

Ada User Journal Volume 29, Number 3, September 2008

ADA
USER
JOURNAL

Volume 29
Number 3

September 2008

Contents
Page

Editorial Policy for Ada User Journal 146

Editorial 147

News 149

Conference Calendar 171

Forthcoming Events 178

Proceedings of the 13th International Real-Time Ada Workshop

 B. Brosgol, M. Aldea
“Session: Ada and Other Standards” 186

 S. Michell
“Interfacing Ada to Operating Systems” 188

 J. A. de la Puente, S. Urueña
“Session: Conclusions and Plans for next IRTAW” 192

Proceedings of the “Ada and Software Engineering Education” Session of Ada-Europe 2008

 J. Real, L. M. Pinho
“Session Report: Ada and Software Engineering Education” 196

 E. Schonberg, R. Dewar
“A Principled Approach to Software Engineering Education, or Java Considered Harmful” 200

 J. W. McCormick
“Ada and Software Engineering Education: One Professor's Experiences” 203

 J.-P. Rosen
“Is Ada Education Important?” 208

 C. Brandon
“Use of Ada in a Student CubeSat Project” 213

Ada Gems 217

Ada-Europe Associate Members (National Ada Organizations) 220

Ada-Europe 2008 Sponsors Inside Back Cover

146

Volume 29, Number 3, September 2008 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 147

Ada User Journal Volume 29, Number 3, September 2008

Editorial
This September issue of the Ada User Journal was indeed the most demanding, and unfortunately also the most delayed, I had
so far in my (very) short term as the Journal’s Editor. Nevertheless, I am sure that the readers will understand and apologise
us for its late appearance, considering the worth of its contents.

First, the issue finalizes the publication of the Proceedings of the 13th International Real-Time Ada Workshop (IRTAW
2007), which started to be published in the Ada User Journal last December, almost one year ago. In the last technical session
of the workshop the participants analysed the relation of Ada with other standards, particularly POSIX, as proposed in a paper
by Stephen Michell, of Maurya Software, Canada. The last session was dedicated to the analysis of conclusions and open
issues coming from the discussions in the workshop, and to future plans for the workshop itself.

Whilst closing the subject of IRTAW 2007, we start to publish material coming from the Ada-Europe 2008 conference. In
this issue the reader will find the proceedings of the “Ada and Software Engineering Education” session of the conference.
This special session had the objective of discussing the role of programming languages, and of Ada in particular, in the
software engineering curriculum, and consisted in the presentation of four position papers and a debate.

In the first paper of these proceedings, the reader will find the report of the session, with a summary of the presentations and
the main issues introduced during the debate. Afterwards, the first position paper is by Ed Schonberg and Robert Dewar, from
the New York University, USA, providing their analysis on the use of Java as the first programming language, arguing that
Ada and C++ are superior for introductory computer science courses. The following paper, by John McCormick from the
University of Northern Iowa, USA, presents an interesting experience of students implementing software to control a railroad
model and the gains which were obtained by switching from C to Ada. The third position paper is by Jean Pierre Rosen, of
Adalog, France, providing an assessment of the importance of education for software engineering in general. Finally, the
session closes with a paper by Carl Brandon, of the Vermont Technical College, USA, describing the use of Ada to
implement the software for a pico-satellite platform.

We should acknowledge the effort of the organizers and the participants of the session on supporting this concern, which is of
particular importance for the future of Ada. There is also a note on the summary of the session on the importance of
introducing software reliability in the curricula of computer science and related courses, something that we should all
campaign for.

Finally, the Ada Gems section provides two gems on Changing Data Representation, by Robert Dewar. And, as usual, we
have the News, Calendar and Forthcoming Events sections, providing the readers with a quick look to the world of Ada.

Luís Miguel Pinho

Porto
September 2008

Email: lmp@isep.ipp.pt

 149

Ada User Journal Volume 29, Number 3, September 2008

News
Santiago Urueña
Technical University of Madrid (UPM). Email: Santiago.Uruena@upm.es

Contents

Ada-related Organizations 149
Ada-related Events 149
Ada and Education 151
Ada-related Resources 151
Ada-related Tools 151
Ada-related Products 157
Ada and GNU/Linux 160
References to Publications 161
Ada Inside 162
Ada in Context 164

Ada-related
Organizations
ARA — ACATS 3.0E
From: Ada Information Clearinghouse
Date: July 22, 2008
Subject: Ada Conformity Assessment Test

Suite
URL: http://www.adaic.com/whatsnew.html
ACATS Modification List 3.0E and the
associated test files have been posted.
[See also “ARA — ACATS 3.0D” in AUJ
29-2 (Jun 2008), p.77. —su]

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—su]

Oct 30 — SIGAda Awards
From: John McCormick

<mccormick@cs.uni.edu>
Date: Mon, 18 Aug 2008 10:00:07 −0700

(PDT)
Subject: Call for SIGAda Award

Nominations
Newsgroups: comp.lang.ada
Dear Members of the Ada Community:
On Thursday, 30 October 2008, the 2008
SIGAda Awards will be presented in a
special morning plenary session at the
SIGAda 2008 conference in Portland,
Oregon. (See http://www.acm.org/sigada/
conf/sigada2008/ if you have somehow
missed announcements of this year's
annual SIGAda international conference.)

We welcome your nominations of
deserving recipients.
The ACM SIGAda Awards recognize
individuals and organizations who have
made outstanding contributions to the
Ada community and to SIGAda. The two
categories of awards are:
(1) Outstanding Ada Community
Contribution Award — For broad, lasting
contributions to Ada technology & usage.
(2) ACM SIGAda Distinguished Service
Award — For exceptional contributions
to SIGAda activities & products.
Please consider who should be nominated
this year. You may nominate a person for
either or both awards, and as many people
as you think worthy. One or more awards
will be made in both categories.
Please visit http://www.acm.org/sigada/
exec/awards/awards.html#Recipients and
peruse the names of past winners. This
may help you think about the measure of
accomplishment that is appropriate. You
may be aware of people who have made
substantial contributions that have not yet
been acknowledged. Nominate them.
Consider what you believe to be the best
developments in the Ada community or
SIGAda in the last year; the last 5 years;
since Ada's inception. Who was
responsible? Nominate them.
Please note that anyone who has received
either of the two awards remains eligible
for the other. Perhaps there is an
outstanding SIGAda volunteer who has
won our Distinguished Service Award
and who has also made important
contributions to the advance of Ada
technology, or visa versa. Nominate him
or her!
The nomination form is available on the
SIGAda website at http://www.acm.org/
sigada/exec/awards/awards.html. (You
need to visit this website to see past award
winners' names, and also a picture of the
statuette which is the award among other
things, so you don't nominate someone
who has already won an award in a
category.) Submit your nomination as an
e-mail or e-mail attachment to SIGAda-
Award@acm.org.
The ACM SIGAda Awards Committee,
comprised of volunteers who have
previously won an award, will determine
this year's recipients from your
nominations.
Call our attention to the people who are
most deserving, by nominating them.
And please nominate by SEPTEMBER
21!

Your participation in the nominations
process will help maintain the prestige
and honor of these awards.
Thank you,
John McCormick
Chair ACM SIGAda
[See also “Nov 7 — SIGAda Awards” in
AUJ 28-4 (Dec 2007), p.201. —su]

Jun 8–12 — Ada-Europe
2009
From: Dirk Craeynest

<Dirk.Craeynest@cs.kuleuven.be>
Date: Sat, 28 Jun 2008 22:05:49 +0200

(CEST)
Subject: CFP 14th Conf. Reliable Software

Technologies, Ada-Europe 2009
Organization: Ada-Europe, c/o Dept. of

Computer Science, K.U.Leuven
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc
Summary: Start now to think about your

submissions!
Keywords: Conference,tutorials, ind-

ustry,reliability,Ada,LNCS,Brest,France
 PRELIMINARY CALL FOR PAPERS

14th International Conference on
Reliable Software Technologies —

Ada-Europe 2009
 8 – 12 June 2009, Brest, France

http://www.ada-europe.org/
conference2009.html

 Organized by Ada-Europe,
 in cooperation with ACM SIGAda
 (approval pending)
Ada-Europe organizes annual
international conferences since the early
80's. This is the 14th event in the
Reliable Software Technologies series,
previous ones being held at Montreux,
Switzerland ('96), London, UK ('97),
Uppsala, Sweden ('98), Santander, Spain
('99), Potsdam, Germany ('00), Leuven,
Belgium ('01), Vienna, Austria ('02),
Toulouse, France ('03), Palma de
Mallorca, Spain ('04), York, UK ('05),
Porto, Portugal ('06), Geneva, Switzerland
('07), Venice, Italy ('08).
General Information
The 14th International Conference on
Reliable Software Technologies (Ada-
Europe 2009) will take place in Brest,
France. Following its traditional style, the
conference will span a full week,
including a three-day technical program
and vendor exhibitions from Tuesday to
Thursday, along with parallel tutorials and
workshops on Monday and Friday.

150 Ada-related Events

Volume 29, Number 3, September 2008 Ada User Journal

01 December 2008: Submission of regular
papers, tutorial and workshop proposals
12 January 2009: Submission of
industrial presentation proposals
09 February 2009: Notification to all
authors
09 March 2009: Camera-ready version
of regular papers required
11 May 2009: Industrial presentations,
tutorial and workshop material required
08–12 June 2009: Conference
Topics
The conference has successfully
established itself as an international forum
for providers, practitioners and
researchers into reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development and maintenance of long-
lived, high-quality software systems for a
variety of application domains. The
program will allow ample time for
keynotes, Q&A sessions, panel
discussions and social events. Participants
will include practitioners and researchers
in representation from industry, academia
and government organizations active in
the promotion and development of
reliable software technologies. To mark
the completion of the Ada language
standard revision process, contributions
that present and discuss the potential of
the revised language are particularly
sought after.
Prospective contributions should address
the topics of interest to the conference,
which include but are not limited to those
listed below:
- Methods and Techniques for Software

Development and Maintenance:
Requirements Engineering, Object-
Oriented Technologies, Model-driven
Architecture and Engineering, Formal
Methods, Re-engineering and Reverse
Engineering, Reuse, Software
Management Issues, Model Engineering

- Software Architectures: Design
Patterns, Frameworks, Architecture-
Centered Development, Component and
Class Libraries, Component-based
Design

- Enabling Technologies: Software
Development Environments and Project
Browsers, Compilers, Debuggers, Run-
time Systems, Middleware Components

- Software Quality: Quality Management
and Assurance, Risk Analysis, Program
Analysis, Verification, Validation,
Testing of Software Systems

- Theory and Practice of High-integrity
Systems: Real-Time, Distribution, Fault
Tolerance, Security, Reliability, Trust
and Safety

- Embedded Systems: Architecture
Modeling, Co-Design, Reliability and
Performance Analysis

- Mainstream and Emerging
Applications: Multimedia and
Communications, Manufacturing,
Robotics, Avionics, Space, Health Care,
Transportation

- Ada Language and Technology:
Programming Techniques, Object-
Orientation, Concurrent and Distributed
Programming, Evaluation &
Comparative Assessments, Critical
Review of Language Features and
Enhancements, Novel Support
Technology, HW/SW Platforms

- Experience Reports: Case Studies and
Comparative Assessments, Management
Approaches, Qualitative and
Quantitative Metrics

- Ada and Education: Where does Ada
stand in the software engineering
curriculum; how learning Ada serves
the curriculum; what it takes to form a
fluent Ada user; lessons learned on
Education and Training Activities with
bearing on any of the conference topics.

Call for Regular Papers
Authors of regular papers which are to
undergo peer review for acceptance are
invited to submit original contributions.
Paper submissions shall be in English,
complete and not exceeding 14 LNCS-
style pages in length. Authors should
submit their work via the Web submission
system accessible from the Conference
Home page. The format for submission is
solely PDF. Should you have problems to
comply with format and submission
requirements, please contact the Program
Chair.
Proceedings
The authors of accepted regular papers
shall prepare camera-ready submissions in
full conformance with the LNCS style,
not exceeding 14 pages and strictly by 9
March 2009. For format and style
guidelines authors should refer to:
http://www.springer.de/comp/lncs/authors
.html. Failure to comply and to register
for the conference will prevent the paper
from appearing in the proceedings. The
conference proceedings will be published
in the Lecture Notes in Computer Science
(LNCS) series by Springer Verlag, and
will be available at the start of the
conference.
Awards
Ada-Europe will offer honorary awards
for the best regular paper and the best
presentation.
Call for Industrial Presentations
The conference also seeks industrial
presentations which may deliver value
and insight, but do not fit the selection
process for regular papers. Authors of
industrial presentations are invited to
submit a short overview (at least 1 page in
size) of the proposed presentation to the
Conference Chair by 12 January 2009.
The Industrial Program Committee will

review the proposals and make the
selection. The authors of selected
presentations shall prepare a final short
abstract and submit it to the Conference
Chair by 11 May 2009, aiming at a 20-
minute talk. The authors of accepted
presentations will be invited to derive
articles from them for publication in the
Ada User Journal, which will host the
proceedings of the Industrial Program of
the Conference.
Call for Tutorials
Tutorials should address subjects that fall
within the scope of the conference and
may be proposed as either half- or full-
day events. Proposals should include a
title, an abstract, a description of the
topic, a detailed outline of the
presentation, a description of the
presenter's lecturing expertise in general
and with the proposed topic in particular,
the proposed duration (half day or full
day), the intended level of the tutorial
(introductory, intermediate, or advanced),
the recommended audience experience
and background, and a statement of the
reasons for attending. Proposals should
be submitted by e-mail to the Tutorial
Chair. The providers of full-day tutorials
will receive a complimentary conference
registration as well as a fee for every
paying participant in excess of 5; for half-
day tutorials, these benefits will be
accordingly halved. The Ada User
Journal will offer space for the
publication of summaries of the accepted
tutorials.
Call for Workshops
Workshops on themes that fall within the
conference scope may be proposed.
Proposals may be submitted for half- or
full-day events, to be scheduled on either
ends of the conference week. Workshop
proposals should be submitted to the
Conference Chair. The workshop
organizer shall also commit to preparing
proceedings for timely publication in the
Ada User Journal.
Call for Exhibitions
Commercial exhibitions will span the
three days of the main conference.
Vendors and providers of software
products and services should contact the
Exhibition Chair for information and for
allowing suitable planning of the
exhibition space and time.
Grants for Students
A limited number of sponsored grants is
expected to be available for students who
would like to attend the conference or
tutorials. Contact the Conference Chair
for details.
[See also “Jun 16–20 — Ada-Europe
2008” in AUJ 29-2 (Jun 2008), p.79.
—su]

Ada-related Tools 151

Ada User Journal Volume 29, Number 3, September 2008

Ada and Education
Webminar: GNATbench
InSight
From: AdaCore Developer Center
Date: Wednesday June 11, 2008
Subject: GNATbench 2.1 InSight webinar
RSS: http://www.adacore.com/2008/06/11/

gnatbench-21-insight-webinar-2/
There are still places left for the latest
GNAT Pro InSight webinar taking place
next Tuesday (June 17). This one will
feature GNATbench 2.1.0. This release
introduces many new features including
project management and presentation
enhancements, language-sensitive editor
enhancements, additional wizards, builder
enhancements, and source code
navigation enhancements. This webinar
will describe and demo some of the new
features introduced in 2.1.0. As always,
we will allow a question and answer
session at the end enabling you to talk
directly with the designers of
GNATbench.
This webinar will appeal to Ada
developers that are using, or are interested
in using, GNAT Pro and the Eclipse
development environment in their
projects. To register for this event, please
visit: www.adacore.com/home/gnatpro/
webinars
From: AdaCore Developer Center
Date: Wednesday July 2, 2008
Subject: GNATbench 2.1 InSight webinar

available
RSS: http://www.adacore.com/2008/07/02/

gnatbench-21-insight-webinar-available/
The recently recorded GNATbench 2.1
InSight webinar is now available for
viewing. Please visit www.adacore.com/
home/gnatpro/webinars to watch it.
[See also “Webminar: GPS InSight” in
AUJ 29-2 (Jun 2007), p.81. —su]

Ada-related Resources
AdaCommons — Ada wiki
From: Jerry <lanceboyle@qwest.net>
Date: Fri, 18 Jul 2008 15:32:09 −0700

(PDT)
Subject: New Ada wiki
Newsgroups: comp.lang.ada
Someone (perhaps someone on this list)
has started an Ada wiki.
http://adacommons.org/
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Sat, 19 Jul 2008 11:17:46 +0300
Subject: Re: New Ada wiki
Newsgroups: comp.lang.ada
AdaCommons was started by #Ada IRC
channel (at Freenode network) people. If

you have access to an IRC client, feel free
to join #AdaCommons channel (also at
Freenode), which is meant for
AdaCommons related discussions.
Or just start editing the wiki and use the
talk wiki pages for discussions. To
prevent spam, you are needed to login
before you can edit pages. (As a bonus
you can be relatively anonymous since
only your account name is shown.)
[See also “Ada wikibook to be published”
in AUJ 28-1 (Mar 2007), p.9. —su]

Source code repositories
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Tue, 1 Jul 2008 05:56:15 +0300
Subject: Re: Learning Ada but missing the

basics?
Newsgroups: comp.lang.ada
> Could anyone point me to an SVN

repository for a good, well written open
source Ada application?

Check listings at
http://www.ohloh.net/projects/
search?q=ada&x=0&y=0 ,
http://freshmeat.net/browse/163/ ,
http://sourceforge.net/search/
?type_of_search=soft&words=ada , and
http://code.google.com/hosting/
search?q=label:Ada
for some repositories. Most of the open
source Ada projects are libraries, but if
you want an application, you could check
AdaControl
(http://www.adalog.fr/adacontrol2.htm,
no public SVN repository available).
From: Pascal Obry <pascal@obry.net>
Date: Wed, 02 Jul 2008 11:18:48 +0200
Subject: Re: Learning Ada but missing the

basics?
Newsgroups: comp.lang.ada
Look at AWS and Templates_Parser
code. I have put lot of efforts to be sure
the code is clean, documented and
readable. It uses many Ada features even
some Ada 2005 ones (interfaces,
object.method notation, anonymous
access…).
https://libre.adacore.com/aws/
If you are adventurous do not hesitate to
have a look at the GNAT code itself. It is
quite large but really clean.
You'll see that on those projects the code
quality and style is uniform in all the
sources. This makes a project easier to
maintain by a group of people. No one
own (by using weird style for example
where other developers do not feel
comfortable) a part of the code. This to
say that there is no ONE good style but
most importantly a style must be
followed, uniformity is more important to
me.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Tue, 01 Jul 2008 03:13:57 GMT
Subject: Re: Learning Ada but missing the

basics?
Newsgroups: comp.lang.ada
But I could point you to the source for the
Mine Detector game:
http://pragmada.home.mchsi.com/
mindet.html
[See also “Ada-Europe 2004 Conference”
in AUJ 25-2 (Jun 2004), p.43. —su]

Ada-related Tools
Simple components
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 29 Jun 2008 21:15:18 +0200
Subject: ANN: Simple Components v3.1
Newsgroups: comp.lang.ada
http://www.dmitry-kazakov.de/ada/
components.htm
This version is compatible with new
GNAT GPL 2008.
Other new things are:
- Lock-free FIFO of indefinite objects;
- For signaled FIFOs waiting for not full

or not empty queue can be now
canceled from outside;

- A test added for a GNAT GPL 2008
bug.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 27 Jul 2008 11:41:56 +0200
Subject: ANN: Simple components for Ada

v3.2
Newsgroups: comp.lang.ada
The current version provides
implementations of smart pointers, sets,
maps, stacks, tables, string editing,
unbounded arrays, expression analyzers,
lock-free data structures, synchronization
primitives (events, race condition free
pulse events, arrays of events, reentrant
mutexes, deadlock-free arrays of
mutexes), pseudo-random non-repeating
numbers, symmetric encoding and
decoding, IEEE 754 representations
support. It grew out of needs and does not
pretend to be universal. Tables
management and strings editing are
described in separate documents see
Tables and Strings edit. (…)
New in this version is a portable IEEE
754 floating-point representation support.
Generic packages instantiated by an Ada
floating-point type are provided for single
and double precision IEEE numbers.
IEEE NaN, infinities and denormalized
numbers are supported.
[See also same topic in AUJ 29-2 (Jun
2008), pp.81–82. —su]

152 Ada-related Tools

Volume 29, Number 3, September 2008 Ada User Journal

Units of measurement for
Ada
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 2 Jul 2008 22:02:01 +0200
Subject: ANN: Units of measurement for

Ada v2.7
Newsgroups: comp.lang.ada
The library provides an implementation of
dimensioned values for Ada. Unit checks
are made at run-time, if not optimized out
by the compiler. SI and irregular
measurement units are supported. Shifted
units like degrees Celsius are supported
too. Conversions from and back to strings
are provided for all various irregular
units. An extensive set of GTK widgets
for dealing with dimensioned values is
included, though use of GTK is not
mandatory for the rest of the library.
http://www.dmitry-kazakov.de/ada/
units.htm
This version is adapted to recently
published GtkAda 2.10.2, which has
changed behaviour of popup windows.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 6 Jul 2008 11:22:16 +0200
Subject: ANN: Units of measurement for

Ada v2.8
Newsgroups: comp.lang.ada
(…) The focus of this release is
documentation and when necessary
adjusting factors of irregular units. When
the same unit has multiple definitions, the
chosen one is specified. For all irregular
unit definition a reference to the source is
provided in the documentation.
Also:
- Added irregular units dram, gill, league;
- Added SI derived unit katal (kat);
- Removed irregular unit candle;
- Bq was moved to derived SI units;
- Unicode ounce sign is now supported;
- Bug fix in Get_Value_As.
[See also same topic in AUJ 28-4 (Dec
2007), pp.206–207. —su]

GNAT GPL 2008 Edition
From: Jamie Ayre <ayre@adacore.com>
Date: Thu, 12 Jun 2008 09:25:16 +0200
Subject: GNAT GPL 2008 now available
To: ada-belgium-info@cs.kuleuven.be
We are pleased to announce the release of
GNAT GPL 2008, the Ada Toolset for
Academic users and FLOSS developers. It
introduces hundreds of enhancements
including:
- Availability on the Windows .NET

platform
- Upgrade of the debugging engine
- Improvement in robustness and

efficiency for Ada 2005 features

- Many new warnings & restrictions to
help programmers detect errors earlier

- Companion tools such as gprof, gcov,
gnatcheck, gnatpp and gnatmetric are
being enhanced to support a wider
variety of needs, coding styles, and
coding standards

- Support for Pre/Post conditions
GNAT GPL 2008 comes with version
4.2.1 of the GNAT Programming Studio
IDE and GNATbench 2.1, the GNAT
plug-in for Eclipse.
It is available on the GNU Linux (32 and
64 bit), .NET, and Windows platforms.
GNAT GPL 2008 can be downloaded
from the “Download GNAT GPL
Edition” section on
https://libre.adacore.com.
For regular updates on the GNAT
technology, please visit the Developer's
Center. It includes a developer's log
giving updates on the GNAT technology,
technical papers, code samples, and
documentation.
For more info, please visit:
http://www.adacore.com/category/
developers-center/development-log/
[See also “GNAT GPL 2007 Edition” in
AUJ 28-2 (Jun 2007), p.74. —su]

Interval arithmetic
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 7 Jul 2008 22:47:20 +0200
Subject: ANN: Interval arithmetic for Ada

v1.6
Newsgroups: comp.lang.ada
The library provides an implementation of
intervals for Ada. It includes arithmetic
and relational operations.
http://www.dmitry-kazakov.de/ada/
intervals.htm
In the new version the dimensioned
intervals are based on the version 2.8 of
Units of Measurements for Ada; Also a
bug was fixed in the Get_Value_As
function of dimensioned intervals.
[See also same topic in AUJ 28-3 (Sep
2007), p.137. —su]

GLOBE_3D — 3D Engine
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Sat, 14 Jun 2008 23:48:21 +0200
Subject: Ann: GLOBE_3D release, with

collision detection
Newsgroups: comp.lang.ada
…and an automated way of translating
game map data from the “id Tech 4”
editor (Doom 3, Quake 4). Some
screenshots:
http://globe3d.sf.net/g3d/folder1.htm
The main page is: http://globe3d.sf.net/

[See also same topic in AUJ 27-4 (Dec
2006), p.203. —su]

QtAda binding
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Thu, 17 Jul 2008 06:30:38 −0700

(PDT)
Subject: Announce: QtAda 1.0.4 released
Newsgroups: comp.lang.ada
We are pleased to announce QtAda 1.0.4
release. This release has supports for the
GNAT GPL 2008 and bug fixes.
QtAda is an Ada 2005 language bindings
to the Qt libraries and a set of useful tools.
QtAda allows easily to create cross-
platform powerful graphical user interface
completely on Ada 2005. QtAda
applications will work on most popular
platforms — Microsoft Windows, Mac
OS X, Linux/Unix — without any
changes and platform specific code.
QtAda allows to use all power of visual
GUI development with Qt Designer on all
software lifecycle stages — from
prototyping and up to maintenance.
QtAda is not just a bindings to the
existent Qt widgets, it also allows to
develop your own widgets and integrates
it into the Qt Designer for high speed
visual GUI development.
Multiplatform source code package and
Microsoft Windows binary package of the
QtAda 1.0.4 can be downloaded from:
http://www.qtada.com/
[See also same topic in AUJ 29-2 (Jun
2008), p.83 and “Qt4Ada” in this issue.
—su]

Qt4Ada
From: Leonid Dulman

<leonid_dulman@yahoo.co.uk>
Date: Sun, 22 Jun 2008 18:04:57 −0000
Subject: Ann. qtada ada interface for Qt4 is

availabble.
Newsgroups: comp.lang.ada
Ann. QtAda, an Ada interface for Qt4, is
now available. It was tested in Windows
and Fedora 9 x86_64 with Qt4.x and GPL
GNAT 2008. You may download it from
http://www.websamba.com/guibuilder
[See also “QtAda binding” in this issue.
—su]

GTKAda contributions
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 30 Jun 2008 21:05:10 +0200
Subject: ANN: GtkAda contributions v2.2
Newsgroups: comp.lang.ada
The library extends GtkAda. It deals with
the following issues:
- Tasking support;
- Custom models for tree view widget;

Ada-related Tools 153

Ada User Journal Volume 29, Number 3, September 2008

- Custom cell renderers for tree view
widget;

- Multi-columned derived model;
- Extension derived model (to add

columns to an existing model);
- Abstract caching model for directory-

like data;
- Tree view and list view widgets for

navigational browsing of abstract
caching models;

- File system navigation widgets with
wildcard filtering;

- Resource styles;
- Capturing resources of a widget;
- Embeddable images;
- Some missing subprograms and bug

fixes;
- Measurement unit selection widget and

dialogs;
- Improved hue-luminance-saturation

color model;
- Simplified image buttons and buttons

customizable by style properties;
- Controlled Ada types for GTK+ strong

and weak references;
- Simplified means to create lists of

strings.
http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm
This new version is based on freshly
released GNAT GPL 2008 and
GtkAda.2.10.2. Other issues:
- In order to improve security

Gtk.Persistent_Storage_Browser wipes
password strings it creates before their
deallocation;

- Columned tree model
Gtk.Tree_Model.Columned_Store
contains Is_Ancestor and Is_Descendant
functions;

- Gtk.Tree_Model.Columned_Store also
supports a mode without a reference
model;

- The extension tree model
Gtk.Tree_Model.Extension_Store
supports reference model change;

- The procedure Get_Directory_Cache is
added to
Gtk.Persistent_Storage_Browser;

- Procedure Set is added to
GLib.Object.Weak_References;

- Bug fix in
GLib.Object.Strong_References and
Weak_References;

- Get_Current_Object,
Get_Current_Storage, Get_Path added
to Gtk.Persistent_Storage_Browser.

[See also same topic in AUJ 29-1 (Mar
2008), pp.9–10. —su]

GWenerator
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Thu, 14 Aug 2008 13:28:11 −0700

(PDT)
Subject: Ann: GWenerator 0.8
Newsgroups: comp.lang.ada
GWenerator is a code generator that
translates a Resource Compiler script file
(.rc or .dlg) into an Ada package for the
high-level GWindows GUI framework for
MS Windows.
Even in absence of a proper interactive
GUI builder for GWindows, it allows to
use the GUI building capabilities of
numerous existing tools (even Visual
Studio 2008) and obtain automatically
from their output the creation procedures
for dialogs and menus in the GWindows
“universe”.
This version 0.8 is very early but already
usable. So far, only the command-line
flavour of the tool is available (RC2GW),
but anyway both flavours (command-line
and graphic) will steer exactly the same
code generator.
Feedback is welcome…
GWenerator can be downloaded here:
http://sf.net/projects/gnavi

VAD 7.1 for X86-64 —
Visual Ada Developer
From: Leonid Dulman

<leonid_dulman@yahoo.co.uk>
Date: Sun, 22 Jun 2008 18:00:57 −0000
Subject: Ann VAD 7.1 X86_64 binaries
Newsgroups: comp.lang.ada

Ann. VAD (Visual Ada Developer) 7.1
binaries for X86_64 are available. It was
tested in Fedora 9 x86_64 and GPL
GNAT 2008 You may download if from
http://www.websamba.com/guibuilder
[See also “VAD 7.1 — Visual Ada
Developer” in AUJ 25-2 (Jun 2008), p.83.
—su]

SOCI-Ada — Database
Access Library
From: Maciej Sobczak

<maciej@msobczak.com>
Subject: SOCI-Ada: The Database Access

Library for Ada
Date: Thu, 7 Aug 2008 02:18:17 −0700

(PDT)
Newsgroups: comp.lang.ada
I am pleased to announce that the first
version of SOCI-Ada is available to
download:
http://www.inspirel.com/soci-ada/
The SOCI-Ada library is built on top of a
successful SOCI library that was written
for C++ programmers. The advantages of
SOCI-Ada are:

- Modular design based on dynamic
backend loading. Thanks to this feature,
new backends implemented within the
context of the main SOCI project are
immediately available for Ada
programmers without any additional
work. A large community of C++ users
can help ensure that the new backends
are well tested in a variety of
environments and usage scenarios.

- Native backends for major database
servers ensure optimal performance and
minimize configuration overhead and
complexity that is usually associated
with other database access methods.

- Direct support for bulk operations allow
to achieve high performance with
queries that operate on large data sets.

- Very liberal open-source license (Boost,
accepted by Open Source Initiative) that
encourages both commercial and non-
commercial use.

- Easy to use and compact interface.
Currently the following backends are
available, each communicating with the
database server via its native interface (no
ODBC required):
- Oracle
- PostgreSQL
- MySQL
The link above is a starting point for both
downloads and online docs, but I think the
best way to attract attention is to show
examples of *full* programs that access a
database using this library. Such examples
are available here:
http://www.inspirel.com/soci-ada/
doc/idioms.html
This is the first version of the library and
as such provides only the basic
functionality, at least when compared
with what is available in the main SOCI
project. Your comments are highly
welcome and will certainly contribute to
my understanding of what further
functionality would be needed. Support
for BLOB is the most likely candidate for
future versions of the library.
All comments welcome.
(BTW — please do not hesitate to contact
me in case of any questions related to the
main SOCI project)
[See also “ABDI — Ada Unified
Database Interface” in AUJ 27-3 (Sep
2006), p.139. —su]

Source code filters
From: Oliver Kellogg

<okellogg@users.sourceforge.net>
Date: Sat, 31 May 2008 21:19:31 +0200
Subject: a few Ada related source code

filters
Newsgroups: comp.lang.ada

154 Ada-related Tools

Volume 29, Number 3, September 2008 Ada User Journal

I gathered up some of my perl utilities
that accumulated over time and put them
here:
http://freenet-homepage.de/
okellogg/x.html
Right now, there are
- ada2idl.pl helps translate existing Ada

types to CORBA IDL
- adareps2c.pl converts Ada record types

with representation clauses to
equivalent C structs with bit length
indications

- obfuscada.pl helps create an obfuscated
copy of an entire set of Ada source files,
useful for submitting public compiler
bug reports on NDA or proprietary code

but one or two more will be added soon.
From: Oliver Kellogg

<okellogg@users.sourceforge.net>
Date: Tue, 03 Jun 2008 18:14:33 +0200
Subject: Re: a few Ada related source code

filters
Newsgroups: comp.lang.ada
- ada2idl.pl new version 0.2 tidies up the

generated code (somewhat)
- adareps2c.pl new version 0.2 adds

generation of __attribute__((packed))
- withlist.pl version 0.5 prints all withed

units of an Ada unit, including
indirectly withed units

From: Oliver Kellogg
<okellogg@users.sourceforge.net>

Date: Mon, 09 Jun 2008 06:29:37 +0200
Subject: Re: a few Ada related source code

filters
Newsgroups: comp.lang.ada
I added a few more,
- UniLexer.pm is a unified lexer for

Pascal- and C-family languages
- indentada.pl indenter for Ada at this

point is a feasibility demo for
Unilexer.pm but may evolve into a full
pretty printer as time permits.

