

Ada User Journal Volume 29, Number 4, December 2008

ADA
USER
JOURNAL

Volume 29
Number 4

December 2008

Contents
Page

Editorial Policy for Ada User Journal 222

Editorial 223

News 225

Conference Calendar 251

Forthcoming Events 260

Articles from the Industrial Track of Ada-Europe 2008

 H. Ausden
“Ada-C++ Interfacing in the ERAM System” 267

 J. Cousins
“Porting Naval Command & Control Systems to Ada 2005” 271

 J.-P. Rosen
“A Comparison of Industrial Coding Rules” 277

Ada Gems 283

Ada-Europe Associate Members (National Ada Organizations) 288

Ada-Europe 2008 Sponsors Inside Back Cover

222

Volume 29, Number 4, December 2008 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 223

Ada User Journal Volume 29, Number 4, December 2008

Editorial
This December issue witnesses a change in the Editorial Team of the Ada User Journal. Santiago Urueña, who served as the
News Editor for the past 5 years, is leaving the Journal, as he takes new responsibilities in his professional life. I would like
to state my appreciation for Santiago’s dedication and effort, and I wish him all the success in his new career.

Luckily, we were able to find another motivated young researcher to take over. I am thus pleased to welcome Marco
Panunzio, a PhD student at the University of Padua, Italy, to the role of the Journal’s News Editor. As Marco points out, he
knows that this new duty will reduce his already non-existent free time, especially the little time he can find to play his piano,
but he thinks that this is an interesting and worthy service to the Ada community.

Santiago and Marco jointly produced the news section in this issue, providing us with a smooth editor transition. I know the
readers will not be disappointed.

As for the contents of the issue, we continue with the publication of material derived from the Ada-Europe 2008 conference.
In this issue you can find three papers coming from the Industrial Track of the conference. The first paper, by Howard
Ausden, of Lockheed Martin, USA, provides insights into the integration of Ada and C++ code in the ERAM air traffic
control system. Afterwards, Jeff Cousins, of BAE Systems, UK describes the experience of porting a command and control
system from Ada 95 to Ada 2005. And, finally, Jean-Pierre Rosen, of Adalog, France, presents the experience behind the
specification of coding standards and programming rules for Ada programs. The technical part of the issue ends with an
interesting set of Ada Gems, by Bob Duff and Ramón Fernandéz-Marina, related to Null (or not null) and Accessibility
Checks.

I would like also to point out the rich set of events for which we provide information in the calendar and forthcoming events
sections. Particularly, the latter provides information about five Ada related events in 2009; a plentiful year to look for.

Luís Miguel Pinho

Porto
December 2008

Email: lmp@isep.ipp.pt

 225

Ada User Journal Volume 29, Number 4, December 2008

News
Santiago Urueña* and Marco Panunzio†
*Technical University of Madrid (UPM). Email: Santiago.Uruena@upm.es
†University of Padua. Email: panunzio@math.unipd.it

Contents

Ada-related Organizations 225
Ada-related Events 225
Ada Semantic Interface

Specification 229
Ada and Education 229
Ada-related Resources 230
Ada-related Tools 230
Ada-related Products 234
Ada and GNU/Linux 239
References to Publications 239
Ada Inside 240
Ada in Context 241

Ada-related
Organizations
XVII Award Ada-Spain
From: Ada-Spain
Subject: XVII award Ada-Spain for the best

academic project related to the Ada
programming language

URL: http://adaspain.unican.es/
Premio_XVII.pdf

The goal of this award is to foster the
adoption of the Ada programming
language in University teaching programs
as well as in professional training
programs, both as study subject and as
instrument to the realization of projects
and investigation works.
The details of the award and the criteria
for the eligibility of works follow:
1. It is hereby established an award
granted with a price of 750 Euro for the
winner and a price of 450 Euro for the
runner-up.
2. The work can be realized by a group of
persons, not exceeding the number of
three persons.
3. The submitted projects shall be part of
the academic work of their authors, who
should be studying in an officially
recognized teaching center (academic or
for professional training) during the
realization of the project. In particular,
those works can be either projects
assigned at the end of the study period or
projects assigned during a course.
4. The deadline for the submission of the
projects is February 20, 2009.
5. The submitted projects shall be sent via
post courier to the following address:

Ada-Spain
Apartado Postal 50.403
28080 Madrid
 [Translated from Spanish. For the
complete announcement (in Spanish),
please refer to http://adaspain.unican.es/
Premio_XVII.pdf —mp]

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—su]

Oct 30 — SIGAda Awards
From: John McCormick

<mccormick@cs.uni.edu>
Date: Thu, 11 Sep 2008 06:37:20 −0700

(PDT)
Subject: 2nd Call for SIGAda Award

Nominations
Newsgroups: comp.lang.ada
Dear Members of the Ada Community:
On Thursday, 30 October 2008, the 2008
SIGAda Awards will be presented in a
special morning plenary session at the
SIGAda 2008 conference in Portland,
Oregon. (See
http://www.acm.org/sigada/conf/
sigada2008/ if you have somehow missed
announcements of this year's annual
SIGAda international conference.)
We welcome your nominations of
deserving recipients.
The ACM SIGAda Awards recognize
individuals and organizations who have
made outstanding contributions to the
Ada community and to SIGAda. The two
categories of awards are:
(1) Outstanding Ada Community
Contribution Award — For broad, lasting
contributions to Ada technology & usage.
(2) ACM SIGAda Distinguished Service
Award — For exceptional contributions
to SIGAda activities & products.
Please consider who should be nominated
this year. You may nominate a person for
either or both awards, and as many people
as you think worthy. One or more awards
will be made in both categories.
Please visit
http://www.acm.org/sigada/exec/awards/

awards.html#Recipients and peruse the
names of past winners. This may help you
think about the measure of
accomplishment that is appropriate. You
may be aware of people who have made
substantial contributions that have not yet
been acknowledged. Nominate them.
Consider what you believe to be the best
developments in the Ada community or
SIGAda in the last year; the last 5 years;
since Ada's inception. Who was
responsible? Nominate them.
Please note that anyone who has received
either of the two awards remains eligible
for the other. Perhaps there is an
outstanding SIGAda volunteer who has
won our Distinguished Service Award
and who has also made important
contributions to the advance of Ada
technology, or vice versa. Nominate him
or her!
The nomination form is available on the
SIGAda website at
http://www.acm.org/sigada/exec/awards/
awards.html. (You need to visit this
website to see past award winners' names,
and also a picture of the statuette which is
the award among other things, so you
don't nominate someone who has already
won an award in a category.) Submit your
nomination as an e-mail or e-mail
attachment to SIGAda-
Award@ACM.ORG.
The ACM SIGAda Awards Committee,
comprised of volunteers who have
previously won an award, will determine
this year's recipients from your
nominations.
Call our attention to the people who are
most deserving, by nominating them. And
please nominate by SEPTEMBER 21!
Your participation in the nominations
process will help maintain the prestige
and honor of these awards.
Thank you,
John McCormick
Chair ACM SIGAda

Oct 26–30 — SIGAda 2008
Conference
From: Michael Feldman

<mfeldman@seas.gwu.edu>
Date: Mon, 29 Sep 2008 19:47:30 -0500
Subject: SIGAda 2008 Conference

Registration Deadlines Fast
Approaching!

Newsgroups: comp.lang.ada

226 Ada-related Events

Volume 29, Number 4, December 2008 Ada User Journal

I just want to take a minute of your time
to remind you of the ACM SIGAda 2008
International Conference, which will take
place in Portland, Oregon, Oct. 26–30,
2008. The conference program is shaping
up to be very interesting, and well worth
the time and expense.
The deadline to reserve your hotel room
at the special $99.00 conference rate is
next Monday, Oct. 5, 2008!
See the conference details — program,
registration, travel, hotel, etc. — at
http://sigada.org/conf/sigada2008/
Note that there's still time to apply for an
educator grant which will cover your
conference and tutorial registration.
Thanks for your time; I hope to see you at
the conference!

FOSDEM 2009 Call for
Interest
From: Dirk Craeynest

<Dirk.Craeynest@cs.kuleuven.be>
Date: Wed, 8 Oct 2008 23:56:35 +0200

(CEST)
Subject: Ada at FOSDEM 2009 — Call for

Interest
Organization: Ada-Belgium, c/o Dept. of

Computer Science, K.U.Leuven
Keywords: Ada,open source,free

software,technical
presentations,FOSDEM

Newsgroups:
comp.lang.ada,fr.comp.lang.ada

Call for Interest

A d a at F O S D E M 2 0 0 9
February 2009, Brussels, Belgium

FOSDEM [1], the Free and Open source
Software Developers' European Meeting,
is a free and non-commercial two-day
event organized each February in
Brussels, Belgium.
The goal is to provide Free Software and
Open Source developers and communities
a place to meet with other developers and
projects, to be informed about the latest
developments in the Free Software and
Open Source world, to attend interesting
talks and presentations by Free Software
and Open Source project leaders and
committers on various topics, and to
promote the development and the benefits
of Free Software and Open Source
solutions.
In a Developers Room at FOSDEM 2006,
Ada-Belgium [2] organized a very well
attended full-day lecture program [3].
Each year the number of applications for
DevRooms outnumbers the available
space, presenting the organizers with a
difficult selection [4]. For FOSDEM
2008, Ada-Belgium proposed another day
of Ada presentations, but the organizers

felt there was too little of an audience.
We intend to propose again for FOSDEM
2009, and need to show that this would
attract sufficient interest.
To increase our chances to be allocated a
DevRoom, Ada-Belgium calls on you to:
- Speak loudly about the fact that you

want to see Ada presentations at
FOSDEM by sending email to
info@fosdem.org (please CC ada-
belgium-board@cs.kuleuven.be).

- Visit FOSDEM's brainstorm page [5]
and propose Ada-related keynote
speakers and topics (please let us know
if you do).

- For bonus points, inform us at ada-
belgium-board@cs.kuleuven.be about
specific presentations you would like to
hear in an Ada DevRoom.

- For more bonus points, subscribe to the
Ada-FOSDEM mailing list [6] to
discuss and help organize the details.

- For even more bonus points, be a
speaker: the Ada-FOSDEM mailing list
is the place to be!

We look forward to lots of feedback!
Please act ASAP and definitely before
November 15.
The FOSDEM Team of Ada-Belgium
PS: This Call for Interest is also available
online [7], including versions in PDF
format suitable for printing (152 KB) and
in plain text format for further distribution
(6 KB).

[1] http://www.fosdem.org
[2] http://www.cs.kuleuven.be/~dirk/

ada-belgium
[3] http://www.cs.kuleuven.be/~dirk/ada-

belgium/events/06/060226-fosdem.html
[4] http://archive.fosdem.org/2008/

call_for_devrooms
[5]

http://www.fosdem.org/2009/brainstorm
[6] http://listserv.cc.kuleuven.be/archives/

adafosdem.html
[7] http://www.cs.kuleuven.be/~dirk/ada-

belgium/events/09/0902xx-fosdem.html

Jun 8–12 — Ada-Europe
2009
From: dirk@heli.cs.kuleuven.be

(Dirk Craeynest)
Date: Thu, 6 Nov 2008 23:51:16 +0100

(CET)
Subject: CfP 14th Conf. Reliable Software

Technologies, Ada-Europe 2009
Newsgroups:

comp.lang.ada,fr.comp.lang.ada,
comp.lang.misc

Organization: Ada-Europe, c/o Dept. of
Computer Science, K.U.Leuven

Keywords: Conference,tutorials,industry,
reliability,Ada,LNCS,Brest,France

CALL FOR PAPERS

14th International Conference on

Reliable Software Technologies — Ada-
Europe 2009

8 – 12 June 2009, Brest, France

Organized by Ada-Europe,

in cooperation with ACM SIGAda
Ada-Europe organizes annual
international conferences since the early
80's. This is the 14th event in the
Reliable Software Technologies series,
previous ones being held at Montreux,
Switzerland ('96), London, UK ('97),
Uppsala, Sweden ('98), Santander, Spain
('99), Potsdam, Germany ('00), Leuven,
Belgium ('01), Vienna, Austria ('02),
Toulouse, France ('03), Palma de
Mallorca, Spain ('04), York, UK ('05),
Porto, Portugal ('06), Geneva, Switzerland
('07), Venice, Italy ('08).
General Information
The 14th International Conference on
Reliable Software Technologies (Ada-
Europe 2009) will take place in Brest,
France. Following its traditional style, the
conference will span a full week,
including a three-day technical program
and vendor exhibitions from Tuesday to
Thursday, along with parallel tutorials and
workshops on Monday and Friday.
Schedule
01 December 2008: Submission of regular
papers, tutorial and workshop proposals
12 January 2009: Submission of
industrial presentation proposals
09 February 2009: Notification to all
authors
09 March 2009: Camera-ready version
of regular papers required
11 May 2009: Industrial presentations,
tutorial and workshop material required
08–12 June 2009: Conference Topics
The conference has successfully
established itself as an international forum
for providers, practitioners and
researchers into reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development and maintenance of long-
lived, high-quality software systems for a
variety of application domains. The
program will allow ample time for
keynotes, Q&A sessions, panel
discussions and social events. Participants
will include practitioners and researchers
in representation from industry, academia
and government organizations active in
the promotion and development of
reliable software technologies. To mark

Ada-related Events 227

Ada User Journal Volume 29, Number 4, December 2008

the completion of the Ada language
standard revision process, contributions
that present and discuss the potential of
the revised language are particularly
sought after.
Prospective contributions should address
the topics of interest to the conference,
which include but are not limited to those
listed below:
⁃ Methods and Techniques for Software

Development and Maintenance:
Requirements Engineering, Object-
Oriented Technologies, Model-driven
Architecture and Engineering, Formal
Methods, Re-engineering and Reverse
Engineering, Reuse, Software
Management Issues, Model
Engineering.
⁃ Software Architectures: Design

Patterns, Frameworks, Architecture-
Centered Development, Component and
Class Libraries, Component-based
Design.
⁃ Enabling Technologies: Software

Development Environments and Project
Browsers, Compilers, Debuggers, Run-
time Systems, Middleware Components.
⁃ Software Quality: Quality Management

and Assurance, Risk Analysis, Program
Analysis, Verification, Validation,
Testing of Software Systems.
⁃ Theory and Practice of High-integrity

Systems: Real-Time, Distribution, Fault
Tolerance, Security, Reliability, Trust
and Safety.
⁃ Embedded Systems: Architecture

Modeling, Co-Design, Reliability and
Performance Analysis.
⁃ Mainstream and Emerging

Applications: Multimedia and
Communications, Manufacturing,
Robotics, Avionics, Space, Health Care,
Transportation.
⁃ Ada Language and Technology:

Programming Techniques, Object-
Orientation, Concurrent and Distributed
Programming, Evaluation &
Comparative Assessments, Critical
Review of Language Features and
Enhancements, Novel Support
Technology, HW/SW Platforms.
⁃ Experience Reports: Case Studies and

Comparative Assessments, Management
Approaches, Qualitative and
Quantitative Metrics.
⁃ Ada and Education: Where does Ada

stand in the software engineering
curriculum; how learning Ada serves
the curriculum; what it takes to form a
fluent Ada user; lessons learned on
Education and Training Activities with
bearing on any of the conference topics.

Call for Regular Papers
Authors of regular papers which are to
undergo peer review for acceptance are
invited to submit original contributions.
Paper submissions shall be in English,

complete and not exceeding 14 LNCS-
style pages in length. Authors should
submit their work via the Web submission
system accessible from the Conference
Home page. The format for submission is
solely PDF. Should you have problems to
comply with format and submission
requirements, please contact the Program
Chair.
Proceedings
The authors of accepted regular papers
shall prepare camera-ready submissions in
full conformance with the LNCS style,
not exceeding 14 pages and strictly by 9
March 2009. For format and style
guidelines authors should refer to:
http://www.springer.de/comp/lncs/
authors.html. Failure to comply and to
register for the conference will prevent
the paper from appearing in the
proceedings. The conference proceedings
will be published in the Lecture Notes in
Computer Science (LNCS) series by
Springer Verlag, and will be available at
the start of the conference.
Awards
Ada-Europe will offer honorary awards
for the best regular paper and the best
presentation.
Call for Industrial Presentations
The conference also seeks industrial
presentations which may deliver value
and insight, but do not fit the selection
process for regular papers. Authors of
industrial presentations are invited to
submit a short overview (at least 1 page in
size) of the proposed presentation to the
Conference Chair by 12 January 2009.
The Industrial Program Committee will
review the proposals and make the
selection. The authors of selected
presentations shall prepare a final short
abstract and submit it to the Conference
Chair by 11 May 2009, aiming at a 20-
minute talk. The authors of accepted
presentations will be invited to derive
articles from them for publication in the
Ada User Journal, which will host the
proceedings of the Industrial Program of
the Conference.
Call for Tutorials
Tutorials should address subjects that fall
within the scope of the conference and
may be proposed as either half- or full-
day events. Proposals should include a
title, an abstract, a description of the
topic, a detailed outline of the
presentation, a description of the
presenter's lecturing expertise in general
and with the proposed topic in particular,
the proposed duration (half day or full
day), the intended level of the tutorial
(introductory, intermediate, or advanced),
the recommended audience experience
and background, and a statement of the
reasons for attending. Proposals should be
submitted by e-mail to the Tutorial Chair.
The providers of full-day tutorials will
receive a complimentary conference

registration as well as a fee for every
paying participant in excess of 5; for half-
day tutorials, these benefits will be
accordingly halved. The Ada User Journal
will offer space for the publication of
summaries of the accepted tutorials.
Call for Workshops
Workshops on themes that fall within the
conference scope may be proposed.
Proposals may be submitted for half- or
full-day events, to be scheduled on either
ends of the conference week. Workshop
proposals should be submitted to the
Conference Chair. The workshop
organizer shall also commit to preparing
proceedings for timely publication in the
Ada User Journal.
Call for Exhibitions
Commercial exhibitions will span the
three days of the main conference.
Vendors and providers of software
products and services should contact the
Exhibition Chair for information and for
allowing suitable planning of the
exhibition space and time.
Grants for Students
A limited number of sponsored grants is
expected to be available for students who
would like to attend the conference or
tutorials. Contact the Conference Chair
for details.
Organizing Committee
Conference Chair
 Frank Singhoff, UBO/LISyC, France
 Frank.Singhoff@univ-brest.fr
Program Co-Chairs
 Yvon Kermarrec, Télécom Bretagne,

France
 Yvon.Kermarrec@telecom-bretagne.eu
 Fabrice Kordon, University Pierre &

Marie Curie, France
 Fabrice.Kordon@lip6.fr
Tutorial Chair
 Jérôme Hugues, Télécom Paris-Tech,

France
 Jerome.Hugues@telecom-paristech.fr
Exhibition Chair
 Pierre Dissaux, Ellidiss Technologies
 Pierre.Dissaux@ellidiss.com
Publicity Chair
 Dirk Craeynest, Aubay Belgium &

K.U.Leuven, Belgium
 Dirk.Craeynest@cs.kuleuven.be
Local Chairs
 Alain Plantec and Mickael Kerboeuf,

UBO/LISyC, France
 Alain.Plantec@univ-brest.fr and

Mickael.Kerboeuf@univ-brest.fr
Program Committee

228 Ada-related Events

Volume 29, Number 4, December 2008 Ada User Journal

 Alejandro Alonso, Universidad
Politécnica de Madrid, Spain

 Leemon Baird, US Air Force Academy,
USA

 Johann Blieberger, Technische
Universität Wien, Austria

 Maarten Boasson, University of
Amsterdam, The Netherlands

 Bernd Burgstaller, Yonsei University,
Korea

 Dirk Craeynest, Aubay Belgium &
K.U.Leuven, Belgium

 Alfons Crespo, Universidad Politécnica
de Valencia, Spain

 Juan A. De la Puente, Universidad
Politécnica de Madrid, Spain

 Raymond Devillers, Université Libre de
Bruxelles, Belgium

 Michael González Harbour, Universidad
de Cantabria, Spain

 Javier Gutiérrez José, Universidad de
Cantabria, Spain

 Philippe Dhaussy, ENSIETA/LISyC,
France

 Andrew Hately, Eurocontrol CRDS,
Hungary

 Jérôme Hugues, Telecom Paris, France
 Günter Hommel, Technischen Univesität

Berlin, Germany
 Hubert Keller, Institut für Angewandte

Informatik, Germany
 Yvon Kermarrec, Télécom Bretagne,

France
 Fabrice Kordon, Université Pierre &

Marie Curie, France
 Albert Llemosí, Universitat de les Illes

Balears, Spain
 Franco Mazzanti, ISTI-CNR Pisa, Italy
 John McCormick, University of

Northern Iowa, USA
 Stephen Michell, Maurya Software,

Canada
 Javier Miranda, Universidad Las Palmas

de Gran Canaria, Spain
 Scott Moody, Boeing, USA
 Daniel Moldt, University of Hamburg,

Germany
 Laurent Pautet, Telecom Paris, France
 Laure Petrucci, LIPN, Université Paris

13, France
 Luís Miguel Pinho, Polytechnic Institute

of Porto, Portugal
 Erhard Plödereder, Universität Stuttgart,

Germany
 Jorge Real, Universidad Politécnica de

Valencia, Spain
 Alexander Romanovsky, University of

Newcastle upon Tyne, UK
 Jean-Pierre Rosen, Adalog, France

 Lionel Seinturier, Université de Lille,
France

 Frank Singhoff, UBO/LISyC, France
 Oleg Sokolsky, University of

Pennsylvania, USA
 Ricky Sward, MITRE, USA
 Tullio Vardanega, Università di Padova,

Italy
 Francois Vernadat, LAAS-CNRS,

Université de Toulouse, Insa
 Andy Wellings, University of York, UK
 Jürgen Winkler, Friedrich-Schiller-

Universität, Germany
 Luigi Zaffalon, University of Applied

Sciences, W. Switzerland
Industrial Committee
 Guillem Bernat, Rapita Systems, UK
 Agusti Canals, CS, France
 Roderick Chapman, Praxis HIS, UK
 Colin Coates, Telelogic, UK
 Dirk Craeynest, Aubay Belgium &

K.U.Leuven, Belgium
 Dirk Dickmanns, EADS, Germany
 Tony Elliston, Ellidiss Software, UK
 Franco Gasperoni, AdaCore, France
 Hubert Keller, Forschungszentrum

Karlsruhe GmbH, Germany
 Bruce Lewis, US Army, USA
 Ahlan Marriott, White-Elephant GmbH,

Switzerland
 Rei Stråhle, Saab Systems, Sweden
CfP in PDF format
http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/09/090608-aec-cfp.pdf

Feb 7–8 — Ada Developer
Room at FOSDEM 2009
From: Dirk Craeynest

<Dirk.Craeynest@cs.kuleuven.be>
Date: Mon, 1 Dec 2008 22:15:53 +0100

(CET)
Subject: Ada Developer Room at FOSDEM

2009
Organization: Ada-Belgium, c/o Dept. of

Computer Science, K.U.Leuven
Keywords: Ada,open source,free

software,technical
presentations,FOSDEM

Newsgroups: comp.lang.ada

Preliminary Announcement

Ada Developer Room at FOSDEM 2009

7 – 8 February 2009, Brussels, Belgium

http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/09/090207-fosdem.html

FOSDEM, the Free and Open source
Software Developers' European Meeting,
is a free and non-commercial two-day
event organized each February in
Brussels, Belgium.
We are very pleased to announce that the
organizers of FOSDEM 2009 have
accepted our proposal for an Ada
Developer Room at the next event, i.e. on
Sat 7 and Sun 8 February 2009.
The full list of presentations and speakers
is available on the Ada at FOSDEM 2009
web-page. More details, such as the
concrete schedule, will follow later.
We hope to see many of you there!
Valentine, Ludovic, Dirk
The FOSDEM Team of Ada-Belgium

Avionics USA 2009
From: AdaCore Press Center
Date: Wednesday November 26, 2008
Subject: Avionics USA 2009
RSS: http://www.adacore.com/2008/11/26/

avionics-usa-2009/

SSTC
From: AdaCore Press Center
Date: Wednesday November 26, 2008
Subject: Systems & Software Technology

Conference (SSTC)
RSS: http://www.adacore.com/2008/11/26/

systems-software-technology-conference-
sstc/

ESC Silicon Valley
From: AdaCore Press Center
Date: Wednesday November 26, 2008
Subject: ESC Silicon Valley
RSS: http://www.adacore.com/2008/11/26/

esc-silicon-valley/

AdaCore — Lean Event
From: AdaCore Press Center
Date: Wednesday November 26, 2008
Subject: Lean Event
RSS: http://www.adacore.com/2008/11/26/

lean-event/
If you are interested in learning more
about this event, please contact
events@adacore.com
AdaCore is main organizer and sponsor of
this event. Talks will be given by Jim
Sutton (author Lean Software Strategies),
Emmanuel Chenu (Thales Avionics),
Andy Vickers (Praxis High Integrity
Systems), and Cyrille Comar (AdaCore).

Ada Conference UK
From: AdaCore Press Center
Date: Wednesday November 26, 2008
Subject: Ada Conference, UK.
RSS: http://www.adacore.com/2008/11/26/

ada-conference-uk/

Ada and Educat ion 229

Ada User Journal Volume 29, Number 4, December 2008

AdaCore is event co-organizer and main
sponsor. Franco Gasperoni will be giving
a talk entitled “Project Coverage and
Open-DO”.

Avionics 09 Europe
From: AdaCore Press Center
Date: Wednesday November 26, 2008
Subject: Avionics 09 (Europe)
RSS: http://www.adacore.com/2008/11/26/

avionics-09-europe/
AdaCore is the major sponsor of the
Military Avionics track and will be co-
hosting the workshop “Worst-Case and
Structural Coverage Analysis — Tools
and Technologies to get DO-178B” with
Wind River.

Ada Semantic Interface
Specification (ASIS)
Gela ASIS
From: Maxim Reznik

<reznikmm@gmail.com>
Date: Fri, 19 Sep 2008 09:13:24 −0700

(PDT)
Subject: Announce: Gela ASIS 0.2
Newsgroups: comp.lang.ada
I would like to announce Gela ASIS 0.2
release.
http://www.ten15.org/wiki/gela_asis/
Gela ASIS is platform/compiler
independent implementation of Ada
Semantic Interface Specification (ASIS).
Gela ASIS implements core ASIS
Version 2.0 and most of ASIS Issues
(SI99), so it's capable to process Ada
2005 code.
Recent changes are:
⁃ Makefile to easy build and install Gela

ASIS
⁃ implementation of Ada 2005 issues
⁃ implementation of private operations
⁃ implementation of

Asis.Compilation_Units.Relations

Ada and Education
Praxis — SPARK Training
March 2009
From: Praxis HIS — SPARKAda
Subject: SPARK Training
Date: March, 2009
URL: http://www.praxis-his.com/

sparkada/training.asp
SPARK Training — Overview
We run four courses in SPARK, details of
which are below. The schedule for public
courses is shown below. Exclusive
courses for clients, either at our offices or
on-site, are also available — please
contact us for details.

Course 1: Software Engineering with
SPARK
A 4-day course for managers, regulators
and engineers, which presents the
principles of the development of high
integrity software, and the related
certification requirements. It then explains
the rationale of SPARK, outlines the
language and the principles of static code
analysis, and presents the role of the
SPARK Examiner in systematic program
development. The course also covers
fundamental SPARK design issues, such
as appropriate use of packages such as
abstract machines and data types, as well
as the use of SPARK refinement, system
interfaces, library mechanisms, etc. Some
of the more advanced facilities of the
SPARK Examiner, for run-time error
checking for example, are presented.
Course 2: Black-Belt SPARK
A course for engineers who have already
attended the “Software Engineering with
SPARK” course or are experienced
SPARK users. This course covers the
advanced use of SPARK, particularly in
the context of proof of exception freedom
and code correctness. Attendees are
taught to understand the relationship
between SPARK source code and the
verification conditions generated for
proof, leading to an understanding of the
impact of good SPARK design principles
on code verification. Advanced facilities
of the SPARK Examiner are presented,
and tuition in planning, conducting and
managing the verification activities is
supplemented by the use of the SPARK
proof tools, particularly the Simplifier.
The course has a strongly practical
flavour, interweaving guidance and
lecture material with topical tutorial
sessions which reinforce the lecture
material via relevant examples. Each
tutorial session commences with a step-
by-step example which provides detailed
guidance, followed by additional
exercises which can be tried in the tutorial
sessions or used after the course to gain
additional practical experience.
Course 3: High-Integrity Concurrent
Software Design with RavenSPARK
The Ada 95 Ravenscar profile defines a
subset of the Ada 95 tasking facilities that
are appropriate for the construction of
high-integrity software. This one-day
course introduces the Ravenscar profile
and how it has been included in the core
SPARK language. The course will cover
the additional annotations in SPARK that
are used to describe packages that contain
tasks and protected objects and the
additional analyses implemented by the
Examiner to eliminate the potential for
defects in Ravenscar programs.
Delegates for this course should have
already attended the introductory
“Software Engineering with SPARK”
course, or should be experienced SPARK

users. This course may be taken as a one-
day stand-alone module, or may directly
follow a “Software Engineering with
SPARK” course.
Course 4: UML to SPARK
This course covers the rationale for
integrating SPARK with UML, and the
generation of SPARK from UML. The
majority of the course consists of a
practical session, where delegates will
produce SPARK from a partially
completed UML model.
Delegates for this course should have
already attended the introductory
“Software Engineering with SPARK”
course, or should be experienced SPARK
users. No knowledge of UML or
experience of using UML tools is
assumed. This course may be taken as a
one-day stand-alone module, or may
directly follow a “Software Engineering
with SPARK” course.
Public Course Dates for 2009 — UK
Course 1 — “Software Engineering with
SPARK”
2nd to 5th March 2009, Bath, UK.
Course 2 — “Black-Belt SPARK”
17th to 19th March 2009, Bath, UK.
Course 3 — “High-Integrity Concurrent
Software Design with RavenSPARK”
TBD — come back soon for future course
dates.
Course 4 — “UML to SPARK”
TBD — come back soon for future course
dates.
Courses in the USA
Praxis High Integrity Systems can run
training courses at a customer's facilities
as required. Training in the USA is also
available from our partner company
Pyrrhus Software.
Courses in Australia
Please contact us for details of training in
Australia.
Enquiries and Reservations
For enquiries and reservations for the
course, please contact us.
[See also the same topic in AUJ 28-3 (Sep
2007) —mp]

AdaCore — Talk on
performance and genericity
From: AdaCore Press Center
Date: Friday October 24, 2008
Subject: Performance and Genericity

Seminar
RSS: http://www.adacore.com/2008/10/24/

perfrmance-and-genericity-seminar/
Thomas Quinot will be giving a talk
“Efficient representation of complex data
in schizophrenic middleware”.

230 Ada-related Tools

Volume 29, Number 4, December 2008 Ada User Journal

AdaCore — GPS 4.3
Webinar available for
download
From: AdaCore Developer Center
Date: Thursday November 27, 2008
Subject: GPS 4.3 InSight webinar now

available for viewing
RSS: http://www.adacore.com/2008/11/27/

gps-43-insight-webinar-now-available-
for-viewing/

The latest GNAT Pro InSight webinar
featuring GPS 4.3 is now available for
viewing. The webinar included a
presentation and demo of some of the
following features:
⁃ Easy configuration of dual compilation.
⁃ Enhanced support for gcov (code

coverage), gnatcheck (coding standard
checker) and compiler switches.
⁃ A redesigned and fully customizable

builder module.
⁃ New plug-ins.
⁃ Improved code completion.
⁃ Improved documentation generator.
To view this event, please click here or
visit www.adacore.com/home/gnatpro/
webinars

Ada-related Resources
AdaCore — Ada XML
Library added to Live Docs
From: AdaCore Developer Center
Date: Tuesday September 30, 2008
Subject: XML Ada Library documentation

added to Live Docs
RSS: http://www.adacore.com/2008/09/30/

2380/
The XML Ada Library documentation has
been added to Live Docs. The object-
oriented XML/Ada library allows
development of applications for parsing
and processing XML streams, with a SAX
implementation that that allows
conversion of such streams into
application-specific data representations.
Live Docs provides an up to the minute
snapshot of GNAT Pro technology. As
new features and improvements are made
to GNAT Pro these changes are
immediately added to our product
documentation and presented here in Live
Docs.
More info on XML/Ada, please visit:
http://www.adacore.com/home/gnatpro/
add-on_technologies/xml_ada/
To view the Live Docs page, please visit:
http://www.adacore.com/category/
developers-center/
reference-library/documentation

[http://www.adacore.com/wp-
content/files/auto_update/
xmlada-docs/xml.html —su]

AdaCore — GPRbuild
documentation added to
Live Docs
From: AdaCore Developer Center
Date: Tuesday October 7, 2008
Subject: GPRbuild documentation added to

Live Docs
RSS: http://www.adacore.com/2008/10/07/

gprbuild-documentation-added-to-live-
docs/

The GPRbuild documentation has been
added to Live Docs. GPRbuild is an
advanced software tool designed to
designed to automate the construction of
multi-language systems using GNAT
Project files. Live Docs provides an up to
the minute snapshot of GNAT Pro
technology. As new features and
improvements are made to GNAT Pro
these changes are immediately added to
our product documentation and presented
here in Live Docs.
[http://www.adacore.com/wp-
content/files/auto_update/gprbuild-
docs/html/gprbuild_ug.html —su]

AdaCore — GNATcoll
documentation added to
Live Docs
From: AdaCore Developer Center
Date: Monday October 20, 2008
Subject: GNATcoll documentation added to

Live Docs
RSS: http://www.adacore.com/2008/10/20/

gnatcoll-decumentation-added-to-live-
docs/

The GNAT Components Collection
(GNATcoll) documentation has been
added to Live Docs. The GNAT
Components Collection is a suite of
reusable software components and
utilities originating from the AdaCore
infrastructure. Live Docs provides an up
to the minute snapshot of GNAT Pro
technology. As new features and
improvements are made to GNAT Pro
these changes are immediately added to
our product documentation and presented
here in Live Docs.

