a set of 
compiler libraries and tools for 
optimization and static and just-in-time 
code generation. Personally I find LLVM 
a lot of fun, and pleasant to work with due 
to the good design and clean 
implementation.  I hope you will too!  
llvm-gcc is gcc with the gcc optimizers 

replaced by LLVM's; llvm-gcc-4.2 is the 
version of llvm-gcc based on gcc-4.2. 
The way llvm-gcc works (this is 
transparent to users) is that the gcc-4.2 
GNAT front-end converts Ada into 
“gimple”, gcc's internal language 
independent representation.  The gimple 
is then turned into LLVM's internal form, 
referred to as IR.  This in then run through 
LLVM's optimizers, followed by LLVM's 
code generators which squirt it out as 
assembler or object code.  In practice you 
can use llvm-gcc as a drop in replacement 
for gcc.  However the use of LLVM 
opens up other possibilities too. 
For example, it is possible to have llvm-
gcc squirt out LLVM IR rather than 
object code (by using -emit-llvm on the 
command line). It is possible to link the 
LLVM IR for different compilation units 
together and reoptimize them.  In other 
words you can do link-time optimization.  
This is all language independent, so if part 
of your program is written in Ada and 
other parts in C/C++/Fortran etc, you can 
link them all together and mutually 
optimize them, resulting in C routines 
being inlined into Ada etc. 
The compiler works quite well, but it is 
still experimental.  All of the ACATS 
testsuite passes except for c380004 and 
c393010.  Since c380004 also fails with 
gcc-4.2, that makes c393010 the only 
failure due to the use of the LLVM 
infrastructure (the problem comes from 
the GNAT front-end which produces a 
bogus type declaration that the gimple -> 
LLVM convertor rejects).  On the other 
hand, many of the tests in the GNAT 
testsuite fail.  The release notes give some 
more details of what works and what 
doesn't: 
http://llvm.org/releases/2.2/docs/ 
ReleaseNotes.html 
The precompiled llvm-gcc-4.2 shipped 
with the LLVM 2.2 release was built 
without support for Ada, so you will need 
to build the compiler yourself.  You can 
find instructions at 
http://llvm.org/docs/ 
GCCFEBuildInstrs.html 
Please report bugs and problems to the 
LLVM mailing lists, or using 
http://llvm.org/bugs/  One nice thing 
about LLVM is that people are responsive 
and quickly fix bugs (often by the next 
day). 
The LLVM IR is easy to read (with a bit 
of practice), and since it contains the 
entire LLVM state you get to see exactly 
what has happened to your program.  This 
might be useful for static analysis, it is 
certainly useful for understanding how the 
various Ada constructs are implemented.  
To give you a taste for what it looks like, 
here is an example showing what a simple 
Ada program gets turned into. [See 
original post for a complete example of 
code generation —su] 

I hope you have fun playing with LLVM! 
[See also “LLVM Compiler 
Infrastructure” in AUJ 29-1 (Mar 2008), 
p.75. —su] 
From: Samuel Tardieu <sam@rfc1149.net> 
Subject: Re: Announcement: GNAT ported 

to LLVM 
Date: Mon, 24 Mar 2008 10:25:16 +0100 
Newsgroups: comp.lang.ada 
Thanks Duncan, this is an outstanding 
contribution to the Ada community. 
Given that LLVM is already ahead of 
GCC in terms of code generation quality 
(sometimes, starting from zero and 
choosing another path is a competitive 
advantage), this looks very promising. 
Note that the GCC folks are happy with 
LLVM adding some competition in the 
open-source compilers arena. This is very 
motivating. 
The difficult task, as you already know, 
will be to keep the Ada front-ends in both 
compilers in sync. I wish you good luck 
with that! 
From: Duncan Sands 

<duncan.sands@math.u-psud.fr> 
Subject: Re: Announcement: GNAT ported 

to LLVM 
Date: Mon, 24 Mar 2008 11:09:26 −0700 

(PDT) 
Newsgroups: comp.lang.ada 
I'm glad you appreciate my work!  That 
said, in my experience gcc-4.2 produces 
slightly faster code for Ada than llvm-
gcc-4.2 does.  Given that LLVM manages 
to produce code that comes close to gcc 
while being much simpler than gcc and 
easier to improve, I expect it will overtake 
GCC soon.  In fact I haven't even started 
working on Ada specific optimizer 
improvements yet: I've been concentrating 
on correctness. 
It's not yet clear to me whether I should 
backport the gcc-4.3 Ada front-end to 
llvm-gcc-4.2, or start working on llvm-
gcc-4.3.  For the moment I'm just working 
on improving the correctness and 
robustness of llvm-gcc-4.2. 
From: Duncan Sands 

<duncan.sands@math.u-psud.fr> 
Subject: Re: Announcement: GNAT ported 

to LLVM 
Date: Thu, 27 Mar 2008 01:27:55 −0700 

(PDT) 
Newsgroups: comp.lang.ada 
> I assume that due to the link-time 

optimization capability that inlining 
among packages will be handled 
naturally. 

that's correct: you can compile each 
package to bitcode, then at link-time they 
will all be mutually optimized, including 
inlining into each other.  You can also 
compile the entire runtime to bitcode and 
have that be mutually optimized with your 
code too.  I didn't turn this on by default 
because currently link-time-optimization 



Ada-related Tools 83  

Ada User Journal Volume 29, Number 2, June 2008 

is not transparent: you have to explicitly 
call some LLVM tools at link time.  
There's a plan to teach llvm-gcc to do this 
automagically when you use it to do 
linking. 
> GNAT-gcc can't do that, right? 
It can to some extent: if you use -O2  
-gnatn then it will peek inside the bodies 
of packages you are using to try to inline 
functions.  That functionality becomes a 
lot less useful now though. 
> This alone ought to be a big deal as 

accessor/setter conventions are leading 
to programs filled with tiny procedures 
and functions. 

Very true, and I guess that's why ACT 
implemented -gnatn. 

JGNAT is coming back 
From: Kickin' the Darkness 
Date: Thursday, May 22, 2008 
Subject: JGNAT is coming back! 
RSS: http://blog.kickin-the-darkness.com/ 

2008/05/jgnat-is-coming-back.html 
AdaCore has announced in their latest 
newsletter that JGNAT, their Ada-to-Java 
Byte Code compiler, is being updated and 
will be made available in the 2nd quarter 
of 2008 (see the “In The Pipeline” 
sidebar): 
A collection of add-on tools for 
interfacing between Ada and Java is 
scheduled for release during Q2 2008. 
They support mixed-language Ada/Java 
development, in particular: 
- Calling natively-compiled Ada code 

from Java 
- Compiling Ada to JVM bytecodes and 

communicating between Ada and Java 
directly. 

The toolsuite exploits the Java Native 
Interface (JNI) for the first scenario, but 
automates the generation of the JNI-
related “glue code” to ease the job of the 
developer. An updated version of 
AdaCore’s JGNAT product handles the 
second scenario. The tools take advantage 
of Ada 2005’s new features to provide an 
interfacing mechanism that complies with 
the Ada standard. A future version of the 
toolsuite will support the invocation of 
Java methods from natively-compiled 
Ada code. 
The original release was never updated 
beyond version 1.1p, which I used a fair 
amount. I felt it was almost, but not quite, 
production quality. My experience was 
that it worked pretty well with Java 1.2, 
tasking broke in 1.3, and was pretty much 
a non-starter for 1.4. 
Robert Dewar, AdaCore's president, 
commented in 2004 that “the status of 
JGNAT is that we have kept the sources 
updated to the minimal extent that they 
compile, but we no longer support this 

product and it was never fully 
completed.” 
I don't know the impetus behind restarting 
JGNAT support, but I'm glad to see it 
happening. 
[See also “JGNAT and MGNAT” in AUJ 
27-3 (Sep 2006), pp.150–151. —su] 

VAD 7.1 — Visual Ada 
Developer 
From: Leonid Dulman 

<leonid_dulman@yahoo.co.uk> 
Newsgroups: comp.lang.ada 
Subject: Announce: Visual Ada Developer 

(VAD) version 7.1 
Date: Sun, 16 Mar 2008 18:08:15 −0000 
Visual Ada Developer  VAD 
VAD is free software; you can 
redistribute it and/or modify it under the 
terms of the GNU General Public License 
as published by the Free Software 
Foundation; either version 2 of the 
License, or (at your option) any later 
version. VAD is distributed in the hope, 
that it will be useful, but WITHOUT 
ANY WARRANTY; without even the 
implied warranty of 
MERCHANTABILITY or FITNESS 
FOR A PARTICULAR PURPOSE. 
VAD 7.1 Common description. 
1. VAD (Visual Ada Developer) is a 
Tcl/Tk oriented Ada-95(TCL) GUI 
builder portable to difference platforms, 
such as Windows NT/9x,Unix (Linux), 
Mac and OS/2. You may use it as IDE for 
any Ada 95(05) (C,C++,TCL) project. 
You may use it to build TCL script only. 
VAD generated ada sources,you may 
compile and build executable with GNAT 
in Windows and Unix(Linux) or Aonix 
ObjectAda 7.2 in Windows. 
[...] 
VAD 7.1 is available in 
http://www.websamba.com/guibuilder 
You may dowload sources 
vad71scr.tar.bz2, vadhlp.tar.bz2, 
vadtutor.tar.bz2, 
vadsmp.tar.bz2,vad71aonix.tar.bz2,adahlp
.tar.bz2, vadtcl.tar.bz2, 
adastyle.tar.bz2,philosofers.tar.bz2,vadidl.
tar.bz2 
and binaries vad71win.tar.bz2 (Windows 
9x/NT) vad71lin.tar.bz2 (i386) Any 
questions, any ideas, any problems, any 
help 
[See also “VAD 6.3 — Visual Ada 
Developer” in AUJ 27-4 (Dec 2006), 
p.200. —su] 

QtAda binding 
From: Vadim Godunko 

<vgodunko@gmail.com> 
Subject: Announce: QtAda 1.0.3 released 
Date: Wed, 7 May 2008 08:43:47 −0700 

(PDT) 

Newsgroups: comp.lang.ada 
We are pleased to announce QtAda 1.0.3 
release. This release includes bugs fixes 
and enhancements. You can see the full 
list at the end of this mail. 
QtAda is an Ada 2005 language bindings 
to the Qt libraries and a set of useful tools. 
QtAda allows easily to create cross-
platform powerful graphical user interface 
completely on Ada 2005. QtAda 
applications will work on most popular 
platforms — Microsoft Windows, Mac 
OS X, Linux/Unix — without any 
changes and platform specific code. 
QtAda allows to use all power of visual 
GUI development with Qt Designer on all 
software lifecycle stages — from 
prototyping and up to maintenance. 
QtAda is not just a bindings to the 
existent Qt widgets, it also allows to 
develop your own widgets and integrates 
it into the Qt Designer for high speed 
visual GUI development. 
Multi platform source code package and 
Microsoft Windows binary package of the 
QtAda 1.0.3 can be downloaded from: 
http://www.qtada.com/ 
[...] 
From: Vadim Godunko 

<vgodunko@gmail.com> 
Subject: Re: Announce: QtAda 1.0.3 

released 
Date: Mon, 12 May 2008 06:00:47 −0700 

(PDT) 
Newsgroups: comp.lang.ada 
> Is it for Qt3 or Qt4? 
Qt 4.3 and later. 
[See also same topic in AUJ 29-1 (Mar 
2008), p.10. —su] 

GNATGPR —  
GPR project files 
From: David Sauvage 

<sauvage.david@gmail.com> 
Subject: Announce : Release of gnatgpr, 

access to GPR project information. 
Date: Mon, 24 Mar 2008 14:52:06 −0700 

(PDT) 
Newsgroups: comp.lang.ada 
GNATGPR is an Ada 2005 GPL 
software, it allows the user to do simple 
information request on GNAT GPR 
project files, like for example: 
- Give all included projects. 
- Give all included sources. 
- Give all main files. 
- Give all included object paths. 
There are 2 ways of accessing those 
services: 
- In the Shell, using the gnatgpr binary. 
- In Ada, using the GNAT_GPR package 

specification interface. 



84  Ada-related Tools 

Volume 29, Number 2, June 2008 Ada User Journal 

GNATGPR is based on: 
- GNAT GPL 2007 (GPL), re-use of the 

Ada front-end. One of the main changes 
is that it got his own Namet and so on. 

- AdaControl (GMGPL), re-use of the 
Options_Analyzer. 

- AUnit (GPL), for unit testing. 
Thanks to all the people behind those 
projects. 
https://gna.org/projects/gnatgpr/ 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Subject:Re: Annonce : Parution de gnatgpr, 

logiciel d'accès aux informations des 
projets GPR. 

Date: Thu, 20 Mar 2008 04:06:21 −0700 
(PDT) 

Newsgroups: fr.comp.lang.ada 
[Translated from French —su] 
It would be nice to incorporate these 
functions in gnatls.  
> For this to be incorporated, we must 

make an assignment of copyright, 
etc…, while a separate tool does not 
have these constraints.  

Of course, but the benefits largely offset 
this:  
- more users  
- a better chance that the program is 

maintained on the long-term  
- a better chance that the program is 

compatible with future versions of GCC  
- having his name in the list of GCC 

contributors  
- do not need a new Debian package :)  
The separate tool can of course be used to 
test new functions before they are 
incorporated. 

AdaDesigner — Refactoring 
framework 
From: David Sauvage 

<sauvage.david@gmail.com> 
Date: Mon, 26 May 2008 05:27:12 −0700 

(PDT) 
Subject: Announce : Release of 

AdaDesigner, to an Ada refactoring 
framework. 

Newsgroups: comp.lang.ada 
AdaDesigner [1] is an Ada 2005 (GPL) 
software which aims to become an Ada 
software refactoring framework. 
Using ASIS [2], AdaDesigner builds a 
specific package call-graph view of the 
project. Using some meta-data added in 
the GPR project files, it creates an 
abstraction layer further called sub-
component layer. One sub- component 
contains several packages. 
AdaDesigner already proposes software 
engineers one interesting component 
design view of their software projects. 

This is done by the generation of a 
graphviz [3] DOT [4] file. 
See AdaDesigner presentation [5] for 
more details. 
In the future, AdaDesigner could also be 
able : 
- To generate UML components views 

directly from the code (via XMI [6] 
format). 

- To propose a modern way of doing 
refactoring on the software (via a high 
level HMI). 

AdaDesigner is based on : 
- GNATGPR [7] (GPL) 
- ASIS [8] (GPL) 
- AUnit [9] (GPL) 
Thanks to all the people behind those 
projects. 
https://gna.org/projects/adadesigner 
[1] https://gna.org/projects/adadesigner 
[2] http://www.sigada.org/WG/asiswg/ 
[3] http://www.graphviz.org/ 
[4] http://www.graphviz.org/doc/info/ 

lang.html 
[5] http://home.gna.org/adadesigner/ 

presentation_adadesigner.pdf 
[6] http://en.wikipedia.org/wiki/XMI 
[7] https://gna.org/projects/gnatgpr 
[8] https://libre.adacore.com/ 
[9] https://libre.adacore.com/aunit 

Hibachi binaries 
From: Tom Grosman <grosman@aonix.fr> 
Date: Fri, 25 Apr 2008 07:13:29 −0400 
To: hibachi-dev@eclipse.org 
Subject: Hibachi binaries are now available 
We have put up the first binary builds on 
the eclipse.org servers. To access them, 
go to the Hibachi homepage 
(www.eclipse.org/hibachi) and click on 
the Downloads link on the left menu. We 
have not created an update site on the 
Eclipse servers for this 'Integration” build. 
Since this is the first integration build (the 
release will be in a month) of the plugin, 
there will likely be some interesting 
“features” that users encounter. I remind 
everyone that bugzilla is used to consult, 
update and create bugs, as well as submit 
bug fixes. So if you don't yet have and 
account, I strongly encourage you to 
create one at http://bugs.eclipse.org/bugs. 
Documentation exists in the plugin, more 
is on the way. I encourage you to 
contribute, including to the Hibachi wiki, 
also accesible via the project homepage. 

Vision2Pixels 
From: Pascal Obry <pascal@obry.net> 
Date: Mon, 03 Mar 2008 17:09:42 +0100 
Subject: ANNOUNCE — Vision2Pixels 

Newsgroups: comp.lang.ada 
Vision2Pixels 
http://v2p.fr.eu.org/ 
Pascal Obry and Olivier Ramonat are 
pleased to announce the launch of 
Vision2Pixels Web application. This 
application is oriented toward 
photography critics. 
As photographers we used another Web 
application some time ago, the 
maintainers have decided to close it, and 
as the code was not Open Source, nobody 
was able to take the maintenance back. So 
we decided two years ago to launch this 
project and to start for good as a GPL 
project. At least this project won't depend 
on our will or energy to continue it or not. 
The Web interface is in French and 
oriented toward French critics only. 
This project is built in Ada (hence the 
post in this forum) and is using 
AWS/Ajax support (the new AWS's 
Web_Block Ajax support is born while 
building Vision2Pixels as the 
templates2ada tool) and Gwiad dynamic 
plug-in project from Olivier. 
We just put out the first release, please 
bear with us, it is not perfect and is 
missing many features (like searching). 
We plan to continue working on this 
project of course, even if the goal is more 
to used it to post our own pictures. 
We take the opportunity to call for 
contributions. We have no designer on the 
project and needs help on the core Ada 
too. The code comments and issue tracker 
are all in English. 
In any case this is a good show-case for 
Ada and Ajax. 
It builds fine with latest GNAT GPL 
2007. 
During the project we have switched from 
Subversion to Mercurial then to Git. Git is 
really wonderful but this is another story. 
[...] 
The issue tracker: 
http://code.google.com/p/vision2pixels/iss
ues/list 
Thanks to everyone for the help received, 
notably to host the project. And thanks 
also to AdaCore for the GNAT GPL 
compiler. 

Canta 
From: Christophe Chaumet 

<christophe.chaumet@chaumetsoftware.
com> 

Date: Wed, 12 Mar 2008 19:56:59 +0100 
Subject: Info: un logiciel grand public sous 

Windows entièrement en Ada 
Newsgroups: fr.comp.lang.ada 
[Translated from French —su] 



Ada-related Products 85 

Ada User Journal Volume 29, Number 2, June 2008 

Lady Ada Lovelace is pleased to 
announce the birth of Canta, a beautiful 
303 Kb software; the mother and baby are 
doing well.  
100% Ada, it runs on Windows XP and 
Vista, thanks to the win32ada binding and 
the GNAT GPL compiler.  
It is a software for the large public 
intended to help sing, and this concerns a 
lot of people, doesn’t it?  
A downloadable demo version is 
available at this address: 
http://www.chaumetsoftware.com/ 

Ada-related Products 
AdaCore —  
GNATbench 2.1.0 
From: AdaCore Press Center 
Subject: AdaCore Announces the Release of 

GNATbench 2.1.0 
Date: Tuesday April 15, 2008 
RSS: http://www.adacore.com/2008/04/15/ 

gnatbench210/ 
Enhanced Eclipse-based development 
environment for Ada improves 
productivity; decreases time-to-market 
NEW YORK and SAN JOSE, Calif., 
April 15, 2008 — Embedded Systems 
Conference, Silicon Valley — AdaCore, 
provider of the highest quality Ada tools 
and support services, today announced a 
new major release of GNATbench, the 
company’s Eclipse-based development 
environment for Ada. GNATbench 2.1.0 
includes a variety of enhancements, 
including general project management 
and presentation capabilities, new features 
within the language-sensitive editor, new 
source navigation capabilities, new 
wizards, and an enhanced builder. The 
result is a more powerful Integrated 
Development Environment (IDE) for Ada 
that supports tighter integration with 
Wind River’s Workbench development 
suite, and automatic integration with the 
large pool of software development 
capabilities already available within the 
Eclipse framework. 
“This latest GNATbench release further 
enhances an already powerful set of 
software development capabilities,” said 
Pat Rogers, AdaCore’s GNATbench 
Project Leader. “We at AdaCore believe 
that customer support is our primary 
responsibility. This release adds a variety 
of new capabilities, many based on user 
input, to improve developer productivity 
and decrease time-to-market.” 
“AdaCore was founded on open source 
software principles to provide the highest 
quality software development solutions 
and support for the Ada programming 
language,” said Robert Dewar, President 
and CEO of AdaCore. “We joined the 
Eclipse Foundation a year ago as an Add-

In-Provider and Member-At-Large so that 
we could contribute to this open source 
community. The Eclipse open source 
framework allows us to extend our core 
principles to support the largest number of 
integrated third-party tools available for 
Ada software developers.” 
“Wind River is pleased to see AdaCore’s 
new release of the GNATbench product,” 
states Rob Hoffman, general manager of 
aerospace and defense, Wind River. 
“GNATbench has always been seamlessly 
integrated with Wind River Workbench, 
and this latest release further advances the 
Ada capabilities available to the 
Workbench software developer for both 
all-Ada and mixed-language 
applications.” 
GNATbench 2.1.0 specifically enhances 
general Project Management and 
Presentation capabilities, including: 
- Independent project hierarchies 
- The ability to clean project hierarchies 
- And the ability to fully restore projects 

form configuration management 
systems 

For the Language-Sensitive editor, some 
new features include: 
- A light bulb with quick fix suggestions, 

next to source errors 
- Smart space key, for abbreviation 

expansions 
- Automatic construct closing insertion 
- Smart tab for logical indenting 
- Smart formatting 
- Smart comment wrapping 
- Special color coding for annotation 

comments 
- Standard parenthesis highlighting 
- Code assist for recently chosen 

completions 
New Source Navigation capabilities 
include: 
- Enhanced open declaration or body 

action 
- Next or previous subprogram entry 

navigation 
The new Wizards include: 
- Create new Ada source folder or 

subfolder 
- Create new Ada source file with specific 

headers 
- Create new Ada project with advanced 

project settings 
And finally, the Builder enhancements 
are: 
- Automatic file save before building 
- Automatic console display for the 

builder 
- Scenario settings are now persistent 

across sessions 
- New builder fast action key settings 
- Tool chain selection from within the 

IDE 

- Linker messages are now integrated 
within the problem view window 

All these enhancements are added on top 
of the already powerful features that were 
provided in the three previous releases of 
GNATbench. 
About AdaCore 
Founded in 1994, AdaCore is the leading 
provider of commercial software solutions 
for Ada, a modern programming language 
designed for large, long-lived applications 
where safety, security, and reliability are 
critical. AdaCore’s flagship product is the 
GNAT Pro development environment, 
which comes with expert on-line support 
and is available on more platforms than 
any other Ada technology. AdaCore has 
an extensive worldwide customer base; 
see http://www.adacore.com/home/ 
company/customers/ for further 
information. 
Ada and GNAT Pro continue to see 
growing usage in high-integrity and 
safety-certified applications, including 
commercial aircraft avionics, military 
systems, air traffic management/control, 
railroad systems, and medical devices, 
and in security-sensitive domains, such as 
financial services. 
[See also “AdaCore — GNATbench 
Eclipse Plug-in” in AUJ 28-2 (Jun 2007), 
pp.77–78. —su] 
From: AdaCore Press Center 
Subject: GNATbench 2.1.0 
Date: March 7, 2008 
RSS: http://www.adacore.com/2008/03/07/ 

gnatbench-210/ 
GNATbench 2.1.0 supports Eclipse 3.3, 
with version 4.0 of the C/C++ 
Development Tools (CDT), on the Linux 
(x86 and x86-64), Solaris (SPARC), and 
Windows platforms. 
GNATbench 2.1.0 introduces the 
following features among others: 
Project Management and Presentation 
- Independent Project Hierarchies 
- Cleaning Project Hierarchies 
- Fully Restorable Projects 
- Problems View Entries for GNAT 

Project Files 
Language-Sensitive Editor Enhancements 
- “Quick Fix” for Ada 
- Smart Space Key 
- Automatic Construct Closing 
- Smart Tab Key 
- Smart Enter Key 
- Text and Comment Lines Refilled 

Against Margin 
- Special Coloring for “Annotation 

Comments” 
- The “Show In” Contextual Menu Entry 

Supported 
- Improved Comment Block Selection 
- Standard Parenthesis Highlighting 



86  Ada-related Products 

Volume 29, Number 2, June 2008 Ada User Journal 

- Integration of Code Formatting Features 
- Recent Chosen Completions Displayed 

at the Top 
Additional Wizards 
- A “New Ada Source Folder” Wizard 
- A “New Ada Source File” Wizard 
- Additonal “New Ada Project Wizard” 
Builder Enhancements 
- Altered Ada Files Saved Automatically 
- Console View Visible Automatically 
- Persistent Scenario Variable Settings 
- Builder Command Key Bindings 
- Compiling Individual Files via the Ada 

Project Explorer 
- Toolchain Selection 
- Linker Messages In the Problems View 
Source Code Navigation Enhancements 
- Enhanced Open Declaration / Open 

Body Actions 
- Next / Previous Subprogram and Entry 

Navigation 
Miscellaneous Improvements 
- Ada Project Explorer Support for 

Double-Click Actions 
- New “Ada” Category for GNAT Import 

Wizard 
- Additional Icon Decorations in Ada 

Project Explorer 

AdaCore — GNAT Pro for 
VxWorks 653 
From: AdaCore Press Center 
Subject: AdaCore Announces Support for 

VxWorks 653, Version 2.2 
Date: Tuesday April 15, 2008 
RSS: http://www.adacore.com/2008/04/15/ 

do-178b/ 
Now Supporting Full Integration with 
VxWorks 653 Platform, Version 2.2 
NEW YORK and SAN JOSE, Calif., 
April 15, 2008 — Embedded Systems 
Conference, Silicon Valley — AdaCore, 
provider of the highest quality Ada tools 
and support services, today announced the 
availability of GNAT Pro High-Integrity-
Edition for DO-178B (version 6.1.1) on 
the latest version of the Wind River’s 
VxWorks 653 Platform, Version 2.2 for 
avionics and mission-critical systems. The 
result is a uniquely powerful and seamless 
environment for the development of Ada 
and mixed-language software for safety-
critical and other high reliability 
applications. 
“AdaCore has enjoyed a long and 
successful relationship with Wind River, 
with GNAT Pro offering our customers 
the first Ada language development 
environment for the initial VxWorks 653 
platform many years ago,” said Robert 
Dewar, President and CEO of AdaCore. 
“By supporting this latest version of 
VxWorks 653, we are enhancing an 
already proven solution that has been 

certified to DO-178B Level A as part of 
multiple avionics systems, including the 
Boeing 787, C-130AMP cargo, and KC-
767 tanker aircraft.” 
GNAT Pro High-Integrity Edition for 
DO-178B for VxWorks 653 implements a 
full ARINC-653 APEX API. With this 
latest release, developers can choose from 
four different run-time libraries, 
including: 
- Full Ada run-time profile 
- Zero-Foot-Print (ZFP) run-time profile, 

the smallest run-time library of the 
group, removing most dynamic features 
and providing the simplest certifiable 
solution 

- Ravenscar-compliant run-time profile 
that adds tasking and some other 
dynamic features that have been proven 
to be certifiable 

- Special Cert run-time profile, 
specifically designed to support the 
requirements of avionics systems 

The product was specifically tailored to 
provide the features needed in the 
development of avionics systems, while 
removing unneeded features to simplify 
certification to DO-178B Level A. 
All GNAT Pro High-Integrity Family 
members are also accompanied by 
AdaCore’s GNATstack analysis tool set. 
GNATstack statically calculates the 
maximum stack space required by each 
task in an application. The computed 
bounds can be used to ensure that 
sufficient space is reserved, thus 
guaranteeing safe, predictable execution 
with respect to stack usage. GNATstack 
uses conservative analysis to deal with 
complexities such as subprogram 
recursion, while avoiding unnecessarily 
pessimistic estimates. The tool’s output 
data can be used directly to satisfy DO-
178B requirements (Table A-5, Objective 
6, which relates to the Accuracy and 
consistency issues itemized in Section 
6.3.4f). 
In addition, GNAT Pro High-Integrity 
Edition for DO-178B is bundled with 
GNATbench 2.1.0, the latest release of 
AdaCore’s powerful Eclipse-based 
development environment for Ada. 
GNATbench 2.1.0 tightens integration 
with Wind River’s Workbench 
development suite, offering more 
advanced editing, automatic program 
traversal, new project wizards and more 
advanced build capabilities for both Ada-
only and mixed-language application 
development. 
“Wind River is pleased to see the GNAT 
Pro Ada development solution on our 
latest VxWorks 653 Platform,” said Rob 
Hoffman, general manager of aerospace 
and defense, Wind River. “AdaCore and 
Wind River have a proven success record 
in supporting avionics system developers 
with our joint solutions. Now our 

customers can start taking advantage of 
the new capabilities and features available 
in our industry-leading VxWorks 653 
Platform for both Ada and mixed 
language safety-critical development, 
using this latest version of GNAT Pro.” 
[See also “Aonix — ObjectAda RAVEN 
for VxWorks 653” in AUJ 28-4 (Dec 
2007), pp.211–212. —su] 

AdaCore — GPRbuild 1.1.0 
From: AdaCore Press Center 
Subject: GPRbuild 1.1.0 
Date: April 24, 2008 
RSS: http://www.adacore.com/2008/04/24/ 

gprbuild-110/ 
AdaCore is pleased to announce the 
immediate availability of GPRbuild 1.1.0. 
This new release of GPRbuild offers full 
support for all major native and cross 
platforms supported by AdaCore (15 
native configurations and 22 cross). It 
provides better support for projects that 
use a combination of languages (Ada, C, 
C++, Assembly, and others) and has 
enhanced its support of very large 
subsystems. New major features have also 
been added: 
- Each subsystem can define which of its 

sources are visible to other subsystems. 
An error is reported when a dependency 
on a non-visible source of a different 
subsystem is detected. 

- A new GPRbuild option limits source 
dependency to immediately “with”ed 
projects. 