Lex and Yacc alternatives
From: Peter C. Chapin

<pcc482719@gmail.com>
Date: Wed, 20 Aug 2008 22:35:51 −0400
Subject: Status of ayacc and aflex?
Newsgroups: comp.lang.ada
I have a need for a parser generator and a
lexical analyzer generator that produce
Ada. I see that there is an ayacc and aflex
project. The main page for it appears to be
here:
http://www.ics.uci.edu/~arcadia/
Aflex-Ayacc/aflex-ayacc.html
However the download link on that page
does not appear to work. It seems like the
host no longer exists. Most other
references to ayacc point to the same non-
existent place. I was able to locate the
source code for a slightly older version of

ayacc on the TenDRA site. I have not yet
located aflex at all.
Is this project completely dead and
buried? Is there some other parser
generator that I should be looking at
instead?
Thanks in advance for any help you might
be able to give…
From: J. David Bryan <wqoelna@npz.bet>
Date: Thu, 21 Aug 2008 00:39:59 −0400
Subject: Re: Status of ayacc and aflex?
Newsgroups: comp.lang.ada
Try:
 http://www.ics.uci.edu/~self/
There's a working link there.
From: ficorax@gmail.com

<ficorax@gmail.com>
Date: Wed, 20 Aug 2008 23:27:40 −0700

(PDT)
Subject: Re: Status of ayacc and aflex?
Newsgroups: comp.lang.ada
I suggest that you should use tool from
http://adagoop.martincarlisle.com
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 21 Aug 2008 10:36:24 +0200
Subject: Re: Status of ayacc and aflex?
Newsgroups: comp.lang.ada
I prefer table-driven approach to
generators.
You might find a table-driven parser in
simple components:
http://www.dmitry-kazakov.de/ada/
components.htm#Parsers_etc
which I am use for the only complex
stuff, expressions. In almost any “normal”
language the rest is just trivial, easily
handled by a recursive descent parser. (I
never managed to understand what formal
grammars are good for… (:-))
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Thu, 21 Aug 2008 07:55:07 −0700

(PDT)
Subject: Re: Status of ayacc and aflex?
Newsgroups: comp.lang.ada
If you still need ayacc & aflex, there is an
improved version coming with the
GWenerator at http://sf.net/projects/gnavi/
Both tools compile “out of the box” with
GNAT — and probably any Ada 95+
compiler.
Improvements are:
- added functions to track line & column

of parsed code
- possibility of setting table sizes without

changing the tools themselves
- the mighty “Syntax Error” indicates line

number
- lots of useless “with” or “use” removed

in both ayacc & aflex sources, and other
details spotted by GNAT

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Thu, 21 Aug 2008 05:56:27 −0400
Subject: Re: Status of ayacc and aflex?
Newsgroups: comp.lang.ada
Depending on what you are really doing,
you can use ASIS.
Or use the parser from GNAT.
These don't “generate parsers”, but they
can be used to write programs that
generate Ada code.
From: Colin Paul Gloster

<Colin_Paul_Gloster@acm.org>
Date: Fri, 22 Aug 2008 12:02:33 +0100
Subject: Re: Status of ayacc and aflex?
Newsgroups: comp.lang.ada
One mention of ASIS and some mentions
of recursive descent parsers have been
made. I shall state advice for you in a
more direct manner. Do not write
anything based on Lex and YACC. They
are for bottom-up designs. Learn how to
do top-down parsing or otherwise be
damned to never write an unbuggy parser.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 22 Aug 2008 14:56:18 +0200
Subject: Re: Status of ayacc and aflex?
Newsgroups: comp.lang.ada
> Speaking of lexical analysis and

recursive descent parsers, I'd like to
know whether anyone here has tried
OpenToken[1] and would like to
comment on it.
[1] http://www.telepath.com/~dennison
/Ted/OpenToken/OpenToken.html

I studied it some time ago and found it
interesting. In particular, I borrowed the
idea of generation of a table from an Ada
enumeration type. If a table contains only
legal Ada identifiers, it is a very quick
way to create it.
To the critique of OpenToken. One
problem is that it really concentrates on
tokens, nothing else. A recursive descent
parser should also support higher-level
constructs, like user-defined
blank/comment, identifier, literals, and
more generally expressions. So that, when
you see the token “declare”, you could tell
the parser get me a name, and then after
the colon, the declaration expression etc.
It also pays too little attention to
abstracting the sources being parsed and
links to the sources (needed for error
messages and integration into IDE).
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Fri, 22 Aug 2008 16:29:51 +0300
Subject: Re: Status of ayacc and aflex?
Newsgroups: comp.lang.ada
I use its lexical-analysis functions a lot,
for many different purposes. It works
quite well enough for me. However, I can
generally myself design the language to
be analysed. I would not be surprised to
find some awkward problems with

Ada-related Tools 155

Ada User Journal Volume 29, Number 3, September 2008

languages that have been defined by
others — but that probably holds for any
general lexical-scanner tool.
I very much like the absence of any
“generator” step — a simple “gnatmake”
is enough to update the application after a
change to the token structure.
I have not used the parsing functions in
OpenToken; they did not exist when I
started to use OpenToken, so I got into
the habit of writing my parsers manually.
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Fri, 22 Aug 2008 20:17:46 +0300
Subject: Re: Status of ayacc and aflex?
Newsgroups: comp.lang.ada
> I too like the absence of a generator,

and I'm used to writing my own parsers
by hand. Did you find that OpenToken
helped a lot in doing that?

It does its job: lexical analysis. The parser
gets to look at the tokens one by one;
OpenToken provides a function to return
the identity of the current token (an
enumeration), another function to return
the text string of the current token, and a
procedure to advance to the next token.
That is what I expect of a lexical analyser,
and OpenToken gives me that (at least; I
haven't really studied it thoroughly to see
what else there may be).
As far as I recall, the only wart I have
found has to do with the error reporting
when the input text has a sequence of
characters that does not match any token
— I had to add a special “invalid token”
definition
(Opentoken.Recognizer.Nothing.Get) to
find the line-number and column-number
of the erroneous text. A minor detail.
If I try to think of what might be missing,
perhaps the main thing is context-
dependent lexical analysis: the ability to
say, for example, that I expect the next
token to be an identifier, so please ignore
the definitions of reserved keywords and
just consider them identifiers, too. Of
course I have designed my own languages
not to need this (keywords are really
reserved).
As far as I know OpenToken has no
general look-ahead facility, but it should
not be too hard to build one yourself, on
top of OpenToken, if you need it.
Another good point about OpenToken and
the absence of a generator phase: one can
have several instances of OpenToken in
the same application, for different
languages, without any clashes of names
or data. My application needs that.
A caveat: The amounts of text that my
applications scan with OpenToken are
small. I have no idea of the scanning
speed; it has been quite enough for my
needs.
From: Stephen Leake

<stephen_leake@stephe-leake.org>

Date: Sun, 24 Aug 2008 11:02:42 −0400
Subject: Re: Status of ayacc and aflex?
Newsgroups: comp.lang.ada
I use it at work, but not as recursive
descent; I write a grammar using it.
I had to fix a couple bugs, and it can be
confusing getting the grammar to be
unambiguous, but I like the resulting
high-level code.
As with other grammar-oriented parsers,
the error messages leave a lot to be
desired. If I ever find time, I'd like to try
switching to using it in a recursive
descent way; that usually gives better
error messages.
[See also “Lex and Yacc for Ada” in AUJ
25-2 (Jun 2004), p.54. —su]

Cheddar — Real-Time
Scheduling Simulator
From: Frank Singhoff <singhoff@univ-

brest.fr>
Date: Tue, 1 Jul 2008 17:37:59 +0200
Subject: New release of Cheddar, a GNU

GPL real time scheduling analyzer
Newsgroups: comp.lang.ada
We are pleased to announce a new release
of Cheddar. Cheddar is a free real time
scheduling tool. Cheddar is designed for
checking task temporal constraints and
buffer sizes of a real time
application/system. It can also help you
for quick prototyping of real time
schedulers. Finally, it can be used for
educational purposes. Cheddar is
developed and maintained by the LISyC
Team, University of Brest. Since 2008,
Ellidiss Technologies also contributes to
the development of Cheddar and provides
industrial support. Cheddar is written in
Ada and runs on Linux and win32 boxes.
Thanks to R. Couillet, P. Dissaux, J.
Hugues, N. Vienne, P. Wong (bugs
fixed/reports)
The current release is now 2.1. If you are
a regular Cheddar's user, we strongly
advice you to switch to the 2.1 release.
See “ChangesLog.pdf” and
“FIXED_BUGS.pdf” files for more
information.
1) New features summary :
- AADL translation when an AADL file

is loaded in Cheddar command line.
- Update Ocarina from 1.0 to 1.1.
- New user-defined scheduler modeling

feature : you can now model your
scheduler entity synchronizations by a
set of timed automata. See the ACM
SIGAda Ada Letters article of 2007 for
further details.

- Cheddar menu simplification.
- Compilation on Linux and Windows

Box simplification.

- Many fixed bugs : important scheduling
simulation memory leak fix,
precedences graph…

2) General Cheddar features :
Cheddar is composed of two independent
parts : an editor used to describe a real
time application/system, and a
framework. The editor allows you to
describe systems composed of several
processors which own tasks, shared
resources, buffers and which exchange
messages. Such a systems specification
can be expressed with AADL, the
architecture and design language from the
SAE. The framework includes many
feasibility tests and simulation tools.
Feasibility tests can be applied to check
that task response times are met and that
buffers have bounded size. When
feasibility tests can not be applied, the
studied application can be analyzed with
scheduling and buffer simulations.
Cheddar provides a way to quickly define
“user-defined schedulers” to model
scheduling of ad-hoc applications/systems
(ex : ARINC 653). The most important
analysis tools are the following :
- Do scheduling simulations with

classical real time schedulers (Rate
Monotonic, Deadline Monotonic, Least
Laxity First, Earliest Deadline First,
POSIX queueing policies :
SCHED_OTHERS, SCHED_FIFO and
SCHED_RR) with different type of
tasks (aperiodic, periodic, task activated
with a poisson process law, …)

- Extract information from scheduling
simulation. (buffer utilization factor,
task response times, task missed
deadlines, number of preemption, …)

- Apply feasibility tests on tasks and
buffers (without scheduling simulation):

- Compute task response time
bounds.

 - Apply processor utilization tests.
- Compute bound on buffer size
(when buffers are shared by periodic
tasks)

- Shared resources support (scheduling
and blocking time analysis). Supported
protocols : PIP, PCP.

- Tools to express and do
simulations/feasibility tests with task
precedencies :

- Schedule tasks according to task
precedencies
- Compute Tindell end to end
response time.
- Apply Chetto and Blazewicz
algorithms.

- Tools to run scheduling simulation in
the case of multiprocessors systems

- Do simulation when tasks are randomly
activated.

156 Ada-related Tools

Volume 29, Number 3, September 2008 Ada User Journal

- Can run scheduling simulation on user-
defined scheduler and task arrival
patterns.

- Run user-defined analysis on
scheduling simulation.

- …
Cheddar is distributed under the GNU
GPL license. It's a free software, and you
are welcome to redistribute it under
certain conditions; See the GNU General
Public License for details.
Source code, binaries and documentations
can be freely downloaded from
http://beru.univ-brest.fr/~singhoff/cheddar
[See also same topic in AUJ 28-2 (Jun
2007), pp.76–77. —su]

Ahven — Unit test library
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Wed, 13 Aug 2008 18:53:58 +0300
Subject: ANN: Ahven 1.3
Newsgroups: comp.lang.ada
I would like to announce Ahven 1.3.
Ahven is a simple unit test library for Ada
95. It is loosely modelled after JUnit and
some ideas are taken from AUnit. Ahven
is distributed under permissive ISC
license and should work with any Ada 95
compiler.
This is a bug fix release. For example, the
changes include a few work arounds for
Janus/Ada bugs and the removal of non-
standard pragmas to let the source code
compile cleanly on multiple different Ada
compilers.
For more info, please read the detailed
release notes:
http://home.gna.org/ahven/release_1_3.txt
or visit Ahven's homepage:
 http://home.gna.org/ahven/
The source code is available as tar.gz and
zip packages:
 http://download.gna.org/ahven/
 ahven-1.3.tar.gz
 http://download.gna.org/ahven/
 ahven-1.3.zip
Ps. Thanks to RR Software people for
helping me with Janus/Ada issues and
Debian Ada maintainers for creating
Ahven's Debian packages.
[See also “AUnit Test Framework
Experiences” in AUJ 24-2 (Jun 2003),
p.81. —su]

Ada 83 support in Hibachi?
From: Tom Grosman <grosman@aonix.fr>
Date: Wed, 2 Jul 2008 10:42:30 —0400
Subject: RE : [hibachi-dev] Ada83 Support
To: hibachi-dev@eclipse.org
> it was mentioned that Future Features

would include Ada 83 Support. Now
my question is if this Support is already

included or when it will be. If not I am
also interested to include it.

There are no current plans to support
specific Ada 83 toolchains. We have had
requests to add support, so it is a
“possible” future feature, but realistically,
it is unlikely that it will be included in the
project roadmap. We are of course more
than willing to accept the functionality as
a contribution, and provide coaching
should someone wish to develop it.

Hibachi Project Lead
From: Tom Grosman <grosman@aonix.fr>
Date: Tue, 8 Jul 2008 15:15:36 —0400
Subject: [hibachi-dev] Hibachi Project Lead
To: hibachi-dev@eclipse.org
As some of you may alreay know, for the
past year or so, I have been having a
series of health related issues, negatively
impacting my ability to devote significant
time to the Hibachi project. While my
situation has stabilized, the treatment
regime I'm under is constraining in terms
of time and energy.
Because of this, I am unable to be an
effective project lead while at the same
time performing the duties related to my
job at Aonix. Therefore, I would like to
nominate David Phillips to become
project lead. I have talked to David and he
is willing and enthusiastic about stepping
up to the role. I'm sure David will be a
great force in moving Hibachi forward in
the future.
Assuming the Tools PMC and EMO agree
to the choice of David as project lead, I
will work to help him with the transition.
I hope to be able to contribute to Hibachi
in the future, though in a more limited
way.
Tom Grosman
Hibachi Project Lead
From: Pat Rogers <rogers@adacore.com>
Date: Tue, 08 Jul 2008 15:09:01 —0500
Subject: Re: [hibachi-dev] Hibachi Project

Lead
To: hibachi-dev@eclipse.org
Organization: AdaCore
On behalf of AdaCore, let me say that we
are sorry to hear that this step is necessary
but that we certainly both understand and
hope that your health situation is resolved
for the better as soon as possible. We all
appreciate what you have done for the
Ada community in starting the Hibachi
effort and look forward to working with
you in the future.
We at AdaCore, and I am sure the entire
Hibachi team, welcome David to this role
and will support him fully.
Pat and the AdaCore team

Basil — Mailing list server
From: Jordan Bettis

<google1@hafdconsulting.com>

Date: Tue, 22 Jul 2008 01:00:12 −0700
(PDT)

Subject: ANN: Basil — Internet Message
(email) and MIME library for Ada v 1.0

Newsgroups: comp.lang.ada
I'm working on a project to eventually
produce a mailing list server in Ada. I've
completed the first major 'deliverable' for
the project, an email and MIME library in
Ada 2005.
The project page is located at:
<http://hafdconsulting.com/libre/basil>
The library has the following capabilities:
- Serialization and unserialization of

Messages, including those with MIME
parts, and API methods to easily do
common things with the message
objects.

- An API for MIME children of message
objects (and of other MIME entities),
based on the Ada List container.
Essentially the model is of a message
object and a list of children, who can
themselves have children. More
abstractly, it is a n-tree. I provide a
Cursor object for which you can choose
one of two traversal strategies. One
simply walks the children of one entity,
and the other, 'recursive' strategy, walks
the entire n-tree.

- Very flexible parsers for RFC 2822
Date, Address, and Message ID headers,
and of RFC 2045 Content-Type and
Content-Transfer- Encoding headers.
Data structures to represent such objects
(for the date it uses an Ada Time
object), and means to serialize the
objects into fully compliant message
headers.

- Base64 and Quoted-Printable encoding
and decoding.

- Encapsualization and
unencapsualization of message headers
containing non-ASCII values
conforming to RFC 2047.

I've written a software specification for
the library and a test suite. I'll be writing a
user manual shortly as well, but I've also
extensively commented the spec files to
serve as a basis for the adabrowse
reference manual.
My original software spec document
didn't include support for RFC 2183
Content-Disposition headers, so they
aren't in this version of the library,
although they are rather important for
managing MIME parts so I'll try to get
that into the library soon. I'll probably
hold off on writing the manual until that's
done.
From: Jordan Bettis

<google1@hafdconsulting.com>
Date: Tue, 22 Jul 2008 09:35:55 −0700

(PDT)
Subject: Re: ANN: Basil — Internet

Message (email) and MIME library for
Ada v 1.0

Ada-related Products 157

Ada User Journal Volume 29, Number 3, September 2008

Newsgroups: comp.lang.ada
> Wow, this looks quite professional! Are

you planning to merge your library into
AdaCore's Ada Web Server
(http://libre.adacore.com/aws), which
already includes an SMTP client and
server but apparently lacks the
powerful mail handling capabilities of
your library?

I hadn't considered merging with AWS. It
seems mostly focused on RFC 2821
(SMTP) and you actually wouldn't need
MIME in an RFC 2821 MTA, nor would
you need SMTP in an MUA (or anything
designed to run as a client to an MTA like
a mailing list server). Where Basil could
complement AWS is with its RFC 2822
structured header parsers, which an MTA
would need.
Probably the best way to do it would be to
make a glue package that can translate
AWS header objects into Basil header
objects, so you can use the structured
header parsers, and then back again. I
don't think that would be very difficult
and I could probably get that in the next
release.
From: Jordan Bettis

<google1@hafdconsulting.com>
Date: Tue, 22 Jul 2008 12:43:57 −0700

(PDT)
Subject: Re: ANN: Basil — Internet

Message (email) and MIME library for
Ada v 1.0

Newsgroups: comp.lang.ada
> If you're planning to use AWS's SMTP

client code, it looks like you're going to
need this glue for your mailing list
server anyway.

SMTP won't be needed for the mailing
list. People want mailing list servers that
are integrated with their existing MTA
systems, they don't want stand-alone
systems. Mailman, one should note,
provides interfaces with all the popular
Unix MTAs and it's quite a bit of their
code base, they did not, last I looked,
provide an integrated MTA. There
might be some advantage to providing
an integrated MTA particularly if AWS
makes that very easy to do, but it would
not be a very popular feature of the
system at all.
I am considering using AWS for the web
interface portion, but then again you have
the same integration problem. People
want their web applications to run behind
the web server *they* choose (or at least
Apache) they don't want a stand-alone
system. There are some people around
working on web interface systems for
Ada. When I get to that phase I'll look at
them, and also look into the possibility of
making an AWS-based system integrate
with Apache. But integration with
existing web servers is a killer feature for
any interface I choose.
> The reason I wasn't asking is not

because I was interested in using your

library; only because I think it is nice in
general to consolidate small but related
libraries into larger ones,

I take exception to your belief that Basil is
a “small” library:
Totals grouped by language (dominant
language first):
ada: 10823 (98.29%)
python: 146 (1.33%)
sh: 42 (0.38%)
(…)
> or at least host them in common places,

so that users can find them more easily.
Well, I have a 'selfish asshole' motive for
working on these projects and provide
them as free software, that is to promote
my business. And that is why they'll be
hosted on my professional website. But I
think inside a week if you put “MIME”
and “Ada” into Google, that page will be
the top hit, with this message and other
forms of publicity. Mr. Hermann has
already informed me that he has added it
to his list of Ada resources, for instance.
And of course, the Debian developers
around here could certainly help make it
easier for people to find and use it. :)
> Another benefit is to avoid

inconsistencies and incompatibilities
between libraries, so that a single
program can use several libraries
simultaneously. And, of course, to
reduce duplication of work. Speaking
of which, is there a good reason why
Basil needs its own “header objects”
different from AWS's “header objects”?

Compared to *everthing else* in RFC
2822 and MIME, unstructured headers are
a very simple concept. They're just a key
string, a colon, and a value string,
terminated by a non-folded CRLF
sequence. RFC 2822 specifies the CRLF
but to make Basil more robust, I made it
also handle lone CR or LFs.
So that was no great part of the library but
it is a core part. To use AWS I would
have had to integrate every layer with that
system, making it a hard-dependency for
building or using Basil, just so it could do
the light lifting beneath all of Basil's
heavy lifting.
Also, my header lists *are* integrated into
the Doubly_Linked_List containers. My
Headers.Lists.List object is a subtype of
the DLL, so any operation you could
perform on a DLL you can perform on my
lists (except sorting isn't supported
because of that interior generic). I also
provide a custom equality function that
considers things equal if their case
insensitive keys are equal (per RFC
2822), this allows you do do something
like use the Find operation to iterate over
all headers with the same key.
I tried to make this library integrate very
well with the Ada language, to leverage
the power of the features that it has and

provide an interface that mimics the
behavior of relevant core interfaces that
are already well-understood. I didn't see
much use in integrating with vaguely
related external third-party libraries,
making the system more difficult to install
and use.
But anyway, that's why I made the
technical decisions I made. Of course
writing software is the process of
choosing between many different choices
which all have their merits and
downsides. Maybe you're right and I
should have done this completely
differently, there's not really any way to
know for sure. I would like to thank you
for your incredibly fast response to the
bug I filed against gnatpp.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Tue, 22 Jul 2008 18:30:55 −0500
Subject: Re: ANN: Basil — Internet

Message (email) and MIME library for
Ada v 1.0

Newsgroups: comp.lang.ada
> Please post again to

news:comp.lang.ada with reports of
how well the mail server has been
working. After some experience, it
might be worthwhile for various Ada
organizations to replace the solutions
which they currently use with the new
mailserver software. It might be trickier
for ACM SIGAda which uses the
ACM's central ListServ system, but I
suspect that the the smaller scale
operations could readily adopt the
option from HAFD Consulting.

For what it's worth, R.R. Software and
most of the AdaIC functions have been
running on a primarily Ada mail server
(and all Ada web server) for several years.
I use an ancient public domain mail server
for local mail delivery (POP3) and an
ancient mailing list program to handle the
mailing list, but all of the mail receiving,
delivery, and spam filter functions are in
Ada.
The question will be asked why it was
never made available to the community,
and the answer is that it wasn't designed
to be that — it was intended to be a
professional grade spam filter and as such
the *code* wasn't documented much nor
made very flexible. (In particular, there
aren't any libraries that could be used in
other applications, although I'm sure parts
could be extracted.) There's plenty of
user-level documentation, but that's it.
(It's also a Claw application, and as such
fairly tied to Windows for its user
interface.)

Ada-related Products
AdaCore — GNAT-AJIS
From: AdaCore Press Center
Date: Tuesday June 17, 2008

158 Ada-related Products

Volume 29, Number 3, September 2008 Ada User Journal

Subject: Adacore Releases GNAT Ada-Java
Interfacing Suite

RSS: http://www.adacore.com/2008/06/17/
ada-java_interfacing_suite/

New tool suite helps developers create
multi-language applications
VENICE, Italy, and NEW YORK, June
17, 2008 — Ada-Europe 2008 —
AdaCore, provider of the highest quality
Ada tools and support, today announced
availability of the GNAT Ada-Java
Interfacing Suite (GNAT-AJIS), which
allows developers to build applications
using both languages. With GNAT-AJIS,
programmers can combine Java
applications compiled to the Java Virtual
Machine (JVM) and Ada code that has
been compiled either natively or to the
JVM. Application areas as diverse as
financial services, communications,
aerospace, defense, and academic
research can all benefit from GNAT-
AJIS.
GNAT-AJIS is aimed at both the Ada and
Java development communities. For Ada
programmers, GNAT-AJIS provides a
mechanism to plug Ada components into
systems (such as GUI frameworks) that
are often written in Java. For Java
programmers, GNAT-AJIS provides a
means to take advantage of Ada’s
functionality or performance, for example
in real-time control.
The initial release of GNAT-AJIS
consists of two principal tools:
- A binding generator that takes an Ada

package specification as input and
produces Java classes as output, with
native methods corresponding to the
Ada subprograms

- The JGNAT compiler, which compiles
Ada to the JVM.

Through the binding generator, Java
applications can call native Ada code. The
interfacing uses the Java Native Interface
(JNI), but the binding generator produces
the necessary “glue code” so that the
programmer need not be concerned with
the details. In JGNAT, since both Java
and Ada are compiled to bytecodes, the
interfacing is direct.
“With today’s increasingly ambitious
system requirements, multi-language
systems are more and more common,”
said Robert Dewar, CEO and President of
AdaCore. “The GNAT Ada-Java
Interfacing Suite allows projects to realize
the benefits of both Ada and Java through
a cohesive framework. Ada is well suited
to this level of co-operation, especially
with the enhancements added in Ada
2005.”
Pricing and Availability
The GNAT Ada-Java Interfacing Suite is
available as an add-on to users of
AdaCore’s GNAT Pro development
environment. Pricing for GNAT Pro
subscriptions starts at $14,000. Please

contact AdaCore (info@adacore.com) for
the latest information on pricing and
supported configurations.
About GNAT Pro
The GNAT Pro development
environment, available on more platforms
than any other Ada toolset, combines
industry-leading technology with an
expert support infrastructure and provides
a natural solution for organizations that
need to create reliable, efficient, and
maintainable code. GNAT Pro is the first-
to-market implementation of the Ada
2005 standard, allowing users to take
advantage of the many enhancements in
areas such as object-oriented
programming, real-time support, and
predefined libraries.
At the heart of GNAT Pro is a full-
featured, multi-language development
environment complete with libraries,
bindings and a range of supplementary
tools. All GNAT Pro technology is
distributed with complete source code.
GNAT Pro is based on the widely used
GCC technology, is subjected to a
rigorous quality assurance process, and is
backed by rapid and expert support
service.
Please contact AdaCore
(info@adacore.com) for the latest
information on pricing and supported
configurations.
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, a modern programming language
designed for large, long-lived applications
where safety, security, and reliability are
critical. AdaCore’s flagship product is the
GNAT Pro development environment,
which comes with expert on-line support
and is available on more platforms than
any other Ada technology. AdaCore has
an extensive worldwide customer base;
see
http://www.adacore.com/home/company/
customers/ for further information.
Ada and GNAT Pro continue to see
growing usage in high-integrity and
safety-certified applications, including
commercial aircraft avionics, military
systems, air traffic management/control,
railroad systems, and medical devices,
and in security-sensitive domains such as
financial services.
[See also “JGNAT is coming back” in
AUJ 29-2 (Jun 2008), p.83 and “JGNAT
and MGNAT” in AUJ 27-3 (Sep 2007),
pp.150–151. —su]

AdaCore — GNAT
Component Collection
From: AdaCore Press Center
Date: Tuesday June 17, 2008
Subject: AdaCore Announces the Release of

the GNAT Component Collection

RSS: http://www.adacore.com/2008/06/17/
gnat_component_collection/

Suite of proven, reusable components
now available to GNAT Pro customers
VENICE, Italy, and NEW YORK, June
17, 2008 — Ada-Europe 2008 —
AdaCore, provider of the highest quality
Ada tools and support services, today
announced the release of the GNAT
Component Collection, a suite of reusable
software components and utilities. The
GNAT Component Collection has been
used by AdaCore in developing the
GNAT Pro tool set, the GPS Integrated
Development Environment, and the
GNAT Tracker web-based customer
interface, and is now available to GNAT
Pro customers.
“The GNAT Component Collection
contains a variety of software utilities that
have proven to be extremely useful
internally at AdaCore for product
development,” said Robert Dewar,
President and CEO of AdaCore. “Since
these are general-purpose components, we
realized that they would also be of benefit
to our customers. Thus we are making
them available as part of the standard
GNAT Pro subscription.”
The GNAT Component Collection
includes:
- Software that allows integration with

scripting languages, such as python
- Database interfaces for APIs, such as

postgresql, mysql, and sqlite
- Ada packages supplying a variety of

services, such as
 - Module tracing
 - Efficient file IO
 - Efficient static string searching

(Boyer-Moore algorithm)
 - E-mail and mailbox manipulation
 - Ravenscar tasking pattern

examples
 - Various predefined storage pool

utilities
“The GNAT Component Collection is, in
effect, a software menu from which
developers can select, à la carte, exactly
those packages that are needed for their
application,” said Emmanuel Briot, lead
project engineer for the GNAT
Component Collection. “The collection
consists of dozens of packages, interfaces
and utilities that the GNAT Pro team has
developed over the years. Offering this
technology to our customers should allow
them to realize the same productivity
advantages that we have experienced at
AdaCore.”
Among the elements of the GNAT
Component Collection is an extensive set
of templates for Ravenscar Profile
examples. These include:

Ada-related Products 159

Ada User Journal Volume 29, Number 3, September 2008

- Simple_Cyclic_Task: a simple cyclic
task that executes a given operation at a
constant frequency

- Simple_Sporadic_Task: a sporadic task
released by software invocations with a
constant minimum inter-release time (in
the worst case, its behavior is identical
to a cyclic task)

- Sporadic_Server: a sporadic server that
buffers a single type of request
(carrying input parameters) and
executes it enforcing a constant
minimum inter-release time

- Sporadic_Server_With_Callback: a
pattern that demonstrates how to model
an asynchronous call with “out”
parameters in Ravenscar.

- Multiple_Queue_Sporadic_Server: a
Sporadic_Server variant that accepts
multiple kinds of requests

- Sporadic_Server_With_Timeout: a
Sporadic_Server variant that provides
for the automated release of the server,
if it is not released within a given
amount of time by an explicit software
invocation.

From: “Jamie Ayre” <ayre@adacore.com>
Date: Wed, July 30, 2008 10:56 am
Subject: [AdaCore] GNAT Components

Collection beta now available
To: announce@adacore.com
AdaCore is pleased to announce the beta
release of the GNAT Components
Collection. It is compatible with all
GNAT Pro releases starting with 6.0.
Most of the components are target
independent and can be used on any
GNAT Pro supported platform although
at this stage the beta is available on main
native platforms such as x86-windows,
x86-linux & sparc-solaris.
The GNAT Components Collection is a
suite of reusable software components
and utilities, and includes:
- Software that allows integration with

scripting languages, such as python
- High level API to SQL databases

(postgreSQL support provided, contact
us for other systems)

- Ada packages supplying a variety of
services, such as

 - Logging facility with support for
colors, per module streams, syslog, etc.

 - Efficient file IO
 - Efficient static string searching

(Boyer-Moore algorithm)
 - E-mail and mailbox handling
 - Ravenscar tasking pattern examples
 - Various predefined storage pool

utilities
The GNAT Components Collection is
available from the “Download GNAT
Pro” section of GNAT Tracker. As
always, for questions, or to inform us of

issues that you encounter, please let us
know through the GNAT Tracker report
facility or by email at the usual
report@adacore.com address.

AdaCore — GNAT Pro for
RTX
From: AdaCore Press Center
Date: Tuesday July 15, 2008
Subject: AdaCore announces GNAT Pro for

RTX
RSS: http://www.adacore.com/2008/07/15/

rtx/
New product brings Ada to RTX for real-
time development on Windows
NEW YORK and PARIS — July 15,
2008 — AdaCore, provider of the highest
quality Ada tools and support, today
announced the availability of GNAT Pro
for RTX, an Ada Integrated Development
Environment that enables programmers to
produce real-time Ada applications on
Microsoft Windows platforms. GNAT
Pro for RTX supports two different
modes: a Windows executable with
memory protection, and a real-time
subsystem that executes in kernel mode
with hard, real-time behavior. This
enhanced control and scalability helps
simplify development of critical
applications, including industrial
automation, aerospace, and military
systems.
RTX® software from Ardence, a Citrix
Company, enables Windows systems to
deliver hard, real-time performance. As a
true extension, it does not interfere with
or modify the Windows infrastructure.
Developers can create user interfaces and
applications that take advantage of all the
functionality offered by Windows. A
component that requires real-time control
can first be developed and debugged as a
Windows application and then recompiled
as a real-time subsystem with no code
changes.
“Ada and AdaCore have a well-deserved
reputation for excellence in the real-time
domain,” said Jeffrey D. Hibbard, who
heads the Embedded Group for Ardence,
a Citrix Company. “We are pleased that
GNAT Pro is available on RTX, allowing
customers to reap the productivity
benefits that come from Ada’s modern
features and AdaCore’s front-line
support.”
“This new RTX port stems from customer
requests for an Ada development
environment that takes advantage of all
the functionality of RTX without
requiring a rewrite of their code,” said
José Ruiz, AdaCore senior software
engineer. “GNAT Pro for RTX allows our
customers to take Windows applications,
recompile them unchanged, and get
predictable, hard real-time behavior
without interference from the underlying
Windows Operating System.”

“Two types of customers will benefit
from this product,” said Robert Dewar,
President and CEO of AdaCore. “The first
will use Windows plus RTX as a testing
and development platform to verify real-
time properties of their applications
before migrating to another real-time
target. The second will use RTX to
execute real-time applications in kernel
mode without having to pass through
Windows to access the device’s memory,
etc. Either way the GNAT Pro solution
will help our customers reduce the
development costs for their real-time
projects.”
Pricing and Availability
GNAT Pro for RTX is currently available
as an add-on to users of AdaCore’s
GNAT Pro development environment.
Please contact AdaCore
(info@adacore.com) for the latest
information on pricing and supported
configurations.
Windows is a registered trademark of
Microsoft Corporation in the United
States and other countries. RTX is a
trademark of Citrix Systems, Inc. and/or
one or more of its subsidiaries. All other
trademarks and registered trademarks are
property of their respective owners.
[See also “AdaCore — GNAT Pro for
VxWorks 653” in AUJ 29-2 (Jun 2008),
p.86. —su]

AdaCore — GNAT Pro 6.1.2
From: “Jamie Ayre” <ayre@adacore.com>
Date: Thu, July 17, 2008 8:55 pm
Subject: [AdaCore] Announcing the

availability of GNAT Pro 6.1.2
To: announce@adacore.com
AdaCore is pleased to announce the
immediate availability of the GNAT Pro
6.1.2 release for the following native
platforms:
 alpha-tru64
 ia64-hp_linux
 ia64-hpux
 ia64-sgi_linux
 mips-irix
 pa-hpux
 ppc-aix
 sparc-solaris
 sparc64-solaris
 x86_64-linux
 x86-linux
 x86-solaris
 x86-windows
and the following cross platforms:
 erc32-elf-linux
 erc32-elf-solaris
 leon-elf-linux
 leon-elf-solaris
 ppc-elf-solaris
 ppc-elf-windows
Other platforms will be made available in
the coming weeks.