Ada-related Tools
GNAT Pro for .NET
From: Rob Veenker <veenker@xs4all.nl>
Date: Sun, 23 Nov 2008 17:36:42 +0100
Subject: Re: GNAT Pro for .NET
Newsgroups: comp.lang.ada
> Wonder if anyone has any experience

with Ada .NET? How well it is
integrated and what are the major issues
you had with it?

You may want to check out the MGNAT
project at
http://sourceforge.net/projects/asharp
The GNAT Pro for .Net compiler used
this project as a starting point.
The compiler is kept in sync with the
latest GNAT Pro compiler technology but
there are limitations when it comes to
code generation (due to .Net runtime).
Also note that not all annexes are
implemented.
You need to be aware of the way the Ada
symbols (variables, procedures, functions
etc.) are expressed in MSIL if you want to
create Ada assemblies that will be used by
other .Net languages. Using a .Net
reflection tool or the object browser can
be of great help.
Integration in the MS Visual Studio is
great for debugging a mixed language
application, but for my Ada programming
I still use GPS.
From: Rob Veenker <veenker@xs4all.nl>
Date: Tue, 25 Nov 2008 00:07:35 +0100
Subject: Re: GNAT Pro for .NET
Newsgroups: comp.lang.ada
> Thanks, Rob. I've tried that, but there

are some strange things in the way Ada
objects behave and with lack of
documentation it's hard to figure out. In
particular:

 ⁃ Is it possible to mix native code from
Ada with MSIL (like we do C++/C#
mix)?

I have not tested the integration in passing
Ada objects but there is a way of
extending MSIL classes using Ada. I
believe there is even a tutorial on this.
To be able to call 'native' Ada code I still
rely on the MS COM+ interface using
GNATCOM and wrap this native COM
object using interop services.
But you can also use pragma import /
export !
> ⁃ I was unable to get Initialize/Finalize

being called for
Ada.Finalization.Controlled objects
(given that destruction of objects in
.NET are non-deterministic, but still).

 ⁃ Compiler won't let me implement
IDisposable interface, am I looking at
right place (MSSyst.IDisposable)?

Have a look at the extend_dotnet_class
tutorial. Here the MSSyst.IDisposible is
indeed used as well. But the object is
created outside of Ada. Which version of
Ada for .Net are you using? There should
be something on this subject in the
documentation as well.
From: Brad Moore

<brad.moore@shaw.ca>
Date: Wed, 26 Nov 2008 00:05:51 −0700
Subject: Re: GNAT Pro for .NET
Newsgroups: comp.lang.ada
I've been involved in a port of a number-
crunching system originally written in

Ada-related Tools 231

Ada User Journal Volume 29, Number 4, December 2008

Ada 83 from a different compiler vendor
running on Unix, to GNAT on Windows
in Ada 95, and then most recently to .NET
in Ada 2005 using GNAT Pro for .NET. I
say port, but for the most part it was
simply a matter of setting the compiler
switches for Ada 95, and Ada 2005, and
recompiling, though we have been
introducing new language features during
maintenance of the system.
The original system features several tasks
with rendezvous, and heavy use of the
Ada math libraries. There is no GUI
involved.
My experiences from these ports are;
Port 1) Ada 83 SCO Unix (non-GNAT
vendor) to Win32 GNAT in Ada 95
⁃ Issues relating to compiler vendor

switch:
 None come to mind
⁃ Issues relating to language switch,

Ada 83 — Ada 95
 1) We had a generic protected queue,

which had used the Ada 95 reserved
word “protected” in its variable names.
We had to change the name of the
variables to something else. (A very
trivial change)

 2) The generic would accept an
unconstrained type as a formal
parameter. In Ada 95, we had to add the
box notation to the formal parameter.

 eg. Instead of;

 generic
 type Element_Type is private;
 package P is

 we had to write;
 generic
 type Element_Type (<>) is
 private;
 package P is

…
 Another very trivial change.
 3) We had used passive tasks in a

couple of places. In Ada 95, we
replaced these library units with
protected types. This was a bit more
work, but the end result was satisfying
and a better result.
⁃ Issues relating to operating system

switch: Unix to Windows
 This was probably the biggest impact,

though we had isolated OS routines, so
changes were quite localized. The
biggest challenge was finding a
replacement for Unix's memory mapped
array feature, which Windows didn't
seem to have matching support for.
⁃ Issues relating to change from services

being invoked by CORBA to interface
accessed via a DLL.

 The use of the Interfaces.C library
routines was very helpful. To invoke the

DLL from .NET, a .NET wrapper was
needed to complete the interface.

Port 2: Ada 95 Windows to Ada 2005
.NET
⁃ Issues relating to the language switch.

(Ada 95 to Ada 2005)
 None: Or at least I don't recall there

being any.
 We have now incorporated new

language features including interfaces,
Ada.Directories, containers, object
prefix notation, to name a few. These
mostly come as enhancements needed
for maintenance, and are unrelated to
the actual port.
⁃ Issues going from win32 to .NET
 For the most part we didn't need to

make any significant code changes.
There are a few libraries that weren't
implemented in .NET Ada. The ones
that come to mind are Ada.Direct_IO
and Ada.Directories I believe, though
there are other libraries that come with
GNAT that provided suitable
workarounds. There may have been
some other minor issues, but we found
workarounds for everything. The
application runs well in .NET. We no
longer needed the .NET wrapper around
our DLL, which simplified things. We
had to get rid of our Interfaces.C
pragmas and replace with similar
vendor specific pragmas for interfacing
to .NET. I believe the full list of
issues/differences between .NET GNAT
Pro and Windows GNAT Pro can be
obtained from AdaCore.

JEWL on XP
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Mon, 10 Nov 2008 01:50:57 GMT
Subject: Re: JEWL on XP?
Newsgroups: comp.lang.ada
> From a quick scan of the

documentation, JEWL would appear to
provide all I need. However certain
parts of that same documentation lead
to the question, will JEWL run on XP?
And if not, is there anything else that
might serve?

JEWL runs fine on XP.
Depending on your compiler, you may
need to convert the single “pragma
Linker_Options” into multiple, one for
each item in the single one.
From: John McCormick

<mccormick@cs.uni.edu>
Date: Mon, 10 Nov 2008 06:32:52 −0800

(PST)
Subject: Re: JEWL on XP?
Newsgroups: comp.lang.ada
Here are the details of the changes I give
to my students to run JEWL on XP
In file
 jewl-win32_interface.adb

replace
 pragma Linker_Options ("-luser32

-lgdi32 -lcomdlg32 -lwinmm");
with
 pragma Linker_Options ("-luser32");
 pragma Linker_Options ("-lgdi32");
 pragma Linker_Options ("-lcomdlg32");
 pragma Linker_Options ("-lwinmm");
Build the JEWL library as described in
the JEWL documentation.
From: “Randy Brukardt”

<randy@rrsoftware.com>
Date: Mon, 10 Nov 2008 19:14:27 −0600
Subject: Re: pragma Linker_Options (was:

JEWL on XP?)
Newsgroups: comp.lang.ada
>> Depending on your compiler, you may

need to convert the single “pragma
Linker_Options” into multiple, one for
each item in the single one.

 So, pragma Linker_Options can be
troublesome in case one cannot change
the Ada source files. (Because
whenever a compilation system
interprets the string_expression of the
pragma and the linker does not
understand the string, compilation
fails.) Wouldn't it be better, in general,
to avoid system dependent pragma
Linker_options in source files?

Well, maybe, but then you potentially lose
version control on the options. And you
might not have control over the building
environment, but still need the options
given.
For instance, in Claw, we have a package
with separate bodies for each compiler.
Some of those bodies contain one or more
Linker_Option pragmas. If they're not
given, Claw won't work (usually with a
completely mysterious error message).
We don't provide build scripts with Claw
(the various compilers have fine
mechanisms for that, we don't need to
duplicate that). So pragma
Linker_Options is the only way to ensure
that the correct options are used.
I'd expect issues like these to arise for any
“binding” packages that are distributed
separately (assuming that you need
facilities beyond those provided with the
core OS). Similar reasons arise as to why
you might want to use configuration
pragmas rather than compiler options to
suppress checks and the like.

QtAda bindings
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Tue, 9 Sep 2008 11:24:13 −0700

(PDT)
Subject: Announce: QtAda 2.0.0
Newsgroups: comp.lang.ada
We are pleased to announce QtAda 2.0.0
release.

232 Ada-related Tools

Volume 29, Number 4, December 2008 Ada User Journal

Multi-platform source code package and
Microsoft Windows binary package of the
QtAda 2.0.0 can be downloaded from:
http://www.qtada.com/
QtAda is an Ada 2005 language bindings
to the Qt libraries and a set of useful tools.
QtAda allows easily to create cross-
platform powerful graphical user interface
completely on Ada 2005. QtAda
applications will work on most popular
platforms — Microsoft Windows, Mac
OS X, Linux/Unix — without any
changes and platform specific code.
QtAda allows to use all power of visual
GUI development with Qt Designer on all
software life cycle stages — from
prototyping and up to maintenance.
QtAda is not just a bindings to the
existent Qt widgets, it also allows to
develop your own widgets and integrates
it into the Qt Designer for high speed
visual GUI development.
New in QtAda 2.0.0:
⁃ improved integration with Qt meta

system allows to simplify user's code.
⁃ non-GNAT users and GCC/GNAT users

who don't have ASIS implementation
may use build-in ASIS implementation
from the Gela project.
⁃ exception propagation and handling was

improved on Microsoft Windows
platform.
⁃ and many other changes…

Ada-autoit
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Tue, 21 Oct 2008 23:49:15 +0100
Subject: [ANN] ada-autoit updated to work

with AUtoIt v3.2.12
Newsgroups: comp.lang.ada
ada-autoit is a medium thick Ada-binding
to the scripting tool Auto It.
Note this tool is very win32 specific.
For more info see:
http://www.autoitscript.com/autoit3/
index.shtml
and:
http://sourceforge.net/projects/ada-autoit/
From: Steve <steved94@comcast.net>
Date: Wed, 22 Oct 2008 18:53:01 −0700
Subject: Re: [ANN] ada-autoit updated to

work with AUtoIt v3.2.12
Newsgroups: comp.lang.ada
I recently tried using autoit and found it
interesting. Unfortunately it wasn't able to
do everything I wanted to do with out a
lot of extra work, or at least learning a
new programming language (the special
dialect of basic used by autoit). I did a
little research to see if there was an easier
way and found the Microsoft UI
Automation Library.

http://msdn.microsoft.com/
en-us/magazine/cc163288.aspx
For my app I wound up using the C# and
the .NET framework which contains an
automation framework
(system.windows.automation). If I were
developing the same app in Ada I would
either use A# or create a binding to the
Microsoft UI Automation Library using
GnatCOM.
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Thu, 23 Oct 2008 08:04:18 +0100
Subject: Re: [ANN] ada-autoit updated to

work with AUtoIt v3.2.12
Newsgroups: comp.lang.ada
A short reply.
*) Yes Autoit is a quite simple and there
are a lot of things it don't do.
*) The drive behind the binding was
simplicity.
*) A# is out of the question for several
reasons although it might work very well
but I got a lot of legacy stuff and just want
to press a few buttons.
*) What i found using GnatCOM directly
is that I end up with a lot of code in the
application layer and usually have to write
some kind of wrapper on the generated
code anyway (to leave the COM-World).
So I usually find it simpler to translate
from the C header files directly to low
level Ada by hand (basically what i will
get from GnatCOM) and then do the
higher level Ada mapping.
Of course all this depends on the size and
complexity of the interface.
From: Mikhail Terekhov

<terekhov@emc.com>
Date: Fri, 24 Oct 2008 22:56:01 −0400
Subject: Re: [ANN] ada-autoit updated to

work with AUtoIt v3.2.12
Newsgroups: comp.lang.ada
You may find this link interesting as well
http://pywinauto.openqa.org

CairoAda 1.8
From: Damien Carbonne

<damien.carbonne@free.fr>
Date: Sun, 23 Nov 2008 19:07:13 +0100
Subject: ANN: CairoAda-1.8
Newsgroups: comp.lang.ada
CairoAda is now available here:
http://sourceforge.net/projects/cairoada/
This version is compliant with Cairo-1.8.x

GNADE and ODBC
interfacing
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 3 Oct 2008 06:57:24 −0700

(PDT)
Subject: Re: GNADE/ODBC connection

problem

Newsgroups: comp.lang.ada
> I'm trying to use GNADE to connect to

a MySQL database but i keep getting
the same error:

 raised
GNU.DB.SQLCLI.DRIVER_ERROR :
[Proc=3DSQLConnect][Server=3D][St
ate=3DIM002][unixODBC][Driver
Manager]Data source name not found,
and no default driver specified

Have you configured your odbc.ini file?
GNADE looks there for the data source
name you specified in your Ada program
and for the driver it should load to access
the database. The configuration of
odbc.ini is outside the scope of GNADE
as this is really part of UnixODBC
(which, of course, I assume you have
installed).
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Sat, 4 Oct 2008 13:54:28 −0700

(PDT)
Subject: Re: GNADE/ODBC connection

problem
Newsgroups: comp.lang.ada
Depending on your needs, the following
library might be enough:
http://www.inspirel.com/soci-ada/
These are *complete* program examples:
http://www.inspirel.com/
soci-ada/doc/idioms.html
The SOCI library uses native interface for
MySQL, so there is nothing to configure.

OpenToken
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 12 Sep 2008 20:40:30 +0200
Subject: Re: OpenToken
Newsgroups: comp.lang.ada
Ted Dennison, the author of OpenToken,
reappeared yesterday on the AWS mailing
list and I took the opportunity to send him
an email which he allowed me to
reproduce here for the benefit of all
interested. The conversation is below.
Ludovic Brenta wrote:
> Are you the author of OpenToken?

There has been a discussion on
comp.lang.ada starting at [1] about
adopting it for future maintenance. As
it turns out, Stephe Leake is willing to
take it over. I'd like to know if you
were aware of this and of the fact that,
over the years since you released 3.0b,
several people sent you patches which
you never acknowledged. Do you
approve if someone else takes over?

 [1] http://groups.google.com/group/
comp.lang.ada/msg/ef40447ce799fba1

Ted Dennison replied:
> I'm unaware of the talk. I am quite

aware that I've been sent a few patches
that I never had time to incorporate, and

Ada-related Tools 233

Ada User Journal Volume 29, Number 4, December 2008

that it's not being actively developed.
The birth of my second child pretty
much killed all the free time I had to do
such things. I now have a third, so the
free time situation is even worse.

 I certainly approve, heartily, of anyone
taking over development of it. The
whole point of licensing it the way I did
was so that such things could happen.

 One suggestion I would make to people
would be to use a public source code
repository. Among other things, that
would make it much easier to distribute
the burden of testing and incorporating
patches. If I were starting such a project
today, I'd definitely use Git for revision
control. It works fine in Windows now,
and Git makes forking around
developers who get busy/lazy and drop
out (such as myself) nearly trivial. I
believe Savannah supports it, as do a
few other lesser-known public hosting
sites: http://git.or.cz/gitwiki/GitHosting.

and then in a second email:
> Ludovic Brenta wrote:
>> Thanks a lot. Can I forward your

reply to comp.lang.ada for the benefit
of all?

> Certainly.
>> The agreement is to use Ada-France's

monotone server. Monotone is also
distributed, like git, but simpler to use,
and it is written with the Ada attitude
whereas C is written with the C attitude
:)

> Interesting. I'll have to look into that.
I just imported OpenToken versions 2.0
and 3.0b into the Ada-France database
under the branch name “org.opentoken”.
You can browse it at http://www.ada-
france.org:8081/branch/changes/
org.opentoken
[…]

Status of AdaBrowse
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Mon, 24 Nov 2008 00:47:10 −0800

(PST)
Subject: Re: Status of AdaBrowse
Newsgroups: comp.lang.ada
> Just checking on the status of

AdaBrowse. The latest release (4.0.3)
appears to be from 2005. Has
development of this stopped?

I think it has but anyone can take it over;
it's at SourceForge.

Ada on Mac
From: Michael Feldman

<mfeldman@gwu.edu>
Date: Wed, 10 Sep 2008 18:28:53 −0700
Subject: Re: Ada on Mac
Newsgroups: comp.lang.ada

> Finally jumped ship and got a
Mac…what's the best, free (as in beer)
Ada environment for Mac OS X?

 […]
See www.macada.org. Download the
Leopard installer for GNAT and you're up
and running. Make sure you've installed
Apple's Developer Tools first, especially
the XCode tools. They're in the optional-
installs folder on your system disk.
GNAT/Mac comes with a plug-in for
XCode (which is Apple's standard
developer IDE). It's pretty much like all
the other IDEs you've seen.
From: Jerry <lanceboyle@qwest.net>
Date: Thu, 11 Sep 2008 01:49:19 −0700

(PDT)
Subject: Re: Ada on Mac
Newsgroups: comp.lang.ada
[…]
I agree about Xcode.
www.macada.org is quirky so make sure
you sign up for the mailing list if you
have any problems.
There are a couple of free editors with
IDE features of note that are Ada-
friendly. Check out Smultron and
TextWrangler. Not free ($49) but highly
recommended is TextMate.
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Thu, 11 Sep 2008 16:12:46 +0200
Subject: Re: Ada on Mac
Newsgroups: comp.lang.ada
> Doesn't Emacs work on Mac ?
Yes, and a recent edition of Emacs runs
“graphically” on Mac OS X, not just in a
terminal window.
Eclipse runs well, too.
From: John B. Matthews

<jmatthews@wright.edu>
Date: Fri, 12 Sep 2008 22:08:07 −0400
Subject: Re: Ada on Mac
Newsgroups: comp.lang.ada
[…]
If you like TextWrangler, here's a
keyword module for syntax coloring:
http://home.woh.rr.com/jbmatthews/misc/
bbedit.html
From: “Martin Krischik”

<krischik@users.sourceforge.net>
Date: Mon, 15 Sep 2008 21:34:29 +0200
Subject: Re: Ada on Mac
Newsgroups: comp.lang.ada
> Finally jumped ship and got a

Mac…what's the best, free (as in beer)
Ada environment for Mac OS X?

Funny that you ask, I just created one:
http://sourceforge.net/project/showfiles.ph
p?group_id=12974&package_id=291480
needs http://www.macports.org/ to be
installed first.
But then there is also MacAda:

http://www.macada.org/
Which works with XCode.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Mon, 29 Sep 2008 03:56:01 −0700

(PDT)
Subject: Re: Ada on Mac
Newsgroups: comp.lang.ada
The Wikibook page at
http://en.wikibooks.org/wiki/
Ada_Programming/Installing lists both
macada and the GNU Ada project in
separate sections (resp. 4.5.9 and 4.3 in
the table of contents) but it doesn't list
Max OS as supported in the GNU Ada
project, nor does it explain the differences
between the two. Could someone in the
know please add the appropriate
information for the benefit of all?
In particular I am curious how a
hypothetical programmer wanting to
program in Ada on their Macintosh would
choose between the two. Are there
differences in licensing? Integration with
the rest of the system? Libraries included?
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Tue, 30 Sep 2008 07:58:06 +0200
Subject: Re: Ada on Mac
Newsgroups: comp.lang.ada
> The Wikibook page at

http://en.wikibooks.org/wiki/Ada_Progr
amming/Installing lists both macada
and the GNU Ada project in separate
sections (resp. 4.5.9 and 4.3 in the table
of contents) but it doesn't list Max OS
as supported in the GNU Ada project,
nor does it explain the differences
between the two. Could someone in the
know please add the appropriate
information for the benefit of all?

Well my hope was to upstream to
MacPorts in which case a MacPorts
section would be needed — and then
listing differences would be interesting.
Currently GNU Ada is just staging area
for a MacPosts version.
However, my upstream patches where not
received well:
https://trac.macports.org/ticket/16549
Plan B would be a fork either as a part of
MacPorts or inside GNU Ada Project.
> In particular I am curious how a

hypothetical programmer wanting to
program in Ada on their Macintosh
would choose between the two. Are
there differences in licensing?
Integration with the rest of the system?
Libraries included?

Once here truly is a MacPorts version, the
differences would be explained in the line
of integration: MacAda aims to integrate
GNAT with the existing Mac OS X
development environment (read XCode)
while MacPorts is about integrating Mac
OS X with the rest of the Unix world
(read “configure make install”).

234 Ada-related Products

Volume 29, Number 4, December 2008 Ada User Journal

MacPorts
From: “Martin Krischik”

<krischik@users.sourceforge.net>
Date: Mon, 15 Sep 2008 21:31:46 +0200
Subject: [Announcement] MacPorts / Mac

OS X Release for GCC 4.3.2
Newsgroups: comp.lang.ada
I created a first test version of an
MacPorts [1] / Mac OS X version of
GNAT. Please donwload here to test:
http://sourceforge.net/project/showfiles.ph
p?group_id=12974&package_id=291480
The aim of MacPorts is portability
between Mac OS X and the rest of the
Unix word. Here it differentiates from
MacAda — which aims for perfect OS X
integration.
From: Jerry <lanceboyle@qwest.net>
Date: Mon, 15 Sep 2008 13:15:47 −0700

(PDT)
Subject: Re: MacPorts / Mac OS X Release

for GCC 4.3.2
Newsgroups: comp.lang.ada
Will this compiler work as (1) Ada 2005
on (2) PPC running (3) OS X 10.5?
I committed to supporting the PLplot
bindings on both Ada 95 and Ada 2005,
and I have about the last PPC Powerbook
(laptop) sold by Apple so I'm not eager to
buy a new computer just to get a compiler
that runs on Intel. However, there has
been no Ada 2005 compiler that runs
under OS X 10.5 on PPC architecture.
(The MacAda group has not been helpful
in this regard.) As a result, I haven't been
able to upgrade to 10.5.
Does your build support 10.5 on PPC, or
do you know of other builds that will?
From: Simon Wright

<simon.j.wright@mac.com>
Date: Mon, 15 Sep 2008 23:45:46 +0100
Subject: Re: MacPorts / Mac OS X Release

for GCC 4.3.2
Newsgroups: comp.lang.ada
> However, there has been no Ada 2005

compiler that runs under OS X 10.5 on
PPC architecture. (The MacAda group
has not been helpful in this regard.) As
a result, I haven't been able to upgrade
to 10.5.

Do you think there's any chance that the
GNAT/GPL 2007 compiler I built for
Tiger/PPC would run on Leopard? It uses
static libraries, maybe there's a chance… I
moved to Intel Mac after that, so never
upgraded the Powerbook to Leopard.
http://gnuada.sourceforge.net/pmwiki.php
/Install/MacOS-GPL
From: “Martin Krischik”

<krischik@users.sourceforge.net>
Date: Tue, 16 Sep 2008 07:52:24 +0200
Subject: Re: MacPorts / Mac OS X Release

for GCC 4.3.2
Newsgroups: comp.lang.ada

MacPorts is a source based distribution —
the binary package is just a convenience.
So yes, it might work.
[…]
You need an older working compiler to
create the up to date version. So a little
tweaking will be needed.

Ada-related Products
AdaCore — GNATbench
From: AdaCore Press Center
Date: October 2, 2008
Subject: GNATbench 2.2.0 + 2.1.1
RSS: http://www.adacore.com/2008/10/02/

gnatbench-220-211/
Announcing the availability of new
versions of GNATbench
AdaCore is pleased to announce
GNATbench 2.2.0 for Eclipse and
GNATbench 2.1.1 for Wind River’s
Workbench.
The latest version of the GNAT Pro
Eclipse-based plug-in is available for the
following hosts:
 x86-windows
 sparc-solaris
 x86-linux
 x86_64-linux
Version 2.2.0 of GNATbench for Eclipse
now supports Eclipse 3.4, with version
5.0.x of the C/C++ Development Tools
(CDT), on the Linux (x86 and x86-64),
Solaris (SPARC), and Windows
platforms.
New features include:
⁃ New GNAT Project explorer
⁃ Separation between public and private

API
⁃ Better handling of scenario variables
⁃ Better handling of import wizard errors
Version 2.1.1 of GNATbench for
Workbench now supports Workbench 3.0
and is available on the following
platforms:
 x86-windows
 sparc-solaris
 x86-linux
and introduces the following features and
enhancements:
⁃ Improved project management and

presentation
⁃ An enhanced language-sensitive editor
⁃ Additional wizards
⁃ An improved builder
⁃ Source code navigation enhancements

AdaCore — GNAT Pro for
Nucleus OS
From: AdaCore Press Center
Date: Monday October 27, 2008

Subject: AdaCore Announces GNAT Pro for
Nucleus OS

RSS: http://www.adacore.com/2008/10/27/
nucleus-os/

Ada development support for Nucleus
brings reliability to high-volume,
embedded computing
BOSTON, October 28, 2008 —
Embedded Systems Conference —
AdaCore, provider of the highest quality
Ada tools and support, today announced
the availability of GNAT Pro for
Nucleus® OS, the embedded operating
system from Mentor Graphics. Nucleus
OS offers a highly configurable kernel
and utility extensions, making it a popular
choice for small, high-volume embedded
computing applications where low cost
and high reliability are critical. With
GNAT Pro for Nucleus OS, embedded
system developers can increase their
productivity through the reliability of the
Ada language, the frontline support from
AdaCore, and the capabilities of the
GNAT Pro toolchain.
Nucleus OS provides an efficient, fast,
deterministic and highly configurable
operating system environment. Since the
Nucleus OS is directly linked with the
final application, the memory footprint is
minimized, as only those parts of the
operating system or utilities that are
needed are linked with the application.
This in turn allows companies to choose
lower-cost processors in markets where
the volume of application delivery could
be in the millions. At such a high volume,
software failure is unacceptable, and Ada
is an ideal language where reliability must
be guaranteed. GNAT Pro fully
implements Ada and also provides multi-
language support for parts of the
application that may be written in C or
other languages.
“GNAT Pro for Nucleus OS expands
Ada’s availability into industries requiring
hard real-time response and very small
memory footprint, such as mobile
handsets, consumer electronics, or
telematics/infotainment,” said Neil
Henderson, general manager, Embedded
Systems Division, Mentor Graphics. “Ada
is a well known language in the areas of
safety and security. Offering Ada
development support for Nucleus OS adds
another layer of reliability to these small,
high-volume systems that our customers
develop.”
“AdaCore has a long history supporting
embedded operating systems in
applications where safety and reliability
are key concerns,” said Robert Dewar,
President and CEO of AdaCore. “We
believe that combining the flexibility of
Nucleus OS with the reliability of the Ada
language will greatly benefit our
customers, particularly those developing
products in high-volume industries.”
Pricing and Availability

Ada-related Products 235

Ada User Journal Volume 29, Number 4, December 2008

The GNAT Pro for Nucleus OS is
available immediately for the ARM
embedded processor. Please contact
AdaCore (info@adacore.com) for the
latest information on pricing and
supported configurations.
About GNAT Pro
The GNAT Pro development
environment, available on more platforms
than any other Ada toolset, combines
industry-leading technology with an
expert support infrastructure and provides
a natural solution for organizations that
need to create reliable, efficient, and
maintainable code. GNAT Pro is the first-
to-market implementation of the
Ada 2005 standard, allowing users to take
advantage of the many enhancements in
areas such as object-oriented
programming, real-time support, and
predefined libraries.
At the heart of GNAT Pro is a full-
featured, multi-language development
environment complete with libraries,
bindings, and a range of supplementary
tools. All GNAT Pro technology is
distributed with complete source code.
GNAT Pro is based on the widely used
GCC technology, is subjected to a
rigorous quality assurance process, and is
backed by rapid and expert support
service.
About Nucleus Operating System
Nucleus OS was designed exclusively for
real-time performance. It was conceived
from the ground up for resource-
constrained devices (frequency and
memory) and for environments where
squeezing out every cycle per watt was
paramount. Thus, developers were able to
focus on differentiating their products
while confident their OS foundation
would not adversely impact the system’s
overall performance.
Nucleus OS has evolved into a complete
operating system composed of kernel
services, extensions, and APIs.
Componentizing Nucleus OS into
logically related functionality not only
provides significant cost savings
(customers don’t have to pay for what
they don’t use), but also provides an easy
route for reducing the amount of ROM
and RAM required.
About Mentor Graphics
Mentor Graphics Corporation (NASDAQ:
MENT) is a world leader in electronic
hardware and software design solutions,
providing products, consulting services
and award-winning support for the
world’s most successful electronics and
semiconductor companies. Established in
1981, the company reported revenues
over the last 12 months of about $850
million and employs approximately 4,500
people worldwide. Corporate
headquarters are located at 8005 S.W.
Boeckman Road, Wilsonville, Oregon

97070-7777. World Wide Web site:
http://www.mentor.com/.
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, a state-of-the-art programming
language designed for large, long-lived
applications where safety, security, and
reliability are critical. AdaCore’s flagship
product is the GNAT Pro development
environment, which comes with expert
on-line support and is available on more
platforms than any other Ada technology.
AdaCore has an extensive world-wide
customer base; see
http://www.adacore.com/home/company/
customers/ for further information.
Ada and GNAT Pro see a growing usage
in high-integrity and safety-certified
applications, including commercial
aircraft avionics, military systems, air
traffic management/control, railroad
systems, and medical devices, and in
security-sensitive domains such as
financial services.
AdaCore has North American
headquarters in New York and European
headquarters in Paris. www.adacore.com
Nucleus is a registered trademark of
Mentor Graphics Corporation. All other
product and service names mentioned are
the trademarks of their respective
companies.

