

Ada User Journal Volume 30, Number 1, March 2009

ADA
USER
JOURNAL

Volume 30
Number 1

March 2009

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

News 5

Conference Calendar 30

Forthcoming Events 37

Articles

 J. Barnes
“Thirty Years of the Ada User Journal” 43

 J. W. Moore, J. Benito
“Progress Report: ISO/IEC 24772, Programming Language Vulnerabilities” 46

Articles from the Industrial Track of Ada-Europe 2008

 B. J. Moore
“Distributed Status Monitoring and Control Using Remote Buffers and Ada 2005” 49

Ada Gems 61

Ada-Europe Associate Members (National Ada Organizations) 64

Ada-Europe 2008 Sponsors Inside Back Cover

2

Volume 30, Number 1, March 2009 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 3

Ada User Journal Volume 30, Number 1, March 2009

Editorial

This first issue of Volume 30 marks the beginning of the celebration of the Thirty Years of the Ada User Journal. The
longevity of the Journal is a credit to the Journal authors and readers, after all the reason for the Journal’s existence, that have
demonstrated during these years their loyalty and interest. Also important, it is a credit to all that volunteered their effort in
the preparation, publishing and in the distribution of the Journal. To all of them, I address our appreciation.

I am very much pleased that the first article of this issue, kindly provided to us by John Barnes, is an overview of the history
of the Ada User Journal during these thirty years. As a special treat, the article presents images of some of the covers of the
Journal during its different periods, which are exceptionally published in color in order that our readers can fully appreciate
them. I know that the readers will enjoy reading the article as much as I did.

As a side note, I would like to point our readers to the online archive of the Journal, available via the website of Ada-Europe,
where the latest period in the history of the Ada User Journal can be browsed online. At this time, the online archive provides
the full contents of all issues from March 2002 to March 2008, and the table of contents of the last four published issues.

Coming back to this issue, it also provides a paper by James Moore and John Benito, with a progress report on the ISO/IEC
Technical Report 24772 concerning Programming Language Vulnerabilities, a work being done in the framework of the
Vulnerabilities Working Group (WG 23). I take this opportunity to point out that this matter will also be analyzed, obviously
with a focus in Ada, in a one day workshop planned to be held in conjunction with the Ada-Europe 2009 conference, this
June in Brest, France.

The third paper of the issue finalizes the publication of material derived from the Industrial Track of the Ada-Europe 2008
conference. The paper, by Bradley Moore, of General Dynamics, Canada, explores some of the Ada 2005 features and the
Distributed Systems Annex to support complex and dynamic networks.

The technical part of the issue ends with two interesting Ada Gems, by Matthew Heaney and Quentin Ochem, related to
Interfaces. And as usual, the reader will find the rich information of the News and Calendar sections, contributed by Marco
Panunzio and Dirk Craeynest, their respective editors.

Luís Miguel Pinho

Porto
March 2009

Email: lmp@isep.ipp.pt

 5

Ada User Journal Volume 30, Number 1, March 2009

News
Marco Panunzio
University of Padua. Email: panunzio@math.unipd.it

Contents

Ada-related Events 5
Ada-related Resources 6
Ada-related Tools 7
Ada-related Products 12
Ada and GNU/Linux 14
Ada and Microsoft 14
References to Publications 15
Ada Inside 15
Ada in Context 16

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—mp]

FOSDEM 2009 —
Presentations available on-
line
From: Dirk Craeynest

<dirk@aqua.cs.kuleuven.be>
Date: Thu, 12 Feb 2009 14:07:21 +0100

CET
Subject: FOSDEM 2009 - Presentations

Ada Developer Room on-line
Newsgroups:

comp.lang.ada,fr.comp.lang.ada,
comp.lang.misc,be.comp.os.linux

All presentations available on-line

A d a D e v e l o p e r R o o m a t

F O S D E M 2 0 0 9
(Free and Open-Source Software
Developers' European Meeting)

Saturday 7 & Sunday 8 February 2009
Université Libre de Bruxelles (U.L.B.),

Brussels, Belgium

http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/09/090207-fosdem.html

Organized in cooperation with Ada-
Europe

All presentations at the Ada Developer
Room, held at FOSDEM 2009 in Brussels

last weekend, are available on the Ada-
Belgium web site now.
A few pictures taken during the event are
on-line as well.
Most presentations can be downloaded in
an open format (ODP) and for all a PDF
version is available:
⁃ "Introduction to Ada", Jean-Pierre

Rosen, Adalog
⁃ "GNAT Project Facility", Vincent

Celier, AdaCore
⁃ "GPS - GNAT Programming Studio",

Vincent Celier, AdaCore
⁃ "Ada in Debian GNU/Linux", Ludovic

Brenta, Debian
⁃ "Ada Distributed Systems Annex",

Thomas Quinot, AdaCore
⁃ "NARVAL - Distributed Data

Acquisition in Ada", Xavier Grave,
Centre National de la Recherche
Scientifique

⁃ "GPRBuild - Multi-Language Builder",
Vincent Celier, AdaCore

⁃ "OO Programming Model in Ada
2005", Jean-Pierre Rosen, Adalog

⁃ "Ast2Cfg - Framework for CFG-Based
Analysis and Visualisation of Ada
Programs", Georg Kienesberger, Vienna
University of Technology

⁃ "MaRTE-OS - Minimal Real-Time
Operating System for Embedded
Applications", Miguel Telleria de
Esteban, Universidad de Cantabria

⁃ "MaRTE-OS - Practical View", Daniel
Sangorrin, Universidad de Cantabria

⁃ "GNATBench - Ada Eclipse plugin",
Vincent Celier, AdaCore

For these presentations and pictures, see:
http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/09/090207-fosdem.html
Thanks again to all presenters for their
collaboration and thanks to the many
participants from all over Europe for their
interest!
Ada-Belgium on Internet
Home: http://www.cs.kuleuven.be/~dirk/
ada-belgium
FTP: ftp://ftp.cs.kuleuven.be/pub/
Ada-Belgium
E-mail: ada-belgium-board@
cs.kuleuven.be
Mailing list: ada-belgium-info-request@
cs.kuleuven.be

AdaCore —
Ada-Europe 2009
From: AdaCore Press Center
Date: Tuesday February 17, 2009
Subject: Ada Europe 2009
RSS: http://www.adacore.com/2009/02/17/

ada-europe-2009/
AdaCore is a major sponsor of this event.
AdaCore staff will also be giving the
following talks:
⁃ Implementation of the Ada 2005 Task

Dispatching Model in MaRTE OS and
GNAT - Jose F. Ruiz, Mario Aldea,
Michael Gonzalez Habour.

The following tutorials:
⁃ Building Cross Language Applications

using Ada - Quentin Ochem
⁃ Hard Real-Time and Embedded

Systems Programming - Pat Rogers
⁃ Software Fault Tolerance - Pat Rogers
And the following industrial presentation:
⁃ Couverture - An Innovative Open

Framework for Coverage Analysis of
Safety Critical Applications - Matteo
Bordin

AdaCore — Embedded
World
From: AdaCore Press Center
Date: Friday February 20, 2009
Subject: Embedded World
RSS: http://www.adacore.com/2009/02/20/

embedded-world/
AdaCore will be exhibiting at this event.

AdaCore — Facing The New
Challenges Of Your
Embedded Architecture
From: AdaCore Press Center
Date: Friday February 20, 2009
Subject: Facing The New Challenges Of

Your Embedded Architecture
RSS: http://www.adacore.com/2009/02/20/

facing-the-new-challenges-of-your-
embedded-architecture/

AdaCore will be exhibiting at this event
and Michael Friess will be a member of
the Avionics Panel Discussion.

AdaCore — Lean Event
From: AdaCore Developer Center
Date: Thursday February 5, 2009

6 Ada-related Resources

Volume 30, Number 1, March 2009 Ada User Journal

Subject: The lean, agile approach to high-
integrity programming

RSS: http://www.adacore.com/2009/02/05/
lean-agile-event/

AdaCore is organizing a one day
conference in Paris, March 26, around the
theme “The Lean, Agile Approach to
High Integrity Software”. Our panel of
experts will present real world examples
that illustrate how ‘Lean Production’ and
‘Agile Programming’ concepts are being
successfully applied to software
development.
Speakers include:
⁃ Jim Sutton (Author of Lean Software

Strategies)
⁃ Roberto di Cosmo - University of Paris

VII
⁃ Alexandre Boutin - Yahoo
⁃ Emmanuel Chenu - Thales
⁃ David Jackson / Andy Vickers - Praxis

High-Integrity Systems
⁃ Cyrille Comar - AdaCore
For more information on this event,
please visit:
http://www.adacore.com/lean-event
If you, and/or any of your colleagues
would like to register free of charge for
the event, please send an email to
events@adacore.com.
[see also “AdaCore — Lean Event” in
AUJ 29-4 (Dec 2008), p.228. —mp]

Praxis HIS —
ATC Global 2009
From: Praxis Press Center
Date: Tuesday February 24, 2009
Subject: Praxis at ATC Global - 17th to 19th

March 2009
URL: http://www.praxis-his.com/

news/index.asp
Praxis will be exhibiting at ATC Global
on 17-19 March 2009 at the Amsterdam
Rail Exhibition and Congress Centre.

Praxis HIS — Ada UK 2009
From: Praxis Press Center
Date: Tuesday February 24, 2009
Subject: Praxis at Ada UK - 24th March

2009
URL: http://www.praxis-his.com/

news/index.asp
Praxis is attending and exhibiting at the
Ada Conference UK to be held on 24th
March 2009 in London. Speakers from
Praxis will include Rod Chapman,
Product Manager for SPARK and Janet
Barnes one of Praxis' key technical
authorities.

Ada-related Resources
DIANA
From: Patrick Boulay <boulayp@free.fr>
Date: Wed, 17 Dec 2008 21:46:16 -0800
Subject: DIANA
Newsgroups: comp.lang.ada
I am looking for a reference on the
DIANA so that I can understand its
definition, workings, layout, use etc. I
have searched on the net extensively and
not found a downloadable definition or
description of it.
Does anyone know a public link where I
can download documents on DIANA?
From: Markus Schoepflin

<nospam@no.spam>
Date: Thu, 18 Dec 2008 10:37:29 +0100
Subject: Re: DIANA
Newsgroups: comp.lang.ada
Not a downloadable reference, but maybe
you can get your hands on this book in a
library near you:
Ada Software Tools Interfaces:
Workshop, Bath, July 13-15, 1983.
Proceedings (Lecture Notes in Computer
Science) (v. 180) (Paperback)
See http://www.amazon.com/
Ada-Software-Tools-Interfaces-
Proceedings/dp/3540138781/ref=sr_11_1
?ie=UTF8&qid=1229592865&sr=11-1
[…]
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Thu, 18 Dec 2008 10:23:30 +0100
Subject: Re: DIANA
Newsgroups: comp.lang.ada
Diana was an attempt to standardize the
intermediate tree of Ada compilers, in
order to ease the development of 3rd party
tools. Some compilers (Rational IIRC)
still use Diana, but the goal is now
achieved by the ASIS interface.
What kind of application do you have in
mind?
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Thu, 18 Dec 2008 13:29:00 +0100
Subject: Re: DIANA
Newsgroups: comp.lang.ada
 […]
> PL/SQL reverse engineering
Although there is a clear filiation from
Ada to PL/SQL, they are different
languages, and it is not possible to use
Ada tools on PL/SQL.
I doubt also that PL/SQL uses Diana
trees...
Of course, if you want to learn Diana just
to see what a syntactic tree looks like,
that's fine.

#Ada IRC Channel on
Freenode
From: Caracal <caracal@niestu.com>
Date: 07 Feb 2009 05:45:57 GMT
Subject: #Ada IRC channel on Freenode
Newsgroups: comp.lang.ada
This is the annual reminder of the
existence of the #Ada channel on the
Freenode IRC network. Now over seven
years old, the channel is open to all
discussions related to the Ada language
and its use. We welcome beginners and
pros alike, and do our best to maintain a
friendly, productive, and informative
atmosphere. The channel has been
growing steadily; we now average about
40 members and have active
conversations daily.
Point your IRC client to irc.freenode.net
and join the #Ada channel.
[…]

Ada and Wikipedia
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Tue, 24 Feb 2009 12:03:47 +0100
Subject: Invade wikipedia!
Newsgroups: comp.lang.ada
I was musing recently through Wikipedia.
There are lots of topics related to
algorithms or similar stuff that have
examples, generally in C, often with
examples in some other languages for
comparison.
It would be nice if the community joined
forces to add Ada examples. Nobody can
do that alone, but if everyone add some
examples when finding an opportunity,
we could give much more visibility to
Ada.

Public Ada Library
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Thu, 26 Feb 2009 18:45:54 +0100
Subject: Re: HELP TO BEGINNER
Newsgroups: comp.lang.ada
[…]
> Exploring the WEB I've found the PAL

(Public Ada Library) but it's
unavailable. I'm interested to know if
there is some free archive containing
various code (algorithms about
numerical integration and similar...)
[…]

http://www.iste.uni-stuttgart.de/
ps/AdaBasis/pal_1195/ada/pal.html
[…]
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Fri, 27 Feb 2009 01:03:13 -0800 PST
Subject: Re: HELP TO BEGINNER (PAL)
Newsgroups: comp.lang.ada

Ada-related Tools 7

Ada User Journal Volume 30, Number 1, March 2009

[…] Here is the link to the *partial*
mirror:
ftp://ftp.cs.kuleuven.ac.be/pub/
Ada-Belgium/mirrors/pal/
I gonna make a backup right now, before
this one disappears the same way as all
the others…
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Fri, 27 Feb 2009 18:11:08 -0600
Subject: Re: HELP TO BEGINNER (PAL)
Newsgroups: comp.lang.ada
Please don't worry about that; there is a
copy in the AdaIC archives:
http://archive.adaic.com/ase/index.html
This is a copy of Dirk's FTP site, except
of course it is available through HTTP,
not FTP, so you can browse it and find it
from Google.
There isn't much chance of AdaIC
disappearing as long as Ada exists, so I
wouldn't worry about it disappearing. (We
have it in the archives as it has not been
maintained for years, so there is some
stale stuff in it, like ancient versions of
GNAT).
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.be>
Date: Mon, 2 Mar 2009 18:30:02 +0000

UTC
Subject: Re: HELP TO BEGINNER (PAL)
Newsgroups: comp.lang.ada
[…] Note that the latest version of the
full Public Ada Library is available at
ftp://ftp.cs.kuleuven.ac.be/pub/
Ada-Belgium/cdrom/index.html.
[…]
The copy at the Ada-Belgium server dates
from the period when distributing "big
files" via http was a no-no, and people
insisted that ftp should be used for that
instead. Since then the situation changed
"somewhat", so making a copy available
via http is no longer a problem and in fact
may be preferable for many reasons […].
Nevertheless, I received reports from
people who appreciate the availability via
ftp, e.g. because they have only ftp- and
no http- access, so I intend to keep it
online as long as cs.kuleuven.be offers an
ftp-service.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 2 Mar 2009 16:17:11 -0600
Subject: Re: HELP TO BEGINNER (PAL)
Newsgroups: comp.lang.ada
[…]
It's good to have both. I agree that it is
better to get large files by FTP. The main
problem with having the whole thing
hosted on FTP is that it makes it hard to
browse the HTML index pages. So the
best possible solution would be to have it
split between HTTP and FTP -- small
files and indexes in HTTP and large files

in FTP -- but as that is a lot of work, I
didn't want to bother with it.
Probably the best approach is to find the
files that you need in the AdaIC archives
and then download them from Dirk's FTP
site if they are large.
(Filezilla works well for accessing FTP
sites.)

Reference Implementation
of Design Patterns in Ada
From: ceretullis
Date: Tuesday, Mar 3 2009 16:31
Subject: Design Pattern reference

implementations in Ada?
URL: http://stackoverflow.com/questions/

607126/design-pattern-reference-
implementations-in-ada

Does anyone know of some good
reference implementations of common
design patterns in Ada?
From: Marc C
Date: Tuesday, Mar 3 2009 17:13
Subject: Design Pattern reference

implementations in Ada?
URL: http://stackoverflow.com/questions/

607126/design-pattern-reference-
implementations-in-ada

Several articles about "Software Patterns
Implemented in Ada".
[see http://www.adapower.com/
index.php?Command=Class&ClassID=Pa
tterns&Title=Patterns —mp]

Ada-related Tools
Simple Components 3.3
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 13 Dec 2008 16:58:25 +0100
Subject: ANN: Simple components version

3.3
Newsgroups: comp.lang.ada
The current version provides
implementations of smart pointers, sets,
maps, stacks, tables, string editing,
unbounded arrays, expression analyzers,
lock-free data structures, synchronization
primitives (events, race condition free
pulse events, arrays of events, re-entrant
mutexes, deadlock-free arrays of
mutexes), pseudo-random non-repeating
numbers, symmetric encoding and
decoding, IEEE 754 representations
support. It grew out of needs and does not
pretend to be universal. Tables
management and strings editing are
described in separate documents see
Tables and Strings edit.
http://www.dmitry-kazakov.de/
ada/components.htm
Changes to the previous version:
⁃ The procedure Purge and the function

Is_Preserved were added to the

packages Generic_FIFO and
Generic_FIFO.Generic_Signaled in
order to remove undesired FIFO
elements;

⁃ References of blackboards are made
comparable;

⁃ Bug fix in blackboards. The bug
manifested itself as ghost elements
appearing under certain circumstances.