This new release has addressed all issues 
reported after the 6.1.1 GNAT Pro 
release. 
We encourage all GNAT Pro users to 
upgrade to this new builder technology. 
As a reminder, using or upgrading 
GPRbuild does not require a change of 
compilers and therefore does not imply 
changing code generators. All the GNAT 
Pro compilers released over the last 5 
years are in fact supported by GPRbuild. 
GPRbuild 1.1.0 can be downloaded from 
the “Tools” folder in the “Download” 
section on GNAT Tracker. As always, for 
questions, or to inform us of issues that 
you encounter, please let us know through 
the GNAT Tracker report facility or by 
email to the usual report@adacore.com 
address. 
[See also “AdaCore — GPRbuild” in AUJ 
28-4 (Dec 2007), pp.210–211. —su] 

Adalog — AdaControl 
From: Jean-Pierre Rosen 

<rosen@adalog.fr> 
Subject: AdaControl 1.9r4 released 
Date: Mon, 28 Apr 2008 17:26:50 +0200 
Organization: Adalog 
Newsgroups: comp.lang.ada 



Ada-related Products 87  

Ada User Journal Volume 29, Number 2, June 2008 

Adalog is pleased to announce the release 
of version 1.9 of AdaControl. This 
version features 346 possible controls, 
and covers all of the checks from 
Gnatcheck (but in a more powerful and 
parameterizable way, of course ;-). 
As usual, AdaControl is released under 
the GMGPL, and can be downloaded 
from http://www.adalog.fr/ 
adacontrol2.htm 
[See also same topic in AUJ 29-1 (Mar 
2008), p.13. —su] 

Excel Software —  
WinA&D 6.0 
From: Excel Software News Desk 
Subject: WinA&D 6.0 for Windows XP and 

Vista 
Date: April 25, 2008 
URL: http://www.excelsoftware.com/ 

newswina&d600.html 
System Models with Simulation, Software 
Design and Requirements Management 
April 25, 2008 — Excel Software is 
pleased to announce WinA&D 6.0 for 
system models and simulation, 
requirements management, software 
design, code generation, reengineering 
and project reports. Version 6.0 has been 
optimized to run on all Windows XP and 
Vista computers. It includes hundreds of 
enhancements, new printed and PDF 
manuals, integrated help system and Vista 
friendly installer. Free videos can be 
downloaded from the company web site 
to learn about WinA&D. 
Once installed, WinA&D can run from a 
standard user account. The tool supports 
many types of software design including 
UML for object-oriented design, 
structured analysis and design, data 
models for database systems and real-
time, multi-task design. WinA&D is 
scalable to large projects, multiple users, 
distributed team development and the 
integration of thousands of documents 
across the development process. 
A software designer can choose the best 
mix of software models and notations for 
their specific development project. 
WinA&D supports process, data, class, 
state, structure, object and task models 
with dozens of popular notations and 
hundreds of customization options. In 
addition to language independent models, 
source code can be generated from 
models or models created from code. The 
growing list of supported programming 
languages include C++, C#, Java, Delphi, 
PHP, Ada, SQL, C, Pascal, Basic and 
Fortran. 
Requirement entries are defined as 
structured information in a Requirement 
Definition dialog controlled by a template 
with user-defined field and value choices. 
Requirement entries can be linked to any 
kind of target document, diagram or 
specific diagram objects to provide two-

way traceability. Powerful features enable 
developers to easily link and navigate 
between thousands of requirement entries 
and targets. Requirement information is 
presented through user-defined views, 
queries and reports. 
WinA&D has dozens of ready-to-run 
reports that present project diagrams, 
tables, specifications, dictionary and 
requirements to an HTML browser or 
word processor. The built-in scriptable 
report generator makes it easy to create 
custom reports with full control over 
content and format. The report generator 
has complete access to any data within 
any WinA&D document. Custom reports 
and user-scripted features can be included 
as menu commands or buttons in 
application dialogs. 
WinA&D for Windows is available in a 
Standard edition for $495, Desktop 
edition for $1195 or Developer edition for 
$1995. Documents can be shared with 
MacA&D on Mac OS X. See the 
company web site for product 
information, site license pricing and 
secure online ordering. 
[See also “ExcelSoftware — WinA&D & 
WinTranslator” in AUJ 25-2 (Jun 2006), 
pp.63–64. —su] 

Excel Software — 
WinTranslator 3.1 
From: Excel Software News Desk 
Subject: WinTranslator 3.1 for Windows XP 

and Vista 
Date: April 28, 2008 
URL: http://www.excelsoftware.com/ 

newswintranslator310.html 
Generate Class Diagrams, Structure 
Charts and Data Models from Source 
Code 
April 28, 2008 — Excel Software is 
pleased to announce immediate 
availability of WinTranslator 3.1 for 
Windows XP and Vista. The new edition 
includes enhancements, new printed and 
PDF manual, integrated help system and 
Vista friendly installer. Once installed, 
WinTranslator runs from a standard user 
account. 
WinTranslator scans source code to 
extract data. That data is imported into 
WinA&D to automatically generate class 
diagrams, structure charts and data 
models. The project dictionary is 
populated with design details like data 
types, method arguments, descriptive 
comments and links from model objects 
to associated source code. Videos on the 
company web site show diagrams 
generated from code using WinTranslator 
and WinA&D. 
WinTranslator is a highly scalable, fully 
automated tool that supports many 
programming languages and dialects. It 
generates models and dictionary 
information from legacy source code, 

class frameworks, open source projects 
and other reusable code assets. It provides 
a step-by-step process to quickly 
document an unfamiliar project. 
WinA&D and WinTranslator work 
together to provide: 
- UML Class Models from Object-

Oriented C++, C#, PHP, Java, Delphi or 
Ada 

- Rich Data Models with Indexes, 
Triggers, Primary and Foreign Keys 
from SQL Schema 

- Structure Charts from Procedural C, 
Pascal, Basic, PHP or Fortran 

- Multi-Level Diagrams with Objects 
Linked to Associated Source Code for 
Browsing 

- Data Types, Arguments, Namespaces 
and Comments Captured from Code 

- Project Scalability to Millions of Code 
Lines Across Thousands of Files and 
Folders 

- Automated Structure Chart Generation 
from Source Code for Each Thread of 
Execution 

To create models from code, the 
developer uses a step-by-step dialog in 
WinTranslator to select the programming 
language, code folders and other options. 
A script of commands is created and run 
to scan the code and output data to a text 
file. That file is imported into a new 
WinA&D project to populate the 
dictionary and generate a stack of 
diagrams that represent the code structure. 
The entire process takes just minutes to 
accurately document millions of lines of 
source code. 
WinTranslator is $495 for a Single User 
License. It works in conjunction with the 
WinA&D, QuickUML or QuickCRC 
modeling tools. See the company web site 
for product information, site license 
pricing, demo edition, videos and secure 
online ordering. 
[See also “ExcelSoftware — WinA&D & 
WinTranslator” in AUJ 25-2 (Jun 2006), 
pp.63–64. —su] 

Rapita Systems —  
RapiTime 2.0 
From: Rapita Systems 
Date: 10 March, 2008 
Subject: RapiTime 2.0 Improves the Timing 

Performance of Real-Time Embedded 
Software 

RSS: http://www.rapitasystems.com/ 
node/285 

Rapita Systems Ltd., leaders in 
measurement based worst-case execution 
time analysis, announce RapiTime 2.0 a 
comprehensive toolset for performance 
profiling, and worst-case execution time 
analysis of real-time embedded software.



88 References to Publ icat ions  

Volume 29, Number 2, June 2008 Ada User Journal 

In the avionics, telecommunications, 
space, and automotive electronics 
industries, successful companies know the 
importance of understanding, verifying, 
and improving the timing performance of 
their real-time embedded software. 
Taking a systematic and scientific 
approach to ensuring that time constraints 
are met, allows smart engineers to build 
timing correctness into their systems 
rather than spend time and effort trying to 
get timing bugs out. The result is reduced 
time to market, combined with class-
leading product reliability. 
Using the new features of RapiTime 2.0 
engineers can gain a clear, detailed, and 
accurate understanding of the execution 
time behaviour of their real-time software. 
RapiTime 2.0 uses an Eclipse-based 
graphical user interface to provide 
interactive access to a wealth of execution 
time data, obtained via on-target 
performance profiling and worst-case 
execution time analysis. For further 
details about the key information 
provided by RapiTime 2.0 download a 
copy of the new RapiTime Product 
Brochure and RapiTime White Paper. 
Beyond providing an in-depth 
understanding of software timing 
behaviour, RapiTime 2.0 adds the 
capability to target optimisation effort 
precisely where it will have the maximum 
benefit. Using the advanced features of 
RapiTime 2.0, engineers can discover the 
extent to which different software 
components contribute to the worst-case 
(often very different from their 
contribution to the average case), identify 
worst-case hotspots, and select the best 
opportunities for source code 
optimisation. 
RapiTime 2.0 also adds the capability to 
answer “what-if” questions about 
achievable performance gains, enabling 
the headroom for new functionality to be 
accurately assessed. Exploiting this 
advanced capability allows engineers to 
leverage their efforts, obtaining 
disproportionately large reductions in 
overall execution times through 
optimisations targeted at a tiny proportion 
of the overall software. The result is an 
elimination of timing overruns, and the 
efficient creation of headroom for new 
functionality, without the need for costly 
and time-consuming hardware upgrades. 
For further insight into how effective 
RapiTime is, download a copy of the 
RapiTime BAE Systems Experience 
Report. 
RapiTime is a practical solution that can 
analyse complex embedded real-time 
software running on the latest high 
performance microprocessors. RapiTime 
2.0 supports industrial scale C and Ada 
software from a few kBytes to millions of 
lines of code. Due to its simple, yet highly 
effective measurement-based approach, 
RapiTime 2.0 is compatible with virtually 

every 8, 16, and 32-bit embedded 
microprocessor on the market. RapiTime 
2.0 supports both automatic software 
instrumentation and hardware assisted 
timing trace capture via a logic analyser, 
or dedicated hardware such as the 
RapiTime TraceBox. 
Rapita Systems will be demonstrating the 
capabilities of RapiTime 2.0 at DATE08 
(10th – 14th March 2008, Munich, 
Germany) on stand S3. 
For more information about RapiTime on-
target timing analysis solutions, contact 
Us. 
[See also “Rapita Systems — RapiTime 
1.3” in AUJ 29-1 (Mar 2008), pp.14–15. 
—su] 

Ada and Microsoft 
Ada for Microsoft WinCE 
From: Ivan Levashew 

<octagram@bluebottle.com> 
Subject: Re: Ada / MS WinCE 
Date: Sun, 27 Apr 2008 02:57:32 +0700 
Newsgroups: comp.lang.ada 
> Is there any way to compile an Ada 

application for MS WinCE ? 
The only way I have heard of is: GNAT 
for .NET => .NET CF => WinCE 
From: Rob Veenker <veenker@xs4all.nl> 
Subject: Re: Ada / MS WinCE 
Date: Tue, 06 May 2008 20:02:20 +0200 
Newsgroups: comp.lang.ada 
AdaCore has already developed a 
GNATPro for .Net which generates true 
MSIL code. (GNAT Pro means it is a 
supported version; don't know about a 
possible public release) I noticed that they 
also got JGNAT running again. JGNAT is 
an Ada compiler for the Java runtime 
environment. We have actually used 
JGNAT on WinCE / Personal Java a 
couple of years back :-) 
And there also exists a public (Ada 95) 
version of A# under sourceforge: 
http://sourceforge.net/projects/asharp 
From: Rob Veenker <veenker@xs4all.nl> 
Subject: Re: Ada / MS WinCE 
Date: Tue, 06 May 2008 20:45:58 +0200 
Newsgroups: comp.lang.ada 
Just forgot to mention that GNATPro for 
.Net and A# also run on the .Net compact 
framework for WinCE! I even have Ada 
running on my cell phone :-) 
From: Rob Veenker <veenker@xs4all.nl> 
Subject: Re: Ada / MS WinCE 
Date: Wed, 07 May 2008 20:23:03 +0200 
Newsgroups: comp.lang.ada 
> Would probably be nice to write a clear 

tutorial on how to do a Hello World 
with Ada with the compact framework 
on a cell phone! 

There already exists a tutorial on A# for 
PDA's, last held at SigAda 2006. The only 

change for cell phones is that cell phones 
have a limited UI. You could however 
still use the M$ Visual studio (C#) to 
build the GUI so you know that part is 
OK and add Ada code in a .Net assembly. 
For deployment all you need to do is copy 
the A# runtime libraries onto your cell 
phone and add your own application 
assembly. 
Not too much magic here :-) 
To keep it all in Ada, you can probably 
also use Rapid for the GUI part but I am 
not sure all the calls performed by rapid 
are supported in the compact framework. 
[See also “Programming a PDA with 
Ada” in AUJ 25-4 (Dec 2006), p.186. —
su] 
From: Philippe Bertin 

<philippe.bertin@telenet.be> 
Subject: Re: Ada / MS WinCE 
Date: Fri, 2 May 2008 03:03:13 −0700 

(PDT) 
Newsgroups: comp.lang.ada 
> On my hardware there is an ARM CPU 

and I have a C/C++ Toolchain working 
together with a Linux BSP. What 
would be the steps to compile the Ada 
runtime and tailor the toolchain so it 
compiles Ada applications ? 

In WinCE there's always a platform 
builder involved. Depending on your 
target platform, the separate (C/C++) 
header files may or may not be available. 
This depends on how the target platform 
was built. This “target platform build” 
step will most probably be done by some 
senior programmer or some software 
project responsible, who knows which 
libraries/drivers are available and which 
ones aren't on the target platform. 
Now C/C++ header file availability isn't 
of that much interest to an Ada 
programmer. But with the above in mind, 
I doubt if there can be any “globally 
usable” WinCE port available for Ada, as 
every single port should be able to 
provide you the platform library (sub)set 
which is appropriate for the specific target 
platform... 

References to 
Publications 
Circuit Cellar — “Robotics 
with Ada 95” 
From: Bill 
Subject: Article: Ada For Robotics 
Date: Fri, 21 Mar 2008 06:48:06 −0600 
Newsgroups: comp.lang.ada 
I'm a one-time embedded systems 
developer who has been stuck in the bug-
infested world of IT for some time.  I 
have been wanting to get back into 
embedded systems but haven't seen 
anything interesting enough to cause me 
to jump back in ... until I read the March 



References to Publ icat ions 89  

Ada User Journal Volume 29, Number 2, June 2008 

2008 issue of Circuit Cellar magazine.  
(www.circuitcellar.com)  If you want to 
look into Ada, this article is a great place 
to start. 
From: Richard Riehle <rdriehle@nps.edu> 
Subject: Re: Article: Ada For Robotics 
Date: Thu, 27 Mar 2008 07:43:05 −0700 
Newsgroups: comp.lang.ada 
This application description is one of the 
best testimonials to the benefits of Ada 
that I have seen in years. 
Ada software and compiler publishers 
should request reprints and make them 
available at conferences such as 
Embedded Systems Conference, and the 
annual STC conference in Salt Lake City. 
I am forwarding this to the professor at 
our school (NPS) who has taken charge of 
our robotics program.   He is planning to 
use Erlang, but maybe this will encourage 
him to take another look at Ada. 

Slashdot —  
Discussion about Ada 
From: Jerry <lanceboyle@qwest.net> 
Subject: Ada discussion at slashdot 
Date: Tue, 15 Apr 2008 15:49:11 −0700 

(PDT) 
Newsgroups: comp.lang.ada 
There is a discussion of Ada going on at 
slashdot: 
http://developers.slashdot.org/ 
article.pl?sid=08/04/15/1554234 
It seems to have been inspired by the 
article which was mentioned here 
yesterday [See “GCN — The Return of 
Ada” in this issue —su] 
The majority of the discussion is very 
positive for Ada. 

Military Embedded Systems 
— “Ada Matters!” 
From: AdaCore Press Center 
Subject: Ada Matters! 
Date: Tuesday May 13, 2008 
RSS: http://www.adacore.com/2008/05/13/ 

ada-matters/ 

Military & Aerospace 
Electronics — “Software 
code and COTS” 
From: AdaCore Press Center 
Date: Tuesday May 13, 2008 
Subject: Software code and COTS 
RSS: http://www.adacore.com/2008/05/13/ 

software-code-and-cots/ 

Embedded Computing 
Design — “Don’t blow your 
stack” 
Date: Thursday May 15, 2008 
Subject: Don’t blow your stack 

RSS: http://www.adacore.com/2008/05/15/ 
static-stack-analysis-for-high-integrity-
systems/ 

GCN —  
“The Return of Ada” 
From: AdaCore Developer Center 
Date: Monday April 14, 2008 
Subject: The Return of Ada 
RSS: http://www.adacore.com/2008/04/14/ 

the-return-of-ada/ 
A very nice article entitled the “Return of 
Ada” has been published in Government 
Computer News. In it, the author 
highlights some of the recent contract 
wins and successes that made the choice 
to use the Ada programming language. To 
view the article, please [...] visit: 
http://www.gcn.com/print/278/      
46116-1.html 

Computerworld — “The A-
Z of Programming 
Languages: Ada” 
From: OSNews 
Subject: The A-Z of Programming 

Languages: Ada 
Date: June 4, 2008 
RSS: http://www.osnews.com/story/19824 
Computerworld is undertaking a series of 
investigations into the most widely-used 
programming languages. Previously they 
have spoken to Alfred v. Aho of AWK 
fame, and Chet Ramey about his 
experience maintaining Bash. In this 
article, they chat with S. Tucker Taft, 
Chairman and CTO of SofCheck. Taft has 
been heavily involved in the Ada 1995 
and 2005 revisions, and still works with 
the language today as both a designer and 
user. Computerworld spoke to Taft to 
learn more about the development and 
maintenance of Ada. 
http://www.techworld.com.au/article/ 
223388/ 
-z_programming_languages_ada?pp=1 

Doctor Dobb's Journal — 
“Tunny, Colossus and Ada: 
Keeping an Open Mind” 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Fri, 16 May 2008 03:56:45 −0700 

(PDT) 
Subject: Ada featured in Doctor Dobb's 

Journal 
Newsgroups: comp.lang.ada 
An opinion piece from Joachim Schüeth, 
the winner of the British National 
Museum of Computing's Colossus Cipher 
Challenge. 
http://www.ddj.com/architect/207800151 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Newsgroups: comp.lang.ada 

Subject: Re: Ada featured in Doctor Dobb's 
Journal 

Date: Fri, 16 May 2008 06:04:59 −0700 
(PDT) 

> Good stuff.  Another statement of what 
I have read here so often, that Ada is 
very good at letting one model the 
problem space rather than having to 
work backwards from the solution 
space. 

Aye. The article has been slashdotted, too, 
and there are surprisingly few bad 
comments so far. And I'm apparently not 
the only one believing in an upsurge in 
the use of Ada. Way to go. 

US National Academies 
From: Praxis High Integrity Systems News 
Subject: US agencies say software best 

practice is to be found in the UK 
Date: August 10, 2007 
URL: http://www.praxis-his.com/ 

news/usSoftware.asp 
Praxis has received further recognition 
and praise for its work in advanced 
software engineering, following two 
recent reports on software dependability 
and assurance from the United States 
(US). 
The first, “Software for Dependable 
Systems: Sufficient Evidence?”(link 1 
below) from the US National Academies, 
calls for an evidence-based approach to 
software assurance — something that 
Praxis has long practised and advocated in 
the UK. The report refers to several Praxis 
projects as examples of best practice in 
software engineering, particularly in the 
areas of formal methods and 
programming language design and 
verification. 
The second report, “Software Security 
Assurance”(link 2 below) from the US 
Defense Technical Information Center, 
also identifies Praxis for its work in 
developing the Correctness by 
Construction software process, the 
SPARK programming language, and the 
SafSec assurance methodology, which 
Praxis developed for the UK MoD. 
Keith Williams, Managing Director at 
Praxis, commented, “It’s very 
encouraging to see these significant US 
bodies identify the technologies and 
practices that we have advocated for 
many years. In particular, the call for a 
more evidence- and product-based 
approach to software assurance is very 
welcome.” 
References 
1. [http://www7.nationalacademies.org/ 
CSTB/project_dependable.html] 
2. [http://iac.dtic.mil/iatac/ 
press_SOAR.html] 



90  References to Publ icat ions 

Volume 29, Number 2, June 2008 Ada User Journal 

AdaCore Spring newsletter 
From: AdaCore Developer Center 
Date: Tuesday May 13, 2008 
Subject: Spring newsletter available 
RSS: http://www.adacore.com/2008/05/13/ 

spring-newsletter-available-2/ 
The latest edition of the GNAT Pro 
Insider newsletter has been published and 
is available for download at: 
www.adacore.com/category/  
press-center/newsletters 
This issue features: 
- New Release of GNAT Programming 

Studio 
- Contract Award for Coverage Analysis 

Project 
- Current Releases 
- In the Pipeline 
- Academia Corner 
- Interview with Emmanuel Briot 
- Webinar Schedule 
- Technology Corner:Pragmas 

Precondition and Postcondition 
- Conferences/Events 

SPARK Brochure 
From: SPARKAda.com 
Subject: New SPARK Brochure — March 

2008 
Date: March 2008 
URL: http://www.praxis-his.com/sparkada/ 
New SPARK Brochure — March 2008 
Download the new SPARK Language and 
Toolset brochure 
http://www.praxis-his.com/sparkada/pdfs/ 
SPARK_Brochure.pdf 
(8 pages, PDF, 470kb) 

Presentation of Project 
Coverage 
From: AdaCore Developer Center 
Subject: Coverage Project 
Date: Wednesday June 4, 2008 
RSS: http://www.adacore.com/2008/06/ 

04/coverage-project/ 
Thanks to French public funds, the next 
generation of Free Software code 
coverage tools is on its way. “Project 
Coverage” will produce a Free Software 
coverage analysis toolset together with 
the ability to generate artifacts that allow 
the tools to be used for safety-critical 
software projects undergoing a DO-178B 
software audit process for all levels of 
criticality. 
While an important target use of the 
coverage toolset is safety-critical 
embedded applications, the design of the 
tools allows its use in non safety-critical 
projects. 
Beyond the production of useful tools and 
certification material for industrial users, 
an important goal is to raise awareness 
and interest about safety-critical and 

certification issues in the Free 
Software/Open Source community. 
The key insight of “Project Coverage” is 
as follows: code coverage can greatly 
benefit from recent advances in hardware 
virtualization technology as promoted, for 
instance, by QEMU. The attached slides 
give a presentation of the technical scope 
of the project. 
http://www.adacore.com/wp-content/ 
uploads/2008/06/project_coverage.pdf 
[See also “AdaCore — Project Coverage” 
in this issue. —su] 
From: AdaCore Developer Center 
Subject: Coverage and Free Software 
Date: Wednesday June 4, 2008 
RSS: http://www.adacore.com/2008/06/04/ 

coverage-and-free-software/ 
A recent paper by Franco Gasperoni 
describing how a Free Software toolset 
(Coverage) and virtualization technology 
(QEMU) can be used effectively to assure 
code coverage in the development of 
software applications. While an important 
target use of the coverage toolset is 
safety-critical embedded applications, the 
design of the tools allows its use in non 
safety-critical projects. 
http://www.adacore.com/wp-content/ 
uploads/2008/06/ 
coverage_and_free_software.pdf 

SSTC 2008 Tutorial 
From: AdaCore Developer Center 
Date: Tuesday April 29, 2008 
Subject: Designing Safe and Secure Systems 
RSS: http://www.adacore.com/2008/04/29/ 

designing-safe-and-secure-systems/ 
Ben Brosgol’s tutorial at SSTC 2008, 
entitled “Safety and Security: An 
Analysis of Certification Issues and 
Technologies for High-Integrity 
Software”. 
Today’s interconnected critical systems 
must be both safe and secure; software 
developers and decision makers need to 
understand the operative certification 
standards and their implications on 
technology choice and system 
development. This presentation first 
summarizes the DO-178B avionics safety 
standard and the Common Criteria / 
Common Evaluation Methodology 
security standard. It identifies the 
requirements that these standards impose 
on programming language technology and 
development tools, and explains how 
safety and security considerations are 
similar and how they differ. It describes 
how modern programming language 
features such as Object-Oriented 
Programming affect safety and security 
certification, and assesses several current 
language family approaches — C / C++, 
Ada / SPARK, and Java — against safety 
and security requirements. 

[See http://www.adacore.com/ 
wp-content/uploads/2008/05/ 
brosgolpresentation-sstc2008.pdf —su] 

AdaCore — Multiple 
exhibitions 
From: AdaCore Press Center 
Date: Monday May 5, 2008 
Subject: DASIA 2008 
RSS: http://www.adacore.com/2008/05/05/ 

dasia-2008/ 
AdaCore will be exhibiting at this event. 
From: AdaCore Press Center 
Date: Monday June 2, 2008 
Subject: Eclipse Summit 2008 
RSS: http://www.adacore.com/2008/06/ 

02/eclipse-summit-2008/ 
AdaCore is sponsor of this event. 
From: AdaCore Press Center 
Date: Monday June 2, 2008 
Subject: IET Systems Safety 2008 
RSS: http://www.adacore.com/2008/06/ 

02/iet-systems-safety-2008/ 
AdaCore is the major sponsor of this 
event. 
From: AdaCore Press Center 
Subject: SAFECOMP 2008 
Date: Monday June 2, 2008 
RSS: http://www.adacore.com/2008/06/02/ 

safecomp-2008/ 
AdaCore is the main industrial sponsor of 
this event. 
Robert Dewar, AdaCore CEO and 
President, will be presenting a talk at the 
Safety and Security event held on 
Thursday September 25 (details to 
follow). 
From: AdaCore Press Center 
Date: Monday March 17, 2008 
Subject: GCC Developers’ Summit 
RSS: http://www.adacore.com/2008/03/17/ 

gcc-developers-summit/ 
AdaCore is a major sponsor of this event 
and will be presenting an “Ada Compiler 
Tutorial”. 
From: AdaCore Press Center 
Date: Wednesday March 12, 2008 
Subject: User Experience of Tools for 

Safety-Critical Systems 
RSS: http://www.adacore.com/2008/03/12/ 

user-experience-of-tools-for-safety-
critical-systems/ 

Organized by the Safety-Critical Systems 
Club, this event will focus on first-hand 
experience of applying tools to the 
development of safety-critical systems. 
AdaCore is the major sponsor of this 
event. 
From: AdaCore Press Center 
Date: Thursday May 8, 2008 
Subject: Real-Time & Embedded Computing 

Conference (RTECC) 
RSS: http://www.adacore.com/2008/05/08/ 

real-time-embedded-computing-
conference-rtecc/ 

AdaCore will be exhibiting at this event.



Ada Inside 91 

Ada User Journal Volume 29, Number 2, June 2008 

Ada Inside 
Who's using Ada in 
industry? 
From: Michael Feldman 

<mfeldman@seas.gwu.edu> 
Subject: Who's using Ada in industry? 
Date: Thu, 20 Mar 2008 23:08:04 −0000 
Organization: The George Washington 

University 
Newsgroups: comp.lang.ada 
After several years of inactivity with the 
Ada project list, I've started to maintain it 
actively again. I've put a revised version 
online at 
http://www.seas.gwu.edu/~mfeldman/ 
ada-project-summary.html 
I've changed the “look” a bit, added a few 
listings, changed the order of the project 
groupings, and removed all the dead links 
(without removing the associated 
listings). There aren't too many links now, 
but I think they are all valid. 
Now I need your help. Please look at this 
long and interesting list, and let me know 
if you have anything to add to it (or delete 
if necessary). If you can provide a valid 
link for a project that doesn't have one, 
that would be great. 
This list will best serve the community if 
its listings refer to actual applications of 
Ada that are either fielded or under active 
implementation. I don't want to pad the 
list with tools, compilers, libraries, etc., 
but rather to respond to the question “who 
is actually using Ada in industry?”. 
If you are close enough to a project to 
know there's “Ada inside”, please let me 
hear from you. In the past, some listings 
have come from “anonymous sources”; 
you can be assured of my discretion; I 
always respect the confidentiality of my 
informants. 
As always, please help make this list as 
complete and accurate as possible; it's 
good for all of us. 
Thanks very much in advance for your 
help and interest! 
Michael Feldman 
Chairman, ACM SIGAda Education 
Working Group 
Professor Emeritus, Department of 
Computer Science 
The George Washington University 
From: Niklas Holsti 

<niklas.holsti@tidorum.fi> 
Date: Fri, 21 Mar 2008 21:28:41 +0200 
Subject: Re: Who's using Ada in industry? 
Newsgroups: comp.lang.ada 
I suspect that this exclusion of the SW 
tool industry from the definition of 
“industry” may focus the list on the 
traditional Ada application areas — 

military and aerospace — and exclude 
small or start-up Ada adopters in other 
areas. This could reinforce prejudice 
against Ada in other areas and especially 
in the SW tools area. 
I understand that a vendor of Ada 
compilers may be suspected of bias if the 
vendor chooses to write the compilers in 
Ada. But the same should not happen 
when a C compiler, or a language-neutral 
tool, is written in Ada. Moreover, I 
believe that the reputation of Java has 
been boosted by the fact that many tools 
for Java development are written in Java. 
Why should the same not be true for Ada? 
If SW tool projects were listed under their 
own heading — perhaps as the last group 
— they should not detract from the 
impact of the other projects on the list. 
I admit that I am biased, as my own 
project (and that of at least one other 
company in the same area, that I know of) 
are SW tools and thus apparently not 
wanted on the list. Perhaps only large, 
expensive projects are wanted? In that 
case it would be clearer to say so. 
From: Michael Feldman 

<mfeldman@seas.gwu.edu> 
Organization: The George Washington 

University 
Date: Thu, 01 May 2008 13:11:50 −0500 
Subject: “Who's Using Ada” — May edition 

is online 
Newsgroups: comp.lang.ada 
I've just put up the May edition of the Ada 
project catalog. Thank you all very much 
for the numerous additions and 
corrections. The list of defense-related 
projects is significantly longer than 
before, but other categories are also 
growing as people send me tips. I'm glad 
to see growth in the desktop apps group; I 
suspect there are more of those I haven't 
learned of yet. 
I've decided to leave the previous editions 
online for comparison purposes. The basic 
link above will always point to the most 
recent; I've identified the older ones by 
adding a year and month to the file name. 
For example, April 2008 is 
http://www.seas.gwu.edu/~mfeldman/ 
ada-project-summary-0804.html 
I'm still checking out some tips and 
possible links; they'll appear in the June 
edition. 
Have a good May; see you again in June. 