AdaCore — GNAT Pro for
ELinOS
From: AdaCore Press Center
Date: Monday October 27, 2008
Subject: AdaCore and SYSGO Announce

GNAT Pro for ELinOS
RSS: http://www.adacore.com/2008/10/27/

elinos/
Ada now available on embedded Linux
BOSTON, October 28, 2008 —
Embedded Systems Conference —
AdaCore, provider of the highest quality
Ada tools and support, and SYSGO,
supplier of software and firmware
products and services for the embedded
system marketplace, today announced the
availability of GNAT Pro for ELinOS™,
the industrial grade embedded Linux®
operating system from SYSGO. With
GNAT Pro for ELinOS, embedded system
developers can combine the reliability of
Ada, the productivity of the GNAT Pro
toolset and AdaCore support services with
the configurability of ELinOS.
Because of Linux’s versatility, creating an
embedded Linux-based application can be
a complicated process that involves
selecting components, developing board
support packages and drivers, and testing
the whole system. ELinOS Industrial
Grade Linux streamlines and automates
this process, allowing developers to focus
on the target applications. ELinOS

incorporates appropriate tools for
configuring and building the system,
including a graphical configuration front-
end with built-in integrity validation.
“AdaCore and SYSGO form an ideal
partnership,” said Jacques Brygier, Vice
President of Marketing for SYSGO.
“AdaCore has a well-deserved reputation
for technical excellence and top-quality
support, and we foresee a promising
future for GNAT Pro for ELinOS to
satisfy customer demand for Ada on
embedded Linux.”
“Building large, embedded applications is
a difficult task, and developers need
appropriate tools to help manage this
complexity,” said Robert Dewar,
President and CEO of AdaCore. “ELinOS
nicely complements GNAT Pro to meet
these requirements, and SYSGO’s
corporate philosophy, with its emphasis
on customer support, dovetails with ours.
With the rising interest in embedded
Linux, and a marketplace that
simultaneously demands productivity,
reliability, and efficiency, GNAT Pro for
ELinOS is a winning combination.”
Pricing and Availability
The GNAT Pro for ELinOS is available
as an add-on to users of AdaCore’s
GNAT Pro development environment.
Please contact AdaCore
(info@adacore.com) for the latest
information on pricing and supported
configurations.
About ELinOS
ELinOS is a Linux based development
environment designed for the creation of
intelligent devices. Unlike traditional
Linux implementations, SYSGO’s
ELinOS is purpose-built for use in
demanding industrial applications.
SYSGO has contributed 15+ years of field
expertise to making an embedded Linux
offering well suited for complex real-
world applications. This deep experience
also allows SYSGO to back up their
Linux customers with world-class
support.
About SYSGO
SYSGO excels in providing operating
system technology, middleware, and
software services for the real-time and
embedded device market. A
differentiating capability of SYSGO is the
secure PikeOS™ paravirtualization
operating system which is built upon a
small, fast, and safe microkernel and
supports the cohabitation of independent
operating system personalities on a single
platform, including ELinOS™, SYSGO’s
embedded Linux development
environment. SYSGO supports
international customers with services for
embedded Linux, real-time capabilities
and certification for safety-critical
applications. Target markets include
Aerospace & Defense, Industrial
Automation, Automotive, Consumer

236 Ada-related Products

Volume 29, Number 4, December 2008 Ada User Journal

Electronics and Network Infrastructure.
SYSGO customers include Airbus,
Honeywell, Thales, Daimler, Raytheon,
Rheinmetall, Rockwell-Collins, Siemens
and Rohde & Schwarz. Today, the
company has six facilities in Europe,
including Germany, France and Czech
Republic and offers a global distribution
and support network, extending to North
America and the Pacific Rim.
www.sysgo.com
SYSGO, ELinOS and PikeOS are
trademarks or registered trademarks of
SYSGO AG in Germany and in several
other countries all over the world. Linux
is the registered trademark of Linus
Torvalds in the U.S. and other countries.
All other product and service names
mentioned are the trademarks of their
respective companies.

AdaCore — GPS 4.3
From: AdaCore Press Center
Date: Wednesday November 19, 2008
Subject: AdaCore Introduces Latest Version

of GNAT Programming Studio
RSS: http://www.adacore.com/2008/11/19/

gps-4-3/
New GPS 4.3 Integrated Development
Environment enables easy configurability
for multiple toolchains
NEW YORK and STUTTGART,
Germany, November 19, 2008 —
Automotive — Safety & Security 2008 /
Ada Deutschland — AdaCore, provider of
the highest quality Ada tools and support
services, today announced the release of
GNAT Programming Studio (GPS) 4.3 —
an advanced, powerful Ada-oriented
Integrated Development Environment
(IDE) that accompanies the AdaCore
GNAT Pro toolset on most platforms. The
new release lets developers
simultaneously use multiple versions of
the GNAT Pro toolset and features a
redesigned builder module as well as an
improved documentation generator. By
configuring the development environment
for several toolchains, a programmer can
take advantage of the latest tool
improvements while continuing to use a
baselined previous version of the
compiler.
Among other key features, GPS 4.3
allows upgrading the IDE independent of
the base compiler, so that developers can
use a single IDE across multiple projects
for potentially different target platforms
and compilers. The redesigned builder
module enables full customization, aiding
development flexibility, while the
improved documentation generator
includes support for predefined and user-
defined tags. The new features will be
highlighted and demonstrated in the next
GNAT Pro InSight Webinar on
November 25, 2008.
“GPS continues to lead the market for
professional Ada development,”

commented Arnaud Charlet, GPS Project
Manager at AdaCore. “The requirements
for GPS 4.3 were based on direct user
feedback. We enhanced its ability to
support multiple toolchains, and
significantly updated our builder module
and documentation generator to provide
developers with unprecedented flexibility
and control over their projects.”
“Easy configurability for different
toolchains is increasingly important for
developers looking to use multiple GNAT
Pro versions,” said Robert Dewar,
President and CEO of AdaCore. “With
GPS 4.3, developers can use the latest
GNAT Pro toolset for a variety of
purposes, such as source navigation,
coding standard enforcement, and metrics
computation, while using a baselined,
earlier compiler for actual code
generation.”
New functions in GPS 4.3 include:
⁃ Easy configurability for multiple

toolchains
⁃ Redesigned and fully customizable

builder module
⁃ Improved documentation generator,

including support for predefined and
user defined tags
⁃ Enhanced support for gcov (code

coverage), gnatcheck (coding standard
checker) and compiler switches
⁃ Code completion with new Dynamic

Mode
⁃ Improved automatic code fixing
⁃ New plug-ins, including:
 o OS Shell
 o Enhanced SPARK plug-in
 o Show expanded code
 o Initial support for GIT version

 control system
As with all GNAT Pro components, GPS
is distributed with full source code and is
backed by AdaCore’s rapid and expert
online support.
About GNAT Programming Studio (GPS)
GPS is a powerful Integrated
Development Environment (IDE) written
in Ada using the GtkAda toolkit. GPS’
extensive source-code navigation and
analysis tools can generate a broad range
of useful information, including call
graphs, source dependencies, project
organization, and complexity metrics. It
also provides support for configuration
management through an interface to third-
party Version Control Systems, and
supports a variety of platforms, including
Altix Linux, IA64 HP Linux, Solaris
(sparc and x86), GNU/Linux (x86 and
x86-64), Mac OS X, and x86 Windows
(2003, XP and Vista). GPS is highly
extensible; a simple scripting approach
enables additional tool integration. It is
also customizable, allowing programmers

to specialize various aspects of the
program’s appearance in the editor for a
user-specified look and feel.
Pricing and Availability
GPS 4.3 is currently available to GNAT
Pro customers on selected platforms. GPS
is included with the GNAT Pro Ada
Development Environment. Please
contact AdaCore (sales@adacore.com)
for the latest information on pricing and
supported configurations
About Insight Webinars
AdaCore’s Insight Webinars are a series
of informative webinars dedicated to tools
that make up the GNAT Pro development
environment. Each webinar consists of a
presentation, a demo, and a question and
answer session and is presented by an
AdaCore technical expert.
A webinar presenting the new features of
the GPS 4.3 release will take place on
November 25, 2008 at 08:00am PST /
11:00 EST / 17:00 CET. For more
information, or to register, please visit:
http://www.adacore.com/home/gnatpro/
webinars/

AdaCore — GPRbuild 1.2
From: AdaCore Releases and Updates
Date: November 18, 2008
Subject: GPRbuild 1.2.0
RSS: http://www.adacore.com/2008/11/18/

gprbuild-120/
AdaCore is pleased to announce the
immediate availability of GPRbuild 1.2.0
on the following host platforms (and cross
builds on these platforms):
 alpha-tru64
 ia64-hp_linux
 ia64-hpux
 ia64-openvms
 ia64-sgi_linux
 mips-irix
 pa-hpux
 ppc-aix
 sparc-solaris
 sparc64-solaris
 x86_64-linux
 x86-linux
 x86-lynx
 x86-solaris
 x86-windows
that introduces the following new
features:
⁃ Improved efficiency:
⁃ Faster computation of recompilation

needs for very large projects
⁃ Fewer compilation artifacts generated

(switch file only generated when -s is
on)
⁃ New attributes to support

languages/compilers not producing
objects, or not requiring a linking phase
⁃ Improved compatibility with gnatmake

Ada-related Products 237

Ada User Journal Volume 29, Number 4, December 2008

⁃ Better support of the –subdirs option in
externally built projects

AdaCore — GNAT Pro
High-Integrity Edition
From: AdaCore Press Center
Date: Monday November 17, 2008
Subject: AdaCore Announces GNAT Pro

High-Integrity Edition for MILS
RSS: http://www.adacore.com/2008/11/17/

high-integrity-mils/
New Member of the GNAT Pro Family to
Support Multiple Independent Levels of
Security
NEW YORK, PARIS, and SAN DIEGO,
November 17, 2008 — MILCOM 2008
— AdaCore, provider of the highest
quality Ada tools and support, today
announced plans to fully support the
VxWorks MILS product line for medium
and high security levels of the Common
Criteria: Evaluation Assurance Level
(EAL) 4 and above. GNAT Pro High-
Integrity Edition for MILS is a full-
featured Ada development environment
and toolchain based on the proven GNAT
Pro High-Integrity Edition for DO-178B.
It includes the Cert run-time library that is
part of numerous safety-certified systems
and which can meet Common Criteria
Security Assurance Requirements
equivalent to EAL 4.
The Ada language has a long history of
satisfying requirements for developing
safe and secure systems and is in use in
many flight-critical avionics applications.
Several of these have been certified to
DO-178B Level A, the highest criticality
level. AdaCore’s GNAT Pro High-
Integrity Edition for DO-178B run-time
library has been or will be certified to
DO-178B Level A in multiple avionics
systems, including those on the Boeing
787, C-130AMP and KC-767. Industry
studies have shown that this certification
evidence satisfies EAL 4 security
requirements.
In the case of high security systems,
EALs above 4 require semi-formal or
formal methods depending on the level.
AdaCore has entered into a strategic
partnership with Praxis High Integrity
Systems to meet this goal. Praxis, along
with the NSA and AdaCore, recently
announced the release of the Tokeneer
project for public availability. Tokeneer is
a research project funded by the NSA that
used the Praxis Correctness by
Construction methodology and the Ada-
based SPARK language to build a high
security application. The project was
completed ahead of schedule and within
budget. The final product was developed
to be able to meet EAL 5. The partnership
between AdaCore and Praxis will see the
integration of the SPARK technology
with the GNAT Pro High Integrity
Edition for MILS product line to offer
tools to meet these higher levels of

security. See:
http://www.adacore.com/pr/tokeneer
In addition AdaCore has entered into
partnerships with leading class vendors to
provide a total package to satisfy high
security application development needs.
At the core of this partnership is Wind
River with its upcoming VxWorks MILS
Platform 2.0. This platform is currently
undergoing security certification and will
be certified to the Common Criteria for
the Separation Kernel Protection Profile,
which requires EAL 6+. For
communication within and across
partitions, AdaCore has partnerships with
both RTI and OIS that offer off-the-shelf
products supporting middle-ware DDS or
CORBA based communications for the
MILS architecture. These components
allow developers to meet security levels
of EAL 4 or higher.
“AdaCore is providing a unique addition
to our VxWorks MILS platform,” said
Marc Brown, Vice President of VxWorks
Marketing at Wind River. “The VxWorks
MILS platform will provide the secure
underlying architecture required to meet
top levels of security. The GNAT Pro
High-Integrity Edition for MILS provides
a tool set to help developers meet these
stringent security requirements for their
application development.”
“AdaCore has a long history supporting
embedded application projects where
safety and reliability are key concerns,”
said Robert Dewar, President and CEO of
AdaCore. “We believe our past
experience with safety-critical systems
provides a natural basis for supporting
high-security application development.
The combination of our own expertise
with our partners makes this new product
unique in the industry for security
application development.”
“Praxis and AdaCore have been partners
for several years,” said Rod Chapman,
Principal Engineer with Praxis High
Integrity Systems Ltd. “The GNAT Pro
tool sets have been successfully used on a
range of systems, including those with
stringent safety and security requirements.
This partnership allows Praxis to lend its
security expertise, SPARK language and
tool set as part of a joint package to meet
high-level security development project
requirements.”

AdaCore — GNAT Pro for
VxWorks SMP Capability
From: AdaCore Press Center
Date: Monday November 17, 2008
Subject: AdaCore Announces GNAT Pro for

the VxWorks SMP Capability
RSS: http://www.adacore.com/2008/11/17

/vxworks-smp/
Bringing a multi-threaded language to
multi-core

NEW YORK, PARIS, and SAN DIEGO
— MILCOM 2008 — AdaCore, provider
of the highest quality Ada tools and
support, today announced the availability
of GNAT Pro for Wind River’s VxWorks
6.6 SMP product. This powerful Ada
development environment brings a
language that was designed from the
ground up to support multi-processing to
an operating system that takes advantage
of multi-core processors.
Multi-core technology is the next
transformative technology for the Device
Software Optimization (DSO) industry.
With the SMP add-on product installed,
VxWorks platforms are enhanced with
symmetric multi-processing (SMP)
capabilities within the operating system,
network stack, and development tools to
provide the easiest path to realize the
benefits of multi-core technology.
The Ada language is uniquely positioned
to take advantage of this new technology.
Ada supports multi-processing via its
tasking construct. Multi-threading, mutual
exclusion, and inter-process
communication are handled by the
rendezvous mechanism and protected
types/objects. The latter provides a
reliable and efficient building block for
defining semaphores and events for inter-
task communication.
“GNAT Pro brings a powerful
programming language to our new multi-
core platform,” said Rob Hoffman, Vice
President and General Manager of
Aerospace and Defense at Wind River.
“This provides a unique capability for
VxWorks users, especially those
developing applications that need to meet
high-reliability requirements. Users can
take existing Ada software and port it to
our SMP platform to immediately take
advantage of its multi-processing
capabilities. Moreover, new programs can
also instantly take advantage of this
capability when developing Ada or
mixed-language applications.”
“This is an exciting time for the software
industry,” said Robert Dewar, President
and CEO of AdaCore. “The Ada language
was designed from the start for multi-
threaded applications. On a single cpu
system this was typically handled by a
multiplexing scheduler to simulate
parallel processing. With multi-cpu’s or
multi-core processors these tasks may
now truly run in parallel physically.
While developers using other
programming languages are struggling to
find how to take advantage of this new
hardware, Ada developers can
immediately leverage tried and tested
features that have been in the language for
years.”

AdaLog — AdaControl
From: Jean-Pierre Rosen

<rosen@adalog.fr>

238 Ada-related Products

Volume 29, Number 4, December 2008 Ada User Journal

Date: Tue, 21 Oct 2008 18:02:01 +0200
Subject: AdaControl 1.10r8 released
Newsgroups: comp.lang.ada
Adalog is pleased to announce the release
of a new version of AdaControl, now
reaching 372 possible checks! Plus many
improvements to other rules and usability
(even some bug fixes).
The executable distributions are now pre-
compiled for GNAT/GPL2008
In addition, Windows users will
appreciate that both the source and
executable versions are also distributed
through an installer that will take care of
everything. (Thanks to Inno-Setup, a great
free installer generator).
As usual, everything is under the
GMGPL. Commercial support and
services are available from Adalog.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Fri, 14 Nov 2008 17:17:13 +0100
Subject: AdaControl 1.10r10 released
Newsgroups: comp.lang.ada
This is just a bug fix release, fixing two
problems in case of complicated
renamings. No changes in functionality.
Please update, sorry for the
inconvenience.

Aonix — Certification Kit
for ObjectAda RAVEN
From: Aonix Press Release
Date: October 14, 2008
Subject: Aonix Brings Ada Kernel

Certification Kit to Market
URL: http://www.aonix.com/

pr_10.14.08.html
New DO-178B Certification evidence
available for ObjectAda® RAVEN™
San Diego, CA, October 14, 2008 —
Aonix®, a provider of solutions for
safety- and mission-critical applications,
announced the release of a new
certification kit for ObjectAda RAVEN.
Built in response to requirements from
existing customers, Aonix has designed
the ObjectAda RAVEN certification kit to
provide all the evidence and tools
required to assist customers for
certification to DO-178B Level A as well
as to other standards.
ObjectAda RAVEN enables engineers to
build applications for deployment in
safety-critical applications such as those
found in transportation, avionics and
flight systems, and nuclear energy
management where stringent standards
must be followed and proof of
conformance is essential to obtain
certification from associated authorities.
The ability to procure COTS certification
evidence together with ObjectAda
RAVEN can yield dramatic savings
where costs for production of certification
evidence can soar from $50 to hundreds
of dollars per source line of code.

“By providing developers with products
that improve code reliability, reduce
testing overhead, and shorten certification
cycles, Aonix helps customers realize
significant savings and furthers its
reputation for facilitating the certification
process,” noted Gary Cato, director of
marketing at Aonix. “The ObjectAda
RAVEN certification kit substantially
reduces the engineering hours, which—
given the cost of producing certification
evidence—can be a critical lifeline for a
project.”
ObjectAda RAVEN for Windows consists
of an Ada 95 compiler with the
supporting tools of a build/bind tool,
library tool and debugger, and is delivered
with a predefined program library which
conform to the Ravenscar profile subset
of the full Ada language. The Ravenscar
profile, adopted at the Eight International
Real-Time Ada Workshop (IRTAW-8),
Ravenscar UK, and subsequently made
part of the Ada 2005 specification,
accommodates certification requirements
for high-integrity, safety-critical, real-
time systems. ObjectAda RAVEN allows
developers to choose between the
traditional Aonix IDE for development
and the optional AonixADT™ Eclipse
plug-in. Geared to maximize developer
ease and efficiency, AonixADT
incorporates Ada-project awareness, an
Ada-language sensitive editor, Ada-
language compile and build capabilities,
and a complete Ada debugger interface,
ensuring that Ada developers enjoy state-
of-the-art interface capabilities.
Shipping and Availability
ObjectAda Real-Time RAVEN for
Windows targeting PowerPC is
immediately available. Prices range from
$15,000 to $25,000 for a single seat
license depending on bundling options.
Quantity discounts for development
licenses are available. Certification is
available now with pricing based on
project-specific requirements.

Aonix — ObjectAda Real-
Time for LynxOS
From: Aonix Press Release
Date: October 1, 2008
Subject: Aonix Enhances Ada Real-Time

Tools for LynxOS RTOS
URL: http://www.aonix.com/

pr_10.01.08b.html
New ObjectAda Real-Time efficiencies
reduce development cycles
Embedded Systems Show, Birmingham,
UK, October 1, 2008 — Aonix®, a
provider of solutions for safety- and
mission-critical applications, announced
the release of ObjectAda for Linux hosts
targeting PowerPC embedded and real-
time systems running the LynuxWorks
LynxOS 4.2 RTOS. With enhanced edit,
build, and debug facilities, ObjectAda
speeds Ada application development

using Linux, the preferred environment of
engineers building large and complex
systems. Thanks to such time savings,
ObjectAda developers can reduce time to
market and development costs over less
functional toolchains.
ObjectAda Real-Time for LynxOS
includes an enhanced linker that
dramatically reduces link time. As well,
the Ada debug facility enables more
efficient use of functions to step into and
out of protected subprograms. Upgraded
support for GDB/MI mixed-code
disassembly and interspersion of
disassembled code with sources is
included and improved multi-language
debug support for C and Ada code are
also provided to speed cross language test
cycles.
“Aonix has long been a premier partner,”
said Joe Wlad, Director of Certification,
Marketing and Services at LynuxWorks.
“Many of our customers, especially in the
aerospace and military segments, continue
to look for ways to leverage their Ada
development expertise in new projects or
extend the life of their existing Ada
applications with updated and improved
tools. We are pleased that Aonix
continues to support our most important
LynxOS customers with their ObjectAda
family.”
“Access to standards-based COTS
products like those supplied by
LynuxWorks is extremely important for
our military and defense customers,”
confirmed Gary Cato, Aonix director of
marketing. “Aonix is committed to
supporting world-class RTOS
environments like LynxOS and strives to
continually improve the efficiency and
level of integration between our products.
Our combined technologies deliver a
powerful toolset to developers.”
About the ObjectAda Family
ObjectAda is an extensive family of
native and cross development tools and
runtime environments. ObjectAda native
products provide host development and
execution support for the most popular
environments including Windows, Linux
and various Unix operating systems.
ObjectAda Real-Time products provide
cross development tools on Windows,
Linux or Unix systems which target
PowerPC and Intel target processors
running in a full Ada “bare” runtime or in
conjunction with popular RTOSs.
ObjectAda RAVEN® products provide a
hard real-time Ada runtime to address
those systems requiring certification to
the highest levels of safety standards such
as DO-178B Level A for flight safety.
About LynxOS
LynxOS is the leading POSIX conformant
embedded operating system on the
market—the first choice of customers
who cannot afford downtime. LynxOS
forms the embedded core of a wide array

References to Publ icat ions 239

Ada User Journal Volume 29, Number 4, December 2008

of systems, from postal mail sorting
solutions to air traffic control systems,
and from office printers and copiers to
commercial airliners. As the only hard-
real time technology with broad
conformance to open and de facto
standards such as Linux®, POSIX and
UNIX®, LynxOS has the power to take
full advantage of current hardware
designs, and offers broad re-use of
available software applications. LynxOS
also features a fully integrated Eclipse-
based IDE supporting the ubiquitous
GNU toolchain to provide a streamlined
development and execution environment
and offers a unique Linux Application
Interface (ABI) for running Linux
applications in high-reliability systems.
Shipping and Availability
ObjectAda Real-Time targeting Power
Architectures running LynuxWorks’
LynxOS 4.2 is immediately available
starting at $15K in the U.S. with quantity
discounts available. Support for LynxOS
5.0 will be determined based on customer
requirements.
About LynuxWorks
LynuxWorks, a world leader in the
embedded software market, is committed
to providing open and reliable real-time
operating systems (RTOS) and software
tools to embedded developers. The
company's LynxOS family of operating
systems offers open standards with the
highest level of safety and security
features, enabling many mission-critical
systems in defense, avionics and other
industries. Additionally, LynuxWorks'
BlueCat Linux provides the features and
support of embedded Linux for
companies wanting to use open source
technology for their embedded
applications. The Eclipse-based
Luminosity IDE gives a powerful and
consistent development system across all
LynuxWorks operating systems. Since it
was established in 1988, LynuxWorks has
created technology that has been
successfully deployed in thousands of
designs and millions of products made by
leading communications, avionics,
aerospace/defense, and consumer
electronics companies. LynuxWorks'
headquarters are located in San José, CA.
For more information, visit
www.lynuxworks.com.

Ada and GNU/Linux
Ada Designer and
GNATGPR Debian
packages
From: David Sauvage

<pariakaman@gmail.com>
Date: Sat, 13 Sep 2008 05:49:49 −0700

(PDT)
Subject: Debian repository for AdaDesigner

& GNATGPR packages

Newsgroups: comp.lang.ada
AdaDesigner [1] and GNATGPR [2] are
now available as Debian packages in my
launchpad personal package archive [3]
for i386, amd-64 and lpia.
They should work on Debian Lenny and
Ubuntu Intrepid. Please note they are not
yet fully compliant with the Debian
package policy.
[1] https://gna.org/projects/adadesigner
[2] https://gna.org/projects/gnatgpr
[3] deb http://ppa.launchpad.net/

pariakanet/ubuntu intrepid main
 deb-src http://ppa.launchpad.net/

pariakanet/ubuntu intrepid main
adadesigner
libgnatgpr0
libgnatgpr0-bin
libgnatgpr0-dev

Debian Ada Policy
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Sat, 1 Nov 2008 10:57:36 −0700

(PDT)
Subject: ANNOUNCE: Debian Ada Policy,

Third Edition for Debian 5.0 “Lenny”
Newsgroups: comp.lang.ada
I have updated the Debian Ada Policy to
reflect how the packages are now done in
Debian 5.0 “Lenny”. This document is
available in HTML, text, PDF, info and
texinfo format at
http://www.ada-france.org/debian/
debian-ada-policy.html,
http://www.ada-france.org/debian/
debian-ada-policy.txt,
http://www.ada-france.org/debian/
debian-ada-policy.pdf,
http://www.ada-france.org/debian/
debian-ada-policy.info,
http://www.ada-france.org/debian/
debian-ada-policy.texi.
The texinfo source of this document is
available in Ada-France's public
monotone repository[1].
[1] http://www.ada-france.org/

article131.html
Summary of changes since the Second
Edition for Debian 4.0 “Etch”:
⁃ Amendment 1 (aka Ada 2005) published
⁃ Transition to GCC 4.3
⁃ Move to library project files, both for

building and using libraries
⁃ GLADE superseded by PolyORB (but

not provided in Debian, unfortunately)
⁃ Libraries now provide debugging

information in a new -dbg package

References to
Publications
AdaCore — Article on the
Couverture Project
From: AdaCore Developer Center
Date: Tuesday September 9, 2008
Subject: Boosting coverage
RSS: http://www.adacore.com/2008/09/09/

boosting-coverage-2/
In an article, recently published in New
Electronics entitled “Boosting coverage”,
Matteo Bordin looks at how process and
new virtualization technology, being
developed under the Coverage Project,
will be used to ease the burden of carrying
out effective coverage analysis on code.
To read the article, please click here or
visit:
http://fplreflib.findlay.co.uk/articles/
15269/Boosting%20coverage.pdf

CrossTalk — “Safety and
Security: Certification Issues
and Technologies”
From: AdaCore Press Center
Date: Wednesday October 1, 2008
Subject: Safety and Security: Certification

Issues and Technologies
RSS: http://www.adacore.com/2008/10/01/

safety-and-security-certification-issues-
and-technologies/

AdaCore — Nov 2008
Contents
From: AdaCore Press Center
Date: Monday November 10, 2008
Subject: Nov 2008 Contents
RSS: http://www.adacore.com/2008/11/10/

nov-2008-contents/
Nov 2008 Contents
⁃ NSA-Sponsored Tokeneer Software

Available
⁃ Project Coverage Launch Initiates
⁃ Open AdaCore Series
⁃ New Platforms
⁃ In the Pipeline
⁃ Academia Corner: Mälardalen

University
⁃ Interview with Ed Falis
⁃ Webinar Schedule
⁃ Traceability Analysis Expands Safety-

Critical Ada
⁃ Conferences/Events
[See http://www.adacore.com/wp-
content/uploads/2008/11/adacore_news_1
008_web.pdf —su]

240 Ada Inside

Volume 29, Number 4, December 2008 Ada User Journal

AdaCore — Automotive 08 /
Ada Deutschland
From: AdaCore Press Center
Date: Wednesday September 17, 2008
Subject: Automotive 08 / Ada Deutschland
RSS: http://www.adacore.com/2008/09/17/

automotive-08-ada-deutschland/
AdaCore will be exhibiting at this event
and is also sponsor of the gala dinner.

Rapita — Tutorial at ESS'08
From: Rapita Systems News
Date: 15 September, 2008
Subject: See Guillem Bernat's tutorial at

ESS'08 entitled “Timing Matters:
Optimising the worst-case execution
time”

RSS: http://www.rapitasystems.com/
node/344/

Rapita Systems' CEO, Dr. Guillem
Bernat, will be giving a technical
presentation entitled, “Timing matters:
Optimising the worst-case execution
time.”
“How long does my software take to
run…and how can I reduce it?” are key
issues for embedded engineers designing
reliable systems. Understanding,
verifying, and improving the timing
performance of their real-time products
gives successful companies in the
avionics, telecommunications, space, and
automotive electronics industries a key
competitive edge.
Today, software timing analysis doesn't
have to be guesswork. This presentation
addresses two key aspects of real-time
systems performance:
1. How to gain a clear, detailed, and

accurate understanding of the execution
time behaviour of real-time embedded
software.

2. How to target optimisation effort
precisely where it will have the
maximum benefit in improving system
timing behaviour, for the minimum cost.

This presentation will cover key aspects
of real-time systems: finding worst case
execution times (WCET) and the worst
case path, and why worst case
optimization is not the same as average
execution optimization. Practical issues of
looking for the worst-case “hot-spots”,
identifying timing bugs and verifying
optimisation opportunities will be
explained with examples of worst case
optimizations.
Further details of the conference can be
found on the Embedded Systems Show
website.

AdaCore — Talk at
FOSDEM 2009
From: AdaCore Press Center
Date: Friday December 5, 2008

Subject: FOSDEM 2009
RSS: http://www.adacore.com/2008/12/05/

fosdem-2009/
Thomas Quinot will be giving a talk on
“Ada Annex E — Distributed Systems”.
Vincent Celier will be giving talks on
“GPS — The GNAT Programming
Studio” and “GNATBench — Ada
programming with Eclipse”.

Ada Inside
AdaCore — NSA Releases
Secure Software Project
From: AdaCore Press Center
Date: Monday October 6, 2008
Subject: NSA Releases Secure Software

Project to Open Source Community
RSS: http://www.adacore.com/2008/10/06/

nsa-releases-secure-software-project-to-
open-source-community/

Tokeneer project shows the way to
develop secure systems in a rigorous and
cost-effective manner
NEW YORK, PARIS, and BATH, U.K.,
October 6, 2008, — VSTTE 2008 — The
development of highly secure, low defect
software will be dramatically helped by
the release of the Tokeneer research
project to the open source community by
the US National Security Agency (NSA).
The project materials, including
requirements, security target,
specifications, designs, source code, and
proofs are now available at
www.adacore.com/tokeneer.
The Tokeneer project was commissioned
by the NSA from UK-based Praxis High
Integrity Systems as a demonstrator of
high-assurance software engineering.
Developed using Praxis’ Correctness by
Construction (CbyC) methodology it uses
the SPARK Ada language and AdaCore’s
GNAT Pro environment. The project has
demonstrated how to meet or exceed
Evaluation Assurance Level (EAL) 5 in
the Common Criteria thus demonstrating
a path towards the highest levels of
security assurance.
The unprecedented release of the project
into the open source community aims to
demonstrate how highly secure software
can be developed cost-effectively,
improving industrial practice and
providing a starting point for teaching and
academic research. Originally showcased
in a conference paper in 2006, it has the
long-term aim of improving the
development practices of NSA’s
contractors. Tokeneer was created as a
fixed-price project, taking just 260 person
days to create nearly 10,000 lines of high-
assurance code, achieving lower
development costs than traditional
methods per line of code.
“The Tokeneer project has the potential to
revolutionize the development of highly

secure systems,” said Robert Dewar,
President and CEO of AdaCore. “By
releasing Tokeneer to the community, the
NSA will help drive good programming
practice and demonstrate the importance
of SPARK and Ada to the emerging
security market. We are delighted to be
involved with Praxis and the NSA in this
ground-breaking project.”
Tokeneer has been written in SPARK
Ada, a high level programming language
designed for high-assurance applications.
Originally a subset of the Ada language, it
is designed in such a way that all SPARK
programs are legal Ada programs. Ada is
the natural choice for mission-critical,
high-integrity systems due to its
combination of flexibility, reliability and
ease of use, and SPARK further adds a
static verification toolset that combines
depth, soundness, efficiency and formal
guarantees.
“We are extremely proud of the Tokeneer
project,” said Keith Williams, Praxis
Managing Director. “We hope the
research, teaching, and open-source
communities will put the material to good
use as a model of high-assurance software
development.”
The project is aimed at both the industrial
and academic communities, forming an
ideal base for further research in program
verification and as a high level teaching
aid for educators. It will also be
contributed to the Verified Software
Repository under the auspices of the
current “Grand Challenge” in Dependable
Systems Evolution.
“The Tokeneer project is a milestone in
the transfer of program verification
technology into industrial application.
Publication of the full documents for the
project has provided unprecedented
experimental material for yet further
development of the technology by pure
academic research. It will serve as a
touchstone to chart and measure progress
of the basic science of programming, on
which the technology is based.”
Sir Tony Hoare, Fellow of the Royal
Society (FRS) of Microsoft Research, and
founder of the Grand Challenge
“The publication by Praxis and NSA of
the Tokeneer system is a fantastic
contribution to the software engineering
research and teaching community. Good
case studies have been very hard to find,
and have often been proprietary. Finally,
we have a full and open example of a
development from a world leader in high
integrity systems with exemplary
requirements, specifications, design and
code. I’m very excited about the impact
this might have in our field, in both
teaching and research, and the potential it
might have in moving us towards a more
open community with greater
collaboration between industry and

Ada in Context 241

Ada User Journal Volume 29, Number 4, December 2008

academia, and a more constructive
engagement of theory and practice.”
Professor Daniel Jackson of
Massachusetts Institute of Technology,
Computer Science Laboratory
“Ada is a very complete language that
allows us to present procedural and
object-oriented concepts. It supports and
encourages data abstraction and provides
helpful diagnostic messages to beginning
students when they make the usual kinds
of beginner’s mistakes. In addition, Ada
programs are quite readable due to well-
chosen syntax and recognizable symbols
for standard operations, and once a
student has learned Ada, he or she finds it
easy to learn a second language, such as
Java or Visual Basic.”
About Praxis and Correctness by
Construction
Praxis is a systems engineering company
specializing in safety and mission critical
applications. Praxis leads the world in
specific areas of advanced systems
engineering such as: ultra low defect
software engineering, safety engineering
for complex or novel systems, and
tools/methods for systems engineering.
Praxis offers clients a range of services
including turn-key systems development,
consultancy, training and R&D. Key
market sectors are Aerospace, Defence,
Air Traffic Management, Railways and
Nuclear. The company operates
internationally with active projects in the
US, Asia and Europe. The UK
Headquarters are in Bath with offices also
in London, Loughborough and Paris. It is
wholly owned by Altran Technologies
which is a global leader in innovation
engineering and employs 17,500
engineers across the world.
www.praxis-his.com
Correctness by Construction (CbyC) is
Praxis’s method of developing software.
CbyC uses tools and techniques that aim
to make it both difficult to introduce
defects during software development, and
straightforward to correct defects early in
the development lifecycle. These tools
and techniques are often required by
industry standards for safety and security
critical software, and as a result Praxis has
developed an expert capability and track
record for the development of such
software. CbyC is cost effective because
reducing defects significantly reduces risk
and rework.
About National Security Agency
The National Security Agency/Central
Security Service is America’s cryptologic
organization. Further information is
available from the NSA website.
www.nsa.gov

AdaCore — Tokeneer
Project Material Available
From: AdaCore Developer Center

Date: Monday October 6, 2008
Subject: Tokeneer research project

available for download
RSS: http://www.adacore.com/2008/10/06/

tokeneer-research-project-available-for-
download/

The development of highly secure, low
defect software has been dramatically
helped by the release of the Tokeneer
research project to the open source
community by the US National Security
Agency (NSA). The project materials,
including requirements, security target,
specifications, designs, source code, and
proofs are now available at
www.adacore.com/tokeneer.”
The Tokeneer project was commissioned
by the NSA from UK-based Praxis High
Integrity Systems as a demonstrator of
high-assurance software engineering.
Developed using Praxis’ Correctness by
Construction (CbyC) methodology it uses
the SPARK Ada language and AdaCore’s
GNAT Pro environment. The project has
demonstrated how to meet or exceed
Evaluation Assurance Level (EAL) 5 in
the Common Criteria thus demonstrating
a path towards the highest levels of
security assurance.
Download Tokeneer »
http://www.adacore.com/tokeneer

Ada in Context
Generic_Roots
From: John B. Matthews

<jmatthews@wright.edu>
Date: Sat, 01 Nov 2008 13:47:16 −0400
Subject: Generic_Roots
Newsgroups: comp.lang.ada
Although they never became standard,
I've written implementations of
AI-356: Ada.Numerics.
Generic_Real_Arrays.Generic_Roots
AI-356: Ada.Numerics.
Generic_Complex_Arrays.Generic_Roots
The updated numerics packages and some
test code are available here
http://home.roadrunner.com/~jbmatthews/
misc/groots.html
The implementation uses the Durand-
Kerner-Weierstrass method:
http://en.wikipedia.org/wiki/
Durand-Kerner_method
I'd be grateful for any comments you
might have.
From: John B. Matthews

<jmatthews@wright.edu>
Date: Fri, 07 Nov 2008 08:36:44 −0500
Subject: Re: Generic_Roots
Newsgroups: comp.lang.ada
> Umm, AI95-0356 is “Support for

Preemption Level Locking Policy”.