AVR-Ada 1.0
From: Rolf Ebert

<rolf_ebert@users.sourceforge.net>
Date: Sun, 7 Dec 2008 00:21:10 -0800 PST
Subject: [Announce] AVR-Ada V1.0

released
Newsgroups: comp.lang.ada,

comp.arch.embedded
We are proud to announce a new release
of AVR-Ada, one of the first GCC based
Ada compilers targeting 8-bit
microcontrollers.
The project description consists of some
wiki pages at:
http://avr-ada.sourceforge.net/
This is a source only release, i.e. you get
patches and instructions for building your
own cross compiler, the run time system,
and the support packages.
There are no pre-built binaries yet.
The download is available at the green
button on page
http://sourceforge.net/projects/avr-ada
If you have difficulties in building or
using the compiler or you want to chat
about a project, please join and use the
mailing list at
http://lists.sourceforge.net/mailman/
listinfo/avr-ada-devel.
Status
The goal of the AVR-Ada project is to
make the GCC based Ada compiler
GNAT available for the AVR
microcontrollers.
More specifically the project provides:
⁃ a GNAT compiler based on the existing

AVR and Ada support in GCC
⁃ a minimalistic Ada run-time system
⁃ a useful AVR specific support library
⁃ support packages for accessing LCDs

and for Dallas' 1-wire sensors
The current distribution of AVR-Ada is
v1.0. It is based on gcc-4.3.3.
The Ada run time system (RTS) on the
other hand is still not even a *run* time
system. It is more a compile time system.
Most in the RTS are only needed at
compile time. As a consequence we don't
have support for exceptions nor for
tasking (multithreading).
There is a bit of AVR specific support.
Some type and interface definitions,

8 Ada-related Tools

Volume 30, Number 1, March 2009 Ada User Journal

timing routines, eeprom access, UART,
and most importantly the necessary
definitions for most AVR parts. The
syntax for accessing ports and specific
bits changed radically (compared to
previous releases) thanks to a patch
provided by AdaCore.
You can now read and write every
predefined port either as an Unsigned_8
or as an array (0..7) of Boolean.
Some sample programs in the apps/
directory show how to use the compiler
and the library. This includes some of
Peter Fleury's example programs
translated to Ada
(http://homepage.sunrise.ch/mysunrise/
peterfleury/avr-software.html).

GWenerator 0.95
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Mon, 08 Dec 2008 21:43:21 +0100
Subject: Ann: GWenerator 0.95
Newsgroups: comp.lang.ada
The first graphical version of GWenerator
is out!
Visit: http://sf.net/projects/gnavi/
GWenerator allows doing Graphical User
Interfaces with existing software like
Visual Studio or the free ResEdit (
http://resedit.net) and program Windows
applications in Ada using the GWindows
object-oriented library.
GWenerator produces Ada sources
corresponding to dialogs and menus, as a
background task. Of course, GWenerator's
own GUI is itself produced this way -
kind of a self-demo.
The archive contains some other
examples and numerous stress-tests
downloaded from Internet.
But the better is to play around and send
feedbacks or ask questions on the GNAVI
mailing list…

PCSC/Ada 0.5
From: Reto Buerki <reet@codelabs.ch>
Date: Sat, 13 Dec 2008 12:48:46 +0100
Subject: [Announce] PCSC/Ada version 0.5

released
Newsgroups: comp.lang.ada
I'm proud to announce the first public
release of PCSC/Ada.
The PCSC/Ada library provides bindings
to PC/SC-middleware for the Ada
programming language. PCSC/Ada
allows you to communicate with smart
cards using the SCard API with Ada.
Besides the thin and thick bindings to
PC/SC, the actual version contains the
API documentation for PCSC/Ada
version 0.5, code examples, unit- and
integration test suites.
For more information on PCSC/Ada,
visit:

http://www.nongnu.org/pcscada/
Test reports, code reviews and of course
patches are much appreciated!

PLplot Ada bindings
From: Jerry Bauck

<lanceboyle@qwest.net>
Date: Fri, 2 Jan 2009 15:31:10 -0800 PST
Subject: ANN: Ada bindings to PLplot

plotting software
Newsgroups: comp.lang.ada
This is to announce the official
availability of the Ada language bindings
to the plotting package PLplot as of
version 5.9.1. See the home page at
http://plplot.sourceforge.net/
Available unofficially for some time, the
Ada bindings are now enabled by default.
PLplot is an actively developed project at
SourceForge and should be considered for
high quality publication-grade plotting. It
is a linkable library and thus potentially
faster than some other packages, not
requiring writing data to a file before
plotting.
From the PLplot home page:
"PLplot is a cross-platform software
package for creating scientific plots. To
help accomplish that task it is organized
as a core C library, language bindings for
that library, and device drivers which
control how the plots are presented in
non-interactive and interactive plotting
contexts."
"The PLplot core library can be used to
create standard x-y plots, semi-log plots,
log-log plots, contour plots, 3D surface
plots, mesh plots, bar charts and pie
charts. Multiple graphs (of the same or
different sizes) may be placed on a single
page, and multiple pages are allowed for
those device formats that support them."
The Ada bindings offer a number of
substantial improvements over the C API,
including a choice of binding, one using
"traditional" PLplot names such as
plcol0(1) to set the pen color to red, the
other using "Ada-friendly" names such as
Set_Pen_Color(Red).
The Ada bindings are extended to offer a
host of "simple plotters" that do not
require user set-up and will suffice for
many day-to-day plotting needs.
Here is an example:

with
 PLplot_Auxiliary,
 PLplot;
use
 PLplot_Auxiliary,
 PLplot;

procedure Simple_Example is
 x, y : Real_Vector(-10 .. 10);
begin

 for i in x'range loop
 x(i) := Long_Float(i);
 y(i) := x(i)**2;
 end loop;

 Initialize_PLplot; -- Call this only once.
 Simple_Plot(x, y); -- Make the plot.
 End_PLplot; -- Call this only once.
end Simple_Example;

There is also extensive Ada-specific
documentation.
Platforms Supported:
 Linux, Mac OS X, and other Unix-based
 Windows (2000, XP and Vista)
 MS-DOS (DJGPP)
Output File Formats:
 CGM
 GIF
 JPEG
 LaTeX
 PBM
 PDF
 PNG
 PostScript
 SVG
 Xfig
Interactive Platforms:
 X
 GNOME
 Tcl/Tk
 PyQt
 wxWidgets
Language Bindings:
 Ada
 C/C++/D
 Fortran 77/90
 Java
 OCaml
 Octave
 Perl
 Python
 Tcl/Tk
 wxWidgets
From: Georg Bauhaus

<see.reply.to@maps.futureapps.de>
Date: Sat, 03 Jan 2009 01:34:01 +0100
Subject: Re: ANN: Ada bindings to PLplot

plotting software
Newsgroups: comp.lang.ada
Skimming the PLplot examples, which
are given for several languages
(http://plplot.sourceforge.net/
examples.php), I noticed that all examples
mirror the fortranesque C library

Ada-related Tools 9

Ada User Journal Volume 30, Number 1, March 2009

functions more or less directly. (6 char
names with a "pl" prefix making them 8
char, tons of numeric parameters; I
understand that "these examples also
serve as a testbed for the bindings in Ada
and other languages by checking the
Postscript files that are generated by each
example against those generated by the C
versions.")
However, authors of some bindings
including this Ada one have added "a
number of substantial improvements over
the C API". (Set_Pen_Color(Red) seems
so much better than plcol0(1), even when
it does not name the thing that is turned
red; I don't want to sound complaining, in
particular having done nothing on this
work). That's somewhat hidden from the
web presentation, though, I think.
[…]
I'm still looking for an alternative for
some Perl-driven GNUplot command
scripts, so I'm really happy to see PLplot
growing into the post-70s era.
From: Jerry Bauck

<lanceboyle@qwest.net>
Date: Mon, 5 Jan 2009 15:15:51 -0800 PST
Subject: Re: ANN: Ada bindings to PLplot

plotting software
Newsgroups: comp.lang.ada
Read the docs. I originally called this
procedure Set_Pen_Color(..) but changed
it when I figured that not everyone
appreciates the reference to pen plotters
and would respond, "What pen?" Calling
this procedure simply causes everything
that is drawn thereafter to be in the
specified color, until the procedure is
called again with a different argument.
> Can I put an item on the Plplot binding

wish list? That would be: show some
examples that use the thick bindings, on
the web pages. Maybe these examples
using thick bindings will then help
some demonstrate why they are using a
language that offers more than Fortran
77 style C.

I couldn't agree with you more. In fact, I
developed the "Ada-name" binding first
and made the "traditional-name" later at
the request of the PLplot developer team.
I'm very happy to report that I took your
petition to the developers and you should
soon see Ada examples written with both
bindings appearing on the PLplot web site
with the "Ada-name" versions given
preference if possible. I'll post back here
when that upgrade happens.
From: Jerry Bauck

<lanceboyle@qwest.net>
Subject: Re: ANN: Ada bindings to PLplot

plotting software
Date: Mon, 5 Jan 2009 23:56:00 -0800 PST
Newsgroups: comp.lang.ada
Done. Check it out at
http://plplot.sourceforge.net/
examples.php?demo=3D01.

QtAda 2.1.0
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Wed, 14 Jan 2009 02:33:04 -0800

PST
Subject: Announce: QtAda 2.1.0
Newsgroups: comp.lang.ada
We are pleased to announce the
immediate availability of the QtAda 2.1.0
version. You can download multi
platform source code package or
Microsoft Windows binary package from
our download page:
http://www.qtada.com/en/download.html
QtAda is an Ada 2005 language bindings
to the Qt libraries and a set of useful tools.
QtAda allows easily to create cross-
platform powerful graphical user interface
completely on Ada 2005. QtAda
applications will work on most popular
platforms - Microsoft Windows, Mac OS
X, Linux/Unix - without any changes and
platform specific code. QtAda allows to
use all power of visual GUI development
with Qt Designer.
New in QtAda 2.1.0:
⁃ documentation in the Qt Assistant

format was added;
⁃ integration with the GNAT tool chain

including gprbuild and GPS was added;
⁃ support for the QtXml modules was

added;
⁃ support for the QtCore and QtGui

modules was extended;
⁃ support for the safe pointers to the

instances of the QObject subclasses was
added;

⁃ support for printing was added.
Commercial support and services are
available from the QtAda team.

QtAda/GtkAda integration
kit
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Sat, 21 Feb 2009 08:57:11 -0800 PST
Subject: Announce: QtAda/GtkAda

integration kit
Newsgroups: comp.lang.ada
We are pleased to announce a technology
preview for the new product -
QtAda/GtkAda Integration Kit. It allows
to create hybrid QtAda/GtkAda
application, thus it allows to migrate and
reuse of the existent GtkAda code in
QtAda application.
Technology preview is available for
immediate download from the QtAda
download page (see snapshot section):
http://www.qtada.com/en/download.html
QtAda/GtkAda Integration Kit can be
used with latest QtAda 2.2.0 snapshots
only.

TASH 8.4
From: Pascal Obry <pascal@obry.net>
Date: Sat, 17 Jan 2009 13:17:04 +0100
Subject: TASH 8.4
Newsgroups: comp.lang.ada
[…] I'm looking for the Tash 8.4 binding.
The www.adatcl.com site seems down, do
you know where to download this
package? Found nothing with Google...
[…]
From: Graham Stark

<graham.stark@virtual-worlds.biz>
Date: Sat, 17 Jan 2009 06:11:45 -0800 PST
Subject: Re: TASH 8.4
Newsgroups: comp.lang.ada
[…]
http://tcladashell.wiki.sourceforge.net/
From: okellogg <okellogg@freenet.de>
Date: Tue, 20 Jan 2009 11:45:41 -0800 PST
Subject: Re: TASH 8.4
Newsgroups: comp.lang.ada
[…] Note that the last release, 20081009,
still had a number of problems related to
the Ada interfacing representations for
Tcl C data structures.
These have been corrected in the current
svn trunk (r121).

TASH 20090207
From: sjw <simon.j.wright@mac.com>
Date: Sat, 7 Feb 2009 12:34:32 -0800 PST
Subject: TASH 20090207
Newsgroups: comp.lang.ada
We're pleased to announce the release of
TASH 20090207, at
https://sourceforge.net/project/
showfiles.php?group_id=164395.
This release includes a source release and
a Windows binary release (Windows
2000, GNAT-GPL-2008, ActiveState
Active Tcl 8.4.17.0).
The readme:
This is TASH version 8.6-0, intended for
use with Tcl/Tk versions 8.4 through 8.6.
The 'thick binding' (packages Tash.*)
depends on several symbols that are
hidden in Tcl later than 8.4 if compiled
with GCC later than 4.0. For this reason,
the thick binding is, by default, not built if
setup.tcl finds that Tcl is later than 8.4.
In order to use the thick binding with Tcl
later than 8.4 and GCC later than 4.0, you
need to build Tcl and Tk from source and
edit the following entry from the
unix/Makefiles:

AC_FLAGS = ... lots of flags ... and:
 -DMODULE_SCOPE=extern\
__attribute__\(\(__visibility__\(\"hidden\"\
)\)\)

The part

10 Ada-related Tools

Volume 30, Number 1, March 2009 Ada User Journal

 -DMODULE_SCOPE=extern\
__attribute__\(\(__visibility__\(\"hidden\"\
)\)\)
should be removed from the AC_FLAGS
of both Tcl and Tk.
Then do "make clean && make" and then
"make install".
You can then edit the value of
SUPPORTS_TASH in the setup.tcl dialog
and build TASH.
We would like to remove the dependency
on Tcl private symbols in a future version
of TASH. However, we suspect that the
actual use of these facilities is limited "in
the field".
API changes since previous release:
⁃ Updated the Tcl Ada API to native Tcl

8.[4-6]
⁃ Removed function Tcl.Tcl_GetObjId as

it is not part of native Tcl and it gave
trouble on 64-bit systems.

⁃ Many of the record types in package Tcl
were declared private although their
native Tcl counterpart is public. Certain
functions could not even be used
without public access to the record
type's contents. These types are now
public.

⁃ Removed type Tcl.Tcl_Obj_Ptr as it is
not part of native Tcl, and its use was
prone to introduce memory leaks.