AdaCore — New Avionics 
Flight Control Software 
From: AdaCore Press Center 
Date: Wednesday March 5, 2008 
Subject: AdaCore and Mistral Solutions 

Selected by Indian Government to Build 
New Avionics Flight Control Software 

RSS: http://www.adacore.com/2008/03/05/ 
mistral-solutions/ 

NEW YORK, AMSTERDAM, 
Netherlands, and BANGALORE, India, 
March 5, 2008 — Avionics 2008 — 
AdaCore, provider of the highest quality 
Ada tools and support services, today 
announced that the Indian Aeronautical 
Development Establishment (ADE) has 
chosen AdaCore’s GNAT Pro High-
Integrity Edition for DO-178B Ada 
environment to be used by AdaCore’s 
partner Mistral Solutions to create new 
safety-critical flight control systems that 
will underpin advanced Indian defense 
programs. 
The partnership was chosen over the 
competition due to the combination of 
Mistral’s development experience and 
strong customer support, the safety-
critical aspects of the Ada language, and 
AdaCore’s knowledge, superior 
development environment and close 
integration with Wind River’s operating 
software. This is the first ADE project to 
use the Ada language. 
Mistral will use GNAT Pro High-Integrity 
Edition for DO-178B on the project, 
which aims to develop avionics flight 
control systems that will become the 
standard within multiple applications for 
the Indian Ministry of Defence. It began 
in April 2007 and is scheduled to last 14 
months. The project will run on VME 
PPC-based single board computers using 
Wind River Systems’ VxWorks 6.x 
operating system. 
“This new project demonstrates that Ada 
is now the language of choice for 
developing safety-critical avionics 
systems across the globe,” said Cyrille 
Comar, Managing Director, AdaCore 
Europe. “Working with our partner 
Mistral Solutions, AdaCore was able to 
deliver a superior development 
environment that is both easy to use and 
provides the high level of protection 
necessary for mission-critical applications 
such as flight control systems.” 
“This is yet another great example of a 
new avionics project leveraging the 
industry-proven combination of Wind 
River’s VxWorks RTOS and AdaCore’s 
GNAT Pro development environment,” 
said Rob Hoffman, General Manager of 
Aerospace and Defense, Wind River. 
“Combining Wind River’s VxWorks 
product platform and our worldwide 
support organization with AdaCore’s 
software, we are ensuring that 
organizations like the Indian ADE benefit 
from the industry’s most robust 
development platforms for high-reliability 
systems.” 
ADE is part of the Indian Defence 
Research and Development Organisation 
(DRDO), which undertakes design and 
development leading to the production of 
world-class flight control systems and 
equipment to meet the needs and 
requirements of the three Indian armed 
services. DRDO is working in various 



92  Ada Inside 

Volume 29, Number 2, June 2008 Ada User Journal 

areas of military technology, which 
include aeronautics, armaments, combat 
vehicles, electronics, instrumentation 
engineering systems, missiles, materials, 
naval systems, advanced computing, 
simulation and life sciences. 
“This is the first major Ada project we 
have worked on, and when it came to 
developing such a safety-critical 
application, AdaCore was the natural 
choice to partner with,” said Mujahid 
Alam, Vice President — Sales, Mistral 
Solutions. “From our extensive research, 
AdaCore stands out as the foremost 
provider of Ada technology, and we have 
been very impressed with AdaCore’s 
knowledge, product strengths and strong 
integration with Wind River’s technology. 
The success of this project is testament to 
the close working relationship we have 
built up, combined with our own 
development and customer support 
strengths.” 
GNAT Pro High-Integrity Edition for 
DO-178B supports the development of 
safety-critical and security-critical 
applications for embedded systems, 
servers and workstations. The GNAT Pro 
development environment combines 
market-leading technology with an expert 
support system to provide a natural 
solution where efficient and reliable code 
is critical. 
About Mistral 
Mistral is an ISO 9001:2000 certified and 
CMMi Level 3 appraised premier product 
realization Company providing end-to-
end services for product design and 
development in the embedded space. 
Mistral offers expert design and 
development services covering hardware 
and software, customizable product 
designs and IP’s, System Integration and 
COTS Solutions that improve quality and 
accelerate time-to-market for a broad 
range of embedded systems. Mistral has 
forged successful partnerships with 
leading providers of embedded solutions, 
which has enabled the company to 
provide its clients with the finest 
technology solutions based on the world’s 
best platforms. For details, please visit 
http://www.mistralsolutions.com/ 

AdaCore — Project 
Coverage 
From: AdaCore Press Center 
Subject: AdaCore Announces “Project 

Coverage” 
Date: Thursday June 5, 2008 
RSS: http://www.adacore.com/2008/06/05/ 

coverage/ 
The first Open Source code coverage 
project for DO-178B and safety-critical 
systems 
Paris and New York, June 5, 2008 — 
AdaCore, together with Open Wide, 
ENST, and LIP6, and with financial 

support from French public funds, today 
announced the initiation of Project 
Coverage. The first Open Source project 
of its kind, Project Coverage will produce 
a Free Software coverage analysis toolset 
together with artifacts that allow the tools 
to be used by developers of safety-critical 
and mission-critical projects, including 
systems that need to be certified under 
safety standards such as DO-178B. 
“Being strongly rooted in Free Software 
and having many customers in the 
Avionics and DO-178B domain, AdaCore 
was instrumental in getting this project off 
the ground,” said Roberto Di Cosmo, 
President of the Free and Open Source 
Software group of System@tic, the R&D 
competitive cluster out of which Project 
Coverage has grown. 
The key insight of Project Coverage is 
that code coverage can greatly benefit 
from recent advances in hardware 
virtualization and emulation technologies. 
“By virtualizing the target hardware, 
Project Coverage tools can execute the 
target binary code unmodified on a host 
computer, such as a GNU Linux or 
Windows machine, and collect binary 
branch information,” said Olivier 
Hainque, technical lead of Project 
Coverage at AdaCore. “The collected 
information is then analyzed off-line and 
mapped back to the original sources 
thanks to the debugging information 
contained in the executable.” 
“Our virtualization technology is based on 
QEMU. We are extending it, first to 
output execution traces, including binary 
branch coverage information, and second 
to make it usable in industrial contexts 
typically found in the avionics domain,” 
continued Hainque. 
“Because QEMU works by compiling the 
target object code into the host object 
code, virtualization is more effective than 
direct execution on the target,” said 
Tristan Gingold, Senior Software 
Engineer at AdaCore and QEMU expert. 
“The speed advantage of the host over the 
target makes up for the loss in emulation 
performance and you gain the 
convenience and availability of the host 
environment over the target.” 
Beyond the production of useful tools and 
certification material for industrial users, 
an important goal of the project is to raise 
awareness and interest about safety-
critical and certification issues in the Free 
Software/Open Source community. 
“It’s all about cross fertilization between 
the DO-178B and Free Software/Open 
Source communities,” said Cyrille Comar, 
the AdaCore representative on the DO-
178C committee. “The DO-178B 
community, with its approach anchored in 
requirements-based testing, has shown us 
that the source isn’t everything in safety-
critical systems, while the Open Source 
community has shown us that being open 

and having high-quality and widely 
available tools is essential to extend the 
benefit of state-of-the-art technologies 
from niche markets to a wider audience of 
software developers. 
“The approach put forth by Project 
Coverage features several strong points,” 
said Robert Dewar, President and CEO of 
AdaCore. “Project Coverage tools will be 
easy to use and deploy since they run on 
the host computer. They will be 
independent of the programming language 
and will work for Ada, C, and C++. 
Project Coverage tools are also designed 
to be non-intrusive and work directly with 
the final executable. No specialized 
hardware will be required to extract 
coverage information.” 
Project Coverage tools will be freely 
available, and industrial users will have 
the option to purchase high-quality 
professional support together with DO-
178B qualification material. 
In summary Project Coverage smartly 
combines several significant but 
independent trends in today’s software 
technology landscape (Free 
Software/Open Source, Virtualization, 
DO-178B qualification, etc.) producing a 
unique code coverage solution that safety-
critical and non safety-critical developers 
can use in their projects. 
For more information on Project 
Coverage please go to 
www.adacore.com/home/company/ 
development_projects 
About Project Coverage 
Project Coverage is partially funded by 
the regional authorities of Paris and the 
Ile-de-France district and the French 
Ministry of Industry, under the auspices 
of the Free & Open Source Software 
group headed by Roberto Di Cosmo in 
System@tic, the R&D competitive cluster 
located in Paris and its surroundings. The 
institutions participating in Project 
Coverage include AdaCore, Open Wide 
(who will provide an avionics test bed and 
study the impact of MIL-STD-1553, 
ARINC 629, and similar avionics 
standards for Project Coverage), ENST, 
and LIP6, who will generalize the Project 
Coverage approach to distributed systems 
and languages running on a virtual 
machine. 
[See also “Presentation of Project 
Coverage” in this issue. —su] 

Artisan Software — BAE 
Systems Ada Profile 
From: Artisan Software Press Releases 
Subject: Objektum Solutions and Artisan 

team with BAE Systems to resolve the 
HOOD-to-UML migration challenge on 
the Nimrod project 

Date:Wednesday, March 05, 2008 



Ada Inside 93  

Ada User Journal Volume 29, Number 2, June 2008 

URL: http://www.artisansw.com/news/ 
press_release_details.aspx? 
pressReleaseID=185 

Avionics Show 2008, Amsterdam—
Wednesday, March 05, 2008 — 
Objektum Solutions’ HOODbridge utility 
migrates HOOD design information to 
Artisan Studio UML models without any 
loss of design data or integrity 
Avionics Show  2008, Amsterdam — 
5th–6th March 2008.  Artisan Software 
Tools and Objektum Solutions are 
successfully working with BAE Systems 
to resolve the HOOD-to-UML migration 
challenge for its Nimrod project legacy 
designs. By providing a solution 
combining Objektum Solutions’ 
HOODbridge utility, the Artisan Studio 
UML/SysML tool suite and the BAE 
Systems Ada Profile, the resulting 
solution significantly reduces the time it 
takes to migrate legacy designs into 
Artisan Studio ready for use. 
The HOOD (Hierarchic Object Oriented 
Design) design methodology was 
established by the European Space 
Agency over 25 years ago. Although 
never considered a mainstream 
methodology, it was adopted and 
successfully employed by a variety of 
major avionics, aerospace, defense and 
nuclear organizations to support 
engineering programs requiring a robust 
methodology to support complex, 
mission-critical systems development. 
Given its age and limited adoption, this 
has resulted in both HOOD skills and tool 
support becoming limited. 
BAE Systems recognized the need to 
move towards a more mainstream 
environment for complex, mission-critical 
design and development by migrating its 
legacy designs to the industry standard 
UML environment to continue the 
ongoing development and maintenance 
requirements to better fully support the 
Nimrod in the years to come. 
During 2007, BAE Systems reviewed its 
various migration options and engaged 
Objektum Solutions, a company with 
extensive expertise in the HOOD 
methodology, to investigate ways in 
which its HOOD data could be migrated 
into Artisan Studio, which was already 
widely deployed within BAE Systems. 
The outcome of this engagement has 
resulted in Objektum Solutions 
developing the HOODbridge, a 
standalone utility to migrate HOOD 
design data into an Artisan Studio UML 
model without any loss of design data 
integrity. 
BAE Systems used Artisan Studio's 
powerful, extensible and highly flexible 
features to develop an Ada Profile — 
where profile properties are first class 
citizens in the design. Additionally, code 
generation templates have been developed 
to generate code from the models. Using 

the Objektum Solutions HOODbridge 
with the BAE Systems Ada Profile and 
code generation templates, it has proven 
the ability to migrate HOOD designs into 
Artisan Studio along with the generation 
of source code consistent with BAE 
Systems’ original COTS HOOD tool. The 
HOODbridge builds a readable, navigable 
intermediate view of the BAE Systems´ 
Nimrod designs which can be thoroughly 
checked before the UML model is 
generated. Once the design has been 
migrated from HOOD to UML, BAE 
Systems can then exploit the richer UML 
notation in order to maintain and further 
develop the models. 
Having proven the viability of the general 
concept, the Nimrod project team at BAE 
Systems is now standardizing on 
HOODbridge and Artisan Studio as its 
tools of choice for the migration of 
HOOD software designs to UML.  The 
team is continuing to refine and validate 
the migration process in order to prove its 
accuracy and reliability before beginning 
the migration task in earnest. 
“With the HOODbridge/Artisan Studio 
HOOD-to-UML migration solution, the 
Nimrod project team at BAE Systems has 
been able to satisfy all of the objectives of 
its migration rationale,” said Peter Kibble, 
Commercial Director at Artisan Software 
Tools.  “The HOODbridge/Artisan Studio 
HOOD-to-UML migration solution 
provides BAE Systems with the ability to 
transition the Nimrod project to a 
mainstream methodology with 
comparative ease and at minimal cost, 
thus ensuring they have the ability to 
continue to develop and maintain their 
legacy systems. The HOODbridge 
solution provides protection against 
ageing tools with diminishing support, 
mitigates against the declining availability 
of HOOD expertise resulting from what is 
fast becoming an obsolete methodology 
and ultimately future-proofs the project 
through better alignment with industry 
standards.” 
About Artisan Software Tools 
Artisan Software Tools is the leading 
independent supplier of premium-quality, 
industrial-grade, collaborative modeling 
tools for complex, mission-critical 
systems and software.  Artisan’s 
standards-based tool suite, Artisan Studio, 
provides comprehensive support for the 
leading industry standards, including 
OMG SysML, UML and Architectural 
Frameworks.  It delivers on the promise 
of an integrated collaborative 
development environment — allowing 
systems and software engineering teams 
to work as one — from concept through 
to delivery and maintenance. Artisan has 
delivered a stable, robust working 
environment to thousands of users across 
an extensive range of complex 
applications in demanding sectors 
including military, aerospace and defense, 

automotive and transportation, 
telecommunications and electronics, and 
medical.  Founded in 1997 with extensive 
venture capital backing, Artisan is 
headquartered in the USA and UK with 
offices in Germany and Italy, supported 
by a global distributor network. For more 
information visit:  www.artisansw.com. 
About Objektum Solutions 
Objektum Solutions provides real-time, 
mission-critical software development 
and consulting services to aerospace and 
defense organizations involved in 
software intensive projects. The company 
is committed to providing flexible and 
innovative solutions by leveraging its 
extensive technical capabilities in order to 
meet the needs of clients. With a proven 
track record in real-time embedded and 
object-oriented software for a range of 
safety-critical projects, Objektum 
Solutions has experience of the processes, 
tools and techniques used in delivering 
projects to the relevant safety standards. 
This is combined with a long-term 
partnership approach working hand-in-
hand with its clients to meet the project's 
overall objectives. 
About HOODbridge 
The HOODbridge works by defining 
mappings between the elements of a 
HOOD design and the Artisan Studio 
UML model in terms of a profile and 
browser structure, which has been 
specified by BAE Systems. For example, 
the HOOD hierarchy is represented in the 
browser, classes are created for each 
HOOD Object and HOOD Diagrams are 
drawn as a class diagram. The 
HOODbridge parses the HOOD design 
and builds a readable, navigable view of 
the HOOD design, allowing engineers to 
review the analysis before generation.  
UML artifacts are then produced for each 
of the HOOD design elements, based on 
the mapping rules.  As elements are 
created, automatic checking ensures the 
integrity and consistency of the original 
HOOD design.  Any errors are 
communicated to the engineer via the 
screen and a comprehensive log file. 

Indirect Information on Ada 
Usage 
[Extracts from and translations of job-ads 
and other postings illustrating Ada usage 
around the world. —su] 
Job Description 
The Senior Software Engineer will be 
responsible for development of embedded 
command, control, and communications 
software for the digitized battlefield. The 
software is deployed in [...] U.S. Army 
Aviation platforms. [...] It performs data 
messaging, provides wireless 
communication protocols, and interfaces 
with military communication equipment 
and aviation mission systems. Providing 



94 Ada in Context  

Volume 29, Number 2, June 2008 Ada User Journal 

advanced applications, the software 
manages current battlefield situational 
awareness data on friendly and enemy 
forces for pilot display, and manages 
current mission orders and digital map 
overlays. 
The Senior Software Engineer will 
analyze requirements, create object 
oriented software designs, implement 
software, and perform unit and integration 
testing. Software will be implemented 
using Ada 95 and executes on a POSIX 
compliant operating systems. 
Education: BS Computer Science or other 
field 

Ada in Context 
A4 formatted ARM 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Subject: Re: A4 formatted ARM? 
Date: Tue, 6 May 2008 15:48:20 −0500 
Newsgroups: comp.lang.ada 
> Does anyone have a PDF of the ARM 

formatted for A4 paper? 
I don't think any such thing exists (and 
surely not officially). The ARM is 
formatted for a non-standard paper size 
(7x9") which was adopted for some 
reason for Ada 95. The AARM is 
formatted for US 8 1/2x11 paper (but it's 
unofficial in any case). 
The best way to get a printed copy is the 
buy the Springer edition. 
If you have more time than money, you 
could make one yourself: 
(1) Download and compile the formatting 
tool (its found on ada-auth.org). 
(2) Download the input source for the 
ARM. 
(3) Generate an RTF form of the ARM. 
(4) Load that into Word 2003 (other word 
processors *may* work, but only Word 
97 and Word 2003 are *known* to work 
[and Word 2000 is known *not* to work]. 
I'll be trying OpenOffice 2.4 the next time 
I need to work on the ARM). 
(5) Set the page size to A4. 
(6) Apply the half-dozen hand patches. 
Regenerate the table-of-contents. 
(7) Save in some other format than .rtf 
(saving as .rtf crashes every version of 
Word ever tried). 
(8) Output as PDF using your favorite 
PDF writer. 
If you have neither time nor money, 
forget the paper and use the HTML 
format; it is better anyway (because it has 
links). 
From: John McCabe 

<john@assen.demon.co.uk> 
Subject: Re: A4 formatted ARM? 

Date: Thu, 08 May 2008 13:17:07 +0100 
Newsgroups: comp.lang.ada 
[...] the fruits of my labours are now 
available at: 
http://www.assen.demon.co.uk/ 
AdaRMA4/ 
From: Pascal Obry <pascal@obry.net> 
Date: Tue, 06 May 2008 22:47:57 +0200 
Subject: Re: A4 formatted ARM? 
Newsgroups: comp.lang.ada 
Printer? The ARM is so huge that I won't 
waste my paper for that especially since it 
will be a big stack when printed. Not very 
easy to handler... I would order the ARM 
if the goal is to have it on paper. I enjoy 
the printed edition of the ARM, printed on 
very thin paper it is not that big. 

Interfacing with Objective-C 
From: Ivan Levashew 

<octagram@bluebottle.com> 
Subject: Re: Interfacing with Objective-C or 

Python 
Date: Mon, 26 May 2008 15:25:15 +0700 
Newsgroups: comp.lang.ada 
> Is there any way to interface Ada with 

Objective-C (or Python) without having 
a wrapper? Has anyone done this 
before? 

Objective-C from Apple and from FSF 
have different way of dispatching calls. 
Apple's one has objc_sendMsg varargs 
function. The best way is to have a C 
wrapper for every kind of varargs 
invocation since one can't be sure if 
passing some kind of argument is 
equivalent to passing it as a varargs 
argument. But if one is sure, one can 
completely eliminate ObjC wrapper. 
objc_sendMsg must be imported several 
times for every combination of arguments 
one is going to use it with. One will also 
need to map selectors' string 
representation to their integer 
representation with 
NSSelectorFromString. Frozen constant 
will do. 
Then one just calls objc_sendMsg (objc-
class-or-object, selector, arg1, arg2, ...). 
And also reference counting: Controlled's 
Adjust/Finalize must be mapped to 
NeXTSTEP's retain/release. I don't know 
much about exception handling. 
> without having a wrapper? 
ObjectiveC is like C++. There are at least 
3 incompatible implementations: Apple, 
FSF, POC (Portable Object Compiler). 
One either make a wrapper or go into 
details and make implementation-
dependent binding. Cocoa APIs are 
partially duplicated in GNUStep and 
Cocotron, and Apple is rumored to release 
Cocoa for Windows [1] currently being 
tested on Safari for Windows. So it's 
usually better to make portable bindings. 
[...] 

[1] http://www.roughlydrafted.com/RD/ 
RDM.Tech.Q2.07/A35C23B9-BD22-
4478-BC30-4111CFC360B5.html 

From: Ivan Levashew 
<octagram@bluebottle.com> 

Subject: Re: Interfacing with Objective-C or 
Python 

Date: Mon, 26 May 2008 16:18:15 +0700 
Newsgroups: comp.lang.ada 
> But looks like a C-wrapper is inevitable, 

isn't it? 
No, it isn't. 
You just need to ensure that varargs 
invocation is identical to usual invocation. 

Pragma Atomic is not 
related with tasking 
From: Maciej Sobczak 

<maciej@msobczak.com> 
Subject: Re: Robert Dewar's great article 

about the Strengths of Ada over other 
langauges in multiprocessing! 

Date: Wed, 12 Mar 2008 09:28:42 −0700 
(PDT) 

Newsgroups: comp.lang.ada 
[...] 
> Consider the multi-core execution of 

two concurrent threads.  One will 
modify a variable, another will read.  
One will keep the variable in the 
register, another will reload it from the 
memory.  Volatile will force flushing to 
the memory. Otherwise thread 2 will 
read erroneous data. 

No. Your perception of what and where is 
the “memory” is completely different 
from that of CPU(s). The volatile 
keyword can, at best, force the compiler 
to use some “memory address” for access. 
The problem is that between “memory 
address” and “physical memory” there is 
a long chain of funny things like 
asynchronous memory writer in CPU and 
a few layers of cache with complicated 
prefetch functionality. The cache is 
transparent so can be ignored, but the 
memory writer module and prefetch work 
*asynchronously* and this means that 
when you “read” and “write” your 
variables, you really don't read and write 
what you think — or rather not *when* 
you think. This happens out of the 
compiler's control (it's hardware), so 
“volatile” cannot help you - you can as 
well write it in assembly and still have the 
same problem. 
You need memory barrier to ensure 
visibility between CPUs and volatile does 
not provide it (unless you have some 
funny compiler). To actually get the 
barrier, you have to either apply it by 
hand or use dedicated system services that 
do it for you (mutexes, etc.). Now, the 
best part — once you do it, volatile give 
you nothing. 
No, the best part is this: volatile not only 
gives you nothing, it actually *slows the 



Ada in Context 95  

Ada User Journal Volume 29, Number 2, June 2008 

program down*, because it prevents the 
compiler from applying some obvious 
optimizations when the given object is 
used many times within the critical 
section. 
You don't want to slow your program 
down, do you? :-) 
And last but not least — have you tried to 
use volatile with some C++ classes, like 
string, vector, map, etc.? Try it. It will not 
even compile, but certainly it is possible 
to use these classes with many threads. 
Short version: don't use volatile for 
multithreading. It's not the correct tool to 
do the job. The correct ones are membars 
and these are part of dedicated system 
services. Use them. 
From: Maciej Sobczak 

<maciej@msobczak.com> 
Subject: Re: Robert Dewar's great article 

about the Strengths of Ada over other 
langauges in multiprocessing! 

Date: Thu, 13 Mar 2008 02:40:47 −0700 
(PDT) 

Newsgroups: comp.lang.ada 
[...] The problem is that Thread2 can see 
something different and there the 
assertion can fail. This can happen for two 
reasons: 
1. If you write something to memory, you 
only instruct the CPU that you *want* 
something to be stored. It will do it — but 
not necessarily immediately and it can 
actually happen *some time later*. The 
problem is that if you store two values 
(separate store instructions), the CPU 
does not know that they are related — and 
can stored them physically in different 
order. The compiler has no control over 
it! It is the hardware that can reorder the 
writes to memory. 
2. If you read something from memory, 
you can actually read something that is 
already in the cache — the value can be 
there already and *earlier*. 
Both these mechanisms can make 
Thread2 see different order of 
modifications than that perceived by 
Thread1. Again, the compiler has no 
control over it. It is all in hardware. [...] 
From: Simon Wright 

<simon.j.wright@mac.com> 
Subject: Re: Robert Dewar's great article 

about the Strengths of Ada over  other 
langauges in multiprocessing! 

Date: Fri, 14 Mar 2008 21:54:26 +0000 
Newsgroups: comp.lang.ada 
I think that 'volatile' is only a way to tell 
the compiler that this object must be 
read/written directly each time; don't copy 
it to a register and manipulate values 
there. 
Likewise 'atomic' says to read/write the 
whole thing with one machine operation. 
Probably because that's what the IO 
hardware requires; e.g., you must write all 

32 bits at once, not just the only byte 
you've changed.. 
The only time this makes sense is with 
memory-mapped IO where the system 
must be designed so that this is sensible. 
If you try it with memory with varying 
levels of hardware cache and with 
multiple cores you are going to be 
disappointed, I think. 
From: Maciej Sobczak 

<maciej@msobczak.com> 
Date: Sat, 15 Mar 2008 06:29:56 −0700 

(PDT) 
Subject: Re: Robert Dewar's great article 

about the Strengths of Ada over other 
langauges in multiprocessing! 

Newsgroups: comp.lang.ada 
[...] 
> What also seems to be alarming is 

proliferation of architecture specificity 
into the programming techniques. 

No, there is no specificity. I have an 
impression that you still try to keep the 
volatile mess and then declare that the 
platform specificity breaks your code, but 
the truth is totally inverse — you have 
broken code, period. That's it — don't 
expect compiler vendors to “fix the 
world” and penalize those who do things 
correctly. If you write correct code (yes, 
forget once and for all the volatile 
keyword), there is absolutely no 
architecture specificity to worry about. 
> What will happen when architecture 

change? 
Nothing. Correct programs will still work 
and broken programs will still be broken. 
> C started as a language for very simple 

microprocessor architecture language.  
Now architectures outgrew what the 
language was originally designed for. 

No, you can still target modern 
architectures with this “outdated” 
language. Just do it right. Interestingly, 
this also applies to Ada [...] 
> Practitioners are simply patching things 

up trying to make 12-year's old pants to 
fit on 16-years old boy. 

Yes, you are unfortunately right here. 
Practitioners have to worry about 
truckloads of broken code. 

Ada research and new 
synchronization protocols 
From: ME <abcdefg@nonodock.net> 
Subject: Robert  Dewar's great article about 

the Strengths of Ada over other 
langauges in multiprocessing! 

Date: Fri, 7 Mar 2008 22:04:09 −0800 
Newsgroups: comp.lang.ada 
As many of may have already noticed, 
there has been a tremendous furor over 
the lack of multicore support in the 
common languages like C and C++.   I 
have been reading these articles in EE 

Times and elsewhere discussing this 
disaster with all the teeth gnashing and 
handwringing acting as though Ada never 
existed. Robert Dewar, our hero, has 
written an absolutely excellent article 
with a clever intro. 
http://www.eetimes.com/news/design/ 
showArticle.jhtml?articleID=206900265 
From: Maciej Sobczak 

<maciej@msobczak.com> 
Subject: Re: Robert Dewar's great article 

about the Strengths of Ada over other 
langauges in multiprocessing! 

Date: Sat, 8 Mar 2008 14:11:04 −0800 
(PST) 

Newsgroups: comp.lang.ada 
[...] Take for example lock-free 
algorithms. There is no visible research 
on this related to Ada, unlike Java and 
C++ (check on 
comp.programming.threads). Ada will 
most likely miss the “multicore 
revolution”, unless it will *really* focus 
on performance — the point is that all this 
multicore hoopla revolves around 
performance, *exclusively*. 
From: Ivan Levashew 

<octagram@bluebottle.com> 
Date: Tue, 29 Apr 2008 14:15:36 +0700 
Subject: Re: Robert Dewar's great article 

about the Strengths of Ada over other 
langauges in multiprocessing! 

Newsgroups: comp.lang.ada 
FYI: http://www.gidenstam.org/Ada/ 
Non-Blocking/ 
From: Jeffrey R. Carter 

<jrcarter@acm.org> 
Date: Sun, 09 Mar 2008 03:17:44 GMT 
Subject: Re: Robert Dewar's great article 

about the Strengths of Ada over other 
langauges in multiprocessing! 

Newsgroups: comp.lang.ada 
> Ada hasn't “missed” the “multicore 

revolution”.  Quite the opposite, Ada 
has had multitasking built-in since the 
mid 80's and it works just fine on 
multicore platforms.  (I know, I've been 
there, done that.)  Perhaps someday one 
of those C variants you seem to prefer 
will have the same kind of advanced 
features. 

Ada has had tasking since 1980 (Ada 80, 
MIL-STD 1815). It was significantly 
revised for Ada 83. 
From: Peter C. Chapin 

<pchapin@sover.net> 
Date: Thu, 13 Mar 2008 06:49:21 −0400 
Subject: Re: Robert Dewar's great article 

about the Strengths of Ada over other 
langauges in multiprocessing! 

Newsgroups: comp.lang.ada 
This paper: 
http://www.aristeia.com/Papers/ 
DDJ_Jul_Aug_2004_revised.pdf 
describes some of these issues in a C++ 
context and is written by two authors who 
probably know what they are talking 



96  Ada in Context  

Volume 29, Number 2, June 2008 Ada User Journal 

about. Their conclusion is that it is pretty 
much impossible to write correct multi-
threaded code in C++ without (non-
standard) compiler assistance. I'm 
paraphrasing here. It is my understanding, 
however, that this matter will be 
addressed in C++ 0x. 
From: Georg Bauhaus <rm.tsoh.plus-

bug.bauhaus@maps.futureapps.de> 
Date: Sun, 09 Mar 2008 10:39:06 +0100 
Subject: Re: Robert Dewar's great article 

about the Strengths of Ada over other 
langauges in multiprocessing! 

Newsgroups: comp.lang.ada 
> [...] C++ code using threading, OpenMP 
or MPI are just a mess. Impossible to 
maintain because C++ hackers seems to 
prefer working hard 6 month for gaining 
2% of performance instead of buying a 
new computer with more core or adding 
some node on a cluster. Sorry, but I've 
seen that, horrible mess just because 
hacking C++ code seems fun to many 
people. 
Then again, the multicore things have 
atomic updates built in which offer some 
opportunities that only happen to be part 
of the Ada language. Now this language 
feature becomes visible as part of the top 
selling CPUs... There is research on 
employing these CPU mechanisms for 
Ada use, but, IIUC, it is not *visible* on 
many sites that are visible to those 
interested in how to use new multicore 
CPUs. And Ada RTS/Library inclusion is 
not done yet, or is it? 
Multicore algorithms can continue the 
great academic tradition of efficient 
algorithms. Aren't lock-free ones really a 
natural starting point? They also have 
their uses. IIRC, ready-made 
Communicating Sequential Processes has 
a lower visibility in CS than the basic 
critical section model. 
Ada's tasking implementations are not 
currently known to be the best choice 
when an algorithm is about how to 
efficiently use the multicore CPU with 
word sized memory.  The tasking protocol 
as implemented for x86 < Today turns out 
to be too heavy weight. The cost is far 
beyond 10%. 
> The cherry on top of the cake is that 

your application can be ported to a new 
architecture without much trouble. 

Gidenstam has ported his Primitives (Ada 
packages hiding the CPU's atomic 
updates) to at least Intel, SPARC, and 
MIPS. Built on top of the Primitives, he 
has a lock-free bounded buffer in queue 
mode... 
[See http://www.gidenstam.org/Ada/Non-
Blocking/  —su] 
From: Pascal Obry <pascal@obry.net> 
Date: Sun, 09 Mar 2008 15:54:59 +0100 
Subject: Re: Robert Dewar's great article 

about the Strengths of Ada over other 
langauges in multiprocessing! 

Newsgroups: comp.lang.ada 
> I've seen 80x (eighty times) penalty 

when comparing Ada's protected 
objects with basic usage of mutexes in 
C++. 80x is not something to be taken 
lightly. 

I've never seen such penalty. Maybe in 
theory or in a very specific part of the 
code. But let's compare the *final* 
application speed. I have gone this path in 
a medium simulation, the Ada 
implementation was slower in some part, 
the C++/OpenMP implementation was 
slower on some other part. The final 
application was running at same speed in 
Ada and C++ (well in fact the Ada 
implementation was a bit less than 1% 
faster than the C++ one). 
Also, one point about the C++/MPI 
version (we also worked on a distributed 
version even if I don't have the final data, 
but speed was almost comparable) 
compared to the Ada Annex-E version. 
My co-worker were amazed at how fast I 
was able to re-configure the distributed 
application. Where it took days/weeks to 
change the MPI implementation, it took 
me hours to change the GLADE 
configuration file. Also, the facility to 
exchange Ada Containers objects across 
partitions was pretty amazing. No tweak, 
no hack, clean code, just plain Ada. 
I know a group of C++ hackers still trying 
to come up with a clean solution to 
exchange objects (class instance) across 
nodes... Impossible to stream properly 
objects in C++, or you have to code 
almost all by hand! All these aspects are 
far more important to me than pure speed. 
I understand that this tradeoff can be 
different on some other applications, but I 
won't buy that this is majority of cases! 
From: Ole-Hjalmar Kristensen <ole-

hjalmar.kristensen@sun.com> 
Date: 26 Mar 2008 14:49:40 +0100 
Subject: Re: Robert Dewar's great article 

about the Strengths of Ada over other 
langauges in multiprocessing! 

Organization: Sun Microsystems 
Newsgroups: comp.lang.ada 
If the compiler is smart enough to 
optimize this case, an entryless protected 
object would be a good building block. 
The AARM states that “Entryless 
protected objects are intended to be 
treated roughly like atomic objects — 
each operation is indivisible with respect 
to other operations (unless both are 
reads), but such operations cannot be used 
to synchronize access to other nonvolatile 
shared variables” 
From: Ole-Hjalmar Kristensen <ole-

hjalmar.kristensen@sun.com> 
Date: 27 Mar 2008 10:31:50 +0100 
Subject: Re: Robert Dewar's great article 

about the Strengths of Ada over other 
langauges in multiprocessing! 

Organization: Sun Microsystems 

Newsgroups: comp.lang.ada 
> You need some signalling for a shared 

hash table, otherwise reading a freshly-
added object from a different thread 
might not give you the data you want 
(strictly speaking, even just comparing 
the might cause issues). 

If you mean that it may be difficult to 
optimize, I agree, but I cannot agree that 
you need *more* than an entryless 
protected object to implement a hash 
table, since it guarantees that each 
operation on the object is indivisible. 
The simplest case (for the programmer) is 
of course to put both key and value inside 
the protected object, Then a reader will 
either see the key, value pair as it was 
before the update or as it is after the 
update. The problem is that although 
reads within a procedure may be 
optimistic, the compiler probably needs to 
insert at least a spin lock during the actual 
update of the object. 
What I was thinking of was to recognize 
the special case where the entryless 
protected object contains only a single 
entity which can be updated atomically 
with a compare and swap. In that case, 
you could skip the spin lock in the update 
phase and use CAS directly. In this case 
the key and the value would be in separate 
protected objects, and the implementation 
of the hash table could follow the pattern 
of the hash table you mentioned. 
On the other hand, I cannot see any 
reason why Annex C just couldn't say that 
intrinsic subprograms for compare-amd-
swap and similar machine operations shall 
be provided *if* they are available on a 
platform. That would at least save me the 
work of writing the bindings myself. 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Fri, 28 Mar 2008 01:34:26 −0500 
Subject: Re: Robert Dewar's great article 

about the Strengths of Ada over other 
langauges in multiprocessing! 

Newsgroups: comp.lang.ada 
> On the other hand, I cannot see any 

reason why Annex C just couldn't say 
that intrinsic subprograms for compare-
amd-swap and similar machine 
operations shall be provided *if* they 
are available on a platform. That would 
at least save me the work of writing the 
bindings myself. 

It does, actually. See C.1(11–16). It's 
“only” Implementation Advice, but that is 
necessary in any case, because the 
Standard can't require something it can't 
define. 
A more interesting question is whether 
implementations follow that advice (in 
any useful manner). 
 