160 Ada and GNU/Linux

Ada User Journal Volume 29, Number 3, September 2008

GNAT Pro 6.1.2 provides fixes for issues
reported in the 6.1.1 release and
documented in the known-problems-611
file (available through GNAT Tracker).
We also are in the process of transitioning
the GNAT Pro technology to a new
compiler back-end based on GCC 4.3
which we expect to bring performance
improvements to user applications. Our
goal is to have several of our supported
configurations on this back-end for the
next major GNAT Pro release scheduled
early 2009.
In the coming weeks, we will provide beta
versions for several platforms and would
appreciate feedback on this new
technology from interested GNAT Pro
users.
GNAT Pro 6.1.2 is available from the
“Download GNAT Pro” section of GNAT
Tracker. As always, for questions, or to
inform us of issues that you encounter,
please let us know through the GNAT
Tracker report facility or by email at the
usual report@adacore.com address.
[See also “AdaCore — GNAT Pro 6.1.1”
in AUJ 29-1 (Mar 2008), pp.12–13. —su]

Praxis HIS — SPARK
Toolset 7.6
From: SPARKAda.com
Date: July 2008
Subject: SPARK Release 7.6
URL: http://www.praxis-his.com/sparkada/

release7p6.asp
Praxis High Integrity Systems is pleased
to announce the immediate availability of
Release 7.6 of the SPARK language and
the SPARK toolset.
Full details of all language and tool
changes can be found in the release notes
for release 7.6.
Supported, professional customers will
receive upgrade packages immediately.
Buyers of the “SPARK Book” by John
Barnes can now download upgrade
packages to bring their toolset and
documentation up to release 7.6.
Release 7.6 includes many significant
improvements, including:
- Corrections to the VC Generator for

narrowing subtype conversions
involving enumerated types.

- Record types that have a single field
which is a predefined scalar type are
now allowed to be Atomic in
RavenSPARK mode.

- Improvement to the default-invariant
generator where a variable controlling a
dynamic “for” loop is know to be mode
“in”.

- Simpler FDL modelling of the 'Pos and
'Val attributes of type Character.

- Better modelling of T'Valid for a
subtype T in proof rules.

- New “Output_Directory” option for the
Examiner.

- New “order” option for SPARKFormat
that allows for alphabetic or declaration-
ordering of reformatted annotations.

- Improved VC Generation for local
variables in subprograms that indirectly
import an external own variable.

- Improved performance in the Simplifier
where user-defined proof rules give rise
to conditions that are fully instantiated.

- New options on SPARKMake to
suppress generation of the index and/or
meta-files and to process sources that
don't have a main subprogram.

Please email us for more information at
sparkinfo@praxis-his.com
[See also “Praxis HIS — SPARK Toolset
7.5” in AUJ 28-2 (Jun 2007), p.84. —su]

Ada and GNU/Linux
Debian 5.0 “Lenny”
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 19 Aug 2008 07:53:54 +0200
Subject: Ada in Debian 5.0 “Lenny”
Newsgroups: comp.lang.ada
Debian 5.0 “Lenny” is due for release in
September and has been frozen since the
end of July[1] but, due to lack of time on
my part, some Ada packages didn't make
the deadline and are now in unstable. I
requested[2] from the Debian release
team an exception to the freeze so these
packages can migrate to Lenny and I am
awaiting a response.
[1] http://lists.debian.org/debian-devel-
announce/2008/07/msg00007.html
[2] http://lists.debian.org/debian-
release/2008/08/msg00702.html
The new default Ada compiler is gnat-4.3.
In addition to the many bug fixes and
enhancements in GCC 4.3.1[3], the
version shipped with Debian contains 19
bug fixes backported from the main line
of development (GCC 4.4). This is the
result of Samuel Tardieu's outstanding
work. Debian also pioneered support for
mips, mipsel and ppc64 architectures
thanks to Xavier Grave, Aurelien Jarno
and Andreas Jochens. This support will
be included in GCC 4.4. Finally, gnat-4.3
ships with two versions of the Ada run-
time library: one using zero-cost
exception handling (aka ZCX, both static
and shared libraries), and one using the
setjump/longjump (SJLJ) mechanism
(static library only).
According to the popularity contest[4],
gnat-4.1 users are already migrating en
masse to gnat-4.3. I am very happy about
this and I take it as a personal
encouragement to continue work on
Debian.

[3] http://gcc.gnu.org/bugzilla/…
[4] http://people.debian.org/~igloo/…
Packages recompiled with gnat-4.3 but no
other changes:
- ada-reference-manual — The standard

describing the Ada 95 language
- adabrowse 4.0.2 — HTML generator

for Ada 95 library unit specifications
- adacgi 1.6 — Ada CGI interface
- libaunit 1.03 — AUnit, a unit testing

framework for Ada
Packages updated:
- adacontrol — An Ada rules controller:

1.6r8 -> 1.9r4
- adasockets — bindings for socket

services in Ada: 1.8.4.7 -> 1.8.6
- asis — Ada Semantic Interface

Specification: 2005 -> 2007
- gnade! — GNU Ada Database

Environment: 1.6.1 -> 1.6.2
- gnat-gps! — The GNAT Programming

System: 4.0.1 -> 4.3 (prerelease)
- libaws — Ada Web Server: 2.2 -> 2.5

(prerelease)
- libflorist! — POSIX.5 interface to

operating system services: 2006 -> 2008
- libgtkada2! — Development files for

libgtkada2: 2.8.1 -> 2.12.0 (prerelease)
- libtemplates-parser — Ada library to

parse files and replace variables with
their values: 10.0+20060522 -> 11.1

- libtexttools — Ada and C++ library for
writing console applications: 2.0.3 ->
2.0.5

- libxmlada — XML/Ada, a full XML
suite for Ada programmers: 2.2 -> 3.0

The packages marked ! above are
awaiting approval to migrate into Lenny
before the release; they are now in
unstable.
New Ada packages:
- ahven — Unit test library for Ada: 1.2
- ghdl — VHDL compiler/simulator

using GCC technology: 0.26+svn98
- libalog — Logging framework for Ada:

0.1
- plplot-ada — Ada support for PLplot, a

plotting library: 5.9.0
- topal — Links Pine and GnuPG

together: 68
Many thanks to Reto Buerki and Andrew
Ross for these new packages. (ghdl and
topal are not really new; they were
present in Debian 3.1 “Sarge” but not in
4.0 “Etch”, and are re-added in 5.0
“Lenny”).
The sad news is that Lenny will not
support distributed programming in Ada.
Xavier Grave has already explained
why[5].
Packages removed:

References to Publ icat ions 161

Ada User Journal Volume 29, Number 3, September 2008

gnat-glade — GNAT Library for Ada
Distributed Execution
gnat-glade-doc — GNAT Library for Ada
Distributed Execution
[5] Xavier Grave, “Ada in Debian:
dropping support for the Distributed
Systems Annex”, comp.lang.ada, 2007-
07-28.
[See also “Debian — Transition to GCC
4.3” in AUJ 29-1 (Mar 2008), p.16 and
“Debian — Package gnat-glade removed”
in this issue. —su]

Debian — Package gnat-
glade removed
From: Xavier Grave

<xavier.grave@ipno.in2p3.fr>
Date: Mon, 28 Jul 2008 08:38:56 +0200
Subject: Ada in Debian: dropping support

for the Distributed Systems Annex
Newsgroups: comp.lang.ada
The package gnat-glade in Debian has
been providing support for Annex E (the
Distributed Systems Annex) since 1999.
With this package, it is possible to write
programs that are distributed over many
computers.
I have found a critical bug that makes the
version currently in testing (gnat-glade
2007) unusable for real-world
applications. The problem is described in
detail in [1]. Now that AdaCore has
abandoned GLADE in favour of
PolyORB, there will be no solution to this
problem.
Therefore, starting in April 2008, I
packaged PolyORB 2.3 for Debian.
During testing, I discovered other
problems [2] that make PolyORB
unusable too. Consequently I decided not
to upload the package to Debian, but to
wait for the next release.
After AdaCore released PolyORB 2.4 (as
part of GNAT GPL 2008 Edition) I
resumed work but the problems are still
there, whether using gnat-4.3 or GNAT
GPL 2008 as the compiler [3].
As a consequence, I am sorry to announce
that Debian 5.0 “Lenny”, scheduled for
release in September 2008, will not
support the Distributed Systems Annex.
I will continue working on PolyORB in
Debian as my time allows. If you think
you can help, please do not hesitate to get
in touch with me. The packaging scripts
are on Ada-France's public monotone
server [4,5]. Maybe one day I will be able
to integrate a rock-solid PolyORB in
some future version of Debian.
[1] http://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=492100
[2] see thread started by :
http://lists.adacore.com/pipermail/
polyorb-users/2008-May/000950.html

[3] http://lists.adacore.com/pipermail/
polyorb-users/2008-June/000984.html
[4] http://www.ada-france.org:8081/
branch/changes/org.debian.polyorb
[5] http://www.ada-france.org/
article131.html
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 30 Jul 2008 10:15:16 −0700

(PDT)
Subject: Re: Ada in Debian: dropping

support for the Distributed Systems
Annex

Newsgroups: comp.lang.ada
> It means, It doesn't even work it to give

a try compile it under Debian?
gnat-glade itself compiles (there is a
binary package in Debian testing) but if
you try to compile your own distributed
programs with it, you get compiler errors
due to version mismatches between
compiler (gnat-4.3), run-time library
(libgna-4.3) and libgarlic-dev. These
mismatches are detected by means of the
.ali files.
The state of PolyORB is that both
PolyORB itself and the distributed
program compile fine, but then the
distributed program gives errors at run
time.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Thu, 31 Jul 2008 09:09:03 +0200
Organization: Adalog
Subject: Re: Ada in Debian: dropping

support for the Distributed Systems
Annex

Newsgroups: comp.lang.ada
Point of information: Glade has
reappeared in GnatPro 6.1.2
I guess this means that there /are/ paying
customers who use Annex E…

References to
Publications
Functional programming in
Ada
From: Harald Korneliussen

<vintermann@gmail.com>
Subject: Functional programming in Ada
Date: Thu, 3 Jul 2008 12:36:24 −0700

(PDT)
Newsgroups: comp.lang.ada
FP guru Chris Okasaki wrote an
interesting post on doing functional
programming in Ada. Perhaps mostly a
curiosity, but interesting that it can be
done.
http://okasaki.blogspot.com/2008/07/funct
ional-programming-inada.html

Embedded Control Europe
— “Code coverage”
From: AdaCore Press Center
Date: Tuesday June 24, 2008
Subject: Code coverage: free software and

virtualization to the rescue
RSS: http://www.adacore.com/2008/06/24/

code-coverage-free-software-and-
virtualization-to-the-rescue/

Embedded Control Europe
[See http://www.embedded-control-
europe.com/know-how?kid=206 and
http://www.embedded-control-
europe.com/c_ece_knowhow/206/basapr0
8p32.pdf —su]

SAE International —
“Conflict detection software
runs on Ada”
From: AdaCore Press Center
Date: Wednesday July 23, 2008
Subject: Conflict detection software runs on

Ada
RSS: http://www.adacore.com/2008/07/23/

conflict-detection-software-runs-on-ada/
SAE International

COTS Journal — “Real-
Time Concurrent Issues
Drive Ada versus Java
Choice”
From: AdaCore Developer Center
Date: Tuesday August 26, 2008
Subject: Real-Time Concurrent Issues Drive

Ada versus Java Choice
RSS: http://www.adacore.com/2008/08/26/

real-time-concurrent-issues-drive-ada-
versus-java-choice/

Ben Brosgol has recently published a
paper in COTS Journal that examines the
real-time advantages of Ada and Java:
“On the surface, Ada and Java offer
similar features to support real-time
embedded military applications. But
under the hood, they differ significantly in
their underlying philosophy.”
To read the full article, please click here
Real-Time Concurrent Issues Drive Ada
versus Java Choice or visit
http://www.cotsjournalonline.com/home/
article.php?id=100827

AdaCore — Embedded
Systems Conference 2008
From: AdaCore Press Center
Date: Wednesday August 13, 2008
Subject: Embedded Systems Conference

(ESC) 2008
RSS: http://www.adacore.com/2008/08/13/

embedded-systems-conference-esc-2008/
AdaCore will be exhibiting at this event.

162 Ada Inside

Volume 29, Number 3, September 2008 Ada User Journal

AdaCore — SIGAda 2008
From: AdaCore Press Center
Date: Wednesday August 13, 2008
Subject: SIGAda 2008
RSS: http://www.adacore.com/2008/08/13/

sigada-2008/
AdaCore will be exhibiting at this event.
Keynote: AdaCore senior engineer, Ben
Brogsol, will give the keynote address
entitled, ‘From Strawman to Ada 2005: a
Socio-Technical Retrospective’. (Sunday
October 26)
Tutorial: Ben Brogsol will present a
tutorial on ‘Languages for Safety-Critical
Software: Issues and Assessment’.
(Tuesday October 28)

AdaCore — SCADE User
Group Conference
From: AdaCore Press Center
Date: Wednesday July 23, 2008
Subject: SCADE User Group Conference
RSS: http://www.adacore.com/2008/07/23/

scade-user-group-conference/
AdaCore is an invited partner at this event
and will be exhibiting.

Rapita — Embedded
Systems Show (ESS08)
From: Rapita News
Date: 1 September, 2008
Subject: Visit Rapita Systems at the

Embedded Systems Show (ESS08), NEC,
Birmingham, UK 1st-2nd October 2008

RSS:
http://www.rapitasystems.com/node/342

Rapita Systems will be attending the
Embedded Systems Show (ESS) at the
National Exhibition Centre, Birmingham,
UK. We are exhibiting with SDC
Systems, our UK distributor on booth
540. Come and visit us there.
Further details of the conference can be
found on the Embedded Systems Show
website.
http://www.embedded.co.uk/index.php

Ada Inside
Who's Using Ada in
industry?
From: Michael Feldman

<mfeldman@gwu.edu>
Date: Tue, 10 Jun 2008 12:52:48 −0700
Subject: “Who's Using Ada” — June 2008

edition
Newsgroups: comp.lang.ada
“Who's Using Ada: Real-World Projects
Powered by the Ada Programming
Language”
http://www.seas.gwu.edu/~mfeldman/
ada-project-summary.html

I've just put up the June edition of the Ada
project catalog. Thank you all very much
for the numerous additions and
corrections. The list of defense-related
projects is longer than before, but other
categories are also growing as people
send me tips. I'm glad to see growth in the
desktop apps group; I suspect there are
more of those I haven't learned of yet.
I've decided to leave the previous editions
online for comparison purposes. The basic
link above will always point to the most
recent; I've identified the older ones by
adding a year and month to the file name.
For example, May 2008 is
http://www.seas.gwu.edu/~mfeldman/
ada-project-summary-0805.html
I'm still checking out some tips and
possible links; they'll appear in the July
edition, which will be delayed till mid-
July because I'm traveling.
Have a good June; see you again in July.
[See also same topic in AUJ 29-2 (Jun
2008), p.91. —su]

Ipesoft Selects GNAT Pro to
Develop Real-Time
Management Systems
From: AdaCore Press Center
Date:Tuesday June 17, 2008
Subject: Ipesoft Selects GNAT Pro to

Develop Real-Time Management
Systems

RSS: http://www.adacore.com/2008/06/17/
ipesoft/

Ipesoft Selects AdaCore and GNAT Pro
to Develop Real-Time Management and
Production Systems
VENICE, Italy, and NEW YORK, June
17, 2008 — Ada-Europe 2008 —
AdaCore, provider of the highest quality
Ada tools and support services, today
announced that Ipesoft, s.r.o, a leading
developer of real-time applications and
long-standing AdaCore customer, has
extended the use of GNAT Pro on its
high-reliability servers. Ipesoft is now
using GNAT Pro to develop D2000®
Enterprise Production Systems, a unique
family of solutions that provides real-time
management and production systems for
manufacturing and energy facilities.
Based in the Slovak Republic, Ipesoft is
focused on two areas — developing
technology for real-time applications, and
acting as a systems integrator to create
and incorporate complete mission-critical
solutions for its customers, based on its
D2000 technology. D2000 enables the
creation of integrated solutions for the
whole enterprise — from process
automation, comprehensive monitoring
and management of production processes,
to integration with other information
systems within the enterprise. The core of
this technology is a real-time application
server with robust platform-independent

RAD (Rapid Application Development)
tools. The server is scalable, distributed,
and supports redundancy. The server code
is written in Ada.
In the industry targeted by Ipesoft,
reliability and long-term maintenance are
key. The Ada programming language
satisfies these core needs by offering real-
time features and support for distributed
applications, strong type checking that
helps detect errors and avoid
vulnerabilities, and language stability that
has maintained backwards compatibility
at every evolution of the language (Ada
2005, Ada 95, and Ada 83). These
attributes are vital given the size of the
D2000, which has grown to encompass
over 1.7 million lines of code since its
inception in 1993. GNAT Pro and
AdaCore were chosen due to the
combination of multi-platform availability
(GNAT Pro is available on more
platforms than any other Ada
development environment) and the strong
support that AdaCore provides.
“Ipesoft’s adoption of Ada for its core
product development demonstrates the
advantages that the language provides for
long-lived, mission-critical applications,”
said Cyrille Comar, Managing Director,
AdaCore Europe. “Using GNAT Pro has
enabled Ipesoft to create real-time
production and control systems that
underpin the company’s growth and
deliver high integrity solutions to its
growing customer base.”
“D2000 is the cornerstone of all Ipesoft’s
current and future activities,” said
Miroslav Kunsch, CEO, Ipesoft. “We
needed a long-term partner and a scalable
software development environment.
Selecting AdaCore has been key to our
success; choosing Ada was the right
decision at the right time and we are glad
to reinforce our relationship with this new
contract.”
Ipesoft began work with AdaCore in
2002, initially using GNAT Pro for
Windows. It is now using GNAT Pro for
Itanium OpenVMS, GNAT Pro for Alpha
OpenVMS and GNAT Pro for x86
Windows. The GNAT Pro development
environment combines market-leading
technology with an expert support system
to provide a natural solution where
efficient and reliable code is critical.
About Ipesoft
Ipesoft is a pioneer and leader in the
production systems segment of the Slovak
market. Ipesoft products provide solutions
for all aspects of manufacturing
enterprises, from processing automation
to complex monitoring and controlling of
production processes, which can be
integrated in Enterprise Resource
Planning (ERP) company information
systems. Solutions based on D2000
products are powerful tools, helping
management at all levels. Managers

Ada Inside 163

Ada User Journal Volume 29, Number 3, September 2008

receive quality, reliable and up-to-date
information for operational planning. The
richness and quality of information aids
the decision-making process, thereby
bringing truly effective manufacturing
enterprise control. Ipesoft solutions are
helping companies to increase
productivity through production process
mapping and indicating areas needing
improvement.
Ipesoft integrates data from multi-location
plants into a comprehensive database
allowing visualization of performance of
all the facilities as a whole. The system
communicates with other information
systems within the enterprise like ERP,
Supply Chain Management (SCM), etc.
Ipesoft solutions are designed as open,
flexible and ready to grow according to
our customers’ requirements. Keywords
here are collaborating manufacturing,
complete knowledge-based solution
exceeding expectations, and standard
Manufacturing Execution System (MES)
capabilities.
Ipesoft’s staff provides a comprehensive
set of services, ranging from analysis,
application concept, design and
implementation, to post-implementation
support.

Robins Air Force Base
Selects DDC-I for AC-130U
Software Support
From: DDC-I Press Releases Archive
Date: August 26, 2008
Subject: Robins Air Force Base Selects

DDC-I for AC-130U Software Support
URL: http://www.ddci.com/

display_news_item-filename-
news_Robins_Air_Force_Base_Selects_
DDC-I_for_AC-
130U_Software_Support_release.htm

Replaces Legacy compilers with DDC-I’s
Eclipse-based OpenArbor IDE and
SCORE-Ada compilers
Phoenix, AZ. August 26, 2008. DDC-I, a
leading supplier of development tools for
safety-critical applications, today
announced that is has been selected by the
US Air Force Warner Robins Air
Logistics Center to assist with the
USAF’s organic refresh and support effort
for the C130’s avionics software. The
USAF will use DDC-I’s Open Arbor
products to replace legacy MIPS and
1750A Ada compilers. As part of the
compiler evaluation, the USAF has
migrated one of the avionics applications
to DDC-I’s OpenArbor development
environment.
“The Air Force has traditionally
outsourced its support to contractors,”
said Bob Morris, president and CEO of
DDC-I. “Now they are creating their own
‘organic’ software teams to save costs and
reduce turn-around times. DDC-I is proud
to provide foundational products, training,

and services that will better enable the
USAF to bring this work internally and
ramp up its program teams in short
order.”
Starting with a clean slate enables the
USAF software teams to look beyond the
very basic tools that the original
contractor used to developed and maintain
the C130’s avionics software. Now,
instead of staying with rudimentary tools
like command-line debuggers,
Solaris/VAX servers, and weak profilers,
the USAF teams can employ leading edge
IDEs and other tools. These best-in-class
tools give the USAF teams a technical
advantage over the contractor’s old-line
approach, thereby enhancing productivity
and robustness.
OpenArbor is a mixed-language, object-
oriented IDE for developing and
deploying real-time, safety-critical
applications. The core environment
combines optimizing compilers and
libraries for C and Embedded C++ with
the SCORE mixed-language debugger.
The SCORE debugger features an
intuitive multi-window GUI, project
management support, and automated
build/make utilities. SCORE’s symbolic
debugger recognizes C/EC++, Ada and
Fortran syntax and expressions, and can
view objects, expressions, call chains,
execution traces, interspersed machine
code, machine registers, and program
stacks.
OpenArbor provides a separate Eclipse
plug-in for Ada development. Known as
SCORE-Ada, this plug-in features an
optimizing Ada compiler and run-time
environment optimized for safety-critical
embedded Ada projects. The SCORE-Ada
debugger supports full Ada-level
debugging, including constraints,
attributes, tasking, exceptions, break-on-
exception and break-on-tasking events.
The debugger is non intrusive, can debug
at the source or machine level, and can be
enabled without changing the generated
code.
About DDC-I, Inc.
DDC-I, Inc. is a global supplier of
software development tools, custom
software development services, and
legacy software system modernization
solutions, with a primary focus on safety-
critical applications. DDC-I's customer
base is an impressive “who's who” in the
commercial, military, aerospace, and
safety-critical industries. DDC-I offers
compilers, integrated development
environments and run-time systems for
real-time Java, C, Embedded C++, Ada,
JOVIAL and Fortran application
development. For more information
regarding DDC-I products, contact DDC-I
at 1825 E. Northern Ave., Suite #125,
Phoenix, Arizona 85020; phone (602)
275-7172; fax (602) 252-6054; e-mail
sales@ddci.com or visit www.ddci.com.

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —su]
Job Description: Belgium
Study/improve the techniques and tools
available in the framework of valgrind
and apply to a big Ada based application.
(…) making extensive use of Ada,
including features such as Ada tasking
(i.e. multi-threading) and dynamic
memory.
Valgrind is a framework in which various
checking tools have been developped for
dynamic analysis. Among others:
- memcheck: checker for memory leak,

dangling pointer, uninitialized data;
- cachegrind/callgrind: tool to find where

CPU is used;
- massif: tool to report about heap usage;
- omega: instant leak detector;
- helgrind: tool searching for data race

condition access;
- drd: similar to helgrind.
(…) The tools and how they work could
be looked at and evaluated gradually:
- First on some very small executable

tests: the ACATS tests (these are the
standardized tests used for Ada
compiler conformity checking).
Running the ACATS tests under
memcheck has already been done.
These tests can be used for a first
evaluation of other valgrind tools. (…)

Job Description: France
Activities:
⁃ Design and implement middleware for
distributed systems
⁃ Specify middleware modules and
services according to the specific needs of
the distributed application
⁃ Contribute to the existent middleware
created by the group
⁃ Contribute to research projects,
particularly in the domains of real-time
embedded systems, massively parallel
systems and ad hoc networks.
⁃ Specify and model a middleware and
related services for deployment and
verification of the distributed system.
⁃ Port and adapt software to new
machines and new systems.
⁃ Assist and support users of the
developed applications
⁃ Participate in writing of documentation
and project proposals in English and
French.
Skills:
⁃ Knowledge and experience in systems
and networks: Unix, TCP/UDP, SQL
⁃ Knowledge and experience in
programming: C, Java, (Ada appreciated)
⁃ Knowledge and experience in

164 Ada in Context

Ada User Journal Volume 29, Number 3, September 2008

distribution technologies: CORBA, RMI,
⁃ Experience in software specification and
modeling: UML, ADL,
⁃ Experince in algorithms for distributed
systems: global state, distributed memory
⁃ Experience in verification: petri nets,
synchronous languages
⁃ Degree equivalente to a Master in
informatics
Context:
In a department responsible for teaching
and research in informatics and networks
of a school of engineers leader in the field
of telecommunications
In a group specialised in software
development (10 Professors and 10 PhD
students) and strongly connected to the
competitiveness clusters.
[Translated from French —su]
Job Description: UK
I have a contract opportunity for a client
based in South East, UK who is looking
for an Ada contractor, initially for 3
months. The hourly rate is between £40
and £42 per hour.
Key skills for the role are:
- Ada 95
- Object Oriented Experience
- SC Security Clearance or eligible to

obtain British Security Clearance
- Team Player
- Good communication skills
Desirable skills:
- UML
- Ada 83
- C++
Job Description: USA
The Senior Software Engineer will be
responsible for development of embedded
command, control, and communications
software for the digitized battlefield. (…)
It performs data messaging, provides
wireless communication protocols, and
interfaces with military communication
equipment and aviation mission systems.
Providing advanced applications, the
software manages current battlefield
situational awareness data on friendly and
enemy forces for pilot display, and
manages current mission orders and
digital map overlays.
The Senior Software Engineer will
analyze requirements, create object
oriented software designs, implement
software, and perform unit and integration
testing. Software will be implemented
using Ada 95 and executes on a POSIX
compliant operating systems.
Education
BS Computer Science or other field
Required Skills
- Minimum of 7 years development

experience with Ada 95

- Minimum of 9 years experience in
software development.

- Must be able to work independently
with minimal supervision.

- Experience with multi-threaded
development.

- Good foundation and experience in
Object Oriented Design.

- Experience developing software for
LynxOS, Linux, VxWorks or Unix
based targets.

Desired Skills
- Embedded systems development

experience
- Experience with C/C++
- Experience with CORBA
- Experience with ClearCase

Ada in Context
Unix daemon in Ada
From: Jacob Sparre Andersen

<jspa@nykredit.dk>
Date: Tue, 29 Jul 2008 02:05:52 −0700

(PDT)
Subject: Re: Ada daemon
Newsgroups: comp.lang.ada
> My good friend Dwight and I are

wondering about how to create a
daemon in Ada. So far we've only been
able to locate this example:
http://www.pegasoft.ca/resources/bobla
p/16.html#16.26
which honestly looks both hideous and
unpleasant, to us.

Systems programming isn't always
beautiful. The trick is to notice that
almost all the code you see is actually a
reusable library. Also, several of the
subprograms in the library do actually
exist in the POSIX packages, so there's no
need to manually bind to the C versions of
the subprograms.
In practice the important part of
daemonizing a process is to disconnect
Standard_Input, Standard_Output and
Standard_Error. You can do this with:

POSIX.IO.Close (File =>
 POSIX.IO.Standard_Input);
POSIX.IO.Close (File =>
 POSIX.IO.Standard_Output);
POSIX.IO.Close (File =>
 POSIX.IO.Standard_Error);

> Yes, it might be because we're just a
bunch of beginners, but still we were
hoping for a “prettier”, more Ada like
approach. This one seems to rely on a
lot of pragma import C stuff.

Using the POSIX standard packages
definitely makes it prettier.

> So, is this the only way to create a
simple daemon, or can you point us in
other directions?

Here's an (untested) implementation of
Daemonize using “pure” Ada:

with
 POSIX.IO,
 POSIX.Process_Environment,
 POSIX.Process_Identification,
 POSIX.Unsafe_Process_Primitives;

procedure Daemonize is
begin

 POSIX.Process_Environment.
 Change_Working_Directory ("/");
 for File in
 POSIX.IO.File_Descriptor'Range
 loop
 if POSIX.IO.Is_Open (File) then
 POSIX.IO.Close (File);
 end if;
 end loop;

 case POSIX.Unsafe_Process_
 Primitives.Fork is
 when -1 =>
 POSIX.Process_Primitives.
 Exit_Process
 (POSIX.Process_Primitives.
 Failed_Creation_Exit);
 when 0 =>
 declare
 Session_Leader :
 POSIX.Process_Identification.
 Process_Group_ID;
 begin
 POSIX.Process_Identification.
 Create_Session
 (Session_Leader);
 end;
 when others =>
 POSIX.Process_Primitives.
 Exit_Process;
 end case;
end Daemonize;

On Debian you need to install the package
“libflorist-dev”, to have access to the
POSIX packages.

Ichbiah and OOP in Ada 95
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Wed, 04 Jun 2008 16:14:21 +0200
Subject: Re: The A-Z of Programming

Languages: Ada, interview with S.
Tucker Taft

Newsgroups: comp.lang.ada
Has Ichbiah been right to be sceptical of
Ada 95's OO? It does seem to have, uhm,

Ada in Context 165

Ada User Journal Volume 29, Number 3, September 2008

rich structure, seen from a learners point
of view.
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Thu, 05 Jun 2008 15:58:36 +0200
Subject: Re: The A-Z of Programming

Languages: Ada, interview with S.
Tucker Taft

Newsgroups: comp.lang.ada
> This prompts the question: how would

Ichbiah have implemented OOP in
Ada?
Perhaps barely, if at all.

This seems surprising because classwide
programming and dynamic dispatch seem
to have been among the requirements of
Ada 9X. (I got this idea from browsing
the archives.)
In an excerpt from a letter sent by Ichbiah
to the Ada 9X group, a part of which is
quoted in Meyer's OOSC2, Ichbiah
appears to be addressing the increased
complexity of the language, which is
caused by the then new features and their
combinations. He computes it to be
approaching ~60_000 combinations. (I'll
look up the details.) Might Ichbiah have
thought that by some 80/20 rule, you can
overdo things if you create Ada 9X the
way it was around 1992?
IIUC what Taft says in the interview,
Ichbiah didn't like the _way_ OOP was to
be implemented. OTOH he had been
working on a Simula compiler at INRIA.
So maybe OOP alone was not the
elephant.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 11 Jun 2008 20:57:41 −0500
Subject: Re: The A-Z of Programming

Languages: Ada, interview with S.
Tucker Taft

Newsgroups: comp.lang.ada
> I wasn't there, but rumor had it that JDI

wanted to use the term “class” (rather
than “tagged type”) for consistency
with other OO languages. I don't know
what his other disagreements were.

I *was* there, and that was a major
contention between two groups. (I was on
Ichbiah's side on this argument, but I
didn't quit when I lost. ;-). I don't recall
any technical objections that he had. The
whole discussion degenerated into
something rather theoretical. I don't want
to go into detail, because I don't want to
speak ill of the dead (or of the living, for
that matter).
I personally thought that using derived
types (which no one understood in Ada
83) to implement classes was a mistake.
Tucker was adamant on this point. I'm
still not sure if he was right, but I'm used
to it now. (Adding overriding indicators
surely helps a lot, by indicating the
programmers intent.)
From: Christoph Grein

<christoph.grein@eurocopter.com>

Date: Thu, 12 Jun 2008 00:25:25 −0700
(PDT)

Subject: Re: The A-Z of Programming
Languages: Ada, interview with S.
Tucker Taft

Newsgroups: comp.lang.ada
(…) I used type derivation a lot in Ada 83
with much benefit for handling physical
types adding new operations on the
derived type.
And there is the trick attributed to John
Goodenough to add user-defined equality
to any type.
(…) I think that using the Ada 83 type
derivation facility for this is very natural.
Why invent a completely new technique?
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Subject: Re: The A-Z of Programming

Languages: Ada, interview with S.
Tucker Taft

Date: Thu, 05 Jun 2008 16:13:59 +0200
Newsgroups: comp.lang.ada
Organization: Adalog
Actually, Ichbiah was well aware of the
benefits of OOP, and actually that's why
he insisted for having derived types in
Ada 83, against the opinion of the rest of
his team.
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Thu, 05 Jun 2008 21:40:55 +0200
Subject: Re: The A-Z of Programming

Languages: Ada, interview with S.
Tucker Taft

Newsgroups: comp.lang.ada,
comp.lang.eiffel

As promised, here is what Meyer quotes
from Ichbiah's resignation letter:
 “A massive increase in complexity will
result from 9X adding one or more
additional possibilities where Ada now
offers two. For example, 9X adds: […]
access parameters, to IN, OUT, and IN
OUT; tagged types, to normal types;
dispatched subprogram calls, to normal
subprogram calls; use type clause, to use
package clauses; … With 9X, the number
of interactions to consider is close to
60,000 since we have 3 or more
possibilities in each case (that is, 3^10).”
(OOSC2, §33.7, p.1095)
The comment “adds: tagged types, to
normal types” is particularly interesting, I
think, because it touches on a
consequence of this distinction: sloppy
versus exact base type systems:
Eiffel tries to have basically one kind of
type definition, namely the class—even
though “expanded class” “adds one or
more additional possibilities”, if I may
aim Ichbiah's comment at Eiffel.
Compiler magic is/was used for types
such as INTEGER or REAL. Some
operations of INTEGER are “require”-
predicates used for testing whether or not
an integer value fits a subsets of
INTEGER, e.g. 8-bit integers.