Ada for Netbeans
From: Andrea Lucarelli

<andrea.lucarelli@gmail.com>
Date: Sun, 28 Dec 2008 08:13:43 -0800

PST
Subject: Ada for Netbeans
Newsgroups: comp.lang.ada
[…]
The first version (very alpha release) of
Ada for Netbeans is accessible at this link
http://plugins.netbeans.org/PluginPortal/
faces/PluginDetailPage.jsp?pluginid=
13977.
A lot of features are not available or only
draft, see
http://wiki.netbeans.org/Ada
for more details on these features.
From: Andrea Lucarelli

<andrea.lucarelli@gmail.com>
Date: Tue, 30 Dec 2008 05:52:04 -0800

PST
Subject: Re: Ada for Netbeans
Newsgroups: comp.lang.ada
[…] Unfortunately I tested Ada for
Netbeans only on Windows systems. […]
From: Xavier Grave

<xavier.grave@ipno.in2p3.fr>
Date: Tue, 30 Dec 2008 10:57:56 +0100
Subject: Re: Ada for Netbeans
Newsgroups: comp.lang.ada

[…] With Netbeans 6.5 all the installation
process is smooth, great. […]
From: Andrea Lucarelli

<andrea.lucarelli@gmail.com>
Date: Mon, 5 Jan 2009 08:00:21 -0800 PST
Subject: Re: Ada for Netbeans
Newsgroups: comp.lang.ada
I solved the following problems in the
0.1.6 version
(http://plugins.netbeans.org/PluginPortal/f
aces/PluginDetailPage.jsp?pluginid=3D13
977):
1. Fix string and char literal recognition.
2. Fix new Ada platform and auto-detect
in Linux system.
3. Fix gpr template file for Linux systems.
4. Fix project actions for Linux systems.
[…]
From: Xavier Grave

<xavier.grave@ipno.in2p3.fr>
Date: Mon, 05 Jan 2009 20:50:47 +0100
Subject: Re: Ada for Netbeans
Newsgroups: comp.lang.ada
[…] I have tested your last version on a
Debian GNU/Linux with custom directory
for GNAT (GPL 2007). It worked near
perfection. The only problem (very little)
I encountered was when I tried directly a
clean and build project.
[…]
From: Andrea Lucarelli

<andrea.lucarelli@gmail.com>
Date: Sun, 1 Feb 2009 16:32:33 -0800 PST
Subject: Re: Ada for Netbeans [0.1.6]
Newsgroups: comp.lang.ada
 […] I just published a new version of
Ada for Netbeans (0.1.7):
http://plugins.netbeans.org/PluginPortal/
faces/PluginDetailPage.jsp?pluginid=
3D13977
It's an incremental version. I have also
corrected a pair of bugs from your
comments […] and to improve the auto-
detect, I also check the environment path
variable now.
[…]
From: Andrea Lucarelli

<andrea.lucarelli@gmail.com>
Date: Wed, 4 Feb 2009 13:21:37 -0800 PST
Subject: Re: Ada for Netbeans [0.1.7]
Newsgroups: comp.lang.ada
 […] Access-to-subprogram is an
Ada 2005 extension.
My parser for now is compatible only
with the syntax of Ada 95. […]
From: Andrea Lucarelli

<andrea.lucarelli@gmail.com>
Subject: Re: Ada for Netbeans [0.1.7]
Date: Sun, 8 Feb 2009 01:38:06 -0800 PST
Newsgroups: comp.lang.ada
 […]

I activated on SourceForge the possibility
to communicate bugs, and support the
request for new features:
http://sourceforge.net/tracker/?group_id=
=3D248853.
To collaborate as developer it is necessary
to follow the information that you find in
this page:
http://www.netbeans.org/community/cont
ribute/project-and-contrib.html
[…]

MacPorts / GNU Ada
Release
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Tue, 17 Feb 2009 18:50:36 +0100
Subject: New MacPorts / GNU Ada Release
Newsgroups: comp.lang.ada
I have released a new MacPort version of
the GCC compiler [1]. The Portfiles for
the new release has been send up stream
as I have become a MacPorts maintainer
[2] and they can be compiled and installed
like any other Port (MacPorts is a source
code based distribution).
Since you need a bootstrap compiler I
also created a binary release [3] to get
everybody started.
And on top of that I prepared new source
code tarballs for booch95 and XML/Ada.
[1] http://gnuada.sourceforge.net/
pmwiki.php/Install/MacPorts
[2] http://trac.macports.org/wiki/
MacPortsDevelopers
[3] https://sourceforge.net/project/
showfiles.php?group_id=12974&
package_id=291480
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Thu, 19 Feb 2009 11:19:33 +0100
Subject: Re: New MacPorts / GNU Ada

Release
Newsgroups: comp.lang.ada
[…]
All I did is to copy the port of "gcc43"
and added Ada to it. In particular, I made
sure that a
gvimdiff gnat-gcc/Portfile gcc43/Portfile
gives me a manageable result so work on
GCC upgrades are minimized.
So any question related to non-Ada stuff
should be directed to the author of gcc34
which is mww (Markus W. Weissmann,
http://trac.macports.org/wiki/mww).
Sorry to spoil your fun but until there is
an Objective-Ada the various Objective
runtimes are not high on my priority list.
From: Jerry Bauck

<lanceboyle@qwest.net>
Date: Tue, 17 Feb 2009 12:32:16 -0800

PST

Ada-related Tools 11

Ada User Journal Volume 30, Number 1, March 2009

Subject: Re: New MacPorts / GNU Ada
Release

Newsgroups: comp.lang.ada
[…]
Can I now have a working 4.3.x GNAT
on a PPC Mac running OS X 10.5.x? As
you know, this combination has not been
provided by MacAda.org. I have been
running their GNAT on my PPC
Powerbook under OS X 10.4 but have
been unable to switch to 10.5 because of
this "missing compiler".
If I understand correctly, due to your
bootstrapping efforts, I can use my
existing MacAda compiler as the
bootstrap by specifying +macada (and
presumably +ada and +powerpc).
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Wed, 18 Feb 2009 09:20:39 +0100
Subject: Re: New MacPorts / GNU Ada

Release
Newsgroups: comp.lang.ada
Have a look at my bootstrap job:
http://gnuada.svn.sourceforge.net/viewvc/
gnuada/trunk/MacPorts/Utilities/
Build_GCC.command?view=markup
Well an old version - there is a commit
still pending - I commit the correct
version tonight. Anyway, you can get the
draft here. Just replace \<.*gcc43\> with
gnat-gcc.
[see also “MacPorts” in AUJ 29-4 (Dec
2008), p.234. —mp]

Zip-Ada
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Sun, 11 Jan 2009 19:48:42 +0100
Subject: Ann: UnZip-Ada v.27
Newsgroups: comp.lang.ada
Big improvement as from v.26: the zip
archive can be any kind of stream, not
only a file - this for compressing and
decompressing. It allows to use the library
for the most various purposes (doing
everything in memory, chaining streams,
etc.). Visit:
http://unzip-ada.sf.net/
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Sat, 07 Feb 2009 20:39:19 +0100
Subject: Ann: UnZip-Ada v.30
Newsgroups: comp.lang.ada
Some news from the [Un]Zip-Ada library
@ http://unzip-ada.sf.net/ :
Main changes from versions '28' to '30':
⁃ Added support for the 64KB-slide

"Enhanced deflate" format #9 in
UnZip.Decompress

⁃ Added Find_Zip tool (search through an
archive)

⁃ Added Demo_csv_into_zip demo
(production of numerous files into a zip
archive, only one temp file)

⁃ Added Zip.LZ77 and
Zip.Compress.Reduce

⁃ Added an ./extra directory with a tiny
LZH encoder/decoder

⁃ ZipAda uses Zip.Create
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Mon, 23 Feb 2009 20:57:54 +0100
Subject: Ann: Zip-Ada v.31
Newsgroups: comp.lang.ada
Some news from the Zip-Ada library @
http://unzip-ada.sf.net/ :
⁃ the library's name is now Zip-Ada and

not UnZip-Ada anymore (except the site
name at SF which is in the process of
being renamed…)

⁃ Added tiny demos: Demo_Zip,
Demo_UnZip

⁃! Zip.Create: Create / Finish: if
Info.Stream is to a file, the underlying
archive file is also created / closed as
well

⁃ Added procedure Add_String in
Zip.Create

(⁃! marks an incompatibility)
[…]
[See also “UnZip-Ada” in AUJ 29-1 (Mar
2009), p.10. —mp]

Ahven — Unit Test Library
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Thu, 22 Jan 2009 22:17:48 +0200
Subject: ANN: Ahven 1.4
Newsgroups: comp.lang.ada
I am pleased to announce Ahven 1.4.
Ahven is a simple unit test library for
Ada 95 distributed under permissive ISC
license.
This release introduces Test Anything
Protocol (TAP) reporter, a new API for
stack-based test cases, and improved
Janus/Ada support. Also, some API
changes were done, but they should affect
only those who have extended the
framework.
For more info, please read the detailed
release notes:
http://home.gna.org/ahven/release_1_4.txt
or visit Ahven's homepage:
http://home.gna.org/ahven/
The source code is available as tar.gz and
zip packages:
http://download.gna.org/ahven/
ahven-1.4.tar.gz
http://download.gna.org/ahven/
ahven-1.4.zip
Known issues:

⁃ Some test cases fail with Janus/Ada
3.1.1d, but the TAP reporter and the
framework should still work as
intended. (Later compiler versions are
ok.)

⁃ Ahven as a dynamic library might not
work with GNAT GPL 2008. (Static
library or GNAT GPL 2007 should be
ok.)

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Mon, 23 Feb 2009 22:44:31 +0200
Subject: ANN: Ahven 1.5
Newsgroups: comp.lang.ada
I am pleased to announce Ahven 1.5.
Ahven is a simple unit testing library for
Ada 95 programming language.
Ahven project recently moved from Gna!
to SourceForge and this is the first release
from sf.net.
Changes include:
⁃ Rewritten Janus/Ada build system
⁃ Minor changes to GNAT build scripts
⁃ Bug fix for Ahven.Slist package API

documentation generation
New homepage location is
http://ahven.sourceforge.net/
Source code is available as tar.gz and zip
packages from
http://sourceforge.net/project/
showfiles.php?group_id=253736
Version control repository can be found
from
http://ahven.cvs.sourceforge.net/ahven/
From: Rolf Ebert

<rolf_ebert@users.sourceforge.net>
Date: Mon, 23 Feb 2009 14:50:48 -0800

(PST)
Subject: Re: ANN: Ahven 1.5
Newsgroups: comp.lang.ada
[…]
What's the difference to aunit?
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Tue, 24 Feb 2009 07:47:21 +0200
Subject: Re: ANN: Ahven 1.5
Newsgroups: comp.lang.ada
Ahven's API is similar to AUnit (1.0x
series), but Ahven is plain Ada 95 code
and works with other compilers than
GNAT. In addition, Ahven is distributed
under ISC (modified BSD) license, so you
can embed it freely into commercial
applications.
You can also get test results in XML
format and therefore integrate Ahven into
continuous integration systems
(Cruisecontrol, Hudson).
Originally, I created Ahven because
AUnit was missing some features which I
needed and instead of extending pure
GPL project, it was easy enough to create
a new library with ISC license.

12 Ada-related Products

Volume 30, Number 1, March 2009 Ada User Journal

From: Georg Bauhaus <rm.dash-
bauhaus@futureapps.de>

Date: Tue, 24 Feb 2009 11:38:56 +0100
Subject: Re: ANN: Ahven 1.5
Newsgroups: comp.lang.ada
[…]
> In addition, Ahven is distributed under

ISC (modified BSD) license, so you
can embed it freely into commercial
applications.

More accurately, please consider
replacing "commercial" with "protected
source" or similar.
GPL software is the technical fundament
of a number of commercially successful
enterprises.
I do know that not all software can be
exposed freely to the many freeloading
business men out there. Which is what the
GPL will require of those selling binary
programming produce.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 24 Feb 2009 09:45:53 -0800

PST
Subject: Re: ANN: Ahven 1.5
Newsgroups: comp.lang.ada
> More accurately, please consider

replacing "commercial" with "protected
source" or similar.

I'd rather call it "secret source" or simply
"proprietary". To me "protected source"
means that I am protected because I can
see, modify and distribute the source, i.e.
it is Free Software
> GPL software is the technical

fundament of a number of
commercially successful enterprises.

 I do know that not all software can be
exposed freely to the many freeloading
business men out there. Which is what
the GPL will require of those selling
binary programming produce.

Yes and the GNU Affero General Public
License (AGPL) version 3 extends the
requirement to distribute the sources to
those using the "software as a service"
business model.
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Tue, 24 Feb 2009 23:02:22 +0200
Subject: Re: ANN: Ahven 1.5
Newsgroups: comp.lang.ada
Thanks for the suggestions. I actually use
term "commercial application" only in the
manual (which is not built or installed by
default), but I changed the wording there
to "proprietary commercial application"
[1], just in case someone looks at it.
[1] Wikipedia seems to use this form in its
BSD license article:
http://en.wikipedia.org/wiki/BSD_licence
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Sat, 28 Feb 2009 11:53:11 +0200

Subject: ANN: Ahven 1.6
Newsgroups: comp.lang.ada
[…]
I messed up GNAT installation in version
1.5.
Thanks to Reto Buerki for noticing it and
providing a fix.
I released today Ahven 1.6, which is
basically Ahven 1.5 with the GNAT
installation fix applied.
Like earlier, source code is available as
tar.gz and zip packages from
http://sourceforge.net/project/
showfiles.php?group_id=253736
[See also “Ahven — Unit test library” in
AUJ 29-3 (Sep 2008), p.156. —mp]

Ada-related Products
AdaCore — GNAT Pro 6.2.1
From: AdaCore Press Center
Date: Tuesday February 17, 2009
Subject: GNAT Pro 6.2.1
RSS: http://www.adacore.com/2009/02/17/

gnat-pro-621/
GNAT Pro 6.2.1 is a major release
comprising 18 native and 28 cross
platforms qualified for 146 different
environments (including variations of Ada
runtimes as well as host and target OS
versions). For a full list of supported
platforms, please visit:
www.adacore.com/home/gnatpro/
supported_platforms
The core compiler back-end technology is
now based on a gcc 4.3, while the core
debugging engine is based on gdb 6.8.
These upgrades allow significant
performance gains as well as porting to
new architectures.
New supported platforms in 6.2.1 include:
⁃ x86_64-darwin
⁃ jvm-windows
⁃ x86-elinos-linux
⁃ avr-elf-windows
⁃leon-elf-windows
An internal AdaCore ACATS certificate
is now included for relevant platforms. It
is a first step in providing more
reviewable qualification evidence as part
of the GNAT Pro release. Note that
ACATS testing represents only one
component of our overall qualification
procedures.
Main native platforms now offer 2
additional components that were beta-
tested last year:
⁃ Ada-Java Interfacing Suite (AJIS)
⁃ GNAT Component Collection

(GNATcoll)

This new release incorporates fixes for the
all issues that have been reported to
AdaCore as documented in the ‘Known
Problems’ files of the GNAT Tracker
Documentation section: Known problems
in GNAT Pro 6.1.2.
In the same section, you can also find
‘Features’ entries describing all the new
features and enhancements. Major ones
include:
⁃ Improved support for safety-critical

applications
 o Traceability to source code
 o Coverage analysis Ability to

associate pre- and post-conditions
with subprograms

⁃ Ability to selectively enable or disable
groups of assertions

⁃ Additional rules in gnatcheck for coding
standard verification

⁃ More efficient implementation of stack
checks, overflow checks, and validity
checks

⁃ Additional attributes and pragmas to
ease generic programming

⁃ Communication-related improvements
 o More efficient string streaming
 o Better support for serial

communication and socket handling
Additional compilation warnings on
suspected errors

⁃ Missing overriding indicators
⁃ Assumption that string lower bound

is 1.
The 6.2.1 release also includes an
enhanced version of the GNAT
Programming Studio (GPS) IDE. GPS
4.3.x is compatible with GNAT Pro
versions 3.16a1 up to 6.2
[For AJIS, see http://www.adacore.com/
home/gnatpro/toolsuite/ada_java/
For GNATcoll, see
http://www.adacore.com/2008/06/17/
gnat_component_collection/ —mp]

Aonix — ObjectAda for
VxWorks
From: Aonix Press Release
Date: Wednesday February 4, 2009
Subject: Aonix Releases ObjectAda for Wind

River VxWorks RTOS
URL: http://www.aonix.com/

pr_02.04.09.html
ObjectAda Full Standard Ada Runtime
Executes atop VxWorks 6.6
San Diego, February 4, 2009—Aonix®,
the provider of a provider of solutions for
safety and mission-critical applications,
today announced the release of
ObjectAda® 8.4 for Windows, targeting
PowerPC embedded and real-time
systems running the Wind River
VxWorks 6.6 real-time operating system

Ada-related Products 13

Ada User Journal Volume 30, Number 1, March 2009

(RTOS). This is the first ObjectAda
release supporting full Ada tasking atop
VxWorks 6.6 via Real-Time Processes
(RTP).
ObjectAda for VxWorks leverages Wind
River Workbench, an Eclipse-based
development environment providing
developers access to the broad range of
tools available through the Eclipse
framework. With support for multiple
operating systems, architectures and
programming languages, ObjectAda for
VxWorks provides the flexibility to
standardize on a single development
framework. Users also have the option to
utilize ObjectAda’s standard graphical or
command-line interface. The ObjectAda
compilation system is comprised of an
integrated language-sensitive editor,
source-code browser, compiler with
industry-leading compilation speed,
debugger and full library manager.
Embedded systems development often
begins without target hardware in hand. In
the absence of a PowerPC execution
platform, VxSim, a target simulation
facility supplied in the VxWorks
distribution, can perform initial
application execution and testing direct
from the Intel/Windows host development
platform. This is especially cost-efficient
when multiple developers vie for access
to expensive and scarce target hardware
testing cycles.
“Ada development is a strong aerospace
and defense requirement,” said Rob
Hoffman, vice president and general
manager for Aerospace and Defense at
Wind River. “Continued support and
development of systems can often span
decades and we’re pleased to have up-to-
date and well-integrated solutions for our
customers.”
“Demand for Ada products has remained
remarkably strong, even in the face of
current economic uncertainty,”
commented Gary Cato, Aonix director of
marketing. “Our traditional customers are
looking for ways to modernize or upgrade
their applications in cost-effective ways.
The new release of ObjectAda Real-Time
for VxWorks 6.6 provides a great vehicle
to achieve these objectives. ”
About the ObjectAda Family
ObjectAda is an extensive family of
native and cross development tools and
runtime environments. ObjectAda native
products provide host development and
execution support for the most popular
environments including Windows, Linux
and various Unix operating systems.
ObjectAda Real-Time products provide
cross development tools on Windows,
Linux or Unix systems which target
PowerPC and Intel target processors
running in a full Ada “bare” runtime or in
conjunction with popular RTOSs.
ObjectAda RAVEN® products provide a
hard real-time Ada runtime to address

those systems requiring certification to
the highest levels of safety standards such
as DO-178B Level A for flight safety.
Shipping and Availability
ObjectAda Real-Time targeting Power
Architectures running Wind Rivers’
VxWorks 6.6 is immediately available
starting at $15,000 in the U.S. with
quantity discounts available.
About Aonix®
Aonix offers mission- and safety-critical
solutions primarily to the military and
aerospace, telecommunications and
transportation industries. Aonix delivers
the leading highly reliable, real-time
embedded virtual machine solution for
running Java™ programs deployed today
and has the largest number of certified
Ada applications at the highest level of
criticality. Headquartered in San Diego,
CA and Paris, France, Aonix operates
sales offices throughout North America
and Europe in addition to offering a
network of international distributors.
For more information, visit
www.aonix.com.