 You mean AI95-0346 “Roots of
polynomials”.

Yes, thank you! I've corrected the
reference and added links to the CVS.
> You might want to pass this

implementation past John Barnes, as he
was the original proposer of that AI.

Ah, I see now that he was the initial
author. In the implementation advice, he
suggested “using established techniques
such as Laguerre's method.” My
implementation is definitely experimental,
but it's a convenient alternative. My test
cases are limited, so I'd be interested to
hear of any anomalies. Of course, I expect
most users are using BLAS.

Offset added to 'Address
From: “Randy Brukardt”

<randy@rrsoftware.com>
Date: Fri, 19 Sep 2008 01:09:53 −0500
Subject: Re: Adding offset to 'Address
Newsgroups: comp.lang.ada
>>> Raw_Bytes : access Unsigned_Char
>>> for Ethernet_Header'Address use

Raw_Bytes.all'Address;
>>> and additionally need something like:
>>> for IP_Packet'Address use

Raw_Bytes.all'Address +
Ethernet_Header'Size;

>> It's not clear to me exactly what
problem you are trying to get past.

> The problem was basically to perform
arithmetics on system addresses

No, that's a (bad) solution to some
problem, not a problem by itself. The
problem seems to be how to access the
data bytes without accessing the header,
and Tom suggests a good solution for
that. (We use versions of it in Claw.)
IMHO, the use of Address in Ada 95 or
newer code (other than to specify raw,
absolute machine addresses) is never
necessary and represents bad
programming. I see it fairly often here,
and it makes me ill. I much prefer general
access types and possibly
Unchecked_Conversions, because you
lose much less strong typing that way
(and the code is better without the need
for heroic efforts on the part of the
compiler).

On the mapping of Ada
Tasks to OS threads
From: “Peter C. Chapin”

<pcc482719@gmail.com>
Date: Sat, 27 Sep 2008 19:14:05 −0400
Subject: Re: Blocking syscalls in Tasks
Newsgroups: comp.lang.ada
> My understanding is the same — or at

least I nowhere found something else
But I wonder about this, because in my
opinion there is a great difference

242 Ada in Context

Volume 29, Number 4, December 2008 Ada User Journal

between tasks = userspace threads and
tasks = kernelspace threads.

I think the reason this is probably left
implementation defined is so that Ada can
be implemented on systems that don't
provide kernel threads to the applications.
On such systems, the Ada runtime can
implement user mode threads and still
obey the standard.
User mode threads do have some nice
properties on their own however…
specifically, fast context switching times.
Thus even when kernel threads are
available an implementation might want
to provide some options in this area.
> Hence, I think there should at least be

some way to check whether in the
given implementation of tasks blocking
syscalls block only the calling task or
everything.

One imagines it would be documented
some place. At least you would like to
believe that.
From: Schwering <schwering@gmail.com>
Date: Sat, 27 Sep 2008 13:02:34 −0700

(PDT)
Subject: Re: Blocking syscalls in Tasks
Newsgroups: comp.lang.ada
> I've tried to check for a reliable

references, and found something which
may help you to make some assertions.
It seems that it is thread/ task blocking
rather than process blocking. This is
based on mail exchanged by developers
of the Linux kernel. It is dated Sun, 12
Aug 2007, so do not make assertion
using this about too much old kernels
(you did not say what kernel version
you use, neither if it is a vanilla one or
not)

 Here is the link to the mail at the LKML
mail archives:
http://lkml.org/lkml/2007/8/12/102

[…]
I think this only refers to the Linux
kernel's threads. As far as I know (I'm far
from being an expert in threads..), in
kernelspace threads, a syscall does not
block the entire process but only the
calling thread. In fact, this is the main
advantage over userspace threads.
I don't know whether Ada tasks
necessarily are threads and whether it is
specified whether they are kernel or
userspace threads or some hybrid stuff.
From: Maciej Sobczak

<see.my.homepage@gmail.com>
Date: Sat, 27 Sep 2008 14:54:48 −0700

(PDT)
Subject: Re: Blocking syscalls in Tasks
Newsgroups: comp.lang.ada
> Are tasks commonly implemented using

threads
You should expect that from the quality
implementation. This not only gives some
nice properties for potentially blocking
I/O calls (exactly — that only the calling

task gets blocked), but also allows to
safely use system-level synchronization
primitives (like mutexes) for interactions
between tasks.
Not that this would be recommended over
standard Ada mechanisms, but it might
actually happen even behind the scenes
when using some external library.
Knowing that Ada tasks are just system
threads in disguise allows to use such
libraries safely. Without this guarantee the
interoperability of Ada would be limited.
On the other hand, even this assumption
(that tasks are threads in disguise) is not
enough to assert that Ada code can be
safely executed by threads that do not
originate from or at least where not
prepared by the Ada runtime, although in
a quality implementation this might be a
very welcome property.
I don't know whether GNAT provides this
property.
From: Tom Moran <tmoran@acm.org>
Date: Sun, 28 Sep 2008 12:48:22 −0500
Subject: Re: Blocking syscalls in Tasks
Newsgroups: comp.lang.ada
> Except for DOS, in current OS all Ada

partitions are executed by native OS
threads.

This is confusing. An Ada partition is not
at all the same as an Ada task, and there's
no guarantee that an Ada task maps 1-1 to
an OS thread.
> Now, in a GUI system, the RC_TASK

(resource task) is blocked until a input
device such as the mouse or keyboard
actives the thread.

MS Windows tasks do not block waiting
for mouse or keyboard. Windows “event
based” GUI design was based on a single
thread and a polling loop.
From: “Randy Brukardt”

<randy@rrsoftware.com>
Date: Mon, 29 Sep 2008 21:35:52 −0500
Subject: Re: Blocking syscalls in Tasks
Newsgroups: comp.lang.ada
Probably because of Janus/Ada, pretty
much everything you said about the
mapping of Ada tasks to threads is wrong.
Janus/Ada still maps all tasks to one
Windows thread. That was originally
supposed to be a temporary Q&D
implementation, but for a variety of
reasons it never got replaced. Most
obviously: other things needed work more
urgently than the tasking, which is quite
efficient. Depending on your
circumstances, it might actually be faster
than a threaded implementation. (Our
ultimate goal is to have both.)
In any case, the point is that Ada doesn't
say anything about the mapping of tasks
to OS threads: you simply have to ask
your vendor. And, of course blocking of
system calls follows from that.

Compilers supporting
Ada 2005
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Mon, 06 Oct 2008 19:12:54 +0200
Subject: Ada compilers supporting Ada

2005 (was: Blocking syscalls in Tasks)
Newsgroups: comp.lang.ada
> Most people want to know about Ada

2005 not Ada 95, and the one and only
vendor that supports the Ada 2005 is
AdaCore with GNAT. The information
that I gave was based on that vendor's
system.

More on which compilers do support Ada
2005:
“Most recently, Mr. Baird worked for
IBM, which acquired Rational in 2003.
As Senior Software Engineer, he was
responsible for adapting the Ada 95
middle pass portion of the Rational Ada
compiler to implement the dynamic
semantics of Ada 2005.”
So IBM is also the only vendor supplying
a compiler for Ada 2005.
(Quoted from AdaCore's press center
announcing “the appointment of Ada
expert Stephen Baird to the company's
GNAT Pro implementation team”, 2008-
09-09.)
From: Colin Paul Gloster

<Colin_Paul_Gloster@ACM.org>
Date: Tue, 7 Oct 2008 12:51:38 +0100
Subject: Re: Ada compilers supporting Ada

2005 (was: Blocking syscalls in Tasks)
Newsgroups: comp.lang.ada
[…]
I do not believe that an Ada 2005
compiler is available yet from IBM.
Samuel F Scheerens of International
Business Machines sent by email on July
2nd, 2008:
“[..]
> Why do you still not sell an Ada 2005

compiler?
 We are working on support for Ada

2005. Jim can give you details, but you
may have to sign some sort of non-
disclosure agreement to get specifics.
[..]”

Jim of I.B.M. sent by email on July 3rd,
2008:
> “[..]
 Ada 2005 will be available later this

year. We have a working version of the
compiler, but not quite all of the
container library. Our customers
haven't been pushing for early release.
[..]”

From: Britt Snodgrass
<britt.snodgrass@gmail.com>

Date: Tue, 7 Oct 2008 07:31:42 −0700
(PDT)

Ada in Context 243

Ada User Journal Volume 29, Number 4, December 2008

Subject: Re: Ada compilers supporting Ada
2005 (was: Blocking syscalls in Tasks)

Newsgroups: comp.lang.ada
> Is a genuine Ada 2005 compiler

available from AdaCore?
What do you mean by “genuine”?
AdaCore has been far, far more proactive
with Ada 2005 support than any other
vendor. Other Ada compiler vendors are
seemingly moribund, a sad situation.
Rational Apex used to be a great product,
but IBM has let it atrophy, making
absolutely no effort to be competitive or
market it to new customers.
[…]
Also, there is an old (April, 2008)
announcement on http://www-
01.ibm.com/support/docview.wss?uid=3D
swg21221323. But unless IBM changes
their business model for Apex, it will
come too late to be competitive.
From: Colin Paul Gloster

<Colin_Paul_Gloster@ACM.org>
Date: Tue, 7 Oct 2008 16:39:55 +0100
Subject: Re: Ada compilers supporting Ada

2005 (was: Blocking syscalls in Tasks)
Newsgroups: comp.lang.ada
>I'm interested to know which vendors

are serious about supporting the
standard.

I think it is clear that RRSoftware is
serious about this, even if it does not have
a suitable product available yet. Similarly
for Irvine, judging from answers to
queries I asked in Summer 2008.
Sofcheck also seems to be serious but
paying clients have been demanding other
things instead of Ada 2005. Of course, if
you wish to pay for it…
[…]
I was told by IBM in 2008 that because
Apex is not available alone by itself that I
would need to acquire many other items
— none of which I need, such as a
compiler for another language and a
different version tracking system than
what many people I collaborate with
already use — from IBM for a lot more
money than from some of the other
compilers.

Exceptions on NAN with
GNAT
From: “Dmitry A. Kazakov”

<mailbox@dmitry-kazakov.de>
Date: Thu, 20 Nov 2008 14:46:12 +0100
Subject: Re: Forcing exceptions on NANs

with GNAT?
Newsgroups: comp.lang.ada
> is it possible to influence the behaviour

of GNAT regarding the handling of
NANs? (Most importantly in the
special case of division by zero.)

 We need to get exceptions whenever a
NAN is generated, is this possible
somehow? (For example by setting

Machine_Overflow to True and
recompiling the compiler itself.)

You can scrap IEEE stuff in favor of Ada
semantics by declaring your own floating-
point [sub]type with a range specified.
The compiler will be forced to check
values:
 type Safe_Float is digits 6
 range -10.0E10..+10.0E10;
or

 subtype Safe_Float is Float
 range Float'Range;
then
 X : Safe_Float := 1.0;
 Y : Safe_Float := 0.0;
 begin
 Y := X / Y;
 exception
 when Error : others =>
 -- Should print “range check failed”
 Put_Line (
 Exception_Message (Error));
 end;

From: Markus Schoepflin
<nospam@no.spam>

Date: Fri, 21 Nov 2008 10:33:27 +0100
Subject: Re: Forcing exceptions on NANs

with GNAT?
Newsgroups: comp.lang.ada
[…]
The suggestion from Dmitry (create a
subtype with the same range as float)
works fine for my purposes, GNAT then
raises range check errors for both division
by zero and overflows.

C macros and their
equivalent in Ada
From: Ray Blaak <rblaa@telus.net>
Date: Tue, 09 Sep 2008 16:33:10 GMT
Subject: Re: C Macros and their equivalent

in Ada
Newsgroups: comp.lang.ada
> are there Ada equivalents of the C

macros like: __DATE__, __TIME__
> How about the function

Ada.Calendar.Clock to get the current
instant

The idea is to get the date/time the file
was compiled.
Rasika, what I have often done is generate
a source file from my build script that has
the version and build dates baked in. E.g.
using ant:

 <property name="VERSION"
 value="1.1"/>
 <target name="generate.version">
 <tstamp>
 <format property="yyyyMMdd"
 pattern="yyyyMMdd"/>
 </tstamp>

 <echo file=
 “src/Support/Version.adb">
package body Version is
 function Version return String is
 begin
 return "${VERSION}";
 end;
 function Build return String is
 begin
 return "${yyyyMMdd}";
 end;
end;
 </echo>
 </target>

[…]
From: Ray Blaak <rblaa@telus.net>
Date: Wed, 10 Sep 2008 00:16:58 GMT
Subject: Re: C Macros and their equivalent

in Ada
Newsgroups: comp.lang.ada
I would argue that generating the version
file explicitly from a build script is
actually superior to
__DATE__/__TIME__ macros, since the
actual compilation build time is often
inconsistent.
If the version file has not actually
changed in a while, for example, typical
build environments just use the last object
file, meaning the datestamp can be quite
obsolete and thus inaccurate.
By tying it to the build script, you can do
things like saying “make an official
release NOW”, and know that the version
datestamp is tied to that explicit action.
This is important to allow one to correlate
the datestamp to changelogs, release
notes, etc.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 9 Sep 2008 07:39:28 −0700

(PDT)
Subject: Re: C Macros and their equivalent

in Ada
Newsgroups: comp.lang.ada
No, Ada does not have macros. I am not
aware of any compiler that provides the
equivalent of C's __DATE__ and
__TIME__ macros (which, for those here
who don't know C, expand to the date and
time at which preprocessing took place, as
strings).
If you need that feature, you're better off
generating an Ada source file from the
“date” utility, e.g.

echo "package Compilation_Date is" >
 compilation_date.ads
echo " Timestamp : constant String :=
 \"$(date --full-ISO)\";" >>
 compilation_date.ads
echo "end Compilation_Date;" >>
 compilation_date.ads

244 Ada in Context

Volume 29, Number 4, December 2008 Ada User Journal

From: Adam Beneschan
<adam@irvine.com>

Date: Tue, 9 Sep 2008 08:11:24 -0700
(PDT)

Subject: Re: C Macros and their equivalent
in Ada

Newsgroups: comp.lang.ada
Ada doesn't have a standard mechanism
for providing the compilation date and
time. There's no reason why a particular
implementation couldn't provide
something like this, though—perhaps a
package with special String constants or
functions (most likely using pragma
Import) that would cause the compiler to
substitute the compile date/ time when the
constant or function is used. Our compiler
has something like this. Don't know
whether GNAT does. If you need it, you
may want to ask your compiler vendor for
this sort of feature. It shouldn't be terribly
difficult to implement.
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Tue, 9 Sep 2008 13:57:11 −0700

(PDT)
Subject: Re: C Macros and their equivalent

in Ada
Newsgroups: comp.lang.ada
[…]
> echo "package Compilation_Date is" >

compilation_date.ads
 echo " Timestamp : constant String :=

\"$(date --full-ISO)\";" >>
 compilation_date.ads
 echo "end Compilation_Date;" >>

compilation_date.ads
This is a simple and valid approach but
works only for things that are build-wide.
The other extremely useful macros from
the C world are __FILE__ and
__LINE__. I'm afraid there is no way to
simulate them using any external
solutions, short of using the real
preprocessor (why not?).
Yeah — why not use the cpp
preprocessor?
Let's say that instead of implementing the
.adb file we write something that will be
used to generate it:

$ cat a.adbs
with Ada.Text_IO;
procedure A is
begin
 Ada.Text_IO.Put_Line
 (__DATE__ & " " & __TIME__);
end A;

$ cpp -P a.adbs > a.adb
$ gnatmake a
gcc -c a.adb
gnatbind -x a.ali
gnatlink a.ali
$./a
Sep 9 2008 22:53:23

Works for me. I can even write a rule in
Makefile to make (pun intended) that
automated. Not sure if GNAT project files
can do it, though.
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Wed, 10 Sep 2008 06:57:39 +0000
Subject: Re: C Macros and their equivalent

in Ada
Newsgroups: comp.lang.ada
If using GNAT the simple approach for
those two macros could be found in the
package:
 GNAT.Source_Info
where you could find:

function File return String; -- Current file
function Line return Positive; -- Current
 Line
function Source_Location
 return String; -- Current file & Line
function Enclosing_Entity
 return String; -- Enclosing name.

From: Keith Thompson <kst-u@mib.org>
Date: Wed, 10 Sep 2008 12:22:06 -0700
Subject: Re: C Macros and their equivalent

in Ada
Newsgroups: comp.lang.ada
The cpp preprocessor is designed to be
used with C and C++.
For example, the apostrophe character in
C, if it appears outside a string literal, is
used only as a delimiter for a character
constant. If you have a single apostrophe
on a line because you're using an Ada
qualified expression or attribute, or even
in an Ada comment (the leading — will
be treated as an operator symbol), then
cpp is likely to complain or even
terminate.
On implementation I just tried, it issued a
warning message and continued
processing, but that's not guaranteed.

Interfacing to C without
dynamic memory
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Fri, 14 Nov 2008 05:58:03 −0800

(PST)
Subject: Interfacing to C without dynamic

memory
Newsgroups: comp.lang.ada
[…] Consider a C (or C++) library that
defines some type T with some functions
operating on it. The type T can be a
complex type, encapsulated in a struct or
class. Assuming extern “C” interface, the
library functions usually accept a pointer
to T:

struct T
{
 // lots of interesting stuff
};

void createT(T * object);
void destroyT(T * object);
void foo(T * object, int something);
void bar(T * object, int something_else);

In C and C++ it is possible to use objects
of type T without allocating them
dynamically, which would be otherwise
mandated by an alternative interface:

T * newT();
void deleteT(T * object);

How would you approach wrapping such
a library for Ada while retaining the
requirement that dynamic memory is not
obligatory (ie. with the original interface
above)?
My first ideas are:
1. Extract sizeof(T) at C level.
2. In Ada, create appropriately aligned:

type T is System.Storage_Array
 (1 .. Size_Of_T);
for T'Alignment use
 Appropriate_Alignment_Value;

3. Wrap imported C functions by passing
to them the 'Address of T's instances.
This way, users will be able to use T as
any other value type, without resorting to
dynamic memory.
Does it make sense? Is there any better
way?
From: Damien Carbonne

<damien.carbonne@free.fr>
Date: Fri, 14 Nov 2008 21:35:33 +0100
Subject: Re: Interfacing to C without

dynamic memory
Newsgroups: comp.lang.ada
[…] I never tried what you propose, but I
think it should work. Of course, all fields
of T should be initialized in C code (in
createT, I guess).
In Ada, you could also wrap the array in a
record. That way, you could initialize
everything to 0:

type T is record
 Bytes : System.Storage_Array (…);
end record;
pragma Convention (C, T);

+ other pragmas if necessary
…
Make T private, or even limited private:
Ada users should not have direct access to
T fields. Also, you shouldn't need to use
'Address. By default, when you use C
convention/import, structures and arrays
are passed by address.
Of course, as you don't have direct access
to T fields, you need to provide all
necessary functions to do that.
So you would have:

package XXX is

Ada in Context 245

Ada User Journal Volume 29, Number 4, December 2008

 type T is [limited] private;
 procedure Create (O : in out T);
 procedure Destroy (O : in out T);
 …
private
 type T is … -- as your proposal
 …
 pragma Import (C, Create,
 "CreateT");
 pragma Import (C, Destroy,
 "DestroyT");
 …
end XXX;

From: “Randy Brukardt”
<randy@rrsoftware.com>

Date: Fri, 14 Nov 2008 19:12:33 −0600
Subject: Re: Interfacing to C without

dynamic memory
Newsgroups: comp.lang.ada
> 3. Wrap imported C functions by
passing to them the 'Address of T's
instances.
You were fine up to here. But there is no
reason at all to do this; you can use
'Access and a general access type with the
appropriate convention; 'Access and an
anonymous access type, or best of all, just
plain parameters (which will be passed by
reference for routines with the C
convention).
An Ada 95 or newer program that uses
System.Address outside of address
clauses is broken, IMHO. There are many
safer ways to do those things. (And
avoiding access types is good, too.)
For Claw, most of the interfaces use
locally declared records with the StdCall
convention (and all of the components
defined by Win32), and usually normal
'in' and 'in out' parameters. The only
access parameters that we used were in
functions that modified some of their
arguments (and that was only because of
Ada's broken rule against 'in out'
parameters in functions).
From: Robert A Duff <duff@adacore.com>
Date: Fri, 14 Nov 2008 18:13:59 −0500
Subject: Re: Interfacing to C without

dynamic memory
Newsgroups: comp.lang.ada
> My first ideas are:
 1. Extract sizeof(T) at C level.
 2. In Ada, create appropriately aligned:
 type T is System.Storage_Array (1 ..

Size_Of_T);
 for T'Alignment use

Appropriate_Alignment_Value;
Makes sense. You could write a C
program that #include's the relevant .h
file, and prints out an Ada package spec
containing the above Ada code. You
could run this as part of your build scripts.
From: Samuel Tardieu <sam@rfc1149.net>
Date: Sat, 15 Nov 2008 12:52:54 +0100

Subject: Re: Interfacing to C without
dynamic memory

Newsgroups: comp.lang.ada
> […] You could write a C program that

#include's the relevant .h file, and prints
out an Ada package spec containing the
above Ada code. […]

Doing it properly is quite painful when
you cross-compile, you have to play dirty
unportable tricks such as parsing the
assembly file output by the compiler to
extract the value. This is the way I
originally did it in GLADE, it was then
used to generate
GNAT.Sockets.Constants, but as you
know AdaCore recently switched to
parsing the C compiler output, which was
possible because the GCC C compiler
(native or cross) is always available when
building the runtime.
Note that you can also do it at run time,
even if it costs a few more cycles to
allocate the object, by taking advantage of
C ability to resolve “sizeof” into a static
value at compile time. This obliviates the
cross-compilation issues. Here is an
example (t.c, t_interface.ads and test.adb):
(note that in real life, one would include
the header defining “struct T” instead of
exporting “T_size” in the same file)

/* t.c */
#include <stdlib.h>
struct T {
 char a;
 void *b;
 short c;
 char d;
};
const size_t T_size = sizeof(struct T);

-- t_interface.ads
with Interfaces.C;
package T_Interface is
 T_Size : constant Interfaces.C.size_t;
 pragma Import (C, T_Size, "T_size");
 type Opaque_T is new
 Interfaces.C.char_array
 (1 .. T_Size);
 for Opaque_T'Alignment use 8;
private
 pragma Linker_Options ("t.o");
end T_Interface;

-- test.adb
with Ada.Text_IO; use Ada.Text_IO;
with T_Interface; use T_Interface;
procedure Test is
 My_T : Opaque_T;
begin
 Put_Line ("Size of T in bits:" &
 My_T'Size'Img);
end Test;

Array of Strings
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Sat, 13 Sep 2008 16:32:54 +0200
Subject: Re: Array of Strings
Newsgroups: comp.lang.ada
[…]
> I'm having trouble making an array of

type string. Can someone show me how
to do this? I've tried type letters is array
(Integer range <>) of String; but I get
error “unconstrained element type in
array declaration”. What am I doing
wrong?

The type String is unconstrained because
you don't know the size of the strings at
compile time. Therefore you cannot put
Strings in an array. You can however
create:
⁃ an array of fixed-size strings; for this

you need a subtype e.g.

subtype Constrained_String is
 String (1 .. 10);
type Array_Of_Constrained_Strings is
 array (Positive range <>) of
 Constrained_String;

⁃ an array of access values to Strings e.g.

type String_Access is access String;
type Array_Of_String_Accesses is
 array (Positive range <>) of
 String_Access;

(!this is the most error-prone method!)
⁃ an array of Ada.Strings.Unbounded.

Unbounded_Strings e.g.

type Array_Of_Unbouded_Strings is
 array (Positive range <>) of
 Ada.Strings.Unbounded.
 Unbounded_String;

⁃ an array of Ada.Strings.Bounded.
Bounded_Strings similar to the above
but you also need to specify the
maximum size

From: Adam Beneschan
<adam@irvine.com>

Date: Mon, 15 Sep 2008 07:54:10 −0700
(PDT)

Subject: Re: Array of Strings
Newsgroups: comp.lang.ada
[…] One of the things that needs to be
impressed upon newer Ada programmers
is that Ada's String type is *not* a
varying-length string. Some languages
have varying-length strings built into
them, like BASIC and Perl; you can just
assign a 2-character string into a string
variable, and later change it to an 80-
character string, and later to an empty
(zero-length) string, and so on, without
worrying too much. (I believe there are
many other languages that also have this
sort of string type.) Ada's String type is
not like this. A String variable has a

246 Ada in Context

Volume 29, Number 4, December 2008 Ada User Journal

particular length and that length cannot be
changed. (Maybe it was a mistake to
name it “String” because of the potential
for confusion.)
Ludovic already mentioned
Bounded_String and Unbounded_String
which were added in Ada 95 to fill that
hole.
From: John McCormick

<mccormick@cs.uni.edu>
Date: Wed, 24 Sep 2008 08:13:12 -0700

(PDT)
Subject: Re: Array of Strings
Newsgroups: comp.lang.ada
In a bit of a self serving suggestion, have
a look at Chapter 4 of my Freshman level
textbook “Ada Plus Data Structures: An
Object-Oriented Approach”, Dale and
McCormick, Jones and Bartlett, 2007.
This chapter is devoted to the use and
implementation of strings: Fixed-Length,
Bounded-Length, and Unbounded-
Length. You can check it out for free on
Google Books.

Changes since Ada 83
From: Stephen Horne

<sh006d3592@blueyonder.co.uk>
Date: Thu, 25 Sep 2008 16:57:17 +0100
Subject: changes “in a nutshell” since

Ada 83
Newsgroups: comp.lang.ada
I last used Ada about 10 years ago, and
only ever used Ada 83. Is there a quick-
and-simple summary of what's changed in
Ada 95 and since that I can download?
What I really want is something short-
and-sweet and focused on the main
changes — what changed, quick rationale,
quick example, move on.
[…]
I have found some books available online,
but they all assume the reader has never
used Ada at all, and also that the reader
has never programmed before — not that
that's an unusual assumption in
programming language books for some
reason.
From: Stephen Horne

<sh006d3592@blueyonder.co.uk>
Date: Thu, 25 Sep 2008 17:21:30 +0100
Subject: Re: changes “in a nutshell” since

Ada 83
Newsgroups: comp.lang.ada
> Maybe the Rationale can help?
 Ada 95:

http://www.adaic.org/standards/95rat/
RAThtml/rat95-contents.html

 Ada 2005:
http://www.adaic.org/standards/05rat/
html/Rat-TTL.html

Pretty close to perfect — thanks.

Finalization and ATC
From: Florian Weimer

<fw@deneb.enyo.de>
Date: Sat, 01 Nov 2008 12:13:01 +0100
Subject: Storage management
Newsgroups: comp.lang.ada
What is the current state of the art with
regard to programmer support for storage
management?
With GNAT, Ada.Finalization adds tons
of run-time calls to deal with abort
deferral (even with pragma Restrictions
(No_Abort_Statements)), puts the object
on some sort of list, and does some
secondary stack allocations which I don't
understand. Clearly, this is not supposed
to be used in performance-critical code,
so I doubt it can be used for a generic
smart pointer implementation. (Object
allocation in inner loops is generally a bad
idea, but this overhead is also incurred
when copying smart pointers around.)
Is there some other approach? Can limited
types be used to enforce linearity (in the
sense of linear types, cf.
http://home.pipeline.com/~hbaker1/
Use1Var.html and
http://iml.univ-mrs.fr/~girard/linear.pdf)?
If it's about pure storage management, GC
support would be an option, too, but as far
as I know, you need one of the managed
code implementations for that, or
somewhat unsafe libraries (in the sense
that you need to specify which objects are
leaf objects, and only store access values
in locations where they are visible to the
collector).
From: Robert A Duff <duff@adacore.com>
Date: Sat, 01 Nov 2008 18:28:04 −0400
Subject: Re: Storage management
Newsgroups: comp.lang.ada
AdaCore is actively working on making
finalization much more efficient (e.g.
avoiding all those finalization lists, when
possible).
> Is there some other approach?
Yes, you can do better with limited types
(derive from Limited_Controlled instead
of Controlled).
There is some intention to support proper
GC at AdaCore, but it's going to be rather
far in the future — not a whole lot of
(paying) customer demand for that.
Meanwhile, you can try the Boehm
“conservative” GC. My experience is that
it works pretty well, so long as you don't
use up most of your address space with
allocated objects. So on a 64-bit machine,
that should work pretty well. Or on a 32-
bit machine, if you don't use too much
real memory.
The ARG is also working on some
interesting “region based” schemes.
From: “Randy Brukardt”

<randy@rrsoftware.com>
Date: Thu, 6 Nov 2008 19:14:40 −0600

Subject: Re: Storage management
Newsgroups: comp.lang.ada
> This sounds interesting. Unfortunately,

the language-mandated overhead
(primarily abort deferral) is difficult to
get rid of. I hope that there will be a
configuration pragma which eliminates
it, even if it means using a self-
compiled run-time.