Ada, as mentioned by Ichbiah, has
“normal” types for defining integers,
reals, etc., and tagged types for defining
polymorphic types. You want integers
between 0 and 10_000 only? Define a
corresponding normal type, or do
“normal” derivation from another integer
type adding the needed constraint. (Part of
the language since Ada 83 as pointed out
by J.-P. Rosen above.)
What I find so interesting is that these
ways to define basic types might show
that there are undeniable reasons to
require two type definition mechanisms.
(I guess this is not news to people who
worked on either Ada 9X or Eiffel, but it
appears to be news to a new audience
tackling the base type system. And the
presence of one or the other always
affects programs.)
Do the Eiffel base types work well? Do
they match the “normal” integer types of
Ada in practice? Using cut&paste
polymorphism and renaming one can
change INTEGER to a different
INTEGER with more specific require
predicates, predicates even more powerful
than Ada's range constraints(*). Still,
people coming to Eiffel have more than
once asked for more programmer control
of basic Eiffel types such as INTEGER
and FLOAT. Messing with base types,
renaming and cluster management do not
look like the best solution.
So maybe there is good reason to have
both normal types, and tagged types, even
if this complicates the language?
(*) Some hard work has been done with
the goal of enhancing Ada's type
constraints in the sense of DbC. It has
been published as AIs and elsewhere.
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Fri, 06 Jun 2008 19:57:26 +0200
Subject: Re: The A-Z of Programming

Languages: Ada, interview with S.
Tucker Taft

Newsgroups: comp.lang.ada
> In which sense “sloppy/exact”?
Sloppy/exact in the sense of mapping the
set of problem or solution values to a set
of type values 1:1, bijectively.
When all you have is int, INTEGER, Int,
etc. but your set of whole numbers has
bounds strictly inside (min machine-int,
max machine-int), say, then one type
system allows you to exactly give the
lowest and highest whole number that
your (sub)type is to have. Another type
system, namely that of Qi, even permits
computing a set of values using a Turing
complete type declaration language. So
“only odd natural numbers” will be a
perfectly normal Qi type. A type
definition that basically must use “int”,
but the set of values is between 0 and
1_000_000, is sloppy in that it does not
express the set, neither to the reader nor to
the compiler.

166 Ada in Context

Volume 29, Number 3, September 2008 Ada User Journal

You might recall the report that an
embedded systems teacher from a US
university has summarized here. A base
type system that is a more exact
representation of the solution sets does
help in programming.
> Tagged types aren't polymorphic. Only

their classes (closures of) are.
Yes, and you define tagged types in order
to get classwide polymorphic types.
There are no class-wide types rooted at
some non-tagged type. There is a
universal type. This, I think, reflects the
tagged vs normal distinction Ichbiah is
listing. (…)
From: Robert A Duff <duff@adacore.com>
Date: Tue, 15 Jul 2008 20:15:05 −0400
Subject: Re: Ada OOP alternatives?
Newsgroups: comp.lang.ada
> might anybody know what the different

designs were for OO in Ada? what was
Ichbiah's design, vs. the one that went
through? thanks.

Interesting question.
As far as I know, Ichbiah didn't have a
design for OO in Ada 95. He wanted the
syntax to be something like “class type T
is…”, as opposed to “type T is tagged…”,
and he _very_ much wanted “class” to be
a reserved word, rather than a mere
attribute.
I don't remember Ichbiah proposing any
detailed semantics for “class type T is…”.
His concern, as far as I know, was syntax-
oriented.
Of course Ichbiah knew all about OO
when he designed Ada 83 — I'm told he
was familiar with Simula 67, for ex.,
which is the Mother of all OOP
languages. He left OO out of Ada 83
deliberately. I've no idea whether that
was his own choice, or forced by some
requirements document like Steelman.
And Ichbiah invented Ada's derived types,
upon which Tucker Taft based OO in Ada
95. I've no idea whether Ichbiah had that
sort of thing in mind when he invented
derived types. But I've been told that
derived types were controversial for Ada
83 — the reviewers thought they were
useless nonsense, but Ichbiah insisted on
keeping them in the language design.
As for other (non-Ichbiah) designs, well
I've seen various proposals for “package
types”, treating Ada packages like
“classes” in languages like Simula-67,
Java, C++, etc. I'm not sure that works.
E.g. the question arises whether types
declared in two different “package
objects” of the same “package type”
should be the same type. I'm not sure it
does _not_ work, either. ;-)
[See also 'Computerworld — “The A-Z of
Programming Languages: Ada”' in AUJ
29-2 (Jun 2008), p.89. —su]

Size of C & Ada types
From: Adam Beneschan

<adam@irvine.com>
Date: Fri, 27 Jun 2008 08:07:57 −0700

(PDT)
Subject: Re: Ada array vs C pointer (call by

reference)
Newsgroups: comp.lang.ada
> Can I use Float instead of

Interfaces.C.C_Float?
(…) Only if you know for certain that
Float is the same type as the C “float” and
don't care about portability. (…)
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Sat, 28 Jun 2008 04:59:38 GMT
Subject: Re: Ada array vs C pointer (call by

reference)
Newsgroups: comp.lang.ada
Interfaces.C should be considered an
interface to some specific C compiler, not
to C in the abstract. GNAT's version is an
interface to gcc C, for example. Whether
that compiler is the same as the one used
to compile your library, or uses the same
representations, is anyone's guess. But on
most platforms, most C compilers use
similar representations, so you're probably
OK using Interfaces.C. If not, then you'd
be in the same boat if you used a C
compiler.
From: Robert A Duff <duff@adacore.com>
Date: Sat, 28 Jun 2008 13:44:53 −0400
Subject: Re: Ada array vs C pointer (call by

reference)
Newsgroups: comp.lang.ada
> And how the implementation can

guarantee it without mandating the
representation on the C compiler?

The idea is that the Ada compiler writer
chooses a particular implementation of C,
and supports interfacing to that. No need
to “mandate” — just write the Ada
compiler so it mimics what that particular
C compiler does. And then the Ada
compiler writer writes documentation
“this Ada implementation supports
interface to the Mumble C compiler,
version 1.2.3”. The Ada implementation
could support interfacing with multiple C
implementations, but if the Ada
implementation claims to support
interfacing to C, it has to support at least
one.
> Consider a C compiler that has a switch

that selects the representation for
fundamental types. It is not uncommon.
I can have *the same* program
compiled twice by *the same* compiler
and the two versions will differ in
representation of their fundamental
types.

That's conceptually two (or more) C
implementations. The Ada compiler
writer would document the switches that
must be used on the C side. Or maybe
there would be similar switches on the

Ada side, and the documentation would
require them to match.
> How Ada implementation can guarantee

anything in this area?
An Ada implementation guarantees that
Interfaces.C.C_Float matches the
representation of float chosen by a
particular C implementation, such as
version 1.2.3 of the Mumble C compiler.
Not so hard. And quite useful.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Tue, 1 Jul 2008 16:10:52 −0500
Subject: Re: Ada array vs C pointer (call by

reference)
Newsgroups: comp.lang.ada
(…) On Janus/Ada, Integer is always 16-
bit (for compatibility with our original
implementations), but Interfaces.C.Int is
whatever the C compiler uses (for most
targets, including Windows, that's 32-bit).
If you use Interfaces.C and pragma
Convention as intended, your interfacing
code ought to be portable — at least with
the supported C compiler(s) (and you
have a bug to report if it is not). If you use
Integer or Float, you're adding portability
issues where none are needed.
Indeed, IMHO any code explicitly using
the predefined types is wrong in Ada (vis-
a-vis portability). And yes, I include the
various items in the standard language
that do that (including the random number
generator and of course type String). It's
one of the worst flaws in the language
(since it makes string usage not portable,
which is idiotic).
From: Peter C. Chapin

<pchapin@sover.net>
Date: Fri, 27 Jun 2008 20:56:38 −0400
Subject: Re: Ada array vs C pointer (call by

reference)
Newsgroups: comp.lang.ada
(…) I never assumed that Interfaces.C
could somehow magically allow any Ada
compiler to work with any C compiler.
I'm surprised that some people seem to
expect that. However, when I call C code
compiled with gcc using GNAT, I would
expect Interfaces.C to specify the right
types because gcc and GNAT are closely
related compilers. Furthermore if I then
move my Ada/C program to another
Ada/C compiler suite, I would expect it to
continue to work (if I'm using
Interfaces.C properly, etc, of course).
From: Keith Thompson <kst-u@mib.org>
Date: 28 Jun 2008 14:22:09 −0700
Subject: Re: Ada array vs C pointer (call by

reference)
Newsgroups: comp.lang.ada
> the vendor must provide both the Ada

compiler and the C compiler. Are there
any vendors out there that don't?

No, the vendor certainly doesn't have to
provide both the Ada compiler and the C
compiler. The author of the Ada compiler

Ada in Context 167

Ada User Journal Volume 29, Number 3, September 2008

simply has to know how the C compiler
represents the various types, in order to
get Interfaces.C right. In most cases, the
C type representations are mandated, or at
least strongly suggested, by the
underlying system.
(GNAT/gcc is the only case I know of
where an Ada compiler and a C compiler
come from the same source.)
From: Robert A Duff <duff@adacore.com>
Subject: Re: Ada array vs C pointer (call by

reference)
Date: Sat, 28 Jun 2008 13:52:19 −0400
Newsgroups: comp.lang.ada
> the author of the Interfaces.C

implementation has to *know* the
representation used by the C compiler,
which is, of course, impossible without
a crystal ball.

No need for crystal balls. Just read the
documentation of the C compiler.
Maybe you're worried that the C compiler
will change the size of float in a future
version? Well, first of all, that won't
happen because it will break existing C
programs. But if it does, then that's a new
and different implementation of C, and
the Ada compiler would have to be
modified in order to support interfacing to
it. Why is that a problem?
This whole argument started because
somebody wanted to use Float instead of
C_Float. But there is nothing in the Ada
RM saying that Float should correspond
to anything in particular. There IS
something in the RM saying that C_Float
corresponds to float as implemented by
the C compiler(s) that the Ada compiler
claims to support interfacing to. And the
Ada compiler documentation will tell you
which C compiler(s) are supported.
From: Robert A Duff <duff@adacore.com>
Date: Mon, 30 Jun 2008 14:55:31 −0400
Subject: Re: Ada array vs C pointer (call by

reference)
Newsgroups: comp.lang.ada
> What do you mean by “the” C

compiler?
The one the compiler writer chooses to
support, for interfacing.
Or more than one, if the compiler writer
so chooses.
>…My impression was that more than

one C compiler exists in the world.
And even for particular target
architectures, more than one C compiler
exists for many of these. How is the
Ada compiler supposed to know which
one you're using, without a crystal ball?

The supported C compiler(s) should be
documented. If you use some other C
compiler, you're not playing by the rules
of the game.
It's the same with interfacing to hardware
— if I give you an Ada compiler that
generates code for an x86, and you try to

run programs on a SPARC, it won't work.
That should not be a surprise! ;-)
>…Some people seem to think the Ada

compiler will know how the C compiler
works, …

Yes, of course it will. It won't know how
ALL C compilers in the world work (of
course), but it will know about the one (or
ones) that are supported.
>… and some seem to go far enough to

say that the Ada compiler should be
able to *guarantee* that types in
Interfaces.C will have the same
representation, and that the RM
requires this.

Yes, the RM requires this. But you have
to obey the Ada compiler's
documentation. If it says “compile the C
part of your program with gcc version xxx
using so-and-so switches”, and use some
other C compiler, or some other switches,
it might not work.
> I also don't think there's any

requirement for Ada to dig around
external files to figure out what the
representations are. I checked a C book
we had lying around, and while it gave
no specific definition for the
representations of “int”, “float”, etc., it
did say that the boundaries of those
types are available in <limits.h>. This
is (or was) apparently part of the ANSI
standard. Does this mean that an Ada
compiler has to read <limits.h>
[assuming it knows what the default
#include directory is] to find
information about the types used by the
C compiler? I really, really do not
think there is any such RM
requirement.

The compiler writer can read limits.h, just
as well as any other documentation. (…)
From: Tom Moran <tmoran@acm.org>
Date: Sat, 28 Jun 2008 12:49:55 −0500
Subject: Re: Ada array vs C pointer (call by

reference)
Newsgroups: comp.lang.ada
> In any case, there is nothing related to

“portability” in Interfaces.C. The types
defined there are exactly as non-
portable (as far as interfacing is
concerned) as any other type in Ada, …

 There is of course some added value in
Interface.C.XXX — it is documenting
the intent.

Vendor supplied libraries with names like
“Interfaces.GCC_C” or
“Interfaces.Visual_C” would convey that
intent just as well, but the source code
would require modification to move from,
say, Gnat/GCC to some other compiler
pair. Interfaces.C would not require
source code modification and in that sense
is more inter-vendor portable.
From: Robert A Duff <duff@adacore.com>
Date: Fri, 27 Jun 2008 13:00:27 -0400

Subject: Re: Ada array vs C pointer (call by
reference)

Newsgroups: comp.lang.ada
> Interfaces.C.C_Float, which (assuming

the Ada implementation gets it right), is
guaranteed to match C's float, or of
using Float, which has no such
guarantee (but saves a little typing).
Why would you even consider using
Float?

You might have a program that uses Float
all over the place, and you want to add
some interface to C in one tiny corner of
that program. You might be tempted to
use Float at the interface to C in order to
avoid a lot of type conversions.
It's a pretty good bet that Ada's Float and
Ada's Interfaces.C.C_Float, and C's float
are all represented the same. If you're
using GNAT, I think the documentation
guarantees that.
But you're right — the “right” way to
interface to C is to use the types in
Interfaces.C, and use pragma Convention
when you declare your own types.
From: Keith Thompson <kst-u@mib.org>
Date: 27 Jun 2008 11:15:49 −0700
Subject: Re: Ada array vs C pointer (call by

reference)
Newsgroups: comp.lang.ada
And if you take the shortcut of assuming
that Float and C_Float are the same, and
your program is later compiled on a
system where they're not, you're not likely
to get an error message. In the worst
case, you'll just get subtly wrong answers.
From: Keith Thompson <kst-u@mib.org>
Date: 28 Jun 2008 14:18:03 −0700
Subject: Re: Ada array vs C pointer (call by

reference)
Newsgroups: comp.lang.ada
> A better way to avoid a lot of type

conversions is to provide a thin C
interface using Interfaces.C.C_Float,
and a thin Ada wrapper that does the
type conversion to Ada.Float (or some
other user provided type).

That will still involve a lot of type
conversions at run time, even if you don't
have to write a lot of them in your code.
If Float and C_Float happen to have the
same representation, that's fine. But if
they differ, then the conversions could
have bad numeric consequences.
To summarize: Programming Is Hard.
From: Rob Norris

<rob.norris@baesystems.com>
Date: Thu, 03 Jul 2008 13:44:08 +0100
Subject: Re: Ada array vs C pointer (call by

reference)
Newsgroups: comp.lang.ada
Not too sure where to put my 2p in this
thread, but the 'right' way certainly works
much better at run time!
We have plenty of code that maps
between Ada and C, some of it GNAT

168 Ada in Context

Volume 29, Number 3, September 2008 Ada User Journal

and gcc (but different versions on
different platforms) and also Ada and C#.
Every so often some one forgets and slips
in an Ada float or integer in the data
structures. Then at runtime it either get
strange results / constraint errors /
crashes. Then I come to have a look and
go Aha — you should be using
Interfaces.C — and these problems go
away*
*Except for all the weird alignment issues
of records / structures different compilers
sometime give.
From: Tom Moran <tmoran@acm.org>
Date: Fri, 27 Jun 2008 13:13:45 −0500
Subject: Re: Ada array vs C pointer (call by

reference)
Newsgroups: comp.lang.ada
(…) Janus Ada 95 Integer is 16 bits (for
compatibility with older programs) but
Interfaces.C.Int is 32 bits. Another reason
to always define your own types (or at
least subtypes, so you can change them).
It's amazing to me how many
programmers make unwarranted
assumptions. In twenty years I suppose all
young programmers will assume Integers
must “of course” be 64 bits.
From: Adam Beneschan

<adam@irvine.com>
Date: Fri, 27 Jun 2008 19:17:08 −0700

(PDT)
Subject: Re: Ada array vs C pointer (call by

reference)
Newsgroups: comp.lang.ada
> (…) the C library (which I am

interfacing with) is compiled by
unknown C compiler with unknown
switches and the author cannot be
contacted. The only documentation I
have is the C header file.

Got a good disassembler?
If it really isn't documented what type of
floats it's expecting, and you have no way
to determine what C compiler was being
used, you're pretty much down to looking
at the disassembled code to figure out
how it works, or just trying different
possibilities with small data samples
where you know what the correct result
will be, and trying it with different float
sizes until you get the right result. I don't
know what sort of different answer you
were expecting. Ada is a programming
language, not a magician. Nobody here is
suggesting that in a case like this, that the
Ada compiler should be able to figure out
how to interface to your library; and if
you think they were, you're
overinterpreting.
Furthermore, even if there were some
configuration information in the library
itself (such as debug information in a
symbol table or DWARF section) that
gives information on the expected
parameters, there is certainly no language
requirement that the Ada compiler go
delve into the library file to figure this

out, and I doubt that any Ada compiler
would actually do so. You're on your
own, there.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Tue, 1 Jul 2008 16:31:36 −0500
Subject: Re: Ada array vs C pointer (call by

reference)
Newsgroups: comp.lang.ada
In that case, strictly speaking, you
couldn't use the library from C, or Ada, or
any other programming language. If
you're willing to assume that the code
conforms to the normal conventions for
the target (that is, works like the
“standard” C compiler), then of course
Ada (via Interfaces.C) will work the same
way.
But clearly, if this is compiled by a
“weird” C compiler, you couldn't use it
from gcc or MS-C anymore than you
could use it from Ada. You could only
use it from the “weird” C compiler, and
your problem statement says that you
don't know what that is. In other words, it
is unusable, and you'd be best off
rewriting it in Ada (or even a known C).
Nothing Ada-specific about that.

Unconstrained arrays and C
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Thu, 28 Aug 2008 16:01:35 −0500
Subject: Re: Possible compiler bug with this

simple program
Newsgroups: comp.lang.ada
> In fact, when an Ada subprogram has an

unconstrained array parameter with
Convention C, it seems to me that the
subprogram's body cannot make any
use of individual elements of the array,
because it doesn't know the index
range, so the compiler should reject any
indexing of such an array parameter, as
well as any attempt to pass it on as a
Convention Ada parameter.

This is the subject of AI05-0002-1. (It
was carried over from the Ada 95.) [Now,
I have to go look this one up because I
don't remember anything about what we
decided…] Ah, yes:
“We do not require support for C
convention interfacing pragmas for
unconstrained array objects,
unconstrained array function results, and
most unconstrained array parameters.”
In particular, “An implementation need
not support … an Export or Convention
pragma applied to a subprogram which
has a parameter of an unconstrained array
subtype;”. The wording goes on to
include unconstrained array objects and
function results as well.
Note that an implementation *can*
support this if it wants; some
implementations do implement this with
various meanings (Tucker reported that
their compiler gives the array maximum

bounds) and it was thought to be bad to
break user programs that depend on such
behaviors. But if it does support it, it
ought to do something sensible (raising
random exceptions doesn't count). (Also
note that it is required to support pragma
Import in this case, as C doesn't care
about the bounds and they can just be
dropped.)
> Conclusion: Your program tries to do

something that cannot possibly work,
but the compiler should have told you
so.

Well, not necessarily (see Tucker's
implementation, for instance). But either
it should do something defined *or* reject
it at compile-time. (Janus/Ada would have
rejected the Convention pragma.) In any
case, it is not required to support this in
any useful way, and, as it is not portable,
it should be avoided.
[See also “Size of C & Ada types” in this
issue. —su]

Performance of GNAT GPL
2008
From: Alex R. Mosteo

<amosteo@unizar.es>
Newsgroups: comp.lang.ada
Subject: GPL 2008 is out… and it's faster!
Date: Thu, 05 Jun 2008 15:33:06 +0200
I'm sure many of you are aware that the
GPL 2008 version of GNAT was released
yesterday. It includes several goodies, but
the first thing I noticed when compiling
part of my codebase is that it felt faster.
And sure enough, here is a preliminary
test, compiling my particular do-it-all
library:
$ time gprbuild -Pagpl
GNAT GPL 2007
real 4m35.149s
user 4m1.219s
sys 0m12.529
GNAT GPL 2008
real 3m55.710s
user 3m22.225s
sys 0m12.713s
I guess there's been a change in the gcc
backend leading to this nice speed-up.
Incidentally, I had to change just one line
of code to get this (rather large) library to
compile (some ambiguity that wasn't
perceived as such in the 2007 version).
And now, to test if interfaces are more
useable than before…
[See also “GNAT GPL 2008 Edition” in
this issue. —su]

Compiler for PIC
microcontrollers
From: Britt Snodgrass

<britt.snodgrass@gmail.com>
Date: Fri, 18 Jul 2008 20:08:43 −0700

(PDT)

Ada in Context 169

Ada User Journal Volume 29, Number 3, September 2008

Subject: Re: Is there an Ada port to
Microchip PIC?

Newsgroups: comp.lang.ada
> Does anyone know whether there is an

Ada port for PICs available? I have do
write some code for an 18Fxxx with
CAN-bus interface and would like to do
it with Ada. I look for native code
generation, not for an indirection using
intermediate C code.

If you have to use an actual PIC 18Fxxx
then I think you won't find an Ada

compiler. The 8-bit PICs have a rather
ugly programming architecture
(especially if writing in PIC assembly
language). If you could instead use one of
the new PIC-32s which are based on
MIPS architecture then its probable you
could create or find a GNAT port. There
is also a GNAT port for the 8-bit Atmel
AVR chips but I don't know if any of
them come with a CAN bus capability.
Green Hills Software supports PIC-32
with their C & C++ compilers. I asked if

they planned to port their Ada compiler
but their response indicated they wanted a
first customer to pay for the port.
I've long thought that the lack of Ada
compilers for popular, peripheral-rich
microcontrollers is the principal reason
that Ada asn't been adopted by more
embedded programming hobbyists.
[See also “Ada and microcontrollers” in
AUJ 28-1 (Mar 2007), pp.32–33. —su]

Conference Calendar 171

Ada User Journal Volume 29, Number 3, September 2008

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2008

☺ October 06-08 27th IEEE International Symposium on Reliable Distributed Systems (SRDS'2008), Napoli, Italy.
Topics include: High-confidence systems, Critical infrastructures, Distributed embedded systems,
Formal methods and foundations for dependable distributed computing, etc.

October 06-10 2nd IFIP Working Conference on Verified Software: Theories, Tools, Experiments (VSTTE'2008),
Toronto, Canada. Topics include: all aspects of verified software, theoretical as well as experimental,
such as specification languages and case-studies, programming languages, language semantics, software
design methods, automatic code generation, type systems, verification tools (static analysis, dynamic
analysis, model checking, theorem proving, satisfiability), integrated verification environments, etc.

October 09-10 13th Nordic Workshop on Secure IT Systems (NordSec'2008), Copenhagen, Denmark. Topics
include: Language-based Techniques for Security; New Ideas and Paradigms in Security; Security
Education and Training; Software Security, Attacks, and Defenses; Trust and Trust Management; etc.

October 09-10 2nd International Symposium on Empirical Software Engineering and Measurement
(ESEM'2008), Kaiserslautern, Germany. Topics include: Reports on the benefits derived from using
certain technologies; Empirically-based decision making; Industrial experience in process improvement;
Quality measurement and assurance; Evidence-based software engineering; Effort and cost estimation,
defect rate and reliability prediction; etc.

☺ October 15 2008 SPARK User Group meeting, Bath, UK. Topics include: Formal Methods and DO-178C; The
iFACTS project; Using SMT Solvers to Prove SPARK VCs; SPARK Update and Release 7.6
Highlights.

October 15-17 7th International Conference on Software Methodologies, Tools, and Techniques (SoMeT'2008),
Sharjah, UAE. Topics include: Software methodologies, and tools for robust, reliable, non- fragile
software design; Automatic software generation versus reuse, and legacy systems, source code analysis
and manipulation; Intelligent software systems design, and software evolution techniques; Software
optimization and formal methods for software design; Software security tools and techniques, and
related Software Engineering models; End-user programming environment; etc.

October 15-18 15th Working Conference on Reverse Engineering (WCRE'2008), Antwerp, Belgium. Topics
include: Program comprehension; Mining software repositories; Empirical studies in reverse
engineering; Redocumenting legacy systems; Reverse engineering tool support; Reengineering to
distributed architectures; Software architecture recovery; Program analysis and slicing; Program
transformation and refactoring; etc.

☺ October 16-17 16th International Conference on Real-Time and Network Systems (RTNS'2008), Rennes, France.
Topics include: Real-time system design and analysis (task and message scheduling, verification, formal
methods, model-driven development, worst-case execution time estimation, distributed systems, fault-
tolerance, security, ...); Software technologies for real-time systems (compilers, programming
languages, middleware and component-based technologies, ...); Applications (automotive, avionics,
telecommunications, process control, multimedia, inhouse entertainment, robotics); etc.

October 16-17 2nd Junior Researcher Workshop on Real-Time Computing (JRWRTC'2008).
Topics include: Real-Time Distributed Systems, Middleware, Embedded Operating
Systems, Real-Time Programming Language, Real-Time Software Engineering, System
Development Tools, Worst-Case Execution Time Task Scheduling, etc.

172 Conference Calendar

Volume 29, Number 3, September 2008 Ada User Journal

☺ October 19-23 23rd Annual Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA'2008), Nashville, USA. Topics include: new and better programming and
design paradigms as well as practices. Deadline for early registration: October 19, 2008

☺ October 19 2nd Workshop on Assessment of Contemporary Modularization Techniques
(ACoM.08). Topics include: Lessons learned from assessing new modularization
techniques, Empirical studies and industrial experiences, Comparative studies between
new modularization techniques and conventional ones, etc.

☺ October 19 7th "Killer Examples" workshop. Theme: "Worked Examples" Topics include:
(worked) examples of teaching the process of programming, OO modeling and
programming, problem solving and programming.

October 19-23 7th International Conference on Generative Programming and Component Engineering
(GPCE'2008), Nashville, Tennessee, USA. Co-located with OOPSLA'2008. Topics include: Generative
techniques for Product-line architectures, Distributed, real-time and embedded systems, Model-driven
development and architecture, Safety critical systems; Component-based software engineering (Reuse,
distributed middleware, distributed systems, evolution, patterns, development methods, formal methods,
etc.); Integration of generative and component-based approaches; Industrial applications; etc.

☺ October 19-24 Embedded Systems Week 2008 (ESWEEK'2008), Atlanta, Georgia, USA. Includes CASES'2008
(International Conference on Compilers, Architecture, and Synthesis for Embedded Systems),
CODES+ISSS'2008 (International Conference on Hardware/Software Codesign and System Synthesis),
EMSOFT'2008 (International Conference on Embedded Software).

♦ Oct 26-30 2008 ACM SIGAda Annual International Conference (SIGAda'2008), Portland,
Oregon, USA. Sponsored by ACM SIGAda, in cooperation with SIGAPP, SIGCAS,
SIGCSE, SIGPLAN, SIGSOFT, Ada-Europe, and Ada Resource Association (Cooperation
approvals pending). Topics include: Transitioning to Ada 2005; Educational challenges
for developing reliable, safe, secure software; Ada and SPARK in the classroom and
student laboratory; Language selection for a high reliability system; Use of high
reliability subsets or profiles such as MISRA C, Ravenscar, SPARK; High reliability
standards and their issues; Software process and quality metrics; Analysis, testing,
and validation; Use of ASIS for new Ada tool development; Mixed-language
development; High-reliability development experience reports; Static analysis of code;
Integrating COTS software components; System Architecture & Design; Information
Assurance; Ada products certified against Common Criteria / Common Evaluation
Methodology; etc. Deadline for early registration: October 22, 2008.

☺ October 20-22 IMCSIT2008 - International Workshop on Real-Time Software (RTS'2008), Wisla, Poland. Topics
include: Real-time system development, Scheduling, Safety, Reliability, Dependability, Standards and
certification, Control software, Robotics and UAV, Software development tools, Model-based
development, Real-time systems education, Related engineering curricula, etc.

November 09-15 16th ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE-
16), Atlanta, Georgia, USA. Topics include: Components and Middleware, Dependability (safety,
security, reliability), Empirical Studies, Generative Programming, Software Reuse, Quality and
Performance, Reengineering and Reverse Engineering, Specification and Verification, Tools and
Environments.

☺ Nov 14 4th International Workshop on Exception Handling (WEH'2008). Topics include:
Empirical studies of exception handling engineering; Design patterns and anti-
patterns, architectural styles, and good programming practice cookbooks; Static
analysis and testing of exception handling; Refactoring and evolution of exception
handling code; Exceptions and variability management; Comparative studies of
innovative exception handling techniques and conventional ones; etc.

☺ November 10-12 10th International Symposium on Distributed Objects, Middleware and Applications (DOA'2008),
Monterrey, Mexico. Topics include: Application case studies of distribution technologies; Development
methodologies for distributed applications; Interoperability with other technologies; Reliability, fault

Conference Calendar 173

Ada User Journal Volume 29, Number 3, September 2008

tolerance, quality-of-service, and real time support; Scalability and adaptivity of distributed
architectures; Software engineering for distributed middleware systems; etc.

☺ November 10-14 6th IEEE International Conference on Software Engineering and Formal Methods (SEFM'2008),
Cape Town, South Africa. The aim is to advance the state of the art in formal methods, to scale up their
application in software industry and to encourage their integration with practical engineering methods.
Topics include: software specification, verification and validation; programming languages and type
theory; program analysis; embedded systems; real-time and hybrid systems theory; software
architectures and their description languages; light-weight formal methods; CASE tools and tool
integration; applications of formal methods and industrial case studies; etc.

November 10-14 19th International Symposium on Software Reliability Engineering (ISSRE'2008),
Seattle/Redmond, Washington, USA. Topics include: Reliability, availability, and safety of software
systems; Validation and verification, testing; Software quality; Software security; Fault tolerance,
survivability, and resilience of software systems; Open source software reliability engineering;
Supporting tools and automation; Industry best practices; etc.; Empirical studies of any of the above
topics.

☺ November 19-20 Automotive - Safety & Security 2008, Stuttgart, Germany. Organized by Gesellschaft für Informatik
mit den Fachgruppen Ada, etc, and Ada-Deutschland. Topics include (in German): Zuverlässigkeit und
Sicherheit für fahrbetriebskritische Software und IT-Systeme; Evaluation und Zertifizierung von
Sicherheitseigenschaften automobiler Firmware/Software; Zuverlässige Echtzeit-Betriebssysteme;
Fortschritte bei Normen und Standardisierungen; Zuverlässigkeit von Multi-Core-Architekturen; etc.

☺ December 01-04 9th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2008), Dunedin, New Zealand. Topics include: Parallel/distributed architectures;
Multi-core related technologies; Reliability, and fault-tolerance; Formal methods and programming
languages; Software tools and environments; Parallelizing compilers; Component-based and OO
Technology; Parallel/distributed algorithms; Task mapping and job scheduling; Security and privacy;
etc.

December 01-05 ACM/IFIP/USENIX 9th International Middleware Conference (Middleware'2008), Leuven, Belgium.
Topics include: design, implementation, deployment, and evaluation of distributed system platforms and
architectures for future computing and communication environments. Deadline for early registration:
November 4, 2008.

December 03-05 11th IEEE International Symposium on High Assurance Systems Engineering (HASE'2008),
Nanjing, China. Topics include: Design and development of highly reliable, survivable, secure, safe, and
time-assured systems; Policies for reliability, safety, security, integrity, privacy, and confidentiality of
high assurance systems; Formal specification, specification validation, testing, and model checking for
high assurance systems; High assurance software architecture and design; etc.

December 05-13 4th International Joint Conferences on Computer, Information, and Systems Sciences, and
Engineering (CISSE'2008), Bridgeport, Connecticut, USA. Topics include: Programming Models and
tools, Parallel and Distributed processing, Embedded Systems and Applications, Programming
Languages, Object Based Software Engineering, Parallel and Distributed Computing, Real Time
Systems, Multiprocessing, etc. Deadline for submissions: October 15, 2008.

☺ December 08-10 14th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2008),
Melbourne, Australia. Topics include: Parallel and Distributed Applications and Algorithms; Multi-core
and Multithreaded Architectures; Resource Management and Scheduling; Dependable and Trustworthy
Computing and Systems; Real-Time Systems; etc.

December 09-11 21st International Conference on Software & Systems Engineering and their Applications
(ICSSEA'2008), Paris, France. Topics include: Components & reusability; Contract-oriented software
development; Distributed computing; Evolution (adaptability, maintainability, variability...); Open
source issues; Quality control & assurance; Quantitative evaluations (availability, quality, reliability,
safety...); Systems engineering and Systems of Systems; Trustworthiness; etc.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

☺ December 10-12 6th International Symposium on Parallel and Distributed Processing with Applications
(ISPA'2008), Sydney, Australia. Topics include: all aspects of Parallel/Distributed Computing and

174 Conference Calendar

Volume 29, Number 3, September 2008 Ada User Journal

Networking, and their applications, such as Parallel/distributed system architectures, Tools and
environments for software development, Distributed systems and applications, Reliability, fault-
tolerance, and security, etc.

December 10-12 International Conference on Innovation in Software Engineering (ISE'2008), Vienna, Austria.
Topics include: Software engineering, Software components, Reliable software technologies,
Maintenance issue, Dependable computing, Reverse engineering, Real-time software, Object-Oriented
Programming, Parallel processing systems, etc.

December 17-20 15th IEEE International Conference on High Performance Computing (HiPC'2007), Bangalore,
India. Topics include: Parallel and Distributed Algorithms, Parallel Languages and Programming
Environments, Scheduling, Fault-Tolerant Algorithms and Systems, Scientific/Engineering/Commercial
Applications, Embedded Applications, Compiler Technologies for High-Performance Computing,
Software Support, etc. Deadline for early registration: November 7, 2008.

2009

January 19-20 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation (PEPM'2009),

Savannah, Georgia, USA. Co-located with POPL'2009 Deadline for submissions: October 12, 2008
(abstracts), October 17, 2008 (papers).