RainCode — RainCode
Checker 2.0
From: RainCode Press Release
Date: November 2008
Subject: Releases of RainCode Checker 2.0
URL: http://www.raincode.com/index.html
Version 2.0 of RainCode's coding
guidelines enforcement tool The
RainCode Checker will be released in
January 2009.
The Checker is available for Ada, C and
COBOL, and comes as an Eclipse plugin
for its user interface.
Technical information
The RainCode Checker for Ada provides
you with a convenient infrastructure to
check automatically for compliance with
company-specific or standard coding
conventions in your Ada code. The
Checker analyzes the Ada source files,
detects where the coding rules have been
violated, and generates a detailed report
listing the encountered offences.
Based on the RainCode Engine's static
analysis capabilities, the RainCode
Checker enables you to verify simple as
well a complex coding rules:
⁃ Lexical rules: “Identifier homonymy is

forbidden”
⁃ Syntactical rules: “Nested package

declaration is not allowed”
⁃ Semantic rules: “Overloading type

names in the package Standard is
prohibited”

⁃ Global rules: “Two distinct formal
parameters cannot be associated with
the same actual parameter”

Flexibility
⁃ RainCode Checker for Ada verifies

about 70 coding rules by default. It
allows you to select the rules you
actually want the RainCode Checker to
check, or to use them as examples to
code your own rules in the tool.

⁃ The tool is multi-platform (Windows,
Unix, Solaris, and all Unix-like)

⁃ RainCode Checker is adaptable: each
company can have its specific RainCode
Checker for Ada, with its own coding
guidelines.

Testing and documentation
The Checker allows you to attach, for
each rule, a set of positive and negative
examples that show the expected errors.
The regression testing facility checks that
each rule is correctly implemented, and
documents what each rule does in the
generated report.
Report Generation
After you have checked the whole project
against a set of rules, you can ask
RainCode Checker to generate a report
with different levels of detail.
This report in PDF format can be used:
⁃ as a deliverable for a third party, which

lists all the sources which have been
checked, with the matching list of
offences; or

⁃ as a complete documentation of the
coding guidelines used within the
organization or project.

Evaluation Version
The RainCode Checker for Ada comes in
a user-friendly GUI version. To see what
it looks like, and what it can do for you,
just register here and log in. On the
download page, you will have access to
the evaluation version, which is built on a
sample set of 20 Ada sources.
[see http://www.raincode.com/
adachecker.html —mp]

Rapita Systems — Trial
Version of RapiTime
From: Rapita Press Center
Date: Monday February 9, 2009
Subject: Rapita launches trial version of

execution time analysis tools
URL: http://www.rapitasystems.com/

trial_version_launched
Rapita Systems announced today the
availability of trial version of the
RapiTime execution time measurement
and analysis software. The trial version is
a ready-to-go kit that includes a compiler,
a microcontroller simulator, example
applications and the RapiTime software.
RapiTime helps developers of embedded,
real-time systems to prove that their
applications meet performance
requirements, and pinpoints where to
optimise applications that don't meet these

14 Ada and Microsoft

Volume 30, Number 1, March 2009 Ada User Journal

requirements. RapiTime makes a series of
highly detailed measurements of the
execution time of your application on its
target hardware. Using a model derived
from static analysis of the software,
RapiTime analyses the timing behaviour
of your embedded, real-time application
to tell you:
⁃ Performance measurements including

Worst-Case Execution Time (WCET),
minimum, maximum and average
execution time.

⁃ Probability distribution of execution
times of your code at different levels of
detail.

⁃ Code coverage: show which lines of
code have been executed by your tests.

⁃ Which lines of code lie on the critical
path of the WCET.

RapiTime’s Eclipse plug-in allows you to
explore the timing analysis results at
levels of detail that range from the entire
application to functions or even lines of
code.
"We're really excited about the trial
version" said Andrew Coombes,
Marketing Manager at Rapita Systems. "It
provides an all-in-one solution for anyone
with an interest in real-time systems to
experience and explore the latest version
of RapiTime".
The trial version includes a 30 day trial
licence for the RapiTime v2.1 software, a
tutorial guide, example applications, an
ARM9 Simulator and a compiler for the
simulator.
To request a copy of the evaluation
version, please visit
http://www.RapitaSystems.com/
evaluation

Vector Software —
VectorCAST 5.0
From: Vector Software Press Release
Date: Friday February 27, 2008
Subject: Vector Software announces the

formal release of VectorCAST 5.0.
URL: http://www.vectorcast.com/news/

index.php
East Greenwich, RI – February 27, 2009 -
Vector Software, Inc., a world leader in
the embedded software test tool market,
today announced the formal release of
VectorCAST 5.0.
Version 5.0 highlights
Stub-by-function – The stubbing of
functions can now be dynamically
controlled on a per-test case basis. This
means that you can create test cases for a
function, and in one test case have a
dependent function stubbed, while in
another test case, the real code will be
used. This feature does not require any
rebuilding or recompilation of the test
environment, and is available even for
functions defined in the file or the C++

class that is under test. This allows testing
to be performed on one individual
function in complete isolation from its
dependent functions.
Global Data Filtering – The test case
editor has been enhanced to allow
relationships between functions and
global variables to be displayed. When
the global data filtering is enabled only
the objects referenced by that function
will be displayed in the editor.
Additionally, clicking on a function will
highlight all of the global variables that
are used by that function, similarly,
clicking on a global variable, will
highlight all of the functions that
reference that variable.
CSV Data Editor – A new comma-
separated-value (CSV) data editor has
been added to allow test case construction
from CSV files created by modeling tools
or Excel spreadsheets. The editor provides
the ability to open CSV files in a
spreadsheet view, and map columns onto
data items in the test environment by
simply dragging and dropping cells onto
the test case editor tree. The resultant map
file can then be used to automatically
create a test case for each row of data in
the CSV file. Customers who are
interested in upgrading to the new release
should login to the customer portal of our
web site, or contact their sales person at
sales@vectorcast.com. All existing
customers with a current maintenance
contract will be sent keys for version 5.0
automatically.
About Vector Software
Vector Software, Inc is a leading
independent provider of automated
software testing tools. Vector Software’s
VectorCAST™ line of products reduces
the burden placed on individual
developers by automating and
standardizing application-component
testing. The VectorCAST™ tools support
the C, C++, Ada 83, and Ada 95
programming languages. The market
focus of Vector Software is on companies
developing embedded systems for
aerospace, military, medical, telecom, and
process-control applications.
[see http://www.vectorcast.com/pdf/press-
release-for-vc-50.pdf —mp]

Ada and GNU/Linux
Linux Device Drivers in Ada
From: Brian Drummond

<brian_drummond@btconnect.com>
Date: Tue, 13 Jan 2009 12:38:59 +0000
Subject: Linux device drivers in Ada?
Newsgroups: comp.lang.ada
Possibly a long shot, but does anyone
know of any example Linux device
drivers written in Ada? Is it even possible
for Linux?

I'm not looking for anything specific,
rather for a starting point. I need to write a
device driver for an FPGA card on the
PCIe bus, and I'd rather not use C if at all
possible.
From: Jacob Sparre Andersen

<jspa@nykredit.dk>
Date: Tue, 13 Jan 2009 05:21:25 -0800 PST
Subject: Re: Linux device drivers in Ada?
Newsgroups: comp.lang.ada
It is definitely possible. The primitive
way to do it is to compile it using GNAT
and Pragma (No_Runtime). I think I've
read a description of a more elegant
solution. You might also want to take a
look at RTL-GNAT.
(see http://rtportal.upv.es/apps/rtl-gnat/).
From: Dirk Heinrichs

<dirk.heinrichs@online.de>
Date: Tue, 13 Jan 2009 18:43:51 +0100
Subject: Re: Linux device drivers in Ada?
Newsgroups: comp.lang.ada
There is an example in "The Big Online
Book of Linux Ada Programming" [1].
Lookup chapter 16.16 "Writing Linux
Modules".
[1] http://www.pegasoft.ca/resources/
boblap/book.html
From: Brian Drummond

<brian_drummond@btconnect.com>
Date: Wed, 14 Jan 2009 01:36:01 +0000
Subject: Re: Linux device drivers in Ada?
Newsgroups: comp.lang.ada
[…] RTLGnat may not help with the
driver per se, but certainly will with
handling modules.

Ada and Microsoft
Calling an Ada library from
Visual C++
From: markp <markwork66@yahoo.com>
Date: Mon, 23 Feb 2009 08:14:44 -0800

PST
Subject: Calling Ada Library from C++
Newsgroups: comp.lang.ada
[…] I am trying to make a static Ada
library that is callable from Visual C++. I
have created a my_library.a file by using
a GNAT project file similar to the
following:

project My_Lib is
 for Source_Dirs use ("src1", "src2");
 for Object_Dir use "obj";
 for Library_Name use "my_library";
 for Library_Dir use "lib";
 for Library_Kind use "static";
end My_lib;
I am not familiar with adding libraries to
Visual C++. It appears the convention is a
".lib" file vice a ".a". Am I on the right
track with this? Can I simply rename my

Ada Inside 15

Ada User Journal Volume 30, Number 1, March 2009

 ".a" file, or use it as is? How do I link it
into the C++ application? Any help
provided on this would be very much
appreciated.
From: Manuel Gomez

<mgrojo@gmail.com>
Date: Mon, 23 Feb 2009 12:41:19 -0800

PST
Subject: Re: Calling Ada Library from C++
Newsgroups: comp.lang.ada
I cannot help you myself, but take a loot
at this wikibook article, it might be useful:
http://en.wikibooks.org/wiki/Ada_Progra
mming/Platform/Windows/Visual_C++_-
_GNAT_interface
[…]

References to
Publications
Why aren't developers
interested in Ada?
From: Jack Ganssle <jack@ganssle.com>
Date: Wednesday February 4, 2009 [last

modified on. —mp]
Subject: Why aren't developers interested in

Ada?
URL: http://www.embedded.com/212902632
[A short article that tries to start a
discussion about the reduced market share
of Ada in the embedded domain,
compared to languages like C; despite
programs written in Ada exhibit fewer
bugs and are delivered faster. Some
selected, self-contained comments to it
follow. —mp]
From: Mike Perkins
Date: Thursday January 29, 2009
Subject: Why aren't developers interested in

Ada?
URL: http://www.embedded.com/212902632
One important attribute for a
programming language to be successful is
that it is taught in schools, with early
adoption by youngsters creating a
waterfall effect.
The fact is that many high schools have
classes in C while Ada is rarely seen in
colleges. I think that's a big factor. For
wide adoption, a language needs the
support of academia. I realize at this point
in time, it's somewhat of a chicken-or-egg
thing.
[…]
From: John McCormick
Date: Friday January 30, 2009
Subject: Why aren't developers interested in

Ada?
URL: http://www.embedded.com/212902632
We still teach Ada to our students at the
University of Northern Iowa. From 2000
to 2007 we taught Java in CS1 and CS2
and Ada in CS3. The faculty unanimously
agreed that our use of Java for beginners
was a failure. Starting in the Fall of 2007

we began two parallel tracks for
Freshman. One track taught C/C++ in
CS1 and CS2, the other Ada. Students
now get Java in CS3. The first groups
took CS3 last Fall. The CS3 teacher
reported that in the final grade distribution
ALL of the students with the Ada
background did better than those with the
C/C++ background. Numbers are too
small yet to publish an education article,
but it is certainly looking strong for Ada
as a good language for teaching
beginners.
From: BlackAmber
Date: Wednesday February 4, 2009
Subject: Why aren't developers interested in

Ada?
URL: http://www.embedded.com/212902632
I'm one of those dinosaurs that was first
exposed to Ada in the early 80's and fell
in love with it.
[…] When it all came down to the end of
the argument it seemed decisions were
made on emotion rather than logic - "We
can't have the government dictating how
we develop programs!".
[…] For those that say that Ada isn't a
good choice because there aren't enough
trained developers I would counter that
someone can be trained to be a proficient
Ada programmer far quicker than it takes
to train that same person to produce
acceptable code in C++. And you can rest
assured that the code produced by that
Ada developer is of better quality and
higher reliability that the C++.
[Read also the follow-up article by Jack
Ganssle: "Ada Take Two" at
http://www.embedded.com/213400901 —
mp]

AdaCore — Legacy Is Not a
Four-Letter Word
From: AdaCore Press Center
Date: Wednesday January 21, 2009
Subject: ‘Legacy’ is not a four-letter word
RSS: http://www.adacore.com/2009/01/21/

legacy/
Military Embedded Systems
[see the article by Robert Dewar at
http://www.mil-embedded.com/
articles/id/?3729 —mp]

AdaCore — A Principled
Approach to Software
Engineering
From: AdaCore Developer Center
Date: Thursday February 5, 2009
Subject: A principled approach to software

engineering
RSS: http://www.adacore.com/2009/02/05/

a-principled-approach-to-software-
engineering/

This paper examines the use of Java as a
first programming language, in the light
of well-established principles of software

engineering, and the increasing concern
with correctness, performance, and
maintainability. We argue that Java is
markedly inferior to Ada or C++ as a
language for introductory Computer
Science courses, and that its widespread
use in the training of tomorrow’s software
engineers is counterproductive.
[see http://www.adacore.com/
wp-content/uploads/2009/02/
principled_approach.pdf —mp]

AdaCore — OpenCert 2009
From: AdaCore Press Center
Date: Wednesday February 18, 2009
Subject: OpenCert 2009
RSS: http://www.adacore.com/2009/02/18/

opencert-2009/
Jose F. Ruiz will present the paper “Open-
DO: Open Framework for Critical
Systems”.

Ada Inside
Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —mp]
Job offer [Belgium]: Ada 95 Developer
My client in Brussels requires an Ada 95
developer to work on software integration
and automated test processes.
Essential skills include:
⁃ Expert knowledge of Ada 95 software

development and architecture.
⁃ Knowledge of software integration and

automation test process.
⁃ Expertise in design and development of

mission critical systems in a distributed
environment.

⁃ Incident and problem investigation.
⁃ Operating systems: Unix and Linux.
⁃ Air traffic flow management

experience.
Job offer [United Kingdom]: Ada 95,
Software Engineer
[…] Defence Organisation based in
Bristol is looking to recruit 3 Ada
Software Engineers
The Contract is for 6 Months initially and
then ongoing after at £36 Per Hour
Please Note - Candidates must be
Currently Security Cleared to SC Level.
Ada 95, Software Engineer –
Development/test Software Engineer
capable of design,
Development and test of systems for
Defence applications. Knowledge of
Defence Standards would therefore be
useful.

16 Ada in Context

Volume 30, Number 1, March 2009 Ada User Journal

The Development languages will be
mainly Ada 95 (AdaCore). The software
is expected to require properties
associated with dependability (reliability,
security), so skills associated with
AdaTest, software proving etc.. It is
expected that the requirements and design
specification will use a mixture of the
Doors requirement management system,
Matlab (Simulink), Rhapsody UML and
Madge/Mascot.
The configuration management system is
the Dimensions tool.
Job offer [United Kingdom]: Ada
Software Engineer
Our client is an Engineering company
specialising in safety-critical systems
based in Buckinghamshire. They're
looking for a Software Engineer to join
them on what will be a challenging and
diverse project.
You must have proven experience in the
following:
Excellent knowledge of software full life
cycle including requirements analysis,
architecture/design, coding and unit test
as well as integration and validation.
You will require the following skills:
⁃ Ada 95
⁃ C / C++
⁃ DOORS
⁃ Rhapsody
⁃ Object-Oriented Design
⁃ Formal Design Methodologies UML /

HOOD
Job offer [United Kingdom]: Software
Engineer
[…] you will take responsibility for the
development of Safety Critical software
within the software engineering
department, through the full life cycle.
[…]
Software Engineer Key Responsibilities:
⁃ Prepare requirements specifications;
⁃ Prepare design documentation;
⁃ Write software code (C, C++, Ada, C#);
⁃ Develop Test Specifications and

perform tests;
⁃ Support of Integration and System

Testing.
Software Engineer Qualifications and
Experience:
⁃ Degree in computer, software

engineering, electronics or
mathematical subjects;

⁃ Software engineering experience from
safety-critical field (aerospace, nuclear,
rail, defence, medical devices etc..);

⁃ proficient in coding in C, C++ and Ada;
⁃ OO Analysis;

⁃ knowledge of networking protocols
such as TCP/IP.