Actually, that's the easiest to get rid of (or
minimize enough to make it irrelevant
most of the time). The Janus/Ada
implementation of controlled types is
roughly the same as the GNAT one. We
take two steps to reduce the overhead of
abort-deferral:
(1) If the program has no tasks, there is no
task supervisor and the abort deferral
routine does nothing (it gets called, but
the overhead is just an indirect call and a
return instruction). We optimized
programs not containing tasks so that we
have less of a disadvantage in benchmarks
against other non-tasking languages (like
C and C++). (It's not as common for real
Ada programs to not contain tasks, but it
helps any that don't as well.)
(2) We made abort deferral as cheap as
possible. It is just a counter in the TCB of
a task, and we change it directly in the
supervisor interface code (this is a big
advantage of not use OS threads for task
mapping). It takes 4 machine instructions
(this is assembler code). Re-enabling
aborts is slightly more expensive, as we
have to check if someone did abort the
task while it was abort deferred. But that
is the rare case, and it add only two
machine instructions.
Actually adding or removing an object
from the finalization chain isn't that
expensive, either. It takes about 10
machine instructions.
The biggest expense with Janus/Ada is
putting the needed exception handler
around a Finalize call (we have to turn all
exceptions into Program_Error). That's
probably cheaper with GNAT.
I find I have more sympathy with those
that worry about the 16-byte per object
space overhead (that can be significant for
smart pointers, for instance, if there are a
lot of them in the program). The time will
matter only in the most critical of
applications. (And, based on another
thread here, moving a few bytes around in
some random location will change the
performance of your program +/− 50%
anyway — that effect will completely
swamp any finalization overhead.) I doubt
anyone with truly critical performance
needs is going to be using smart pointers
or containers or anything else that adds
overhead.
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Fri, 07 Nov 2008 11:54:05 +0200
Subject: Re: Storage management
Newsgroups: comp.lang.ada

Ada in Context 247

Ada User Journal Volume 29, Number 4, December 2008

> I have a general question. Does
anybody use abort and asynchronous
transfer of control?

I do, to set a limit on the running time of a
possibly lengthy procedure Analyse:

 select
 delay Opt.Max_Analysis_Time;
 Output.Error ("Maximum analysis
 time exceeded.");
 then abort
 Analyse;
 end select;

> After all, there is no chance to have
them reasonably working anyway.

It seems to work for me (GNAT 3.15p),
except that I had to add a dummy “delay
0.1” at the end of the main subprogram.
Otherwise the program would sometimes
hang indefinitely in the termination phase.
This program has no tasks, so the abort
and ATC are the only form of
concurrency.
> How about to remove that stuff

altogether and make a far more
important finalization right and fast?

Isn't pragma Restrictions
(No_Select_Statements) enough? Or is it
too strong, and a new restriction
specifically for ATC would be better?
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Fri, 07 Nov 2008 14:12:30 +0200
Subject: Re: Storage management
Newsgroups: comp.lang.ada
> That does not look like a good example.

In such cases there would be some GUI
with progress indication stuff, etc. I
mean that most likely Analyse would
periodically call something in order to
indicate its state; store the results etc.
These would be natural candidates to
abort it “cooperatively,” through an
exception propagation.

This example is a batch program — no
GUI, no interaction. The most
unpredictable part of the execution time is
spent waiting for a child process to
respond, using blocking I/O to read a pipe
that carries the standard output channel of
the child process. The child process can
get stuck (take a very long time) at any
point, so it is not enough to make Analyse
check the elapsed time after every pipe-
read, for example.
If this example had a GUI, it would not
need a programmed delay-then-abort
time-out; the user would get bored and
would click something to abort the child
process, which would make the Analyse
procedure terminate, too.
> I honestly believe that the only case that

may justify abort/ATC is cancellation
of an outstanding blocking I/O.

Which is the case in my example.

I think that abort/ATC is also useful in
hard real-time systems as a guard against
a task overrunning its deadlines (although
execution-time budgeting is an
alternative, perhaps better). It is difficult
and error-prone to embed overrun-
checking code in the task itself, and it will
complicate the code — poor “separation
of concerns”.
> But exactly this case is not guaranteed

to work, or rather is guaranteed not to
work…

Aborting blocking I/O is “guaranteed not
to work”? Can you explain why? Is this
something that has been discussed before
on c.l.a.?
>> Isn't pragma Restrictions

(No_Select_Statements) enough? Or is
it too strong, and a new restriction
specifically for ATC would be better?

> I would prefer pragma Cancelable put
on a task. If a task is not cancelable
then abort would raise Tasking_Error,
and an ATC in the task body would be
a compile-time error.

I will leave it to the language experts to
comment on that suggestion. I assume it
would have to forbid ATCs in
subprograms called from the task, too,
which would require some form of
subprogram-level contract that the
subprogram body executes no ATCs.
What about ctrl-C, that is, process abort
from the operating system? I don't think
that users would be happy if Ada
applications could not be aborted with
ctrl-C. Do abort-deferred operations now
defer ctrl-C, too?
From: “Dmitry A. Kazakov”

<mailbox@dmitry-kazakov.de>
Date: Fri, 7 Nov 2008 14:22:36 +0100
Subject: Re: Storage management
Newsgroups: comp.lang.ada
> Aborting blocking I/O is “guaranteed

not to work”? Can you explain why? Is
this something that has been discussed
before on c.l.a.?

I don't know. But I discussed that with
AdaCore people. Since the following does
not work with GNAT Pro 6.2 (Windows
wavefront):

with Ada.Text_IO; use Ada.Text_IO;
procedure Test_ATC is
begin
 Put_Line ("Type");
 select
 delay 2.0;
 Put_Line ("Timed out");
 then abort
 Put_Line ("You typed " & Get_Line);
 end select;
end Test_ATC;

Actually I was almost certain that this
were *not* required to work. I only

wished to know if they considered it as
nice to have working or not.
There is no way Ada could abort I/O if
the OS does not allow this. Second to
Get_Line, or likely the first wanted case is
canceling blocking socket read. I would
give 98% that it never will work with
ATC.
> […] I assume it would have to forbid

ATCs in subprograms called from the
task, too, which would require some
form of subprogram-level contract that
the subprogram body executes no
ATCs.

Or to constrain thir use like with the
selective accept.
> What about ctrl-C, that is, process abort

from the operating system? I don't think
that users would be happy if Ada
applications could not be aborted with
ctrl-C. Do abort-deferred operations
now defer ctrl-C, too?

The meaning of ctrl-C depends on the OS.
Ada standard cannot mandate that
pressing ctrl-C is equivalent to aborting
the environment task in the sense of
“abort” statement. Then usually OS have
efficient means to kill a process
preemptively bypassing any “abort
deferred” stuff.
From: “Dmitry A. Kazakov”

<mailbox@dmitry-kazakov.de>
Date: Mon, 10 Nov 2008 17:08:53 +0100
Subject: Re: Storage management
Newsgroups: comp.lang.ada
>> I don't know. But I discussed that with

AdaCore people.
> How come? What did they say?
I think they will not object me quoting the
conversation:
Q. Is it correct to conclude that
Get_Line is not abortable this way?
A. Right, that's a correct understanding.
In general it is unsafe or not possible to
interrupt system calls, so if you need to
interrupt I/O, you should probably use
something like Get_Immediate.
I think they are absolutely right here. It
may work (under SuSe), or not (under
Windows). To me this is a perfect reason
to remove ATC stuff from the language. It
causes a sufficient distributed overhead, is
unreliable with OO programming and
non-portable in virtually single case
where it could come handy.

Stack usage at run time
From: Andy Vontovel

<andi.vontobel@gmx.ch>
Date: Mon, 3 Nov 2008 23:55:26 −0800

(PST)
Subject: Stackusage at runtime
Newsgroups: comp.lang.ada
[…] Is it possible to figure out how much
of the stack is used at a specific moment?

248 Ada in Context

Volume 29, Number 4, December 2008 Ada User Journal

-> Ada 95 Cross-compiler to PPC
(It is a little bit hard to optimize the stack
size …)
From: Andy Vontovel

<andi.vontobel@gmx.ch>
Date: Tue, 4 Nov 2008 04:56:22 −0800

(PST)
Subject: Re: Stackusage at runtime
Newsgroups: comp.lang.ada
> I'd guess that your debugger can stop

the program at that specific moment
and tell you about the stack.

The debugger is not really usable … is
there a possibility to read the value in the
code and to print out?
From: Stuart
Date: Tue, 4 Nov 2008 15:40:46 -0000
Subject: Re: Stackusage at runtime
Newsgroups: comp.lang.ada
Compare the value of the stack pointer to
its base value!
For a PowerPC it is very likely that the
code will be conforming to the Embedded
Application Binary Interface (EABI), so
the stack pointer will be register r1 (aka
gpr1). Reading this will require a bit of
machine code — either use package
machine code or call out to an assembler
routine depending on how 'pure' you want
to be.
Making this a subprogram would allow
you to quickly find the stack pointer value
anywhere in your program. Depending on
what you actually need you might need to
make adjustments for the stack frame of
the subprogram returning the value (but I
would suspect this is quite small and the
discrepancy introduced to be of minimal
interest if you are optimizing the
programme).
The base value of the stack is often
defined by a symbol (you will need to
check your compiler's documentation)
though take care as to whether you need
the address represented by the symbol or
the value at that address (in my
experience it is usually the former).
As a pedagogical point — the Ada
language does not really define what the
stack (if any) is used for, so your results
may not be universally applicable (but I
suspect that is not a significant concern).
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Tue, 04 Nov 2008 21:07:34 +0100
Subject: Re: Stackusage at runtime
Newsgroups: comp.lang.ada
If you are running GNAT it is quite
straight forward and described in detail in
the top secret document (The GNAT users
guide chapter 22. Stack Related Facilities)
In short
1 Compile the code with:
 gcc -c -fstack-check *.adb
2 Bind your executable with

 gnatbind -u0 file
3 Set environment variable

GNAT_STACK_LIMIT
4 Run your program and terminate clean.
5 Done.
I expect that all targets behave more ore
less the same.
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Tue, 04 Nov 2008 22:44:20 +0200
Subject: Re: Stackusage at runtime
Newsgroups: comp.lang.ada
Oh, you want to know how much stack-
space a task needs overall (worst case),
not how much is in use at a particular
point in the execution? If so, how about
GNATstack:
http://www.adacore.com/home/gnatpro/
add-on_technologies/stack_analysis/
Or AbsInt's StackAnalyzer:
http://www.absint.com/stackanalyzer/
From: Andy Vontovel

<andi.vontobel@gmx.ch>
Date: Tue, 4 Nov 2008 23:33:32 −0800

(PST)
Subject: Re: Stackusage at runtime
Newsgroups: comp.lang.ada
> If you are running GNAT it is quite

straight forward and described in detail
in the top secret document (The GNAT
users guide chapter 22. Stack Related
Facilities)

[…]
We are using Apex … Probably we think
about AdaCore's static analysis tool …
I thought that Ada itself has a possibility
to report the memory-usage at a specific
time.
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Wed, 05 Nov 2008 17:50:32 +0100
Subject: Re: Stackusage at runtime
Newsgroups: comp.lang.ada
[…] Concerning Apex, once upon a time
in the dark ages (80:ties & 90:ties) we
were using Apex as well for embedded
systems. What we did at that point in time
was something along these lines:
⁃ On program start, fill the memory

allocated for the stacks with
16#CACA#.
⁃ After some time of execution, query the

operation system /Runtimes of the
following, Stack start & Stack Size very
very target dependent.
⁃ Iterate from the free side of the allocated

memory for each stack until no more
“CACA” is found.
⁃ That's how we did it then.
And that is actually the same basic
method used in the more modern
GCC/GNAT system to obtain the same
result.

But if it's possible to do static analysis
with GNATstack that would be much
better.
Concerning Ada and stacks, as far as I
know there is nothing defined in the
language.
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Wed, 05 Nov 2008 20:50:32 +0200
Subject: Re: Stackusage at runtime
Newsgroups: comp.lang.ada
> We are using Apex … Probably we

think about AdaCore's static analysis
tool …

As I understand it, AdaCore's GNATstack
is coupled with GNAT, and uses compile-
time information from GNAT; it may not
be possible to use it with the Apex
compiler. Of course, code generated by
GNAT may not use the same amount of
stack space as code generated by Apex.
The AbsInt StackAnalyzer works on the
machine code alone, I believe, so it
should in principle work with any
compiler. However, I don't know if it
handles the “secondary stack” used by
some Ada compilers. Apex is not listed as
a supported compiler on AbsInt's web, but
it may well work.

On record serialization
From: MOE37x3
Date: Wed, Sep 17 2008 15:43
Subject: Understanding how Ada serializes

a record
URL: http://stackoverflow.com/questions/

84677/understanding-how-ada-
serializes-a-record/

I would like to be able to predict what
will be in the resulting binary when I call
Write in Ada to serialize a record. Do you
know where I can look this up?
I have some legacy Ada software that
produces a binary file by Write-ing a
record, and I need to debug a C++
program that is supposed to write a
compatible binary file. So, I would like to
understand what rules Ada follows when
it serializes a record, so that I can make
sure that the C++ code will produce a
functionally equivalent record.
From: Mike Dimmick
Date: Wed, Sep 17 2008 16:06
Subject: Understanding how Ada serializes

a record
URL: http://stackoverflow.com/questions/

84677/understanding-how-ada-
serializes-a-record/

The Ada 95 Language Reference Manual
says (section 13.13.2): “For elementary
types, the representation in terms of
stream elements is implementation
defined. For composite types, the Write or
Read attribute for each component is
called in a canonical order. The canonical
order of components is last dimension
varying fastest for an array, and positional
aggregate order for a record.”

Ada in Context 249

Ada User Journal Volume 29, Number 4, December 2008

From: Dan
Date: Wed, Sep 17 2008 16:20
Subject: Understanding how Ada serializes

a record
URL: http://stackoverflow.com/questions/

84677/understanding-how-ada-
serializes-a-record/

Basically, the compiler will reorder the
components of your record types, unless
you use the pragma PACK or the pragma
PRESERVE_LAYOUT commands with
your record types. Also, the compiler will
pad objects to maintain the alignment of
record components. Components follow:
⁃ Integer: 8, 16, or 32 bit twos-

complement signed numbers
⁃ Float: 32-bit IEEE format
⁃ Long_Float: 64-bit IEEE format
⁃ Fixed-Point: 8, 16, or 32 bit; however,

the range and delta specified can affect
being 16 or 32
⁃ Enumerations: Integer, usually first

element is represented by 0
⁃ Booleans: Enumeration object, 8 bits

long, The LSB stores the value: 0 =
false, 1 = true
⁃ Characters: Enumeration object, 8 bits

long, unsigned 0 through 127
⁃ Access Types: 32 bits, 32-bit value of 0

represents NULL
⁃ Arrays: stored contiguously in row-

major order, size depends on base type.
The array is padded to ensure all
elements have the proper alignment for
their types.

From: Greg Hewgill
Date: Wed, Sep 17 2008 22:19
Subject: Understanding how Ada serializes

a record
URL: http://stackoverflow.com/questions/

84677/understanding-how-ada-
serializes-a-record/

As mentioned by others, without
additional instruction the compiler will
make its own decisions about record
layout. The best approach would be to
change the original code to write the
record using a specific layout. In
particular, the record representation
clause allows the Ada programmer to
specify exactly the physical layout for a
record. In fact, you should check to see
whether the original code has one of these
for the type in question. If it does, then
this would answer your question
precisely.
From: Simon Wright

<simon.j.wright.myopenid.com>
Date: Tue, Nov 25 2008 23:29
Subject: Understanding how Ada serializes

a record
URL: http://stackoverflow.com/questions/

84677/understanding-how-ada-
serializes-a-record/

The format of the serialised output of
'Write has nothing to do with
representation clauses.
By default, the compiler will output
record components without alignment
padding in the order in which they're
written in the record declaration, using a
translation scheme that isn't defined by
the standard (so you may not get
interoperability between compilers).
GNAT (the GCC Ada compiler) outputs
each component in a whole number of
bytes.
If you want to stream values of a type
using some different format, you can
override 'Write for the type. As an
unusual example, you could stream to
XML.

Does Ada have a
preprocessor?
From: ceretullis
Date: Wed, 12 Nov 2008 13:13
Subject: Does Ada have a preprocessor?
URL: http://stackoverflow.com/questions/

283893/does-ada-have-a-preprocessor/
To support multiple platforms in C/C++,
one would use the preprocessor to enable
conditional compiles. E.g.,
#ifdef _WIN32
 #include <windows.h>
#endif
How can you do this in Ada? Does Ada
have a preprocessor?
From: David Allan Finch
Date: Wed, 12 Nov 2008 13:27
Subject: Does Ada have a preprocessor?
URL: http://stackoverflow.com/questions/

283893/does-ada-have-a-preprocessor/
No but the CPP preprocessor or m4 can
be called on any file on the command line
or using a building tool like make or ant. I
suggest calling your .ada file something
else. I have done this for some time on
java files. I call the java file .m4 and use a
make rule to create the .java and then
build it in the normal way.
From: Marc C
Date: Tue, 18 Nov 2008 21:27
Subject: Does Ada have a preprocessor?
URL: http://stackoverflow.com/questions/

283893/does-ada-have-a-preprocessor/
AdaCore provides the gnatprep
preprocessor, which is specialized for
Ada. They state that gnatprep “does not
depend on any special GNAT features”,
so it sounds as though it should work with
non-GNAT Ada compilers. Their User
Guide also provides some conditional
compilation advice.
I have been on a project where m4 was
used as well, with the Ada spec and body
files suffixed as “.m4s” and “.m4b”,
respectively. My preference is really to

avoid preprocessing altogether, and just
use specialized bodies, setting up CM and
the build process to manage them.
From: lbrandy
Date: Thu, 20 Nov 2008 13:57
Subject: Does Ada have a preprocessor?
URL: http://stackoverflow.com/questions/

283893/does-ada-have-a-preprocessor/
The answer to your question is no, Ada
does not have a pre-processor that is built
into the language. That means each
compiler may or may not have one and
there is not “uniform” syntax for pre-
processing and things like conditional
compilation. This was intentional: it's
considered “harmful” to the Ada ethos.
There are almost always ways around a
lack of a preprocessor but often times the
solution can be a little cumbersome. For
example, you can declare the platform
specific functions as 'separate' and then
use build-tools to compile the correct one
(either a project system, using pragma
body replacement, or a very simple
directory system… put all the windows
files in /windows/ and all the linux files in
/linux/ and include the appropriate
directory for the platform). All that being
said, GNAT realized that sometimes you
need a preprocessor and has created
gnatprep. It should work regardless of the
compiler (but you will need to insert it
into your build process). Similarly, for
simple things (like conditional
compilation) you can probably just use
the c pre-processor or even roll your own
very simple one.
From: ted.dennison.myopenid.com
Date: Thu, 20 Nov 2008 14:23
Subject: Does Ada have a preprocessor?
URL: http://stackoverflow.com/questions/

283893/does-ada-have-a-preprocessor/
No, it does not.
If you really want one, there are ways to
get one (Use C's, use a stand-alone one,
etc.) However I'd argue against it. It was a
purposeful design decision to not have
one. The whole idea of a preprocessor is
very un-Ada. Most of what C's
preprocessor is used for can be
accomplished in Ada in other more
reliable ways. The only major exception
is in making minor changes to a source
file for cross-platform support. Given how
much this gets abused in a typical cross-
platform C program, I'm still happy
there's no support for it in Ada. Very few
C/C++ developers can control themselves
enough to keep the changes “minor”. The
result may work, but is often nearly
impossible for a human to read.
The typical Ada way to accomplish this
would be to put the different code in
different files and use your build system
to somehow choose between them at
compile time. Make is plenty powerful
enough to help you do this.

Conference Calendar 251

Ada User Journal Volume 29, Number 4, December 2008

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2009

January 21-23 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL'2009), Savannah, Georgia, USA. Topics include: fundamental principles and important
innovations in the design, definition, analysis, transformation, implementation and verification of
programming languages, programming systems, and programming abstractions.

January 24 2009 International Workshop on Foundations of Object-Oriented Languages (FOOL'2009),
Savannah, Georgia, USA. Following POPL'2009. Topics include: language semantics, type systems,
program analysis and verification, concurrent and distributed languages, language-based security issues,
etc.

☺ February 04-06 International Symposium on Engineering Secure Software and Systems (ESSoS'2009), Leuven,
Belgium. Topics include: security architecture and design for software and systems; systematic support
for security best practices; programming paradigms, models and DLS's for security; program rewriting
techniques; processes for the development of secure software and systems; etc. Includes full-day tutorial
on "Security by Construction" by Rod Chapman, Praxis High Integrity Systems, Bath. Deadline for
early registration: January 6, 2009.

♦ Feb 07-08 Ada at the Free and Open-Source Software Developers' European Meeting
(FOSDEM'2009), Brussels, Belgium. FOSDEM 2009 is a two-day event (Sat-Sun 07-08
February). This years' edition includes again an Ada track, organized by Ada-Belgium,
and will run over both days of the event.

February 16-19 7th International Conference on Integrated Formal Methods (IFM'2009), Düsseldorf, Germany.
Deadline for early registration: January 8, 2009.

February 17-19 22nd IEEE-CS Conference on Software Engineering Education and Training (CSEET'2009),
Hyderabad, India. Theme: "Scalability in Software Engineering Education and Training". Topics
include: Curriculum and teaching materials, Learning environments, Software engineering
professionalism, Case studies of educational or training practices, Industry-academia collaboration
models, etc.

☺ March 04-07 40th ACM Technical Symposium on Computer Science Education (SIGCSE'2009), Chattanooga,
Tennessee, USA.

March 08-12 24th ACM Symposium on Applied Computing (SAC'2009), Honolulu, Hawaii, USA.

 ☺ Mar 08-12 Track on Software Engineering (SE'2009). Topics include: Component-Based
Development and Reuse; Safety and Security Dependability and Reliability; Fault
Tolerance and Availability; Design Patterns; Standards; Maintenance and Reverse
Engineering; Verification, Validation, and Analysis; Formal Methods and Theories;
Empirical Studies and Industrial Best Practices; Applications and Tools; Distributed,
Embedded, Real-Time, High Performance, and Highly Dependable Systems; etc.

☺ Mar 08-12 Track on Object-Oriented Programming Languages and Systems (OOPS'2009).
Topics include: Language design and implementation; Type systems, static analysis,
formal methods; Integration with other paradigms; Components and modularity;
Distributed, concurrent or parallel systems; Interoperability, versioning and software
adaptation; etc.

252 Conference Calendar

Volume 29, Number 4, December 2008 Ada User Journal

☺ Mar 08-12 Track on Real-Time Systems (RTS'2009). Topics include: scheduling and
schedulability analysis; worst-case execution time analysis; modeling and formal
methods; validation techniques; reliability; compiler support; component-based
approaches; middleware and distribution technologies; programming languages and
operating systems; embedded systems; etc.

☺ Mar 08-12 Track on Programming Languages (PL'2009). Topics include: Compiling
Techniques, Formal Semantics and Syntax, Language Design and Implementation,
Model-Driven Development and Model Transformation, New Programming Language
Ideas and Concepts, Practical Experiences with Programming Languages, Program
Analysis and Verification, Program Generation and Transformation, Programming
Languages from All Paradigms, etc.

Mar 08-12 Track on Software Verification and Testing (SVT'2009). Topics include: tools and
techniques for verification of large scale software systems, real world applications and
case studies applying software verification, static and run-time analysis, correct by
construction development, software certification and proof carrying code, etc.

March 16-19 3rd International Conference on Complex, Intelligent and Software Intensive Systems (CISIS'2009),
Fukuoka, Japan.

☺ Mar 16-19 International Workshop on Multi-Core Computing Systems (MuCoCoS'2009).
Topics include: multi-core embedded systems; programming languages and models;
applications for multi-core systems; performance modeling and evaluation of multi-core
systems; design space exploration; tool-support for multi-core systems; compilers,
runtime and operating systems; etc.

Mar 16-19 1st Workshop on Coordination in Complex Software Intensive Systems
(COCOSS'2009). Topics include: Distributed problem solving, Programming
abstractions and languages, Case studies, etc.

☺ March 17-20 12th IEEE International Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC'2009), Tokyo, Japan. Topics include: Programming and system engineering (ORC
paradigms, languages, RT Corba, UML, model-driven development of high integrity applications,
specification, design, verification, validation, testing, maintenance, system of systems, etc.); System
software (real-time kernels, middleware support for ORC, extensibility, synchronization, scheduling,
fault tolerance, security, etc.); Applications (embedded systems (automotive, avionics, consumer
electronics, etc), real-time object-oriented simulations, etc.); System evaluation (timeliness, worst-case
execution time, dependability, fault detection and recovery time, etc.); ...

March 22-29 12th European Joint Conferences on Theory and Practice of Software (ETAPS'2009), York, UK.

March 22 8th International Workshop on Compiler Optimization Meets Compiler
Verification (COCV'2009). Topics include: optimizing and verifying compilation, and
related fields such as translation validation, certifying and credible compilation,
programming language design and programming language semantics, etc.

March 22-29 18th European Symposium on Programming (ESOP'2009). Topics include: issues in
the specification, design, analysis, and implementation of programming languages and
systems, such as Programming paradigms and styles (object-oriented programming,
real-time programming languages, etc), Methods and tools to write, reason about, and
specify languages and programs (module systems, programming techniques, type
systems, program verification, static analysis, language-based security, etc), Methods
and tools for implementation, Concurrency and distribution (parallel programming,
distributed languages, etc).

March 22-29 18th International Conference on Compiler Construction (CC'2009). Topics include:
research on compilers in the broadest possible sense, including run-time techniques,
programming tools, domain-specific languages, novel language constructs and so on.

March 23-29 12th International Conference on Fundamental Approaches to Software
Engineering (FASE'2009). Topics include: novel techniques and the way in which they
contribute to making Software Engineering a more mature and sound discipline.

Conference Calendar 253

Ada User Journal Volume 29, Number 4, December 2008

Fundamental approaches, including: Software Engineering as an engineering discipline;
Specification, design, and implementation of particular classes of systems
(collaborative, embedded, distributed, ...); Software quality (validation and verification
of software using theorem proving, model-checking, testing, analysis, metrics, ...);
Software evolution (refactoring, reverse and re-engineering, configuration management,
...); etc.

March 28 2nd Workshop on Verification and Analysis of Multi-threaded Java-like Programs
(VAMP'2009). Topics include: verification and analysis techniques for Multi-threaded
Java-like languages, including automatic verification and static analysis techniques;
type-based verification; specification techniques; race condition detection, deadlock
detection, etc.; static analysis for bug discovery; etc.

March 28-29 6th International Workshop on Formal Engineering approaches to Software
Components and Architectures (FESCA'2009). Topics include: software quality
attributes such as reliability, performance, or security; interface compliance; approaches
for correctness by construction; static and dynamic analysis; runtime management of
applications; etc.

March 28-29 8th Workshop on Language Descriptions, Tools and Applications (LDTA'2009).
Topics include: applications of and tools for meta programming in a broad sense, such
as Program analysis, transformation, generation and verification; Reverse engineering
and reengineering; Refactoring and other source-to-source transformations; Language
definition and language prototyping; Debugging, profiling and testing; IDE
construction; Compiler construction; etc. Deadline for early registration: February 13,
2009.

♦ March 24 Ada Conference UK 2009, London, UK. This event is organised to promote
awareness of the Ada programming language, and to highlight the increased
relevance of Ada in safety- and security-critical programming. Since its inception, Ada
has been successful in systems where reliability is essential. Its application domains
include aeronautics, air traffic control, aerospace, simulation, shipboard systems,
railway systems, communications, banking and many others.

March 24-27 15th French-speaking Conference on Object-Oriented Languages and Models (LMO'2009), Nancy,
France.

March 24-27 13th European Conference on Software Maintenance and Reengineering (CSMR'2009),
Kaiserslautern, Germany. Topics include: Experience reports on maintenance and reengineering of
large-scale software systems; Empirical studies in software reengineering, maintenance, and evolution;
Education-related issues to evolution, maintenance and reengineering; etc.

☺ Mar 30- Apr 03 4th European Conference on Computer Systems (EuroSys'2009), Nuremberg, Germany. Topics
include: All areas of operating systems and distributed systems; Systems aspects of: Dependable
computing, Distributed computing, Parallel and concurrent computing, Programming-language support,
Real-time and embedded computing, Security, ...; Experience with existing systems; Reproduction or
refutation of previous results; Negative results; Early ideas. Deadline for submissions: January 5, 2009
(doctoral workshop papers), January 19, 2009 (other workshop papers).

April 01-04 2nd IEEE International Conference on Software Testing, Verification and Validation (ICST'2009),
Denver, Colorado. Topics include: Verification & Validation, Quality Assurance, Empirical studies,
Embedded and real-time software, Concurrent software, etc.

April 06-08 2nd International Conference on Trusted Computing (Trust'2009), Oxford, UK. Topics include:
implementation technologies for trusted platforms; implementations of trusted computing; verification
of trusted computing architectures; etc.

Aprl 13-16 16th Annual IEEE International Conference and Workshops on the Engineering of Computer
Based Systems (ECBS'2009), San Francisco, California, USA. Topics include: Component-Based
System Design; Design Evolution; Distributed Systems Design; ECBS Infrastructure (Tools,
Environments); Education & Training; Embedded Real-Time Software Systems; Formal Methods;
Integration Engineering; Model-Based System Development; Modeling and Analysis of Complex

254 Conference Calendar

Volume 29, Number 4, December 2008 Ada User Journal

Systems; Open Systems; Reengineering & Reuse; Reliability, Safety, Dependability, Security;
Standards; Verification & Validation; etc.

April 20-23 21st Annual Systems and Software Technology Conference (SSTC'2009), Salt Lake City, Utah, USA.

☺ May 16-24 31st International Conference on Software Engineering (ICSE'2009), Vancouver, Canada. Topics
include: Specification and Verification; Software Architecture and Design; Patterns and Frameworks;
Reverse Engineering, Refactoring, and Evolution; Tools and Environments; Empirical Software
Engineering; Development Paradigms and Software Processes; Component-based Software
Engineering; Model Driven Engineering; Distributed Systems and Middleware; Embedded System;
Open Standards and Certification; Software Economics; Dependability (safety, security, reliability);
Case Studies and Experience Reports; etc. Co-located events: 7th Workshop on Software Quality
(WoSQ'2009), Workshop on Modeling in Software Engineering (MISE'2009), 2nd International
Workshop on Multicore Software Engineering (IWMSE'2009), 2nd International Workshop on
Emerging Trends in Free/Libre/Open Source Software Research and Development (FLOSS'2009), 5th
International Workshop on Software Engineering for Secure Systems (SESS'2009), 2nd International
Workshop on Software Engineering for Computational Science and Engineering (SECSE'2009), etc.

May 25-27 9th International Conference on Computational Science (ICCS'2009), Baton Rouge, Louisiana, USA.
Theme: "Compute, Discover, Innovate". Deadline for early registration: March 15, 2009.

☺ May 25 6th International Workshop on aPpplications of declArative and object-oriented
Parallel Programming (PAPP'2009). Topics include: high-level parallel language
design, implementation and optimisation; modular, object-oriented, functional, logic,
constraint programming for parallel, distributed and grid computing systems; industrial
uses of a high-level parallel language; etc.

☺ May 25 Workshop on Using Emerging Parallel Architectures for Computational Science.
Topics include: Languages, models, tools, and compilation techniques for emerging
architectures; etc.

☺ May 25-29 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS'2009), Rome, Italy.
Topics include: Parallel and distributed algorithms; Applications of parallel and distributed computing;
Parallel and distributed software, including parallel programming languages and compilers, runtime
systems, fault tolerance, middleware, libraries, scalability, programming environments and tools, etc.

☺ May 26-29 DAta Systems In Aerospace (DASIA'2009), Istanbul, Turkey.

June 03-06 5th International Conference on Open Source Systems (OSS'2009), Skövde, Sweden. Topics include:
Software engineering perspectives (F/OSS development environments; Testing, assuring and certifying
F/OSS quality and security; F/OSS usability, scalability, maintainability and other quality issues; F/OSS
and standards, ...); Emerging perspectives (Licensing, IPR and other legal issues in F/OSS; F/OSS and
innovation; ...); Studies of F/OSS deployment (Case studies of F/OSS deployment, migration models,
success and failure; F/OSS in vertical domains and the 'secondary' software sector, e.g., automotive,
telecommunications, medical devices; F/OSS applications catalog; ...); etc.

♦ June 08-12 14th International Conference on Reliable Software Technologies – Ada-
Europe 2009, Brest, France. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda. Deadline for submissions: January 12, 2009 (industrial presentations).