 



98  Conference Calendar 

Volume 29, Number 2, June 2008 Ada User Journal 

Conference Calendar 
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on 
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific 
Ada focus. Items marked with ☺ denote events with close relation to Ada. 
The information in this section is extracted from the on-line Conferences and events for the international Ada community at: 
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full 
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly. 
 

2008 
 
July 01 8th International Workshop on Worst-Case Execution Time Analysis (WCET'2008), Prague, Czech 

Republic. In conjunction with the 20th ECRTS conference. Topics include: any issue related to timing 
analysis, such as Tools for timing analysis, Design for timing predictability, Integration of WCET 
analysis into the development process, etc. 

☺ July  01-05 7th International Symposium on Parallel and Distributed Computing (ISPDC'2008), Krakow, 
Poland. Topics include: Parallel Computing; New Parallel System Concepts and Architectures; 
Distributed Systems Methodology and Networking; Parallel Programming Paradigms and APIs; Tools 
and Environments for Parallel Program Analysis; Task Scheduling and Load Balancing; Performance 
Management in Parallel and Distributed Systems; Distributed Software Components; Real-time 
Distributed and Parallel Systems; Security in Parallel and Distributed Systems; Fault Tolerance in 
Parallel and Distributed Systems; Parallel Scientific Computing and Large Scale Simulations; Parallel 
and Distributed Applications; etc. 

July 06-13 35th International Colloquium on Automata, Languages and Programming (ICALP'2008), 
Reykjavik, Iceland.  Topics include: Principles of Programming Languages; Formal Methods and Model 
Checking; Models of Concurrent and Distributed Systems; Models of Reactive Systems; Program 
Analysis and Transformation; Specification, Refinement and Verification; Type Systems and Theory; 
Foundations of Secure Systems and Architectures; Specifications, Verifications and Secure 
Programming; etc. 

☺ July 06 1st Interaction and Concurrency Experience (ICE'2008).  Topics include: 
Synchronous and Asynchronous Interactions in Concurrent Distributed Systems; 
models, logic and types for interactions; synchronous/asynchronous mechanisms; 
expressiveness results; timed and hybrid interactions; verification, analysis and tools; 
programming primitives for interactions; 

☺ July 07-10 2008 International Conference on Software Engineering Theory and Practice (SETP'2008), 
Orlando, FL, USA. Topics include: Case studies, Component-based software engineering, Critical 
software engineering, Distributed and parallel software architectures, Education aspects of software 
engineering, Embedded software engineering, Model Driven Architecture (MDA), Model-oriented 
software engineering, Object-oriented methodologies, Program understanding, Programming languages, 
Quality issues, Real-time software engineering, Real-time software systems, Reliability, Reverse 
engineering, Software design patterns, Software maintenance, Software reuse, Software safety and 
reliability, Software security, Software specification, Software tools, Verification and validation of 
software, etc. 

☺ July 07-11 22nd European Conference on Object Oriented Programming (ECOOP'2008), Paphos, Cyprus.  
Topics include: analysis, design methods and design patterns; concurrent, real-time or parallel systems; 
distributed systems; language design and implementation; programming environments and tools; type 
systems, formal methods; compatibility, software evolution; components, modularity; etc. 

☺ July 07 18th Doctoral Symposium and PhD Students Workshop.  Topics include: Design 
methods and design patterns; Concurrent, real-time or parallel systems; Distributed 
systems; Language design and implementation; Programming environments and tools; 
Type systems, formal methods; Software evolution; Components, Modularity; etc. 



Conference Calendar 99  

Ada User Journal Volume 29, Number 2, June 2008 

☺ July 07 International Workshop on Advanced Software Development Tools and 
Techniques (WASDeTT'2008).  Topics include: What features in object-oriented 
languages make them easier to build tools for/with? 

☺ July 07 International Workshop on Object-Oriented Software Development for the 
Embedded World (OOSDEW'2008). Topics include: object-oriented language features 
for embedded devices; software techniques and tools for optimizing code for embedded 
devices; etc. 

☺ July 07 3rd Workshop on Implementation, Compilation, Optimization of Object-Oriented 
Languages, Programs and Systems (ICOOOLPS'2008). Topics include: 
implementation of fundamental OOL features: inheritance (object layout, late binding, 
subtype test, ...), genericity (parametric types), memory management; runtime systems: 
compilers, linkers, etc; optimizations: static and dynamic analyses, threads and 
synchronization, etc; resource constraints: real-time systems, embedded systems; 
relevant choices and tradeoffs: separate compilation vs. global compilation, dynamic 
checking vs. proof-carrying code, annotations vs. no annotations, etc. 

☺ July 08 7th Workshop on Parallel/High-Performance Object-Oriented Scientific 
Computing (POOSC'2006). Topics include: tried or proposed programming language 
alternatives to C++; issues specific to handling or abstracting parallelism, including the 
handling or abstraction of heterogeneous architectures; existing, developing, or proposed 
software; grand visions (of relevance); etc. 

July 07-14 20th International Conference on Computer Aided Verification (CAV'2008), Princeton, USA.  
Topics include: Algorithms and tools for verifying models and implementations, Program analysis and 
software verification, Modeling and specification formalisms, Applications and case studies, 
Verification in industrial practice, etc. 

☺ July 07-08 Workshop on Exploiting Concurrency Efficiently and Correctly ((EC)^2). Topics 
include: advances in programming languages and tools for developing concurrent 
software; programming constructs for concurrency; formalization of concurrency 
libraries; verification tools; introducing concurrency in education; etc. 

July 15-18 9th International Conference on Mathematics of Program Construction (MPC'2008), Marseille 
(Luminy), France. Topics of interest range from algorithmics to support for program onstruction in 
programming languages and systems, such as type ystems, program analysis and transformation, 
programming-language emantics, etc. 

July 16-18 Static Analysis Symposium (SAS'2008), Valencia, Spain.  Topics include: abstract interpretation, 
compiler optimizations, control flow analysis, data flow analysis, model checking, program 
specialization, security analysis, type based analysis, verification systems, etc. 

☺ July 16-18 Workshop on The Impact of New Architectures on Parallel Programming (IMPAR'2008), Sao 
Paulo, Brazil. Topics include: Parallel Languages and Libraries; Tools for parallel programming: 
debuggers, libraries and performance analyzers; Compilers; Scheduling; Performance Evaluation; 
Parallel Applications; etc. 

July 20-24 International Symposium on Software Testing and Analysis (ISSTA'2008), Seattle, Washington. 

☺ July 20 International Workshop on Defects in Large Software Systems (DEFECTS'2008). 
Topics include: Techniques to detect, locate, or predict defects; Empirical studies of 
defects; Types of defects that occur in software; Evolution of defects over time; Tools 
for post-deployment defect detection and reporting; Experience using certain techniques 
to identify or predict defects; etc. 

☺ August 04-06 International Workshop on Concurrent Programming Environment (CoPE'2008), Hsinchu, 
Taiwan. Topics include: the foundations, tools and techniques, and experiences in practice for the 
development of concurrent software for embedded, real-time, multi-threaded, multi-core, 
multiprocessor, cluster, distributed, mobile, ubiquitous, or grid systems. 

August 08-09 International Symposium on Software Variability: a Programmers Perspective (SVPP'2008), 
Brussels, Belgium.  Topics include: Programming language abstractions for software variability; 
Modularization approaches for software variability; Guidelines to include software variability in 



100  Conference Calendar 

Volume 29, Number 2, June 2008 Ada User Journal 

programs; Runtime support for software variability; Generative programming for software variability; 
etc. 

August 18-21 27th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing 
(PODC'2008), Toronto, Canada.  

☺ August 25-27 14th IEEE International Conference on Embedded and Real-Time Computing Systems and 
Applications (RTCSA'2008), Kaohsiung, Taiwan. Topics include: Multi-thread programming for multi-
core embedded platform, Embedded system design practices, Real-time scheduling, Timing analysis, 
Programming languages and run-time systems, Middleware systems, Design and analysis tools, Case 
studies and applications, etc. 

☺ August 26-29 14th European Conference on Parallel and Distributed Computing (Euro-Par'2008), Las Palmas de 
Gran Canaria, Spain. Topics include: all aspects of parallel and distributed computing, such as Support 
tools and environments, High performance architectures and compilers, Parallel and distributed 
programming, Theory and algorithms for parallel computation, etc. 

☺ August 26 EuroPar2008 - 2nd Workshop on Highly Parallel Processing on a Chip (HPPC'2008). 
Topics include: programming models; languages and software libraries; implementation 
techniques (e.g. multi-threading, work-stealing); support and performance tools, 
performance evaluation; parallel algorithms and applications; etc.; for/on highly parallel 
multi-core systems. 

☺ August 27-29 12th Brazilian Symposium on Programming Languages (SBLP'2008), Fortaleza, Ceara, Brazil. 
Topics include: Programming language design and implementation; Design and implementation of 
programming language environments; Object-oriented programming languages; New programming 
models; Program transformations; Program analysis and verification; Compilation and interpretation 
techniques; etc. 

September 01-03 5th International Colloquium on Theoretical Aspects of Computing (ICTAC'2008), Istanbul, 
Turkey. Topics include: software specification, refinement, verification; integration of theories, formal 
and engineering methods and tools; models of concurrency; parallel and distributed computing; real-
time and embedded systems; principles and semantics of languages; case studies, theories, tools and 
experiments of verified systems; etc. 

☺ September 03-05 7th International Conference on Distributed and Parallel Systems (DAPSYS'2008), Debrecen, 
Hungary. Topics include: Distributed and Grid middleware, Parallel and distributed programming 
languages and algorithms, Formal models for parallel and distributed computing, Software engineering 
and development tools, etc. 

☺ September 07-10 9th Conference on Communicating Process Architectures (CPA'2008), York, UK. Topics include: 
Theoretical approaches to concurrency, and formal languages supporting these approaches, including 
the integration of existing formal notations; Modelling of, and model-driven development of concurrent 
software architectures; Verification and analysis of concurrent systems; Model-checking techniques and 
tools for development and analysis; Tools and languages for hardware-software co-design; 
Programming languages and environments for concurrent systems; Programming and implementation 
issues for concurrent languages, such as deadlock-freedom by design, starvation, and efficient inter-
process communication architectures; System issues for programming languages supporting 
concurrency, such as multithreading kernels and interrupt architectures; Applications that exploit, or rely 
on, concurrency; etc. 

☺ September 08-12 International Conference on Parallel Processing (ICPP'2008), Portland, Oregon, USA. Topics 
include: Compilers and Languages, Software Systems and Tools, etc. 

☺ September 15-16 13th International ERCIM Workshop on Formal Methods for Industrial Critical Systems 
(FMICS'2008), L'Aquila, Italy. Topics include: Design, specification, code generation and testing based 
on formal methods; Verification and validation of complex, distributed, real-time systems and 
embedded systems; Verification and validation methods that address shortcomings of existing methods 
with respect to their industrial applicability; Tools for the development of formal design descriptions; 
Case studies and experience reports on industrial applications of formal methods, focusing on lessons 
learned or identification of new research directions; Application of formal methods in standardization 
and industrial forums; etc. 



Conference Calendar 101  

Ada User Journal Volume 29, Number 2, June 2008 

Sep 28 – Oct 03 11th International Conference on Model-Driven Engineering Languages and Systems 
(MoDELS'2008), Toulouse, France. Topics include: Model-driven engineering methodologies, 
approaches, languages and tools; Domain-specific modeling languages; Programming language and 
metaprogramming support for linking models to code; Models in the context of software evolution; 
Modeling languages and tools; Semantics of modeling languages; Modeling and analysis of real-time, 
embedded, and distributed systems; etc. 

☺ Sep 29 MoDELS2008 - 1st International Workshop on Model Based Architecting and 
Construction of Embedded Systems (ACES-MB'2008). Topics include: model-
oriented counterparts of specific design and implementation languages with particularly 
well-behaved semantics, such as synchronous languages and models (Lustre/SCADE, 
Signal/Polychrony, Esterel), time triggered models (TTA, Giotto), scheduling-oriented 
models (HRT-UML, Ada Ravenscar), etc. Deadline for submissions: July 15, 2008. 

☺ October 06-08 27th IEEE International Symposium on Reliable Distributed Systems (SRDS'2008), Napoli, Italy. 
Topics include: High-confidence systems, Critical infrastructures, Distributed embedded systems, 
Formal methods and foundations for dependable distributed computing, etc. 

October 06-10 2nd IFIP Working Conference on Verified Software: Theories, Tools, Experiments (VSTTE'2008), 
Toronto, Canada. Topics include: all aspects of verified software, theoretical as well as experimental, 
such as specification languages and case-studies, programming languages, language semantics, software 
design methods, automatic code generation, type systems, verification tools (static analysis, dynamic 
analysis, model checking, theorem proving, satisfiability), integrated verification environments, etc. 

October 09-10 13th Nordic Workshop on Secure IT Systems (NordSec'2008), Copenhagen, Denmark. Topics 
include: Language-based Techniques for Security; New Ideas and Paradigms in Security; Security 
Education and Training; Software Security, Attacks, and Defenses; Trust and Trust Management; etc. 
Deadline for submissions: July 23, 2008. 

☺ October 15 2008 SPARK User Group meeting, Bath, UK. Topics include: Formal Methods and DO-178C; The 
iFACTS project; Using SMT Solvers to Prove SPARK VCs; SPARK Update and Release 7.6 
Highlights. 

October 15-17 7th International Conference on Software Methodologies, Tools, and Techniques (SoMeT'2008), 
Sharjah, UAE. Topics include: Software methodologies, and tools for robust, reliable, non- fragile 
software design; Automatic software generation versus reuse, and legacy systems, source code analysis 
and manipulation; Intelligent software systems design, and software evolution techniques; Software 
optimization and formal methods for software design; Software security tools and techniques, and 
related Software Engineering models; End-user programming environment; etc. 

October 15-18 15th Working Conference on Reverse Engineering (WCRE'2008), Antwerp, Belgium. Topics 
include: Program comprehension; Mining software repositories; Empirical studies in reverse 
engineering; Redocumenting legacy systems; Reverse engineering tool support; Reengineering to 
distributed architectures; Software architecture recovery; Program analysis and slicing; Program 
transformation and refactoring; etc. 

☺ October 16-17 16th International Conference on Real-Time and Network Systems (RTNS'2008), Rennes, France. 
Topics include: Real-time system design and analysis (task and message scheduling, verification, formal 
methods, model-driven development, worst-case execution time estimation, distributed systems, fault-
tolerance, security, ...); Software technologies for real-time systems (compilers, programming 
languages, middleware and component-based technologies, ...); Applications (automotive, avionics, 
telecommunications, process control, multimedia, inhouse entertainment, robotics); etc. 

October 16-17 2nd Junior Researcher Workshop on Real-Time Computing (JRWRTC'2008). 
Topics include: Real-Time Distributed Systems, Middleware, Embedded Operating 
Systems, Real-Time Programming Language, Real-Time Software Engineering, System 
Development Tools, Worst-Case Execution Time Task Scheduling, etc. Deadline for 
submissions: September 1, 2008. 

☺ October 19-23 23rd Annual Conference on Object-Oriented Programming, Systems, Languages, and 
Applications (OOPSLA'2008), Nashville, USA. Topics include: new and better programming and 
design paradigms as well as practices. Deadline for submissions: July 2, 2008 (Development Program 



102  Conference Calendar 

Volume 29, Number 2, June 2008 Ada User Journal 

Proposals, Student Research Competition, Onward! short papers and films, Doctoral Symposium and 
Student Volunteers). 

☺ October 19 2nd Workshop on Assessment of Contemporary Modularization Techniques 
(ACoM.08). Topics include: Lessons learned from assessing new modularization 
techniques, Empirical studies and industrial experiences, Comparative studies between 
new modularization techniques and conventional ones, etc. Deadline for submissions: 
August 15, 2008. 

☺ October 19-24 Embedded Systems Week 2008 (ESWEEK'2008), Atlanta, Georgia, USA. Includes CASES'2008 
(International Conference on Compilers, Architecture, and Synthesis for Embedded Systems), 
CODES+ISSS'2008 (International Conference on Hardware/Software Codesign and System Synthesis), 
EMSOFT'2008 (International Conference on Embedded Software). 

♦ Oct 26-30 2008 ACM SIGAda Annual International Conference (SIGAda'2008), Portland, 
Oregon, USA. Sponsored by ACM SIGAda, in cooperation with SIGAPP, SIGCAS, 
SIGCSE, SIGPLAN, SIGSOFT, Ada-Europe, and Ada Resource Association (Cooperation 
approvals pending). Topics include: Transitioning to Ada 2005; Educational challenges 
for developing reliable, safe, secure software; Ada and SPARK in the classroom and 
student laboratory; Language selection for a high reliability system; Use of high 
reliability subsets or profiles such as MISRA C, Ravenscar, SPARK; High reliability 
standards and their issues; Software process and quality metrics; Analysis, testing, 
and validation; Use of ASIS for new Ada tool development; Mixed-language 
development; High-reliability development experience reports; Static analysis of code; 
Integrating COTS software components; System Architecture & Design; Information 
Assurance; Ada products certified against Common Criteria / Common Evaluation 
Methodology; etc. 

☺ October 20-22 IMCSIT2008 - International Workshop on Real-Time Software (RTS'2008), Wisla, Poland. Topics 
include: Real-time system development, Scheduling, Safety, Reliability, Dependability, Standards and 
certification, Control software, Robotics and UAV, Software development tools, Model-based 
development, Real-time systems education, Related engineering curricula, etc. 

November 09-15 16th ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE-
16), Atlanta, Georgia, USA. Topics include: Components and Middleware, Dependability (safety, 
security, reliability), Empirical Studies, Generative Programming, Software Reuse, Quality and 
Performance, Reengineering and Reverse Engineering, Specification and Verification, Tools and 
Environments. Deadline for submissions: August 11, 2008 (Doctoral Symposium abstracts). 

☺ Nov 14 4th International Workshop on Exception Handling (WEH'2008). Topics include: 
Empirical studies of exception handling engineering; Design patterns and anti-patterns, 
architectural styles, and good programming practice cookbooks; Static analysis and 
testing of exception handling; Refactoring and evolution of exception handling code; 
Exceptions and variability management; Comparative studies of innovative exception 
handling techniques and conventional ones; etc. Deadline for paper submissions: August 
10, 2008. 

☺ Nov 10-12 10th International Symposium on Distributed Objects, Middleware and Applications (DOA'2008),   
Monterrey, Mexico. Topics include: Application case studies of distribution technologies; Development 
methodologies for distributed applications; Interoperability with other technologies; Reliability, fault 
tolerance, quality-of-service, and real time support; Scalability and adaptivity of distributed 
architectures; Software engineering for distributed middleware systems; etc. 

☺ Nov 10-14 6th IEEE International Conference on Software Engineering and Formal Methods (SEFM'2008), 
Cape Town, South Africa. The aim is to advance the state of the art in formal methods, to scale up their 
application in software industry and to encourage their integration with practical engineering methods. 
Topics include: software specification, verification and validation; programming languages and type 
theory; program analysis; embedded systems; real-time and hybrid systems theory; software 
architectures and their description languages; light-weight formal methods; CASE tools and tool 
integration; applications of formal methods and industrial case studies; etc. 



Conference Calendar 103  

Ada User Journal Volume 29, Number 2, June 2008 

November 10-14 19th International Symposium on Software Reliability Engineering (ISSRE'2008), 
Seattle/Redmond, Washington, USA. Topics include: Reliability, availability, and safety of software 
systems; Validation and verification, testing; Software quality; Software security; Fault tolerance, 
survivability, and resilience of software systems; Open source software reliability engineering; 
Supporting tools and automation; Industry best practices; etc.; Empirical studies of any of the above 
topics. Deadline for submissions: July 1, 2008 (industry track abstracts), September 1, 2008 (industry 
track presentations), August 1, 2008 (government track, student track), August 10, 2008 (fast abstract). 

☺ Nov 19-20 Automotive - Safety & Security 2008, Stuttgart, Germany. Organized by Gesellschaft für Informatik 
mit den Fachgruppen Ada, etc, and Ada-Deutschland. Topics include (in German): Zuverlässigkeit und 
Sicherheit für fahrbetriebskritische Software und IT-Systeme; Evaluation und Zertifizierung von 
Sicherheitseigenschaften automobiler Firmware/Software; Zuverlässige Echtzeit-Betriebssysteme; 
Fortschritte bei Normen und Standardisierungen; Zuverlässigkeit von Multi-Core-Architekturen; etc. 

☺ Dec 01-04 9th International Conference on Parallel and Distributed Computing, Applications, and 
Techniques (PDCAT'2008), Dunedin, New Zealand. Topics include: Parallel/distributed architectures; 
Multi-core related technologies; Reliability, and fault-tolerance; Formal methods and programming 
languages; Software tools and environments; Parallelizing compilers; Component-based and OO 
Technology; Parallel/distributed algorithms; Task mapping and job scheduling; Security and privacy; 
etc. 

December 01-05 ACM/IFIP/USENIX 9th International Middleware Conference (Middleware'2008), Leuven, 
Belgium. Topics include: design, implementation, deployment, and evaluation of distributed system 
platforms and architectures for future computing and communication environments. Deadline for 
submissions: July 1, 2008 (industrial track papers), July 25, 2008 (doctoral symposium abstracts), 
August 1, 2008 (doctoral symposium papers). 

☺ Dec 08-10 14th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2008),   
Melbourne, Australia. Topics include: Parallel and Distributed Applications and Algorithms; Multi-core 
and Multithreaded Architectures; Resource Management and Scheduling; Dependable and Trustworthy 
Computing and Systems; Real-Time Systems; etc. 

December 03-05 11th IEEE International Symposium on High Assurance Systems Engineering (HASE'2008), 
Nanjing, China. Topics include: Design and development of highly reliable, survivable, secure, safe, and 
time-assured systems; Policies for reliability, safety, security, integrity, privacy, and confidentiality of 
high assurance systems; Formal specification, specification validation, testing, and model checking for 
high assurance systems; High assurance software architecture and design; etc. Deadline for submissions: 
July 10, 2008 (fast abstracts). 

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day! 

☺ Dec 10-12 6th International Symposium on Parallel and Distributed Processing with Applications 
(ISPA'2008), Sydney, Australia. Topics include: all aspects of Parallel/Distributed Computing and 
Networking, and their applications, such as Parallel/distributed system architectures, Tools and 
environments for software development, Distributed systems and applications, Reliability, fault-
tolerance, and security, etc. 

2009 
 
☺ March 04-07 40th ACM Technical Symposium on Computer Science Education (SIGCSE'2009), Chattanooga, 

Tennessee, USA.  

☺ March 08-12 SAC2009 - Track on Software Engineering (SE'2009), Honolulu, Hawaii, USA. Topics include: 
Component-Based Development and Reuse; Safety and Security Dependability and Reliability; Fault 
Tolerance and Availability; Design Patterns; Standards; Maintenance and Reverse Engineering; 
Verification, Validation, and Analysis; Formal Methods and Theories; Empirical Studies and Industrial 
Best Practices; Applications and Tools; Distributed, Embedded, Real-Time, High Performance, and 
Highly Dependable Systems; etc. Deadline for paper submissions: August 16, 2008 

March 22-29 12th European Joint Conferences on Theory and Practice of Software (ETAPS'2009), York, UK.    
Deadline for submissions: October 2, 2008 (abstracts), October 9, 2008 (papers). 



104  Conference Calendar 

Volume 29, Number 2, June 2008 Ada User Journal 

March 24 Ada Conference UK 2009, London, UK. This event is organised to promote 
awareness of the Ada programming language, and to highlight the increased 
relevance of Ada in safety- and security-critical programming. Since its inception, Ada 
has been successful in systems where reliability is essential. Its application domains 
include aeronautics, air traffic control, aerospace, simulation, shipboard systems, 
railway systems, communications, banking and many others. 

☺ May 16-24 31st International Conference on Software Engineering (ICSE'2009), Vancouver, Canada. Topics 
include: Specification and Verification; Software Architecture and Design; Patterns and Frameworks; 
Reverse Engineering, Refactoring, and Evolution; Tools and Environments; Empirical Software 
Engineering; Development Paradigms and Software Processes; Component-based Software 
Engineering; Model Driven Engineering; Distributed Systems and Middleware; Embedded System; 
Open Standards and Certification; Software Economics; Dependability (safety, security, reliability); 
Case Studies and Experience Reports; etc. Deadline for submissions: August 29, 2008 (research 
abstracts), September 5, 2008 (research papers), September 15, 2008 (workshops, tutorials), October 10, 
2008 (Software Engineering in Practice), November 2008 (SCORE), November 24, 2008 (research 
demonstrations), December 5, 2008 (Emerging Results track), December 12, 2008 (doctoral 
symposium). 

♦ June 08-12:  14th International Conference on Reliable Software Technologies – Ada-
Europe'2009, Brest, France. 

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day! 

 



106  Forthcoming Events 

Volume 29, Number 2, June 2008 Ada User Journal 

   

 

SIGAda 2008 
Annual International Conference on the 

Ada Programming Language 
 

October 26-30, 2008, Portland, Oregon, USA 
 

 
University Place Hotel and Conference Center 

310 SW Lincoln St., Portland, Oregon 97201 (USA) 
 

  
Portland and Mt. Hood; Streetcar Near Conference Hotel 

Advance Program coming in July 2008. Visit 
http://www.sigada.org/conf/sigada2008 

for details. 



Forthcoming Events 107  

Ada User Journal Volume 29, Number 2, June 2008 

SIGAda 2008 
Annual International Conference on the 

Ada Programming Language 
October 26-30, 2008, Portland, Oregon, USA 

Special Anniversary Keynote Addresses 
From Strawman to Ada 2005: a Socio-Technical Retrospective 

Ben Brosgol, Senior Technical Staff, Adacore  
Dr. Benjamin Brosgol, a senior member of the technical staff of AdaCore, has been involved with programming 
language design and implementation for more than 25 years, concentrating on languages and technologies for 
high-reliability systems. He led the development of the "Red" language candidate at Intermetrics, participated in 
the design of both Ada 83 and Ada 95, and was editor of the Safety and Security Annex of the Ada 95 standard.  
Under Sun Microsystems' Java Community Process Dr. Brosgol was a member of the Expert Group for JSR-001 
(Real-Time Specification for Java, or "RTSJ"), and he is currently a member of the Expert Groups for JSR-282 
(RTSJ v1.1) and JSR-302 (Safety-Critical Java Technology). Dr. Brosgol is a past chair of the ACM Special 
Interest Group on Ada (SIGAda). He has spoken widely on safety-critical software technology. He holds a B.A. in 
Mathematics from Amherst College, and M.S. and Ph.D. degrees in Applied Mathematics from Harvard 
University. 

30 Years after Steelman: Does DoD Still Have a Software Crisis? 
Joyce Tokar, President, Pyrrhus Software 

Joyce Tokar is the President of Pyrrhus Software, a software consultancy and training company. Over the past 20 
years, Dr. Tokar has been working in the area of mission and safety critical, real-time, and embedded software 
systems. She has been involved in research and development in the areas of software and systems architectures, 
high level computing languages such as Ada, Ada 95, C/C++, and Java, and real-time analysis methodologies. 
During this time she has co-authored the Society of Automotive Engineering (SAE) Architecture Analysis and 
Design Language (AADL) standard. She has written the Programming Language Annex for the SAE AADL 
standard. Dr. Tokar has also participated in the evolution of the Ada programming language both as a member of 
the team defining the Ada 05 update and as a distinguished reviewer for Ada 95. 
Dr. Tokar is also active in the area of secure software system development tools and environments.  She is leading 
a team in the analysis and evolution of the system of systems software for the US Department of Defense Future 
Combat System (FCS). 
From 1981-84 Dr. Tokar was responsible for the development of the Gensoft (Western Digital) Ada system. She 
received her PhD in Computer Engineering from Clemson University in South Carolina.  She holds an MS and a 
BS in Computer Science from the University of Pittsburgh. 

The Ada Paradox(es) 
Jean-Pierre Rosen, President, Adalog 

Jean-Pierre Rosen graduated from ENST (Ecole Nationale Supérieure des Télécommunications) in 1975, and 
attained the PhD in 1986. He started as a software engineer at the computing center of ENST. After a Sabbatical 
at New York University on the Ada/ED Project, he worked as Professor at ENST,  where he was responsible for 
the teaching of Software Engineering and Ada. 
He has now formed Adalog, a company specialized in high level training, consultancy, and software development 
in the fields of Ada and associated technologies (software engineering, object oriented methodologies). 
J-P. Rosen is Chairman of the AFNOR (French standardization body) group for Ada, and a member of the ARG 
(Ada Rapporteur Group), the group of experts in charge of maintenance and evolution of the language. He was a 
member of the expert team who controlled the development of the validation suite for Ada 95. 
He is the author of "Méthodes de Génie Logiciel avec Ada 95" (Software Engineering Methods with Ada 95) and 
"HOOD: an industrial approach for software development". 

 



108  Forthcoming Events 

Volume 29, Number 2, June 2008 Ada User Journal 

 

Call for Papers 
14th International Conference on Reliable  
Software Technologies – Ada-Europe 2009 

8-12 June 2009, Brest, France 
http://www.ada-europe.org/conference2009.html 

 

General Information 

The 14th International Conference on Reliable Software Technologies – Ada-Europe 2009 will take place in Brest, France. 
Following its traditional style, the conference will span a full week, including a three-day technical program and vendor 
exhibitions from Tuesday to Thursday, along with parallel tutorials and workshops on Monday and Friday. 

 
Schedule 

01 December 2008 Submission of regular papers, tutorial and workshop proposals 
12 January 2009  Submission of industrial presentation proposals 
09 February 2009  Notification to all authors 
09 March 2009 Camera-ready version of regular papers required 
11 May 2009  Industrial presentations, tutorial and workshop material required 
08-12 June 2009  Conference 

 
Topics 

The conference has successfully established itself as an international forum for providers, practitioners and researchers into 
reliable software technologies. The conference presentations will illustrate current work in the theory and practice of the 
design, development and maintenance of long-lived, high-quality software systems for a variety of application domains. The 
program will allow ample time for keynotes, Q&A sessions, panel discussions and social events. Participants will include 
practitioners and researchers in representation from industry, academia and government organizations active in the promotion 
and development of reliable software technologies. To mark the completion of the Ada language standard revision process, 
contributions that present and discuss the potential of the revised language are particularly sought after.  
 
Prospective contributions should address the topics of interest to the conference, which include but are not limited to those 
listed below: 
 
• Methods and Techniques for Software Development and Maintenance: Requirements Engineering, Object-Oriented 

Technologies, Model-driven Architecture and Engineering, Formal Methods, Re-engineering and Reverse Engineering, 
Reuse, Software Management Issues, Model Engineering. 

• Software Architectures: Design Patterns, Frameworks, Architecture-Centered Development, Component and Class 
Libraries, Component-based Design. 

• Enabling Technologies: Software Development Environments and Project Browsers, Compilers, Debuggers, Run-time 
Systems, Middleware Components. 

• Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis, Verification, Validation, 
Testing of Software Systems. 

• Theory and Practice of High-integrity Systems: Real-Time, Distribution, Fault Tolerance, Security, Reliability, Trust 
and Safety. 

• Embedded Systems: Architecture Modeling, Co-Design, Reliability and Performance Analysis. 
• Mainstream and Emerging Applications: Multimedia and Communications, Manufacturing, Robotics, Avionics, 

Space, Health Care, Transportation. 
• Ada Language and Technology: Programming Techniques, Object-Orientation, Concurrent and Distributed 

Programming, Evaluation & Comparative Assessments, Critical Review of Language Features and Enhancements, 
Novel Support Technology, HW/SW Platforms. 

• Experience Reports: Case Studies and Comparative Assessments, Management Approaches, Qualitative and 
Quantitative Metrics. 

• Ada and Education: Where does Ada stand in the software engineering curriculum; how learning Ada serves the 
curriculum; what it takes to form a fluent Ada user; lessons learned on Education and Training Activities with bearing 
on any of the conference topics. 