Job offer [United States]:
[…]
Qualifications:
⁃ Must be able to obtain a Secret

Clearance
⁃ Bachelor of Science in Electrical

Engineering or Bachelor of Science in
Computer Science

⁃ Minimum 5+ years experience in
Software Development with real-time
embedded experience using object-
oriented design (OOD) and analysis
(OOA) methodologies.

⁃ Design and development using C, C++
or Ada

⁃ Must be able to work in a team
environment

Preferred Qualifications:
⁃ Experience in Radar Software,

VxWorks, and Mercury
Job offer [Italy]:
Graduates in Engineering or Computer
Science with 1/5 years of experience for
firmware development in embedded
applications (Automotive, Transport and
Avionics).
Requested:
⁃ Assembly, C, C++, Ada
⁃ RTOS (RTAI, VxWorks, Integrity,

pSos, OSE..)
⁃ Windows CE/Mobile
⁃ DSP, PPC, micro controllers
Optional:
⁃ SW Life Cycle
⁃ Standards DO178-B, Cenelec 50128

(SIL), ECSS
⁃ USB, SPI, ETH device Drivers
⁃ Technical documentation

Ada in Context
On the Prologue and
Epilogue of Ada Procedures
From: Pini <zepini@gmail.com>
Date: Tue, 16 Dec 2008 14:52:50 -0800

PST
Subject: Strip procedure prologue and

epilogue
Newsgroups: comp.lang.ada
A usual procedure like

procedure Foo
begin
 -- some stuff here;
end;
generates a prologue like

pushl %ebx

-- generated code for some stuff here
popl %ebx
I have a very specific procedure whose
purpose is to be called at bootloading time
and set up a stack, so there is no need for
the prologue and epilogue of this
procedure to exist. Is there an Ada-only
way (through a pragma for instance) to
strip the prologue and epilogue of this
procedure ?
[…]
From: Samuel Tardieu <sam@rfc1149.net>
Date: Fri, 19 Dec 2008 01:01:47 +0100
Subject: Re: Strip procedure prologue and

epilogue
Newsgroups: comp.lang.ada
[…]
Probably not, as the existence of the
prologue/epilogue is not supposed to
change anything for the Ada programmer.
If you're using GNAT, you may be lucky
by using "-fomit-frame-pointer" on your
code.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 16 Dec 2008 15:06:24 -0800

PST
Subject: Re: Strip procedure prologue and

epilogue
Newsgroups: comp.lang.ada
[…]
I'm not an expert in this matter but maybe
you should look at how Lovelace boots.
The source is in the public monotone
server I just mentioned and there's a
snapshot at
http://people.debian.org/~lbrenta/org.os-
lovelace-2008-07-02T21:01:02.tar.gz
More info about Lovelace on
http://www.lovelace.fr
From: Rolf Ebert

<rolf_ebert@users.sourceforge.net>
Date: Wed, 17 Dec 2008 00:11:58 -0800

PST
Subject: Re: Strip procedure prologue and

epilogue
Newsgroups: comp.lang.ada
[…]
There is no general Ada solution for that,
but a GNAT specific pragma. GCC
provides the attribute "naked" for some
back-ends. It is used like this:

procedure Foo;
pragma Machine_Attribute (
 Entity => Foo,
 Attribute_Name => "naked");
The pragma is intended for start-up code
like initialising some RAM area or for
writing your own task switching code.
Be very careful here and inspect the
generated assembler code. Naked
procedures will not only omit the
prologue and epilogue but also the ret

Ada in Context 17

Ada User Journal Volume 30, Number 1, March 2009

statement. You typically must not use any
code that requires support from the run
time system at that stage.
From: Pini <zepini@gmail.com>
Date: Wed, 17 Dec 2008 01:40:44 -0800

PST
Subject: Re: Strip procedure prologue and

epilogue
Newsgroups: comp.lang.ada
[…] I was looking for something like that,
but unfortunately GCC doesn't support the
naked attribute on x86 (and probably
never will, as it is considered harmful by
GCC developers).
[…]

On Duration
From: David Henry <tfc.duke@gmail.com>
Date: Thu, 19 Feb 2009 07:33:23 -0800

PST
Subject: Duration'Image, Duration'Value

and Duration'Last
Newsgroups: comp.lang.ada
[…]
I'm experimenting something strange
when manipulating Duration'Image,
Duration'Value and Duration'Last with
GNAT :
The result of
Duration'Value(Duration'Image(Duration'
Last))
is different from the result of
S : String := Duration'Image
(Duration'Last)
and then

Duration'Value(S).
Here is a test program that shows the
issue:

with Ada.Text_IO; use Ada.Text_IO;

procedure Test is
 S : String := Duration'Image
 (Duration'Last);
 D : Duration := Duration'Value (S);
begin
 Put_Line (Duration'Image (D));
 Put_Line (Duration'Image
 (Duration'Last));
end Test;
This test program gives me:
-9223372036.854775810
 9223372036.854775810
Note that -9223372036.854775810 seems
to be Duration'First...
Is it expected? Can someone tell me what
happens here? Why this difference?
From: Adam Beneschan

<adam@irvine.com>
Date: Thu, 19 Feb 2009 07:44:01 -0800

PST
Newsgroups: comp.lang.ada

Subject: Re: Duration'Image,
Duration'Value and Duration'Last

[…]
This is pretty obviously a GNAT bug.
From experimentation, it appears that the
problem is in the Duration'Value;
Duration'Value
("9223372036.854775810") yields a
negative value. Fixed-point types are
usually represented as integers with an
implied binary point somewhere in there.
The integer whose leftmost bit is 1 and all
other bits 0 is always tricky to deal with,
because you can't negate it, so special care
must be taken. If Duration'First is
represented as exactly this integer, it's
understandable why this sort of error may
have come up.
From: Anonymous <anon@anon.org>
Date: Thu, 19 Feb 2009 17:00:16 GMT
Subject: Re: Duration'Image,

Duration'Value and Duration'Last
Newsgroups: comp.lang.ada
It's actually a compiler bug. Even using a
user-created type that contains the
Duration range, will cause the same type
of error.

type myDuration is
 delta 0.000000001
 range -((2 ** 63 - 1) * 0.000000001) ..
 +((2 ** 63 - 1) * 0.000000001);
 for myDuration'Small use
 0.000000001;
But if you manually use the
"System.Val_Real" package which is the
work horse for Duration'Value attribute, it
does work correctly.

On Protected Objects
From: markp <markwork66@yahoo.com>
Date: Mon, 8 Dec 2008 05:34:36 -0800 PST
Subject: Quick Protected Object question
Newsgroups: comp.lang.ada
I have a very quick protected object
question.
In a standard protected object setup as
follows:

protected Test is
 procedure A;
 procedure B;
private
 Z : integer := 0;
end Test;

protected body Test is
 procedure A is
 begin
 < set of statements>
 end A;

 procedure B is
 begin
 < set of statements>

 end B;
end Test;
The question is this: when procedure A is
called, are all threads that try to call B
suspended until A finishes or, do the
threads that call B execute as long as A is
not touching the private data "Z". Is the
lock at the procedure level or only at the
data level?
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Mon, 8 Dec 2008 05:43:37 -0800 PST
Subject: Re: Quick Protected Object

question
Newsgroups: comp.lang.ada
[…]
At the procedure level; see ARM 9.5.1 at
http://www.adaic.com/standards/05rm/
html/RM-9-5-1.html
From: micronian2@gmail.com
Date: Tue, 9 Dec 2008 11:59:54 -0800 PST
Subject: Re: Quick Protected Object

question
Newsgroups: comp.lang.ada
[…]
In addition to the reference that Ludovic
provided, here is a link that describes the
Eggshell model that is used for protected
objects:
http://www.iuma.ulpgc.es/users/jmiranda/
gnat-rts/node25.htm

On the Activation of Ada
Tasks
From: Adam Beneschan

<adam@irvine.com>
Date: Thu, 19 Feb 2009 09:37:31 -0800

PST
Subject: Language lawyer question: task

activation
Newsgroups: comp.lang.ada
Should this program deadlock?
I don't think it should (and I think it
should display "E1 accepted"), based on
my understanding about when task
activation is supposed to occur for the
function result. But perhaps there's
something about the relation between task
activation and masters that I don't
understand. Anyway, this hangs when I
compile it with GNAT and run it - is this
correct or not?

with Text_IO;
procedure Test is

 task type TType is
 entry E1;
 end TType;

 task body TType is
 begin
 accept E1 do

18 Ada in Context

Volume 30, Number 1, March 2009 Ada User Journal

 Text_IO.Put_Line (
 "E1 accepted");
 end E1;
 end TType;

 function Func return TType is
 begin
 return X : TType;
 end Func;

 procedure Do_It (X : TType) is
 begin
 X.E1;
 end Do_It;

begin
 Do_It (Func);
end Test;
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Fri, 20 Feb 2009 09:16:21 -0500
Subject: Re: Language lawyer question:

task activation
Newsgroups: comp.lang.ada
 […]
> But isn't there another issue here: task

types are limited, therefore Func is a
constructor function, but in what object
does it construct its returned value?

In the formal parameter X of Do_It.
From: Robert Matthews

<ignored@ramatthews.free-
online.co.uk>

Date: Fri, 20 Feb 2009 16:57:32 +0000
Subject: Re: Language lawyer question:

task activation
Newsgroups: comp.lang.ada
[…]
So X from Do_It is passed as a hidden
parameter to Func, so that X in Func is
really whatever X in Do_It actually is -
but what is that? I don't see an actual
object of type TType in the example code.
Calling Do_It with parameter Func seems
a bit circular from this viewpoint.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Thu, 19 Feb 2009 18:54:50 -0500
Subject: Re: Language lawyer question:

task activation
Newsgroups: comp.lang.ada
> Should this program deadlock? I don't

think it should (and I think it should
display "E1 accepted"), based on my
understanding about when task
activation is supposed to occur for the
function result.

I think you're right. The task should be
activated after Func returns, before calling
Do_It.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 19 Feb 2009 18:57:10 +0100

Subject: Re: Language lawyer question:
task activation

Newsgroups: comp.lang.ada
Cool! I am not a language lawyer but I
think it is a bug. Even more funny it
becomes with:

function Func return TType is
begin
 return X : TType do
 X.E1;
 -- Communicating with not yet
 -- returned object!
 end return;
end Func;
I guess that GNAT does not fire the task
until its "construction," which happens
too late in these cases. […]
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Thu, 19 Feb 2009 18:57:55 -0500
Subject: Re: Language lawyer question:

task activation
Newsgroups: comp.lang.ada
> function Func return TType is
 begin
 return X : TType do
 X.E1;

 -- Communicating with not
 -- yet returned object!

 end return;
 end Func;
This one, however, should deadlock. The
task is not activated until after Func
returns. Func never returns, because it is
waiting on an entry call of a not-yet-
activated task.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 20 Feb 2009 14:22:12 +0100
Subject: Re: Language lawyer question:

task activation
Newsgroups: comp.lang.ada
[…]
I.e. the behaviour of X declared of being
TType depends on where it is declared.
That's great. Let us consider this:

function Func return TType is
 function Func_Func return TType is
 begin
 return X : TType;
 end Func_Func;

 Y : TType := Func_Func;
begin
 return Z : TType := Func_Func do
 Y.E1; -- This is not like X?
 Z.E1; -- An this?
 end return;
end Func;
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Mon, 23 Feb 2009 08:36:54 +0100

Subject: Re: Language lawyer question:
task activation

Newsgroups: comp.lang.ada
> I.e. the behaviour of X declared of

being TType depends on where it is
declared. That's great.

[…]
As it has always been. You cannot
rendezvous with a task until it's activated.
A task is activated after the "begin" for
the frame where it is declared. Therefore
yes, behaviour depends on where the task
is declared.
[…]
Y is a local object. Z is a name (like a
hidden parameter) that references the
object that's being created by the function
call. That object is declared in the
caller.

On String I/O
From: Jerry Bauck

<lanceboyle@qwest.net>
Date: Tue, 25 Nov 2008 21:52:02 -0800

PST
Subject: Weird string I/O problem
Newsgroups: comp.lang.ada
The following program misbehaves if the
line

Get(A_Float); -- PROBLEMATIC LINE
is present; the call to Get_Line is made
but there is no opportunity for the user to
enter a string - the program continues (I
suppose) as though the user entered a line
terminator, causing the following output:

Enter a float: 12.3
Enter a string: Hello from Get_Line.
Your string was
It was 0 long.
However, if the problematic line is
commented out, the following occurs:

Enter a float: Enter a string: Hello from
Get_Line.
bla bla
Your string was bla bla
It was 7 long.
Here is the program:

with Ada.Text_IO, Ada.Float_Text_IO,
Ada.Strings.Unbounded;
use Ada.Text_IO, Ada.Float_Text_IO,
Ada.Strings.Unbounded;

procedure temp1 is
 procedure Get_Line(
 An_Unbounded_String : out
 Unbounded_String) is
 Max_Length : Integer := 256;
 A_String : String(1 .. Max_Length);
 Length : Integer;
 begin
 Put_Line("Hello from Get_Line.");

Ada in Context 19

Ada User Journal Volume 30, Number 1, March 2009

 Get_Line(A_String, Length);
 An_Unbounded_String :=
 To_Unbounded_String(
 A_String(1 .. Length));
 end Get_Line;

 UBS : Unbounded_String;
 A_Float : Float;

begin
 Put("Enter a float: ");
 Get(A_Float); -- PROBLEMATIC
 -- LINE
 Put("Enter a string: ");
 Get_Line(UBS);
 Put_Line("Your string was " &
 To_String(UBS));
 Put_Line("It was" &
 Length(UBS)'img & " long.");
end temp1;
[…] I am running GNAT 4.3 on OS X
10.4.
From: Cristhoph Grein

<christoph.grein@eurocopter.com>
Date: Tue, 25 Nov 2008 23:24:19 -0800

PST
Subject: Re: Weird string I/O problem
Newsgroups: comp.lang.ada
> Put("Enter a float: ");
> Get(A_Float); -- PROBLEMATIC

LINE
Here you enter "12.3<Return>"
Get consumes the number and leaves
<Return> in the input stream.
> Put("Enter a string: ");
> Get_Line(UBS);
Here, Get_Line consumes the rest of the
previous input up to the <Return>, in your
case the rest is empty.
(If you had entered 12.3 xxx<Return>, the
contents of UBS would be " xxx".)
So you have no opportunity to enter a
further string.
What you need, is a Skip_Line after the
Get(A_Float).
[the sentence should be “Get_Line
consumes the rest of the previous input up
to and including the <Return>” as
clarified in a subsequent post by the same
author —mp]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 26 Nov 2008 09:25:19 +0100
Subject: Re: Weird string I/O problem
Newsgroups: comp.lang.ada
And a little advise for text processing:
1. Never read data items directly from

files. Do lines first, as strings. Then
parse obtained strings.

2. Take care to remove trailing LF and
CR at the line end. (You never know

if the text file do obey UNIX or MS-
DOS conventions.)

3. Always verify that the whole line was
parsed.

4. Do not use Unbounded_String, it is
just an unnecessary overhead.
Ada 2005 has Get_Line returning
String. (In high-integrity software use
Ada 95's Get_Line, that with the line
size limited).

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 26 Nov 2008 10:07:53 +0100
Subject: Re: Weird string I/O problem
Newsgroups: comp.lang.ada
> What you need, is a Skip_Line after the

Get(A_Float).
If you want to make sure you read
something from a fresh new line, you can
use set_col(1).
It has the nice property that if the previous
get consumed the end_of_line, it does
nothing, and if it didn't, it skips
everything up to and including the
end_of_line.