June 09-12 4th IFIP Conference on Distributed Computing Techniques (DisCoTec'2009), Lisbon, Portugal.

June 09-11 11th International Conference on Languages, Models, and Architectures for
Concurrent and Distributed Software (Coordination'2009). Topics include:
Distributed and Concurrent Programming Models (multicore programming, data parallel
programming, event-driven programming, ...); Distributed Software Management
(component and module systems for distributed software, configuration and deployment
architectures, ...); Case Studies (application of novel distributed and concurrent
techniques); etc. Deadline for submissions: January 28, 2009 (abstracts), February 1,
2009 (papers).

June 09-11 IFIP International Conference on Formal Techniques for Distributed Systems
(FMOODS/FORTE'2009). Formed joinlty from the 11th Formal Methods for Open

Conference Calendar 255

Ada User Journal Volume 29, Number 4, December 2008

Object-Based Distributed Systems (FMOODS) and the 29th Formal Techniques for
Networked and Distributed Systems (FORTE). Topics include: Languages and Semantic
Foundations (new modeling and language concepts for distribution and concurrency,
semantics for different types of languages, including programming languages, modeling
languages, and domain specific languages; real-time aspects; ...); Formal Methods and
Techniques (design, specification, analysis, verification, validation and testing of
various types of distributed systems); Practical Experience with Formal Methods
(industrial applications, case studies and software tools for applying formal methods and
description techniques to the development and analysis of real distributed systems); etc.
Deadline for submissions: January 28, 2009 (abstracts), February 1, 2009 (papers).

June 09-11 9th IFIP International Conference on Distributed Applications and Interoperable
Systems (DAIS'2009). Topics include: Innovative distributed applications; Models and
concepts supporting distributed applications; Middleware supporting distributed
applications; Software engineering of distributed applications; etc. Deadline for
submissions: January 28, 2009 (abstracts), February 1, 2009 (papers).

June 15-21 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'2009),
Dublin, Ireland. Topics include: the design, development, implementation, evaluation, and use of
programming languages; including: Extracting parallelism from programs, Exploiting explicit
parallelism in programs, Memory management, Language constructs for parallelism, Program analyses,
Type systems and program logics, Debugging techniques and tools, Language designs and extensions,
Checking or improving the safety, security, or correctness of programs, etc.

June 16-18 Code Generation 2009, Cambridge, UK. Topics include: Tool and technology development and
adoption; Code Generation and Model Transformation tools and approaches; Defining and
implementing modelling languages; Language evolution and modularization; etc. Deadline for
submissions: January 16, 2009 (speaker proposals).

June 22-26 29th International Conference on Distributed Computing Systems (ICDCS'2009), Montreal, Canada.
Topics include: findings in any aspects of distributed and parallel computing, such as Distributed
Middleware, Reliability and Dependability, Security, etc.

June 23-26 5th European Conference on Model Driven Architecture Foundations and Applications (ECMDA-
FA'2009), Enschede, the Netherlands. Topics include: Metamodeling foundations and tools; Model
Transformation and Code Geneation; MDA for Complex Systems and Systems of Systems; MDA for
Embedded Systems and Real-Time Systems; MDA for High-Integrity Systems, Safety-Critical, and
Security-Critical Systems; MDA in the Automotive, Aerospace, Telecommunications, Electronics
Industries; Comparative Studies of MDA Methods and Tools; MDA for Legacy Systems; etc. Deadline
for submissions: January 14, 2009 (workshops, tutorials); January 30, 2009 (abstracts); February 6, 2009
(papers); April 1, 2009 (ECMDA'2010 hosting proposals); April 6th, 2009 (tools, posters).

June 26 - July 02 21st International Conference on Computer Aided Verification (CAV'2009), Grenoble, France.
Topics include: Algorithms and tools for verifying models and implementations, Program analysis and
software verification, Verification techniques for security, Applications and case studies, Verification in
industrial practice, etc. Deadline for submissions: January 15, 2009 (abstracts), January 25, 2009
(papers, CAV Award nominations).

☺ June 29 - July 03 47th International Conference Objects, Models, Components, Patterns (TOOLS Europe'2009),
Zurich, Switzerland. Topics include: all aspects of object technology and neighboring fields, in
particular model-based development, component-based development, and patterns (design, analysis and
other applications); more generally, any contribution addressing topics in advanced software
technology; contributions showcasing applications along with a sound conceptual contribution are
particularly welcome. Deadline for submissions: January 15, 2009 (technical papers), February-March,
2009 (tutorials, workshops).

☺ June 29 – July 03 9th International Conference on New Technologies of Distributed Systems (NOTERE'2009),
Montreal, Canada. Deadline for submissions: January 10, 2009.

July 01-03 9th International Conference on Application of Concurrency to System Design (ACSD'2009),
Augsburg, Germany. Topics include: (Industrial) case studies of general interest, gaming applications,
consumer electronics and multimedia, automotive systems, (bio-)medical applications, internet and grid
computing, ...; Synthesis and control of concurrent systems, (compositional) modelling and design,

256 Conference Calendar

Volume 29, Number 4, December 2008 Ada User Journal

(modular) synthesis and analysis, distributed simulation and implementation, ...; etc. Deadline for paper
submissions: January 4, 2009.

July 03-08 14th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2009), Paris, France.

July 05-12 36th International Colloquium on Automata, Languages and Programming (ICALP'2009),
Rhodes, Greece. Topics include: Parallel and Distributed Computing; Principles of Programming
Languages; Formal Methods and Model Checking; Models of Concurrent and Distributed Systems;
Models of Reactive Systems; Program Analysis and Transformation; Specification, Refinement and
Verification; Type Systems and Theory; etc. Deadline for submissions: February 10, 2009.

☺ July 06-10 23rd European Conference on Object Oriented Programming (ECOOP'2009), Genova, Italy. Topics
include: research results or experience in all areas relevant to object technology, including work that
takes inspiration from, or builds connections to, areas not commonly considered object-oriented;
examples are: Analysis, design methods and design patterns; Concurrent, real-time or parallel systems;
Distributed systems; Language design and implementation; Programming environments and tools; Type
systems, formal methods; Compatibility, software evolution; Components, Modularity; etc.

July 13-16 2009 International Conference on Software Engineering Theory and Practice (SETP'2009),
Orlando, Florida, USA. Topics include: Case studies, Component-based software engineering, Critical
software engineering, Distributed and parallel software architectures, Education aspects of software
engineering, Embedded software engineering, Model Driven Architecture (MDA), Model-oriented
software engineering, Object-oriented methodologies, Program understanding, Programming languages,
Quality issues, Real-time software engineering, Real-time software systems, Reliability, Reverse
engineering, Software design patterns, Software maintenance, Software reuse, Software safety and
reliability, Software security, Software specification, Software tools, Verification and validation of
software, etc. Event includes: special session on Object-Oriented Programming. Deadline for paper
submissions: February 2, 2009.

July 29-31 3rd IEEE International Symposium on Theoretical Aspects of Software Engineering (TASE'2009),
Tianjin, China. Topics include: Specification and Verification; Program Analysis; Model-Driven
Engineering; Software Architectures and Design; Object Orientation; Embedded and Real-Time
Systems; Component-Based Software Engineering; Software Safety, Security and Reliability; Reverse
Engineering and Software Maintenance; Type System; Dependable Concurrency; etc. Deadline for
submissions: February 20, 2009 (abstracts), Feburary 27, 2009 (papers).

August 10-13 28th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2009), Calgary, Alberta, Canada.

August 25-28 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE'2009), Amsterdam, the
Netherlands. Topics include: Specification and verification, Software architecture and design, Tools
and environments, Software quality and performance, Formal methods, Component-based software
engineering, Distributed systems and middleware, Embedded and real-time systems, Open standards and
certification, Dependability (safety, security, reliability), Case studies and experience reports, etc.
Deadline for submissions: March 2, 2009 (workshops), March 16, 2009 (papers), May 4, 2009 (doctoral
symposium abstracts), June 5, 2009 (demos, posters).

☺ August 25-28 15th International European Conference on Parallel and Distributed Computing (Euro-Par'2009),
Delft, the Netherlands. Topics include: all aspects of parallel and distributed computing, such Support
tools and environments, High performance architectures and compilers, Distributed systems and
algorithms, Parallel and distributed programming, Multicore and manycore programming, Theory and
algorithms for parallel computation, etc. Deadline for submissions: January 24, 2009 (abstracts), January
31, 2009 (full papers).

☺ Aug 31 - Sep 04 10th International Conference on Parallel Computing Technologies (PaCT'2009), Novosibirsk,
Russia. Topics include: New developments, applications, and trends in parallel computing technologies;
All aspects of the applications of parallel computer systems; Languages, environment and software tools
supporting parallel processing; General architecture concepts; Teaching parallel processing; etc.
Deadline for submissions: January 20, 2009 (full papers).

Conference Calendar 257

Ada User Journal Volume 29, Number 4, December 2008

Aug 31 – Sep 05 20th International Conference on Concurrency Theory (CONCUR'2009), Bologna, Italy. Topics
include: concurrency theory and its applications, e.g. semantics, cross-fertilization between industry and
academia, etc.

☺ September 01-04 International Conference on Parallel Computing 2009 (ParCo'2009), Lyon, France. Topics include:
all aspects of parallel computing, including applications, hardware and software technologies as well as
languages and development environments. Deadline for submissions: February 28, 2009 (abstracts),
March 31, 2009 (mini-symposia proposals).

September 09-11 8th International Conference on Software Methodologies, Tools, and Techniques (SoMeT'2009),
Prague, Czech Republic. Topics include: Software methodologies, and tools for robust, reliable, non-
fragile software design; Automatic software generation versus reuse, and legacy systems, source code
analysis and manipulation; Intelligent software systems design, and software evolution techniques;
Software optimization and formal methods for software design; Software security tools and techniques,
and related Software Engineering models; Software Engineering models, and formal techniques for
software representation, software testing and validation. Deadline for submissions: March 31 (papers).

☺ September 12-16 18th International Conference on Parallel Architectures and Compilation Techniques
(PACT'2009), Raleigh, North Carolina, USA. Topics include: Parallel computational models; Compilers
and tools for parallel computer systems; Support for concurrency correctness in hardware and software;
Parallel programming languages, algorithms and applications; Middleware and run-time system support
for parallel computing; Reliability and fault tolerance for parallel systems; Modeling and simulation of
parallel systems and applications; Parallel applications and experimental systems studies; etc. Deadline
for submissions: March 20, 2009 (abstracts), March 27, 2009 (papers, tutorials, workshops).

Sepember 14-17 Joint 8th Working International Conference on Software Architecture and 3rd European
Conference on Software Architecture (WICSA/ECSA'2009), Cambridge, UK. Topics include:
architecture description languages; architecture reengineering, discovery and recovery; software
architects' roles and responsibilities, training, education and certification; etc. Deadline for submissions:
April 3, 2009 (abstracts), April 10, 2009 (papers), April 28, 2009 (tutorials).

September 16-18 12th International Conference on Quality Engineering in Software Technology (CONQUEST'2009),
Nuremberg, Germany. Topics include: specific real-life case studies with detailed quality analysis and
evaluation; quality engineering issues in domains such as Medical IT, Automotive, Avionics, Transport,
and IT; etc. Deadline for submissions: March 16, 2009 (papers, tutorials).

October 04-09 ACM/IEEE 12th International Conference on Model Driven Engineering Languages and Systems
(MoDELS'2009), Denver, Colorado, USA. Topics include: Development of domain-specific modeling
languages, Tools and meta-tools for modeling languages and model-based development, Evolution of
modeling languages and models, Experience stories in general (successful and unsuccessful), Issues
related to current model-based engineering standards, Experience with model-based engineering tools,
etc. Deadline for submissions: April 26, 2009 (abstracts), May 10, 2009 (papers).

♦ Oct 07-09 14th International Real-Time Ada Workshop (IRTAW'2009), Portovenere, Italy.
Deadline for submissions: May 8, 2009 (position papers).

♦ Nov 01-05 2009 ACM SIGAda Annual International Conference (SIGAda'2009), Tampa Bay
area, Florida, USA. Sponsored by ACM SIGAda, in cooperation with SIGCAS, SIGCSE,
SIGPLAN, Ada-Europe, and Ada Resource Association (ACM approval pending;
Cooperation approvals pending).

☺ November 02-03 14th International ERCIM Workshop on Formal Methods for Industrial Critical Systems
(FMICS'2009), Eindhoven, the Netherlands. Topics include: Design, specification, code generation and
testing based on formal methods; Verification and validation methods that address shortcomings of
existing methods with respect to their industrial applicability; Tools for the development of formal
design descriptions; Case studies and experience reports on industrial applications of formal methods,
focusing on lessons learned or identification of new research directions; Impact of the adoption of
formal methods on the development process and associated costs; Application of formal methods in
standardization and industrial forums; etc. Deadline for submissions: April 1, 2009 (abstracts), April 7,
2009 (papers).

258 Conference Calendar

Volume 29, Number 4, December 2008 Ada User Journal

November 02-07 16th International Symposium on Formal Methods (FM'2009), Eindhoven, the Netherlands. Theme:
"Theory meets practice". Topics include: every aspect of the development and application of formal
methods for the improvement of the current practice on system developments; of particular interest are
papers on tools and industrial applications; etc. Deadline for submissions: December 22, 2009
(workshops), May 4, 2009 (papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

260 Forthcoming Events

Volume 29, Number 4, December 2008 Ada User Journal

Preliminary Call for Participation
Ada Developer Room at FOSDEM 2009

7-8 February 2009, Brussels, Belgium

FOSDEM1, the Free and Open source Software Developers' European Meeting, is a free and non-
commercial two-day annual event organized in Brussels, Belgium. The 2009 edition will take place on
Saturday 7 and Sunday 8 February, 2009. Ada-Belgium2 organizes a series of presentations related to
Ada and Free Software, to be held in a Developer Room on both days of the event.

Preliminary overview:

• An Introduction to Ada for Beginning or Experienced Programmers,
by Jean-Pierre Rosen, Adalog

z The Object-Oriented Programming Model in Ada 2005, by Jean-Pierre Rosen, Adalog
z Ast2Cfg - A Framework for Control Flow Graph Based Analysis and Visualisation of Ada

Programs, by Georg Kienesberger, Vienna University of Technology
z Ada Annex E - Distributed Systems, by Thomas Quinot, AdaCore
z NARVAL - Distributed Data Acquisition from Particle Accelerators,

by Xavier Grave, Centre National de la Recherche Scientifique
z GPRBuild - A New Build Tool for Large-Scale Software Development,

by Vincent Celier, AdaCore
z GPS - The GNAT Programming Studio, by Vincent Celier, AdaCore
z GNATBench - Ada programming with Eclipse, by Vincent Celier, AdaCore
z Ada in Debian, by Ludovic Brenta, Debian
z MaRTE-OS - A Hard Real-Time Operating System for Embedded Devices,

by Miguel Telleria de Esteban, Universidad de Cantabria

The full list with abstracts of presentations and biographies of speakers is available on the Ada at
FOSDEM 2009 web-page. More details, such as the concrete schedule will follow later.

http://www.cs.kuleuven.be/~dirk/ada-belgium/events/09/090207-fosdem.html

The FOSDEM Team of Ada-Belgium

1 http://www.fosdem.org
2 http://www.cs.kuleuven.be/~dirk/ada-belgium

262 Forthcoming Events

Volume 29, Number 4, December 2008 Ada User Journal

Call for Industrial Presentations
14th International Conference on Reliable
Software Technologies - Ada-Europe 2009

8-12 June 2009, Brest, France
http://www.ada-europe.org/conference2009.html

Conference Chair

Frank Singhoff
UBO/LISyC, France
Frank.Singhoff@univ-brest.fr

Program Co-Chairs

Yvon Kermarrec
Télécom Bretagne, France
Yvon.Kermarrec@telecom-
bretagne.eu

Fabrice Kordon
University Pierre & Marie Curie,
France
Fabrice.Kordon@lip6.fr

Tutorial Chair

Jérôme Hugues
Télécom Paris-Tech, France
Jerome.Hugues@telecom-
paristech.fr

Exhibition Chair

Pierre Dissaux
Ellidiss Technologies
Pierre.Dissaux@ellidiss.com

Publicity Chair

Dirk Craeynest
Aubay Belgium & K.U.Leuven,
Belgium
Dirk.Craeynest@cs. kuleuven.be

Local Chairs

Alain Plantec and
Mickael Kerboeuf
UBO/LISyC, France
Alain.Plantec@univ-brest.fr
Mickael.Kerboeuf@univ-brest.fr

Industrial Committee
Guillem Bernat, Rapita Systems, UK
Agusti Canals, CS, France
Roderick Chapman, Praxis HIS, UK
Colin Coates, Telelogic, UK
Dirk Craeynest, Aubay Belgium &
K.U.Leuven, Belgium
Dirk Dickmanns, EADS, Germany
Tony Elliston, Ellidiss Software, UK
Franco Gasperoni, AdaCore, France
Hubert Keller, Forschungszentrum Karlsruhe
GmbH, Germany
Bruce Lewis, US Army, USA
Ahlan Marriott, White-Elephant GmbH,
Switzerland
Rei Stråhle, Saab Systems, Sweden

In cooperation with
ACM SIGAda

General Information

The 14th International Conference on Reliable Software Technologies - Ada-Europe 2009 will take place in Brest,
France. Following its traditional style, the conference will span a full week, including a three-day technical
program and vendor exhibitions from Tuesday to Thursday, along with parallel tutorials and workshops on
Monday and Friday.

Call for Industrial Presentations

In addition to the usual Call for Papers, the conference also seeks industrial presentations which may deliver value
and insight, but do not fit the selection process for regular papers. Authors of industrial presentations are invited
to submit a short overview (at least 1 page in size) of the proposed presentation to the Conference Chair by 12
January 2009. The Industrial Program Committee will review the proposals and make the selection. The authors of
selected presentations shall prepare a final short abstract and submit it to the Conference Chair by 11 May 2009,
aiming at a 20-minute talk. The authors of accepted presentations will be invited to derive articles from them for
publication in the Ada User Journal, which will host the proceedings of the Industrial Program of the Conference.

Call for Exhibitions

Commercial exhibitions will span the three days of the main conference. Vendors and providers of software
products and services should contact the Exhibition Chairfor information and for allowing suitable planning of the
exhibition space and time.

Topics
The conference has successfully established itself as an international forum for providers, practitioners and
researchers into reliable software technologies. The conference presentations will illustrate current work in the
theory and practice of the design, development and maintenance of long-lived, high-quality software systems for a
variety of application domains. The program will allow ample time for keynotes, Q&A sessions, panel discussions
and social events. Participants will include practitioners and researchers in representation from industry, academia
and government organizations active in the promotion and development of reliable software technologies. To mark
the completion of the Ada language standard revision process, contributions that present and discuss the potential
of the revised language are particularly sought after.

Prospective contributions should address the topics of interest to the conference, which include but are not limited
to those listed below:

· Methods and Techniques for Software Development and Maintenance: Requirements Engineering, Object-
Oriented Technologies, Model-driven Architecture and Engineering, Formal Methods, Re-engineering and
Reverse Engineering, Reuse, Software Management Issues, Model Engineering.

· Software Architectures: Design Patterns, Frameworks, Architecture-Centered Development, Component and
Class Libraries, Component-based Design.

· Enabling Technologies: Software Development Environments and Project Browsers, Compilers, Debuggers,
Run-time Systems, Middleware Components.

· Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis, Verification,
Validation, Testing of Software Systems.

· Theory and Practice of High-integrity Systems: Real-Time, Distribution, Fault Tolerance, Security, Reliability,
Trust and Safety.

· Embedded Systems: Architecture Modeling, Co-Design, Reliability and Performance Analysis.
· Mainstream and Emerging Applications: Multimedia and Communications, Manufacturing, Robotics, Avionics,

Space, Health Care, Transportation.
· Ada Language and Technology: Programming Techniques, Object-Orientation, Concurrent and Distributed

Programming, Evaluation & Comparative Assessments, Critical Review of Language Features and
Enhancements, Novel Support Technology, HW/SW Platforms.

· Experience Reports: Case Studies and Comparative Assessments, Management Approaches, Qualitative and
Quantitative Metrics.

· Ada and Education: Where does Ada stand in the software engineering curriculum; how learning Ada serves the
curriculum; what it takes to form a fluent Ada user; lessons learned on Education and Training Activities with
bearing on any of the conference topics.

12 January 2009 Submission of industrial presentation proposals
09 February 2009 Notification to all authors
11 May 2009 Industrial presentations required
8-12 June 2009 Conference

14TH INTERNATIONAL REAL-TIME ADA WORKSHOP
IRTAW-14

7-9 October 2009
Portovenere

Italy
http://events.math.unipd.it/irtaw14/

CALL FOR PAPERS
For over 20 years the series of International Real-Time Ada Workshop meetings has provided a forum for

identifying issues with real-time system support in Ada and for exploring possible approaches and solutions, and has
attracted participation from key members of the research, user, and implementer communities worldwide. Recent IRTAW
meetings have significantly contributed to the Ada 2005 standard, especially with respect to the tasking features, the real-
time and high-integrity systems annexes, and the standardization of the Ravenscar profile.

In keeping with this tradition, and in light of Ada 2005 implementations beginning to appear, and thought of post Ada

2005 language changes, the goals of IRTAW-14 will be to:
• examine experiences in using Ada 2005 for the development of real-time systems and applications;
• report on or illustrate implementation approaches for the real-time features of Ada 2005;
• consider the added value of developing other real-time Ada profiles in addition to the Ravenscar profile;
• examine the implications to Ada of the growing use of multiprocessors in the development of real-time systems,

particularly with regard to predictability, robustness, and other issues;
• examine and develop paradigms for using Ada 2005 for real-time distributed systems, taking into account

robustness as well as hard, flexible and application-defined scheduling;
• consider the definition of specific patterns and libraries for real-time systems development in Ada;
• identify how Ada relates to the certification of safety-critical and/or security-critical real-time systems;
• review the status and contents of ISO reports related to real-time Ada and consider the interest of developing new

secondary standards or extensions;
• examine the status of the Real-Time Specification for Java and other languages for real-time systems

development, and consider user experience with current implementations and with issues of interoperability with
Ada in embedded real-time systems;

• consider the lessons learned from industrial experience with Ada and the Ravenscar Profile in actual real-time
projects;

• consider the language vulnerabilities of the Ravenscar and full language definitions.

Participation at IRTAW-14 is by invitation following the submission of a position paper addressing one or more of the
above topics or related real-time Ada issues. Alternatively, anyone wishing to receive an invitation, but for one reason or
another is unable to produce a position paper, may send in a one-page position statement indicating their interests. Priority
will, however, be given to those submitting papers.

Position papers should not exceed ten pages in typical IEEE conference layout, excluding code inserts. All accepted
papers will appear, in their final form, in the Workshop Proceedings, which will be published as a special issue of Ada
Letters (ACM Press). Selected papers will also appear in the Ada User Journal.

Please submit position papers, in PDF format, to the Program Chair by e-mail: neil@cs.york.ac.uk

Program Committee
Neil Audsley (Program Chair), Ben Brosgol, Alan Burns, Michael González Harbour, Stephen Michell, Javier Miranda,
Luís Miguel Pinho, Juan Antonio de la Puente, Jorge Real, José Ruiz, Tullio Vardanega (Local Chair) and Andy Wellings.

Important Dates
Receipt of Position Paper: 8 May 2009
Notification of Acceptance: 22 May 2009
Final Copy of Paper: 16 September 2009
Workshop Date: 7-9 October 2009

264 Forthcoming Events

Volume 29, Number 4, December 2008 Ada User Journal

Call for Technical Contributions – SIGAda 2009

ACM Annual International Conference
on Ada and Related Technologies:

Engineering Safe, Secure, and Reliable Software
Hilton St. Petersburg Bayfront Hotel

Tampa Bay, Florida, USA
November 1-5, 2009

Submission Deadline: June 30, 2009
Sponsored by ACM SIGAda

http://www.acm.org/sigada/conf/sigada2009

SUMMARY: Reliability, safety, and security are among the most critical requirements of contemporary
software. The application of software engineering methods, tools, and languages all interrelate to affect how and
whether these requirements are met.
Such software is in operation in many domains of application. Much has been accomplished in recent years, but
much remains to be done. Our tools, methods, and languages must be continually refined; our management
process must remain focused on the importance of reliability, safety, and security; our educational institutions
must fully integrate these concerns into their curricula.
The conference will gather industrial and government experts, educators, software engineers, and researchers
interested in developing, analyzing, and certifying reliable, safe, secure software. We are soliciting technical
papers and experience reports with a focus on, or comparison with, Ada.
We are especially interested in experience in integrating these concepts into the instructional process at all levels.

POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:
z Transitioning to Ada 2005
z Challenges for developing reliable, safe, secure

software
z Ada and SPARK in the classroom and student

laboratory
z Language selection for highly reliable systems
z Mixed-language development
z Use of high reliability subsets or profiles such as

MISRA C, Ravenscar, SPARK
z High-reliability standards and their issues
z Software process and quality metrics
z System of Systems
z Real-time networking/quality of service

guarantees

• Analysis, testing, and validation
• Use of ASIS for new Ada tool development
• High-reliability development experience reports
• Static and dynamic analysis of code
• Integrating COTS software components
• System Architecture & Design
• Information Assurance
• Ada products certified against Common Criteria /

Common Evaluation Methodology
• Distributed systems
• Use of new Ada 2005 features/capabilities
• Fault tolerance and recovery
• Performance analysis

KINDS OF TECHNICAL CONTRIBUTIONS:

TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically
10-20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings
and in ACM Ada Letters. The Proceedings will be entered into the widely-consulted ACM Digital Library
accessible online to university campuses, ACM's 80,000 members, and the software community.
EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature.
If your abstract is accepted, you will be expected to produce a full paper, which will appear in the proceedings.
Extended abstracts will be double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its
relationship with previous work by you and others (with bibliographic references), results to date, and future
directions.

Forthcoming Events 265

Ada User Journal Volume 29, Number 4, December 2008

EXPERIENCE REPORTS present timely results on the application of Ada and related technologies. Submit a
1-2 page description of the project and the key points of interest of project experiences. Descriptions will be
published in the final program or proceedings, but a paper will not be required.
PANEL SESSIONS gather a group of experts on a particular topic who present their views and then exchange
views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic,
coordinator, and potential panelists.
WORKSHOPS are focused work sessions, which provide a forum for knowledgeable professionals to explore
issues, exchange views, and perhaps produce a report on a particular subject. A list of planned workshops and
requirements for participation will be published in the Advance Program. Workshop proposals, up to 5 pages in
length, will be selected by the Program Committee based on their applicability to the conference and potential for
attracting participants.
TUTORIALS offer the flexibility to address a broad spectrum of topics relevant to Ada, and those enabling
technologies which make the engineering of Ada applications more effective. Submissions will be evaluated
based on relevance, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial proposals
should include the expected level of experience of participants, an abstract or outline, the qualifications of the
instructor(s), and the length of the tutorial (half-day or full-day). Tutorial presenters receive complimentary
registration to the other tutorials and the conference.
HOW TO SUBMIT: Send contributions by June 30, 2009, in Word, PDF, or text format as follows:
Technical Articles, Extended Abstracts, Experience Reports, and Panel Session Proposals: Program Chair, Lt.
Col. Jeff Boleng (Jeff.Boleng@usafa.edu)

Workshop Proposals: Workshops Chair, Bill Thomas (BThomas@mitre.org)
Tutorial Proposals: Tutorials Chair, Richard Riehle (RDRiehle@nps.edu)

FURTHER INFORMATION:
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and
university curricula. The Conference welcomes a grant application from anyone whose goals meet this
description. The benefits include full conference registration with proceedings and registration costs for 2 days of
conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students from
GNAT Academic Program member institutions, which can be combined with conference grants. For more details
visit the conference web site or contact Prof. Michael B. Feldman (mfeldman@gwu.edu).
OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper
selected by the program committee as the outstanding student contribution to the conference.
SPONSORS AND EXHIBITORS: Please contact Alok Srivastava (Alok.Srivastava@auatac.com) for
information about becoming a sponsor and/or exhibitor at SIGAda 2009.
IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be
particularly aware and careful about visa requirements, and should plan travel well in advance. Visit the
conference website for detailed information pertaining to visas.

ANY QUESTIONS?:
Please submit your questions on the conference to the Conference Chair, Greg Gicca (gicca@adacore.com) or
Local Arrangements Chair Currie Colket (colket@acm.org).

 267

Ada User Journal Volume 29, Number 4, December 2008

Ada-C++ Interfacing in the ERAM System
Howard Ausden
Lockheed Martin Corp, 9211 Corporate Boulevard, Rockville, Maryland 20850, USA; Tel: +1 301 640 2099;
email: howard.ausden@lmco.com

Abstract
This paper describes the approach used in the ERAM
air traffic control system to integrate flight objects,
published by Ada code, with C++ client software
bound into the same executable.
Keywords: Ada, C++, multi-language.

1 Introduction
The En Route Automation Modernization (ERAM)
program is a real-time Air Traffic Control (ATC) program
being developed by Lockheed Martin Corporation. ERAM
is a United States FAA program: see http://www.faa.gov/
airports_airtraffic/technology/eram.

ERAM has high availability requirements, mission critical
applications, and stringent response time requirements.
The estimated size of the ERAM system is 1,300K
statements of primarily Ada and C++ code.

This paper discusses some advantages and challenges
encountered in the development of the interface for passing
flight data between Ada and C++ components of ERAM.

2 Software Architecture for Flight Data
The operational ERAM software consists of executables
running on UNIX, communicating by passing messages.
The flight server is one such executable, and is written
entirely in Ada. It runs on a central server, processing
incoming messages to create, update, and delete flights, and
publishing flight data messages to client executables. Each
client executable links in libraries containing the methods it
needs to interact with the flight object. The majority of the
dozen or so client executables are written in Ada; however,
some of the client executables are written in C++. The
C++, more than 150K statements, was reused from an
earlier system because it had years of investment that made
it a fully tested and operationally suitable product, and the
customer liked it. This C++ code runs in the controller
workstations and displays flight data, so it needs to call
many of the flight object’s methods.

The software design choices were to:

• Re-write the Ada client-side libraries in C++ (the
libraries receive the published flight data, maintain a
flight database, and provide methods for clients to
interact with flight data)

• “Wrap” the Ada methods with C++.

Figure 1 Simplified architecture for flight data

Because some flight object methods are long and complex
(for example, the routines to predict position of an aircraft)
it seemed better to implement wrapper code, rather than
writing and forever maintaining both Ada and C++
versions.

Colleagues who had written cross-language code
previously encouraged us to keep the cross-language API
simple; they suggested using simple types like integer,
Boolean, and records, that could be exchanged directly
between the languages. This seemed impossible when
considering the size and complexity of the ERAM flight
object (shown below in overview).

Figure 2 ERAM flight object model

Flight
Server
(Ada)

Flights Radar Display
(C++ client)

Flight Client
(Ada and C++)

= executable

List Display
(C++ client)

Ada Client

Flight Client
(Ada)

Ada Client

Flight Client
(Ada and C++)

268 Ada-C++ Inter fac ing in the ERAM System

Volume 29, Number 4, December 2008 Ada User Journal

3 Ada – C++ Interfacing
3.1 API Generation
Our initial approach was to develop a tool to generate the
C++ header files from the Ada specs (described in
reference [1]). The intent was to ensure consistency and to
save effort; however:

1. Ensuring consistency between Ada and C++ can only
be done correctly at build time, since somebody might
edit the generated API before the system is built.

2. The generated API was unnatural; it did not employ
types or conventions that were natural to the language.
Since many developers would write code against the
API, it was important that it should employ the best
native techniques.

3. While the tool did help with the initial generation of
the C++ API, subsequent maintenance typically
involves minor updates such as adding a parameter to a
method. In this case, a code generator increases, rather
than saves, work.

3.2 General Wrapper Approach
In the case of our flight data libraries, the C++ client is
generally interrogating the flight object. Figure 3 below
shows the general approach.

Figure 3 Wrapper approach for C++ calling Ada

In both languages, there is a natural API that does not
reflect concerns with passing data between the languages.
In the C++ code, data is moved into types that are simple
enough to exchange between the languages, and externed
Ada routines are called. Data items returned from Ada are
constructed into C++ objects.

On the Ada side, the package with the natural Ada API is
not usually called directly from C++; the wrapper
functionality is encapsulated in a child package (the file
naming convention is <parent file>-w for wrappers). The
child package converts the intermediate types into native
Ada types and calls the natural Ada API like any other Ada
client would. Reference [2] contains an example of this
wrapper approach.