Forthcoming Events 109  

Ada User Journal Volume 29, Number 2, June 2008 

Call for Regular Papers 
Authors of regular papers which are to undergo peer review for acceptance are invited to submit original contributions. Paper 
submissions shall be in English, complete and not exceeding 14 LNCS-style pages in length. Authors should submit their 
work via the Web submission system accessible from the Conference Home page. The format for submission is solely PDF. 
Should you have problems to comply with format and submission requirements, please contact the Program Chair. 
 

Proceedings 
The authors of accepted regular papers shall prepare camera-ready submissions in full conformance with the LNCS style, not 
exceeding 14 pages and strictly by 9 March 2009. For format and style guidelines authors should refer to:  
http://www.springer.de/comp/lncs/authors.html. Failure to comply and to register for the conference will prevent the paper 
from appearing in the proceedings. The conference proceedings will be published in the Lecture Notes in Computer Science 
(LNCS) series by Springer Verlag, and will be available at the start of the conference.  
 

Awards 
Ada-Europe will offer honorary awards for the best regular paper and the best presentation. 
 

Call for Industrial Presentations 
The conference also seeks industrial presentations which may deliver value and insight, but do not fit the selection process for 
regular papers. Authors of industrial presentations are invited to submit a short overview (at least 1 page in size) of the 
proposed presentation to the Conference Chair by 12 January 2009. The Industrial Program Committee will review the 
proposals and make the selection. The authors of selected presentations shall prepare a final short abstract and submit it to the 
Conference Chair by 11 May 2009, aiming at a 20-minute talk. The authors of accepted presentations will be invited to 
derive articles from them for publication in the Ada User Journal, which will host the proceedings of the Industrial Program 
of the Conference. 
 

Call for Tutorials 
Tutorials should address subjects that fall within the scope of the conference and may be proposed as either half- or full-day 
events. Proposals should include a title, an abstract, a description of the topic, a detailed outline of the presentation, a 
description of the presenter's lecturing expertise in general and with the proposed topic in particular, the proposed duration 
(half day or full day), the intended level of the tutorial (introductory, intermediate, or advanced), the recommended audience 
experience and background, and a statement of the reasons for attending. Proposals should be submitted by e-mail to the 
Tutorial Chair. The providers of full-day tutorials will receive a complimentary conference registration as well as a fee for 
every paying participant in excess of 5; for half-day tutorials, these benefits will be accordingly halved. The Ada User Journal 
will offer space for the publication of summaries of the accepted tutorials. 
 

Call for Workshops 
Workshops on themes that fall within the conference scope may be proposed. Proposals may be submitted for half- or full-
day events, to be scheduled on either ends of the conference week. Workshop proposals should be submitted to the 
Conference Chair. The workshop organizer shall also commit to preparing proceedings for timely publication in the Ada 
User Journal. 
 

Call for Exhibitions 
Commercial exhibitions will span the three days of the main conference. Vendors and providers of software products and 
services should contact the Exhibition Chair for information and for allowing suitable planning of the exhibition space and 
time. 
 

Grants for Students 
A limited number of sponsored grants is expected to be available for students who would like to attend the conference or 
tutorials. Contact the Conference Chair for details. 
 
 

In cooperation with SIGAda 
(approval pending) 

 
 

 



 111  

Ada User Journal Volume 29, Number 2, June 2008 

* The complete Proceedings of the 13th International Real-Time Ada Workshop previously appeared in ACM Ada Letters, Volume XXVII, Number 2, 
August 2007; reprinted with permission. 

 

13th International Real-Time Ada Workshop 
 

17-19 April 2007 
Woodstock, Vermont  

USA 
 

Sessions: 
Implementation Experience with Ada 2005 

Beyond Ada 2005 
 

from the Proceedings* edited by: Juan Antonio de la Puente 
 
 

Program Committee 
Alan Burns  Javier Miranda  José F. Ruiz  
Ben Brosgol b  Luis Miguel Pinho  Tullio Vardanega  
Michael González Harbour  Juan Antonio de la Puente a Andy Wellings  
Stephen Michell  Jorge Real   

a Program Chair  b Local Chair  
 

 
  

Workshop Participants 
 

Name     Institution  
Mario Aldea Rivas    Universidad de Cantabria, Spain   
Neil Audsley     University of York, UK   
Ben Brosgol    AdaCore, USA  
Alan Burns    University of York, UK  
Michael González-Harbour   Universidad de Cantabria, Spain  
J. Javier Gutiérrez    Universidad de Cantabria, Spain  
Stephen Michell    Maurya Systems, Canada  
Brad Moore    General Dynamics, Canada  
Juan Antonio de la Puente   Universidad Politécnica de Madrid (UPM), Spain  
Jorge Real    Universidad Politécnica de Valencia, Spain  
José F. Ruiz    AdaCore, France  
J.C. Smart    Department of Defense, USA  
Santiago Urueña    Universidad Politécnica de Madrid (UPM), Spain  
Tullio Vardanega    University of Padua , Italy  
Andy Wellings    University of York, UK  
Rod White    MBDA, UK  
Curtis Winters   Aonix, USA  
Juan Zamorano    Universidad Politécnica de Madrid (UPM), Spain  

 
Sponsors 

 

  



112  

Volume 29, Number 2, June 2008 Ada User Journal 

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission. 

Session: Implementation Experience with  
Ada 2005  
Chair: Alan Burns 
Rapporteur: Andy Wellings 
 

Session Goals 
The goals of this session were to 

• Discuss implementation experience with the new real-
time features 

• Review the support provided by the new real-time 
features 

• Review features proposed but omitted from Ada 2005 

 Real-Time Utilities 
Mario Aldea Rivas first gave an overview of the approach 
their paper had taken on implementing the new Ada 2005 
real-time services in MaRTE OS and GNAT. The most 
important of these new services are: 

• timing events 

• execution-time clocks and timers 

• dynamic priorities for protected objects 

• immediate priority changes 

• group execution-time budgets 

• new scheduling and task dispatching mechanisms 

Of these, the first five had already been implemented and 
would be released by AdaCore in the near future. The rest 
would be done during the summer of 2007. 

For timing events, Mario indicated that it was not possible 
to implement timing event straight from the clock interrupt 
handler as there was no mechanisms provided by POSIX to 
do so. He indicated that there were essentially two 
approaches: one where run-time threads are introduced for 
each timing event, the other where the OS is changed. 

He said they had implemented both approaches and that by 
changing the OS, there was a significant performance gain. 
For execution-time clocks and handlers, Mario reported 
that the implementation was much simpler as both the 
POSIX and Ada 2005 standards took a similar stance. In 
particular: 

• Neither of the standards define which task/thread is 
charged with the overheads of interrupt handlers and 
run-time services on behalf of the system 

• Both standards state that the execution time is set to 
zero at the creation of the task /thread 

• Ada 2005 says the time spent during task activation 
must be charged to the task execution time clock – this 
happens in GNAT since activation is executed by the 
thread used to implement the Ada task. 

As a consequence, no modifications to the compiler or to 
the run-time system have been necessary. Mario reported 
that execution time accounting introduces a small overhead 
to context switch time (less than 5%) and that the time to 
read execution time clocks is very similar to the time to 
read the real-time clock. 

Execution-timers had been built on top of the timers and 
had caused no significant implementation problems. Group 
execution time accounting, however, required significant 
modifications to the OS as POSIX did not support thread 
groups. The facility added an extra 9% overhead on context 
switch times. 

Juan Zamorano gave a presentation on their 
implementation of the same facilities in the Open 
Ravenscar Kernel on a bare board Leon (based on the 
SPARC V8 architecture). Juan indicated that the scarce 
hardware support for timers on that board meant that 
significant software support was required. This had added a 
50% increase in context switch times. The full details are 
given in the paper. 

Following the two presentations it was noted that the 
Workshop was not aware of other projects implementing 
2005 real-time facilities. 

Discussions on the New Features 
The main discussions following the presentations focused 
on the overheads and inaccuracies of the CPU accounting 
model. 

The following issues were raised: 

1. Context switch time – Mario reported that there was no 
leakage of CPU time during context switches. 

2. System and Application interrupts (e.g. clocks) – whil-
st Ada allowed interrupt handling to be charged to the 
executing tasks there was concerns that this was a 
significant inaccuracy. 

3. Timing events code – it was again noted that the code 
executed by timing event handlers was application 
level code and therefore was not fixed. This would 
again be charged inappropriately to the running task. 



A. Burns, A. Wel l ings 113  

Ada User Journal Volume 29, Number 2, June 2008 

However, it was also pointed out that as the code was a 
protected procedure, the time was at least bounded per 
handler. 

4. Proxy model of Protected Objects – concern was 
expressed that the proxy model of implementation for 
protected objects could result in a significant 
inaccuracy as one task could execute a significant 
amount of code on behalf of another. 

There was a long discussion of whether the CPU 
accounting model was useable given the inherent 
inaccuracies. Various points were noted: 

• The facilities could be used with a measurement-based 
approach. Execution time could be measured during 
system testing and this figure used at run-time. 
However, this approach is fragile. Any small change to 
the application code would mean that the system-level 
timing measurements would have to be redone. 

• For hard real-time systems, it was noted that there had 
to be an associated analysis model. The worst-case 
overheads could then be added to the execution time of 
each task. However, this approach could be very 
pessimistic as each task would be charged the worst 
case overhead. 

• It was also pointed out that the greatest error was on the 
value of the worst-case execution time itself and that 
adding a small error was at the noise level.  

Another point raised was that the impact of handling low 
priority interrupts on high priority task could be significant.  

The workshop concluded that there is a need to investigate 
the overheads and the extra cost of trying to do better 
accounting. Also the overhead of a better model of 
prioritized interrupt handling should be investigated. 

Application-level Scheduling 
Michael Gonzalez Harbour gave an overview of the current 
status of application-defined scheduling work that had been 
reported at the last workshop. Although this had failed to 
get in to the standard, an implementation had been 
produced and would be released as an extension to GNAT. 
The hope was that people would use the facilities and that it 
might eventually become a de facto standard. The 
workshop reaffirmed its support for the need of such a 
facility in Ada. 

Ravenscar 
This session of the Workshop concluded with a discussion 
of the continuing experience with the Ravenscar profile. 
Juan Antonio de la Puente raised the issue of execution 
timers and group budgets. Although Ravenscar allows 
execution-time clocks, it prohibits timers and group 
budgets. He proposed that we should allow one timer per 
task. The motivation is to make sure a task does not 
consume more than its budget. 

Whilst there was some support for this proposal, concern 
was expressed on how a Ravenscar program would respond 
to a timer expiring. There are not asynchronous interaction 
mechanisms in Ravenscar. Juan Antonio indicated that this 
was similar to the way task termination was handled. If a 
task terminated in Ravenscar (which it should not), the 
event is brought to the attention of the program and then it 
is implementation-defined what mechanisms the 
programmer can use. 

It was pointed out that a monitor task could always read the 
execution times of other tasks and discover the overrun. 
However, there would clearly be a delay in doing this. 
There was no consensus position reached. 

The Workshop felt that adding Group budgets opened up a 
new profile. This ought to be considered perhaps in a 
context where there are more than one Ravenscar 
applications (in effect, partitions) running on the same run-
time. 

Summary 
The following summarised the positions taken by the 
Workshop during this session: 

1. There is a need to investigate the overheads and the 
extra cost of trying to do better accounting and of the 
overheads of doing a better model of prioritized 
interrupt handling. 

2. There is continued support for application-defined 
scheduling. 

3. There is no consensus on adding CPU Timers into 
Ravenscar (i.e. it is an open issue that needs further 
investigation). 

4. Group budgets and the coexistence of multiple 
Ravenscar applications on a single processing node 
needs further investigation. 

 

 



114  

Volume 29, Number 2, June 2008 Ada User Journal 

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission. 

                                                           
* This work has been partially funded by the IST Programme of the 

European Commission under project IST-004033 (ASSERT) and the 
Spanish Ministry of Science and Technology (MCYT), project 
TICTIC2005-08665-C03-01 (THREAD). 

Implementing the New Ada 2005 Real-Time 
Features on a Bare Board Kernel* 
S. Urueña, J. Pulido, J. Redondo, J. Zamorano 
Universidad Politécnica de Madrid (UPM), Spain; email: {suruena@datsi.fi, pulido@dit, jredondoh@dit, 
jzamora@datsi.fi}.upm.es 

 

Abstract 
A real-time kernel providing timing services is a key 
component of any real-time system. The current 
revision of the Ada standard provides a range of real-
time mechanisms that can be used to ensure the 
required temporal behaviour of real-time tasks. 
However, kernel timing services must be implemented 
carefully in order to avoid overheads and 
inaccuracies. This paper describes the implement-
tation of the Ada timing services in an evolved version 
of the Open Ravenscar Kernel. The interrelation 
among the different timing mechanisms is also 
analysed and evaluated. 

1   Introduction 
High-integrity real-time systems usually have hard timing 
requirements, which have to be guaranteed by using an 
appropriate engineering approach for their design and 
implementation (see e.g. [19]). Such an approach is usually 
based on a computation model which enables the temporal 
behaviour of a system to be analysed and adjusted if 
necessary. 

Ensuring the required real-time behaviour usually relies on 
an accurate knowledge of the worst-case computation times 
(WCET) of all the real-time tasks. Although some good 
techniques for computing WCET are available [16], there is 
still a large degree of uncertainty, especially when modern 
processors with cache memories, speculative execution and 
segmentation are used. Pessimistic WCET estimations lead 
to an underutilisation of resources, and thus tight estimates 
are usually sought. The risk with tight WCET estimates is, 
on the other hand, to be optimistic, and then occasionally 
get an actual execution time which is larger than the 
estimated value. This situation is called an overrun, and 
may give raise to a generalised miss of deadlines by tasks 
by a domino effect. 

The new Ada real-time mechanisms can be used to monitor 
the run-time behaviour of tasks. In this way it is pos sible to 
detect overruns and deadline misses and take corrective 
actions before other tasks are affected [14]. This paper 
presents the implementation of the Ada real-time features 

on GNATforLEON, an open-source cross-compilation 
system that implements Ravenscar tasking for LEON2 [10] 
targets. GNATforLEON is a port to LEON2 targets of 
GNAT Pro for ERC32 [17]. GNAT Pro for ERC32 and 
thus GNATforLEON uses a version of the GNAT run-time 
library (GNARL) specially developed to support the 
Ravenscar profile on top of a bare board kernel which is an 
evolved version of the Open Ravenscar Kernel (ORK) [5, 
7]. 

2   The new Ada 2005 real-time 
mechanisms 
The current revision of the Ada standard provides a range 
of real-time mechanisms that can be used to ensure the 
required temporal behaviour of real-time tasks. The 
Ada.Real_Time package includes a monotonic real-time 
Clock as well as a definition of Time which are appropriate 
for real-time systems. The package was already part of Ada 
95 [12, Annex D] and can be used to check real-time 
related properties, such as minimum inter-arrival times or 
task deadlines. Real-time timers were not provided as such 
in Ada 95, but delay statements and asynchronous transfer 
of control (ATC) provided a similar functionality at a 
higher abstraction level (see e.g. [4]). However, ATC is 
excluded from the Ravenscar profile due to its complex 
implementation. Nevertheless, there are new real-time 
mechanisms which can be used to efficiently detect 
deadline overruns in critical systems. 

Timing events [1] is an Ada 2005 lower-level mechanism 
that can be used with the Ravenscar profile [18, D.15] for 
detecting deadline overruns [14]. Timing events are a light-
weight mechanism for specifying an action to be executed 
at a given time without the need to use a task or a delay 
statement. A timing event can be set to occur at an absolute 
time or after a real-time interval. A protected procedure 
handler is executed whenever the event occurs, unless it is 
cancelled before that time. The functionalityof timing 
events is provided by the library-level package Ada.Real_ 
Time.Timing_Events, in this way it is no needed to change 
the compiler to implement this mechanism but just to add 
the support to the Ada run-time library as well as to the 
underlying kernel. It is worth noting that only library-level 
timing events are allowed by the Ravenscar profile.  

Ada 2005 also includes mechanisms for measuring and 
monitoring execution-time, namely execution-time clocks 



S. Urueña, J.  Pul ido, J .  Redondo, J.  Zamorano 115  

Ada User Journal Volume 29, Number 2, June 2008 

and timers [2], and group execution-time budgets [3]. These 
mechanisms can be used to estimate the execution time of 
code segments, to handle some kinds of aperiodic events, 
and to detect execution-time related temporal faults. These 
mechanisms are also provided by library-level packages: 
Ada.Execution_Time, Ada.Execution_Time.Timers, and 
Ada.Execution_Time.Group_Budgets.  

In Ada 2005 each task has an execution-time clock that 
computes the amount of CPU time it has consumed, 
including the run-time services invoked by the task. It 
should be noticed that it is implementation-defined which 
task is charged with the execution time for system services, 
which include interrupt service routines, or even whether it 
is charged to no task [18, D.14(13a/2)]. Execution-time 
timers are objects that are associated with a task —and 
hence with the task execution-time clock— when they are 
declared. A timer can be armed to expire at an absolute 
value of that clock or after some execution-time interval. 
When the timer expires, a protected procedure handler is 
executed. Setting again the handler replaces the handler and 
the time of execution and the timer remains set. Group 
execution-time budgets is a similar mechanism, which can 
be used with a set of tasks instead of a single task. A task 
can belong to at most one such group. A global budget of 
execution-time can be allocated to the whole group, and 
then it is decreased when any task in the group consumes 
execution time. As with timers, a protected procedure 
handler can be specified to be executed whenever the 
budget is exhausted. The budget can also be replenished at 
any time.  

Execution-time clocks are allowed in the Ravenscar profile, 
but timers and group budgets are not. However, we believe 
that these mechanisms can be safely and efficiently used in 
high-integrity systems, provided that they are only declared 
at library level and there is at most one execution-time 
timer per task [6]. 

3 Kernel support for timing services 
The described timing services has been implemented on 
GNATforLEON which is an evolved version of ORK for 
LEON2 based computers. LEON2 is a radiation-hardened 
implementation of the SPARC V8 architecture, which has 
been adopted by the European Space Agency (ESA) as the 
new standard processor for spacecraft on-board computer 
systems as an upgrade of the ERC32 [9]. 

GNATforLEON provides direct support for the Ravenscar 
profile [18, D.13.1], including the following Ada 2005 
timing services: 

• Global timing events; 

• Execution-time clocks. 

Execution-time timers and group budgets are also 
supported by the kernel in spite of being not allowed by the 
Ravenscar profile. These mechanisms are needed to enforce 
temporal separation in logical partitioned systems where 
subsystems with possibly different levels of criticality can 
share computer nodes. This is a strong requirement for the 

kind of on-board aerospace embedded systems envisaged in 
the ASSERT project1[15]. 

The implementation of Ada.Real_Time.Clock and absolute 
delays for ORK/ERC32 is thoroughly described in [21]. It 
is based on the two 32-bit hardware timers of the ERC32 
processor. That implementation has been ported to the 
LEON2 processor which has two 24-bit hardware timers. It 
is worth noting that Annex D of the Ada Language 
Reference Manual [18] requirements for Ada.Real_ 
Time.Time lead to at least 41 bits for that type. As a result, 
the implementation uses the hardware timer register as the 
least significant part (LSP) of the clock and a 32-bit word 
in memory as the most significant part (MSP). This 
arrangement provides an accurate tick with low overhead. 

Execution-time clocks and timers were also supported by 
ORK/ERC32 whose implementation is described in [20]. 
The implementation only allows one execution-time timer 
per task, as suggested in previous IRTAW discussions [8, 
6] and permitted by the Ada Language Reference Manual 
[18, D.14.1(28/2)]. Although execution-time timers are not 
allowed in the Ravenscar profile, the Ravenscar profile 
restrictions enable a simple and efficient implementation 
which was ported to GNATforLEON. Group budgets were 
not implemented in ORK but recently on GNATforLEON. 
However, the implementation is built on top of the 
execution-time timers one and thus only little support is 
needed for group budgets at kernel level. The main part is 
at Ada run-time level in the body of the Ada.Execution_ 
Time.Group_Budgets whereas at kernel level is only 
needed a flag to record if the armed execution-time alarm 
of the task correspond to its execution-time timer or to the 
group budget timer at which the task belongs. In this way, 
the proper handler may be invoked if the execution-time 
alarm expires. 

The overall implementation is schematically shown in 
figure 1. As said, timer 1 is used in periodic mode to 
support Ada.Real_Time.Clock and timer 2 is used in one-
shot mode and is armed to expire with the closest event. 
This event can be an absolute delay or the execution-time 
timer of the running task, which in turn could be its own 
timer or the timer of its group budget. In a similar way to 
real-time clock, the execution-time clock of the running 
tasks is built up by using the hardware timer register and 
the cumulated execution time. However, if the timer 2 is 
armed with an absolute delay is more complex to build up 
the execution-time clock of the running tasks. 

4   Implementation of timing-events 
The Ravenscar profile restrictions avoids delay cancellation 
and therefore the alarm queue of figure 1 is simply linked. 
However timing-events can be cancelled and the alarm 
queue can not be efficiently used for this purpose. 
                                                           
1 ASSERT (Automated proof based System and Software Engineering for 
Real-Time) is an FP6 Integrated Project coordinated by the European 
Space Agency. The main goal of the project is to improve the system-
andsoftware development process for critical embedded real-time systems, 
in the Aerospace and Transportation domains 



116  Implementing the New Ada 2005 Real-Time Features on a Bare Board Kernel 

Volume 29, Number 2, June 2008 Ada User Journal 

 
Figure 1   Schema of clocks and timers implementation 

Nevertheless it is possible to manage timing-events in the 
same way of absolute delays, that is by inserting them in 
the simply linked alarm queue and if a timing event is 
cancelled its associate handler is set to null.  

The overhead of the above approach could be intolerable in 
applications with timing event cancellations. It should be 
noticed that the processing of the timer interrupts implies 
the execution of the preamble and the epilogue together 
with the run-time alarm handler. This alarm handler has to 
clear the interrupt, identify the type of the event, jump to an 
Ada code which is the handler and finally look for the next 
closest event in order to arm the hardware timer. In our 
opinion, this is a pretty amount of instructions for a null 
handler. 

As a result, it was decided to use a new doubly linked 
queue for timing events. Therefore, timing events can be 
simply and efficiently located and removed when they are 
cancelled. The timing event queue is also ordered by 
absolute time in spite of the timing event was set by using 
relative time, as it is the best approach [21]. 

 
Figure 2   Schema of event queues. 

The figure 2 shows the new queues arrangement. In 
general, it is more simple and efficient to maintain two 
queues than the combined one and thus the implementation 

has a lower overhead. It could be argued that it is needed to 
compare among three events in order to identify the closest 
event and therefore more comparisons are made in order to 
arm the hardware timer than without a new queue. This is a 
fallacy because the total number of comparisons is even 
lower because it is made much more comparisons for 
inserting the event in a longer queue.Finally, it must be said 
that the implementation could be much more simple with a 
little bit of hardware support. For instance, the 
implementation of real-time clock and absolute delays of 
the ORK version for PC computers is much more efficient 
and simple because it takes advantage of the Time Stamp 
Counter which can be found in Pentium processors. The 
Time Stamp Counter is an up-count 64-bit timer and thus it 
is able to maintain the monotonic real-time clock itself. 
This is fairly convenient making more simple to operate the 
alarm queue because reading the clock is just one 
instruction. 

5   Implementation inaccuracies 
The described implementation allocates the time spent in 
interrupt service routines to the currently running task, 
which is allowed by Ada. However, it allocates the time 
spent in timing event handlers too. It should be noticed that 
to stop and restart the execution-time clock of the running 
task is not easy because it is not just a matter of stopping 
the hardware timer. As it is shown in figure 2, the hardware 
timer 2 does not hold the remaining CPU time of the 
running task when a timing event expires but the expired 
timing event. As a result, the real-time clock should be 
recorded at the beginning and the end of the hardware timer 
2 interrupt handler in order to properly updated the 
remaining CPU time of the running task by subtracting this 
elapsed time. 

In this way, it is not only complex to avoid the allocation of 
the time spent in timing event handlers to the running task 
but the time spent for avoiding this could be greater than 
the time spent in the timing event handler itself. Indeed, it 



S. Urueña, J.  Pul ido, J .  Redondo, J.  Zamorano 117  

Ada User Journal Volume 29, Number 2, June 2008 

is a time-spending operation to read the clock with the little 
hardware support of LEON2 processors.  

Nevertheless, we believe that the implementation is 
implicitly allowed by the standard because the Ada 
Language Reference Manual [18, D.15(25/2)] says that 
“The protected handler procedure should be executed 
directly by the real-time clock interrupt mechanism”. As it 
is implementation-defined which task is charged execution 
time for the time spent in interrupt service routines, it can 
be concluded that it is also allowed to charge the time spent 
in timing event handlers. In our honest opinion, it should be 
clarified in an Ada Issue. 

Another source of inaccuracy of execution-time clocks is 
the so-called proxy model for servicing the entries of 
protected objects which is used by the GNAT compiler 
[13]. With this approach the task exiting the eggshell 
executes all the waiting entry calls whose barriers are open 
on behalf the awaiting tasks and reevaluates the barriers 
every time. As a result, this time spent for other tasks is 
charged to the execution-time clock of the exiting task.  

The Ravenscar profile only allows one awaiting task per 
protected object and therefore this inaccuracy can be 
bounded but as there is no language-imposed restriction on 
the number of such calls that can be pending, the 
inaccuracy could be intolerable for general Ada programs. 
A way to avoid this inaccuracy could be to use the so-
called self- service model, although the number of context 
switchings would increase. Moreover, the GNAT compiler 
and the GNAT Ada run-time library should be modified in 
order to do that. 

6   Metrics 
The Ada 2005 timing mechanisms have been implemented 
by the authors on GNATforLEON, a compilation system 
for the LEON2 processor, a radiation-hardened derivative 
of the SPARCv8 RISC architecture for the space domain. 
The implementation has been based on a previous 
experimental implementation on top of the Open Ravenscar 
kernel [20]. The modified compilation system is being used 
as the execution platform for the ASSERT project.  

The overhead of the new timing mechanisms (execution-
time timers, group budgets, and timing events) has been 
measured by comparing footprint size and context switch 
duration between GNATforLEON 1.0 and GNATforLEON 
1.3. GNATforLEON 1.0 is the first version of the 
compilation system which does not have the new timing 
mechanisms. Conversely GNATforLEON 1.3 includes all 
of them. The values shown in tables 1 and 2 have been 
measured using a pilot application, and therefore should be 
considered as average values, not as worst-case metrics. 

Table 1   Context switch in GNATforLEON 

Run-time system Context switch 
(instructions) 

GNATforLEON 1.0 405 
GNATforLEON 1.3 606 

 

Table 2   Memory footprint 

 Section   Size (kilobytes) 
 GNATforLEON 1.0  GNATforLEON 1.3 

 . text  79  87 
 .data  8 8 
 .bss  362  365 
 Total  449  460 

The overhead is moderate as about 200 new instructions 
have to be executed per context switching to support 
execution time clock and group budget on GNATforLEON. 
The absolute timing impact depends highly on actual CPI 
(Cycles Per Instruction) which in turns depends on the 
status of pipeline, caches and register window. The ideal 
CPI is 1 and the clock frequency of LEON2 processor is 50 
MHz therefore the minimum absolute overhead is 4 µs. 

Table 3 shows the instructions required for timing service 
primitives. It should be noticed that 71 instructions are just 
needed to read the clock and the implementation needs to 
read the clock during context switching and timing service 
primitives. As a result, the poor hardware support of 
LEON2 processors highly impact on the duration of timing 
service primitives. 

Table 3   Primitives 

Operation Instructions 
Real_Time.Clock  71 
Timing_Events.Set_Handler  240 
Execution_Time.Timers.Set_Handler  271 

 

Table 4 shows the latencies for executing the corresponding 
handler when an execution time or group budget timer 
expires. 400 instructions are needed from the first 
instruction of the low-level interrupt handler to the first 
instruction of the Ada handler. It is fairly low providing 
that LEON2 is a RISC processor. 

Table 4   Handler latencies 

Operation Instructions 
Timing event handler 396 
Execution-time handler 415 

 

The footprint increases in 11 kbytes which are mainly due 
to the 8 kbytes augment in the code (text section). The 
other 3 kbytes are due to the need of larger ATCB and 
structures for individual objects. Table 5 shows the 
footprint of the required structures. 

Table 5   Memory size 

Type Size (bytes) 
Timing_Event 24 
Execution_Time.Timers.Timer 20 
Group_Budget 2064 

 



118  Implementing the New Ada 2005 Real-Time Features on a Bare Board Kernel 

Volume 29, Number 2, June 2008 Ada User Journal 

7   Hardware support 
The overhead introduced by real-time mechanisms in the 
kernel primitives is moderate. However, as said above, 71 
instructions are needed to read the clock and the clock must 
be read to obtain the relative down-count that should be 
loaded in the hardware register. In this way, the fourth part 
of the extra instructions in a context switching are used just 
for reading the clock. There are also another operations 
which are time consuming such as to compare 64-bit time 
values and to convert a relative time in the corresponding 
value that should be load in the down-count timer register. 

As a result, a significant part of the introduced overhead 
can be avoided with just a little bit of hardware support. 
Hardware timers are fairly simple devices and they can be 
included in a processor board at a very low cost. It can be 
envisage a very simple implementation of the described 
real-time mechanisms just with four 64-bit up-count 
hardware timers. 

In this way, it can be used one timer to support the 
monotonic real-time clock on hardware, as with the 
Pentium Time Stamp Counter, without any software 
support. A second one can be used for the absolute delay 
queue which is ordered by absolute time and thus the 
absolute expiration time would be loaded in the so-called 
comparator value Register of the hardware timer. 
Therefore, an interrupt request should be delivered when 
the up-count timer reaches the comparator value. A 
separate timer can be used for timing events which can be 
managed with the same approach although the timing event 
queue should be doubly linked. The last timer is dedicated 
to count for the execution time of the running task, in this 
way it would be easy read the execution-time clock of the 
running task. Moreover, to stop and restart this timer would 
be the needed simple operations to avoid charging the time 
spent in interrupt service routines and timing events to the 
running task. 

Recently, Intel has specified the so-called High Precision 
Event Timers [11] for the PC architecture. The 
specification defines a block of up-count 64-bit timers and 
each timer can be configured to generate a separate 
interrupt. The specification allows for a block of 32 timers, 
with support for up to 8 blocks, which allows a total of 256 
timers. 

The specification fulfils the requirements to implement the 
real-time mechanism with a low overhead because timers 
are implemented as a single up-counter with a set of 
comparators. Each timer includes a match register and a 
comparator, and can generate an interrupt when the value in 
its match register equals the value of the free-running 
counter. Moreover, the counters increases monotonically 
and some of the timers can be enabled to generate a 
periodic interrupt. 

It can be easily envisage a very simple implementation of 
the real-time services with such population of timers. Every 
timing event could use its own hardware timer and thus 
queueing is avoided. However, it should be needed to limit 
the maximum number of timing events with the 

corresponding pragma Restrictions. In a similar way, every 
task could own a hardware timer in order to support its 
execution-time clock and timer. As a result, the overhead in 
context switching would be reduced to stop and restart the 
corresponding timers of both tasks. It should be noticed that 
the maximum number of tasks can be limited by a pragma 
Restrictions and the implementation may limit the number 
of timers that can be defined for each task to one, and thus 
this implementation is allowed by the standard. 

Finally, it could be possible to use a periodic timer to 
activate each periodic task and to eliminate the alarm queue 
too. Unfortunately, Ada has not a way of specifying the 
period of a real-time periodic task and it would be needed 
to add this feature by a specific implementation pragma. 

8   Conclusions 
The Ada 2005 real-time services are of paramount 
importance for detecting temporal faults and thus they 
enable the development of fault tolerant systems. The 
implementation described in this paper has a moderate 
overhead for a Ravenscar kernel and does not introduce 
much complexity to the underlying kernel. Therefore, they 
can be used for building high integrity systems. 

It should be noticed that the hardware timer devices of 
LEON2 processor are not adequate to support the real-time 
features which are needed in a real-time system. Even the 
monotonic real-time clock needs a significant software 
support. We believe that the overhead can be highly 
reduced with a little bit of hardware support which can be 
found in the Intel PC architecture. 