On Ada.Text_IO
From: Thomas Locke <thomas@kenshi.dk>
Date: Mon, 16 Feb 2009 21:36:01 +0100
Subject: C getchar() functionality in Ada
Newsgroups: comp.lang.ada
[…] I've started redoing all the K&R C
examples in Ada, and I've already hit a
wall that I'm not able to get around.
I have this C program:

#include <stdio.h>
int main(void){

 int c;
 while((c = getchar()) != EOF){
 putchar(c);
 }
 return 0;
}
It's very simple, but still I fail to mimick it
in Ada.
The C program happily accepts
everything I throw at it, and it responds
with the expected values, whereas my
Ada version(s) either fails at linefeeds,
throw End_Error exceptions at me, or
spits out too many linefeeds!
My current Ada code looks like this:

with Ada.Text_IO;
use Ada.Text_IO;
procedure Ito is
 C : Character;
begin
 while not End_Of_File loop
 Get (Item => C);
 Put (Item => C);
 if End_Of_Line then

 New_Line;
 end if;
 end loop;
end Ito;
This version works with input from
keyboard and when I pipe some data into
it like this: $ echo "FooBar" | ito
It craps out on files ($ cat SomeFile | ito),
where it ignores linefeeds and throws
End_Error exceptions at me when the last
character in the file is a linefeed.
I've tried with Get_Immediate,
Look_Ahead, Get_Line and a mixture of
Strings, Characters and Unbounded
strings. I just can't make it work.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Tue, 17 Feb 2009 17:40:28 +0100
Subject: Re: C getchar() functionality in

Ada
Newsgroups: comp.lang.ada
[…]
In Ada, an end of line is not a character.
Full stop. We have operations that deal
with end of lines: new_line, skip_line, and
end_of_line.
Therefore, your program should look like:

with Ada.Text_IO;
use Ada.Text_IO;

procedure Ito is
 C : Character;
begin
 while not End_Of_File loop
 if End_Of_Line then
 Skip_Line;
 New_Line;
 else
 Get (Item => C);
 Put (Item => C);
 end if;
 end loop;
end Ito;
From: Jeffrey R. Carter

<spam.jrcarter.not@spam.acm.org>
Date: Tue, 17 Feb 2009 20:38:56 GMT
Subject: Re: C getchar() functionality in

Ada
Newsgroups: comp.lang.ada
Except that, given a file that ends with a
blank line, Ada.Text_IO.End_Of_File
may return True before the final blank
line has been detected. The general rule is
to not use Ada.Text_IO.End_Of_File, and
handle the resulting End_Error.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Wed, 18 Feb 2009 08:46:46 +0100
Subject: Re: C getchar() functionality in

Ada
Newsgroups: comp.lang.ada
I agree. Moreover, it behaves better in the
case of ill-formed files (from an Ada

20 Ada in Context

Volume 30, Number 1, March 2009 Ada User Journal

point of view), such as those that have no
terminating LF.
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Wed, 18 Feb 2009 02:41:40 -0800

PST
Subject: Re: C getchar() functionality in

Ada
Newsgroups: comp.lang.ada
> I agree. Moreover, it behaves better in

the case of ill-formed files (from an
Ada point of view), such as those that
have no terminating LF.

This includes what Jeffrey calls a blank
line at end. Such a file is not well-formed
in the Ada sense. This is discussed in
Text_IO RM A. 10.2(3) and A.10.5(16).
From: Thomas Locke <thomas@kenshi.dk>
Date: Tue, 17 Feb 2009 20:46:56 +0100
Subject: Re: C getchar() functionality in

Ada
Newsgroups: comp.lang.ada
[…]
> In Ada, an end of line is not a character.

Full stop. We have operations that deal
with end of lines: new_line, skip_line,
and end_of_line.

> Therefore, your program should look
like: […]

This program *almost* work exactly as
the C version, but not quite. It fails to
recognize all EOL's in files, and it
behaves a bit "odd" when feeding data to
it using the keyboard.
But I understand what you're saying: No
end of line characters in Ada!
Except perhaps when using
Get_Immediate and Look_Ahead?
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Wed, 18 Feb 2009 08:43:52 +0100
Subject: Re: C getchar() functionality in

Ada
Newsgroups: comp.lang.ada
[…]
Depends on your definition of "odd". The
time when you see the output may not be
what you expect in relation to your input,
because Text_IO needs some look-ahead
to deal with page breaks; however, the
output should correspond to your input
(with maybe a small shift in time).
Remember too that the model is a file,
and the keyboard is a device. It is in
general acceptable to treat it as a file, but
for things like timing, it is not.
> But I understand what you're saying:

No end of line characters in Ada!
 Except perhaps when using

Get_Immediate and Look_Ahead?
Look_Ahead has a parameter to tell when
you are at end of line. The behaviour of
Get_Immediate is less clear from the RM.
From: Christoph Grein

<christoph.grein@eurocopter.com>

Date: Wed, 18 Feb 2009 03:42:49 -0800
PST

Subject: Re: C getchar() functionality in
Ada

Newsgroups: comp.lang.ada
Get_Immediate falls a bit out of Text_IO,
since it does not update the column, line
and page counts.
It returns the next character in the file. If
EoL is coded as characters, it will return
them, else it will silently skip to the next
line and return the first character. It
simply returns any Control characters that
might be in the file, other than the Get
routines.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Newsgroups: comp.lang.ada
Subject: Re: C getchar() functionality in

Ada
Date: Tue, 17 Feb 2009 18:44:02 -0500
> The Ada design has the same error here

as Pascal did.
 ...Ada.Text_IO design...
Text_IO is a bit broken, I agree. But you
can also use streams, or you can interface
directly to the underlying OS primitives.
Ada has a lot of strengths, but
unfortunately, the design of the
Ada.Text_IO package is not one of them.
From: Jeffrey R. Carter

<jrcarter@acm.org>
Newsgroups: comp.lang.ada
Subject: Re: C getchar() functionality in

Ada
Date: Mon, 16 Feb 2009 21:43:23 GMT
> I have this C program:
> […]
> It's very simple, but still I fail to mimick

it in Ada.
This program duplicates standard input on
standard output.
You are being mislead by the use of
"char" in C. "char" sometimes refers to
the equivalent of Ada's Character, and
other times to the equivalent of
System.Storage_Elements.Storage_Eleme
nt or Ada.Streams.Stream_Element.
This is one of the latter cases. You should
not be using Character, String, or
Ada.Text_IO for this. I suggest you look
at streams and
Ada.Text_IO.Text_Streams.

Networking Support in Ada
From: Oliver Kowalke

<oliver.kowalke@gmx.de>
Date: Wed, 17 Dec 2008 19:33:32 +0100
Subject: networking support?
Newsgroups: comp.lang.ada
[…] Does Ada support IPsec (key
management sockets)?
How is io-demultiplexing used (select,
epoll, kqueue, /dev/pool,...) used?

From: Georg Bauhaus <rm.dash-
bauhaus@futureapps.de>

Date: Thu, 18 Dec 2008 10:28:08 +0100
Subject: Re: networking support?
Newsgroups: comp.lang.ada
[…] These being OS functions, you
probably have interfacing packages for
your compiler. For some, you might be
able to use POSIX packages; others, such
as access to /dev/anything are really OS
specific, not typically built into any
programming language, but rather
available as library calls.
[…]
From: Oliver Kowalke

<oliver.kowalke@gmx.de>
Date: Thu, 18 Dec 2008 12:55:35 +0100
Subject: Re: networking support?
Newsgroups: comp.lang.ada
[…]
Should I implement functionality (for
instance networking) in C++ classes and
call them from Ada or use the C-functions
(system calls) and implement the
classes/behaviour in Ada (get benefits
from Ada's safety)?
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Thu, 18 Dec 2008 13:47:17 +0100
Subject: Re: networking support?
Newsgroups: comp.lang.ada
[…]
How would your program benefit from
first wrapping system functions (that use
C conventions) in C++ classes only for
having to match Ada's O-O types and
C++'s O-O types in a second step?
Seems like an artificial setup to me.
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Fri, 19 Dec 2008 13:49:27 -0800 PST
Subject: Re: networking support?
Newsgroups: comp.lang.ada
[…]
Except that a lot of things in the C world
(especially in the system APIs) are
defined in header files as preprocessor
constants, optional or even unofficial
structure fields or field order within a
struct - all this means that the binary
layout of data structures is a big question
mark.
This problem is particularly notorious
with network services.
There is no way to reasonably interface
with all this mess from Ada and having a
wrapper layer that fixes some of this
optional/unofficial/ ordering stuff for the
Ada part is a valid option.
Now the question is how thick this
adapter layer should be - and here a layer
that does a bit of lifetime management or
error reporting in addition to just
parameter passing is also a valid solution.
Then you might discover that all the work
that is done in this adapting layer can be

Ada in Context 21

Ada User Journal Volume 30, Number 1, March 2009

reused in C++ projects as well (it is a low-
hanging fruit, so why not benefit from it?)
and you end up with a regular C++ library
that encapsulates some system services
and is used from the Ada program.
From: Oliver Kowalke

<oliver.kowalke@gmx.de>
Date: Sat, 20 Dec 2008 00:05:39 +0100
Subject: Re: networking support?
Newsgroups: comp.lang.ada
[…] my intention was to call some boost
libraries (www.boost.org).
I'm not sure if C++-templates can be
accessed/used by Ada.
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Sat, 20 Dec 2008 11:23:54 -0800 PST
Subject: Re: networking support?
Newsgroups: comp.lang.ada
A significant part of the Boost libraries
are template-based libraries entirely
defined in their header files. There is even
no object code to link to until you
instantiate the target templates.
Unfortunately there is no way to directly
use them from Ada.
Which Boost libraries are you interested
in?
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Sun, 21 Dec 2008 14:21:02 -0800

PST
Subject: Re: networking support?
Newsgroups: comp.lang.ada
[…]
> DateTime
> Filesystem
> System
> Interprocess
> (Regex)
I think that for these libraries your best
option is to write simple wrappers with
extern "C" interface (that is, C wrappers)
and pragma Import that interface to Ada.
Note also that a significant part (if not all)
of this is already available in Ada in the
standard library or in the GNAT library -
it might be easier and more natural to use
what Ada offers first before reaching out
to C++ libraries.
I would go for interfacing to an existing
C++ library only when something much
more specialized is involved. Numeric
computation or communication
infrastructure are possible examples.
A database library would be another
example, see SOCI-Ada linked below.
[…]
[www.inspirel.com/soci-ada —mp]
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: 18 Dec 2008 10:54:29 +0100
Subject: Re: networking support?
Newsgroups: comp.lang.ada

> does Ada support IPsec (key
management sockets)?

Yes and no.
ISO/IEC 8652:2007 does not mention
IPsec, so in a sense it isn't supported
directly in Ada.
But you can write programs using IPsec
in Ada.
[…]
From: Anonymous
Date: Thu, 18 Dec 2008 16:14:21 GMT
Subject: Re: networking support?
Newsgroups: comp.lang.ada
If you are using GNAT then you can use
"GNAT.Sockets" for High-level network
programming and "GNAT.Sockets.Thin"
for the low-level OS calls like select
routine.
As for other routines, you must use an
"pragma import" statement, because Ada
does not directly support these calls.
[…]

Ada Code Generation from
Simulink Models
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 20 Jan 2009 21:05:49 +0100
Subject: Ada code from Simulink models
Newsgroups: comp.lang.ada
Does anybody has any experience of
generating Ada code from a
MATLAB/Simulink model without
MATLAB/Simulink Real-Time
Workshop?
From: Jérôme Hugues

<hugues@tarsis.enst.fr>
Date: Wed, 21 Jan 2009 08:25:57 +0000

UTC
Subject: Re: Ada code from Simulink models
Newsgroups: comp.lang.ada
I've heard of Beacon for Simulink, it
generates Ada code from Simulink model,
see:
http://www.adi.com/products_be_bss.htm
[…]
From: Colin Paul Gloster

<Colin_Paul_Gloster@acm.org>
Date: Fri, 23 Jan 2009 08:36:22 +0000

UTC
Subject: Re: Ada code from Simulink models
Newsgroups: comp.lang.ada
I had been told that MatrixX was very
good (though it was not actually
MATLAB/Simulink) and I have never
used it.

ANNA — A Language for
Annotating Ada Programs
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Sat, 14 Feb 2009 15:19:52 -0800 PST

Subject: ANNA - A Language for Annotating
Ada Programs

Newsgroups: comp.lang.ada
I've just learned about ANNA, “ANNA -
A Language for Annotating Ada
Programs”, but did not find online
reference about it (may be it's too old).
Is it still alive? Do someone know about?
Is it a kind of SPARK competitor ?
From: Marc A. Criley <mc@mckae.com>
Date: Sun, 15 Feb 2009 08:21:23 -0600
Subject: Re: ANNA - A Language for

Annotating Ada Programs
Newsgroups: comp.lang.ada
It is quite old. I first encountered it at an
Ada conference in 1984.
There's not much on the web, but if you
have access to the “ACM Portal” library
you can see what's available there with
this very long query, will likely wrap:
http://portal.acm.org/results.cfm?
query=PrimarySubject%3A"ANNA"&
querydisp=PrimarySubject%2FNoun%3A
"ANNA"&termshow=matchboolean&
coll=GUIDE&dl=GUIDE

Overriding in Private Part
From: Maxim Reznik

<reznikmm@gmail.com>
Date: Thu, 2 Oct 2008 08:49:10 -0700 PDT
Subject: overriding in private part
Newsgroups: comp.lang.ada
[…]
There is a package hierarchy of three
packages: A1, A1.A2 and A1.A3.
And type hierarchy: A1.Base, A2.Child
derived from A1.Base, A3.Child derived
from A2.Child.
A1.Base has primitive procedure P2 in
private part of A1.
A2.Child override P2 with its own P2 in
private part of A2.
A3.Child is expected to override P2 with
its own P2 in private part of A3, but
actually it can't!
As result A3.P2 is never called in this
example.
[…]
My expectation about this code, that
A3.P2 override A1.P2 because private
part of A1 is visible at this place, and
A2.P2 invisible here, so have no influence
here. But A2.P2 hides A1.P2 indeed.
Every type in class A1.Base'Class has P2
primitive subprogram, but any child of
A2.Child can't override it, because P2 is
hidden by A2.P2. It seems unnatural to
me.
Errors of such kind are very difficult to
find.
Is there any way to prevent such errors?
(Besides keyword *overriding*)

22 Ada in Context

Volume 30, Number 1, March 2009 Ada User Journal

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 2 Oct 2008 18:17:28 -0500
Subject: Re: overriding in private part
Newsgroups: comp.lang.ada
This happened to us frequently when we
were building Claw. That's the reason I
pushed so hard to add what became the
keywords to the language. It's an error
that cannot be avoided or detected in
Ada 95 (short of avoiding any
declarations in private parts, which is
nasty). It is very hard to predict what
really is going to happen, so the keywords
allow telling the compiler what you meant
(and then it will complain if it disagrees).
[…]
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Date: Fri, 3 Oct 2008 10:52:52 +0200
Subject: Re: overriding in private part
Newsgroups: comp.lang.ada
> In general, the language doesn't want to

take private declarations of the parent
into account when deciding whether
something is overriding.

This is OK, but the problem is that the
operation is formally considered private
when it is obviously (in common sense)
not.
> Your case is a little more confusing

because, like the above example, there's
an invisible P2 operation of the parent
type that shouldn't affect the behavior,
but this is inherited from a P2 operation
of the *grandparent* type that *is*
visible in the private part of A1.A3.
Perhaps the compiler should generate a
warning about the possible confusion in
this case. If we didn't have an
"overriding" keyword, I might even go
so far as to suggest the language should
make this case illegal, in order to
prevent this kind of case from coming
up.

It is not the overriding which must be
illegal. The opposite should. I mean it
should be:

overriding procedure P2
 (X : Child); -- Legal (presently illegal)
not overriding procedure P2
 (X : Child); -- Illegal (presently legal)
> But since "overriding" has been added,

you should just use it, and it will solve
the problem.

Unfortunately it does not. The
programmer desired to override P2, and
this is impossible to do, because there is a
type in between which effectively *hides*
the operation in all packages, regardless
their visibility. Further, this behavior
changes when the offending type is
derived in A1 rather than in A1.A2. In
that case A1.A3 would be able to override
P2.
This is obviously broken to me.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Fri, 03 Oct 2008 16:29:21 -0400
Subject: Re: overriding in private part
Newsgroups: comp.lang.ada
> I shouldn't have said "solve". It

partially solves the problem, in that if
the programmers use "overriding" and
"not overriding" consistently on
everything, it won't let you write a
program that has an unexpected result
[…]

I think you should say "overriding"
wherever it's legal, but never say "not
overriding". And use a compiler that
warns on missing "overriding", such as a
recent GNAT with the -gnatyO switch.
I agree that in the OP's example, P2
should be overriding - this is a language
design flaw. But at least you won't get in
trouble at run time, if you follow the
above convention.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Sat, 04 Oct 2008 15:47:04 -0400
Subject: Re: overriding in private part
Newsgroups: comp.lang.ada
> I agree with Adam; after all, there is a

reason that "not overriding" exists. I'm
curious as to why you think it shouldn't
be used. If you write a routine that you
do not expect to override something,
and it does anyway, you have a
problem (because you could be called
from a dispatching routine with a
completely different purpose, and
conceivably different preconditions and
postconditions). I think you'd like to
know about that problem.

If you use a compiler that warns on
missing "overriding", then you don't need
to say "not overriding", because that's the
default - any subprogram that doesn't say
"overriding" is not overriding.
Saying "not overriding" is just noise.
There is no good reason for "not
overriding" to exist. If you "write a
routine that you do not expect to override
something, and it does anyway," then I
don't agree you have a problem -- you get
a warning.
The warning is crucial, of course. Without
that, IMHO these indicators are nearly
useless. If I were designing the language
from scratch, I would make missing
"overriding" an error. The only reason not
to do that is for compatibility with
Ada 95.
It's like parameter modes - you should
never explicitly say "in", because that's
the default. You should explicitly say "in
out" or "out". It's unfortunate that "in" is
allowed, because now the language has
split into three dialects - those that say
"in", those that never say "in", and those
that say "in" for procedures but not
functions.