3.3 Cross-Language Consistency Checking
Of course the Ada and C++ are compiled separately yet
they are linked together in the same executable. The
consistency of bit layouts between the Ada and C++ types
is ensured by running a type matching tool at build time.
This is described in reference [3].

We are currently investigating the feasibility of a tool to
ensure that method signatures match, since the linker
matches by method name only. Since Ada requires
methods called in/from another language to be specified in
a pragma import/export, the tool will scan the source code
to find the pragma imports and exports in the Ada, and will
then search for matching calls in the C++.

3.4 Cross-Language Data Types
ERAM and its ancestor systems use types dictionaries to
allow online and offline applications to know information
about types like bit layouts (see reference [4]). Initially we
used a type generator tool to create both Ada and C++
types with identical bit layouts from the dictionary.
However the types were unnatural (for example, they
contained padding fields) and code had to be written in
both languages to move data in and out of the unnatural
types. As developers gained expertise they learned to
design types that align, or at least to design an intermediate
type that matches the natural type in one of the languages,
thus saving both labor and runtime cycles to copy data in
and out of intermediate objects. For example, booleans are
32 bits in C++ and 8 bits in Ada; by writing a
representation clause to force the Ada compiler to use 32
bits, the type can be directly exchanged with C++.

3.5 Large, Complex Types
Only simple types with identical bit layouts can be passed
between languages. However, as mentioned earlier the
ERAM flight object is highly complex and contains many
complex sub-objects. When passing a large, complex type
between languages the rule is to divide and conquer. Break
the large type into small pieces: make multiple calls and
fetch piecemeal; construct the complex object in the other
language. The smaller the piece, the easier it is to make the
types align. Arbitrarily large, complex types can be
passed this way.

3.5.1 Repeated Elements
There are two ways to pass repeated elements (for example,
an array/table or a vector) between languages.

• Pass the number of items and then loop and pass each
element, or

• Pack the elements into a buffer:

Natural C++ API
 foo.h

The actual implementation
foo.adb

Natural Ada API
foo.ads

Convert to/from natural Ada types
Call same Ada API as Ada clients

foo-w.adb

Child package of foo
Pragma exports to match externs

foo-w.ads

Convert to/from common types
Call externed Ada routines

foo.cpp

Direction
of calls

H. Ausden 269

Ada User Journal Volume 29, Number 4, December 2008

o Pack attributes and type IDs into the buffer in
one language

o Pass the buffer address to the other language

o Unpack the attributes; use the type ID to
move bytes into the native type.

3.6 Performance Considerations
ERAM is a real-time system. The C++ display code needs
to interact with the Ada flight object many times in one
second. Of course the sub-objects within a flight such as
the flight plan, route, and trajectory, are represented by
private types in both languages. This allows the internal
implementation to employ performance optimizations.
When a C++ client gets a sub-object from a flight, the
wrapper design depends on the complexity of the type and
the client’s calling pattern:

• The whole object may be fetched to C++ (slow) and
then individual ‘get attribute’ functions will be pure
C++ (fast)

• Or, just the object’s handle is passed across languages
(fast); methods are wrappers of Ada routines (slow);
once fetched to the C++ side, attributes are cached so
subsequent access is fast.

Complex methods such as position prediction are
implemented as wrappers of Ada routines, regardless of
whether the whole object was passed to C++.

3.6.1 Smart Pointer Wrapper Example
Since a flight object is constant until next updated by the
server, multiple readers can share one copy. This makes a
smart pointer a good choice for a handle for a flight object
or sub-object.

Figure 4 Smart pointer with Ada and C++ clients

A smart pointer consists of a pointer to an object and a
reference count. Smart pointers avoid memory leaks by
counting references (i.e., pointers) to an object and freeing
the memory when the reference count reaches zero. They
also avoid the cost of copying, since all readers point to a
single object.

A C++ wrapper for the smart pointer allows these benefits
to be enjoyed by both C++ and Ada code. In Ada, the
reference count is maintained by the Adjust and Finalize
routines (see Ada.Finalization.Controlled). In C++, the
client must overload the assignment and destructor
operations and make calls to the Ada copy and finalize
routines.

3.7 Calling into C++ from Ada
The foregoing discussion describes how C++ can fetch data
from Ada; how about when Ada needs to call C++? In
ERAM, this situation arises when a flight is received from
the server and the displays must be updated. The C++
client has a flight listener object with an accept_update
routine that must be dispatched whenever a flight update is
received by the Ada code. But how can Ada code dispatch
a C++ method?

To solve the problem, an Ada listener object is created that
contains a pointer to the C++ object. The Ada listener is
registered with the Ada API like any other Ada client’s
listener. Any calls to the Ada listener object are passed to
C++ via static/non-dispatching routines (visible to Ada via
pragma import) that take the C++ object pointer as a
parameter. The static C++ routine can then perform the
normal object call and dispatch the routine. This simple
and powerful technique allows us to use object-oriented
design across the languages.

Figure 5 Calling into C++ from Ada

The approach is shown in the figure above:

• The package listener.ads contains a tagged listener
type and an abstract Accept_Update method

• The child package listener-w.ads extends the type with
a pointer to the C++ listener, and implements
Accept_Update to call the imported C++
accept_update routine

• The C++ wrapper listener-w.cpp inherits from the
listener type in listener.h, and calls the C++ user’s
implementation of accept_update.

Ada Copy 1
C++ Copy 3

Ada Copy 2 Counter
Pointer Object

Natural C++ API

listener.h

Abstract
listener.adb

Natural Ada API
listener.ads

Call imported C++ routines
listener-w.adb

Child package: extend Ada listener
Declare pragma imports

listener-w.ads

Virtual
listener.cpp

Direction
of calls

Call C++ object
listener-w.cpp

270 Ada-C++ Inter fac ing in the ERAM System

Volume 29, Number 4, December 2008 Ada User Journal

3.8 Exception Propagation across Languages
What happens when an exception is propagated in one
language, and reaches the boundary between the
languages? If the exception is handled in the other
language, control will return to the original language but
the stack will not have been unwound and the program will
crash. This is because each language has its own runtime
management software.

Either of two approaches can be used:

• Catch all exceptions in wrapper routines, pass a return
code corresponding to the exception to the other
language, and then raise a corresponding exception in
that language

• Or, catch all exceptions and call a utility routine
provided by our compiler vendor. The utility routine
unwinds the stack before calling the other language
and raising a corresponding exception.

4 Conclusion
In the ERAM flight application the wrappers contain some
10K statements of C++ and a similar amount of Ada, yet
over the life of the ERAM system the wrapper approach
will be cheaper than maintaining duplicate C++ and Ada
versions of the client-side flight code.

Thanks to the strengths of Ada, such as representation
clauses and pragma import/export, every cross-language
problem was solved, including passing large, complex
objects, and object-oriented programming. These
techniques have worked successfully through several levels
of testing over more than 2 years, and will be in operational
use before the end of 2009.

References
[1] Howard Ausden and Karl Nyberg (November 2005),

Using ASIS to generate C++ bindings, ACM SIGAda
Ada Letters, Proceedings of the 2005 annual ACM
SIGAda international conference on Ada: The
Engineering of Correct and Reliable Software for Real-
Time & Distributed Systems using Ada and Related
Technologies SigAda '05, Volume XXV Issue 4

[2] Howard Ausden (June 2008), Ada-C++ Interfacing in
the Flight Services Component of the ERAM System,
presentation at Ada-Europe 2008

[3] Matt Mark (November 2005), Data sharing between
Ada and C/C++, ACM SIGAda Ada Letters,
Proceedings of the 2005 annual ACM SIGAda
international conference on Ada: The Engineering of
Correct and Reliable Software for Real-Time &
Distributed Systems using Ada and Related
Technologies SigAda '05, Volume XXV Issue 4

[4] Michael Glasgow, Donna Hepner, Richard Schmidt
(1991), Implementing a table-driven types dictionary
service in Ada, paper presented at EUROSPACE Ada
in AEROSPACE Symposium, November 1991.
Unpublished

© 2008 Lockheed Martin Corporation. All Rights
Reserved. Any document indicating that Lockheed Martin
needs to assign copyright in the submission to a third party
must be forwarded to Ric Elias, Intellectual Property
Counsel, IS&GS.

 271

Ada User Journal Volume 29, Number 4, December 2008

Porting Naval Command & Control Systems to
Ada 2005
Jeff Cousins
BAE Systems Integrated System Technologies (Insyte) Limited KT3 4LH; UK; Tel: +44 20 8329 5430;
email: jeff.cousins@baesystems.com

Abstract
This paper describes our experience of porting large
naval Command and Control Systems from Ada 95 to
Ada 2005. It covers: the area of application; what
code changes did Ada 2005 require;and new features
and tools with Ada 2005.

1 Introduction
This paper discusses the impact of the Ada 2005 language
changes upon a family of naval Command and Control
Systems. It describes which language changes have had the
most impact, and what changes were necessary to our code
to make it Ada 95 - 2005 portable.

The paper begins with an overview of the area of
application. This is a family of naval Command and
Control Systems developed by BAE Systems Insyte over
many years. Extensive use is made of the Ada language.
Legacy code had been ported previously from Ada 83 to
Ada 95.

Our naval projects predominantly use the GNAT compiler.
We have generally adopted new versions of GNAT within
a few months of their release, after an evaluation period, so
as to pick up fixes and other benefits such as more efficient
back ends.GNAT has progressively added the new features
of Ada 2005, and most of the new language was available
(with the use of an Ada 2005 compiler switch) even before
the language was finally published by ISO, thus allowing
an early evaluation of the impact.

One of the goals of the 1995 and 2005 revisions of the Ada
language was to maintain backward compatibility with the
previous version. This did not however preclude making
changes where it was thought that there would be a
worthwhile improvement in the safety and security of the
language. Thus work has been necessary to bring legacy
code up to date to be Ada 2005 compliant.

Although the Ada 2005 compiler switch has not yet been
used for customer deliveries, we have attempted to achieve
a degree of future proofing by writing our code to be
portable across both Ada 95 and Ada 2005.

Many of the recent language changes were classified as
retrospective corrections to Ada 95, so we were impacted
by the changes even without using the Ada 2005 switch.

The paper identifies each language change that has required
a code change, what the scale of the impact was, and what

the code change was. Sometimes alternative solutions were
available, one for a pure Ada 2005 system, and another that
was less neat but which was backwardly compatible with
Ada 95. The paper compares which changes caused
"incompatibilities" detectable at compile time, and which
caused "inconsistencies" not detected until execution.

The biggest impact came from the introduction of new
reserved words, in particular “Interface”. Although the
solution was a very simple name change, it was quite hard
to manage. A package called Interface is by its nature
likely to be on a boundary between subsystems, so a name
change will have widespread affect, and different projects
may be ready to adopt the change at different times. Most
other changes were localised to a few files. Overall, the
work necessary to port from Ada 95 to 2005 has been
found to be much less than that incurred in porting from
Ada83 to 95.

Although our changes have mostly been a porting exercise,
some limited use has been made of the new features, such
as Vectors from the Containers package, the
Environment_Variables interface, and pragma Restrictions.

Besides the language changes, the paper mentions other
new utilities that can be used to improve the reliability of
Ada programs. The GNAT compiler now provides
additional utilities for dynamic stack usage measurement
and for the detection of un-initialised variables. These have
proved useful for drawing attention to potential problems.

2 Area of application
CMS-1 family of Command Systems
The CMS-1 family of Command Systems was initially
developed for the Royal Navy’s Type 45 destroyers,
inheriting legacy code from the Type 23 frigates and Type
42 destroyers. It has also been fitted to the Falklands patrol
vessel HMS Clyde, the helicopter training and casualty
reception ship RFA Argus, and is in development for retro-
fit to the Type 23 frigates and for fitting to the CVF
carriers.

CMS-1 systems have dual redundant Servers hosting
software written mostly in Ada: the Type 45 variant has 1.2
million lines of Ada and the Type 23 variant 1 million lines
of Ada. This is contained in 19 thousand original Ada
source files, 85 thousand after code generation. CMS-1
systems have multiple Multi-Function Consoles for
operator interaction, hosting software written mostly in
C++ (about 350 thousand lines).

272 Port ing Naval Command & Control Systems to Ada 2005

Volume 29, Number 4, December 2008 Ada User Journal

Basic CMS-1 Architecture

The architecture is a conventional one comprising dual
redundant servers connected to multiple operator consoles
by a dual redundant LAN, and to ship’s equipments by a
dual or triple redundant ship’s highway (DTS in this case).

3 What code changes did Ada 2005
require?
• There are new Reserved Words which can no longer be

used as identifiers.

• ‘Access is no longer allowed in generic bodies.

• Limited function results may require explicit use of an
access type.

• Explicit null exclusion may be required for renamed
subprograms.

• There is an inconsistency in Interfaces.C.Strings.

History of porting: Ada 83 to Ada 95
Much of the code had previously been ported from Ada 83
to 95. For example, Ada 95 has a single exception handler
for Constraint and Numeric Errors, so code was ported
from:

when CONSTRAINT_ERROR =>
 - - Handler;
when NUMERIC_ERROR =>
 - - Handler;

to:

when CONSTRAINT_ERROR | NUMERIC_ERROR=>
 - - Common handler;

Ada 95 to 2005 porting required only about 10% of the
effort of that Ada 83 to 95 porting had.

3.1 New reserved words
The biggest impact of all was due to the word “interface”
becoming a reserved word in Ada 2005.

A fairly common model for structuring packages is to a
have a minimal parent package X, with various child
packages hanging off of it, one of which publishes the user
interface. Naturally enough this child package would
usually be called X.Interface. Also, occasionally variables
were called Interface.

A convention of simply adding a prefix seemed to have
already developed in the wider Ada world, e.g.
GC_Interface for GNATCOM.

Items named using the traditional “English” spelling
synchronised were fortunately not affected by the
“American” (and Oxford English Dictionary) synchronized
becoming reserved.

This affected 149 files. (The number of files is given rather
than the number of lines since the editing time was small.
Files are the unit of configuration control, and it was the
getting of files from the configuration management system
and putting them back that took the time).

Although the editing time was small, an Interface child
package was by its nature likely to be on the interface
between different teams, so some co-ordination was
required, and it took some months before all the teams
affected were ready to take the change.

3.2 No ‘Access in generic bodies
‘Access is no longer allowed in generic body (AI-229).

There was already an established work-around of adding a
constant set to x‘Access to private part of the spec, and then
using this constant in the body.

This was a retrospective change to Ada 95, besides being
required for Ada 2005, so if you are using a recent compiler
you may have to make code changes even if you are not
using any new Ada 2005 features.

This affected 16 files.

In the following example, a generic spec declares a call-
back routine. In the generic body, one of its procedures
calls a procedure in a second package, passing the call-back
routine as a parameter.

Original Ada 95
generic
 - - Parameters
package P is
 - - Types
 - - Subprogram specs including
 procedure Callback;
private
 - - Types
 - - Subprogram specs
end P;

 - - Context clauses including
with Y;
generic
package body P is
 - - Subprogram bodies including
 procedure Callback is
 begin
 - -;
 end Callback;

 procedure Proc is
 begin
 - -
 Y.Z (
 Callback_Ptr => Callback'Access);

Support Data
Server

Support Data
Server

DTS

CMS Internal

CMS

Tactica
Data

Tactica
Data Tactica

Data

Tactica
Data

J. Cousins 273

Ada User Journal Volume 29, Number 4, December 2008

 - -
 end Proc;
end P;

New Ada 95 and Ada 2005

- - Context clauses including
with X;
generic
 - - Parameters
package P is
 - - Types
 - - Subprogram specs including
 procedure Callback;
private
 - - Types
 - - Subprogram specs
 Callback_Access : constant
 X.Callback_Ptr_Type :=
 Callback'Access
end P;

- - Context clauses including
with Y;
generic
package body P is
 - - Subprogram bodies including
 procedure Callback is
 begin
 - -;
 end Callback;

 procedure Proc is
 begin
 - -
 Y.Z (
 Callback_Ptr => Callback_Access);
 - -
 end Proc;
end P;

3.3 Limited function results
Ada 2005 has dropped the concept of implicit pass by-
reference types, functions returning a value of a limited
type must explicitly return by access type.

The workaround is to declare the objects to be returned as
aliased, return an access type pointing to them, and let
caller de-reference using .all.

Using an Ada 2005 anonymous access type would affect
the fewest files but then the code would not be Ada
95/2005 portable. Having language specific variants
would be a pain for configuration control, so a named
access type has been used.

This affected 6 files.

In the following example, the first package T.GF declares a
limited private type for use as a “handle” type for pointing
to objects. The second package R.MC declares a selector
function that returns the appropriate handle depending on
some parameter. The third package R.MGI declares a pool
of handles. The body of R.MC gives the body of the
function for choosing a handle. At the end is a call of the
selector function.

Original Ada 95
package T.GF is
 type Gsi_Handle_Type is limited
 private;
 - - Other types
 - - Subprogram specs
private
 type GSI_Handle_Type is …;
end T.GF;

with T.GF;
with T.S;
package R.MC is
 - - Types
 - - Subprogram specs including
 function Get_GSI_Handle (
 Source_Name : in T.S.Source_Name_T)
 return T.GF.GSI_Handle_Type;
end R.MC;

package R.MGI is
 - - Subprogram specs
 GSI_Handle_A :
 T.GF.GSI_Handle_Type;
 GSI_Handle_B :
 T.GF.GSI_Handle_Type;
end R.MGI;

with R.MGI;
package body R.MC is
 - - Subprogram bodies including
 function Get_GSI_Handle (
 Source_Name : in T.S.Source_Name_T)
 return T.GF.GSI_Handle_Type is
 begin
 case Source_Name is
 when A =>
 return R.MGI.GSI_Handle_A;
 when B =>
 return R.MGI.GSI_Handle_B;
 end case;
 end Get_GSI_Handle;
end R.MC;

GSI_Handle := R.MC.Get_GSI_Handle
 (My_Source_Name);

Ada 2005 only
Package T.GF is unchanged.

with T.GF;
with T.S;
package R.MC is
 - - Types
 - - Subprogram specs including
 function Get_GSI_Handle (
 Source_Name : in T.S.Source_Name_T)
 return access T.GF.GSI_Handle_Type;
end R.MC;

274 Port ing Naval Command & Control Systems to Ada 2005

Volume 29, Number 4, December 2008 Ada User Journal

package R.MGI is
 - - Subprogram specs
 GSI_Handle_A :
 aliased T.GF.GSI_Handle_Type;
 GSI_Handle_B :
 aliased T.GF.GSI_Handle_Type;
end R.MGI;

with R.MGI;
package body R.MC is
 - - Subprogram bodies including
 function Get_GSI_Handle (
 Source_Name : in T.S.Source_Name_T)
 return access T.GF.GSI_Handle_Type
 is
 begin
 case Source_Name is
 when A =>
 return
 R.MGI.GSI_Handle_A’Access;
 when B =>
 return
 R.MGI.GSI_Handle_B’Access;
 end case;
 end Get_GSI_Handle;
end R.MC;

GSI_Handle := R.MC.Get_GSI_Handle
 (My_Source_Name).all;

Ada 95/2005 portable

package T.GF is
 type Gsi_Handle_Type is limited
 private;
 type Gsi_Handle_Type_Ptr is access
 all Gsi_Handle_Type;
 - - Other types
 - - Subprogram specs
private
 type GSI_Handle_Type is …;
end T.GF;

with T.GF;
with T.S;
package R.MC is
 - - Types
 - - Subprogram specs including
 function Get_GSI_Handle (
 Source_Name : in T.S.Source_Name_T)
 return T.GF.GSI_Handle_Type_Ptr;
end R.MC;

package R.MGI is
 -- Subprogram specs
 GSI_Handle_A :
 aliased T.GF.GSI_Handle_Type;
 GSI_Handle_B :

 aliased T.GF.GSI_Handle_Type;
end R.MGI;

with R.MGI;
package body R.MC is
 - - Subprogram bodies including
 function Get_GSI_Handle (
 Source_Name : in T.S.Source_Name_T)
 return T.GF.GSI_Handle_Type_Ptr
 is
 begin
 case Source_Name is
 when A =>
 return
 R.MGI.GSI_Handle_A’Access;
 when B =>
 return
 R.MGI.GSI_Handle_B’Access;
 end case;
 end Get_GSI_Handle;
end R.MC;

GSI_Handle := R.MC.Get_GSI_Handle
 (My_Source_Name).all;

3.4 Explicit null exclusion for renamed
subprograms
When a subprogram renames another and they dispatch
upon an access parameter, then the access parameter must
be explicitly null excluding (RM-3.9.2, changed as a result
of AI95-00404-01).

It would be easy enough to add the words “not null” but
then the code would not be Ada 95/2005 portable. Having
language specific variants would be a pain for
configuration control, so the renames has been changed to a
body calling the first named routine – a stepping stone
procedure. This incurs a marginal overhead, but the
procedure is only called infrequently.

Note that AI447, once implemented, will retrospectively
change Ada 95 to allow explicit null exclusion, to ease
transition.

This affected 2 files.

In the following example the first parameter is dispatching.

Original Ada 95
procedure Cleared (
 Subscriber : access Subscriber_Type;
 First_Instance_Id : in Instance_Id_Type;
 Last_Instance_Id : in Instance_Id_Type
) is
begin
 - -;
end Cleared;

procedure Partially_Cleared (
 Subscriber : access Subscriber_Type;
 First_Instance_Id : in Instance_Id_Type;

J. Cousins 275

Ada User Journal Volume 29, Number 4, December 2008

 Last_Instance_Id : in Instance_Id_Type
) renames Cleared;

Ada 2005 only

procedure Cleared (
 Subscriber : not null access Subscriber_Type;
 First_Instance_Id : in Instance_Id_Type;
 Last_Instance_Id : in Instance_Id_Type
) is
begin
 - -;
end Cleared;

procedure Partially_Cleared (
 Subscriber : not null access Subscriber_Type;
 First_Instance_Id : in Instance_Id_Type;
 Last_Instance_Id : in Instance_Id_Type
) renames Cleared;

Ada 95/2005 portable

procedure Cleared (
 Subscriber : access Subscriber_Type;
 First_Instance_Id : in Instance_Id_Type;
 Last_Instance_Id : in Instance_Id_Type
) is
begin
 - -;
end Cleared;

procedure Partially_Cleared (
 Subscriber : access Subscriber_Type;
 First_Instance_Id : in Instance_Id_Type;
 Last_Instance_Id : in Instance_Id_Type
) is
begin
 Cleared (
 Subscriber => Subsciber,
 First_Instance_Id => First_Instance_Id,
 Last_Instance_Id => Last_Instance_Id);
end Partially_Cleared;

3.5 Inconsistency in Interfaces.C.Strings
The procedure Update in Interfaces.C.Strings no longer
adds a nul character (AI-242).

This was a retrospective change to Ada 95, besides being
required for Ada 2005, so if you are using a recent compiler
(v5.04 or later for GNAT) you may have to make code
changes even if you are not using any new Ada 2005
features.

This only affected 1 file, but it was not a very nice
language change since it was not an “incompatibility”
detectable by the compiler, but was an “inconsistency” that
was not found until run time. (An incompatibility would
be reported by the compiler as illegal code, an
inconsistency is not illegal but the software no longer
behaves as before).

4 New features and tools with Ada 2005
We have already made use of some of the new language
features:

• Access to environment variables;

• Containers;

• pragma Restrictions.

Some new tools from the vendor which came along at
around the same time as the Ada 2005 Amendment are also
discussed:

• GNATStack;

• Dynamic stack usage analysis;

• Initialize_Scalars;

• Warnings for un-initialised out parameters;

• Back-end switch for further searching for un-initialised
variables.

4.1 New Features – Access to environment
variables

We have already made use of package
Environment_Variables. Unfortunately it has separate
functions Exists (to test whether an environment variable
exists) and Value (to read the value of the environment
variable), the latter raising an exception if the environment
variable does not exist. It would have been more
convenient if Value simply returned a null string if the
environment variable did not exist – it is normally regarded
as bad practice to use an exception for what may be normal
behaviour.

4.2 New Features - Containers
Our tools team have already made use of Vectors for an
extensible array to store "lists" of mappings between record
component names and enumeration literals. No problems
were experienced in using them.

It is probably an implementation issue, but the impression
that we had from looking at the GNAT implementation was
that Ada Vectors after most operations are exactly the
capacity they need to be. They do not provide an extra bit
of capacity for expansion in the same way as GNAT's
implementation of Ada Unbounded Strings does, so
memory needs to be re-assigned every time that the
capacity grows. It is easy to work around this by making
calls to Reserve_Capacity and overestimating the capacity
required, but it is not as convenient.

We still use Booch Unbounded Maps for mapping items
such as enumeration literals to their represented values and
vice versa. Ada 2005 Hashed_Maps do not appear to
provide the bucket statistics that Booch Maps do. Bucket
statistics are useful in determining the effectiveness of the
hashing function. We can test the hashing function in
isolation, but it would be more convenient to be able to get
the statistics from the container.

Overall, it is nice to finally have containers as part of the
predefined Ada library.

276 Port ing Naval Command & Control Systems to Ada 2005

Volume 29, Number 4, December 2008 Ada User Journal

4.3 New Features – pragma Restrictions
The Ravenscar profile is too restrictive for our needs, but
we have been experimenting with our own set of pragma
Restrictions.

The aim is to limit unauthorised programming styles, and to
potentially allow some optimisation of the code generated
or the tuning of the run-time required, though in practice
little reduction in image size has been found (other than for
a couple of GNAT-specific Restrictions).

Immediate_Reclamation RM H.4(10)
Max_Asynchronous_Select_Nesting => 0 RM D.7(18)
Max_Entry_Queue_Length => 1 RM D.7(19.1/2)
Max_Protected_Entries => 2 RM D.7(14)
Max_Select_Alternatives => 5 RM D.7(12)
Max_Storage_At_Blocking => 0 RM D.7 (17)
Max_Tasks => 50 RM D.7(19/1)
Max_Task_Entries => 3 RM D.7(13)
No_Abort_Statements RM D.7(5)
No_Dynamic_Attachment RM D.7(10/2)
No_Dynamic_Priorities RM D.7(9/2)
No_Implicit_Heap_Allocations RM D.7(8)
No_Local_Protected_Objects RM D.9(10.1/2)
No_Nested_Finalization RM D.7(4/2)
No_Obsolescent_Features RM 13.12.1(4/2)
No_Requeue_Statements RM D.7(10.5/2)
No_Task_Termination RM D.7(15.1/2)
No_Unchecked_Access RM H.4(18)

No_Nested_Finalization is not possible for programs that
make use of GNATCOM for interoperation with Windows
COM.

4.4 Other new tools - GNATStack
This is an add-on tool to GNAT. It gives the stack usage for
each subroutine so you can look for subroutines that use
unusually large amounts of stack. (This information was
already available by compiling using the –fstack-usage
switch).

It does not follow indirect calls so it cannot work out the
worst case stack usage for a task that uses run-time
dispatching, unless one manually provides a file of all
possible calls. This would be too cumbersome for a large
system, and is the kind of thing that one would want to
have tool support for.

4.5 Other new tools – Dynamic stack usage
analysis

This requires programs to be bound using the –u switch. It
gives output in the format:

Index | Task Name | Stack Size | Stack usage [min - max]
 1 | CI Task: LAN Read | 97536 | [2664 - 18400]
 2 | CI Task: LAN Send | 97536 | [2568 - 18304]

The tolerance on the results is surprisingly large.

This tool is useful for checking whether any tasks are
getting near their stack limit. Note though that the tasks

and programs need to have been terminated cleanly, you
cannot interrogate a running system to obtain a snapshot of
its current usage.

4.6 Other new tools – Initialize_Scalars
This is used to look for un-initialised variables. It requires
several steps:

• Add pragma Initialize_Scalars to the gnat.adc
configuration file;

• Compile with the –gnatVaM switch;

• Bind with –S switch to say what value to store in
otherwise un-initialised variables.

There were 35 cases found. One discovered the cause of a
known problem, though most cases were fields in records
where another field would indicate whether or not data was
present in the first

It is a tedious method since it causes Constraint_Errors to
be raised, which then have to be fixed and the system re-
built, for one or two cases at a time, before one can
continue testing. It has never-the-less proven very useful.

4.7 Other new tools – Warnings for un-initialised
out parameters

Previously the compiler only gave a warning if an out
parameter was not set anywhere. It now analyses paths and
gives a warning if there is any path that does not set the out
parameter.

There were 39 cases found, though in some cases there
would be a second out parameter indicating whether or not
data was present in the first.

4.8 Other new tools – Back-end switch for further
searching for un-initialised variables

This uses the –Wuninitialized compiler switch. This largely
gave false positives, e.g. in out mode parameters that only
needed to be out mode, or fields that were filled in outside
of Ada. It is of course wise to check all warnings even if
in most cases the recommendation is “no change”.

5 Conclusions
It proved to be quite straightforward to port to Ada 2005.
The Ada 95 to 2005 porting exercise required only about
10% of the effort of the preceding Ada 83 to 95 porting.
Less than 1% of files were affected and the changes
required were small

It was slightly harder to use call-backs and limited types,
rather going against some of the design intentions of Ada
2005.

Anonymous access types and containers have already
proven useful. The “not null” qualification of access types
potentially will allow the earlier detection of access errors
and avoid unnecessary replication of access checks.

 277

Ada User Journal Volume 29, Number 4, December 2008

A comparison of industrial coding rules
J-P. Rosen
Adalog, 19-21 rue du 8 mai 1945, 94110 ARCUEIL, France; email: rosen@adalog.fr

Abstract
AdaControl [1] is a (free) tool whose purpose is to
enforce coding standards and programming rules in
Ada programs. As AdaControl is more and more
widely used in the industry, we had to review many
industrial coding standards, in order to write the
corresponding AdaControl rules.
This paper presents our experience with rules of
various origins, analyzes the rules commonly
encountered, and provides some lessons-learned
about good and bad programming rules.

1 Introduction
With the raising of the use of its AdaControl tool, Adalog
has developed a growing activity in consulting and services
related to the checking of programming rules. This includes
helping QA people to define rules, improving AdaControl
to support new rules, and performing code reviews (both
automatically and manually).

This activity has lead us to reviewing coding standards
from many origins, but mainly from safety critical
domains: air-traffic management, avionics, railway
control… One could think that rules from these domains
should be, more or less, the same. If there is effectively a
core of generally accepted rules, there are also differences,
for good and sometimes bad reasons. In this paper, we first
present a classification of commonly encountered rules,
then we discuss the importance of automatically checking
the rules, and finally present some lessons learned.

2 Classification of rules
This "classification" is not intended as a formal taxonomy,
but rather as an experimental categorization of the
programming rules, intended to show the strengths, but also
the difficulties and sometimes the weaknesses of many
rules.

2.1 General useful rules
Some rules are of general interest, have clearly only
benefits. and are therefore commonly found. For example,
most projects require "only one statement/declaration per
line", "no single array declarations", "unit name must be
repeated after end"…

As another example, a simple and common rule is to
require that every use of an identifier uses the same casing
as in its declaration.

Some rules are very useful but extremely difficult to
enforce by manual inspection. For example, the "no local
hiding" rules forbids a local name from hiding an identical

name in an outer scope; it prevents confusion of variables
that depend on visibility rules.

Many projects do not use certain features of the language,
like tasking or tagged types. This results in general from a
design decision, made at the very beginning of the project.
It is then a good practice to explicitly forbid the use of the
corresponding language features.

The rule that prevents use of the 'Address attribute is
also commonly found, and is an important one, but for a
special reason. Although there are very legitimate uses of
addresses, experience shows that very often, use of
'Address results from insufficient knowledge of the
possibilities of Ada by people who come from other
languages with insufficient training. The goal of this rule is
thus not to prevent all usage of 'Address, but to make
sure that any use of it is justified and pair-reviewed.

2.2 Trivial rules
Some commonly found rules are of minimal value, simply
because they are always obeyed in practice. We call these
rules "trivial" because they might well be the only rules that
we never found violated in any project we had to review!

For example, almost every coding standard forbids using
the goto statement. Although the reasons are obvious, it is,
in practice, extremely rare to find violations.

Another example is a rule that forbids declaring identifiers
with the same names as entities defined in Standard. Of
course, violating this rule could cause horrible confusion,
but in practice, few programmers even know that they are
allowed to declare identifiers that hide the ones from
Standard!