Additionally, some inaccuracies in the implementation of 
execution-time timers are derived from this poor hardware 
support, as well as due to the proxy model. These 
inaccuracies can not be completely avoided in the general 
case and implementation advices should be provided. 

References 
[1] Ada Rapporteur Group. Ada Issue 297 — Timing 

events. Ada Letters, XXV(3), September 2005. 

[2] Ada Rapporteur Group. Ada Issue 307 — Execution-
time clocks. Ada Letters, XXVI(1), April 2006. 

[3] Ada Rapporteur Group. Ada Issue 354 — Group 
execution-time budgets. Ada Letters, XXVI(2), August 
2006. 

[4] A. Burns and A. J. Wellings. Real-Time Systems and 
Programming Languages. Addison-Wesley, 3 edition, 
2001. 

[5] J. A. de la Puente, J. F. Ruiz, and J. Zamorano. An 
open Ravenscar real-time kernel for GNAT. In H. B. 
Keller and E. Plöedereder, editors, Reliable Software 
Technologies — Ada-Europe 2000, number 1845 in 
LNCS, pages 5–15. Springer-Verlag, 2000. 

[6] J. A. de la Puente and J. Zamorano. Execution-time 
clocks and Ravenscar kernels. Ada Letters, 
XXIII(4):82–86, December 2003. Proceedings of the 



S. Urueña, J.  Pul ido, J .  Redondo, J.  Zamorano 119  

Ada User Journal Volume 29, Number 2, June 2008 

12th International Ada Real-Time Workshop 
(IRTAW12). 

[7] J. A. de la Puente, J. Zamorano, J. F. Ruiz, R. 
Fernández, and R. García. The design and 
implementation of the Open Ravenscar Kernel. Ada 
Letters, XXI(1), 2001. 

[8] B. Dobbing and J. A. de la Puente. Session report: 
Status and future of the Ravenscar profile. Ada Letters, 
XXIII(4):55–57, December 2003. Proceedings of the 
12th International Real-Time Ada Workshop (IRTAW 
12). 

[9] ESA. 32 Bit Microprocessor and Computer System 
Development, 1992. Report 9848/92/NL/FM. 

[10] GR. LEON2 Processor User’s Manual, 2005. Gaisler 
Research. 

[11] Intel Corporation. IA-PC HPET (High Precision Event 
Timers) Specification, 2004. Intel Corporation. 

[12] Ada 95 Reference Manual: Language and Standard 
Libraries. International Standard ANSI/ISO/IEC-
8652:1995, 1995. Available from Springer-Verlag, 
LNCS no. 1246. 

[13] J. Miranda. A Detailed Description of the GNU Ada 
Run Time. http://www.iuma.ulpgc.es/users/jmiranda/ 
gnat-rts/, 2003. 

[14] J. A. Pulido, S. Urueña, J. Zamorano, and J. A. de la 
Puente. Handling temporal faults in Ada 2005. In N. 
Abdennadher and F. Kordon, editors, Reliable 
Software Technologies — Ada-Europe 2007, number 
4498 in LNCS, pages 15–28. Springer-Verlag, 2007. 

[15] J. A. Pulido, S. Urueña, J. Zamorano, T. Vardanega, 
and J. A. de la Puente. Hierarchical scheduling with 
Ada 2005. In L. M. Pinho and M. González Harbour, 
editors, Reliable Software Technologies — Ada-

Europe 2006, volume 4006 of LNCS. Springer Berlin / 
Heidelberg, 2006. 

[16] P. Puschner and A. Burns. A review of worst-case 
execution time analysis. Real-Time Systems, 
18(2/3):115–128, May 2000. 

[17] J. F. Ruiz. GNAT Pro for on-board mission-critical 
space applications. In T. Vardanega and A. Wellings, 
editors, Reliable Software Technologies — Ada-
Europe 2005, volume 3555 of LNCS. Springer-Verlag, 
2005. 

[18] S. T. Taft, R. A. Duff, R. L. Brukardt, E. Ploedereder, 
and P. Leroy, editors. Ada 2005 Reference Manual. 
Language and Standard Libraries. International 
Standard ISO/IEC 8652/1995(E) with Technical 
Corrigendum 1 and Amendment 1. Number 4348 in 
Lecture Notes in Computer Science. Springer-Verlag, 
2006. 

[19] T. Vardanega. Development of on-board embedded 
real-time systems: An engineering approach. Technical 
Report ESA STR-260, European Space Agency, 1999. 

[20] J. Zamorano, A. Alonso, J. A. Pulido, and J. A. de la 
Puente. Implementing execution-time clocks for the 
Ada Ravenscar profile. In A. Llamosí and A. 
Strohmeier, editors, Reliable Software Technologies — 
Ada-Europe 2004, volume 3063 of LNCS. Springer-
Verlag, 2004. 

[21] J. Zamorano, J. F. Ruiz, and J. A. de la Puente. 
Implementing Ada.Real_Time.Clock and absolute 
delays in real-time kernels. In A. Strohmeier and D. 
Craeynest, editors, Reliable Software Technologies — 
Ada-Europe 2001, number 2043 in LNCS, pages 317–
327. Springer-Verlag, 2001. 

 

 



120   

Volume 29, Number 2, June 2008 Ada User Journal 

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission. 

Operating System Support for Execution Time 
Budgets for Thread Groups 
Mario Aldea Rivas, Michael González Harbour 
Universidad de Cantabria, 39005-Santander, Spain; email:{mgh, aldeam}@unican.es 

 

Abstract 
The recent Ada 2005 standard introduced a number 
of new real-time services, with the capability of 
creating and managing execution time budgets for 
groups of tasks. This capability has many practical 
applications in real-time systems in general, and 
therefore it is also interesting for real-time operating 
systems. In this paper we present an implementation 
of thread group budgets inside a POSIX real-
operating system, which can be used to implement the 
new Ada 2005 services. The architecture and details 
of the implementation are shown, as they may be 
useful to other implementers of this functionality 
defined in the new standard. 
Keywords: Real-time systems, Execution time budgets, 
Thread groups, CPU time, Ada 2005. 

1   Introduction1 
In hard real-time systems it is essential to monitor the 
execution times of all tasks and detect situations in which 
the estimated worst-case execution time (WCET) is 
exceeded. This detection was usually available in systems 
scheduled with cyclic executives, because the periodic 
nature of its cycle allowed checking that all initiated work 
had been completed at each cycle. In event-driven 
concurrent systems the same capability should be available, 
and can be accomplished with execution time clocks and 
timers.  

This need for managing execution time is recognized in 
standards related to real-time systems. The POSIX standard 
[4] defines services for execution time measurement and 
budget overrun detection, and its associated real-time 
profiles [5] require implementations to support these 
services. The recent Ada 2005 standard introduced a 
number of new real-time services intended to provide 
applications with a higher degree of flexibility. In particular 
this standard defines capabilities for measuring the 
execution time of individual tasks, and the ability to detect 
and handle execution-time budget overruns. 

                                                           
1  This work has been funded by the Plan Nacional de I+D+I of the 

Spanish Government under grant TIC2005-08665-C03 (THREAD 
project), by Ada Core, and by the European Union’s Sixth Framework 
Programme under contracts  FP6/2005/IST/5-034026 (FRESCOR 
project)  and IST-004527 (ARTIST2 NoE).  This work reflects only the 
author’s views; the EU is not liable for any use that may be made of the 
information contained herein. 

As real-time applications evolve towards an increased 
complexity level, issues such as composability of 
independently developed application components and 
support for legacy code introduce the need for supporting 
different levels of hierarchy in the scheduling mechanism, 
leading to a hierarchical concurrency model with different 
layers, and with capabilities for establishing boundaries for 
the protection of different parts of the application. In this 
context of hierarchical scheduling it is often required to 
bound the execution time of a group of activities that are 
inside the same protection boundary, so that they cannot 
interfere with other activities in other protection boundaries 
by using up more resources than they should. This need 
introduces a requirement on the underlying implementation 
to support the measurement of the execution times of 
groups of tasks, and the handling of potential budget 
overruns, in a way similar to what is usually done for 
individual tasks.  

Following this general requirement, the Ada 2005 standard 
defines services for execution-time budgets for groups of 
tasks, and is now a step forward in relation to the real-time 
extensions to POSIX, which still has no such service. 

In this paper we propose an implementation of a 
mechanism to support execution-time budgets for thread 
groups inside a POSIX operating system. The API of this 
implementation could be used as a basis for a future 
extension to POSIX. It will also be used to implement the 
task group budgets defined in Ada 2005. The architecture 
and details of the implementation are shown, as they may 
be useful to other implementers of this functionality 
defined in the new standard. Some performance metrics are 
provided.  

The paper is organized as follows. Section 2 discusses the 
current services that are available in the platform chosen 
for this implementation, MaRTE OS and GNAT, and that 
are related to thread group budgets. Section 3 introduces 
the services designed to represent sets of threads. Section 4 
discusses the implementation of the execution time clocks 
for groups of threads, while Section 5 does the same for 
budgets and their associated handlers. Section 6 provides 
some performance metrics and, finally, Section 7 gives our 
conclusions. 

2   Background 
The implementation of execution time budgets for thread 
groups presented in this paper has been developed in 



M. Aldea Rivas, M. González Harbour 121  

Ada User Journal Volume 29, Number 2, June 2008 

MaRTE OS [1] [2], which is a real-time operating system 
(RTOS) that follows the POSIX.13 [5] minimum real-time 
system profile, and is mostly written in Ada. It is available 
for the ix86 architecture as a bare machine, and it can also 
be configured as a POSIX-thread library for GNU/Linux. 
The GNAT run-time library has been adapted to run on top 
of MaRTE OS, which is itself being extended in a joint 
effort between Ada Core and the University of Cantabria 
with the objective of providing a platform fully compliant 
with Ada 2005, available for industrial, research, and 
teaching environments. The implementation of thread 
group budgets presented in this paper is part of the effort to 
achieve this objective. 

Two of the new Ada 2005 real-time services are closely 
related to the thread group budgets and are already avail- 
able in MaRTE OS and GNAT [3]: 

• Timing events are defined in Ada 2005 as an effective 
and efficient mechanism to execute user-defined time-
triggered procedures without the need to use a task. 
They are very efficient because the event handler may 
be executed directly in the context of the interrupt 
handler, avoiding the need for a server task.  

• Execution time clocks and timers are defined in Ada 
2005 as a standardized interface to obtain the execution 
time consumption of a task, together with a mechanism 
that allows creating handlers that are triggered when the 
execution time of a task reaches a given value, 
providing the means to execute a user-defined action 
when the execution time assigned to a specific task 
expires. 

Timing events have been implemented in MaRTE OS 
through a service that we call “timed handlers”, which are 
not only useful to implement their Ada counterpart, but are 
also useful to other applications as a general-purpose RTOS 
mechanism. 

MaRTE OS supports the execution-time clocks and timers 
defined in POSIX.1, which would be appropriate to 
implement their couterparts in Ada. However, the timers 
defined in POSIX to detect execution time overruns use an 
operating system signal to notify about their expiration. 
Signals are a very scarce resource inside an RTOS. 
Besides, the signal is usually handled through a thread that 
is waiting to accept the signal, but this is a mechanism that 
introduces relatively high overheads, mainly due to the 
need for the handler to be a thread, with the associated 
costs in context switches. This leads to the same reason for 
introducing the new "timing events" mechanism for regular 
time management. 

As a consequence, the Ada implementation of execution 
time clocks and timers has been achieved in MaRTE 
through the "timed handler" mechanism, which allows a 
direct handling of the event inside the hardware timer 
interrupt handler, thus avoiding the use of a signal and the 
subsequent double context switch that would be necessary 
otherwise. 

To implement thread group budgets inside MaRTE OS we 
will follow an approach similar to that followed for 
execution time budgets for individual threads, creating the 
appropriate execution time clocks for thread groups and 
extending the "timed handler" mechanism to also support 
these new clocks. 

3   Thread sets 
Before creating the execution time clocks for thread groups 
or sets, it is necessary to specify a mechanism to represent 
the groups themselves. Instead of defining a mechanism 
specific to execution-time clocks, we have chosen to create 
an independent RTOS object that represents a group of 
threads. In this way, we will be able to address future 
extensions that require handling groups of threads using 
these same objects. Examples of such new services might 
be related to the requirements for supporting hierarchical 
scheduling, for instance to suspend or resume a group of 
threads atomically. 

A thread set is implemented by a record that may be 
extended in the future to add functionality. This record has 
the following fields: 

• Set : A list of the threads belonging to the set. 

• Iterator: A reference to the current thread in the list, 
used when iterating through marte_threadset_first and 
marte_threadset_next. 

A restriction has been made so that a thread can belong to 
only one thread set. This restriction is also made in the Ada 
2005 standard, and its rationale is that in the hierarchical 
scheduling environment for which thread groups are useful, 
threads only belong to one specific scheduling class, and 
therefore to one specific set. This restriction allows a more 
efficient implementation, because at each context switch 
only one of the Consumed_Time fields of the set to which 
the running thread belongs needs to be updated. 

Threads can be added/removed to/from a thread set 
dynamically. Every thread has a pointer in its thread control 
block (TCB) to the set it belongs to. This field is null if the 
thread doesn’t belong to any thread set. 

The C language API to manage thread sets from the 
application level is the following: 

   // create an empty thread set 
   int marte_threadset_create ( 

marte_threadset_id_t *set_id); 
   // destroy a thread set 
   int marte_threadset_destroy ( 

marte_threadset_id_t set_id); 
   // empty an existing thread set 
   int marte_threadset_empty ( 

marte_threadset_id_t set_id); 
   // add a thread to a set 
   int marte_threadset_add ( 

marte_threadset_id_t set_id,  
   pthread_t thread_id); 



122  Operat ing System Support  for  Execution Time Budgets for  Thread Groups 

Volume 29, Number 2, June 2008 Ada User Journal 

   // delete a thread from a set 
   int marte_threadset_del ( 

marte_threadset_id_t set_id,  
pthread_t thread_id); 

   // check thread membership 
   int marte_threadset_ismember ( 

marte_threadset_id_t set_id, 
pthread_t thread_id); 

   // reset the iterator and get the first thread id 
   int marte_threadset_first ( 

marte_threadset_id_t set_id,  
pthread_t *thread_id); 

   // advance the iterator and get next thread id 
   int marte_threadset_next ( 

marte_threadset_id_t set_id,  
pthread_t *thread_id); 

   // check whether the iterator can be advanced 
   int marte_threadset_hasnext ( 

marte_threadset_id_t set_id) 
   // get the set associated with the given thread 
   int marte_threadset_getset ( 

marte_threadset_id_t *set_id) 
pthread_t thread_id); 

4   Execution time clocks for thread groups 
To implement execution time clocks for groups of threads 
we add the following information to the object that 
represents a thread set: 

• Consumed_Time: CPU-time consumed for all the task 
in the group. Every time a thread of a given set leaves 
the CPU, the time consumed by this task since its last 
activation is added to the Consumed_Time of its thread 
set, even if  there is no timed event associated with it, 
because the value of the execution-time clock may be 
read at any time by the application. 

• Group_Timed_Event : A reference to the internal RTOS 
execution time event, used by the scheduling 
mechanism. A set can be associated with at most one 
such event. 

The API to obtain an execution-time clock from a thread 
set is: 

   // destroy a thread set 
   Int marte_getgroupcpuclockid ( 

marte_threadset_id_t set_id, 
clockid_t *clock_id); 

The returned id represents a clock that can be read and set 
through the standard POSIX API for clocks, i.e., using 
functions clock_gettime, clock_settime, ... They can also be 
used as the base for POSIX timers and MaRTE OS timed 
events as any other clock defined in the system. They can 
not however be used as the base for the clock_nanosleep 
operation, as is also the case with the single-thread CPU-
time clocks. POSIX leaves this behavior as unspecified and 
Ada does not define execution time as a type that can be 
used in the equivalent delay statements. 

POSIX requires type clockid_t to be defined as an arithmetic 
type, and therefore clock ids are implemented using a 

unsigned number of 32 bits. The value stored in a clock id 
can have different interpretations:  

• Special values for the regular calendar-time clock 
CLOCK_REALTIME, the execution time clock of the 
current thread CLOCK_THREAD_CPUTIME_ID, and the 
monotonic clock CLOCK_MONOTONIC. 

• A pointer to a thread control block when the clock is a 
thread CPU-time clock of a particular thread. 

• A pointer to a thread set when it is a thread group clock. 

5   Timed events based on a group clock 
Group clocks can be used as the base of timers and timed 
handlers. When a timer or a timed handler is armed, a 
MaRTE OS timed event is enqueued in the system event 
queues. Time-based events in MaRTE OS are of two kinds: 
standard time and execution time. They are kept in separate 
priority queues because they cannot be compared with each 
other for ordering. Events based on group clocks are a 
special case of execution time events. An execution time 
event has the following information: 

• CPU_Time: The event will expire when the execution 
time consumed by the associated task reaches this value 

• Group_Expiration_Time: The event will expire when 
the Consumed_Time field of the task set associated with 
the event reaches this value. This field is only used in 
events based on a group clock.  

• Is_Based_On_Group_Clock: This is a boolean used to 
identify events based on group clocks 

• Base_Clock: A clock id representing the clock used as 
the timing base of the event. It could be a thread CPU-
time clock or a group clock. 

• Task_Where_Queued : A pointer to the task that has 
queued the event. 

Execution time events are kept in a queue associated with 
the task on which the event is based on, and stored as the 
CPU_Time_Timed_Event_Queue in the task control block. 
Every time a new thread gets the CPU, the events at the 
head of the standard-time events queue and of the running 
task´s CPU_Time_Timed_Event_Queue queue are compa-
red. The hardware timer is programmed to expire at the 
most urgent of the two. 

Events based on group clocks are special CPU-time events 
that “jump” between the CPU_Time_Timed_Event_Queue 
of the threads in the group. Each time the system schedules 
a task included in a thread set that has an event associated, 
the following actions are performed in the Do_Scheduling 
internal kernel operation: 

   - - Set CPU_Time of the event according to the 
   - - time consumed by T 
   T.Set.Group_TE_Ac.CPU_Time :=  
       T.Used_CPU_Time +  
      (T.Set.Group_TE_Ac.Group_Expiration_Time - 
       T.Set.Consumed_Time); 



M. Aldea Rivas, M. González Harbour 123  

Ada User Journal Volume 29, Number 2, June 2008 

    - - Move Group_TE_Ac from one task to another 
   if T.Set.Group_TE_Ac.Task_Where_Queued /= null 
   then 
      - - Dequeue from the list it was queued 
      Dequeue (T.Set.Group_TE_Ac, 
            T.Set.Group_TE_Ac.Task_Where_Queued. 
            CPU_Time_TEs_Q); 
   end if; 
   - - Enqueue in T's list 
   Enqueue_In_Order (T.Set.Group_TE_Ac, 
            T.CPU_Time_TEs_Q); 
   T.Set.Group_TE_Ac.Task_Where_Queued := T; 

Dequeue and enqueue operations are very fast, because the 
number of CPU-time events associated to a task usually 
will be very small, either one or two: a CPU-time event and 
a “group event”. Consequently the number of extra 
operations required at each context switch to manage these 
clocks is kept small, and the implementation can efficiently 
schedule the threads with an acceptable overhead, as can be 
seen in the following performance metrics section. 

6   Performance metrics 
The support for group budgets has already been 
implemented in MaRTE OS. Execution time accounting 
introduces a small overhead: enabling this service in 
MaRTE OS increments the context switch time by less than 
5%. Group execution time accounting increments the 
context switch time by another 4%, representing a total of 
9% increment with respect to a system with no CPU-time 
accounting in an x86 architecture.  

The overheads of the budget overrun detection are also 
relatively small. Table 1 shows a comparison of the 
overheads of two detection mechanisms, as measured in a 
3.4GHz Pentium IV. The first one is implemented using a 
regular POSIX timer that sends a signal when the budget 
expires, and a handler thread that blocks waiting to accept 
the signal. The second mechanism is implemented using 
the new timed handler service. We can see that the 
overhead of the second mechanism is much smaller. 

Table 1   Overhead of budget overrun notification mechanism 

Time (⎧s) Time (⎧s) 
Metric (using timer and (using timed 
 auxiliary thread) handlers) 

From user´s thread to 1.1 0.4 
handler 

From handler to user´s 0.8 0.7 
thread  

Total time: 1.9 1.1 

 

7   Conclusion 
As the complexity of real-time systems evolves, 
hierarchical scheduling and partitioning are mechanisms 

used to cope with it, by helping in establishing protection 
boundaries and easing the composability of independently-
developed application components. One of the 
requirements of this partitioning is the time protection 
among the different groups of tasks in the hierarchy, which 
can be achieved by using thread group budgets as those 
specified in the new Ada 2005 standard. 

This paper has presented an implementation of the support 
needed to provide such budgeting services in a real-time 
operating system called MaRTE OS. The paper describes 
the architecture and details of the implementation, together 
with the rationale for the main design decisions, so that this 
information can be used by other implementers of this 
functionality, either as part of Ada run-time systems, or as 
part of a general-purpose RTOS. The implementation has 
proven to be straightforward, and the overheads introduced 
are small, both in the context switch times and in the 
budget overrun notification mechanism. 

As future work, the functionality defined in Ada 2005 for 
group budgets will be implemented. It is anticipated that 
support for the Ada group budgets will be a simple package 
built on top of the MaRTE OS implementation described in 
this paper. 

References 
[1] Aldea Rivas M. and González Harbour M. MaRTE OS: 

Minimal Real-Time Operating System for Embedded 
Applications. Universidad de  Cantabria. 
http://marte.unican.es/ 

[2] Aldea Rivas M. and González Harbour M. MaRTE OS: 
An Ada Kernel for Real-Time Embedded Applications. 
Proceedings of the International Conference on 
Reliable Software Technologies, Ada-Europe-2001, 
Leuven, Belgium, Lecture Notes in Computer Science, 
LNCS 2043, May, 2001, ISBN:3-540-42123-8, pp. 
305,316. 

[3] Aldea Rivas M. and Ruiz J.F.. Implementation of new 
Ada 2005 real-time services in MaRTE OS and GNAT. 
International Conference on Reliable Software 
Technologies, Ada-Europe-2007, Switzerland. 

[4] IEEE Std. 1003.1:2004 Edition, Information 
Technology — Portable Operating System Interface 
(POSIX). The Institute of Electrical and Electronics 
Engineers. 

[5] IEEE Std. 1003.13-2003. Information Technology – 
Standardized Application Environment Profile- POSIX 
Realtime and Embedded Application Support (AEP). 
The Institute of Electrical and Electronics Engineers. 

[6] S. Tucker Taft, Robert A. Duff, Randall L. Brukardt, 
Erhard Ploedereder, Pascal Leroy (Eds.). Ada-2005 
Reference Manual. Language and Standard Libraries. 
International Standard ISO/IEC 8652/1995(E) with 
Technical corrigendum 1 and Amendment 1. Springer, 
Number 4348 in Lecture Notes in Computer Science, 
Springer-Verlag (2006). 

 



124  

Volume 29, Number 2, June 2008 Ada User Journal 

 
This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission. 

Session: Beyond Ada 2005 
Chair: Jorge Real 
Rapporteur: Stephen Michell 
 

1   Session Goals : 
To consider future directions in computing, and what 
changes would be required for Ada to effectively use new 
features.   

Related Papers  

1. Beyond Ada2005: Allocating Tasks to Processors in 
SMP Systems; A.J.Wellings and A. Burns. 

2. Suggestions for Stream Based Parallel Systems in Ada; 
M. Ward and N.C. Audsley  

2   Stream-Based Parallelism 
Neil Audsley gave a look at a possible future in 
computation based on massive parallel architectures. The 
presentation began with current architectures, including  

a) single CPU with L1, L2 cache and memory, and 

b) double CPU with L1, L2 cache and memory, 
cache coherence at L2 memories 

The presentation noted that these architectures are 
unscalable beyond a few (4-6) CPUs, because the 
replication of processors (CPU) on each chip, separation of 
L2 cache onto dedicated chips, distances and switching 
speeds of circuits when using multiple chips increase delays 
and power requirements. 

An alternative view was presented that was called “System 
on a chip". Such a system has: 

• Heterogeneous CPUs,   

• Non uniform memory,   

• Special devices. 

It is expected that this will soon be followed by "Network 
on a chip", which consists of: 

• Multiple systems-on-chip connected by networks 

• No common notion of time 

• Packet switched network 

An example of such a system has been developed by the 
authors, that amounts to "Field Programmable System on a 
chip". Such a system is highly reprogrammable and can be 
reprogrammed in milliseconds, using an almost Ravenscar 
compliant system. 

The authors identified some issues for the Ravenscar 
Tasking Profile. 

Open Issue 1.1: Lack of a shared lock for Protected 
Entries 

This was expressed as Ravenscar's restriction to a single 
entry per protected object or a single caller task per entry, 
but discussion highlighted that the problem is fundamental 
in Ada's specification of protected operations. 

Protected functions in Ada permit a shared access to a 
protected object, but lack any synchronization. Protected 
entries provide synchronization, but lack the ability for a 
collective release of waiting tasks and each released task 
maintains a sequential lock. The need in highly parallel 
systems is to release collections of tasks that will read their 
dedicated data and not update protected data, hence 
behaving as a function once released. 

The Ravenscar restrictions of a single entry and a single 
queue element per entry exacerbate this problem. It was 
agreed that this was a problem that requires a proposal to 
the Ada Rapporteur Group to solve these issues. Solutions 
could resemble a pragma Simultaneous_Release, or the 
addition of functions that block to protected objects. 

The workshop agreed that this deserved further study. 

2   Synchronous Multiprocessing 
Andy Wellings presented a summary of the paper “Beyond 
Ada2005: Allocating Tasks to Processors in SMP Systems” 
and then lead a discussion on the topic through an 
interactive slide presentation. The paper, presentation and 
discussion assume a model of a shared memory 
multiprocessor environment and additions required for Ada 
2005 to better support such an environment.  

The author noted that Ada nominally addresses the 
multiprocessor environment, but assumes that there is an 
OS-level or implementation-level of support that simplifies 
the view of multiprocessing to make it seamless. 
Specifically, the paper notes that Ada is currently silent on 
how the runtime maps tasks to specific processors, and 
proposes the use of pragmas to let an application guide 
such mappings. 

The authors claim that better schedulability can be obtained 
by supporting static allocation of tasks to CPUs. They also 
claim that the approach is not scalable to multicore 
architectures that are Non Uniform Memory Access 
(NUMA). The authors also note that there is still no 
standardization of support for SMP in OS community, 
which affects any choices that Ada makes because Ada 
implementations may rely upon services that are not 



J. Real ,  S.  Michel l  125  

Ada User Journal Volume 29, Number 2, June 2008 

supplied, or may make choices that differ significantly 
from those eventually chosen by an OS. The challenge is to 
provide set of mechanisms that can be both expressive 
enough to support a wide range of application 
requirements, yet be implemented on a wide range of OS's. 

Platform variability is a very significant issue for 
multiprocessor systems. An assumption is made that a 
concurrent program running on a SMP system will often 
not be the only program executing, that the hardware 
resources available to it will not be constant throughout the 
execution of a single execution, and that some processors 
may have capabilities or interfaces that are not available to 
other processors. 

For example,   

a) An underlying operating system may dynamically 
change set of processors allocated to a program 
during execution and may or may not inform the 
executing program of such changes.   

b) There may be hardware registers, interfaces to the 
external environment or interrupts available to 
some processors but not to all.  

It is hoped that such changes would be done in a safe 
manner, but at present there is no language mechanism to 
manage these issues. The workshop decided that the 
minimal level of support that a program requires is to be 
able to determine how many processors are available to it. 
A proposed Ada service is shown in paper [1].  

Another issue raised was that Ada 2005’s support of task 
groups should interoperate with processor affinity. An 
extension of Set_Affinity to a task group would be useful. 
Another issue raised was that some aspects of memory 
maps may be processor-specific, and that ways to specify 
memory affinities should be considered. There were no 
specific set of calls proposed to provide such capability. 

Throughout the presentation and discussion, there were a 
number of “Open Issues” that were raised and discussed. 

Open Issue 2.1: Should the mapping of tasks be by-
partition?  

There was general agreement that this was the desired 
model. 

Open Issue 2.2:  Should there be Affinity Inheritance?  

There was some discussion but no strong conclusion. It was 
generally agreed that such a model would work, in that 
nested tasks would start with the same processor affinity 
and could explicitly change that affinity with a call. It was 
noted that a pragma, such as pragma priority could be used 
for static affinity control.  

Open Issue 2.3: Dispatching policies 

There was agreement that dispatching policies must be 
partition-wide. A discussion was held about specific Ada 
dispatching policies and how they would be affected by the 
SMP model.  

a) Dispatching policy FIFO_Within_Priorities 
should imply that a task can be migrated between 
its allocated processors whenever it is preempted.   

b) Dispatching policy Non_Preemptive_FIFO_With-
in_Priorities should mean that a task, once 
dispatched to a processor, will not be migrated 
from that processor while it is still executable 
(because it cannot be preempted). 

c) The meaning of the dispatching policy EDF_-
Across_Priorities is unclear if the tasks assigned 
to the priority range have a disjoint set of 
processors.    

d) This raises the need for a new dispatching policy, 
FIFO_Within_Priorities_Without_Migration, 
where a preempted task cannot be migrated from 
the processor from which it was preempted while 
it is still runnable.   

The discussion also considered the ramifications of affinity 
to scheduling policies. The ARM view of priorities states 
that high priority tasks ready for execution should always 
be executed in preference to lower priority tasks. Examples 
were given where a high priority task executing on a single 
processor (say HI with affinity {A}) could preempt a 
medium priority task (say MED on A with affinity {A, B}). 

Open Issue 2.4: Interrupt handlers, Protected Objects 
& Tasks.   

Ada's nominal mapping of interrupts is to protected objects, 
but tasks also often initiate and complete interrupt-level 
operations. If interrupts are processor-specific, there must 
be a way to map protected objects and tasks to the 
processor. An alternative procedure Set_Handler was 
proposed that would include the affinity mapping, but it 
was noted that task-processor affinity could also be a 
requirement. A further complication would result if a single 
task called 2 protected objects that had different affinities.  

The workshop decided that this was an area of interest and 
for further study. 

Open Issue 2.5: Consistent notion of time. 

Timers and relative delay were discussed and considered to 
be consistent. Absolute notions of time could be a problem, 
but should be satisfactory within a single partition. CPU 
time, however, could be problematic as processors may not 
all have the same clock speeds, and reduction or increase 
on the processor set could hinder calculations that optimize 
CPU-time. 

It was agreed that at a minimum should be standardized for 
symmetric multiprocessing with static processor 
allocations. 

Open Issue 2.6: Is it important how an OS manages 
SMP's?  

The consensus was that Ada programs sit above OS 
implementations and cannot rely upon specifics of the OS-
to-processor decisions.  



126  Session:  Beyond Ada 2005 

Volume 29, Number 2, June 2008 Ada User Journal 

Open Issue 2.7: Mapping Tasks to Processors: 

The next discussion considered the mapping of tasks to 
processors. There was a general consensus that the 
mapping should be task-based, as opposed to partition-
based. There was also sentiment that such a mapping 
should include mapping of data-specific regions, cache 
description and interrupts to processors. The following 
mapping choices for tasks-processors were enumerated, 

1) Task → Processor 

2) Task → {Processor} 

3) {Task} → Processor 

4) {Task} → {Processor} 

5) {Task} → {Processor} + return to same processor.  

It was agreed that the mapping proposal enumerated above 
is a reasonable beginning, but that pragmas should be 
included for the static mappings and memory mappings 
should be considered.   

The workshop noted that affinity and pre-emption can lead 
to cascading preemptions. A case in point,   

• HI on A, MED with affinity {A, B}, LOW on any. 

• HI preempts, but can't preempt LOW because LOW is 
on a processor for which HI has no affinity,   

• HI therefore preempts MED which must then preempt 
LOW.  

Other scenarios can be constructed where priority inversion 
occurs, i.e. HI preempts MED but MED cannot preempt 
LOW because MED has no affinity for the processor 
executing LOW.   