That's not doing anyone any favors - the
folks who write in those three dialects
can't understand each other's code.
> There are cases where you can't use

either indicator (where the overriding
happens "late"), but those usually
indicate a program structuring issue
(routines are being hidden in the root
types that ought to be visible, or the
child types are making routines visible
that should be private). And in such
cases I think it is important to
document why no indicator was given
with a comment.

And I think there are some generics-
related cases, too. But these are all corner
cases. By and large, you can say
"overriding" when you mean it, and let
"no indicator" implicitly mean "no
overriding".
> I wanted indicators to be allowed on all

subprograms in order that I could
enforce a rule of "no indicator" -> style
violation, but that got voted down
(they're only allowed on primitive
subprograms). I still think that was a
serious mistake (it's weird to have to
leave out indicators on class-wide
routines, for instance).

I agree that if you want an indicator on
every subprogram declaration, then
forbidding "no overriding" on some non-
overriding subprograms is a language
design mistake. But I don't want that - I
want a safe (non-overriding) default.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Sun, 05 Oct 2008 15:57:48 -0400
Subject: Re: overriding in private part
Newsgroups: comp.lang.ada
> But non-overriding is unsafe. Taking

your example with in and in-out, when
the programmer uses in instead of in-
out, that does not change the program
semantics, so long the program remains
legal. Otherwise (if the body actually
changes the parameter) it will not
compile. This is safe.

Good point, but I'm only half convinced.
If you get in the habit of always saying
"overriding" when appropriate, and you
use the warnings, then you're unlikely to
get into trouble. And the idea of putting
"not overriding" all over the place seems
awfully verbose, to me.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 6 Oct 2008 10:50:04 +0200
Subject: Re: overriding in private part
Newsgroups: comp.lang.ada
Both are unsafe. A felt verbosity comes
from the strange decision to put [not]
overriding in front of the declaration. If it
were:
procedure Foo (X : Boo) is not
overriding;
it would not be so offending.

Ada in Context 23

Ada User Journal Volume 30, Number 1, March 2009

As for me, I think that overriding could be
a good default for all subprograms with at
least one controlling argument.
Declarations of any new primitive
operation should then be explicit:
procedure Foo (X : Boo) is [abstract]
new;
Non-primitive operations should be made
illegal if any of the arguments is
controlling:

type T is tagged ...;
procedure Foo (X : T) is new;

package Bar is
 procedure Foo (X : T); -- You cannot
 -- do this!
 procedure Baz (X : T); -- Neither this!
 procedure Baz (X : T'Class); -- This is
 -- OK
end Bar;
Maybe, that could be relaxed the bodies
of the packages which specifications
declare the type:

package A is
 type X is tagged ...;
end A;

package body A is
 procedure Some_Private_
 Stuff_Without_
 Redispatch (X : T)
 is not new;
end A;
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 6 Oct 2008 18:32:06 -0500
Subject: Re: overriding in private part
Newsgroups: comp.lang.ada
Yes, that would be the correct semantics
if the language was being built from
scratch. Unfortunately, the Ada 95 team
decided to use the existing inheritance
mechanism, and that isn't quite right. It's
not so obvious until you try examples in
various ways.
In any case, non-primitive routines with
specific tagged types are pretty suspicious
and clearly deserve a warning. (There are
a couple of them in Claw - mostly
functions returning some specific tagged
type, but the majority are class-wide.)
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Sun, 05 Oct 2008 16:08:16 -0400
Subject: Re: overriding in private part
Newsgroups: comp.lang.ada
> "If you use a compiler that [does the

right thing]" (or rather, if you use that
compiler and the right set compiler
switches) that works more or less fine.
Except that you get only a warning on
something that ought to be treated as an
error. (Yes, I know that GNAT has a
switch to treat warnings as errors.)

Shrug. To me, warnings and errors are
pretty-much the same. At AdaCore, we
compile everything in warnings-as-errors
mode. Not always, but we have
procedures in place that ensure no Ada
code can escape into customer's hands
with warnings.
> But a compiler-agnostic way to enforce

the proper behaviour (overriding
indicators for all the subprograms
which actually override another
subprogram) would be preferable,
IMHO. I wish there was an Ada 2005
"pragma
Overriding_Indicators_For_All_Overri
ding_Subprograms" or the like. Or did I
overlook something like that in the
standard?

I don't think you overlooked anything. I
agree portability is nice, so it would nice
to have a portable way to say this. Pragma
Require_Overriding_Indicators might be
a reasonable name.
But of course if you're worried about
forgetting the warning switch, you should
be equally worried about forgetting that
pragma. Neither one seems like a big
problem - it's something you do once,
when setting up your project-wide
pragmas, or project-wide build scripts.
Much more likely to forget "overriding"
when declaring a procedure, which is
something you do every day.
Note that if you're writing code for
several Ada compilers, you only need one
of them to give the warning.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 6 Oct 2008 18:39:24 -0500
Subject: Re: overriding in private part
Newsgroups: comp.lang.ada
[…] errors required by the language are
always more powerful than something
done by a specific implementation (unless
you can be sure that you are never going
to use another implementation!).
Besides, I don't see how your warning
would work with Ada 95 code (such as
Claw). There's little value to having
warnings in such code (it isn't yours
anyway), but you still would want the
errors in your own code. So it seems
likely that you would have to turn the
warning off in large amounts of code; that
is going to make it more likely that it is
also omitted in code where you want it to
be checked.
> I don't think you overlooked anything. I

agree portability is nice, so it would
nice to have a portable way to say this.
Pragma Require_Overriding_Indicators
might be a reasonable name.

We couldn't figure out how such a pragma
would work with generics. That's the
main reason this is a three-state switch:
"overriding", "not overriding", and
nothing (which is essentially "don't care").
This may be a case where "perfect"

prevented "good enough" - I surely
wanted such a pragma, but it would have
to have enough holes that it wasn't clear
that it was worth anything.

On Tagged Types
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Fri, 28 Nov 2008 02:01:09 -0800 PST
Subject: Abusing tagged types
Newsgroups: comp.lang.ada
Is it considered to be a good practice to
make a given type tagged only to benefit
from the Object.Operation notation in
Ada 2005?
Let's say there is a library where there are
several types. Some of them are
inherently tagged due to their design and
they allow Obj.Oper notation out of the
box. For others there is no design
motivation to make them tagged (no
dispatching calls for them, no Controlled,
etc.) and as a result the whole library does
not "feel" consistent, since Obj.Oper is
not available across all exposed types.
The type can be made tagged *only* to
get the syntax sugar.
Is it considered to be an abuse of the
language feature?
From: Samuel Tardieu <sam@rfc1149.net>
Date: Fri, 28 Nov 2008 11:50:18 +0100
Subject: Re: Abusing tagged types
Newsgroups: comp.lang.ada
[…]
This will increase the memory size of
every instance. Even if no dispatching is
used the tag will be stored in each object
because dispatching *could* be used.
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Fri, 28 Nov 2008 05:28:38 -0800 PST
Subject: Re: Abusing tagged types
Newsgroups: comp.lang.ada
[…]
Let's say that in this case it does not
matter anyway.
I'm asking about the design principles -
the *purpose* of tagged type is to achieve
polymorphism with dispatching calls. Is it
OK to use tagged type without this
motivation?
(well, Controlled is also in this
category...)
By the way, what is the rationale for
allowing Obj.Operation only for tagged
types and not for all types? "Ada 2005
Rationale" does not seem to explain this.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 28 Nov 2008 06:08:41 -0800 PST
Subject: Re: Abusing tagged types
Newsgroups: comp.lang.ada
> By the way - what is the rationale for

allowing Obj.Operation only for tagged
types and not for all types? "Ada 2005

24 Ada in Context

Volume 30, Number 1, March 2009 Ada User Journal

Rationale" does not seem to explain
this.

Actually it does but I find the explanation
a bit cryptic for untagged types other than
access types:
"Other variations on the rules for the use
of the notation were considered. One was
that the mechanism should apply to
untagged types as well but this was
rejected on the grounds that it might add
to rather than reduce confusion in some
cases. In any event, untagged types do not
have class wide types so they are
intrinsically simpler.
It would have been particularly confusing
to permit the notation to apply to access
types especially an access type A
referring to a tagged type T. If the access
type and the tagged type both had the
same or similar operations Op then
ambiguities or errors could easily arise."
Maybe the AI has more details.
From: Adam Beneschan

<adam@irvine.com>
Date: Mon, 1 Dec 2008 11:54:18 -0800 PST
Subject: Re: Abusing tagged types
Newsgroups: comp.lang.ada
[…]
From the beginning of AI-252: "Note:
We considered generalizing this to allow
non-tagged types to use this shorthand,
but this becomes complex when the type
is an access type, since both the access
type itself, and its designated type must be
considered. Furthermore, the benefit is
lower since there is no issue of class-wide
operations for non-tagged types, so all the
"interesting" operations are all from a
single package."
I don't see much other discussion in the
AI about this issue; perhaps all the
discussion about it was done elsewhere
before AI-252 was opened.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 1 Dec 2008 22:04:57 -0600
Subject: Re: Abusing tagged types
Newsgroups: comp.lang.ada
[…]
I think most of the discussion on this
came at the ARG meetings. (The text in
the AI was the one-paragraph summary of
the meeting conclusions, written by
someone [me] that had lots of other things
to do.) My recollection was that there was
a problem with dealing with the automatic
dereference and 'Access rules when the
type could be an access type. It seemed
that only one (having those rules) or the
other (having access types) worked, and
we choose the more useful semantics by
limiting it to only tagged types.
Perhaps there is more detail in the
meeting minutes (or maybe it is just lost).
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Fri, 28 Nov 2008 15:35:43 +0100

Subject: Re: Abusing tagged types
Newsgroups: comp.lang.ada
> I'm asking about the design principles -

the *purpose* of tagged type is to
achieve polymorphism with dispatching
calls. Is it OK to use tagged type
without this motivation?

One of the nice things in Ada is the ability
to make a difference between a method
and a subprogram (and yes, I'm afraid
about the new generation of programmers
who know only classes as unit of
modularization, and call every
subprogram a method).
IMHO, the term method should be
reserved to operations that have a general
semantics, but whose implementation (the
way of doing the thing - the /method/ for
doing the thing) depends on the type to
which it applies. Methods make sense
only in the presence of dynamic
dispatching, i.e. the ability to tell an
object: "do this your own way".
O.M notation stresses this by making
clearer that a method is applied to a given
object. Although subprograms may have a
parameter of a non-tagged type which is
in some sense distinguished, they are not
methods by my definition, and I would
not favour using that notation (to be
honest, I've never been a great fan of the
O.M notation in any case - it is
misleading if you have more than one
controlling operand, which is a great
superiority of Ada over other OO
languages).

Problem with Interfaces
From: Robert_Matthews

<ignored@ramatthews.free-
online.co.uk>

Date: Mon, 16 Feb 2009 09:53:59 +0000
Subject: Another problem with "interface"
Newsgroups: comp.lang.ada
In using interface types with GNAT I
have encountered another problem.
Consider the following package:

package Test is

 type A_Type is limited interface;

 procedure P (A : in out A_Type;
 D : Integer) is abstract;

 protected type New_A_Type is
 new A_Type
 with
 procedure P (D : Integer);
 -- other subprograms...
 private
 F : Integer;
 end New_A_Type;

 function Set_A return New_A_Type;

end Test;
GNAT gives an error for the function
Set_A:
"operation can be dispatching in only one
type" […]
The version of GNAT is GNAT GPL
2008 (20080521).
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 16 Feb 2009 14:29:50 +0100
Subject: Re: Another problem with

"interface"
Newsgroups: comp.lang.ada
[…]
This looks like a compiler bug to me. The
compiler thinks that Set_A is a protected
function of New_A_Type and thus has the
hidden argument New_A_Type and the
result New_A_Type, so it complains. But
protected type is not tagged so Set_A
cannot be dispatching.
However you can trick the compiler by
ensuring that Set_A declaration were
beyond the freezing point of
New_A_Type (whatever that might mean
for a protected type). For example:

type A_Type is limited interface;

procedure P (A : in out A_Type;
 D : Integer) is abstract;

protected type New_A_Type is
 new A_Type with
 procedure P (D : Integer);
 -- other subprograms…
private
 F : Integer;
end New_A_Type;

package Foo is -- Package brackets
 -- around it
 function Set_A return New_A_Type;
end Foo;
A more logical way to do it would be:

function Set_A return
 New_A_Type'Class;
Alas, this does not work, because there
seem to be no way to create
New_A_Type'Class, since New_A_Type
is protected.
However you could use A_Type'Class
instead:

function Set_A return A_Type'Class;
P.S. Returning New_A_Type from a
function is tricky because it is limited, yet
does not have aggregates. You can use the
return statement to work this around:

function Set_A return New_A_Type is
begin
 return Result : New_A_Type do

Ada in Context 25

Ada User Journal Volume 30, Number 1, March 2009

 null;
 end return;
end Set_A;
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Mon, 16 Feb 2009 14:56:11 +0100
Subject: Re: Another problem with

"interface"
Newsgroups: comp.lang.ada
[…]
> This looks like a compiler bug to me.

The compiler thinks that Set_A is a
protected function of New_A_Type and
thus has the hidden argument
New_A_Type and the result
New_A_Type, so it complains. But
protected type is not tagged so Set_A
cannot be dispatching.

Maybe illustrating this point,

procedure R is
 type I is Synchronized Interface;

 protected type T is new I with
 function Make_T return I'class;
 end T;

 protected body T is
 function Make_T return I'class is
 begin
 return (I with null record);
 end;
 end T;

 X: constant T := T.Make_T;
begin
 null;
end;

======================
GNAT BUG DETECTED
=========================
| 4.3.0 20070903 (experimental) [trunk
revision 128061]
(i686-apple-darwin8) |
| Assert_Failure atree.adb:3812
|
| Error detected at r.adb:15:22
|
| Please submit a bug report; see
http://gcc.gnu.org/bugs.html.
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Mon, 16 Feb 2009 02:26:59 -0800

PST
Subject: Re: Another problem with

"interface"
Newsgroups: comp.lang.ada
I guess you've confused GNAT beyond
repair.
The problem is your function Set_A (the
rest is OK). Ada 2005 no longer has
return-by-reference functions, so you

cannot return an object of type
New_A_Type.
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Mon, 16 Feb 2009 11:40:01 +0100
Subject: Re: Another problem with

"interface"
Newsgroups: comp.lang.ada
[…]
> The problem is your function Set_A

(the rest is OK). Ada 2005 no longer
has return-by-reference functions, so
you cannot return an object of type
New_A_Type.

I think that, still, you can call functions
that will assign the (already existing)
return object. […]
 X: constant New_A_T := Set_A;
http://www.adacore.com/2007/05/28/
gem-3/
From: Robert_Matthews

<ignored@ramatthews.free-
online.co.uk>

Date: Mon, 16 Feb 2009 11:27:57 +0000
Subject: Re: Another problem with

"interface"
Newsgroups: comp.lang.ada
[…] Indeed, that is my intent.
Note that if I use an ordinary record type,
e.g.
type New_A_Type is new A_Type with
...
then GNAT compiles things OK; it is
when I use a protected type it complains.
From: Egil Høvik

<egilhovik@hotmail.com>
Date: Mon, 16 Feb 2009 03:45:42 -0800

PST
Subject: Re: Another problem with

"interface"
Newsgroups: comp.lang.ada
Actually, it is when the protected type
inherits an interface that it complains.
For me, at least, (using GNAT Pro 6.1.2),
removing the inheritance compiles OK.