It is also common to have a "rule" that forbids the use of
TAB characters in programs. Although there are of course
good reasons for it, it is hardly a rule; most editors have
features to eliminate tabs, so they go away without the
programmer being even aware of it. And otherwise, it is
very easy to write a simple clean-up program.

2.3 Redundant rules
It is very common to find rules that repeat other rules, in a
slightly different way, because they appear in a different
context or were defined for a different purpose.

For example, a rule may explicitly require that, when
assigning fields of records, there be only one field
assignment per line. This rule is obviously redundant with
the more general "one statement per line" rule. Another
example is a general rule that states that "a package spec
should export only entities that are used by other units",
and then have a rule that states that "if a type is declared in

278 A Comparison of Industr ia l Coding Rules

Volume 29, Number 4, December 2008 Ada User Journal

a package specification and used only in the body, it shall
be moved to the body".

Such redundancies are annoying, because they are useless
and increase artificially the number of rules. Moreover, a
violation can (must?) be traced to several rules, thus
making reporting more difficult.

2.4 Layout and comments rules
Some guidelines go into deep details about the number of
characters that should be used for indentation, maximum
length of a line and how long lines should be folded, how
aggregates should be aligned, etc. A uniform presentation is
an important issue as far as understandability and
uniformity are concerned, however checking these rules
manually is almost impossible, and writing a tool to check
them automatically is roughly equivalent to writing the
corresponding reformatter. It is therefore better to require
the use of a reformatter (which is now included in every
syntactic editor) and go with whatever layout the
reformatter does, than to require a presentation that does
not correspond to any tool. Uniformity is important, exact
details of layout are not.

Various rules deal with comments. The easiest ones are
those that require a standard header for every compilation
unit. Automatic checking shows that this kind of rule is
harder to enforce than one may think. Although the headers
look conformant, there are very often small differences, like
extra comment lines, missing separators, incorrect number
of spaces at various places…

Header comments of subprograms are more difficult to
check, since they are expected to describe the purpose of
the subprogram and the semantics of the parameters –
something that can be checked only manually.

Sometimes, there is a requirement that certain declarations
(types, variables) be commented. Once again, a manual
check is required for this kind of rule, but systematic
checking requires inspecting all the code – something that
cannot be performed routinely. There is therefore a high
risk that such a rule stays as "recommended practice"
without systematic checking.

Finally, some projects require a density of comments in the
code (like "there must be 20% of comment lines"). In one
project, the rule document failed to define how the lines are
counted, which raises a number of issues: are blank lines
counted? Are header comments counted?

2.5 Rules that are not coding/programming rules
Many guides include rules that are more design or good-
practice rules than coding/programming rules. For
example, a rule that requires that "different types shall be
used to represent data from different domains". Although
such rules have value, they should be kept separate from
programming rules, because they cannot generally be
verified automatically. Typically, they should be checked
by pair-review, rather than by code inspection.

2.6 Controversial rules
Some rules are controversial, in the sense that various
projects take opposite decisions., either about whether to
allow some constructs, or in the way the rule should be
applied. Note that this is not surprising: a life-critical
project may impose rules that ensure maximum safety,
even at the cost of readability and maintainability, while a
less critical application may choose different trade-offs.

For example, almost every project imposes naming
conventions for various elements. But some projects
impose separating words in an identifier by the use of
capitalization and forbid underscores (like in LineLength),
while others prohibit that style, and require words to be
separated by underscores (like in Line_Length). Some
projects require type names to start with "T_", or end with
"_Type". Renamings are an interesting issue, as far as
naming convention is concerned: should renamings have
their own naming convention to show that they are aliases,
or should they follow the rule for the renamed entity?

Using the use clause is another controversial issue: some
projects disallow it altogether, other allow it only if
restricted to the innermost scope where it is useful, and
some place no restriction to it.

Some rules require systematic initialization of all variables
at the point of declaration. Although it may seem useful to
make sure that every variable receives a proper value
before being used, this is an interesting case of a rule that
may have adverse effects. The rule may induce people into
assigning a "default" value to variables (that may not be
appropriate) just to pass the check; this may in turn result in
more subtle bugs than those caused by a plain non-
initialized variable. For this reason, some rules forbid
systematic initialization (especially when the initialization
value is known to be overridden later on).

2.7 Insufficient rules
Some rules are intended for a certain purpose, but if they
are not properly formulated and/or explained, they can fail
to achieve their intended goal. For example, it is common
to disallow the use of predefined numeric types. This is
intended to promote the definition of higher level, more
abstract numeric types. However, in a project, this resulted
in the definition of types like "Int_8", "Int_16", and
"Int_32" that were used everywhere. There was some
benefit to it, as it made the program independent of the size
of the predefined integer types, but did not bring the
benefits expected from strong typing of numeric values.

Often, the rule does not assert all the consequences. For
example, there can be a rule that says "no package shall be
declared in a procedure". Such a rule is generally intended
to limit the complexity of subprograms, but does it also
apply to instantiations of generic packages? They are
formally local packages, but the rule would prevent, for
example, instantiating Integer_IO inside of an IO routine –
a very legitimate construct actually.

Sometimes, rules are written with a very narrow
perspective. We encountered a rule that said that "when an

J.-P. Rosen 279

Ada User Journal Volume 29, Number 4, December 2008

array is assigned in full, all components of the aggregates
should be named". But of course, assigning an array in full
does not necessarily use an aggregate; and what about
aggregates that appear in a context other than as the rigth
hand side of an assignment? Should the rule apply to record
aggregates? Clearly, the person who wrote the rule had
used aggregates only in very limited contexts, and wrote
the rule according to that usage.

2.8 Inappropriate rules
Sometimes, rules are clearly a legacy from other languages,
or simply show ignorance about Ada. For example, a
project required an order for declarations: constants, then
types, then variables (and failed to define an order for Ada
entities that had no Pascal equivalent, like packages and
exceptions!). This was clearly a remaining from the Pascal
philosophy, but prevented for example the grouping of
declarations that were logically related.

In another case, a rule required the presence of an "else"
part for every "if", leading to many "else null;" in the
program. This rule was derived from Misra-C, where it is
intended to prevent the "dangling else" problem in C. The
Ada syntax (which requires "end if") does not have this
problem, but the rule was reconducted anyway.

Another (funny) example is "rules" that forbid constructs
that are actually not legal Ada; we have encountered a
project that banned the use of anonymous array types as
record components, or default initialization of array
components … Such rules are harmless by themselves, but
create suspicion about the validity of other rules.

A special kind of dangerous rules are those that are justified
by efficiency considerations. Rules sometimes require or
forbid the use of some constructs for efficiency reasons.
Although this may seem justified in time-constrained
software, experience shows that actual measures of the run-
time cost of such structures have only very rarely been
performed; often, the rule just expresses the "intimate
belief" of those who wrote the rules, without the backing of
hard figures. Very often, these rules are not justified at all,
and may even force using less efficient constructs. Even
when such rules are justified, it must be remembered that
"inefficient" constructs may become very efficient with the
next version of the compiler.

A special (and even worse) case of the above is rules that
are intended to work around compiler bugs. Such rules tend
to stay forever, years after the bug has been fixed…

Note that it is often the motivation of the rule which is
wrong, not the rule by itself. For example, a project
required short circuit forms (and then and or else) rather
than plain and or or, on the ground that they were more
efficient. Such a general statement is highly likely to be
plain wrong – at least in some cases, and the gain in micro-
efficiency does not justify the rule. On the other hand,
another project had the same rule, but on the ground that it
would simplify unit testing, because each logical operation
would require only three tests instead of four with the
regular operators. This reason was perfectly acceptable.

2.9 Good rules that are harder to enforce than
they seem
Some rules are apparently well motivated, but very hard to
apply in practice, or (almost) impossible to check. For
example, several projects wanted to prevent the use of
"magic numbers", i.e. numerical values that appear directly
in the program text; instead, every such value should be
given a name, as a constant or named number. Obviously,
this rule cannot apply to literals used precisely in the
definition of constants and named numbers. But there are
many other cases where numeric literals cannot be avoided,
like in representation clauses for example. And in X**2, it
would be stupid to forbid the use of "2"… If taken too
literally, this rule would force people to declare constants
like Number_2, which would bring no benefit at all.

It is also common to find rules that prevent assignment to
fields of records, in favour of whole assignments with
aggregates. This is an important rule for maintainability,
since the addition of a component to a record will result in
illegal code everywhere the corresponding modification has
been omitted. But sometimes, you just want to assign a
value to one component: should you force a full aggregate
assignment in this case? Let us assume for a start that an
aggregate is required if every component is changed, and
that single assignment to a component is allowed if no
other component is changed. Where should the limit when
aggregate assignment is required be placed? If more than
XX components are changed? If less than YY components
are not changed? If more than ZZ% of the components are
affected? Making a rule which achieves the desired goal
and is still practical is far from obvious.

2.10 Rules not checkable by nature
Finally, some rules are, by nature, impossible to enforce
automatically, generally because they involve some value
judgement. This includes rules like "parentheses should be
used to improve readability", "elements should be grouped
in a package according to the logical structure", and of
course "identifiers should have meaningful names".

The checking of this kind of rule must be done manually. In
some cases, a tool can be of help by identifying
automatically the constructs that must be reviewed
manually; in other cases, checking the rule requires a
detailed reading of the whole source.

Actually, this kind of "rule" should really be guidelines,
and separated from the true coding rules.

3 The value of a tool for checking rules
In the previous chapter, we repeatedly addressed the issue
of the checkability of the rules. It is nice to issue rules, but
a rule is meant to be enforced; counting on programmers'
discipline simply does not work.

It must therefore be stressed that rules are of little value,
unless there is a tool to enforce them. No manual inspection
can approach the level of scrutiny provided by a tool;
actually, all of our clients were greatly surprised when we
ran AdaControl on their carefully reviewed code,

280 A Comparison of Industr ia l Coding Rules

Volume 29, Number 4, December 2008 Ada User Journal

sometimes finding thousands of violations that had escaped
manual inspection.

Moreover, manual inspection is a lengthy and costly
process. It can be performed once for every major release
of the product, for example at the time of formal
certification for safety-critical software3, but can certainly
not be done routinely.

There are several such tools on the market: in addition to
Adalog's AdaControl, popular tools include AdaCore's
Gnatcheck, GrammaTech's Ada-Assured, LDRA's Testbed,
Logiscope's Rulechecker, and RainCode's Adarc.
Moreover, many compilers include options to enforce
coding rules at compile time. Some rules can even be
enforced by the language with the use of pragma
restriction.

An important issue when choosing a tool is ease of use in
day-to-day development. When rules checking is
performed late in the development process, one discovers
generally a huge amount of violations, and fixing them
requires a tremendous effort; it is sometimes extremely
difficult to do when the software has already gone through
various validation phases that would be ruined by massive
corrections. When the tool is integrated into the
development environment, programmers can run it
routinely each time they develop new modules or modify
existing ones, ideally by simply clicking a button in their
favourite IDE. The sooner checking is performed in the
development process, the better.

From this point of view, it could seem useful to have rules
checked directly by the compiler. But compilers do not
have such sophisticated and parameterizable rules like
dedicated tools have. Unlike language rules, programming
rules depend heavily on the kind and constraints of the
project; parameterization is therefore absolutely necessary.
Moreover, rules checking must also be performed by
quality assurance people, at the time of integration. Having
some rules checked by the compiler while other still require
the use of another tool would force QA people to run two
tools as part of the process, with different outputs that are
hard to merge. Therefore, even if the compiler does some
checks, it is important that the rule checking tool be able to
enforce also rules checked by the compiler.

4 Lessons learned
4.1 How to define "good rules"
Providing a good set of programming rules is not easy.
Sometimes, it seems that rules are there just for the sake of
having rules; occasionally, rules may have an effect
opposite to their intent.

It is therefore important that every rule be motivated and
justified. Some of the questions that need be answered to
check the value of a rule are:

3 But at that time, it is generally too late to correct massive violations, and
the project ends up with a document to justify why the violations are not
safety-critical, rather than fixing them.

• What is the problem that this rule will
prevent/minimize?

• Is this rule really necessary?

• What are the possible adverse or perverse effects of the
rule?

• Is this rule automatically checkable?

• What are the cases where the rule should not be
obeyed?

Of course, it does not make sense to reinvent the wheel
every time. A programming rules document should start
from some existing and recognized document, like the
famous "Ada Quality and Style Guide"[2], which is
actually a generic template intended precisely to serve as
the basis for coding standards. It was surprising that,
among the documents we reviewed, many of them didn't
even quote the Ada Q&S Guide, although they often
referred to coding standards from other languages…
Another valuable source of inspiration is the NASA coding
standard for the Goddard Dynamic Simulator, which is
freely available on the internet [3].

Coding rules should really be coding rules. They should be
defined separately from design rules, and also from
guidelines, which are common sense recommendations that
cannot be specified – and even less checked – formally.

Rules should be proposed by QA people, but should be
reviewed and discussed with programmers and language
experts. Otherwise, there is a risk that the cost of a rule,
even a perfectly reasonable one, be higher than its benefits,
for reasons linked to the technical details of the project.

It should be also understood that developing a good set of
rules is an iterative process; experience shows that some
rules are useless, some have an adverse effect, and some
are missing. There should be a process for getting feedback
from the developers and improving the rules document.

4.2 Derogations
When a rule is proposed, it is very important to be aware
that there will be cases where the rule should not be
obeyed. Derogations to a rule are normal; however,
derogations should only be granted by QA, after review and
justification.

Failing to recognize the need for derogations can lead to
two equally bad effects:

• Either force application of the rule in any case, often
resulting in twisting the code to match the rule with a
very poor result as far as quality is concerned

• Or simply abandon the rule, on the ground that it
cannot always be applied.

Therefore, every coding standard should include a process
for requesting a derogation, and tools should provide a way
to ignore violations at indicated places. The process for
granting a derogation when appropriate should not be too
heavy; otherwise, it may appear simpler to the programmer

J.-P. Rosen 281

Ada User Journal Volume 29, Number 4, December 2008

to obey by the rule, even where not appropriate, rather than
to request a derogation.

4.3 Form of the document
The coding rules document should ideally specify, for each
rule:

• The statement of the rule

• The motivation for the rule

• An example where the rule is obeyed

• An example where the rule is not obeyed

• Cases where the rule is not applicable

• Whether and how the rule can be checked by automatic
tools

The goal of this is to make sure that the programmers
understand the rule, understand and accept the motivation
of the rule, know how to check it, and know how to ask for
a justified derogation.

Since such a document can become rapidly quite thick,
having a quick summary of the rules with pointers to the
full explanation can make the document much more usable.

4.4 Communication
Coding standard should be perceived by programmers as a
help rather than a burden. It is of course important to have
clear and easily accessible documents to describe the rules,
but organizing team meetings, where the rules are
presented and their motivations explained, can be very
effective. Such general presentations bring several benefit:

• they provide feed-back from the base to the QA
people, often resulting in improvements to the rules;

• they make acceptance of the rules easier; people have
no problem following rules when they understand their
purpose;

• with sufficient tool support, it will help making the
checking of the rule a routine, therefore catching
violations early in the development process and
avoiding massive rewritings.

5 Conclusion
A good set of programming rules is one which really
contributes to the quality of the code without putting
unnecessary burden on the programmer, is precisely
defined and well understood by all users, and easily
enforceable by automated tools. Defining such a set of is
far from easy: some rules are general, but others depend on
the particular context of the application.

It must be acknowledged that programming rules have to
be refined iteratively, and that good communications
between QA people and users is a key to achieving a set of
rules that really improves the quality of the project.

References
[1] http://www.adalog.fr/adacontrol2.htm

[2] Software Productivity Consortium, "Ada 95 Quality
and Style Guide".

[3] Stephen Leake, "Goddard Dynamic Simulator, Ada
Coding Standard",
http://fsw.gsfc.nasa.gov/gds/code_standards_ada.pdf.

 283

Ada User Journal Volume 29, Number 4, December 2008

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Gem #23: Null Considered Harmful
Bob Duff, AdaCore
Date: 14 January 2008

Abstract: The “not null” syntax allows an Ada 2005 program
to prevent access values from being null in cases where the
null value is undesirable. This new syntax helps provide useful
documentation.

Let’s get started…
Ada, like many languages, defines a special ‘null’ value for
access types. All values of an access type designate some
object of the designated type, except for null, which does not
designate any object. The null value can be used as a special
flag. For example, a singly-linked list can be null-terminated.
A Lookup function can return null to mean “not found”,
presuming the result is of an access type:

 type Ref_Element is access all Element;
 Not_Found : constant Ref_Element := null;
 function Lookup (T : Table) return Ref_Element;
 - - Returns Not_Found if not found.

An alternative design for Lookup would be to raise an
exception:

 Not_Found : exception;
 function Lookup (T : Table) return Ref_Element;
 - - Raises Not_Found if not found.
 - - Never returns null <– Ada 95 comment.

Neither design is better in all situations; it depends in part on
whether we consider the “not found” situation to be
exceptional.
Clearly, the client calling Lookup needs to know whether it
can return null, and if so, what that means. In general, it’s a
good idea to document whether things can be null or not,
especially for formal parameters and function results. In Ada
95, we do that with comments. In Ada 2005, we can use the
“not null” syntax:
function Lookup (T : Table)
 return not null Ref_Element; - - Ada 2005
In general, it’s better to use the language proper for
documentation, when possible, rather than comments, because
compile-time and/or run-time checks can help ensure that the
“documentation” is actually true. With comments, there’s a
greater danger that the comment will become false during
maintenance, and false documentation is obviously a menace.
In many, perhaps most, cases, null is just a tripping hazard. It’s
a good idea to put in “not null” when possible. In fact, a good
argument can be made that “not null” should be the default,
with extra syntax required when null is wanted. This is the
way SML works, for example — you don’t get any special

null-like value unless you ask for it. Of course, Ada 2005
needs to be compatible with Ada 95, so “not null” cannot be
the default for Ada.
One word of caution: access objects are default-initialized to
null, so if you have a “not null” object (or component) you had
better initialize it explicitly, or you will get Constraint_Error.
“Not null” is more often useful on parameters and function
results, for this reason.

Gem #24: Null Considered Harmful
(Part 2 — Efficiency)
Bob Duff, AdaCore
Date: 28 January 2008

Abstract: The “not null” syntax can make programs more
efficient by removing the need for implicit run-time checks.

Let’s get started…
In last week’s gem, we talked about the documentation
advantages of using “not null”. Here’s another example, first
with null:

 procedure Iterate
 (T : Table;
 Action : access procedure (
 X : not null Ref_Element)
 := null);
 - - If Action is null, do nothing.

…and without null:

 procedure Do_Nothing (X : not null Ref_Element)
 is null;
 procedure Iterate
 (T : Table;
 Action : not null access procedure (
 X : not null Ref_Element)
 := Do_Nothing’Access);

I much prefer the style of the second Iterate.
The “not null access procedure” is quite a mouthful, but it’s
worthwhile, and anyway, the compatibility requirement for
Ada 2005 requires that the “not null” be explicit, rather than
the other way around.
Another advantage of “not null” over comments is for
efficiency. For example:

 procedure P (X : not null Ref_Element) is
 begin
 X.all.Component := X.all.Component + 1;
 end P;

 procedure Q (X : not null Ref_Element) is

284 Ada Gems

Volume 29, Number 4, December 2008 Ada User Journal

 begin
 while … loop
 P (X);
 end loop;
 end Q;

 procedure R is
 begin
 Q (An_Element’Access);
 end R;

Without “not null”, the generated code for P will do a check
that X /= null, which may be costly on some systems. P is
called in a loop, so this check will likely occur many times.
With “not null”, the check is pushed to the call site. Pushing
checks to the call site is usually beneficial because (1) the
check might be hoisted out of a loop by the optimizer, or (2)
the check might be eliminated altogether, as in the example
above, where the compiler knows that An_Element’Access
cannot be null.
This is analogous to the situation in Ada 95 with other run-
time checks, such as array bounds checks:

 type My_Index is range 1..10;
 type My_Array is array (My_Index) of Integer;
 procedure Process_Array (X : in out My_Array;
 Index : My_Index);

If “X (Index)” occurs inside Process_Array, there is no need to
check that Index is in range, because the check is pushed to the
caller.

Gem #33: Accessibility Checks
(Part I: Ada95)
Ramón Fernández-Marina, AdaCore
Date: 28 April 2008

Abstract: The existence of dangling references (pointers to
objects that no longer exist) in a program can have
catastrophic results. Ada incorporates a set of “accessibility
rules” that help the programmer prevent dangling references,
making programs more secure.

Let’s get started…
Ada is a block-structured language, which means the
programmer can nest blocks of code inside other blocks. At
the end of a block, all objects declared inside of it go out of
scope, meaning they no longer exist, so the language disallows
pointers to objects in blocks with a deeper nesting level.
In order to prevent dangling references, every entity is
associated with a number, called its “accessibility level”,
according to a Ada’s accessibility rules. When certain
references are made to an entity of an access type (Ada’s
parlance for pointer), the accessibility level of the entity is
checked against the level allowed by the context so that no
dangling pointers can occur.
Consider the following example:

 procedure Static_Check is
 type Global is access all Integer;
 X : Global;

 procedure Init is
 Y : aliased Integer := 0;
 begin
 X := Y’Access; - - Illegal!
 end Init;

 begin
 Init;
 …
 end Static_Check;

The assignment is illegal because when the procedure Init
finishes, the object Y no longer exists, thus making X a
danging pointer. The compiler will detect this situation and
flag the error.
The beauty of the accessibility rules is that most of them can
be checked and enforced at compile time, just by using
statically known accessibility levels.
However, there are cases when it is not possible to statically
determine the accessibility level that an entity will have during
program execution. In these cases, the compiler will insert a
run-time check to raise an exception if a dangling pointer can
be created:

 procedure Access_Params is
 type Integer_Access is access all Integer;
 Data : Integer_Access;

 procedure Init_Data (Value : access Integer) is
 begin
 Data := Integer_Access (Value);
 - - this conversion performs a dynamic
 - - accessibility check
 end;

 X : aliased Integer := 1;

 begin
 Init_Data (X’Access); - - This is OK

 declare
 Y : aliased Integer := 2;
 begin
 Init_Data (Y’Access); - - Trouble!
 end;
 - - Y no longer exists!

 Process (Data);
 end;

In the example above, we cannot know at compile time the
accessibility level of the object that will be passed to
Init_Data, so the compiler inserts a run-time check to make
sure that the assignment ‘Data := …’ does not cause a
dangling reference — and to raise an exception if it would.
In summary, when it comes to dangling references, Ada makes
it very hard for you to shoot yourself in the foot!

Ada Gems 285

Ada User Journal Volume 29, Number 4, December 2008

Gem #41: Accessibility Checks
(Part II: Ada2005)
Ramón Fernández-Marina, AdaCore
Date: 30 June 2008

Abstract: Gem #41 — Ada 2005 brings a number of
improvements concerning access types, aimed at simplifying
the programmer’s task and adding flexibility to the language.
But with greater power comes greater responsibility, so
accessibility checks have also been extended to prevent these
new features from creating dangling pointers.

Let’s get started…
Ada 2005 allows the use of anonymous access types in a more
general manner, adding considerable power to the object-
oriented programming features of the language. The
accessibility rules have been correspondingly augmented to
ensure safety by preventing the possibility of dangling
references. The new rules have been designed with
programming flexibility in mind, as well as to allow the
compiler to enforce checks statically.
The accessibility levels in the new contexts for anonymous
access types are generally determined by the scope where they
are declared. This makes it possible to perform compile-time
accessibility checks.
Another rule that allows for static accessibility checks relates
to derived types: a type derivation does not create new
accessibility level for the derived type, but just takes that of
the parent type:

 procedure Example_1 is
 type Node is record
 N : access Integer;
 end record;
 List : Node

 procedure P is
 type Other_Node is new Node;
 begin
 declare
 L : aliased Integer := 1;
 Data : Other_Node :=
 Other_Node’(N => L’Access);
 - - L’Access is illegal!
 begin
 List := Node (Data);
 end;
 end P;

 begin
 P;
 end Example_1;

In the above example, we don’t need to worry about expensive
run-time checks on assignment or return of an object of type
Other_Node; we know it has the same accessibility level as
type Node, making the Access attribute illegal. If this were not
prevented, after returning from P, List.N would be a dangling
reference.

Ada 2005 also allows functions to return objects of
anonymous access types. In this case, the accessibility level of
the object is statically determined by the scope of the function
declaration. Consider the following example:

 procedure Example_2 is
 type Rec is record
 V : access Integer;
 …
 end record;

 Global : aliased Integer := 1;

 function F1 (X : Boolean) return Rec is
 Local : aliased Integer := 2;

 - - Nested function returns anonymous
 - - access values
 - - with different nesting depths

 function F2 (Y : Boolean)
 return access Integer is
 begin
 if Y then
 return Global’Access;
 else
 return Local’Access;
 end if;
 end F2;

 begin
 return (V => F2 (X), …); - - Illegal
 end F1;

 Data : Rec;
 begin
 Data := F1 (True);
 end Example_2;

In this example, applying the aforementioned rule, the
compiler statically determines that this accessibility level is the
scope where F2 is declared, which is deeper than the
accessibility level of Rec. So even though the call F1 (True)
would provide a valid value for V, the code is illegal. The
accessibility restriction is conservative, to keep the rules
simple, and so that the compiler is not required to perform data
flow analysis to determine legality (not to mention that in
general the legality would be undecidable).
The new rules also take into account discriminants of an
anonymous access type (which are technically referred to as
access discriminants). In Ada 2005, access discriminants are
now permitted for nonlimited types. Consequently, it’s
necessary to disallow defaults for access discriminants of
nonlimited types. Thus, the following declaration is illegal:

 Default : aliased Integer := …
 type Rec (D : access Integer := Default’Access)
 is record
 …

This restriction is needed to prevent the discriminant from
creating a dangling reference due to an assignment of the
record object; it ensures that the object and the discriminant
are bound together for their lifetime.

286 Ada Gems

Volume 29, Number 4, December 2008 Ada User Journal

Special care must be taken when types with access
discriminants are used with allocators and return statements.
The accessibility rules require the compiler to perform static
checks when new objects containing access discriminatns are
created or returned. Consider the following example:

 procedure Example_3 is
 type Node (D : access Integer) is record
 V : Integer;
 end record;
 type Ptr is access all Node;

 Global_Value : aliased Integer := 1;
 Other_Data : Integer := 2;

 procedure P is
 Local : aliased Integer := 3;
 R1 : Ptr;
 R2 : Ptr;
 begin
 R1 := new Node’(D => Global_Value’Access,
 V => Other_Data);
 - - This is legal

 R2 := new Node’(D => Local_Value’Access,
 V => Other_Data);
 - - This is illegal
 end P;
 begin
 null;
 end Example_3;

The allocator for R1 is legal, since the accessibility level of
Global’Access is the same as the accessibility level of D.
However the allocator for R2 is illegal, because the
accessibility level of Local’Access is deeper than the
accessibility level of D, and assigning R2 to an object outside
P could lead to a dangling reference.
In summary, these rules forbid the creation of an object in a
storage pool that contains an access discriminant pointing to
some area of memory, be it a part of the stack or some other
storage pool, with a shorter lifetime, thus preventing the
discriminant from pointing to a nonexistent object.

Gem #44: Accessibility Checks
(Part III)
Bob Duff, AdaCore
Date: 15 Setember 2008

Abstract: ‘Unchecked_Access can be used to bypass the
accessibility rules, and controlled types can be used to rein in
this dangerous feature.

Let’s get started…
In Parts #1 and #2, we showed how the accessibility rules help
prevent dangling pointers, by ensuring that pointers cannot
point from longer-lived scopes to shorter-lived ones. But what
if you want to do that?
In some cases, it is necessary to store a reference to a local
object in a global data structure. You can do that by using

‘Unchecked_Access instead of ‘Access. The “Unchecked” in
the name reminds you that you are bypassing the normal
accessibility rules. To prevent dangling pointers, you need to
remove the pointer from the global data structure before
leaving the scope of the object.
As for any unsafe feature, it is a good idea to encapsulate
‘Unchecked_Access, rather than scattering it all around the
program. You can do this using limited controlled types. The
idea is that Initialize plants a pointer to the object in some
global data structure, and Finalize removes the pointer just
before it becomes a dangling pointer.
Here is an example. Let’s assume there are no tasks, and no
heap-allocated objects — otherwise, we would need a more
complicated data structure, such as a doubly-linked list, with
locking. We keep a stack of objects, implemented as a linked
list via Stack_Top and chained through the Prev component.
All occurrences of ‘Unchecked_Access are encapsulated in
the Objects package, and clients of Objects (such as Main,
below at end) can freely declare Objects, without worrying
about dangling pointers. Stack_Top can never dangle, because
Finalize cleans up, even in the case of exceptions and aborts.
Note that ‘Unchecked_Access is applied to a formal
parameter of type Object, which is legal because formals of
tagged types are defined to be aliased. Note also that
Print_All_Objects has no visibility on the objects it is printing.
This program prints:
Inside Nested:
 That_Object
 This_Object
After Nested returns:
 This_Object
Observe that That_Object is not printed by the second call to
Print_All_Objects, because it no longer exists at that time.

private with Ada.Finalization;
package Objects is

 type Object (Name : access constant String)
 is limited private;
 - - The Name is just to illustrate what’s going on
 - - by printing it out.

 procedure For_All_Objects (
 Action : not null access procedure (X : Object));
 - - Iterate through all existing Objects in
 - - reverse order of creation,
 - - calling Action for each one.

 procedure Print_All_Objects;
 - - Print out the Names of all Objects in
 - - reverse order of creation.

 - - … other operations

private
 use Ada;

 type Object (Name : access constant String)
 is new Finalization.Limited_Controlled with
 record

Ada Gems 287

Ada User Journal Volume 29, Number 4, December 2008

 - - … other components
 Prev : access Object
 := null; - - previous Object on the stack
 end record;

 procedure Initialize (X : in out Object);
 procedure Finalize (X : in out Object);

end Objects;

with Ada.Text_IO;
package body Objects is

 Stack_Top : access Object := null;

 procedure Initialize (X : in out Object) is
 begin
 - - Push X onto the stack:
 X.Prev := Stack_Top;
 Stack_Top := X’Unchecked_Access;
 end Initialize;

 procedure Finalize (X : in out Object) is
 begin
 pragma Assert (Stack_Top = X’Unchecked_Access);
 -- Pop X from the stack:
 Stack_Top := X.Prev;
 X.Prev := null; - - not really necessary, but safe
 end Finalize;

 procedure For_All_Objects (
 Action : not null access procedure (X : Object)) is
 - - Loop through the stack from top to bottom.
 Item : access Object := Stack_Top;
 begin
 while Item /= null loop
 Action (Item.all);
 Item := Item.Prev;
 end loop;

 end For_All_Objects;

 procedure Print_All_Objects is
 - - Iterate through the stack using
 - - For_All_Objects, passing
 - - Print_One_Object to print each one.
 procedure Print_One_Object(X : Object) is
 begin
 Text_IO.Put_Line (" " & X.Name.all);
 end Print_One_Object;
 begin
 For_All_Objects (Print_One_Object’Access);
 end Print_All_Objects;

end Objects;

with Ada.Text_IO; use Ada;
with Objects; use Objects;
procedure Main is

 This_Object : Object (
 Name => new String’("This_Object"));

 procedure Nested is
 That_Object : Object (
 Name => new String’("That_Object"));
 begin
 Text_IO.Put_Line ("Inside Nested:");
 Print_All_Objects;
 end Nested;

begin
 Nested;
 Text_IO.Put_Line ("After Nested returns:");
 Print_All_Objects;
end Main;

288

Volume 29, Number 4, December 2008 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Peter Dencker
Steinäckerstr. 25
D-76275 Ettlingen-Spessartt
Germany
Email: dencker@web.de
URL: ada-deutschland.de

Ada-France
Association Ada-France
c/o Jérôme Hugues
Département Informatique et Réseau
École Nationale Supérieure des Télécomunications
46, rue Barrault
75634 Paris Cedex 135
France
Email: bureau@ada-france.org
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Saab Systems
S:t Olofsgatan 9A
SE-753 21 Uppsala
Sweden
Phone: +46 73 437 7124
Fax: +46 85 808 7260
Email: Rei.Strahle@saabgroup.com
URL: www.ada-i-sverige.se

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	News
	Conference Calendar
	Forthcoming Events
	Ada-C++ Interfacing in the ERAM System
	Porting Naval Command & Control Systems to Ada 2005
	A comparison of industrial coding rules
	Ada Gems