January 24 2009 International Workshop on Foundations of Object-Oriented Languages (FOOL'2009),
Savannah, Georgia, USA. Following POPL'2009. Topics include: language semantics, type systems,
program analysis and verification, concurrent and distributed languages, language-based security issues,
etc. Deadline for submissions: October 9, 2008 (abstracts), October 13, 2008 (papers)

February 04-06 International Symposium on Engineering Secure Software and Systems (ESSoS'2008), Leuven,
Belgium. Topics include: security architecture and design for software and systems; systematic support
for security best practices; programming paradigms, models and DLS's for security; program rewriting
techniques; processes for the development of secure software and systems; etc. Deadline for
submissions: October 24, 2008 (tutorials).

February 16-19 7th International Conference on Integrated Formal Methods (IFM'2009), Düsseldorf, Germany.

☺ March 04-07 40th ACM Technical Symposium on Computer Science Education (SIGCSE'2009), Chattanooga,
Tennessee, USA.

March 08-12 24th ACM Symposium on Applied Computing (SAC'2009), Honolulu, Hawaii, USA.

☺ Mar 08-12 Track on Software Engineering (SE'2009). Topics include: Component-Based
Development and Reuse; Safety and Security Dependability and Reliability; Fault
Tolerance and Availability; Design Patterns; Standards; Maintenance and Reverse
Engineering; Verification, Validation, and Analysis; Formal Methods and Theories;
Empirical Studies and Industrial Best Practices; Applications and Tools; Distributed,
Embedded, Real-Time, High Performance, and Highly Dependable Systems; etc.

☺ Mar 08-12 Track on Object-Oriented Programming Languages and Systems (OOPS'2009)
Topics include: Language design and implementation; Type systems, static analysis,
formal methods; Integration with other paradigms; Components and modularity;
Distributed, concurrent or parallel systems; Interoperability, versioning and software
adaptation; etc.

☺ Mar 08-12 Track on Real-Time Systems (RTS'2009). Topics include: scheduling and schedulability
analysis; worst-case execution time analysis; modeling and formal methods; validation
techniques; reliability; compiler support; component-based approaches; middleware and
distribution technologies; programming languages and operating systems; embedded
systems; etc.

☺ Mar 08-12 Track on Programming Languages (PL'2009). Topics include: Compiling
Techniques, Formal Semantics and Syntax, Language Design and Implementation,
Model-Driven Development and Model Transformation, New Programming Language
Ideas and Concepts, Practical Experiences with Programming Languages, Program

Conference Calendar 175

Ada User Journal Volume 29, Number 3, September 2008

Analysis and Verification, Program Generation and Transformation, Programming
Languages from All Paradigms, etc.

☺ March 16-19 CISIS2009 - International Workshop on Multi-Core Computing Systems (MuCoCoS'2009),
Fukuoka, Japan. In conjunction with CISIS'2009. Topics include: multi-core embedded systems;
programming languages and models; applications for multi-core systems; performance modeling and
evaluation of multi-core systems; design space exploration; tool-support for multi-core systems;
compilers, runtime and operating systems; etc.

☺ Mar 17-20 12th IEEE International Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC'2009), Tokyo, Japan. Topics include: Programming and system engineering (ORC
paradigms, languages, RT Corba, UML, model-driven development of high integrity applications,
specification, design, verification, validation, testing, maintenance, system of systems, etc.); System
software (real-time kernels, middleware support for ORC, extensibility, synchronization, scheduling,
fault tolerance, security, etc.); Applications (embedded systems (automotive, avionics, consumer
electronics, etc), real-time object-oriented simulations, etc.); System evaluation (timeliness, worst-case
execution time, dependability, fault detection and recovery time, etc.). Deadline for paper submissions:
October 10, 2008.

March 22-29 12th European Joint Conferences on Theory and Practice of Software (ETAPS'2009), York, UK.
Deadline for submissions: October 2, 2008 (abstracts), October 9, 2008 (papers).

March 22-29 8th European Symposium on Programming (ESOP'2009). Topics include: issues in
the specification, design, analysis, and implementation of programming languages and
systems, such as Programming paradigms and styles (object-oriented programming,
real-time programming languages, etc), Methods and tools to write, reason about, and
specify languages and programs (module systems, programming techniques, type
systems, program verification, static analysis, language-based security, etc), Methods
and tools for implementation, Concurrency and distribution (parallel programming,
distributed languages, etc).

March 22-29 18th International Conference on Compiler Construction (CC'2009) Topics include:
research on compilers in the broadest possible sense, including run-time techniques,
programming tools, domain-specific languages, novel language constructs and so on.

♦ March 24 Ada Conference UK 2009, London, UK. This event is organised to promote
awareness of the Ada programming language, and to highlight the increased
relevance of Ada in safety- and security-critical programming. Since its inception, Ada
has been successful in systems where reliability is essential. Its application domains
include aeronautics, air traffic control, aerospace, simulation, shipboard systems,
railway systems, communications, banking and many others.

March 24-27 15th French-speaking Conference on Object-Oriented Languages and Models (LMO'2008), Nancy,
France. Deadline for submissions: October 10, 2008 (papers).

☺ Mar 30-Apr 03 4th European Conference on Computer Systems (EuroSys'2009), Nuremberg, Germany. Topics
include: All areas of operating systems and distributed systems; Systems aspects of: Dependable
computing, Distributed computing, Parallel and concurrent computing, Programming-language support,
Real-time and embedded computing, Security, ...; Experience with existing systems; Reproduction or
refutation of previous results; Negative results; Early ideas. Deadline for submissions: October 31, 2008
(abstracts), November 7, 2008 (papers).

April 01-04 2nd IEEE International Conference on Software Testing, Verification and Validation (ICST'2009),
Denver, Colorado. Topics include: Verification & Validation, Quality Assurance, Empirical studies,
Embedded and real-time software, Concurrent software, etc. Deadline for submissions: October 3, 2008
(full papers).

April 20-23 21st Annual Systems and Software Technology Conference (SSTC'2009), Salt Lake City, Utah, USA

☺ May 16-24 31st International Conference on Software Engineering (ICSE'2009), Vancouver, Canada. Topics
include: Specification and Verification; Software Architecture and Design; Patterns and Frameworks;
Reverse Engineering, Refactoring, and Evolution; Tools and Environments; Empirical Software
Engineering; Development Paradigms and Software Processes; Component-based Software

176 Conference Calendar

Volume 29, Number 3, September 2008 Ada User Journal

Engineering; Model Driven Engineering; Distributed Systems and Middleware; Embedded System;
Open Standards and Certification; Software Economics; Dependability (safety, security, reliability);
Case Studies and Experience Reports; etc. Deadline for submissions: October 10, 2008 (Software
Engineering in Practice), November 2008 (SCORE), November 24, 2008 (research demonstrations),
December 5, 2008 (Emerging Results track), December 12, 2008 (doctoral symposium)

☺ May 25-29 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS'2009), Rome,
Italy. Topics include: Parallel and distributed algorithms; Applications of parallel and distributed
computing; Parallel and distributed software, including parallel programming languages and compilers,
runtime systems, fault tolerance, middleware, libraries, scalability, programming environments and
tools, etc. Deadline for submissions: October 3, 2008

June 03-06 5th International Conference on Open Source Systems (OSS'2009), Skövde, Sweden. Topics include:
Software engineering perspectives (F/OSS development environments; Testing, assuring and certifying
F/OSS quality and security; F/OSS usability, scalability, maintainability and other quality issues; F/OSS
and standards, ...); Emerging perspectives (Licensing, IPR and other legal issues in F/OSS; F/OSS and
innovation; ...); Studies of F/OSS deployment (Case studies of F/OSS deployment, migration models,
success and failure; F/OSS in vertical domains and the 'secondary' software sector, e.g., automotive,
telecommunications, medical devices; F/OSS applications catalog; ...); etc. Deadline for submissions:
November 1, 2008

♦ June 08-12 14th International Conference on Reliable Software Technologies - Ada-
Europe'2009, Brest, France. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda Deadline for submissions: December 1, 2008 (papers, tutorials, workshops),
January 12, 2009 (industrial presentations).

July 03-08 14th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2009), Paris, France.

☺ September 01-04 International Conference on Parallel Computing 2009 (ParCo'2009), Lyon, France. Topics include:
all aspects of parallel computing, including applications, hardware and software technologies as well as
languages and development environments. Deadline for submissions: February 28, 2009 (abstracts),
March 31, 2009 (mini-symposia proposals).

September 09-11 8th International Conference on Software Methodologies, Tools, and Techniques (SoMeT'2009),
Prague, Czech Republic. Topics include: Software methodologies, and tools for robust, reliable, non-
fragile software design; Automatic software generation versus reuse, and legacy systems, source code
analysis and manipulation; Intelligent software systems design, and software evolution techniques;
Software optimization and formal methods for software design; Software security tools and techniques,
and related Software Engineering models; Software Engineering models, and formal techniques for
software representation, software testing and validation; etc. Deadline for submissions: March 31, 2009
(papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

178 Forthcoming Events

Volume 29, Number 3, September 2008 Ada User Journal

SIGAda 2008 Advance Program
ACM Special Interest Group

on the Ada Programming Language
Annual International Conference

University Place Hotel & Conference Center
Portland, Oregon, USA

October 26-30, 2008

Portland, with Mt. Hood (11,249 feet or 3,429 m)

2008 is an important double anniversary: the Ada 83 Standard was adopted 25 years ago,

and the Steelman Report, which gave rise to Ada, was published 30 years

Special Anniversary Keynote Addresses
These exciting speakers are all among our pioneers,

having been continuously involved with Ada for at least 25 years.

From Strawman to Ada 2005: a Socio-Technical Retrospective
Dr. Benjamin Brosgol Senior Technical Staff, AdaCore
Dr. Brosgol led the Intermetrics "Red" language candidate team in the 1970s, participated in the design
of both Ada 83 and Ada 95, and was editor of the Safety and Security Annex of the Ada 95 standard.
Under Sun Microsystems' Java Community Process Dr. Brosgol was a member of the Expert Group for
JSR-001 (Real-Time Specification for Java, or "RTSJ"), and he is currently a member of the Expert
Groups for JSR-282 (RTSJ v1.1) and JSR-302 (Safety-Critical Java Technology).

30 Years after Steelman, Does DoD Still Have a Software Crisis?
Dr. Joyce Tokar President, Pyrrhus Software
From 1981-84 Dr. Tokar was responsible for the development of the Gensoft (Western Digital) Ada
system. Over the past 20 years, she has been working in the area of mission and safety critical, real-
time, and embedded software systems. She is currently active in the area of secure software system
development tools and environments, and leads a team in the analysis and evolution of the system of
systems software for the US Department of Defense Future Combat System (FCS).

The Ada Paradox(es)
Dr. Jean-Pierre Rosen President, ADALOG
Dr. Rosen was a designer of the Ada/Ed system at NYU in the 1980s. After working as a Professor at
ENST in France, he formed ADALOG, a training, consultancy, and software development company.
Dr. Rosen is Chairman of the AFNOR (French standardization body) group for Ada, and a member of
the ARG (Ada Rapporteur Group), the expert group in charge of maintenance and evolution of the
language. He was a member of the expert team who controlled the development of the validation suite
for Ada 95.

FOR UP-TO-THE-MINUTE TUTORIAL AND SPONSOR/EXHIBIT INFORMATION
AND ONLINE REGISTRATION

VISIT http://www.sigada.org/conf/sigada2008 TODAY!

Forthcoming Events 179

Ada User Journal Volume 29, Number 3, September 2008

ACM SIGAda Annual International Conference
Summary Conference Schedule

Sunday-Monday, October 26-27
Full and Half-Day Tutorials

(see website for details)

Introduction to Ada
Michael Feldman (The George Washington Univ.(ret.))

Languages for Safety-Critical Software: Issues and
Assessment
Benjamin Brosgol (AdaCore)

Ada for Real-Time and Parallel Processing
John McCormick (University of Northern Iowa)

Ada for Web Server Development
Ricky E. Sward, The MITRE Corporation

Tuesday, October 28
 Greetings from SIGAda and Conference Officers

Keynote Address:
From Strawman to Ada 2005:

a Socio-Technical Retrospective
Dr. Benjamin Brosgol
(Senior Technical Staff, AdaCore)

10:30 - 11:00am Morning Break - Exhibits Open
 Dynamic Analysis of Ada Programs for

Comprehension and Quality Measurement
Elaheh Safari-Sharifabadi and Constantinos
Constantinides (Concordia University)

re-ADA: Reliable Ada-based Descriptive
Architecture for C4ISR via a Quantitative
Interoperating Model
Sheldon X. Liang, Lyle A. Reibling and John Betts
(Azusa Pacific University)

Sponsor Presentation(s)
12:30 – 2:00pm Mid-day Break and Exhibits

 A Buffer Container Class Hierarchy Using Ada 2005
Brad Moore

Real-Time Synchronization on Distributed
Architecture with Ada 2005
Jim Ras (University of Houston)

Sponsor Presentation(s)
3:30 – 4:00 pm Afternoon Break & Exhibits

 A Multi-Language Service-Oriented Architecture
Using an Enterprise Service Bus
Ricky E. Sward and Kelly J. Whitacre
(The MITRE Corporation)

Ada and Software Engineering Education: One
Professor's Experiences
John McCormick (University of Northern Iowa)

Sponsor Presentation(s)
Evening Activities (7:00pm - 10:00pm)

Conference Reception

Wednesday, October 29
 Announcements

Keynote Address:
30 Years after Steelman: Does DoD Still Have a

Software Crisis?
Dr. Joyce Tokar
(President, Pyrrhus Software)

10:30 – 11:00am Morning Break and Exhibits
 Implementing the Extended Return Statement for

Ada 2005
Tucker Taft (SofCheck, Inc.)

Removing Backward Go-To Statements
from Ada Programs
W. Douglas Maurer
(The George Washington University)

Sponsor Presentation(s)
12:30 - 2:00pm Mid-day Break and Exhibits

 Distributed Status Monitoring and Control using
Remote Buffers and Ada 2005
Brad Moore

Anima: A Language for Real-Time Embedded
Software Development
Steven Doran

A Distributed, Multi-Language Architecture for
Large Unmanned Ground Vehicles
Cynthia Cicalese, Richard Weatherly, Joel Sherrill,
Robert Bolling, Kevin Forbes, Robert Grabowski,
Keven Ring, and David Seidel
(The MITRE Corporation)

3:30 – 4:00 pm Afternoon Break

 Workshop:
GNAT: Where Would You Like to See GNAT Go?

Greg Gicca (AdaCore)

Evening Activities (7:00pm - 10:00pm)
Birds-of-a-Feather (BoF) Sessions TBA

Thursday, October 30
 Announcements

Ada Europe 2009 Presentation
ACM SIGAda 2009 Presentation
SIGAda Awards
Keynote Address:
The Ada Paradox(es)

Dr. Jean-Pierre Rosen
(President, ADALOG)

Closing Remarks

180 Forthcoming Events

Volume 29, Number 3, September 2008 Ada User Journal

Ada at FOSDEM 2009
Call for Interest

FOSDEM1, the Free and Open source Software Developers' European Meeting, is a free and non-
commercial two-day event organized each February in Brussels, Belgium.

The goal is to provide Free Software and Open Source developers and communities a place to meet with
other developers and projects, to be informed about the latest developments in the Free Software and
Open Source world, to attend interesting talks and presentations by Free Software and Open Source
project leaders and committers on various topics, and to promote the development and the benefits of
Free Software and Open Source solutions.

In a Developers Room at FOSDEM 2006, Ada-Belgium2 organized a very well attended full-day lecture
program3.

Each year the number of applications for DevRooms outnumbers the available space, presenting the
organizers with a difficult selection4. For FOSDEM 2008, Ada-Belgium proposed another day of Ada
presentations, but the organizers felt there was too little of an audience. We intend to propose again for
FOSDEM 2009, and need to show that this would attract sufficient interest.

To increase our chances to be allocated a DevRoom, Ada-Belgium calls on you to:

• Speak loudly about the fact that you want to see Ada presentations at FOSDEM by sending email
to info@fosdem.org (please CC ada-belgium-board@cs.kuleuven.be).

• Visit FOSDEM’s brainstorm page5 and propose Ada-related keynote speakers and topics (please
let us know if you do).

• For bonus points, inform us at ada-belgium-board@cs.kuleuven.be about specific presentations
you would like to hear in an Ada DevRoom.

• For more bonus points, subscribe to the Ada-FOSDEM mailing list6 to discuss and help organize
the details.

• For even more bonus points, be a speaker: the Ada-FOSDEM mailing list is the place to be!

We look forward to lots of feedback! Please act ASAP and definitely before November 15.

The FOSDEM Team of Ada-Belgium

1http://www.fosdem.org
2http://www.cs.kuleuven.be/~dirk/ada-belgium
3http://www.cs.kuleuven.be/~dirk/ada-belgium/events/06/060226-fosdem.html
4http://archive.fosdem.org/2008/call_for_devrooms
5http://www.fosdem.org/2009/brainstorm
6http://listserv.cc.kuleuven.be/archives/adafosdem.html

182 Forthcoming Events

Volume 29, Number 3, September 2008 Ada User Journal

Call for Papers
14th International Conference on Reliable
Software Technologies - Ada-Europe 2009

8-12 June 2009, Brest, France
http://www.ada-europe.org/conference2009.html

Conference Chair

Frank Singhoff
UBO/LISyC, France
Frank.Singhoff@univ-brest.fr

Program Co-Chairs

Yvon Kermarrec
Télécom Bretagne, France
Yvon.Kermarrec@telecom-
bretagne.eu

Fabrice Kordon
University Pierre & Marie
Curie, France
Fabrice.Kordon@lip6.fr

Tutorial Chair

Jérôme Hugues
Télécom Paris-Tech, France
Jerome.Hugues@telecom-
paristech.fr

Exhibition Chair

Pierre Dissaux
Ellidiss Technologies
Pierre.Dissaux@ellidiss.com

Publicity Chair

Dirk Craeynest
Aubay Belgium &
K.U.Leuven, Belgium
Dirk.Craeynest@cs.
kuleuven.be

Local Chairs

Alain Plantec and
Mickael Kerboeuf
UBO/LISyC, France
Alain.Plantec@univ-brest.fr
Mickael.Kerboeuf@univ-
brest.fr

In cooperation with
ACM SIGAda

General Information
The 14th International Conference on Reliable Software Technologies - Ada-Europe 2009 will take place
in Brest, France. Following its traditional style, the conference will span a full week, including a three-day
technical program and vendor exhibitions from Tuesday to Thursday, along with parallel tutorials and
workshops on Monday and Friday.

Schedule

Topics

The conference has successfully established itself as an international forum for providers, practitioners
and researchers into reliable software technologies. The conference presentations will illustrate current
work in the theory and practice of the design, development and maintenance of long-lived, high-quality
software systems for a variety of application domains. The program will allow ample time for keynotes,
Q&A sessions, panel discussions and social events. Participants will include practitioners and researchers
in representation from industry, academia and government organizations active in the promotion and
development of reliable software technologies. To mark the completion of the Ada language standard
revision process, contributions that present and discuss the potential of the revised language are
particularly sought after.

Prospective contributions should address the topics of interest to the conference, which include but are not
limited to those listed below:

· Methods and Techniques for Software Development and Maintenance: Requirements Engineering,
Object-Oriented Technologies, Model-driven Architecture and Engineering, Formal Methods, Re-
engineering and Reverse Engineering, Reuse, Software Management Issues, Model Engineering.

· Software Architectures: Design Patterns, Frameworks, Architecture-Centered Development,
Component and Class Libraries, Component-based Design.

· Enabling Technologies: Software Development Environments and Project Browsers, Compilers,
Debuggers, Run-time Systems, Middleware Components.

· Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis,
Verification, Validation, Testing of Software Systems.

· Theory and Practice of High-integrity Systems: Real-Time, Distribution, Fault Tolerance, Security,
Reliability, Trust and Safety.

· Embedded Systems: Architecture Modeling, Co-Design, Reliability and Performance Analysis.
· Mainstream and Emerging Applications: Multimedia and Communications, Manufacturing,

Robotics, Avionics, Space, Health Care, Transportation.
· Ada Language and Technology: Programming Techniques, Object-Orientation, Concurrent and

Distributed Programming, Evaluation & Comparative Assessments, Critical Review of Language
Features and Enhancements, Novel Support Technology, HW/SW Platforms.

· Experience Reports: Case Studies and Comparative Assessments, Management Approaches,
Qualitative and Quantitative Metrics.

· Ada and Education: Where does Ada stand in the software engineering curriculum; how learning Ada
serves the curriculum; what it takes to form a fluent Ada user; lessons learned on Education and
Training Activities with bearing on any of the conference topics.

01 December 2008 Submission of regular papers, tutorial and workshop
proposals

12 January 2009 Submission of industrial presentation proposals
09 February 2009 Notification to all authors
09 March 2009 Camera-ready of regular papers required
11 May 2009 Industrial presentations, tutorial and workshop

material required
8-12 June 2009 Conference

Forthcoming Events 183

Ada User Journal Volume 29, Number 3, September 2008

Program Committee
Alejandro Alonso, Universidad Politécnica de
Madrid, Spain
Leemon Baird, US Air Force Academy, USA
Johann Blieberger, Technische Universität
Wien, Austria
Maarten Boasson, University of Amsterdam,
The Netherlands
Bernd Burgstaller, Yonsei University, Korea
Dirk Craeynest, Aubay Belgium &
K.U.Leuven, Belgium
Alfons Crespo, Universidad Politécnica de
Valencia, Spain
Juan A. De la Puente, Universidad Politécnica
de Madrid, Spain
Raymond Devillers, Université Libre de
Bruxelles, Belgium
Michael González Harbour, Universidad de
Cantabria, Spain
Javier Gutiérrez José, Universidad de
Cantabria, Spain
Philippe Dhaussy, ENSIETA/LISyC, France
Andrew Hately, Eurocontrol CRDS, Hungary
Jérôme Hugues, Telecom Paris, France
Günter Hommel, Technischen Univesität
Berlin, Germany
Hubert Keller, Institut für Angewandte
Informatik, Germany
Yvon Kermarrec, Télécom Bretagne, France
Fabrice Kordon, Université Pierre & Marie
Curie, France
Albert Llemosí, Universitat de les Illes Balears,
Spain
Franco Mazzanti, ISTI-CNR Pisa, Italy
John McCormick, University of Northern Iowa,
USA
Stephen Michell, Maurya Software, Canada
Javier Miranda, Universidad Las Palmas de
Gran Canaria, Spain
Scott Moody, Boeing, USA
Daniel Moldt, University of Hamburg,
Germany
Laurent Pautet, Telecom Paris, France
Laure Petrucci, LIPN, Université Paris 13,
France
Luís Miguel Pinho, Polytechnic Institute of
Porto, Portugal
Erhard Plödereder, Universität Stuttgart,
Germany
Real Jorge, Universidad Politécnica de
Valencia, Spain
Alexander Romanovsky, University of
Newcastle upon Tyne, UK
Jean-Pierre Rosen, Adalog, France
Lionel Seinturier, Université de Lille, France
Frank Singhoff, UBO/LISyC, France
Oleg Sokolsky, University of Pennsylvania,
USA
Ricky Sward, MITRE, USA
Tullio Vardanega, Università di Padova, Italy
Francois Vernadat, LAAS-CNRS, Université
de Toulouse, Insa
Andy Wellings, University of York, UK
Jürgen Winkler, Friedrich-Schiller-Universität,
Germany
Luigi Zaffalon, University of Applied Sciences,
W. Switzerland

Industrial Committee
Guillem Bernat, Rapita Systems, UK
Agusti Canals, CS, France
Roderick Chapman, Praxis HIS, UK
Colin Coates, Telelogic, UK
Dirk Craeynest, Aubay Belgium &
K.U.Leuven, Belgium
Dirk Dickmanns, EADS, Germany
Tony Elliston, Ellidiss Software, UK
Franco Gasperoni, AdaCore, France
Hubert Keller, Forschungszentrum Karlsruhe
GmbH, Germany
Bruce Lewis, US Army, USA
Ahlan Marriott, White-Elephant GmbH,
Switzerland
Rei Stråhle, Saab Systems, Sweden

Call for Regular Papers

Authors of regular papers which are to undergo peer review for acceptance are invited to submit original
contributions. Paper submissions shall be in English, complete and not exceeding 14 LNCS-style pages in
length. Authors should submit their work via the Web submission system accessible from the Conference
Home page. The format for submission is solely PDF. Should you have problems to comply with format
and submission requirements, please contact the Program Chair.

Proceedings

The authors of accepted regular papers shall prepare camera-ready submissions in full conformance with
the LNCS style, not exceeding 14 pages and strictly by 9 March 2009. For format and style guidelines
authors should refer to: http://www.springer.de/comp/lncs/authors.html. Failure to comply and to register
for the conference will prevent the paper from appearing in the proceedings. The conference proceedings
will be published in the Lecture Notes in Computer Science (LNCS) series by Springer Verlag, and will
be available at the start of the conference.

Awards

Ada-Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Industrial Presentations

The conference also seeks industrial presentations which may deliver value and insight, but do not fit the
selection process for regular papers. Authors of industrial presentations are invited to submit a short
overview (at least 1 page in size) of the proposed presentation to the Conference Chair by 12 January
2009. The Industrial Program Committee will review the proposals and make the selection. The authors
of selected presentations shall prepare a final short abstract and submit it to the Conference Chair by 11
May 2009, aiming at a 20-minute talk. The authors of accepted presentations will be invited to derive
articles from them for publication in the Ada User Journal, which will host the proceedings of the
Industrial Program of the Conference.

Call for Tutorials

Tutorials should address subjects that fall within the scope of the conference and may be proposed as
either half- or full-day events. Proposals should include a title, an abstract, a description of the topic, a
detailed outline of the presentation, a description of the presenter's lecturing expertise in general and with
the proposed topic in particular, the proposed duration (half day or full day), the intended level of the
tutorial (introductory, intermediate, or advanced), the recommended audience experience and background,
and a statement of the reasons for attending. Proposals should be submitted by e-mail to the Tutorial
Chair. The providers of full-day tutorials will receive a complimentary conference registration as well as a
fee for every paying participant in excess of 5; for half-day tutorials, these benefits will be accordingly
halved. The Ada User Journal will offer space for the publication of summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be submitted
for half- or full-day events, to be scheduled on either ends of the conference week. Workshop proposals
should be submitted to the Conference Chair. The workshop organizer shall also commit to preparing
proceedings for timely publication in the Ada User Journal.

Call for Exhibitions

Commercial exhibitions will span the three days of the main conference. Vendors and providers of
software products and services should contact the Exhibition Chairfor information and for allowing
suitable planning of the exhibition space and time.

Grants for Students

A limited number of sponsored grants is expected to be available for students who would like to attend the
conference or tutorials. Contact the Conference Chair for details.

 185

Ada User Journal Volume 29, Number 3, September 2008

* The complete Proceedings of the 13th International Real-Time Ada Workshop previously appeared in ACM Ada Letters, Volume XXVII, Number 2,
August 2007; reprinted with permission.

13th International Real-Time Ada Workshop

17-19 April 2007
Woodstock, Vermont

USA

Sessions:
Ada and Other Standards

Conclusions and Plans for next IRTAW

from the Proceedings* edited by: Juan Antonio de la Puente

Program Committee
Alan Burns Javier Miranda José F. Ruiz
Ben Brosgol b Luis Miguel Pinho Tullio Vardanega
Michael González Harbour Juan Antonio de la Puente a Andy Wellings
Stephen Michell Jorge Real

a Program Chair b Local Chair

Workshop Participants

Name Institution
Mario Aldea Rivas Universidad de Cantabria, Spain
Neil Audsley University of York, UK
Ben Brosgol AdaCore, USA
Alan Burns University of York, UK
Michael González-Harbour Universidad de Cantabria, Spain
J. Javier Gutiérrez Universidad de Cantabria, Spain
Stephen Michell Maurya Systems, Canada
Brad Moore General Dynamics, Canada
Juan Antonio de la Puente Universidad Politécnica de Madrid (UPM), Spain
Jorge Real Universidad Politécnica de Valencia, Spain
José F. Ruiz AdaCore, France
J.C. Smart Department of Defense, USA
Santiago Urueña Universidad Politécnica de Madrid (UPM), Spain
Tullio Vardanega University of Padua , Italy
Andy Wellings University of York, UK
Rod White MBDA, UK
Curtis Winters Aonix, USA
Juan Zamorano Universidad Politécnica de Madrid (UPM), Spain

Sponsors

186

Volume 29, Number 3, September 2008 Ada User Journal

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

Session: Ada and Other Standards
Chair: Ben Brosgol
Rapporteur: Mario Aldea

1. Session Goals
The main goals of this session were to:

• consider whether a new binding between Ada and
POSIX is needed/desirable

• look at current efforts to update POSIX and "Real-Time
Java" in terms of impact on or "lessons learned" for Ada

2. POSIX Ada binding
Stephen Michell presented his paper on "Interfacing Ada to
Operating Systems" [1]. He stated that the POSIX Ada
Binding has not been updated since 1998, even though
POSIX has undergone two significant revisions and the
new Ada 2005 has been approved. Taking into account
those changes, the current binding is mostly correct from
the functional point of view, but:

• there are some minor errors/inconsistencies

• it does not include the new functionality added to
POSIX during the last few years

• some functionality included in the binding is now
directly supported in Annex D of Ada 2005

Stephen also stated there are other operating systems that
do not follow the POSIX standard and are important
nowadays, like the Windows family or other operating
systems for embedded platforms.

Instead of adapting the current POSIX Ada binding to the
new situation, Stephen proposed to update it to a general
interface to operating systems, implemented in a set of
packages which would be children of Ada.Interfaces.

2.1 Discussions
Some general points about the POSIX Ada binding
philosophy were noted:

• The general idea of the binding is to provide interfaces
only for the functionality not provided by the Ada
language

• One of the main objectives of the binding is to allow
Ada tasks and POSIX threads to interoperate, for
instance by being able to share data using mutexes, or to
synchronize through condition variables. Jose Ruiz
mentioned that the GNAT compiler allows POSIX
threads to call Ada protected objects (the run-time
library registers them as foreign threads)

• The difference between the priority band concept in
Ada 2005 and the way scheduling policies are defined
by POSIX was identified as a potential difficulty.

The following concerns about the utilization of the binding
were raised:

• The general feeling was that the binding has had very
few users. Many programmers just create a small
binding for the few functions they actually use in each
particular application. At this point some doubts
appeared about whether it is worthy to put some effort
on a new binding. There was consensus on at least
putting some effort to correct the minor
errors/inconsistencies.

One of the minor details that should be corrected is the fact
that the current POSIX/Ada binding references the old
POSIX standards instead of the new ones.

It was pointed out that the current binding is a mixture
between Ada and C styles and it would be desirable to
develop a more Ada-like binding. Some people agreed on
that but it was questioned if it is worthy for the Ada
community to put such a big effort in this project.

There was a suggestion of doing a minimum change in the
binding in order to mark as obsolete those services
currently included in the binding that have an equivalent in
the Ada 2005 standard.

2.2 Conclusions
The main conclusions of this part of the session were:

• There was an agreement that future editions of this
workshop could help in the technical decisions related
with the new POSIX/Ada binding, but that the
workshop itself should not take over the responsibility
of the revision of the binding

• The workshop participants agreed that, at least, a
minimum update of the binding is desirable in order to
correct minor errors/inconsistencies and wrong
references to POSIX standards.

3 Real-Time Java
Ben Brosgol made a presentation about the history and
current status of Real-time Java, including a summary of
the main RTSJ (Real-Time Specification for Java) features
and a list of the existing implementations.

Nowadays the main effort in the RT Java area is the Safety-
Critical RT Java, officially named "Java Specification
Request 302" (JSR-302). Two members of the IRTAW
workshop are included in the "Expert Group" in charge of
developing this project: Andy Wellings and Ben Brosgol.
JSR-302 progress is slow since there are two competing
proposals: HIJA (High-Integrity Java Applications) and

B. Brosgol, M. Aldea 187

Ada User Journal Volume 29, Number 3, September 2008

Aonix with its "Scalable Real-Time Java proposal".

Ben pointed out several aspects of RT Java that could be
interesting for Ada:

• Real-time programming paradigms

o Periodic, aperiodic, sporadic threads

• General capabilities

o Annotations to guide static analysis

• Interesting functionality

o Asynchronous Event Handling:

– Application control over "fire count" to deal with
bursts

– Pass data when an event is fired

o General mix of Priority Inheritance and Priority
Ceiling Emulation

o Ability to awaken a suspended thread via
synchronous exception

• "Exotasks" (from IBM, based on Giotto)

o Not threads but periodic code that is dispatched
based on a scheduler

o Dedicated heap that is garbage collected

o No shared memory; communication via deep copy
over typed ports

o Eclipse-based environment allowing annotated
timing constraints

3.1 Discussions
The subsequent discussion were centered on the following
issues:

• Including garbage collection in Ada: it could be
interesting for some applications that use unchecked
deallocation. It is noticed that nothing in Ada prevents
from using a garbage collector, so maybe this is not
actually an issue.

• Different kinds of "physical" memory: the ability to
place data in a specific kind of memory (fast access
memory, flash memory, ...). This service is provided by
RTSJ and POSIX but not by Ada.

• Mix of Priority Inheritance and Priority Ceiling
Emulation: can be a source of problems due to the
nested locks, but it was pointed out that priority
inheritance is an interesting functionality for large
systems built from "components" developed
independently.

• Awaken a suspended thread: a possible alternative in
Ada consists of blocking the task in a protected entry.

3.2 Conclusions

The main conclusions of this part of the session were:
• The Real-time Ada community should keep an eye on

the current efforts on RT Java and check if its advances
could be interesting for future revisions of the Ada
standard

• The workshop encourages the Real-Time Ada
community to continue research on topics like garbage
collection, different kinds of memory, or priority
inheritance in Ada.