Round-robin scheduling was discussed, and it was 
concluded that as long as all tasks participating in the 
round-robin at the same priority level had identical 
processor affinities, placing a task that has just finished its 
quantum at the end of the queue for all processors in the 
affinity set would suffice.   

EDF was thought to be generally ok, but will cause 
preemption cascading. Further research is required.   

Open Issue 2.8: What happens if OS removes a 
processor?  

This is a serious issue if the processor causes significant 
perturbations in the affinity set of some tasks, such as 
giving a task a null affinity set. The call-back notification 
discussed earlier may suffice, as long as there was prior 
notification of the removal so that tasks could 
synchronously change their affinity sets. 

Open Issue 2.9: Asynchronous Task Control and 
Affinity  

There was a proposal to be able to add to 
Aynchronous_Task_Control the ability to change affinity. 
This proposal received insufficient support. 

Open Issue 2.10: Protected Objects and Processor 
Affinities.   

There are some significant issues in giving protected 
objects affinities. The requirement is clear since processor-
specific mappings such as interrupts and registers may be 
utilized with no task thread, or may be called by a task 
without affinity for the processor in question. This is most 
likely if the implementation had proxy execution of 
protected entries, and a task with the wrong processor 
affinity tried to execute a protected entry on behalf of 
another task. There is, however, no current concept of 
Protected_Object_ID similar to Task_ID to build such a 
mapping.    

It was noted that the existing Ada pragma Attach_Handler 
requires extension to include processor information where 
applicable. Similarly, a pragma to provide affinity could 
provide static affinities for protected objects.   

It was decided that this topic needed further research. 

3   Conclusions 
As the session wrapped up, it was decided to continue 
developing proposals for the next workshop, and for the 
Ada Rapporteur Group to consider as they are developed. 

 

 

 



 127  

Ada User Journal  Volume 29, Number 2, June 2008 

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission. 

Beyond Ada 2005: Allocating Tasks to Processors  
in SMP Systems 
A.J. Wellings and A. Burns 
Department of Computer Science, University of York, UK; email: {andy,burns}@cs.york.ac.uk 

 

Abstract 
Ada 2005 has added no new facilities to support 
applications that want to run on multiprocessor 
systems. Following the example set by Ada 95, the 
language facilitates multi-processor implementations 
but provides no direct support for an application-
controlled mapping of tasks to processors. Such 
partitioning is often required to obtain feasible real-
time systems. This paper argues that multiprocessors 
systems are becoming so prevalent that the current 
position is no longer tenable. A proposal for minimal 
support is presented. 

1   Introduction 
Multiprocessors system are becoming more prevalent. In 
particular SMP systems are often the default platform for 
large real-time systems rather than a single processor 
system. The scheduling of processes on these systems can 
be  

1. global – all processors can execute all processes 

2. fully partitioned – each process is executed only 
by a single processor; the set of processes is 
partitioned between the set of processors 

3. mixed – each process can be executed by a subset 
of the processors; hence the tasks set may be 
partitioned into groups and each group can be 
executed on a subset of the processors. 

The Ada Reference Manual allows a program’s 
implementation to be on a multiprocessor system. 
However, it provides no direct support that allows 
programmers to partition their tasks onto the processor in 
the given system. The following ARM quotes illustrate the 
approach. 

“NOTES 1 Concurrent task execution may be 
implemented on multicomputers, multiprocessors, or 
with interleaved execution on a single physical 
processor. On the other hand, whenever an 
implementation can determine that the required 
semantic effects can be achieved when parts of the 
execution of a given task are performed by different 
physical processors acting in parallel, it may choose 
to perform them in this way.” ARM Section 9 par 
11. 

 

This simply allows multiprocessor execution and also 
allows parallel execution of a single task if it can be 
achieved, in effect, “as if executed sequentially”. 

“In a multiprocessor system, a task can be on the 
ready queues of more than one processor. At the 
extreme, if several processors share the same set of 
ready tasks, the contents of their ready queues is 
identical, and so they can be viewed as sharing one 
ready queue, and can be implemented that way. 
Thus, the dispatching model covers multi-processors 
where dispatching is implemented using a single 
ready queue, as well as those with separate 
dispatching domains.” D.2.1 par 15. 

This allows the full range of partitioning identified above. 
However, currently the only way that an implementation 
can provide the mechanisms to allow the programmers to 
partition their tasks amongst the available processors is via 
implementation-defined pragmas, or non standard library 
packages. 

This paper argues that multiprocessor systems are 
becoming so prevalent that it is now time for the language 
to provide more direct support. 

Unfortunately, as of yet, there has been no standardisation 
of support for multiprocessor systems in the operating 
system community. Hence, if Ada is being implemented on 
top of a real-time operating system, it is difficult to know 
what facilities it can rely on. Consequently, the challenge is 
to provide a set of mechanisms that can be both expressive 
enough to support a wide range of application requirements 
and yet can be implemented (possibly with degraded 
services) on a wide range of operating systems. 

This paper proposes the introduction of a new package 
System.Processor_Elements to capture the interface 
between the programmer and the underlying system’s 
multiprocessor architecture. A new pragma, Affinity is also 
introduced. The focus is on support for SMP (Symmetric 
MultiProcessor) Systems. 

The paper is structured as follows. In Section 2 we present 
the main motivations for wanting to provide more explicit 
support for multiprocessor systems. In Section 3 we briefly 
review the support that has been discussed or provided by 
current operating systems. Drawing on this work, we then 
present (in Section 4) some initial thoughts on how to  
 



128  Beyond Ada 2005: Al locat ing Tasks to Processors in SMP Systems 

Volume 29, Number 2, June 2008 Ada User Journal 

integrate multiprocessor support into Ada. Finally we 
present our conclusions. 

2   Motivation 
Whilst many applications do not need more control over 
the mapping of tasks to processors in an SMP environment, 
there are occasions when such control is important. They 
include: 

• To allow more flexible approaches to scheduling. – 
Although the state of the art in schedulability analysis 
for multiprocessor systems continues to advance [2], the 
current state is such that partitioned systems offer more 
guaranteed schedulability than global systems. Quoting 
from [3]: 

“The choice between global and partitioned approaches 
to multiprocessor scheduling is a conundrum. Setting 
aside pragmatic questions about queue contention 
overhead and differences in cache behavior, the 
theoretical results are equivocal. 

In favor of global scheduling, it has long been known 
from queueing theory that single-queue (global) FIFO 
multiprocessor scheduling is superior to queue-per-
processor (partitioned) FIFO scheduling, with respect to 
average response time. 

Apparently in favor of partitioned scheduling, the 
application of well-known single processor scheduling 
algorithms appears superior to the global application of 
those same algorithms for some task sets with hard-
deadlines. 

For example, it is known that all periodic implicit-
deadline task sets with utilization below m(21/2 −1) can 
be scheduled on m processors using a first-fit-
decreasing-utilization (FFDU) partitioning algorithm 
and and local rate monotonic scheduling, but Dhall’s 
example shows that there are hard-deadline periodic 
task sets with total utilization arbitrarily close to 1.0 that 
cannot meet all deadlines if scheduled on m processors 
using global rate monotonic scheduling. 

Dhall’s example also applies to global EDF scheduling, 
yet FFDU partitioned EDF scheduling is guaranteed up 
to utilization (m + 1)/2. However, the supposed 
advantage of partitioned scheduling above disappears if 
one considers hybrid global priority schemes. The Dhall 
example can easily be handled by the EDF − U S(1/2) 
or EDF(kmin) schemes, in which top priority is given to 
a few ”heavy” tasks, as can any implicit deadline 
sporadic task system with utilization up to (m+1)/2. 
This is exactly the same bound as for FFDU partitioned 
scheduling! 

The experiments we performed on large numbers of 
pseudo-randomly generated task sets were intended to 
provide some additional evidence on which to base a 
choice between these two approaches. From those 
experiments, statistically, the chance of being able to 
satisfy all the deadlines of a randomly chosen periodic 
or sporadic task set appears to be highest with 

partitioned scheduling. In particular, the partitioned 
EDF scheduling appeared to be the overall best 
performer in this statistical sense. At the same time, 
there are certainly specific task sets where global 
scheduling is more effective. 

While the schedulability tests used in the experiments 
probably could be improved, it remains unclear whether 
they can be improved enough to erase the statistical 
margin of partitioned scheduling with the available 
schedulability tests.” 

• To support temporal isolation. – Where an application 
consists of tasks of mixed criticality level, some form of 
protection between the different levels is required. The 
strict typing model of Ada provides a strong degree of 
protection in the spatial domain. The CPU budgeting 
facility provides a limited form of temporal protection 
but at the expense of flexibility. More flexible temporal 
protection is obtainable by allowing tasks in each 
criticality level to be executed on partitions of the 
processor set. 

• To obtain performance benefits. – For example, 
dedicating one CPU to a particular process will ensure 
maximum execution speed for that process. Restricting 
a process to run on a single CPU also prevents the 
performance cost caused by the cache invalidation that 
occurs when a process ceases to execute on one CPU 
and then recommences execution on a different CPU 
[4]. 

• To be able to respond to dynamic changes to the 
processor set. – In a parallel computing environment the 
set of processors allocated to an application may vary 
depending on the global state of the system. An 
application may be able to optimize its algorithms if it 
is informed when these changes in the processor set 
occur. 

One of the application areas where use of Ada remains 
strong is in high-integrity systems. It is important to 
anticipate how the requirements on these systems will 
change over the coming years so that we can ensure that 
Ada remains competitive. 

Currently there is limited use of general multiprocessor 
shared memory systems in Safety Critical Systems. 
Traditionally, where multiprocessors are required they are 
used in a distributed processing mode: with boards or boxes 
interconnected by communications busses, and bandwidth 
allocation, and the timing of message transfers etc carefully 
managed. This “hard” partitioning simplified certification 
and testing since one application cannot affect another 
except through well-defined interfaces. More recently, 
there has been a move towards more integrated distributed 
systems where functions are more distributed across a 
single computing infrastructure (e.g. Integrated Modular 
Avionics). The goal of this approach is to save space and 
weight, reduce wiring, provide cheaper fault toleranc and 
reduce overall costs. Partitioning here is “softer” and is 
supported by a combination of hardware and software 
techniques (e.g. memory management support to protect 



A.J.  Wel l ings and A. Burns 129  

Ada User Journal Volume 29, Number 2, June 2008 

address spaces, some form of CPU budgeting to enforce 
temporal firewalls, and TDMA on the network). 

There has been some use of shared memory modules 
between processors but access to these memory modules 
are very restricted and typically only used to coordinate 
computational activity. Where it has been necessary to use 
an SMP, only one processor has been enabled[1].  

However, there is evidence that future systems will use 
SMP. For example, the LynxSecure Separation Kernel has 
recently been announced. The following is taken verbatim 
from their web site1: 

• Optimal security and safety – the only operating system 
to support CC EAL-7 and DO-178B level A  

• Real time – time-space partitioned real-time operating 
system for superior determinism and performance 

• Virtualization technology – supports multiple 
heterogeneous operating system environments on the 
same physical hardware 

• Highly scalable – supports Symmetric MultiProcessing 
(SMP) and 64-bit addressing for high-end scalability 

• Support for open standards – supports 100% binary 
compatibility for Linux or POSIX-based software 
application to migrate to a highly robust, secure 
environment 

• Faster time to market – enables developers to begin 
early development for secure applications 

This work has been undertaken by Intel and LynuxWorks 
to demonstrate the MILS (Multiple Independent Levels of 
Security/Safety) architecture2. 

3   Review 
Although POSIX currently does not provide specific 
support for SMP systems, the issue has been raised [5]. 
POSIX.1 defines the ”Scheduling Allocation Domain” as 
the set of processors on which an individual thread can be 
scheduled at any given time. POSIX states that [6]: 

• “For application threads with scheduling allocation 
domains of size equal to one, the scheduling rules 
defined for SCHED FIFO and SCHED RR shall be 
used;” 

• “For application threads with scheduling allocation 
domains of size greater than one, the rules defined for 
SCHED FIFO, SCHED RR, and SCHED SPORADIC 
shall be used in an implementation-defined manner.” 

• “The choice of scheduling allocation domain size and 
the level of application control over scheduling 
allocation domains is implementation-defined. 
Conforming implementations may change the size of 

                                                           
1 http://www.lynuxworks.com/rtos/secure-rtos-kernel.php. 
2 See http://www.intel.com/technology/itj/2006/v10i3/5-communicat-
ions/6-safety-critical.htm. 

scheduling allocation domains and the binding of 
threads to scheduling allocation domains at any time.” 

With this approach, it is only possible to write strictly 
conforming applications with real-time scheduling 
requirements for single-processor systems. If an SMP 
platform is used, there is no portable way to specify a 
partitioning between threads and processors. 

Additional APIs have been proposed but currently these 
have not been standardized. The approach has been to set 
the initial allocation domain of a thread as part of its 
thread-creation attributes. The proposal is only draft and so 
no decision has been taken on whether to support 
dynamically changing the allocation domain. 

Since Kernel version 2.5.8, Linux has provided support for 
SMP systems [4] via the notion of CPU affinity. Each 
process in the system can have its CPU affinity set 
according to a CPU affinity mask. A process’s CPU affinity 
mask determines the set of CPUs on which it is eligible to 
run. 

   #include <sched.h> 
 
   int sched_setaffinity(pid_t pid, 
        unsigned int cpusetsize, 
        cpu_set_t *mask); 
 
   int sched_getaffinity(pid_t pid, 
        unsigned int cpusetsize, 
        cpu_set_t *mask); 
 
   void CPU_CLR(int cpu, cpu_set_t *set); 
 
   int CPU_ISSET(int cpu, cpu_set_t *set); 
 
   void CPU_SET(int cpu, cpu_set_t *set); 
 
   void CPU_ZERO(cpu_set_t *set); 
 
A CPU affinity mask is represented by the cpu_set_t 
structure, a “CPU set”, pointed to by the mask. Four 
macros are provided to manipulate CPU sets. CPU_ZERO 
clears a set. CPU_SET and CPU_CLR respectively add and 
remove a given CPU from a set. CPU_ISSET tests to see if 
a CPU is part of the set. The first available CPU on the 
system corresponds to a cpu value of 0, the next CPU 
corresponds to a cpu value of 1, and so on. A constant 
CPU_SETSIZE (1024) specifies a value one greater than 
the maximum CPU number that can be stored in a CPU set. 

sched_setaffinity sets the CPU affinity mask of the process 
whose ID is pid to the value specified by mask. 

If the process specified by pid is not currently running on 
one of the CPUs specified in mask, then that process is 
migrated to one of the CPUs specified in mask. 

sched_getaffinity allows the current mask to be obtained. 

An error is returned if the affinity bitmask mask contains 
no processors that are physically on the system, or 



130  Beyond Ada 2005: Al locat ing Tasks to Processors in SMP Systems 

Volume 29, Number 2, June 2008 Ada User Journal 

cpusetsize is smaller than the size of the affinity mask 
used by the kernel. 

The affinity mask is actually a per-thread attribute that can 
be adjusted independently for each of the threads in a 
thread group. The value returned from a call to gettid (get 
thread id) can be passed in the argument pid. 

Other operating systems provide slightly different facilities. 
For example IBM’s AIX allows a kernel thread to be bound 
to a particular processor3. Further more, the set of 
processors (and the amount of memory) allocated to a 
partition in AIX can change dynamically. In AIX a 
partition appears to be a subset of resources allocated to a 
particular subsystem. 

The Expert Group responsible of development of the Real-
Time Specification for Java (JSR 282) is also considering 
the appropriate level to support SMP systems. The proposal 
given here is compatible with their current view. 

4   Proposal 
In the general case, the following may be supported by the 
underlying platform (operating system and hardware). 

1. An application program may be allocated (by the 
operating system) the full set of the processors in 
the system or only a subset of them. An initial 
allocation is performed at the start of program 
execution time. 

2. The operating system may only support global 
scheduling of threads or it may allow threads to be 
constrained to one or more processors in the set 
allocated to the program. 

3. The operating systems may dynamically change 
the allocation of processors allocated to a program 
during the program’s execution. If it does this, it is 
done in a safe manner. 

4. Mechanisms may be provided by the operating 
system to inform the application (if the operating 
system supports task to processor allocation) or 
they may not (if it only supports global 
scheduling).  

From an Ada perspective, there are two possible 
approaches to supporting task to processor allocation: 

1. associate Ada partitions with processor sets 

2. associate individual tasks with processor sets 

We use the latter approach, as partitions in Ada are more a 
unit of distribution (or at least implies that each partition 
executes in a separate address space) and are not first class 
entities. Here, we are concerned with entities that share 
memory. Hence the mechanisms we define here are on a 
per partition basis and we allow tasks to set their processor 
affinity. 

                                                           
3 See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/-
com.ibm.aix.basetechref/doc/basetrf1/bindprocessor.htm 

The mechanisms supported by the proposed package (see 
Figure 1) have been designed with the constraints that 
should degrade if the program is executing 

1. on a single processor system 

2. under an operating system which imposes a global 
partitioning approach. 

3. under an operating system that does not change 
the processor set allocated to a program. 

The minimum functionality is for the operating system to 
allow an Ada program to determine how many processors 
are available to it. 

The API allows for systems that support the dynamic 
addition and removal of processors from the set allocated to 
the program. If an operating system does not support this 
facility then the set will not dynamically change. An 
operating system is also allowed to maintain a set of logical 
processors allocated to the program and to transparently 
change its logical to physical mapping. Again, from the 
Ada programs perspective the set has not changed. 
However, it should be noted that this may have an impact 
on the application if a) it is handling interrupts directly on 
the processor or b) if the change undermines any feasibility 
analysis assumptions. For many Ada applications this may 
not be a problem. In all of the above circumstances 
Dynamic_Set_Changes_ Supported is set to False in the 
following package. 

If the operating system does support dynamic changes to 
the processor set, the assumption is that it will inform the 
Ada program of the changes (e.g. via a signal). The Ada 
run-time system will pass this information to the 
application via the calling of a protected procedure. In this 
circumstances, Dynamic_Set_Changes_Supported is set to 
True. 

The assumption is that the application will maintain its own 
list of which tasks are mapped to which processors (logical 
or physical). It will then undertake whatever 
reconfiguration it deems appropriate.  

If a processor fails and the platform cannot transparently 
recover, the Ada program abnormally ends (with assumed 
fail stop semantics). Any recovery must be performed 
outside of the Ada program. This is because a processor 
failure can leave the application in an inconsistent state 
(e.g. with a corrupted heap) from which it is unlikely to be 
able to recover. 

The API supports the setting of the affinity tasks by the 
programmer. If the operating system doesn’t support this 
facility then all of the associated operations, raise the 
Unsupported_Operation exception, and Processor_ Affinity_ 
Supported is set to False. 

The full API is shown in the AFigure 1, annotated with the 
semantics of the subprograms. For convenience, the affinity 
mask is shown as a boolean array. In practice, a more 
efficient representation of the affinity mask would be 
needed. 



A.J.  Wel l ings and A. Burns 131  

Ada User Journal Volume 29, Number 2, June 2008 

with Ada.Task_Identification; use Ada.Task_Identification; 
package System.Processor_Elements is 

Affinity_Error : exception; 
Unsupported_Operation : exception; 
 
type Processors is range 0 .. <<implementation-defined>>; 
- - The number of processors available on this system. 
- - Each processor has a logical Id in the range. 
- - On a single processor system, the range is 0..0 
 
type Processor_Set is array(Processors) of Boolean; 
- - A set of processors. A boolean set to True, indicates 
- - that the logical processor is included in the set 
 
function Available_Processors return Processor_Set; 
- - Indicates which of the processors in the system are 
- - current available to the program. In some 
- - systems this will never change, others it may. 
 
Dynamic_Set_Changes_Supported : constant Boolean := <<implementation-defined>>; 
- - Indicates if the current system might dynamically change the 
- - Available_Processor set 
 
Processor_Affinity_Supported : constant Boolean := <<implementation-defined>>; 
- - Indicates whether the system allows a task’s affinity to be 
- - set by the programmer 
 
function Set_Default_Affinity(Processors: Processor_Set) return Processor_Set; 
- - Raises Unsupported_Operation if Processor_Affinity_Supported = False 
- - Raise Affinity_Error if Processors is incompatible with Available_Processors 
 
function Get_Default_Affinity return Processor_Set; 
- - The default affinity is the set of processors that can 
- - execute a newly created task. The initial system default is 
- - the set returned from Available_Processors, i.e. global 
- - scheduling on any of the processors available to the system. 
- - If Processor_Affinity_Supported = False, then this always 
- - returns Available_Processors 
 
function Set_Affinity(Processors : Processor_Set; TID :Task_Id := Current_Task) 
return Processor_Set; 
- - Sets the affinity for a particular task. 
- - Raises Unsupported_Operation if Processor_Affinity_Supported = False 
- - Raises Affinity_Error if Processors is in conflict with Available_Processors 
- - The new affinity is set immediately if the task is not executable. 
- - If it is current executable, 
- - the new affinity is set when the task next becomes non-executable 
- - Returns the old set allocated??? 
 
function Get_Affinity(TID :Task_Id := Current_Task) return Processor_Set; 
- - Returns the current affinity of the task 
 
type Change_Handler is access protected procedure(Processor : Processor_Set); 
 
procedure Set_Available_Processor_Changed_Handler( 
New_Handler : in Change_Handler; Old_handler : out Change_Handler); 
- - Raises Unsupported_Operation if Dynamic_Set_Changes_Supported = False 
- - If the system allows processors to be added to or subtracted 
- - from the Available_Processors, then the program can request 
- - notification of these changes via a call to a protected 
- - procedure. Here a new call of Set_Available_Processor_Changed_Handler 
- - overwrites any previous call. Whenever a change occurs, the 
- - system calls the last set handler. 

end System_Processor_Elements; 

Figure 1   Proposed API



132  Beyond Ada 2005: Al locat ing Tasks to Processors in SMP Systems 

Volume 29, Number 2, June 2008 Ada User Journal 

Open Issues 

• Defaults – The current proposal has default affinity 
arrays. In Ada, the default priority of a task is the same 
as its parent, and a pragma is defined to allow the 
priority to be set at task creation time. Hence, a pragma 
such as pragma Set_Affinity(Mask’Access) could be 
provided. 

• Dispatching Policies – Where a task can be executed on 
more than one processor it may be appropriate to define 
a new dispatching policy to obtain efficient use of 
caching. For example, the current policies could be 
extended and a new one added as follows: 

- FIFO_Within_Priorities. With this policy, a 
task can be migrated between its allocated 
processors whenever it is preempted. 

- Non_Preemptive_FIFO_Within_Priorities.With 
this policy, a task once dispatched  to a 
processor will not be migrated from that 
processor whilst it is still executable. 
Furthermore, it cannot be preempted. 

- FIFO_Within_Priorities_Without_Migration. A 
new policy, a preempted task cannot be 
migrated from the processor from which it 
was preempted whilst it is still runnable. 

- EDF_Across_Priorities. It is not clear what 
this policy means if the tasks assigned to the 
priority range can be executed on a possible 
disjoint set of processors. 

 
• Interrupt handling – Some SMPs allow the affinity of 

an IRQ to be set. Hence, certain interrupt handlers can 
only run on that processor set (e.g. on Red-hat linux 
/proc/irq/IRQ#/smp affinity specifies which target 
CPUs are permitted for a given IRQ (Interrupt ReQuest 
line) source). An alternative version of the 
Attach_Handler pragma could be provided to allow the 
mask to be set. Also a new subprogram in 
Ada.Interrupts could allow the mask to be set in the 
dynamic case. 

• Asynchronous task control – The current definition of 
Ada.Asynchronous_Task_Control seems to work 
adequately for the multiprocessor case. However, 
setting the affinity of a task to be “no processors” also 
needs to be considered in this context. In particularly 
when it is waiting at an accept/select statement. 

• Current Processor – A mechanism may be needed for a 
task to determine the actual processor upon which it is 
currently executing. Such a facility could be provided in 
the above package. 

5   Conclusions 
Historically, Ada has always taken a neutral position on 
multiprocessor implementations. On the one hand, it tries to 
define its semantics so that they are valid on a 
multiprocessor. On the other hand, it provides no direct 
support for allowing a task set to be partitioned. This paper 
has argued that multiprocessors are becoming more 
ubiquitous, and that there are advantages to be gained by 
allowing the program more control over which task 
executes where. Unfortunately the POSIX standards do not 
currently address this issue, and consequently it is difficult 
to know what mechanisms Ada can rely on existing in the 
underlying execution platform. Consequently, the paper has 
proposed an API which can gracefully degrade according to 
the facilities provided. 

Acknowledgements 
The authors gratefully acknowledge the contributions of the 
JSR 282 and JSR 302 Expert Groups where many of the 
ideas presented in this paper have been discussed (albeit 
from within a Java context). 

References 
[1] B.S. Anderson. Saftey critical systems and SMPs, 

private communication, 2006. 

[2] T.P. Baker. An analysis of fixed-priority schedulability 
on a multiprocessor. Real-Time Systems, 32 (1-2):41 – 
71, 2006. 

[3]  T.P. Baker. Global versus partitioned scheduling in 
multiprocessor systems, private communication, 2006. 

[4] Linux Manual Page. sched setaffinity(), 2006. 

[5] Michael Gonzalez Harbour. Supporting SMPs in 
POSIX, private communication, 2006. 

[6] Open Group/IEEE. The open group base specifications 
issue 6, ieee std 1003.1, 2004 edition. IEEE/1003.1 
2004 Edition, The Open Group, 2004. 

 

 

 

 



 133  

Ada User Journal Volume 29, Number 2, June 2008 

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission. 

                                                           
* This work was supported by BAE SYSTEMS 

Suggestions for Stream Based Parallel Systems 
in Ada 
M. Ward* and N. C. Audsley 
Real Time Systems Group, University of York, York, England; email: (mward,neil)@cs.york.ac.uk 

 

Abstract 
Ada provides good support for the implementation of 
dependable, real-time, control systems. However, its 
support for other styles of systems is not as good. This 
paper explores the support available for 
implementing parallel, stream based systems. The 
paper presents an implementation of an image 
manipulation system which highlights deficiencies in 
the support for such systems in the Ada language. 
Two additional semantics are proposed for addition 
to the Ada language which will provide for the needs 
of these systems. The broadcast semantic allows the 
same data to be written to several POs 
simultaneously. The guarded protected function 
semantic permits several readers to wait on an entry 
and simultaneously read data from the PO. 

1   Motivation 
The Ada language [1] has found a niche in the 
implementation of dependable real-time systems. This has 
traditionally revolved around the use of periodic tasks to 
implement control systems. However, there are other styles 
of system that would benefit from the various attributes that 
Ada offers. The main advantages of Ada are its support for 
real-time systems, and its support for concurrency within 
its semantics. This paper looks at the effects of trying to 
implement dependable, stream based, parallel systems in 
the Ada language. These have high performance demands, 
and require substantial support for efficient 
implementation. 

This paper is presented in two parts: the experience of 
using Ada to implement such a system; and suggestions to 
improve the language support for them. Section 2 presents 
an overview of the implementation of an image 
manipulation system. This covers the motivation for 
moving away from the traditional implementation method, 
through the ideal solution, and the changes required to 
allow it to be programmed in Ada, to a description of the 
final system. Section 3 contains suggestions for additions to 
the Ada language to provide for the needs of such systems 
that are not supported within the language. 

2   The Image Manipulation System 
Image manipulation systems work on video streams in real-
time. With both source and output streams, the system 

applies a transformation to the streams. These can be 
simple, pixel-based, manipulations (e.g. greyscale, sharpen, 
edge detect), or a more complex, frame-based, 
transformations (e.g. image warping or morphing). Whilst 
frame based manipulations need more buffering than pixel 
based ones, their implementation is similar. 

The traditional approach to the implementation of these 
systems uses graphical libraries implemented on a 
processor. The processor can be either a general purpose 
processor or a graphics specific processor which provides 
support for common graphical functionality. In the general 
case, these techniques provide ample performance for most 
image processing techniques. However, the use of these 
techniques for dependable systems raises a number of 
issues. 

A dependable system needs to be proved to be correct to its 
specification. This requires analysis of both the 
functionality of the system, as well as its timeliness 
(amongst other things). The traditional implementation 
techniques fall foul of these needs: 

• General purpose processors have good best case 
performance, but due to the architectural features to do 
this, have poor worst case performance. This limits the 
available processing power and restricts the overall 
system performance. 

• Specific processors generally do not have the same 
amount of evidence to prove they are correct that a 
general purpose processor will have. Though due to the 
specific instructions they have less need of architectural 
speed up features. 

• Graphics libraries are not written for dependability, 
generally they are written for speed. This makes 
proving them correct difficult, especially when their 
size is considered. 

As such, high-performance dependable image manipulation 
systems are difficult to build. This makes high resolution, 
high frame-rate image manipulations difficult to do with 
traditional implementation techniques. This produces a 
need for a different implementation technique. 

2.1   The Problem 
The problem arose from a request by BAE Systems to 
implement a dependable image manipulation system 
capable of dealing with high-resolution, high-refresh video 
streams. The system had to be dependable, preferably using 



134  Programming Execut ion-Time Servers in Ada 2005 

Volume 29, Number 2, June 2008 Ada User Journal 

Ada as limited by the SPARK [2] and Ravenscar [3] 
subsets. The use of Ada will allow reuse of existing 
software code. In addition to this, the system needed 
minimal delay on the output stream. The initial 
demonstration of this system should be an image warping 
application (e.g. correcting imperfect optics or pre-
distortion for display on shaped surfaces). 

2.2   Solution Suggestion 
A block diagram of the initial suggested solution can be 
found in figure 1. This solution relies on parallelism to 
provide the processing power to perform the 
transformations. As the manipulation is to be done on a 
frame by frame basis, the video stream is first read into a 
screen buffer. To provide for multiple accesses this buffer 
is replicated a number of times dependant on the needs of 
the application. This can be a replication of the entire 
buffer, or buffers that each contain part of the image. The 
image processing is undertaken by a number of parallel 
tasks. Each task is responsible for part of the output image, 
and can access any of the input buffers that it needs to. The 
generated image is collected in a single output buffer (since 
each pixel is only written once), and this is used to generate 
the output video stream. It is intended that the system 
would be implemented on FPGA using YHAC to generate 
the circuits from Ada source code, giving a truly parallel 
solution. 

2.3   YHAC 
The York Hardware Ada Compiler (YHAC) [4, 5, 6] 
allows Ada programs to be targeted directly to hardware. 
Using the SPARK subset and Ravenscar tasking profile 
gives a static language, which can be transformed to 
hardware. The compilation process uses template 
instantiation over the statements within the program. The 
templates build up to form a hardwired state-machine 
which controls the program flow Expressions are built up 
in a similar manner to produce expression trees. Complex 
expressions are split to allow multi-cycle evaluation. 
Concurrency is implemented using separate circuits, 
providing a truly parallel implementation. The only 
interference experienced by a task is over access to shared 
data. 

In the domain of dependable and real-time systems, 
implementation via YHAC has several advantages:  

• The produced circuit is traceable back to the source 
code. 

• The program is implemented as a circuit, meaning there 
are no hardware bottlenecks, which need no 
architectural speed-up features. 

• The final circuit can be easily analysed for resource 
usage. As the circuit is built up by template 
instantiation, analysis can be done from the source 
code. This covers both its space utilisation on the 
FPGA, and the timing of the program. 

• Provides performance equivalent to a mid-range 
processor for single threaded applications.  

 
Figure 1   Diagram of the initial solution 

• Concurrent applications get a significant performance 
boost due to parallelism. No longer sharing single 
processing resource reduces the level of inter-task 
interference. 

• Designed to give the same semantics for all code in 
hardware as software. Ignores some implementation 
techniques (e.g. suspension objects) to maintain this 
consistency. 

2.4   Solution 
The solution presented above has several problems: 

• There is no broadcast semantic in Ada. This makes 
filling multiple buffers difficult. Cannot broadcast the 
data to multiple POs, which needs more time per input 
pixel, but the timing of the video stream is fixed.  

• There is no way to simultaneously release multiple 
tasks. Whilst entry queues allow multiple releases, these 
cannot happen simultaneously (each task has to enter 
the PO in turn). The Ravenscar profile exacerbates this 
problem as it outlaws entry queues. 