References
[1] Michell, S. Interfacing Ada to Operating Systems. (this

issue).

188

Volume 29, Number 3, September 2008 Ada User Journal

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

Interfacing Ada to Operating Systems
Stephen Michell
Maurya Software Inc, Ottawa, Ontario, Canada; email: stephen.michell@maurya.on.ca

Abstract
This paper examines approaches used by the Ada
programming language to interface to explicit
operating system services such as events and sockets.
We examine the potential for updating a specific
interface, the POSIX Ada binding, to a more gereral
interface to operating systems services. An approach
is proposed to unify classes of services such as
synchronous and asynchronous file IO in such an
interface.

1 Introduction
The Ada Programming Language has always had a
deficiency of interfaces to operating systems. Except for
the simple interfaces such as File_IO, most provided
interfaces (by the OS) to get services such as Messages,
Queues, Events and Asynchronous_IO are not available as
Ada packages and subprograms.

A notable exception to this was the POSIX Ada binding
[APOSIX], which began life as IEEE 1003.5c, and was
adapted to Ada 1995 and published as IS14519:2001. Even
this interface shows its age as POSIX has moved from a
notion of Processes to one that includes Processes and
Threads. Ada has added Protected Objects, access to
subprograms and protected subprograms, and Interfaces.
Collectively, these changes to Ada provide better ways to
consider aiding capabilities to an interface such as an
interface to an operating system.

We examine the POSIX Ada Binding, and then propose a
set of interfaces to generalized operating systems to replace
the POSIX Ada Binding, and finally show how new Ada
capabilities could be used to integrate diverse concepts
such as File_IO and Asynchronous_File_IO.

This paper is organized as follows. Section 2 dis cusses the
layout of the POSIX Ada Interface, and the types of
services that it manages. Section 3 proposes a new set of
interfaces to operating systems. Section 4 proposes a way
to incorporate synchronous and asynchronous behaviours
when using operating system calls. Section 5 gives
conclusions.

2 The POSIX Ada Binding
The POSIX Ada Binding [APOSIX98] began in the 1980's
as an interface to the most popular operating system
specification [POSIX]. By its nature, it captured the
interface as a set of packages and subprograms to express
the functionality. [APOSIX] was updated to incorporate
changes to POSIX and Ada and published as IEEE

1003.5c:1998 and IS14519:2001. Since then, the binding
has not been updated, even though POSIX has undergone 2
significant revisions, incorporated much of POSIX Real
Time, and Ada has incorporated major functionality
changes for Ada 2005. Some of the changes undertaken by
Ada have a direct impact on the binding by duplicating
functionality originally supplied by POSIX with Ada-
supplied primitives.

In [WMM2006] we did an analysis on the existing binding
and POSIX and recommended that WG9 begin a revision
of the binding.

The POSIX Binding to Ada can be characterized as a set of
Ada packages that define subprogram calls to the
underlying OS to implement file IO, environment variables,
memory management, process scheduling, timers, events,
signals, semaphores, and sockets. A summary of the
interface packages is in Table 1.

There has always been a significant tension between
POSIX and the Ada runtime system with regards to the
management of computational resources such as task
scheduling, intertask notifications, and memory. The
benefit of using POSIX was that it provided capabilities
(different thread scheduling paradigms, timers, and events)
that were not available natively in Ada, and that it provided
intertask(thread) services to programs that do not have the
rich concurrency paradigm of Ada. The challenge has
always been that there are significant issues trying to send
or receive POSIX signals or events between tasks and
POSIX thread, either within a single program or in separate
programs. It has almost always been the case that one
should not intermix Ada tasks with POSIX threads.

Nevertheless, the POSIX Binding to Ada has been
successfully used to interface Ada programs to POSIX.
Now that Ada has been updated and has added many of the
tasking paradigms that were provided by POSIX, it is
reasonable to see if this binding could be replaced by a set
of interfaces as part of Ada that are less OS-specific and
which better integrate with the Ada runtime.

4 Ada and OS services
We note that [POSIX01] is just one of the operating system
interfaces needed in a modern Ada program. There is a set
of operating systems called Windows [Win95], [Win98],
[Win2000,] [Win] that are exceedingly important to Ada
programs, as well as embedded systems such as [Wind
River]. Argueably, it does not make sense for Ada to
attempt to focus its energies on the mapping to a single
class of operating systems; rather a strong case can be made

S. Michel l 189

Ada User Journal Volume 29, Number 3, September 2008

to bring the appropriate OS services that have been defined
for POSIX, extend them to general purpose OS's and
include them in a set of packages in Ada.Interfaces. For
example, all functionality related to memory should be in
Ada.Interfaces.Memory, such as in Ada.Interfaces.
Memory.Locking and in Ada.Interfaces.Memory.Maps.

We therefore propose that instead of updating the POSIX
Binding to Ada, that a new set of energies be created to
replace them which also handle the general issue of

interfacing to the underlying operating system.

Table 2 presents a proposed set of package interfaces to
general purpose operating systems. These interfaces
roughly correspond to the interfaces from [APOSIX98] but
would be recasted to make better use of Ada05
characteristics and lessons learned, such as use of protected
operations to specify timing_events as described in
[Ada05] section D.15. An example of one such interface is
shown in figure 1.

Table 1 POSIX Binding capabilities in Ada

190 Inter fac ing Ada to Operat ing Systems

Volume 29, Number 3, September 2008 Ada User Journal

Table 2 Proposed Ada.Interfaces structure for OS Interfacing

 package Ada.Interfaces.File_IO is

 type File_Type is interface;
 procedure Put(File : File_Type;...);
 ...
 type Asynchronous_Notify is access protected procedure F;
 type Asynchronous_File_Type is interface;
 -- put, get, etc inherited from File_Type
 - - or extended to add capabilities such as
 - - including an accessprotectedprocedure that
 - - is called when the action completes
 procedure Put (File : Asynchronous_File_Type;
 IO_Complete : Asynchronous_Notify; ...);
 procedure Wait_For_Completion(File : Asynchronous_File_Type;...);
 end Ada.Interfaces.File_IO

Figure 1 Example IO interface using Interface types

S. Michel l 191

Ada User Journal Volume 29, Number 3, September 2008

3 Asynch Task Interfaces
A challenge for applications interfacing Ada programs to
operating system services is that these services often
provide explicit thread control in the OS while Ada tasking
(equivalent to threads) is managed by the language. The
challenge for an Ada-OS interface that this view can be
quite different since Ada has protected operations, entries,
and conditional and timed entries are based on the state of
the called task while most OS's use Events, Semaphores,
Signals, One-way messages and sockets. Integrating the
two views means having to match OS ID's and states and
Ada ID's and states explicitly.

For example, OS signals raised by a task or are caught by a
task can be synchronous or asynchronous. Ada95 provided
mechanisms to notify tasks about events, the protected
procedure, and protected entry, but these are asynchronous
and are insufficient to map the OS services directly to the
language.

Now that Ada 2005 has added access to protected
procedures, there are more opportunities to interfaced to
OS services than previous versions. Instead of “magic”
subprograms that handle an interface, Ada2005 permits us
to bridge the concurrency divide between the OS and Ada
tasks at protected subprogram boundres. For every signal,
event, file_IO, message or socket that requires a
concurency-based interface, use protected interfaces and
access to protected procedures to capture these events from
outside the Ada program and to bring them into the Ada
program. Examples of this are provided in the Ada 2005
Rationale [BARNES2006].

Figure 1 shows an outline of a sample package that could
integrate synchronous IO and asynchronous IO as part of
an interface to operating systems. The obvious parallels can
be drawn for Sockets, Events and Message_Queues where
a single interface can be provided and both the synchronous
interface and a parallel asynchronous interface.

We propose that such interfaces be used in the definition of
a collection of services to bind Ada programs to Operating
systems. For example, a task could call Ada.Interfaces.

File_IO.Put on File_Type of Asynchronous_IO and return
immediately, then call either Wait_For_Completion or call
the protected operation that was passed to Put for the
parameter IO_Complete. By setting up multiple protected
interfaces, a single task can manage multiple asynchronous
read or write operations, without the need to explicitly task
ID's, into POSIX thread ID's. This approach is usable for
many of the POSIX interfaces.

4 Conclusion
This paper has shown an approach to update the POSIX-
Ada binding to a general interface to operating systems. It
proposes to add these as children of Ada.Interfaces. It also
shows an approach that could unify the treatment of
synchronous interfaces and asynchronous interfaces using
the new Ada interface mechanism.

Bibliography
[Ada83] ANSI 1815:1983, The Ada Programming
Language

[Ada95] ISO/IEC 8652:1995, The Ada Programming
Language

[Ada05] ISO/IEC 8652:2007, The Ada Programming
Language

[APOSIX] IEEE 103.5c:1998 and IS14519:2001, POSIX
Binding to the Ada Programming Langauge

[BARNES2006] Barnes, John, Rationale for Ada 2005,
available online from www.adaic.com

[POSIX96] IEEE 1003.1,2,3, and IS9945-1:1996, The
Portable Operating System Interface

[POSIX2003] IEEE 1003.1,2,3, and IS9945-1:2003, The
Portable Operating System Interface

[WMM2007] Wong, Luke, Michell, Stephen, Moore, Brad,
Initial Work Scope Summary for updating Ada POSIX
Binding IS 143519:2001 to the Ada Programming
Language IS8652:2007, available from
ISO/IEC/JTC1/SC22/WG9 Ada Working Group as
document N477r.

192

Volume 29, Number 3, September 2008 Ada User Journal

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

Session: Conclusions and Plans for next IRTAW
Chair: Juan A. de la Puente
Rapporteur: Santiago Urueña

1 Introduction:
The final session summarized the main conclusions of the
workshop and addressed some open issues. Another
objective was to decide whether a new IRTAW is needed,
and, if so, the location and time frame.

2 Language Issues
The conclusions of the first session were summarized. Alan
Burns stated that an Ada Issue should be created and
submitted to the ARG to correct the current definition of
the EDF protocol because the standard is wrong [1]. The
proposal was accepted unanimously by the 18 participants,
and he will be in charge to write the AI.

With respect the omission of the requeue statement in
object oriented programming [2], the consensus was that
the requeue is a useful primitive in combination with
interfaces, and that Ada should be consistent in this point.
Alan Burns reminded that the ARG explicitly asked the
workshop to study this problem, and the participants
approved (17 yes, 0 no, 1 abstention) to further investigate
this topic, that a static solution (a pragma) is an effective
mechanism but the implementation costs must be
investigated.

Finally, the workshop agreed that a Ravenscar profile for
distributed systems [3] is very interesting, and that research
should proceed on it. First the requirements should be
defined and then the restrictions should be developed.

3 Programming Patterns and Libraries
Andy Wellings said that a set of real-time programming
patterns [4, 6] for Ada is interesting, and that the work will
continue in a future workshop thanks to the ARTIST
project. The University of York will hold a full-day
meeting in October. The addition of servers [5] to the
framework will also be discussed in the meeting.

Jorge Real asked when the source code will be available,
but Andy Wellings replied that currently there is not a full
Ada 2005 implementation, so the patterns must be first
tested.

4 Implementation Experience with Ada
2005
The rapporteur of the third session [7, 8] summarized that
the conclusions were first to investigate a better means of
execution-time accounting, including a better model for
interrupt handling; to reaffirm the workshop support of
user-defined scheduling; and that there is not a consensus

on whether those execution-time timing mechanisms
should be added to Ravenscar.

Juan A. de la Puente then presented a slide to further
explain this last open issue, explaining the use envisaged: a
task can have a static execution-time timer which is armed
in each activation. If in a rare event the task consumes more
CPU time than its assigned WCET the handler of the
execution-time timer will awake a monitoring task. This
monitoring task can make a system-dependent recuperation
procedure like mode change or safe stop, avoiding the
faulty task to disrupt other tasks.

He reminded that this was discussed in past IRTAWs, and
it had the support of the workshop at that time. Andy
Wellings said that there is no need to add CPU timers
because a monitoring task can check the correct behaviour
of the rest. Tullio Vardanega then stated that CPU timers
are needed to allow multiple Ravenscar partitions to
coexist. In the opinion of Alan Burns, that cannot be
considered a change to Ravenscar, but a new profile. The
final consensus was that the workshop encouraged further
investigation on this topic.

5 Beyond Ada 2005
Jorge Real, as the chair of the fourth session, expressed that
there was not enough time to finish the discussion, but that
the workshop reached some consensuses. The first one was
that Ada needs more standardized support for
multiprocessor systems, like the ability to specify the
affinity of a task to specific processors [9]. Andy Wellings
proposed to continue the discussion in the next meeting,
and to set up a consortium for Ada and the upcoming
hardware architectures. Michael González Harbour and
Juan A. de la Puente were also interested.

Then the workshop continued with the topic about stream-
based parallel systems [10]. Neil Audsley stated that this is
a potential future direction for Ada, as there is no
competitor. For example, the C language is not as strong as
Ada with respect to the memory footprint and energy
savings. Finally, Juan Zamorano said that the proposal
made by Santiago Urueña is a candidate for the distribution
model of a future Distributed Ravenscar. Tullio Vardanega
suggested that this will be discussed in the next workshop,
and Santiago Urueña expressed that he will investigate this
issue.

6 Ada and Other Standards
Mario Aldea started the session talking about the discussion
about the bindings to POSIX [11]. The consensus was that

J. A. de la Puente, S. Urueña 193

Ada User Journal Volume 29, Number 3, September 2008

the standard should be updated with the minimum number
of changes. Stephen Michell expressed that anyone
interested in participating can contact him by e-mail and
subscribe to the mailing list.

This was followed by a summary and discussion about
RTSJ, and Juan A. de la Puente stated that the Ada real-
time community should continue following the progress of
other languages like Real-Time Java, opening new
proposals to include in Ada. Ben Brosgol suggested several
candidates for consideration including garbage collection,
mixed Priority Inheritance, and the Priority Ceiling
protocol.

7 Future Plans
Alan Burns proposed to post the session reports on the web
page of the workshop, so the ARTIST web site can link to
them. Stephen Michell further suggested to have a
permanent IRTAW web site so the pages of all workshops
are always available. Ben Brosgol agreed to have this
permanent web site on the web site of the Ada Resource
Association.

Finally, it was discussed whether another IRTAW should
be held in the future. Tullio Vardanega felt that it would be
desirable, and Jorge Real stated that there are a lot of open
issues. The unanimous decision was that another workshop
is needed and should be planned for approximately 18
months from now, namely in September 2008. Tullio
Vardanega said that he would be happy to hold the next
IRTAW in Italy, while Neil Audsley volunteered to be the
Program Chair.

References
[1] Zerzelidis, A., Burns, A., Wellings, A.J. Correcting the

EDF protocol in Ada 2005. In ACM Ada Letters,
Volume XXVII, Number 2, August 2007.

[2] Wellings, A.J., Burns, A. Integrating OOP and
Tasking — The missing requeue. In ACM Ada Letters,
Volume XXVII, Number 2, August 2007.

[3] Urueña, S., Zamorano, J. Building High-Integrity
Distributed Systems with Ravenscar Restrictions. In
ACM Ada Letters, Volume XXVII, Number 2, August
2007.

[4] Wellings,A.J., Burns, A. A Framework for Real-Time
Utilities for Ada 2005. In ACM Ada Letters, Volume
XXVII, Number 2, August 2007.

[5] Burns, A., Wellings, A.J. Programming Execution-
Time Servers in Ada 2005. In ACM Ada Letters,
Volume XXVII, Number 2, August 2007.

[6] Pulido, J., de la Puente, J.A., Bordin, M., Vardanega,
T., Hugues, J. Ada 2005 Code Patterns for Metamodel-
Based Code Generation. In ACM Ada Letters, Volume
XXVII, Number 2, August 2007.

[7] Urueña, S., Pulido, J., Redondo, J., Zamorano, J.
Implementing the New Ada 2005 Real-Time Features
on a Bare Board Kernel. In ACM Ada Letters, Volume
XXVII, Number 2, August 2007.

[8] Aldea, M., González Harbour, M. Operating System
Suport for Execution Time Budgets for Thread Groups.
In ACM Ada Letters, Volume XXVII, Number 2,
August 2007.

[9] Burns, A., Wellings, A.J. Beyond Ada 2005: Allocating
Tasks to Processors in SMP Systems. In ACM Ada
Letters, Volume XXVII, Number 2, August 2007.

[10] Ward, M., Audsley, N.C. Suggestions for Stream
Based Parallel Systems in Ada. In ACM Ada Letters,
Volume XXVII, Number 2, August 2007.

[11] Michell, S. Interfacing Ada to Operating Systems. In
ACM Ada Letters, Volume XXVII, Number 2, August
2007.

 195

Ada User Journal Volume 29, Number 3, September 2008

13th International Conference on
Reliable Software Technologies

Ada-Europe 2008

Venice, Italy,
June 16-20, 2008

Session
“Ada and Software Engineering Education”

196

Volume 29, Number 3, September 2008 Ada User Journal

Session Report: Ada and Software Engineering
Education
Chair: Jorge Real
Rapporteur: Luís Miguel Pinho

Abstract
At the Ada-Europe 2008 conference, a special session
was devoted to the subject of Ada in Software
Engineering Education. This short paper reports on
the proceedings of the session.
Keywords: Ada, Software Engineering, Education

1 Introduction
As the Conference Organizer openly put to the Ada
community, the objectives of this session were to discuss
(quoting from [1]):

• what languages should be used in the software
engineering curriculum in comparison to what are
actually taught: where Ada stands in that business and
how Ada could instead serve that curriculum;

• what it takes (or should take) for a graduate to learn
Ada in comparison to the (false) perception that if Ada
is not taught in the curriculum then "there are no Ada
programmers around".

There were around twenty attendees in the session, from
eight countries, from both academia and industry, and from
both sides of the Atlantic.

2 Education Requirements and Issues
The first part of the session included four presentations,
providing a variety of experiences on the subject issue:

• Ed Schonberg, as a professor at the New York
University, presented an analysis of the use of Java as
the first programming language, and argued that Ada
and C++ are superior for introductory Computer
Science courses [2];

• John McCormick, of the University of Northern Iowa,
presented the experience of students implementing
software to control a railroad model (a large multi-
tasking real-time embedded system), and the gains
observed when switching from C to Ada [3];

• Jean Pierre Rosen, of Adalog, presented an assessment
of the importance of education per se, not only for Ada,
but for software engineering in general [4]; and

• Carl Brandon, of the Vermont Technical College,
described the use of Ada to implement the software for
a pico-satellite (CubeSat) [5].

In this section we provide a brief summary of the
presentations (thus biased by the focus of the presenter –

and the synthesis capacity of the listeners). Following in
this Journal issue the reader will retrieve the papers derived
from (or that led to) the presentations at the session.

2.1 Java considered harmful
This presentation was based on the paper that appeared in
the Crosstalk Journal [6], and that stirred an intense online
discussion on various threads (both pro and against the
authors’ perspectives).

Ed Schonberg started out by arguing that the quality of
education in the software engineering field is visibly
decreasing. And, although not the root cause of it, the Java
language does not seem to help. Ed Schonberg also noted
that Java is often not being targeted as a programming
language, but rather as a tool to learn computer science.
Particularly important, Java was chosen as the target of
Ed’s talk because it has become the central piece of
elementary computer science education.

The presenter also noted that it is important to provide
programmers with the ability to zoom across levels of
abstraction: from the small, such as code performance, to
the very large, such as software frameworks.

Concerning programming in the small, the presentation
outlined different topics were Java hinders the
understanding of code performance, such as the virtual
machine, garbage collection and object-orientation (whose
perils were also highlighted).

Afterwards, the presentation focused on two areas that Java
has a serious impact on: composition and concurrency. In
the former, Java forces composition by delegation, leading
to the proliferation of different, multi referenced, objects.
In the latter, the concurrency model of Java is very low
level, not providing the effective abstractions that have
been devised in the field in the last 30 years.

The talk also outlined some concerns on the program-
structuring tools of Java. Starting from the noting that Java
only provides the class as a structure building block, an
important conclusion was that some of the basic notions of
software engineering are hard to describe in Java.

As for frameworks, the introduction of the term ‘bloat’ as a
technical characterization concerning Java, was proposed
as a consequence of the proliferation (i.e, bloating) of
classes and objects imperceptibly to the programmer.

Ed Schonberg also presented an interesting parallelism
between program correctness and psychoanalysis. This was

J. Real, L. M. Pinho 197

Ada User Journal Volume 29, Number 3, September 2008

used to lead to the use of compilers as theorem provers, and
the strengths of Ada’s type system for this.

Finally, a challenge was made to the audience. By noting
that programming is more remodelling than building
houses, Ed noted that language readability is extremely
important. It is therefore important to make widely
available Ada-based introductory computer science texts.

2.2 Developing software to control a railroad
model
In the second presentation of the session, John McCormick
started by introducing the context of the Real-Time
Embedded Systems Course in the University of Northern
Iowa. In this course, students relate fundamental scientific
real-time computing issues with practical software
development.

The presentation focused on the practical project that
students must complete, where in 15 weeks they must
develop a real control system with around 10-15 KSLOCs.
Instead of using simulators, which do not cause the
problems associated with actual systems and do not provide
the real experience required by those hiring computer
science graduates, students must develop software to
control a real large railroad system model.

This railroad system was selected, and is actually being
used, not only because the equipment is affordable and
available, but as also because it provides for versatile
challenges (both discrete and continuous control systems).
Also important, this system highly motivates students into
the course and into computer science at the University.

After describing the project’s platform, a set of minimum,
high-level requirements is given to the students, including
terms such as no train collisions, fault recovery, and the
participation of at least one human operator, including the
interference of a “devious” professor.

Afterwards, John showed the results of the experience
study. During the first six years of the project, C was used
for the control software development. An important point
was made that, even with an increasingly amount of
supplied code (up to 60%), not a single group was able to
fulfil the minimum requirements.

Assuming that the problem was in the tasking model of C
(or rather the lack of it), a shift was then made from C to
Ada, as Ada had a much higher level of tasking abstraction.

As a consequence of this shift, in the first year 50% of the
groups finished their projects. After 7 years, around 75% of
the groups regularly complete their projects, and only with
around 10% of supplied code.

However, by analysing the students’ logbooks, it was
possible to determine that the major problem was not C’s
low level tasking model, but Ada's modelling of scalar
quantities. Ada’s type system “caught” most of the
common errors early in the development, where they are
more easily fixed.

As a conclusion, the programmers should spend as much
effort designing the scalar types as usually done with the
modelling of larger classes in object-oriented systems.

2.3 The importance of education
In the third presentation, Jean-Pierre Rosen shared his
experience regarding the importance of education, which he
personally gathered in several Ada-related projects.

His presentation started by antagonizing the thesis “Ada
Education is important” and its antithesis “Ada Education
is not important”.

As to the former, Jean-Pierre pointed out that the main
problem is that people are literally thrown into Ada projects
without Ada knowledge, on the grounds that Ada is a very
readable language. His opinion is that as bad or insufficient
Ada education is actively harmful to Ada.

He then presented some examples:

• Not knowing the language is harmful. The programmer
would in fact rather claim that the problem is with the
language and not with his/her knowledge of it.

• It is possible to program in Ada as in C. This incurs
poor usage that makes it difficult to program and causes
the programmer to fight the compiler.

• Not understanding Ada typing will make the compiler
an enemy. If unchecked conversion is used as a simple
solution, then there more problems than benefits will
ensue.

In conclusion, Ada is the problem!

As for the antithesis, Jean-Pierre noted that many software
developers do not have education in computer science. The
basic CS education is no longer taught and design
methodologies are out of fashion.

Therefore, his question is why we focus on the language, as
many other more important skills are missing. As an
example, he noted that it is simpler to teach Ada to
someone that knows secure systems than the opposite.

Also, it is necessary that we do not give the impression that
only experts can use Ada, as it draws programmers away
from Ada.

Making the synthesis of his opinion, he proposed the good
news that the language design is right: the lack of features
is not the reason industry goes away from the language.

However, as bad news, the problem is not Ada. It is the
lack of software engineers, with education in computer
science.

Jean-Pierre then made some proposals of what can be done
to change this situation. Ideally we should teach people
how to think: the goals and principles of software
engineering, algorithms and problem solving, and Ada in
the remaining time.

Programming should be taught as an engineering discipline,
with its own set of rules, which should be understood and
followed by the programmer. Finally, Ada should also be

198 Session Report : Ada and Software Engineering Educat ion

Volume 29, Number 3, September 2008 Ada User Journal

taught to those already active in Ada projects. Software
Engineering education should also be promoted.

The conclusion of the presentation is that Ada adoption
would be the natural consequence of teaching Software
Engineering.

2.4 Developing software for a pico satellite
The final presentation of the session was by Carl Brandon,
of the Vermont Technical College (VTC). The presentation
shared the author’s experience with a student project for
implementing the software for a pico satellite.

The platform (CubeSat) is a custom built satellite platform,
based on the Texas Instruments MSP430 micro controller,
with (target) 116 KB of Flash and 8 KB of RAM.

The same platform will be used in the Arctic Sea Ice Buoy
system being developed which will also reuse some of the
software components. The hardware and software for these
systems will be developed by VTC students in their senior
year projects.

Although no Ada complier exists for this platform, Ada
was chosen for its reliability, as the software is considered
to be mission critical. Simultaneously, the project can be
used to teach Ada.

SPARK is also used, considering the integrity requirements
of the software being developed. There is no way to fix the
software after launch, which thus entails a very high cost of
failure both in dollars and in time. Another motivating
factor in the project was the possibility for Software
Engineering majors to work in a high-integrity real project.

The Arctic Sea Ice Buoy will use sequential SPARK, whilst
RavenSPARK is foreseen for the CubeSat, even though
Carl noted that concurrency in the CubeSat is only in the
attitude control, and if avoidable it will actually not be
used.

Since there is no Ada compiler for this particular platform,
the solution found was to translate Ada code (after going
through SPARK) to C, using Ada Magic, and afterwards
using a C compiler and the Salvo Real-Time Operating
System. Students can therefore write the source code in
Ada and SPARK and be able to produce code for the
MSP430 in one go.

3 Discussion
After the presentations, the floor was open to questions and
comments from the audience. The discussion started by
analysing what is the current situation with the
programming language used for the first CS courses.

Several examples were provided of Java being used,
although John McCormick provided a counter example of
switching to Java in the first two courses, and after 5 years,
considering it a failure, switching back to a mix of Ada and
C++.

Another argument was then put forward by Theodor
Tempelmeier, suggesting that the shift to Java was also
being industry-driven. This argument was reinforced by Ed

Schonberg noting that computer science is no longer
attractive. The market is becoming split into two different
groups. On one side, the software architects, highly paid,
and on the other side, the programmers. The focus of
industry is on quantity of low-pay programmers, for whom
knowing Java is sufficient. And there is nothing that
Educators can do about this.

Jean-Pierre Rosen reinforced this by noting that the current
trend is to have simple jobs, which are easy to outsource.

The audience also debated as to whether computer science
students were decreasing. John presented his case in that in
the USA, the number of students was down to 60% of the
numbers 8 years ago. Jean-Pierre provided his opinion of
France in that there is a decline of 50% in the number of
students. Theodor noted that in Germany there is a decline,
but also a major shift from technical computer science to
economic/management computer science.

Tullio Vardanega then provided Italy’s example, where
computer science is still more attractive than engineering.
He does not consider that there is a crisis in science, but
thinks that courses must provide students with the
necessary tools (languages) for them to be able to point out
in industry the best solution for each specific case. Industry
also wants people able to offer good answers to difficult
and pressing questions.

Ed Schonberg then asked if the world is interested in
Reliable Software. In his opinion, it is not Ada that matters
per se, but that reliable software does. That is the idea that
the Ada community should put forward. However, as Ed
pointed out, if society puts up with faulty software, then
nothing can be done for general-purpose software. But for
safety applications, then it does matter. Jean-Pierre noted
that the automotive industry is a possibility for a more
widespread use of software reliability.

Tullio then noted that he has not encountered yet an
industry that is not concerned about reliability. However,
industry is pragmatic. In a particular case, one company
switched from Ada to C because they were afraid that Ada
would not last (contrary to their expectations of C). He
thinks that the automotive industry has the same
expectations. Therefore, the demand for reliability is there.
It is however uneducated.

Tullio also presented another example, where an industry,
with totally misplaced expectations, went trough a very
difficult effort to shift from Ada to automatically-generated
C, hoping for lower costs in a small percentage of the total.

Jorge Real offered his view on the conflict between
industry and academia. In his view, the argument behind
the shift to Java is popularity, which is deemed to be
equivalent to finding a job. And what is popular currently is
Web development. That is why Java is popular. Society
accepts and even expects computers to fail. You can always
switch off and on again. The question should be how to
persuade society that computers can and should be reliable
and that software could be reliable too.

J. Real, L. M. Pinho 199

Ada User Journal Volume 29, Number 3, September 2008

John drew a parallel with the automotive industry in the
60’s, where cars where expected to fail. Then the Japanese
automotive industry started to build more reliable cars and
the rest of the sector had to follow.

Julio Medina then asked for a poll. At what level is
reliability taught? His opinion is that reliability is often
taught at the master level, which is a problem. Ed agreed
with it, adding that he believes that in many courses there is
no reliability at all. Programmers believe that they never
fail, and everyone takes for granted that programming is
simple. However, we need to spread the word that
programming (the discipline not the language) is complex,
but at the risk of chasing students away. We currently do
the opposite: we try to persuade students that it is simple.

The audience then analysed the consequences of the higher
level of abstraction in programming. Julio argued that
programmers should see all layers, from assembly to the
high-level. According to Julio, programmers nowadays
abstract from the underlying infrastructure, and believe that
any “mistake” will be solved by some hidden features
underneath.

The same problem was pointed out by several participants.
Robert Dewar added that it is a current trend for students
not needing to know hardware, assembly or compilers. He
noted that NYU went from 2 to 1 course for assembly, C
and architecture issues.

Ed Schonberg then noted that Web and real-time
development are two disjoint areas. The latter will continue
to exist, and it is this area that the Ada community

addresses. It would be good to also address the former, but
it is not the main priority.

4 Conclusions
The time was up before we were able to draw up a
synthesis of the discussion. The session chair however
volunteered a brief summary, considering that an important
move would be to push forward software reliability in the
curricula of Computer Science and related courses. He
noted that this effort could best fit the framework of ACM
computing curricula.

References
[1] Vardanega T., email to the GAP list, November 2007

[2] Schonberg, E., Dewar, R. A Principled Approach to
Software Engineering Education or: Java Considered
Harmful. (this issue)

[3] McCormick, J. W., Ada and Software Engineering
Education: One Professor's Experiences. (this issue)

[4] Rosen, J.-P. Is Ada Education Important?. (this issue)

[5] Brandon, C. Use of Ada in a Student CubeSat Project.
(this issue)

[6] Dewar, R. Schonberg, E., Computer Science
Education: Where Are the Software Engineers of
Tomorrow?, CrossTalk, The Journal of Defense
Software Engineering, January 2008. Available at
http://www.stsc.hill.af.mil/CrossTalk/2008/01/
0801DewarSchonberg.html

200

Volume 29, Number 3, September 2008 Ada User Journal

A Principled Approach to Software Engineering
Education, or Java considered Harmful
Edmund Schonberg, Robert Dewar
Adacore Inc, 104 5th Avenue, NYC 10011, USA; email: Schonberg@gnat.com, dewar@gnat.com

Abstract
We examine the use of Java as a first programming
language, in the light of well-established principles of
software engineering, and the increasing concern
with correctness, performance, and maintainability.
We argue that Java is markedly inferior to Ada or
C++ as a language for introductory Computer
Science courses, and that its widespread use in the
training of tomorrow’s software engineers is
counterproductive.
Keywords: Software Engineering, Education, Java,
Ada.

1 Introduction
It is a well-established fact (first discussed by E.Dijkstra)
that the programming language in which programmers
receive their first instruction has a large impact on their
programming habits. Current instruction in Computer
Science (see for example ACM’s Computing Curricula
2005 [1]) minimizes the teaching of multiple programming
languages, which makes the impact of the first language
even more critical. Java is more and more the language of
choice for introductory programming courses. We argue
that this is a poor choice.: we examine the drawbacks of
Java as a teaching language under four headings, which
following Koolhas et al are conveniently labelled small,
medium, large, and extra large [4]. Before delving into the
details, let us establish the limits of our arguments:

a) We consider that programming will retain a central
role in all software construction: there is no automatic
programming machinery in sight that will make
programming a secondary activity.

b) Programming remains a demanding intellectual
discipline. The separation between “designers” and
“programmers” attempts to create a hierarchy of skills
(and salaries!) but this separation is artificial and
counterproductive: software authors (to coin a term)
must have a rigorous training that includes solid
foundations in software engineering. We are
particularly concerned with safety- and security-critical
systems, that present considerable engineering
challenges.

c) We do not debate the importance of Java in today’s
software industry, and do not discuss the merits of the
language in its industrial and commercial applications:
our concern is with the training of software engineers.

d) One of the fundamental skills of a good software
engineer is the ability to zoom, that is to say to change
the focus of his activity from the very large (software
architecture) to the very small (efficiency of generated
code, cost of synchronization, etc.). The education he
receives must develop this ability, and the languages in
which he is taught plays a vital role in this. This argues
for the use of a wide-spectrum language from the
beginning.

2 Programming in the small
This is the realm of algorithmic analysis: the programmer
must be able to estimate reliably the performance of code,
in terms of time and space. The disadvantages of Java in
this respect are several:

a) The Java virtual machine hides the real architecture..
The JVM is basically a simple stack machine, which
makes it easy to port, but it includes some complex
operations whose cost will vary from target to target.
The use of just-in-time compiling to speed up critical
paths makes the performance of a Java program even
harder to estimate. It is certainly the case that for many
applications (in particular Web programming) a casual
approach to performance is acceptable. For safety-
critical systems and real-time systems this is not
sufficient.

b) Most critically, garbage-collection adds a hard-to-
quantify cost to Java programs. Furthermore, the
presence of the garbage collector encourages what we
might call a profligate style of programming, where
objects are created freely for the simplest of
computations. For example, object-oriented
methodologies encourage the “boxing’ of atomic
values (transforming an int to an Integer object, for
example). So as to honour the concept that “everything
is an object”. As a result, the simplest computation will
involve the dynamic creation of heap-allocated objects,
and it will become impossible to estimate the time
behaviour of code. This attempt at unification is
inspired by Smalltalk, but it is interesting to note that
Eiffel abandoned this unified model early in its design
[5] and that C++, like Ada, sensibly maintains a clear
distinction between elementary values and composite
ones. The difficulties of analyzing the performance of
large Java systems is vividly described in [7].

E. Schonberg, R. Dewar 201

Ada User Journal Volume 29, Number 3, September 2008

3 Programming in the medium
 This is the realm of abstraction and encapsulation. In Java
(and to a large extent in C++) the fundamental concept is
the class, which we must contrast with the various type
constructors in Ada. We include in this category the
primitives for concurrent programming.

It is well-known that when designing new abstractions
(software components) composition is more important, and
used more often than inheritance. Yet in Java composition
can only be obtained by delegation, that is to say by
embedding a pointer to an object inside of another one. By
contrast, in Ada (and to some extent in C++) composition is
obtained through aggregation, subtyping, and unions (free
in C++, discriminated in Ada). As a result Java design
leads to a proliferation of objects, heavy use of dynamic
storage, and structures that pointer-heavy and therefore
wasteful of storage. The impact of this on performance is
well described by Mitchell et all [6]..

3.1 Concurrent Programming
Concurrency is an aspect of Java that is decidedly low-
level:

a) Synchronization is per-method, and there is no direct
thread-to-thread communication, except through
shared memory.

b) Distributed locking operations make it harder to
formalize concurrent behaviour, and the
suspend/resume mechanisms are notoriously error-
prone (race conditions, deadlock).

c) The semantics of priorities and the queueing regime
are not defined precisely enough to guarantee real-time
behaviour.

Concurrency is much better taught with tasks and protected
objects, as presented in [3]: standard concurrent paradigms
(producer-consumer, mailboxes, semaphores, broadcasting,
etc.) are easily constructed with them. Finally, the use of
the Ravenscar profile (part of the Ada 2005 standard)
allows the construction of concurrent programs with fully
deterministic behaviour.

4 Programming in the large
The only program-structuring mechanism of Java is the
class. This is the most glaring deficiency of Java from the
point of view of software engineering: there is no proper
separation between specification and implementation, and
there is no mechanism for hierarchical composition of
components.

a) The separation between specification and
implementation is not just a matter of information
hiding (which is handled by public/private dictions in
all languages of interest): it is of the greatest
importance in the simultaneous development of large
systems. In Ada, design starts with package
specifications. Once these are agreed upon,
development of client code can proceed
independently of the implementation of these

specifications. Finally, the separation between
specification and body simplifies incremental
recompilation: a client need not be recompiled when
changes in the implementation of a package do not
affect its specification.

b) The class is too small a unit out of which to design
systems, but there is no grouping mechanism that
allows the semantically coherent aggregation of
classes. The Java notion of a package is more akin to
that of a library of weakly related components. In
contrast, the Ada package provides a mechanism for
type aggregation, a visible dependency graph through
context clauses, and a flexible model of system
extensibility through child units.

c) Java cannot deal with subtyping independently of
inheritance: there is a conceptual confusion between
subtyping as enrichment (the usual notion of
inheritance0 and subtyping as subsetting. This is a
problem with all O-O methodologies, and is not just a
philosophical issue, but one with pedagogical import
(see e.g. the discussions around the circle-ellipse
relation: which should be considered a subtype of the
other?[8]).

After the concept of package, the most important
contribution of Ada to software engineering is the notion of
constraint (including constraints on scalar types). This
notion has no analogue in other languages. Constraints are
of course a simple but powerful example of program
assertions: they define behaviour more precisely, and they
can be checked statically byt the compiler, or enforced
dynamically. In either case they pin down the semantics of
the program in ways that are not available in other
languages.

5 Programming in the very large
Most large software systems today combine components
that are themselves aggregates (subsystems) consisting of a
number of packages or classes, often written in different
languages. For the most part the mechanisms for
assembling these components are embedded in an
Interactive Development Environment (IDE), of which
Eclipse is a well-known ecxample. At this level it would
appear that the choice of language plays a smaller role, but
there are two areas in which Ada presents definite
advantages: interfacing with other languages, and static
program analysis.

a) Ada formalizes the description of components that may
be written in other languages, by means of pragmas
(Import, Export, and Convention). The Ada library
provides data conversion routines to trasnsform e.g.
Ada self-describing strings into C zero-terminated
strings. These pragmas and library routines allow the
Ada compiler to verify the type coherence of a
program that has foreign language components. By
contrast, the JNI mechanism in Java, and the
mechanisms provided by other languages, lose most
type checking in the presence of components written in
other languages.

202 A Pr incip led Approach to Software Engineering Educat ion

Volume 29, Number 3, September 2008 Ada User Journal

b) Larger and faster machines make whole-program
analysis possible over programs with tens and
hundreds of thousands of source lines. This makes it
possible to detect programming defects at compile time
(uninitialized variables, race conditions, constraint
violations, etc) that are beyond the reach of unit by unit
compilation. However, the power of static analysis,
depends on the richness of information available to the
analyzer, and to a large extent this depends on the
richness of the type system of the language. In this
context it is useful to think of a compiler as simple
theorem prover: every diagnosed error is a proof that a
certain invariant is violated somewhere. As with any
deductive system, the richer the set of axioms, the
more interesting the proofs that can be derived from it.
In this sense, redundancy within the program text is
beneficial, because it makes it possible to check for
consistency. Programmers often regard Ada as too
verbose, and balk at the substantial declarative
machinery that they have to use, but these declarations
are precisely what makes Ada compilers so much more
precise in their diagnostics.

There is a continuum between type checking as performed
by a compiler, ambitious static analysis as performed by a
tool such as Softcheck’s Inspector [7], and program
verification as obtained with Spark [2]. However, what
makes Inspector and Spark possible (and what makes the
error messages of a good Ada compiler so precise) is the
strong static typing model of Ada. No other language today
has a typing system that is rich enough to support such
tools. The quality of diagnostics produced by these tools is
particularly valuable for beginners, and is a revelation for
programmers coming from other languages.

6 Conclusions
We can summarize the shortcomings of Java as an
introductory programming language as follows:

a) Java hinders the understanding of code performance.

b) Java design methodologies lead to a proliferation of
objects, heavy use of dynamic storage, and data-
structures that are pointer-heavy and thus wasteful.

c) The Java model of concurrency low level and error-
prone, and the garbage-collected environemt prevents
its use in real-time applications.

d) The fundamental separation between specification and
implementation is absent in Java, hampering good
software engineering development practices.

e) Without the notion of constraint, Java has no way of
specifying useful invariants to describe program
behaviour.

Some of these deficiencies also apply to C++ as an
introductory language, even though as a wide-spectrum
language is does satisfy the concern with performance
analysis described in section 3. There is no further need to
enumerate the reasons for the superiority of Ada over either
Java or C++ as an introductory programming language.

References.
[1] ACM Computing Curricula 2005. At

http://www.acm.org/education/curric_vols, 2006.

[2] John Barnes: High Integrity Software: The Spark
Approach to software Safety and Integrity. Addison-
Wesley, 2003.

[3] Alan Burns, Andy Wellings. Concurrent and Real-time
Programmming in Ada 2005, Cambridge University
Press, 2006

[4] Rem Koolhas et al, S M L XL, Monacelli Press, 1997

[5] Bertrand Meyer, Object-Oriented software Cons-
truction, Prentice Hall, 1997.

[6] Nick Mitchell, Gary Sevitsky, Harini Srinivasan. The
diary of a Datum: an approach to analyzing runtime
complexity in Framework-based applications, in
Workshop on Library-centric software design,
OOPSLA 2005

[7] Softcheck. Inspector,
http://en.wikipedia.org/wiki/SofCheck_Inspector

[8] Wikipedia. Circle-ellipse problem, in
http://en.wikipedia.org/wiki/Circle-ellipse_problem

 203

Ada User Journal Volume 29, Number 3, September 2008

Ada and Software Engineering Education: One
Professor's Experiences
John W. McCormick
University of Northern Iowa, Cedar Falls, IA 50614, USA.; email: mccormick@cs.uni.edu

Abstract
How do you select a programming language for your
project? Few developers have the luxury of coding the
same design in multiple languages to compare
language merits. For over twenty years my
undergraduate students have implemented the same
large (10-15K lines), multi-tasking, real-time
embedded system. In one 15 week semester, student
teams specify, design, and implement software to
control a substantial model railroad layout.
Students implement everything from device drivers for
custom I/O hardware to high-level decision making
algorithms. Student teams have implemented the
project in both Ada and C. This paper describes the
course, the laboratory, the project, and an analysis of
the results achieved with each of the implementation
languages.
Keywords: education, real-time, laboratory, Ada, C,
model trains

1 Introduction
This paper describes a course, Real-Time Embedded
Systems, offered by the Department of Computer Science at
the University of Northern Iowa. Real-Time Embedded
Systems is a capstone course taken in the third or fourth
year of study. To perform well in this course, students must
integrate knowledge from their previous work in computer
science, electronics, English, mathematics, and physics.
Students are exposed to the fundamental scientific issues in
real-time computing [1] and gain practical skills of
software development. A major goal is to educate software
engineers capable of working as members of an
interdisciplinary development team. Many topics are
covered at a survey level. For example, students in the
course learn just enough of the basic concepts of control
theory to be able to communicate with a control engineer
and to implement a simple control algorithm. Graduates of
the course have gone on to work in a wide range of
domains including avionics, communications,
manufacturing, transportation, farm machinery, and
medical instrumentation.

2 Acknowledgment
This paper is based on an earlier work We've Been Working
On The Railroad: A Laboratory For Real-Time Embedded
Systems, Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Education, St. Louis,

Missouri, USA, pp 530-534 © ACM, 2005.
http://doi.acm.org/10.1145/1047344.1047510.

3 Laboratory
An introductory undergraduate course in real-time
embedded software development should acquaint students
with the fundamental scientific issues of real-time
computing and practical skills in embedded software
development. While the theoretical issues can be covered
without a laboratory, real-time embedded software
development skills require the experiences that a laboratory
provides. A major problem is finding equipment suitable
for teaching these skills.

Simulators are commonly used to give students experience
with real-time embedded systems programming [2].
Typically these simulators do not provide many of the
frustrating problems associated with physical systems. In
most embedded systems projects, hardware and software
are developed in parallel. Gathering evidence for the
determination of whether a fault is in the hardware or the
software is an important skill for the embedded systems
programmer. Lack of experience with real systems is a
major reason cited by engineers who would exclude
computer science graduates from their development teams.

I have used a computer-controlled model railroad in my
real-time embedded systems course for more than 20 years.
Some of the advantages of using a model railroad in the
laboratory are:

• Model railroad equipment is readily available and priced
well below typical laboratory equipment.

• Model railroads provide a wealth of problems from both
the discrete and continuous real-time domains.

• Undergraduate computer science students easily
understand the electronics and physics.

• Students are highly enthusiastic about writing software
to control a model train layout.

4 Model railroad equipment
The model railroad I use is HO scale (1:87). While smaller
scales would permit more equipment in the laboratory, they
are more expensive, more difficult to maintain, and less
readily available.

To run multiple trains on their layouts, model railroaders
traditionally divide the track into electrically isolated
sections called blocks. Modellers use many toggle and

204 Ada and Software Engineer ing Educat ion: One Professor 's Exper iences

Volume 29, Number 3, September 2008 Ada User Journal

rotary switches to connect a particular power supply (called
a cab) to a group of track blocks beneath each train. In my
layout, the computer controls the power and polarity
applied to each of 40 blocks. Today's model railroad
enthusiasts often use more modern direct digital control of
locomotives to solve the problem of multiple train control.
In these systems, the track is used as a communications
bus. Commands are addressed to specific locomotives and
broadcast on the track. I have rejected this approach as it
provides fewer software development problems and less
experience with analogue electronics.

Turnouts (commonly called switches) are controlled by
gear- and screw-driven switch machines. As they are
electromechanical devices, turnouts sometimes fail to move
to the desired position. A stuck turnout can often be freed
by moving it back and forth.

Engineers drive a train via a hand-held control unit, a small
box with two buttons, a knob, and two toggle switches.
There is no hardware for debouncing the buttons or
switches. Typical student projects assign knobs for train
throttles, buttons for whistles and brakes, and toggle
switches for train direction (forward or reverse) and for
setting the next turnout ahead of the train (left or right).

In order to do closed loop control, it is necessary to obtain
feedback on the process being controlled. For the model
train this feedback consists of the trains' locations as a
function of time. On my layout, this information is obtained
from 51 Hall effect sensors installed on the track. These
sensors are triggered by small magnets attached to the front
of every locomotive and to the rear of each caboose.
Sensors simply report the presence of a magnet; there is no
information provided as to which magnet triggered it.

Sound provides another dimension to the layout. We have
hardware that generates sounds from digital recordings of
diesel locomotive engines, air brakes, air horns, and bells.
An independent ASCII text to speech processor provides
feedback for locomotive engineers and is a useful
debugging tool for the student software engineers. Sending
debugging output to the speech processor rather than a
display screen allows students to observe the behaviour of
the hardware anywhere in the laboratory while receiving
verbal information on the state of their software.

5 Computing hardware
A number of different hardware configurations have been
used over the long history of this project. In my first
laboratory, students developed their control software on a
Digital Equipment Corporation PDP 11/24. They used a
serial link to download executable programs to a PDP
11/23 computer. In 1989 I received a laboratory
improvement grant from the National Science Foundation
(NSF) enabling me to replace the PDP 11/24 with a
microVAX II and the PDP 11/23 with an rtVAX
(optimized for real-time). My current system uses
inexpensive PCs for both development and target machines.
Future plans include using a variety of traditional
embedded systems processors.

CPUs

Buses
ISA PCI GPIB CAN USB VME etc.

“Standard” Commercial Devices
DAC ADC DIO Counter-Timer

Maytag / Rockwell-Collins
Custom Interface Boards

Railroad Layout
Blocks Sensors Turnouts Cabs Sound

Figure 1. System architecture

5.1 System architecture
The interface hardware connects the control computers to
the railroad hardware. Figure 1 is a diagram showing the
layers within a model railroad control system.

One or more CPUs are connected to commercial analogue-
to-digital converters (ADC), digital-to-analogue converters
(DAC), TTL level digital I/O (DIO), and counter-timers.
The connections may be made through any of a number of
different buses. I use custom hardware to connect these
devices to the railroad layout. In the past, this interface
layer was hand-built on wire wrapped and soldered
prototyping boards.

As a direct result of presentation and publication of
previous work [3, 4, 5], nearly 70 schools and corporate
training departments have requested detailed specifications
of the laboratory. Most were discouraged by the large
amount of effort (500-plus hours) required to assemble the
necessary interface electronics. With the support of
Maytag Corporation and Rockwell-Collins, I have designed
and manufactured circuit boards that make this aspect of
building the laboratory much easier for those wishing to
duplicate my efforts. The interface hardware consists of
four major subsystems (block control, turnout control, train
sensors, and sound) detailed in the next sections and two
minor subsystems (cabs and hand-held controllers). The
cost of the interface electronics for a small layout is about
$1,200. Interface costs for my large layout were $2,900.

5.2 Block control subsystem
The block control subsystem controls the power applied to
each block of track in the railroad layout. Figure 2 shows a
single track block circuit. Each Maytag / Rockwell-Collins
block circuit board contains 12 such circuits.

The two analogue outputs of the block control circuit are
connected to the rails of a block of track to supply power to
the train on that block. Each circuit has four digital inputs
and eight analogue inputs. Three of the digital inputs (cab

J. W. McCormick 205

Ada User Journal Volume 29, Number 3, September 2008

select in Figure 2.) are used to select which one of the eight
analogue inputs will be used to power the track block – an
analogue version of the multiplexer students study in
computer organization. The remaining digital input is used
to select the polarity of the voltage applied to the track.
The polarity controls the direction the train moves on the
block. The analogue inputs (cab voltages in Figure 2) may
be supplied by either digital-to-analogue converters or by
programmable counter-timers. The latter provide a pulse
width modulated signal for controlling the speed of a train.
Pulse width modulation gives more precise control of the
DC motors in the locomotives than is possible with simple
voltage level control.

5.3 Turnout control subsystem
The turnout control subsystem is designed to control
Tortoise™ brand switch machines. Other brands can be
used. Figure 3 shows a single turnout control circuit. Each
Maytag / Rockwell-Collins turnout circuit board contains
24 such circuits.

The two analogue outputs of the turnout motor control
circuit are connected to a switch machine motor. A series
of contacts on the switch machine provide an analogue
signal (sense in Figure 3) that indicates whether or not the
linkage has reached the end of its travel.

A single digital input (direction in Figure 3) selects the
direction to turn the switch machine motor. Because switch
machines take two to three seconds to change, a turnout has
four possible states: left, right, moving left, and moving
right. Rather than use two output lines to determine the
state of the turnout, we use the desired direction (the input
value) in combination with an output value (in position in
Figure 3) that reports whether the switch machine motor
has reached the desired direction.

5.4 Train detection subsystem
The train detection subsystem connects the Hall effect
sensors on the track to a digital input/output (DIO) board
with interrupt capabilities. It may also be used with other
TTL level sensors. Each Maytag / Rockwell-Collins sensor
circuit board handles 64 sensors. LED’s are provided to
aid in debugging interrupt handlers.

The Hall effect sensors are located on the boundaries
between track blocks. When a locomotive is detected, the
software must power up the next block before the wheels

bridge the gap between blocks. This is a hard real-time
deadline. Failing to power the next block in time will blow
the block power supply fuse. Students prefer to test their
software with locomotives rather than by pushing cars with
plastic wheels that cannot bridge the electrical gap between
blocks. I supply each team with five fuses. Usually, within
a week after teams begin testing their block control
software, every hardware and auto part store in town is sold
out of 4 amp fuses.

5.5 Sound subsystem
The sound subsystem provides a digital interface to up to
four Dallee LocoMatic™ railroad sound units [6]. Each
unit provides diesel engine sounds that vary in proportion
to throttle settings, air brake release sounds, air horn

6 Laboratory assignments
The four credit-hour course has three 50-minute lectures
and a two hour laboratory session each week. The early
laboratory sessions are used to review (or learn) and
practice with the features of the implementation language
that are important for the completion of their project.
These features include data types and structures, control
structures, modules and packages, input/output, classes and
objects, concurrent programming, and exceptions. Later
laboratory sessions are devoted to developing code that will
be directly applied to their projects, including polling and
interrupt-based device drivers, implementation of a whistle
class, and implementation of a turnout class. As mentioned
earlier, turnouts are electromechanical devices that
sometimes fail to operate correctly. The software must
detect and correct turnout failures. Students derive their
turnout driver code from state machines they develop to
model turnout behaviour.

7 Course project
Students work in teams of three or four to complete a
substantial (10K - 15K lines) project. Each team writes all
the code necessary (from low level device drivers to high
level control logic) to produce a bootable image. Teams
are free to formulate their own projects. Minimum project
requirements include:

• Running multiple trains.

• At least one train controlled by a human engineer.

• No train collisions.

• Detecting and recovering from hardware failures, such
as turnouts, sensors, lost cars, and devious professors.

Direction

In Position

Motor

Figure 3 Turnout control circuit

Sense

Cab
Select

Polarity

Cab Voltages

Block of
Track

Figure 2 Block control circuit

206 Ada and Software Engineer ing Educat ion: One Professor 's Exper iences

Volume 29, Number 3, September 2008 Ada User Journal

Over the years, train races, train wars, and dynamic
scheduling problems have been the most popular project
themes. Many teams also implement additional safety
features such as throttle limits and protection for
locomotive transmissions.

Deliverables for the project include:

• A system concept document.

• A detailed user's manual.

• Object modelling documents.

• Compiled class specifications.

• Unit (class) test plans.

These deliverables are used as milestones throughout the
course to help ensure that students keep up with the
demanding schedule necessary to complete the project.
One of my major tasks is to work with teams on their
systems concept document to reduce overly optimistic
proposals into ones that can be completed. Students are
aware of the completion rates of past teams (presented later
in this paper) so they understand that they can complete the
project by the end of the semester.

Students also keep an engineering notebook with a detailed
record of their individual and team activities. They
maintain a separate time log that I review and sign once a
week.

Student teams do exhaustive module testing where
behaviour of a particular object (such as a turnout or
locomotive) is well understood. Integration testing is
bounded by the amount of time at the end of the semester.
All test plans are approved and test results certified by a
member of the team selected as the team's test manager.

8 Programming languages
During the first six years that the real-time systems course
was offered, students developed their railroad control code
in C. As shown in Figure 4, no team successfully
implemented the minimum project requirements when the
C language was used. To ease student and teacher
frustrations, I made an increasing amount of my solutions
available to the teams. Figure 4 shows that even when I

provided nearly 60 percent of the project code, no team was
successful in implementing the minimum requirements.

Along with the new hardware, provided by the NSF
funding in 1989, was a collection of DEC compilers.
Thinking that the low level of tasking provided through
semaphores was the major contributor to the problem of
incomplete projects, I selected a language with a much
higher level of tasking operations – Ada. Ada was
designed for implementing complex real-time embedded
systems. Ada's rendezvous and protected objects provide
easy to use, safe mechanisms for task communication and
synchronization. For example, the three semaphores
needed to protect and synchronize a typical bounded buffer
in C are replaced by a single protected object with enqueue
and dequeue operations. These high level operations
reduce the chance of typical errors (such as omitting a
semaphore operation) while providing as good or better
execution times.

I expected a disaster the first year with the new equipment
and new language. As in a real-life embedded systems
project, I was building the hardware while my students
were writing the software. I finished the hardware with
only four weeks remaining in the semester. But to my
amazement, nearly 50 percent of the student teams had
their projects working before the end of the semester. I had
supplied them with only two sample device drivers. As
shown in Figure 5, when I supplied some additional
software components (simple packages not relevant to the
real-time aspect of the project), more than 75 percent of the
student teams routinely completed their projects. These
completion rates have remained steady through the present
time.

Through an analysis of the students’ engineering
notebooks, I found my original hypothesis, that the major
problem was C's low-level tasking mechanism, to be
incorrect. While Ada's high level of abstraction for tasking
did reduce development time for the students, it was the
accurate modelling of scalar quantities (integers, real
numbers, and enumeration values) that contributed the most
to Ada's success in this course. Hours spent locating a C
function call with two swapped int parameters was reduced
to a quick fix of a syntax error in the equivalent Ada code.

0

20

40

60

80

100

1 2 3 4 5 6

Year

Pe
rc

en
t

Groups Completing Project Code Supplied

Figure 4 C language project completion rate (zero) and
amount of code supplied by instructor

Figure 5 Ada language project completion rate and
amount of code supplied by instructor

0

20

40

60

80

100

1 2 3 4 5 6 7

Year

P
er

ce
nt

Groups Completing Project Code Supplied

J. W. McCormick 207

Ada User Journal Volume 29, Number 3, September 2008

Similarly, the calculation of an out of range track block
number that took a team a full day to find in their C
program is detected and reported immediately by the Ada
run-time system. This conclusion is consistent with studies
done on the nature of wicked bugs in software [7, 8] where
over 80 percent of the programming errors in the C/C++
programs studied were a result of problems with scalars;
problems that do not exist in Ada.

9 Ada development environment
I have used three different environments for developing
train control software in Ada. The Ada programs for the
rtVAX target were developed using VAXELN Ada under
the VMS operating system. The Ada programs for the x86
targets have been developed using both IBM Rational
APEX with the Rational Exec runtime and GNAT GPL
with the MaRTE [9] runtime.

10 Summary
The model railroad provides an exciting environment for
teaching a real-time embedded systems course – a course in
which most student teams successfully complete a major
software project. I have developed the interface hardware
to allow other schools to easily connect a variety of
computers to a model railroad at minimal cost. Contact me
for more information. In addition to circuit and wiring
details, I can supply a spreadsheet that you may use to
produce part lists and cost estimates for whatever size
railroad you care to build. A sample user's manual,
photographs, and a video of the laboratory described in this
paper may be found at http://www.cs.uni.edu/~mccormic/
RealTime/.

References
[1] Burns, and A. Wellings (2001), Real-Time Systems and

Programming Languages (3rd Edition), Addison
Wesley.

[2] M. Amirijoo, A. Tešanović, and S. Nadjim-Tehrani
(2004) Raising Motivation in Real-Time Laboratories:
The Soccer Scenario, Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science
Education, Norfolk, Virginia, USA, pp 265-269.

[3] J. W. McCormick (1988), Using a Model Railroad to
Teach Digital Process Control, SIGCSE Bulletin, Vol
20, pp 304-308.

[4] J. W. McCormick (1991), A Laboratory for Teaching
the Development of Real-Time Software Systems,
SIGCSE Bulletin, vol 23, pp 260-264.

[5] J. W. McCormick (2005), We've Been Working On
The Railroad: A Laboratory For Real-Time Embedded
Systems, Proceedings of the 36th SIGCSE Technical
Symposium on Computer Science Education, St.
Louis, Missouri, USA, pp 530-534.

[6] Dallee Electronics, Inc. Railroad Sound Systems.
http://www.dallee.com/sound_systems.htm

[7] M. Eisenstadt (1997), My Hairiest Bug War Stories,
Communications of the ACM, vol 40, no 4, pp 30-37.

[8] J. W. McCormick (1997), Forum Letter,
Communications of the ACM, vol 40, no 8, p 30.

[9] M. A. Rivas and M. G. Harbour (2001), MaRTE OS:
An Ada Kernel for Real-Time Embedded Applications
in G. Goos, J Hartmanis and J. van Leeuwen (eds)
Reliable Software Technologies — Ada-Europe 2001
in LNCS vol 2043, pp 305-316, Springer-Verlag.

208

Volume 29, Number 3, September 2008 Ada User Journal

Is Ada Education Important?
Jean-Pierre Rosen
Adalog, 19-21 rue du 8 mai 1945, 94110 Arcueil, France; email: rosen@adalog.fr

Abstract
Some things seem to go without saying. Who would
argue that education, on any technique, is not
important? However, there can be many factors
beyond education that can affect the success of a
computer project, or the popularity of a programming
language. In this paper, we are assessing the
importance of education, and especially Ada
education, compared to other factors, for the
achievement of the goals of Ada.

Introduction
As a consultant, I meet lots of people who are busy
developing software in Ada. Few of them know more than
the very basics of the language – and typically what makes
Ada different from other programming languages.

When asked about the kind of Ada education they received,
quite often the answer is: "none". Let's face it: companies
do not see training as an investment, but as a cost. Very
often, when a resource is needed on an Ada project, the
person is given a book (at best Barnes', at worst a small
book about preliminary Ada, published circa 19807) and
told to learn the language by himself.

On one hand, one can consider that an experienced
programmer should be able to learn any language. But this
requires, at least, an "experienced" programmer. And on
the other hand, Ada was specifically designed to change the
way software is written. While it is easy to learn the syntax
of the language, learning how to use it efficiently, in a way
that serves its design purposes, is a quite different issue.

At this time, where the community is still wondering why it
is so hard to get Ada accepted, where we see the language
war still raging, where many new languages still lack basic
features that were already in Ada 24 years ago, where we
see very high-level "model driven" designs that are still
based on bytes and words as soon as something can be
expressed as an integer value, it seems important to explore
the role of education in the success of Ada (or lack of
thereof), and in software engineering in general.

Thesis: Ada education is important
As mentioned above, many people had few, if any, Ada
education before they were assigned to an Ada project.
Those who join an existing project are influenced by the
existing structure, they can meet more senior developers
with better language experience, and thus acquire some

7 No kidding, I've seen that recently.

basic skills. But quite often, those people are directly in
charge of full developments, ranging from a single module
to a whole application.

Consequence of poor education: bad language
usage
People naturally try to import directly the programming
style from languages they are familiar with; and of course,
they do not use features that they never heard about. Things
like aggregates, array slices, or simply full array
assignments are not used. An old proverb says:

A good FORTRAN programmer can write
FORTRAN in any language.

Most people know only two basic data types: Integer and
Boolean. Actually, convincing people that Integer is just a
normal integer type which is not especially interesting is
one of the most difficult messages to teach; there seem to
be an implicit belief that Integer is more or less the
mathematical notion of integer number. And Boolean is for
all cases that need to memorize some form of state. In one
of the exercises that are part of my regular Ada training
session, we come across a small state machine with three
states. Each time, about half of the students represent the
states as a set of three booleans. Even the notion of an
enumerated type does not seem natural to them.

Some symptoms are characteristic of a C background 8; I
once met a program where all string manipulations were
done by passing the address of the first character to the
routine, then Uncheck_Converting it to pointer-to-
characters to access the characters, or to Integer to
increment it… Another funny example is a program where
the bit (used as a constant for representation clauses) was
defined as 1/8th of Character'Size – clearly because, in C,
all sizes are defined as multiples of the size of char.

In another project, people clearly had a hard time
understanding strong typing. To be honest, they did not
understand it at all: each time the compiler complained that
types did not match, they simply used
Unchecked_Conversion to shut up the compiler.
Eventually, using Unchecked_Conversion became such an
habit that it was used even between different subtypes of
the same type…

But the most contrived example I came across was the
following. Imagine you have a string of one character, and

8 All the following examples are taken from actual projects – many of
them being DO178B level A or B

J.-P. Rosen 209

Ada User Journal Volume 29, Number 3, September 2008

you want to assign a character into it. How would you do?
Here is the answer:

 subtype String_One is String (1..1);
 V : String_One;
 C : Character;
 function C_to_S is new
 Unchecked_Conversion (Character, String_One);
begin
 V (1..1) := C_To_S (C);

Consequence of bad language usage: bad
perception of Ada
This last example is extremely worrisome. Independently
from the fact that it worked almost by miracle, it is easy to
imagine that the programmer who found this solution did
not get there easily; he must have gone through a lot of
trials and errors, fighting furiously Ada's typing system,
until he eventually found a combination that compiled and
(hum) worked.

Now, what do you think that this guy told to his fellow co-
workers later? That there must have been a better solution
and that he needed extra training to use the language
properly? Certainly not. Most likely, he told them that Ada
is a horrible language, where you have to jump through
unbelievable hoops to do even the simplest things, that are
soooo straightforward in C.

There is also a nasty consequence of bad Ada style,
regarding efficiency. In C (or Fortran), there is no array
assignment. Therefore, compilers are very clever at
recognizing patterns that can be optimized, like:
for (I = 0; I < N; I++)
 A[I] = B[I]
Note that from a theoretical point of view, there is a real
abstraction inversion here, since the compiler recognizes a
high level statement (an array assignment) from the
detailed description of its implementation.

Of course, recognizing this kind of pattern is much less
important in Ada, since programmers are expected to
simply write:
A := B;
Therefore, compiler writers may spend their precious time
into optimizing other useful constructs rather than loops
that assign whole arrays element by element. But if a
programmer compares the relative speeds of the same
program written in C and Ada, with an almost word-to-
word translation of the C into Ada (thus keeping this kind
of loop), Ada will certainly be disadvantaged (not counting
other effects, like comparing a checked version of the Ada
code with an unchecked version of the C code). Of course,
the same could be said of C, if the experience was
attempted the other way round: if you try to hand-code into
a C program the same level of security that's automatically
provided by Ada, there would be a huge time penalty for C;
but in practice, it never happens this way. People just write
the C program, "translate" it (badly) into Ada, measure, and
make the general conclusion: "Ada is slower".

Not only do these Ada-illiterate (or ill-literate?) people
spread bad words; they prevent their projects from
achieving the promised benefits from Ada. Imagine a quite
likely story. A project manager hears about Ada, the safety
that it brings, the gain in development and debugging costs,
etc. Being not specially opposed to novelty, he decides to
try Ada for his next project – but not a big one, to minimize
the risks. Since there is not much money in the project, and
he has a team of nice and experienced C programmers, he
just buys a book about Ada and gives it to the team. The
programmers, in turn, don't have much time to study the
book in depth, so they just wander trough the syntax, write
one or two "hello world" type programs, and think they can
go on with the project.

Of course, their programming style will just be "C in Ada".
No real use of strong typing, poor decomposition into
packages, lots of hacks with addresses, unnecessary loops,
etc. resulting in clumsy coding, difficulties to get the code
through the compiler, and poor performance. Will the
resulting program be safer? Unlikely. Will it be more
readable than it's C equivalent? Presumably not. Will there
be any saving in development and debugging costs? No.
What will the project manager conclude? "Ada is just
another one of these hyped technologies that does not work
in practice – let's return to C".

This is something that the Ada community must recognize:
if Ada is not more widespread, it is because people did not
get the touted benefits. Without education, the power of
Ada cannot be realized, and if not realized, there is no
power in Ada! As noted by Grady Booch [1]:

Give a power drill to a carpenter who knows
nothing about electricity, and he would use it as a
hammer. He will end up bending quite a few nails
and smashing several fingers, for a power drill
makes a lousy hammer

Antithesis: Ada education is not important
Does it make sense to teach how to use a power drill to
people who have not access to electricity?

Teaching CS is the first (missing) step

Ada is not a goal in itself, it is only a tool intended to serve
design methodologies. If people are trained into software
engineering, understanding the principles of Ada is easy.
Teaching Ada to QA people, for example, is a breeze. Each
time you explain the motivation and reasons for a particular
feature, those people nod with sympathy, as you are
addressing exactly their day-to-day concerns.