• Working with video streams requires accurate timing in 
the circuit to ensure no pixels are lost. Whilst YHAC 
allows timing properties to be determined, it doesn’t 
give definite control over the timing. 

These problems require some changes to the original 
solution. By including dedicated hardware to interface with 
the video-streams, the lack of definite timing in YHAC is 
no longer an issue. This hardware can also handle some of 
the image pre-processing required, such as conversion of 
the data into RGB format, and clipping the input stream to 
the visible area. The buffers are also encapsulated within 
the hardware as this removes the need for a broadcast 
within Ada, and the structure of the compiler prevents the 
sharing of memory used in the buffers between dedicated 
hardware and Ada circuit. One advantage of encapsulating 
the buffers is that the accesses can be pipelined, improving 
their performance, allowing a smaller number of buffers to 
be used. The resulting change to the structure of the 
solution can be found in figure 2. 

2.5   Implementation 
The final system solution was implemented using a 
Celoxica RC203e development board. This board provides 
a Xilinx Virtex2 3000 FPGA as the logic resource, and a 
 



M. Ward and N. C. Audsley 135  

Ada User Journal Volume 29, Number 2, June 2008 

 
Figure 2   Diagram of the final solution 

wide selection of interfaces, including video input and 
output. The board also provides 4MB of off chip memory. 
The drivers for all the interfaces are provided in Handel-C, 
Celoxica’s C-based hardware language. 

The implementation can be divided into two parts: the 
framework, which implements the video interfacing and 
buffering; and the application, which contains the 
transformation encoding. The implementation of these parts 
is described below: 

• Framework 
As the device drivers are written in Handel-C, the 
dedicated hardware has been implemented in the same 
language. The these read in the video stream into 
multiple double buffers. Once a frame has been put into 
the buffers, the buffers are swapped, and a signal given 
to the application to start processing on the frame. 
Whilst this is happening, the next frame is being placed 
into the other set of buffers. On the output side, the 
transmission of a frame waits for the previous frame to 
finish, at which point the buffers are swapped and the 
new frame started. This double buffering introduces a 
delay of 1 frame plus the delay in the application. This 
cannot be reduced if full frame transformations are 
being dealt with. It can be seen that the maximum 
application delay is 1 frame - if it is slower, frames will 
only be part complete when transmission commences. 
There is no synchronisation between the input and 
output streams, so there is no additional cost over the 
delay of the application. 

• Application 
The example implementation is an image warper. This 
takes a good image, and distorted it to give a fish-eyed 
image. Due to restrictions on the memory capacity on 
the board, the image is restricted to a resolution of 640 
x 480. The image processing is implemented in 9 
parallel tasks, each of which is responsible for part of 
the image. There are a number of ’helper’ POs in the 
system, an interrupt handler PO for each task which 
detects the start processing signal from the framework 
and release the tasks, and a finish detector which 
provides the signal to the framework. Each task 
implements a simple transformation, which is pre-
computed to save time in the processing. The 
transformation is done in under 1/2 frame, giving a 
delay of 1 1/2 frames overall. 

The complete system took about a month to design and 
implement. The framework took most of this time, mostly 
in altering the provided sequential access buffers mostly in 
altering the provided sequential access buffers to allow the 
random access needed by the applications, and integrating 
the Handel-C and Ada circuits. The application took about 
1 day to implement, half for application coding, the other 
half generating an acceptable transform. Due to the tool-
chains needed in targeting hardware, the compile-test-
correct cycle can take a while (a small value change still 
requires a complete re-compilation and synthesis), which 
extended the time needed to generate the transform. 
Alteration of the application is easy as the transform is 
coded algorithmically within the processing tasks. 

The implemented system only uses 15% of the resources 
available on the FPGA, leaving plenty of scope for more 
complex transforms, or faster implementations. At present, 
most of the resource is taken by the framework, with the 
application itself using about 3%. By introducing more 
tasks, a faster implementation is possible, at the cost of 
higher resource usage. Alternatively extra resource can be 
used by making the transformation more complicated. If a 
lower resource usage is needed, the number of tasks can be 
reduced and the speed dropped to give a full frame’s delay. 
The main limitation to the ultimate performance of the 
system, is the buffer throughput rate, but this can be 
increased by providing more buffers, at the cost of needing 
more memory buses on the device. 

3   Language Suggestions 
In designing the IMS, there appeared a need for two extra 
bits of functionality in the Ada language: a broadcast 
semantic, and a parallel release semantic. These are 
described below: 

3.1   Broadcast 
The broadcast semantic would allow a task to write data to 
a set of protected objects in a single call.  

It is envisioned that the protected objects being targeted 
would be declared as an array of protected objects. This 
would allow existing array syntax to be used for the 
declaration of the POs, for selection of POs within the call, 
and permits a subset of the array to be selected. This gives 
the suggested syntax as shown in figure 3. 

Two alternatives are presented for the broadcast to all 
elements of the array. The first uses the reserved word all to 
indicate that the entire array is being referenced, the second 
uses a slice that covers all elements of the array. A third, 
though discounted option would use the others keyword. 
These have their advantages and disadvantages: 

All – The reserved word all in the name.all context is an 
explicit dereference of an access type. To use the same 
syntax here would overload it to be a reference to all 
elements within the array. There is also the problem of 
what happens when the array is accessed via an access 
type. However, the use of all does convey the meaning to 
the programmer that the entire array is being accessed. 



136  Programming Execut ion-Time Servers in Ada 2005 

Volume 29, Number 2, June 2008 Ada User Journal 

1    protected type po_type is 
2       procedure call(val : integer); 
3    end p type; 
4 
5    po_array : array (1..10) of po_type; 
6 
7    po_array(7).call(37);       - - single instance call 
8    po_array.all.call(25);       - - broadcast to all  

      elements of po array 
9    po_array(1..10).call(25); - - alternative broadcast  

                     to all elements of po array 
10   po_array(2..5).call(13);   - - broadcast to restricted  
             range of elements 

Figure 3 

Whole slice – Using an entire range slice maintains 
consistency in the selection of the parts of the array to use. 
There is no change in the structure of the selection, 
simplifying the compiler implementation. However, there is 
poor readability as it is not possible to tell that the entire 
array is being accessed. Similarly, if the array size is 
changed in a program, every whole slice will need to be 
changed, which does not aid program maintenance. 

Others – The others keyword could also be used to indicate 
all elements in an array. This would follow from its use in 
aggregate expressions, but does not sit well out of the 
aggregate form. In addition, it does not have the same 
readability as the other forms. 

On balance, the name.all form seems to offer the better 
balance, providing an obvious indication that the entire 
array is being accessed. 

The implementation of the broadcast semantic can fit easily 
into both concurrent and parallel system implementations. 
Within a concurrent system, the calls to the protected 
procedures in the broadcast can be done by iterating 
through the array. In a parallel system, all the accesses can 
be initiated in parallel, provided sufficient processing 
elements are available. When there aren’t enough 
processors there needs to be some iteration over the calls. 

The envisioned implementation raises a couple of issues 
with semantics of the call. Since the calls may be done 
iteratively, to preserve the atomicity of the operation, there 
are two conditions that must hold. First, the call must be 
none-blocking. As the calls are being done iteratively, a 
block will delay the later calls. Secondly, there should be 
no pre-emption between calls, that is, the entire access 
should be considered a single protected action. 

3.2   Guarded Protected Function 
A guarded protected function semantic would allow 
multiple, read-only, accesses to wait on a guard value. 
When the guard becomes true, all accesses are allowed to 
enter immediately. On completion of these accesses the 
guard is automatically reset to false. These threads must be 
read only, as multiple threads would be active in the 
protected object. This preserves the access rules for 

protected actions and effectively gives a function based 
equivalent of an entry. 

Since a guarded protected function is effectively a function 
based entry, a mix of the current function and entry call 
syntax would seem appropriate. A suggested syntax is 
shown in figure 4. The function specification follows that 
of a normal entry, with the addition of the return value type 
specification before the guard. There are two restrictions on 
the specification: the parameters to the entry can only be of 
in mode; and the guard expression must be a single boolean 
variable. The body of the entry will follow the rules of both 
functions and entries: no side-effects, that is, no change of 
PO state including the guard expression; no potentially 
blocking operations; and there must be a return statement in 
all paths through the body. The no side-effects rule 
prevents the guard from being reset inside the function, and 
hence the need for the automatic reset of the guard. 

The calling of the guarded protected function remains the 
same as any other function call. There is an issue with this 
syntax in that forcing the entry call to be a function call 
may not reflect its use.  In cases where it is used to allow 
multiple tasks to collect the same data on release, the use of 
the function call syntax is sensible. Where the only purpose 
is to effect a simultaneous release of multiple tasks (as in 
the example) the return value is not needed, but must still 
be used. Whilst this can be ignored by a compiler (a 
constant return value can be implemented as a local 
assignment after the call), it reduces the readability (and 
elegance) of the program code. However, making the call a 
procedure call would change the declaration syntax (and 
need a new reserved keyword to describe it) and require 
that out mode parameters be allowed. This is to allow data 
to be returned from the call, which also means that 
assignment to local parameters needs to be permitted, 
making the no side-effects rule harder to enforce. 

An alternative syntax to that proposed in figure 4 would 
make no change to the syntax of the language. As 
mentioned above, the guarded function is a function-based 
equivalent of an entry. By changing the concept from a 
function call to a parallel entry call, it can be implemented 
without a syntax change. Restricting an entry to have only 
out mode parameters, a simple guard variable, and no side-
effects would allow parallel access to it. The requirement 
for such an entry to be used as a parallel entry could be 
indicated using a pragma. This pragma would indicate to 
the compiler that this entry could be accessed in parallel, 
that the entry needed to be checked for conformity to the 
above requirements, and that the guard variable needed to 
be automatically reset. Whilst this does not require 
additional language syntax, it overloads the entry syntax 
with a different semantic, which could cause issues with 
readability and maintainability. 

Again, this new semantic can be implemented in both 
parallel and concurrent systems. Within a parallel system, 
the readers are allowed access as soon as the protected 
procedure that set the guard to true completes. Since they 
are only reading the data within the PO, this can be done 
 



M. Ward and N. C. Audsley 137  

Ada User Journal Volume 29, Number 2, June 2008 

1     protected type po_type is 
2        function par_entry return integer when allow_entry; 
3        procedure release; 
4     private 
5        allow_entry : boolean := false; 
6     end po_type; 
7 
8     protected body po_type is 
9        function par_entry return integer when allow_entry is 
10      begin 
11         return 0; 
12      end par_entry; 
13      procedure release is 
14      begin 
15         allow_entry := true; 
16      end release; 
17   end po_type; 
18 
19   task waiter is 
20      null : integer 
21    begin 
22      while true 
23         null := par_entry; 
24             - - do something 
25       end while; 
26    end waiter; 

Figure 4 

without violating the protection rules. Once the final reader 
has left the PO, and the protected action completes, the 
guard value is reset to false (hence the requirement that it 
be a single variable). The concurrent implementation 
cannot have all the accesses happening at once, so they 
must be allowed to happen one after the other, all within 
the same protected action, and with the completion of the 
last access causing the guard variable to be reset to false. In 
this way it behaves in similarly to a ”last one out closes the 
door” implementation on an entry queue. In both these 
implementations, the resetting of the guard occurs as a 
result of the completion of the protected action that sets it. 
This allows for a simple definition of the semantics. 

Both the suggestions for the guarded protected function 
semantic have used an automatic return of the guard to 
false after all the waiting calls have completed. This can be 
considered poor deign, as it hides some semantics of the 
call. An alternative solution would be to leave the resetting 
of the guard variable to the programmer. This can be easily 
accomplished using an entry guarded by the count attribute 
of the guarded function. Leaving this to the programmer 
will give a greater flexibility, at the cost of leaving open the 
possibility of bugs caused by programming errors. 

3.3   Other Thoughts 
Both of these suggestions are related to protected objects. 
In full Ada (as opposed to Ravenscar Ada), entries exist in 
both tasks and protected objects. This raises the question of 
whether the broadcast and parallel entry semantics be 
extended to tasks. 

It would seem that a task broadcast would be a useful 
semantic to have. This would allow data to be broadcast 
directly to tasks, rather than forcing the use of POs between 
the tasks. However, the PO broadcast semantics use 
protected procedure calls, whereas the tasks only offer 
entries. Protected procedure calls, though subject to 
possible delay, are deemed to be non-blocking. Task entries 
are, however, deemed to be blocking and therefore provide 
a different semantic. As an entry call can only proceed 
when the task allows it, the broadcast can be held up by a 
single non-responsive task. 

A task can only have a single thread of control. This makes 
a parallel entry impossible to implement as the calls would 
have to be handled serially as for a normal entry queue. In 
this case, accepting the first call would require that all were 
handled without interruption until the queue was empty. Of 
course, both of these would be outside the scope of the 
Ravenscar profile. 

Finally, it should be noted that both the parallel entry and 
the broadcast can be emulated by the other, though with 
restrictions on the effectiveness of the emulation. A 
broadcast could be programmed through the parallel entry 
semantic, with the data to be broadcast being written to the 
PO and the waiting tasks allowed to read it. This provides a 
broadcast to the waiting task, any task that was wot waiting 
when the write happened would never be able to access that 
data, and would have to wait for the next broadcast. 
Similarly, the parallel entry can be emulated by 
broadcasting to multiple POs, each of which has a task 
waiting on an entry. This would allow each task to release 
once. However, the release time could not be guaranteed - 
in the parallel entry, only those tasks waiting get released; 
in the broadcast the task will release on the broadcast, or 
when it next tries to access, rather than being forced to wait 
for the next broadcast. 

4   Conclusions 
This paper has looked at the issues surrounding using Ada 
to implement a parallel stream based system. The problems 
were illustrated through the development of an Ada based 
image manipulation system. As a result of this, two 
suggestions for new language semantics as a result of 
problems encountered were presented. 

The image manipulation system, developed to meet a set of 
industrial requirements, uses Ada to implement a stream 
based, parallel, image morpher. Whilst the implemented 
solution provides a framework for efficient image 
processing, it highlighted two shortcomings in the Ada 
language. There is no facility for easily splitting an input 
stream into several buffers, nor is there the ability to 
simultaneously release multiple tasks. 

From the problems encountered in the implementation of 
the system, two new semantics have been proposed. The 
broadcast semantic will allow the same data to be written to 
multiple protected objects at the same time. The guarded 
protected function semantic provides a function based 
equivalent of an entry with the ability to release multiple 



138  Programming Execut ion-Time Servers in Ada 2005 

Volume 29, Number 2, June 2008 Ada User Journal 

tasks simultaneously. Together, these would provide better 
support for parallel streaming applications. 

References 
[1] Ada 95 Reference Manual. Intermetrics, January 1995. 

[2] J. Barnes. High Integrity Ada: The SPARK Approach. 
Addison-Wesley, 1997. 

[3] A. Burns, B. Dobbing, and G. Romanski. The 
Ravenscar Tasking Profile for High Integrity Real-
Time Programs. In Reliable Software Technologies, 
Proceedings of the Ada Europe Conference, Uppsala,  
 

volume 1411, pages 263–275. LNCS, Springer-Verlag, 
1998. 

[4] M. Ward and N. C. Audsley. Hardware Compilation of 
Sequential Ada. In Proceedings of CASES 2001, pages 
99–107, 2001. 

[5] M. Ward and N. C. Audsley. Hardware Implemanation 
of the Ravenscar Tasking Profile. In Proceedings of 
CASES 2002, pages 59–68, 2002. 

[6] M. Ward and N. C. Audsley. Hardware 
Implementation of Programming Languages for Real-
Time. In Proceedings of RTAS 2002, pages 276–285, 
2002. 

 



140  

Volume 29, Number 2, June 2008 Ada User Journal 

Ada Gems 
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and 
related files, can be found at http://www.adacore.com/category/developers-center/gems/. 

 

Ada Gem #19 — XML streaming of 
Ada objects 
Pascal Obry, EDF R&D 
Date: 26 November 2007 
 
Let’s get started… 
Since Ada 95 it has been possible to stream any object. Using 
'Input/'Output or 'Read/'Write attributes, any object (tagged or 
not) can be streamed using a binary representation. This means 
that objects can be written into a file or sent over a socket, for 
example. 
Let’s take a simple object hierarchy to illustrate this feature. 
We’ll have a Point (x and y coordinate) and a Pixel (a Point 
with a color). 

   package Object is 
 
      type Point is tagged record 
         X, Y : Float; 
      end record; 
 
      type Color_Name is (Red, Green, Blue); 
 
      type Pixel is new Point with record 
         Color : Color_Name; 
      end record; 
   end Object; 

When writing a Point or a Pixel the first bytes in the stream are 
the tag external representation, and then the object’s attribute 
values. 

   declare 
      File : File_Type; 
      P    : Point'Class := ...; 
   begin 
      Create (File, Out_File, "streamed.data"); 
      Point'Class'Output (Text_Streams.Stream (File), P); 
      Close (File); 
   end; 

The stream will contain something like (where is the character 
hexadecimal code): 

<01> <00> <00> <00> <0C> <00> <00> <00> O B J E C T . 
P I X E L <9A> <99> <99> <3f> <66> <66> <06> <41> 
<00> 

The tag is an important part as it will be used to be able to 
create the proper object instance out of the stream. 

   P := constant Point'Class := 
          Point'Class'Input (Text_Streams.Stream (File)); 

All is well! No, there is a little missing feature. There is no 
way to control how the external tag is streamed. In fact, it is a 
string and the bounds (lower and upper) are first output into 
the stream. These bounds are plain numbers written in binary. 
In the above example we have the four first bytes for lower 
bound (equal to 1) and the four following bytes for the upper 
bound (equal to 12) then the twelve bytes for the external tag 
full name OBJECT.PIXEL. 
In Ada 95 there is no way to stream a textual representation of 
objects! 
But the good news is… Ada 2005 can do this. Ada 2005 goes 
further by adding support to control finely the external 
representation of any objects. This means that it is now 
possible to create a textual representation of such an object 
using the 'Class'Input and 'Class'Output attributes. 
Let’s put in place the missing pieces. 
First the 'Read and 'Write attributes to output or read the XML 
representation of a Point or a Pixel. 

   with Ada.Streams; 
 
   package Object is 
 
      type Point is ... 
 
      procedure Read (S : access Root_Stream_Type'Class;  
 O : out Point); 
         for Point'Read use Read; 
 
      procedure Write (S : access Root_Stream_Type'Class;  
 O : in Point); 
         for Point'Write use Write; 
 
      type Pixel is ... 
 
      procedure Read (S : access Root_Stream_Type'Class;  
 O : out Pixel); 
         for Pixel'Read use Read; 
 
      procedure Write (S : access Root_Stream_Type'Class;  
 O : in Pixel); 
         for Pixel'Write use Write; 

The Read routines could be implemented using a full featured 
XML parser like XML/Ada. For conciseness, we will use two 
very simple XML oriented routines: 

   procedure Skip_Tag 
      (S      : access Ada.Streams.Root_Stream_Type'Class; 
      Ending : in     Character := '>'); 
   - -  Skip the next tag on stream S, returns  
       when Ending is found 
 
 



Ada Gems 141  

Ada User Journal Volume 29, Number 2, June 2008 

   function Get_Value 
     (S : access Ada.Streams.Root_Stream_Type'Class)     
      return String; 
   - -  Returns the current value read on stream S 

Using those routines the 'Read and 'Write implementation are 
straightforward. Here is the implementation for a Point: 

   procedure Read (S : access Root_Stream_Type'Class;  
  O : out Point) is 

   begin 
      Skip_Tag (S); O.X := Float'Value (Get_Value (S)); 
      Skip_Tag (S, ASCII.LF); 
      Skip_Tag (S); O.Y := Float'Value (Get_Value (S));  
      Skip_Tag (S, ASCII.LF); 
   end Read; 
 
   procedure Write (S : access Root_Stream_Type'Class;  

  O : in Point) is 
   begin 
      String'Write (S, "   <x>"  & Float'Image (O.X) &  
                           "</x>" & ASCII.LF); 
      String'Write (S, "   <y>"  & Float'Image (O.Y) &  
                           "</y>" & ASCII.LF); 
   end Write; 

The last missing piece is the handing of the tag. We want the 
tag to be simply: <point> and <pixel> (no bound and just the 
name of the object instead of the full name prefixed by the 
enclosing package name). To set the proper tag name we use 
the External_Tag attribute: 

   package Object is 
      type Point is ... 
      for Point'External_Tag use "point"; 
 
      type Pixel is ... 
      for Pixel'External_Tag use "pixel"; 

Then we want to plug in our own XML oriented 
implementation of the 'Class'Input and 'Class'Output 
attributes. This is necessary only for the root type Point: 

   package Object is 
 
      type Point is ... 
      for Point'External_Tag use "point"; 
 
      procedure Class_Output 
            (S : access Ada.Streams.Root_Stream_Type'Class;  
             O : in Point'Class); 
      for Point'Class'Output use Class_Output; 
 
      function Class_Input 
            (S : access Ada.Streams.Root_Stream_Type'Class)  
         return Point'Class; 
      for Point'Class'Input use Class_Input; 

The Class_Output routine must output the opening XML tag, 
output the object itself and then the closing XML tag. Quite 
simple to do; the following is the commented code: 

   procedure Class_Output 
          (S : access Ada.Streams.Root_Stream_Type'Class;  
           O : in Point'Class) is 

   begin 
      - -  Write the opening tag <tag_name> 
      Character'Write (S, '<'); 
      String'Write (S, Ada.Tags.External_Tag (O'Tag)); 
      String'Write (S, '>' & ASCII.LF); 
 
      - -  Write the object, dispatching call to Point/Pixel'Write 
      Point'Output (S, O); 
 
      - -  Write the closing tag </tag_name> 
      String'Write (S, "</"); 
      String'Write (S, Ada.Tags.External_Tag (O'Tag)); 
      String'Write (S, '>' & ASCII.LF); 
   end Class_Output; 
 
   function Class_Input 
            (S : access Ada.Streams.Root_Stream_Type'Class)      
      return Point'Class  
   is 
      function Dispatching_Input is new  
 Ada.Tags.Generic_Dispatching_Constructor 

     (T => Point, 
                     Parameters  =>  
                     Ada.Streams.Root_Stream_Type'Class, 
                     Constructor => Point'Input); 
         input     : String (1 .. 20); 
         input_Len : Natural := 0; 
   begin 
      - -  On the stream we have <tag_name>,  
      - - we want to get "tag_name" 
      - -  Read first character, must be '<' 
      Character'Read (S, Input (1)); 
      if Input (1) /= '<' then 
         raise Ada.Tags.Tag_Error with "Starting with " &  
                  Input (1); 
      end if; 
 
      - -  Read tag 
      Input_Len := 0; 
      for I in Input'range loop 
         Character'Read (S, Input (I)); 
         Input_Len := I; 
         exit when Input (I) = '>'; 
      end loop; 
 
      - -  Check ending tag 
      if Input (Input_Len) /= '>' 
        or else Input_Len <= 1 
      then - - Empty tag 
         raise Ada.Tags.Tag_Error with "empty tag"; 
      else 
         Input_Len := Input_Len - 1; 
      end if; 
 
      declare 
         External_Tag : constant String :=  
               Input (1 .. Input_Len); 
         O : constant Point'Class :=  
                   Dispatching_Input ( 
                   Ada.Tags.Internal_Tag (External_Tag), S); 



142  Ada Gems 

Volume 29, Number 2, June 2008 Ada User Journal 

         - -  Dispatches to appropriate  
         - - Point/Pixel'Input depending on 
         - -  the tag name. 
      begin 
         - -  Skip closing object tag 
         Skip_Tag (S, ASCII.LF); 
         return O; 
      end; 
   end Class_Input; 

At this point the code shown at the start will still work without 
modification. The fact that the object is streamed using an 
XML representation is transparent to the users of the Object 
package. 
As a final note, for conciseness, the code as-is does not output 
conformant XML documents as there is no XML header and 
there are multiple root nodes. This is left as an exercise to the 
reader. 

Ada Gem #21: How to parse an  
XML text 
Emmanuel Briot, AdaCore 
Date: 10 December 2007 
 
Abstract:  The World Wide Web Consortium (W3C) develops 
various specifications around the XML file format. In 
particular, it specifies various APIs to load, process and write 
an XML file. Although these APIs are not specified for Ada, 
XML/Ada tries to conform as closely as possible to them. This 
gem describes how to use XML/Ada to parse an XML file.  
 
Let’s get started… 
There are two main APIs to parse an XML file. One (the 
Document Object Model, DOM) reads the file and generates a 
tree in memory representing the whole document. Typically, 
because of the amount of operations mandated by the 
specifications, this tree is several times larger than the 
document itself, and thus depending on the amount of memory 
on your machine, it might limit the size of documents your 
application can read. On the other hand, it provides a lot of 
flexibility in the handling of these trees. 
The other method (SAX) is based on callbacks, which are 
called when various constructs are seen while reading the 
XML file. This requires almost no memory, but makes the 
processing of the XML file additional work for your 
application. It is however very well suited when you want to 
store the XML data in an application-specific data structure. In 
fact, XML/Ada itself uses SAX to build the DOM tree. 
In both cases, XML/Ada needs an object (an “input_source”) 
to read the actual XML data. This data can be found either on 
the disk, in memory, read from a socket, or any other possible 
source you can imagine. XML/Ada is carefully constructed so 
that it doesn’t require the whole document in memory, and can 
just read one character at a time, which makes it adaptable to 
any possible input. This gem does not cover how to write your 
own input streams. This is in general quite easy, the only 
difficulty is to properly convert the bytes you are reading to 
unicode characters. 
Here is a small example on using the DOM API to create a 
tree in memory. In this example, we are assuming the most 

frequent case of an XML file on the disk, and therefore we are 
using a File_Input as the input. The second object we need is 
the XML parser itself. When we want to create a DOM tree, 
we need to use a Tree_Reader, or a type derived from it. As 
we will see later, this is in fact a SAX parser (that is an event-
based XML parser) whose callbacks are implemented to create 
the DOM tree. You can of course override its primitive 
operations if you want to do additional things (like verbose 
output, redirect error messages, pre-processing of the XML 
nodes,…). 

   with Input_Sources.File;  use Input_Sources.File; 
   with DOM.Readers;         use DOM.Readers; 
   with DOM.Core;            use DOM.Core; 
 
   procedure Read_XML_File (Filename : String) is 
     Input  : File_Input; 
     Reader : Tree_Reader; 
     Doc    : Document; 
   begin 
     Open (Filename, Input); 
     Parse (Reader, Input); 
     Close (Input); 
      
     Doc := Get_Tree (Reader); 
     ... 
     Free (Reader); 
   end Read_XML_File; 

The first three lines read the file into memory. The fourth line 
gets a handle on the tree itself, which you can then manipulate 
with the various subprograms found in the DOM.Core.* 
packages (and that are mandated by the W3C specifications). 
When we are done, we simply free the memory. 
There are various settings that can be set on the reader before 
we actually parse the XML stream, for instance whether it 
should support XML namespaces, whether we want to validate 
the input, and so on. 
As we mentioned before, there exists a second, lower-level 
API called SAX which is event-based. It defines one tagged 
type, a Reader, which has several primitive operations that act 
as callbacks. You can override the ones you want. In general, 
the result of calling them is to create an in-memory 
representation of the XML input (which is what the DOM 
interface does, really). 
The following short example only detects the start of elements 
in the XML file, and prints their name on standard output. It 
has little interest in real applications, but is a good framework 
on which to base your own SAX parsers. 

   with Sax.Attributes; 
   with Sax.Readers;     use Sax.Readers; 
   with Unicode.CES;     use Unicode.CES; 
 
   package Debug_Parsers is 
      type Debug_Reader is new Reader with null record; 
      overriding procedure Start_Element 
        (Handler       : in out Debug_Reader; 
        Namespace_URI : Unicode.CES.Byte_Sequence := "";    
         Local_Name    : Unicode.CES.Byte_Sequence := ""; 
         Qname         : Unicode.CES.Byte_Sequence := ""; 
         Atts          : Sax.Attributes.Attributes'Class); 
   end Debug_Parsers; 



Ada Gems 143  

Ada User Journal Volume 29, Number 2, June 2008 

Here is the implementation of the Start_Element callback. We 
are assuming, in this simple example, that the console on 
which we are printing the output can accept unicode characters 
(in fact, all Put_Line does is to print a series of bytes, which 
are interpreted by the console to do the proper rendering of 
unicode glyphs). 

   with Ada.Text_IO;   use Ada.Text_IO; 
 
   package body Debug_Parsers is 
      procedure Start_Element 
        (Handler       : in out Debug_Reader; 
        Namespace_URI : Unicode.CES.Byte_Sequence := ""; 
         Local_Name    : Unicode.CES.Byte_Sequence := ""; 
         Qname         : Unicode.CES.Byte_Sequence := ""; 
         Atts          : Sax.Attributes.Attributes'Class) 
      is 
      begin 
         Put_Line ("Found start of " & Qname); 
      end Start_Element; 
   end Debug_Parsers; 

And finally here is a short example of a program using that 
parser. Notice how it closely mimics what we did for DOM 
(which is not so surprising, since, once again, the DOM parser 
itself is really a special implementation of a SAX parser). 

   with Input_Sources.File;  use Input_Sources.File; 
   with Debug_Parsers;       use Debug_Parsers; 
 
   procedure Test_Sax is 
     Input  : File_Input; 
     Reader : Debug_Reader; 
   begin 
     Open (Filename, Input); 
     Parse (Reader, Input); 
     Close (Input); 
   end Test_Sax; 

 

 



144 

Volume 29, Number 2, June 2008 Ada User Journal 

National Ada Organizations 
 

Ada-Belgium 
attn. Dirk Craeynest 
c/o K.U. Leuven 
Dept. of Computer Science 
Celestijnenlaan 200-A 
B-3001 Leuven (Heverlee) 
Belgium 
Email: Dirk.Craeynest@cs.kuleuven.be 
URL: www.cs.kuleuven.be/~dirk/ada-belgium 
 

Ada in Denmark 
attn. Jørgen Bundgaard 
Email:  Info@Ada-DK.org 
URL: Ada-DK.org 
 

Ada-Deutschland 
Dr. Peter Dencker 
Steinäckerstr. 25  
D-76275 Ettlingen-Spessartt 
Germany 
Email: dencker@web.de 
URL: ada-deutschland.de 
 

Ada-France 
Association Ada-France 
c/o Jérôme Hugues 
Département Informatique et Réseau 
École Nationale Supérieure des Télécomunications 
46, rue Barrault 
75634 Paris Cedex 135 
France 
Email: bureau@ada-france.org 
URL: www.ada-france.org 
 

Ada-Spain 
attn. José Javier Gutiérrez 
Ada-Spain  
P.O.Box 50.403  
28080-Madrid 
Spain  
Phone: +34-942-201-394 
Fax: +34-942-201-402 
Email: gutierjj@unican.es 
URL: www.adaspain.org 
 

Ada in Sweden 
attn. Rei Stråhle 
Saab Systems 
S:t Olofsgatan 9A 
SE-753 21 Uppsala 
Sweden 
Phone: +46 73 437 7124 
Fax:       +46 85 808 7260 
Email: Rei.Strahle@saabgroup.com 
URL:  www.ada-i-sverige.se 
 

Ada in Switzerland 
attn. Ahlan Marriott 
White Elephant GmbH 
Postfach 327 
8450 Andelfingen 
Switzerland 
Phone:  +41 52 624 2939 
e-mail:   ada@white-elephant.ch 
URL: www.ada-switzerland.ch 
 

 


	Contents
	Editorial
	News
	Conference Calendar
	Forthcoming Events
	13th International Real-Time Ada Workshop
	Session: Implementation Experience with Ada 2005
	Implementing the New Ada 2005 Real-Time Features on a Bare Board Kernel
	Operating System Support for Execution Time Budgets for Thread Groups
	Session: Beyond Ada 2005
	Beyond Ada 2005: Allocating Tasks to Processors in SMP Systems
	Suggestions for Stream Based Parallel Systems in Ada
	Ada Gems