But, as noted by Dewar and Schonberg in a recent paper
[3], there is a general lack of education in CS in general. Is
there any sense in teaching Ada to people who have no idea
about the goals it is intended to serve?

There is, in the new generation of programmers, a
considerable lack of education in algorithmics in general,
even for the most basic knowledge expected from anyone
who graduates in CS. In every training session, I have at
least half of the attendees who are unable to do simple
pointer manipulations, like putting an element in front of a

210 Is Ada Educat ion Important?

Volume 29, Number 3, September 2008 Ada User Journal

simple linked list. Saying that something should be avoided
because it would go O(n²) is like talking a foreign
language. And most of them never heard about the dining
philosophers…

But it is not only the basic skills that are missing. After all,
these are just technical stuff, and these people should be
able (should!), when needed, to find the necessary
algorithms in the literature – assuming they have enough
notions of algorithmics to think about looking for an
existing solution. More of a concern is the fact that most
developers have no consciousness of the stakes of software
and of the consequences of what they are doing.

For example, a colleague of mine was in charge of
integrating some code. He came across a situation where he
found a subprogram that had to be executed with mutual
exclusion. To that effect, the subprogram was passed a
pointer to a semaphore in its parameters. In some
occasions, there was a bug on the caller side, and the
subprogram was passed a null pointer, resulting in a crash
(it was C++). Since my colleague was in charge of finding
the problems, but not fixing them, he made a detailed report
of what was happening to the developers team. Sometimes
later, he received the "fixed" version: in the subprogram, a
test was made, and the sequence that grabbed the
semaphore bypassed if the pointer was null.

The really frightening moral of this story is that the person
who "fixed" the code simply thought: "we have a crash
because we dereference a null pointer, therefore let's skip
the sequence if the pointer is null". It didn't cross anybody's
mind to ask: "well, if there is a semaphore here, it must be
for some purpose". People are fixing the symptoms, but
there is a total lack of reasoning about the logic of what
they are doing. As R. Dewar likes to say:

When Roman engineers built a bridge, they had to
stand under it while the first legion marched across.
If programmers today worked under similar ground
rules, they might well find themselves getting much
more interested in Ada!

The role of methods
Teaching syntax is easy. Teaching coding is a bit more
difficult, but is achievable with any programming language
and any audience. But how do you train people into
thinking right?

For a long time, it was considered the job of design
methods. A design method was intended to provide a
formal framework to drive and guide the design process. A
typical example of this was the HOOD design methods; in
its early versions, it was organized as a succession of steps,
each defining what should be performed (defining the
properties of objects, their relations to other objects, etc.),
requiring precise documentation, the establishment of
traceability documents, etc. But the method was not easily
accepted, and over time, became less and less constraining.
In its latest form, the method just "suggests" an "example
of design process". What happened? Programmers did not
like rigid frameworks that "hampered creativity". The
dialog between Programmer and Method ended up like this:

Method: Thou shallst not do it this way.
Programmer: But I want to do it like that!
Method: No, I am the Method, and thou shallst

obey by my commandments
Programmer: OK then, I'll pick up another method.

Nowadays, methods have moved away from guiding
reasoning, and focus on providing tools and notations.
UML (which can hardly be called a method – actually the
"L" in its name means it is only a language) is intended to
provide all diagrams a programmer could ever need to
represent any design. There is not a word about how it
should be used; it is simply not the purpose of UML.
Maybe that's why UML is so popular: anybody can do
UML without changing his (bad) habits.

Tools and notations are important helpers to support
reasoning – but they do not replace reasoning. Proof
making tools are important to ensure a design is right – but
they are of no help to make the initial design. MDA allows
model transformation from a high level model down to a
machine-executable one – but still, someone has to design
the initial model, and the initial model has to be correct.
Whatever the tool, the old saying applies:

Garbage in => garbage out
From this point of view, Ada is just another tool to support
software engineering. As any methodological tool, it was
designed to avoid inconsistencies, diagnose bad designs,
and prevent people from using the (bad) habits of other
languages. Enjoying all these benefits (or simply
considering them as beneficial) assumes that people
understand the processes of design; it is not surprising that
uneducated people experience a lot of difficulties with the
language. Is it possible to help these people by explaining
the difference between a primitive and a non-primitive
operation? Certainly not. Can we attract programmers by
touting all the nice technical features of the language? No
way, as long as the prospective users don't have the
necessary knowledge to match features against the purpose
they serve.

Ada education is not important for the success of Ada;
educating people in software engineering, promoting
rigorous design and correctness by construction, teaching
algorithmics (in the sense of teaching people how to take
an algorithmic approach to problem solving), etc. are the
keys to the motivation that will make Ada not only
acceptable, but the language of choice for the
implementation of these concepts.

Why do people focus on the language after all?
Finally, it should be stressed that insisting on Ada
education can have a negative effect. Many project
managers would ask: "why should we choose a language
that requires special education, when we can choose a
language that any beginner can use?" Or even worse: "if
only experts can use Ada, we'd better stay away from it".

J.-P. Rosen 211

Ada User Journal Volume 29, Number 3, September 2008

We all met project leaders who are turning away from Ada
because they cannot find enough trained programmers9.
The strange thing is that if you ask them if it is easy to find
resources who are educated in designing critical systems, in
real time, in system programming, and the like, they will
just not consider these skills as important on a resume. It is
however much more difficult to train someone into thinking
secure than to teach a programming language – even Ada.
Why do recruiters focus only on programming languages is
one of the great mysteries of computer science.

Synthesis: Good news and bad news
Good news: there is no problem with Ada
Every now and then, on comp.lang.ada or other places, we
see claims by various people that "if only Ada had such and
such wonderful feature, then it would be immediately
successful". I've never met someone in the industry who
told me that the reason for not using Ada was missing
functionalities in the language. Although there might be
some rough edges here or there, the overall language design
is good. And it serves its purpose well: making a bad
design almost impossible to compile.

Actually, a majority of Ada programmers are not familiar
with all the possibilities of the language. As a consultant, it
is my duty to help people by telling them how to use the
language, and especially by making them aware of
programming patterns and language tools that they didn't
even consider. Every time I was given a problem, I found
the necessary resources in the language to solve it in a
satisfactory way. There is really no need for running after
more and more new functionalities.

Bad news: the problem is much bigger than the
language
Who are today's programmers? We can distinguish roughly
the following categories:

• Old-timers, who have learned to squeeze every
possible micro-second out of assembly language,
are perfectly happy with a command line and vi,
and who have a hard time with object orientation,
GUIs, and many modern things that are necessary
in modern developments.

• There is still a number of people coming from
various backgrounds (electronics, chemistry…)
who became programmers because there were
more jobs there than in their branch, without any
education at all.

• There is the new generation, who learned
programming with Java and think that
programming is just connecting a button to a
"start" method of a component.

9 While at the same time, students do not take the Ada course on the
grounds that there are no jobs!

• And a small number of people who still believe in
software engineering and who are wondering how
to make sense out of this mess: you and me…

In the old time, people wrote obfuscated assembly code,
and were proud of putting a comment saying "this code is
impossible to understand, but don't worry, it works". Now,
with UML, MDA, eXtreme Programming, and the like, the
same people are proud of making obfuscated class
diagrams. I've seen projects where the walls were covered
with class diagrams, and I found this frightening. As Booch
stated [2],

The task of the software development team is to
engineer the illusion of simplicity.

Making things simple is difficult, and the mess is the same
as 30 years ago! In 1972 [4], Dijkstra noted:

As long as ther were no machines, programming
was no problem at all; when we had a few weak
computers, programming became a mild problem,
and now we have gigantic computers, programming
has become an equally gigantic problem.

This statement equally applies nowadays – although
gigantic computers of the time had much less power than
the average telephone of today. The software crisis is still
here.

Prosthesis: What can we do?
The ideal cursus
Ideally, bringing students to the right state of mind would
need the following, in this order (OK, it's a dream):

• Teach people how to think

• Teach goals and principles of software
engineering

• Teach problem solving in general

• Teach algorithmics

• In your spare time, teach Ada. At this point, it
should be easy.

But of course, if you take this program seriously, you will
be flooded by students asking: "sorry Professor, but it
seems you miss something important in your curriculum.
Where do we learn how to make nice Web pages?"

Teach programming as an engineering discipline
True enough, Ada is not "fun". It is not even easy to learn
for beginners. I once read a paper that criticized Ada as not
appropriate for teaching programming in elementary
schools – granted.

Ada is an industrial language. The benefits of the language
are in increased reliability, lower development costs, easier
maintenance, etc., not in playing with funny animated
gadgets. When students complain that Ada is not fun, ask
them if civil engineering is fun. Do they think that
engineers who build towers just design them "for pleasure",
"as they feel", without any consideration for the rules of the
art, and then take bids on whether the tower will collapse or

212 Is Ada Educat ion Important?

Volume 29, Number 3, September 2008 Ada User Journal

not? And if the tower falls apart, do they say "oh, there was
a bug, let's start over again"?

This does not mean that there is no pleasure in
programming in Ada; but Ada developers are proud of
having well designed programs, that work without, or very
small, debugging effort. In a sense, Ada replaces the
pleasure of the game with the pleasure of a work well done.

This is far from obvious to beginners. It needs
explanations, backed-up by experience, to bring one's mind
to the point where Ada is really enjoyable. Simply stated,
this needs understanding that software development is an
engineering discipline – not a video game. Ada is for
craftspersons. Maybe, the small minority of people who
understand the issues of software should join and make a
Union of Craftsprogrammers.

Teach Ada to those already involved in Ada
projects
Ada education is important in the short term. Once a
project has decided to use Ada, the best thing we can do to
promote the language is to make sure that the project is
successful. And the first thing to do to that effect is to make
sure the language is used appropriately and effectively.

Project managers should be aware that Ada training is an
investment. Without costs, there are no benefits. Training
costs are small compared to the mere cost of hiring
someone, and even smaller compared to the cost of a late
project. But it is an upfront cost, and education is needed to
accept this cost even before the project starts.

Developers should be aware of their limits, and seek advice
of more experienced people or external consultants when

they hit some difficulty. Ada is a vast language, it provides
all the necessary tools, the difficulty is to find the right tool
to do the job – something that requires experience.

Promote software engineering to others
In the long term, the problem of education goes far beyond
Ada only. As should be clear from the above discussion, it
makes no sense to promote Ada until people are aware of
its benefits – which means they have a clear understanding
of the goals and methods of software engineering. Selling
Ada alone can even hurt the language, because Ada alone
cannot solve all the problems, and people who try the
language without success will actively spread bad words
about Ada – it is easier to blame failure on the language
than on one's own inability to master the course of the
project.

If you succeed in promoting the "good spirit", you can
introduce, as an engineering decision, the choice of the tool
(i.e. the language) used by the project. Ask the project
leader to make an impartial spreadsheet weighing the pros
and cons of several languages. Don't expect Ada to win all
the times – if Ada wins often enough, it's enough!

References
[1] Grady Booch, Object Oriented Design with

applications, p. 33

[2] Grady Booch, Object Oriented Design with
applications, p. 23

[3] R. Dewar and E. Schonberg, Computer Science
Education: Where Are the Software Engineers of
Tomorrow?, CrossTalk, Jan. 2008

[4] E. Dijkstra, Turing Award Lecture

 213

Ada User Journal Volume 29, Number 3, September 2008

Use of Ada in a Student CubeSat Project
Carl Brandon
Vermont Technical College, PO Box 500, Randolph Center, VT 05061 USA; Tel: +1 802 728 1350; email:
carl.brandon@vtc.edu

Abstract
A student project to develop a CubeSat (10 cm cube, 1
kilogram satellite) as part of Vermont Technical
College’s Aeronautical Engineering Technology
degree uses a Texas Instrument MSP430 processor
for which no Ada compiler is available. Ada and
SPARK offer a highly desirable combination for the
reliability needed in a satellite. Since there is no Ada
compiler targeted for the MSP 430, we decided to use
SofCheck’s AdaMagic compiler which generates
ANSI C as its intermediate language. We then use an
existing C compiler as a back end, generating code
for the MSP 430. This allows the students to write the
original source code in Ada/SPARK and have object
code for the MSP430.

Keywords: CubeSat, SPARK, Ada.

1 CubeSats
A CubeSat is a pico satellite approximately the size of a 10-
centimeter cube, with a maximum mass of one kilogram.
The particular specification for the satellite hardware was
developed by California Polytechnic State University (Cal
Poly) and Stanford University (http://CubeSat.calpoly.edu),
so that multiple CubeSats could be easily integrated into a
launch vehicle.

The CubeSat is an autonomous satellite. The software to
run all its systems must be completely reliable. It will be
powered by high-efficiency triple junction photovoltaic
cells, backed up by batteries for high-power operations,
such as transmitting and, if the satellite is behind the earth,
out of the sunlight power supply.

The Vermont Tech CubeSat will have a 2.4 GHz Microhard
(http://microhardcorp.com/MHX2420.htm) spread
spectrum modem for two-way communications with our
ground station. This radio has been used in two CubeSats
so far. Although the radio has a lot of built-in autonomous
functionality, it will be controlled by the flight module
computer.

Another function, the attitude determination and control
system, will have the largest software component of any
onboard system. We plan to have an active magnetic
attitude control system. This will be used to point the patch
antenna for the transceiver, and the camera toward the
earth.

The position of the Cubesat after deployment is generally
determined by calculation from the Keplerian two-line
elements describing the orbit as released by the launch
providers soon after deployment. A program, such as
Satellite Tool Kit (http://www.agi.com/index.cfm) can give
accurate position, assuming the two-line elements are
correct. The position accuracy is important for antenna
pointing of the ground station to establish communications
with the satellite. We will achieve even higher accuracy by
including a Global Positioning Satellite navigation module
in the CubeSat to transmit a more precise location of the
satellite, which will correct the orbital parameters of the
Keplerian two line elements.

Figure 1 A CubeSat

The CPU for the satellite will be a Texas Instruments
MSP430 micro controller, chosen for its extremely low
power consumption, the lowest of any processor. With
power production from the photovoltaics being about 1.5
watts in the sunlight, low power is an absolute requirement.
The primary disadvantage, in our view, is that there is no
Ada compiler for this processor. As discussed below,
Ada/SPARK is our choice for the satellite software.

Cal Poly has developed a deployment system called a P-
Pod, which holds three CubeSats, and releases them via a
spring from the launch vehicle at the appropriate time. Cal
Poly negotiates with commercial launch providers for P-
Pod space on commercial satellite launches (there has also
been a CubeSat deployment from the Space Shuttle). They

214 Use of Ada in a Student CubeSat Project

Volume 29, Number 3, September 2008 Ada User Journal

negotiate launch prices in the $30,000-$50,000 range for a
one kilogram CubeSat.

2 Arctic Sea Ice Buoys
We have been funded for a cooperative NASA grant with
the University of Vermont, for a prototype Arctic Sea Ice
Buoy which will use the same CPU and some of the
software used in the Cubesat. We have also submitted a
second cooperative NASA grant application with the
University of Vermont, which will fund the construction
and deployment of ten Arctic Sea Ice Buoys. These would
be placed on ice in the Arctic Ocean to monitor wind speed
and direction, temperature and GPS position of the buoy,
and relay the data via the Iridium satellite network. The
buoys share some of the same characteristics of the
CubeSat: low power availability, harsh environmental
conditions and the need to be reliable and autonomous.

Software for control of the radio, power management, and
telemetry will be shared from the CubeSat software
development. The same necessity for extreme software
reliability speaks for the use of Ada/SPARK.

3 Aeronautical Engineering Technology
Degree Program
The general design of the CubeSat is being done by
students in our Aeronautical Engineering Technology
program. They take two semesters of Spacecraft
Technology and a satellite design lab. In the lab, they look
at the various satellite systems: command and control
(CPU), attitude determination and control,
communications, power and instrumentation. These
associate degree students generate general specifications
for the satellite, but the implementation will be done by
bachelor students in our Electro-Mechanical, Computer
Tech and Software Engineering programs during their
senior projects.

4 Our CubeSat Project
With the somewhat limited personnel resources of a small
college (Vermont Tech has about 1,500 students), we have
chosen to use as much off-the-shelf technology in our
spacecraft as possible. We have started with a CubeSat kit
(http://www.CubeSatkit.com) which supplies the hardware
chassis (flight module), the CPU board, real time operating
system (Salvo), a number of software components, and a
development board.

We are purchasing our electrical power system, which
provides batteries, charging controller, and telemetry data
from Clyde Space (http://www.clyde-space.com). The
photovoltaic cells are TASC cells from Spectrolab
(http://www.spectrolab.com). We will be fabricating our
own PC boards for mounting the cells. These boards will
also make up the outer shell of the satellite.

The spacecraft’s attitude will be determined by a three-axis
magnetometer to measure the direction of the earth’s
magnetic field, and a sun sensor to determine the direction
of the sun. These two pieces of information, with a lot of
computation, will enable the satellite to determine where it

is pointing. To change its orientation, three mutually
perpendicular torque coils will lie under the faces of the
satellite, and computer controlled currents can be sent to
any of them to create a torque against the Earth’s magnetic
field, and thus rotate the satellite to the desired orientation.
Although there is an off-the-shelf attitude determination
and control system similar to what we want, it is much
more complex (containing three torque wheels), adds a
second ten-centimeter module, increasing the launch costs
by $30,000-$50,000, and costs $55,000 itself.

For the communication system, we will use the Microhard
2.4GHZ spread spectrum modem, and possibly a second
radio beacon in the 440 MHz amateur radio band. Students
will build a tracking dish antenna of three to eight meters,
and a tracking dual yagi antenna for 440 MHz. Our ground
station will become part of the GENSO (http://genso.org)
network when it becomes operational in the fall of 2008.

The final instrument payload is yet to be determined, but
will most likely include a camera for photographing the
earth from space. Other instruments may be included, and
all will have to be controlled, and data collected by the
CPU.

Figure 2 CubeSat kit

5 MSP430 CPU Description
The Texas Instruments (http://focus.ti.com) MSP430 series
of micro controllers are the lowest power micro
controller/processors available. This makes them an
excellent choice in an application where power is limited.
They also contain a variety of peripherals on the chip,
which also saves on complexity and power. The
peripherals vary with the specific chip, but we are looking
at a final choice of the MSP430F2618 which has 116 kb of
flash, 8 kb of RAM, 12 bit SAR analog to digital converter,
2 12 bit digital to analog converters, analog comparator,
DMA, Hardware Multiplier, 2 USCI interfaces. The CPU
board can also take SD flash memory cards of up to 2 GB.

C. Brandon 215

Ada User Journal Volume 29, Number 3, September 2008

It uses 2 µA in low-power mode, and about 500 µA at full
speed. It can go from low-power mode to full speed in one
microsecond. There is no Ada compiler for the MSP430.

6 Why use Ada
Although the CubeSat is not a safety-critical system, the
software is mission critical. The small size of the CubeSat
precludes uploading software patches as is sometimes done
with NASA satellites and space probes. The cost of
developing the CubeSat will be in the $30,000-$50,000
range, and the launch costs also in the $30,000-$50,000
range, so a non functional satellite because of a software
error would result in a $60,000-$100,000 loss. Most of the
CubeSats launched to date have been programmed in C,
and admittedly most have generally worked.

Despite the general success of CubeSats programmed in C,
Ada offers a number of advantages. Many large projects
programmed in Ada have shown considerable reductions in
error rates compared to C. In addition, finding and fixing
the errors that do occur takes much less time. With the
small size of our school, and thus fewer people resources
for the project, efficiencies of this type are very important.
In addition, having students involved in both the hardware
and software for the project and using a language that
makes use of the best of software engineering features has a
great pedagogical advantage. This project is a real-
embedded system that must have very high-integrity
software. Ada fits the bill for high-integrity software that is
efficient to write and debug.

7 Ada and SPARK
The availability of SPARK makes possible a further
increase in the integrity of the code over Ada alone.
SPARK annotations allow the specification of the program,
as expressed in the annotations, to be used by the SPARK
toolset to check the code’s compliance with the
specification. Although this project is rather small
compared to the projects that SPARK is normally used on,
the fact that there is only one chance to get the deployed
software right, and the high cost of failure in dollars and
time, make it a good choice to help ensure the success of
our project.

A second benefit of using SPARK is that this is an
opportunity for some of our Software Engineering majors
to work on a high-integrity real world project. This is a
type of project not often done in an academic environment.
SPARK allows the students to get experience with a
particularly powerful method of achieving high-integrity
software.

In the CubeSat, there is the need for real-time
programming. There are interactions with the power
system, the attitude determination and control system, the
communications system, the navigation system and the
camera and other instrumentation. The availability of
RavenSPARK, the SPARK subset of the Ada Ravenscar
Profile, will allow us to use SPARK to keep the real-time
programming also very high-integrity. Thus the students

will have a valuable experience in writing robust and clear
software, that otherwise would not be available to them.

SPARK, being a subset of Ada, requires an Ada compiler.
The only problem is that there is no Ada compiler for the
processor we want to use.

8 AdaMagic
A solution to the compiler problem for this project required
an unusual process. In talking with Tucker Taft of
SofCheck (http://www.sofcheck.com) at Ada Europe 2005,
I learned about their AdaMagic compiler which produced
ANSI C code as the intermediate language. This opened
the interesting possibility of using an existing ANSI C
compiler as the “back end” for the AdaMagic compiler.
This is the route we have chosen, so we can develop
software for our CubeSat in Ada/SPARK for high-integrity,
check it with the Ada and SPARK toolsets, run it through
AdaMagic, and then compile the resulting ANSI C version
with our C compiler for the MSP430.

9 Crossworks C Compiler and the Salvo
operating system
We have chosen the Rowley Associates
(http://www.rowley.co.uk) CrossWorks for MSP430, which
includes an ANSI C compiler, macro assembler,
linker/locator, libraries, core simulator, flash downloader,
JTAG debugger, and an integrated development
environment, CrossStudio. This will provide the object
code for our satellite CPU and download it into the
processor. There is also an MSP430 core simulator, so
code can be checked on the host Windows machine before
downloading to the MSP430.

CrossWorks supports the Salvo Real-Time Operating
System from Pumpkin, Inc. (http://www.pumpkininc.com),
the manufacturer of the CubeSat kit. Salvo comes with the
CubeSat kit, and will be the operating system in the
satellite. Several in orbit CubeSats are running on Salvo.

10 GPS, GNAT Pro and SPARK
The development process is greatly facilitated by the
inclusion of a set of Python scripts with the GNAT
Programming Studio that allow invocation of the various
command line tools in the SPARK toolset from within
GPS. Having first used the SPARK toolset by invoking it
from the command prompt window, this facility is
extremely useful. One can now remain in the GPS
development environment when using the SPARK tools.

11 Python Scripts for AdaMagic in GPS
At the moment, we are invoking AdaMagic from the
command prompt window, as we used to do with SPARK.
In our programming languages course, the students study
both Ada and Python. In the coming semester, they will be
assigned a Python project to create the necessary Python
scripts to invoke the AdaMagic front end from within GPS.
This will allow the programmer to remain in the GNAT
Programming Studio environment for the entire
development process for a much nicer overall process.

216 Use of Ada in a Student CubeSat Project

Volume 29, Number 3, September 2008 Ada User Journal

Figure 3 Software development process

12 Software workflow
Alongside is a diagram of the software development
workflow with our various software tools. This shows the
original development in GPS, use of the SPARK tools,
compilation in GPS with GNAT, compilation again with
AdaMagic with the production of ANSI C code and cross
compiling with Crossworks for the production of the
MSP430 object code.

13 Acknowledgments
This project at a school of our size would not be possible to
undertake without a lot of outside support. For the satellite
and supporting hardware, several grants have been obtained
from the Vermont Space Grant Consortium, a part of
NASA Space Grant (http://www.vtspacegrant.org). This
would also be the source of funds for the satellite launch.

Analysis of the satellite in many aspects, from orbital
analysis to thermal and communication link budget
analysis, is being done in Satellite Tool Kit,. We have
received a donation of thirty copies of this $100,000-per-
copy software.

We have been a long time member of Adacore’s GNAT
Academic Program (GAP) (http://www.adacore.com/
home/academia) and have had the availability of
GPS/GNAT for several years. We have also received a
grant of GNAT Pro from Adacore for use in our grant-
funded research.

Praxis (http://www.praxis-his.com) has donated the
$122,000-per-copy Spark toolset to us through our
membership in GAP.

Rowley Associates has given us an academic discount for
one license for Crossworks, and donated a second license.

We are very grateful to all these organizations for their
extraordinarily generous gifts to Vermont Technical
College. Without their support of academia, this project
would have never launched.

 217

Ada User Journal Volume 29, Number 3, September 2008

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Ada Gem #27 — Changing Data
Representation (Part 1, Automatic
Representation Changes)
Robert Dewar, AdaCore
Date: 3 March 2008

Let’s get started…
A powerful feature of Ada is the ability to specify the exact
data layout. This is particularly important when you have an
external device or program that requires a very specific format.
Some examples are:

 type Com_Packet is record
 Key : Boolean;
 Id : Character;
 Val : Integer range 100 .. 227;
 end record;

 for Com_Packet use record
 Key at 0 range 0 .. 0;
 Id at 0 range 1 .. 8;
 Val at 0 range 9 .. 15;
 end record;

which lays out the fields of a record, and in the case of Val,
forces a biased representation in which all zero bits represents
100. Another example is:

 type Val is (A,B,C,D,E,F,G,H);
 type Arr is array (1 .. 16) of Val;
 for Arr’Component_Size use 3;

which forces the components to take only 3 bits, crossing byte
boundaries as needed. A final example is:

 type Status is (Off, On, Unknown);
 for Status use (Off => 2#001#, On => 2#010#,
 Unknown => 2#100#);

which allows specified values for an enumeration type, instead
of the efficient default values of 0,1,2.
In all these cases, we might use these representation clauses to
match external specifications, which can be very useful. The
disadvantage of such layouts is that they are inefficient, and
accessing individual components, or in the case of the
enumeration type, looping through the values, can increase
space and time requirements for the program code.
One approach that is often effective is to read or write the data
in question in this specified form, but internally in the program
represent the data in the normal default layout, allowing
efficient access, and do all internal computations with this
more efficient form.
To follow this approach, you will need to convert between the
efficient format and the specified format. Ada provides a very

convenient method for doing this, as described in RM 13.6
“Change of Representation”.
The idea is to use type derivation, where one type has the
specified format and the other has the normal default format.
For instance for the array case above, we would write:

 type Val is (A,B,C,D,E,F,G,H);
 type Arr is array (1 .. 16) of Val;

 type External_Arr is new Arr;
 for External_Arr’Component_Size use 3;

Now we read and write the data using the External_Arr type.
When we want to convert to the efficient form, Arr, we simply
use a type conversion.

 Input_Data : External_Arr;
 Work_Data : Arr;
 Output_Data : External_Arr;

 (read data into Input_Data)

 - - Now convert to internal form
 Work_Data := Arr (Input_Data);

 (computations using efficient Work_Data form)

 - - Convert back to external form
 Output_Data := External_Arr (Work_Data);

Using this approach, the quite complex task of copying all the
data of the array from one form to another, with all the
necessary masking and shift operations, is completely
automatic.
Similar code can be used in the record and enumeration type
cases. It is even possible to specify two different
representations for the two types, and convert from one form
to the other, as in:

 type Status_In is (Off, On, Unknown);
 type Status_Out is new Status_In;

 for Status_In use (Off => 2#001#, On => 2#010#,
 Unknown => 2#100#);
 for Status_Out use (Off => 103, On => 1045,
 Unknown => 7700);

There are two restrictions that must be kept in mind when
using this feature. First, you have to use a derived type. You
can’t put representation clauses on subtypes, which means that
the conversion must always be explicit. Second, there is a rule
RM 13.1(10) that restricts the placement of interesting
representation clauses:

10 For an untagged derived type, no type-related
representation items are allowed if the parent type is a by-
reference type, or has any user-defined primitive
subprograms.

218 Ada Gems

Volume 29, Number 3, September 2008 Ada User Journal

All the representation clauses that are interesting from the
point of view of change of representation are “type related”, so
for example, the following sequence would be illegal:

 type Val is (A,B,C,D,E,F,G,H);
 type Arr is array (1 .. 16) of Val;

 procedure Rearrange (Arg : in out Arr);

 type External_Arr is new Arr;
 for External_Arr’Component_Size use 3;

Why these restrictions? Well the answer is a little complex,
and has to do with efficiency considerations, which we will
address in next week’s GEM.

Ada Gem #28 — Changing Data
Representation (Part 2, Efficiency
Considerations)
Robert Dewar, AdaCore
Date: 17 March 2008

Let’s get started…
Last week, we discussed the use of derived types and
representation clauses to achieve automatic change of
representation. More accurately, this feature is not completely
automatic, since it requires you to write an explicit conversion.
In fact there is a principle behind the design here which says
that a change of representation should never occur implicitly
behind the back of the programmer without such an explicit
request by means of a type conversion.
The reason for that is that the change of representation
operation can be very expensive, since in general it can require
component by component copying, changing the
representation on each comoponent.
Let’s have a look at the -gnatG expanded code to see what is
hidden under the covers here. For example, the conversion
Arr (Input_Data) from last week’s example generates the
following expanded code:

 B26b : declare
 [subtype p__TarrD1 is integer range 1 .. 16]
 R25b : p__TarrD1 := 1;
 begin
 for L24b in 1 .. 16 loop
 [subtype p__arr___XP3 is
 system__unsigned_types__long_long_unsigned
 range 0 .. 16#FFFF_FFFF_FFFF#]
 work_data := p__arr___XP3!((work_data and not
 shift_left!(16#7#, 3 * (integer(L24b –
 1)))) or shift_left!(p__arr___XP3!
 (input_data (R25b)), 3 * (integer(L24b –
 1))));
 R25b := p__TarrD1’succ(R25b);
 end loop;
 end B26b;

That’s pretty horrible! In fact one of the Ada experts here
thought that it was too gruesome and suggested simplifying it
for this gem, but we have left it in its original form, so that you
can see why it is nice to let the compiler generate all this stuff
so you don’t have to worry about it yourself.

Given that the conversion can be pretty inefficient, you don’t
want to convert backwards and forwards more than you have
to, and the whole approach is only worth while if will be doing
extensive computations involving the value.
The expense of the conversion explains two aspects of this
feature that are not obvious. First, why do we require derived
types instead of just allowing subtypes to have different
representations, avoiding the need for an explicit conversion?
The answer is precisely that the conversions are expensive,
and you don’t want them happening behind your back. So if
you write the explicit conversion, you get all the
gobbledygook listed above, but you can be sure that this never
happens unless you explicitly ask for it.
This also explains the restriction we mentioned in last week’s
gem from RM 13.1(10):

10 For an untagged derived type, no type-related
representation items are allowed if the parent type is a by-
reference type, or has any user-defined primitive
subprograms.

It turns out this restriction is all about avoiding implicit
changes of representation. Let’s have a look at how type
derivation works when there are primitive subprograms
defined at the point of derivation. Connsider this example:

 type My_Int_1 is range 1 .. 10;

 function Odd (Arg : My_Int_1) return Boolean;

 type My_Int_2 is new My_Int_1;

Now when we do the type derivation, we inherit the function
Odd for My_Int_2. But where does this function come from?
We haven’t written it explicitly, so the compiler somehow
materializes this new implicit function. How does it do that?
We might think that a complete new function is created
including a body in which My_Int_2 replaces My_Int_1, but
that would be impractical and expensive. The actual
mechanism avoids the need to do this by use of implicit type
conversions. Suppose after the above declarations, we write:

 Var : My_Int_2;
 ...
 if Odd (Var) then
 …

The compiler translates this as:

 Var : My_Int_2;
 ...
 if Odd (My_Int_1 (Var)) then
 …

This implicit conversion is a nice trick, it means that we can
get the effect of inheriting a new operation without actually
having to create it. Furthermore, in a case like this, the type
conversion generates no code, since My_Int_1 and My_Int_2
have the same representation.
But the whole point is that they might not have the same
representation if one of them had a rep clause that made the
representations different, and in this case the implicit
conversion inserted by the compiler could be expensive,
perhaps generating the junk we quoted above for the Arr case.
Since we never want that to happen implicitly, there is a rule
to prevent it.

Ada Gems 219

Ada User Journal Volume 29, Number 3, September 2008

The business of forbidding by-reference types (which includes
all tagged types) is also driven by this consideration. If the
representations are the same, it is fine to pass by reference,
even in the presence of the conversion, but if there was a
change of representation, it would force a copy, which would
violate the by-reference requirement.

So to summarize these two gems, on the one hand Ada gives
you a very convenient way to trigger these complex
conversions between different representations. On the other
hand, Ada guarantees that you never get these potentially
expensive conversions happening unless you explicitly ask for
them.

220

Volume 29, Number 3, September 2008 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Peter Dencker
Steinäckerstr. 25
D-76275 Ettlingen-Spessartt
Germany
Email: dencker@web.de
URL: ada-deutschland.de

Ada-France
Association Ada-France
c/o Jérôme Hugues
Département Informatique et Réseau
École Nationale Supérieure des Télécomunications
46, rue Barrault
75634 Paris Cedex 135
France
Email: bureau@ada-france.org
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Saab Systems
S:t Olofsgatan 9A
SE-753 21 Uppsala
Sweden
Phone: +46 73 437 7124
Fax: +46 85 808 7260
Email: Rei.Strahle@saabgroup.com
URL: www.ada-i-sverige.se

Ada in Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	News
	Conference Calendar
	Forthcoming Events
	13th International Real-Time Ada Workshop
	Session: Ada and Other Standards
	Interfacing Ada to Operating Systems
	Session: Conclusions and Plans for next IRTAW
	13th International Conference on Reliable Software Technologies -- Session on "Ada and Software Engineering Education"
	Session Report
	A Principled Approach to Software Engineering Education, or Java considered Harmful
	Ada and Software Engineering Education: One Professor's Experiences
	Is Ada Education Important?
	Use of Ada in a Student CubeSat Project
	Ada Gems