Suppression of Warnings
and Pascal Ranges
From: Michael Mounteney

<gate02@landcroft.co.uk>
Date: Mon, 29 Dec 2008 19:13:44 -0800

PST
Subject: Selective suppression of warnings -

-- gnat on GNU/Linux
Newsgroups: comp.lang.ada
[…] I am trying to build an application of
which some of the source is automatically
translated from Pascal, on the fly. The
problem is that the automatically-
translated source is causing a lot of
spurious warnings about declarations not
being used. This is because the Pascal
code has many instances of:

type

 somerange = 1..10;
 somestruct = record ... end;
which is translated into Ada as

type somerange is new integer range
 1 .. 10;
type somestruct is record ... end
 record;
but the problem is that any operator such
as + and = is not visible in other units.
The solution to that is to rename the
operators in the client units, thus:

with stage3; -- contains definitions of
 -- somerange, somestruct etc.
package body myusage is
 function "=" (L, R :
 in stage3.somestruct)
 return Boolean
 renames stage3."=";

 function "+" (L, R :
 in stage3.somerange)
 return stage3.somerange
 renames stage3."+";

end myusage;
without those renamings, any usage of =
and + within the body of myusage are
flagged as errors owing to lack of
visibility/qualification.
The translator is a rather crude line-by-
line affair written in Haskell that only
performs partial analysis of the source,
and certainly isn't up to identifying the
arguments to operators within
expressions. Thus, it produces the
renaming clauses if it encounters the type
name is the source; e.g., if it sees
somerange, it outputs all the renamings
for somerange. However, the renamings
usually are not required, so GNAT warns
about them. Normally, this would not be a
problem; one would simply remove the
unneeded declaration from the source. I
did try putting the declarations into
another package and then "with" and
"use" that, but then the warning changes
to "no declarations used from the
package".
I really really really don't like "use"
anyway and prefer always to qualify
imported names.
What I'd like is a pragma that switches-off
and switches-on the warning over the
specific range of lines containing the
renamings, but no such seems to be
available. I don't want to switch off the
warning from the command line as that
will suppress valid warnings.
[…]
From: Jerry Bauck

<lanceboyle@qwest.net>
Date: Wed, 31 Dec 2008 11:46:08 -0800

PST

26 Ada in Context

Volume 30, Number 1, March 2009 Ada User Journal

Subject: Re: Selective suppression of
warnings --- gnat on GNU/Linux

Newsgroups: comp.lang.ada
[…]
Google reveals this Ada Gem of the Week
from AdaCore:
http://www.adacore.com/2007/11/19/
ada-gem-18/
It shows how to turn off warnings for a
particular range of code. […]

package body Warnings_Example is
 procedure Mumble (X : Integer) is
 begin
 null;
 end Mumble;
end Warnings_Example;
will cause GNAT to complain:

warnings_example.adb:5:22: warning:
formal parameter "X" is not
referenced.

But the following will compile cleanly:

package body Warnings_Example is

 pragma Warnings (Off,
 "formal parameter ""X"" is not
 referenced");
 procedure Mumble (X : Integer) is
 pragma Warnings (On,
 "formal parameter ""X"" is not
 referenced");
 -- X is ignored here [...]
 begin
 null;
 end Mumble;

end Warnings_Example;
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Tue, 30 Dec 2008 18:13:37 -0500
Subject: Re: Selective suppression of

warnings --- gnat on GNU/Linux
Newsgroups: comp.lang.ada
[…]
GNAT has a whole bunch of ways to
suppress warnings. Look at the docs. You
can suppress warnings in a range of code.
You can suppress particular types of
warnings. You can suppress all warnings
(in a range of code, or globally). Pragmas
and command-line options.
As someone said, you might want "use
type", which makes operators directly
visible, but nothing else. Or you might
want to use subtypes of Integer.
Three alternative translations of Pascal's:
type T = A..B;
have been discussed in this thread:
1. subtype T is Integer range A..B;
2. type T is new Integer range A..B;

3. type T is range A..B;
Option 1 matches Pascal semantics most
closely.
2 and 3 both might be better Ada style in
some cases, but:
It's hard to tell from the Pascal code
whether it's better or worse. Sometimes 1
is better. It depends on how many type
conversions are needed, and analyzing
that would require a fairly sophisticated
translator, with global analysis of the
Pascal program.
Option 3 is questionable, because of
overflow semantics for intermediate
results in expressions. In Pascal, if you
say (X+Y)/2, it won't overflow if X+Y is
in Integer, but not in A..B. Same is True
in Ada for option 2, but not necessarily
for option 3.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Wed, 31 Dec 2008 10:46:34 +0100
Subject: Re: Selective suppression of

warnings --- gnat on GNU/Linux
Newsgroups: comp.lang.ada
> 1. subtype T is Integer range A..B;
> 2. type T is new Integer range A..B;
> 3. type T is range A..B;
> […]
> Option 3 is questionable, because of

overflow semantics for intermediate
results in expressions. In Pascal, if you
say (X+Y)/2, it won't overflow if X+Y
is in Integer, but not in A..B. Same is
True in Ada for option 2, but not
necessarily for option 3. Oh no! Option
2 has exactly the same problem, you
just hope that by forcing your type to
have the same number of bits as Integer
(a type you know nothing about), there
will be enough room for your
computations...

If you are worried about overflows (and
you use only additions), the proper
declarations are:

type Big_Enough is range A .. 2*B;
subtype T is Big_Enough range A .. B;
Of course, if you compute more than
single additions, a real analysis has to be
done to determine the bounds of
Big_Enough.
By all means, please, let's get rid of
Integer!
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Wed, 31 Dec 2008 14:49:02 -0500
Subject: Re: Selective suppression of

warnings --- gnat on GNU/Linux
Newsgroups: comp.lang.ada
[…]
Well, since we're talking about grossly
incompatible changes, we might as well
have:

type String_Index is range

 1..<implementation-defined>;
type String is array (String_Index
 range <>) of Character;
More generally, it would also be nice to
have a way to say, "Give me a number
that would be appropriate as the upper
bound of an array whose component type
is T". The number would be guaranteed to
be big enough that you would get
Storage_Error if you ever create an array
that big.
From: Bill Findlay

<findlaybill@blueyonder.co.uk>
Date: Tue, 30 Dec 2008 11:01:18 +0000
Subject: Re: Selective suppression of

warnings --- gnat on GNU/Linux
Newsgroups: comp.lang.ada
> […] I am trying to build an application

of which some of the source is
automatically translated from Pascal,
on the fly. […]

> This is because the Pascal code has
many instances of:

> type
> somerange = 1..10;
> somestruct = record ... end;
>
> which is translated into Ada as
>
> type somerange is new integer range 1

.. 10;
> type somestruct is record ... end record;
[…]
No, the problem is that the Pascal
subrange type declarations have been
wrongly translated. The Pascal
declaration:
type somerange = 1..10;
Means, in Ada:

subtype somerange is Integer
 range 1..10;
Make this change and the Ada type
compatibility problems will magically
vanish.
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Tue, 30 Dec 2008 12:37:33 +0100
Subject: Re: Selective suppression of

warnings --- gnat on GNU/Linux
Newsgroups: comp.lang.ada
I can see this is formally true, but
wouldn't you loose the valuable
distinction that comes from different
numeric types?
From: Bill Findlay

<findlaybill@blueyonder.co.uk>
Date: Tue, 30 Dec 2008 12:05:51 +0000
Subject: Re: Selective suppression of

warnings --- gnat on GNU/Linux
Newsgroups: comp.lang.ada
The point is that in Pascal they are NOT
different types, so if one wants to mirror

Ada in Context 27

Ada User Journal Volume 30, Number 1, March 2009

the semantics of the Pascal program -
which is presumably the reason for
translating it - one must do as I say.
Even writing afresh in Ada, it is very
unlikely indeed that one would want
every subrange to be a separate type.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 30 Dec 2008 00:03:52 -0800

PST
Subject: Re: Selective suppression of

warnings --- gnat on GNU/Linux
Newsgroups: comp.lang.ada
[…]
> What I'd like is a pragma that switches-

off and switches-on the warning over
the specific range of lines containing
the renamings, but no such seems to be
available. I don't want to switch off the
warning from the command line as that
will suppress valid warnings.

Have you tried replacing the renaming
declarations with "use type somerange"?
One such clause applies to all operators.
You will get fewer warnings, as if a single
operator is used then the "use type" clause
does not cause a warning.
From: Michael Mounteney

<gate02@landcroft.co.uk>
Date: Tue, 30 Dec 2008 14:49:50 -0800

PST
Subject: Re: Selective suppression of

warnings --- gnat on GNU/Linux
Newsgroups: comp.lang.ada
Thanks very much, Ludovic, that answer
was just what I needed!
The warning count has decreased by
about 80%.
Bill: I take your point but I am trying to
preserve semantic information the
conversion. So I do want the types to be
distinct.
The Pascal source has been modified
where necessary thus:
dest := (*ada:typeofdest*)(expr);
which the convertor sees as
dest := typeofdest(expr);
in order to maintain the distinction of
types.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Tue, 30 Dec 2008 18:26:33 -0500
Subject: Re: Selective suppression of

warnings --- gnat on GNU/Linux
Newsgroups: comp.lang.ada
[…]
Aha! So you're not exactly translating
Pascal to Ada, you're translating Pascal
with some interesting annotations (in
Pascal comments) to Ada.
I think you might be better off annotating
the Pascal type declarations (which ones
should be separate types, in the Ada
sense, versus subtypes), rather than

annotating the individual Pascal
expressions with conversion annotations.

Closures in Ada
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 16 Oct 2008 16:26:49 +0200
Subject: Re: Defining a binary operator

between function access types: Is it
possible?

Newsgroups: comp.lang.ada
> I'm trying to define a binary operator

between function access types that
returns the access to the function that is
the binary operator acting on both
functions.

You cannot create a new subprograms and
return it from another subprogram.
To have the effect of an interpreted
language you have to define
corresponding first-class types. For
example:

type Operation is abstract
 tagged private;
function Evaluate (
 F : Operation;
 X : Real) return Real
 is abstract;
…
type Squaring is new Operation
 with null record;
overriding function Evaluate (
 F : Squaring;
 X : Real) return Real;
Square : constant Squaring;
…
type Composed_By_Plus is
 new Operation with private;

function "+" (L, R : Operation'Class)
 return Composed_By_Plus;
overriding function Evaluate (
 F : Composed_By_Plus; X : Real)
return Real;
…
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Thu, 16 Oct 2008 18:18:59 -0400
Subject: Re: Defining a binary operator

between function access types: Is it
possible?

Newsgroups: comp.lang.ada
You can't do that sort of thing in Ada.
What the OP is asking for is "full
closures". Ada only has "downward
closures" - you can pass procedures into
procedures, but not out.
> …This isn't going to work at all.
> A Function_Access is basically a

pointer to a function that has already
been written. You're asking the
program to build a *new* function on
the fly and return a pointer to that. That

pretty much works only in interpreted
languages, and Ada isn't one of those.

Full closures are typically supported by
functional languages, such as Lisp (which
Adam mentioned), Scheme, SML,
OCaml, Haskell, etc. They do not need to
be "interpreted languages" - it is
reasonable to compile to machine code in
many such languages, and it's done in
practice.
They do normally need garbage
collection.
Jacob Sparre Andersen outlined how to
simulate full closures using tagged and
class-wide types.
[…]
From: Ivan Levashew

<octagram@bluebottle.com>
Date: Mon, 20 Oct 2008 23:46:59 -0700

PDT
Subject: Re: Defining a binary operator

between function access types: Is it
possible?

Newsgroups: comp.lang.ada
Nobody seems to mention another way to
do the trick. One can use just downwards
closures, and circumvent upwards
closures restriction via CPS, e. g. add
extra "Continuation : access procedure"
argument in every procedure, and add
extra "Continuation : access procedure
(Result : Your_Result_Type)" argument
in every function.
It will actually work. Despite being
clearly crazy (it blows your stack),
blowing stack and heap is what actually
happens when C++ compiler interprets
BOOST, Loki, Blitz++ sources. IIUC
standards-compliant C++ compiler can't
get rid of any of intermediate results.
P.S.
http://okasaki.blogspot.com/2008/07/
functional-programming-inada.html

Performance Quirk
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Thu, 6 Nov 2008 18:44:09 -0600
Subject: Re: Interesting performance quirk.
Newsgroups: comp.lang.ada
> Now the interesting part. My main

development system is a Windows XP
laptop. On this system my "optimized"
Blowfish benchmark encrypts or
decrypts at about 11 MB/s (curiously
decryption is a little faster than
encryption, which seems odd). It also
happens that I have OpenSUSE 10.2
Linux running on the same box in a
VMware virtual machine. In that
environment my benchmark encrypts or
decrypts at fully 27 MB/s. It's over
twice as fast! I'm using GNAT GPL
2008 in both cases with the same
compiler options and exactly the same
source code. I'm even using the same
basic hardware although, as I said, one

28 Ada in Context

Volume 30, Number 1, March 2009 Ada User Journal

of my systems---the faster one---is a
virtual machine.

 Should I be surprised at this
performance difference? I wasn't
expecting it. Note that I'm using
Ada.Calendar.Clock to track execution
time. At first I wondered if the virtual
machine's notion of time was distorted
in some way but, no... the program is
definitely faster in the VM (it runs long
enough so that the difference is speed is
easily perceptible by a human).

I can't answer whether you should be
surprised, but I'm not. My experience is
that modern CPU chips have performance
characteristics that seem random and
depend on things that no one has any
control over.
My most recent example was a hobby
program, much think yours. I was
surprised to see that fixing a memory
management flaw caused the program to
run twice as fast. That temporarily caused
rejoicing, until improving the behavior of

a non critical piece of the program caused
the program to slow by 50%! (This effect
showed up on several Windows OSes on
different Intel processors. But not on the
old Pentium IIIs.) Experimenting, I
discovered that I could change code in
units totally unrelated to the "hot" areas of
the program and cause vast changes in the
performance of the inner loops.
I verified of course that the generated
code really was unchanged (it was).
I went as far as reading the latest Intel
literature on these topics (and it is huge). I
thought that the effect might have had
something to do with the alignment of the
innermost loops, but adding options to
control that to Janus/Ada didn't help much
(it did get rid of the slowest versions, but
the performance still could vary wildly,
about 30% if I remember correctly).
Having wasted most of a nice weekend
messing with this (and having no
customer requirements at the time), I
finally gave up and just twiddled with

some unrelated code until the program ran
fast.
So I don't quite know what is going on. I
suspect it is related in some way to
alignment, but it might be necessary for
some code to be page aligned for
maximum performance (and that is way
too expensive to use within loops and
other code that is going to be executed -
you have to fill the empty space with no-
ops, and executing them takes some time.
Intel actually recommends no-op
sequences to use to fill space in order to
minimize time - yuck).
So it is possible that the performance
difference has everything to do with
unrelated parts of your program (such as
the I/O libraries), which are going to be
different for the two OSes. And nothing to
do with your Ada code or anything that
your compiler has control over.

30 Conference Calendar

Volume 30, Number 1, March 2009 Ada User Journal

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2009

April 01-04 2nd IEEE International Conference on Software Testing, Verification and Validation (ICST'2009),
Denver, Colorado. Topics include: Verification & Validation, Quality Assurance, Empirical studies,
Embedded and real-time software, Concurrent software, etc.

April 06-08 2nd International Conference on Trusted Computing (Trust'2009), Oxford, UK. Topics include:
implementation technologies for trusted platforms; implementations of trusted computing; verification
of trusted computing architectures; etc.

April 14-16 16th Annual IEEE International Conference and Workshops on the Engineering of Computer
Based Systems (ECBS'2009), San Francisco, California, USA. Topics include: Component-Based
System Design; Design Evolution; Distributed Systems Design; ECBS Infrastructure (Tools,
Environments); Education & Training; Embedded Real-Time Software Systems; Formal Methods;
Integration Engineering; Model-Based System Development; Modeling and Analysis of Complex
Systems; Open Systems; Reengineering & Reuse; Reliability, Safety, Dependability, Security;
Standards; Verification & Validation; etc.

April 20-23 21st Annual Systems and Software Technology Conference (SSTC'2009), Salt Lake City, Utah, USA.

☺ May 16-24 31st International Conference on Software Engineering (ICSE'2009), Vancouver, Canada. Topics
include: Specification and Verification; Software Architecture and Design; Patterns and Frameworks;
Reverse Engineering, Refactoring, and Evolution; Tools and Environments; Empirical Software
Engineering; Development Paradigms and Software Processes; Component-based Software
Engineering; Model Driven Engineering; Distributed Systems and Middleware; Embedded System;
Open Standards and Certification; Software Economics; Dependability (safety, security, reliability);
Case Studies and Experience Reports; etc. Deadline for early registration: April 11, 2009.

☺ May 18 2nd International Workshop on Multicore Software Engineering (IWMSE'2009).
Topics include: Modeling techniques for multicore software; Software components and
composition; Programming languages/models for multicore software; Compilers for
parallelism; Testing and debugging parallel applications; Software reengineering for
parallelism; Operating system support, scheduling; Development environments for
multicore software; Experience reports from research or industrial projects; etc.

May 25-27 9th International Conference on Computational Science (ICCS'2009), Baton Rouge, Louisiana, USA.
Theme: "Compute, Discover, Innovate".

☺ May 25 6th International Workshop on aPpplications of declArative and object-oriented
Parallel Programming (PAPP'2009). Topics include: high-level parallel language
design, implementation and optimisation; modular, object-oriented, functional, logic,
constraint programming for parallel, distributed and grid computing systems; industrial
uses of a high-level parallel language; etc.

☺ May 25 Workshop on Using Emerging Parallel Architectures for Computational Science.
Topics include: Languages, models, tools, and compilation techniques for emerging
architectures; etc.

☺ May 25-29 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS'2009), Rome, Italy.
Topics include: Parallel and distributed algorithms; Applications of parallel and distributed computing;

Conference Calendar 31

Ada User Journal Volume 30, Number 1, March 2009

Parallel and distributed software, including parallel programming languages and compilers, runtime
systems, fault tolerance, middleware, libraries, scalability, programming environments and tools, etc.

☺ May 26-29 DAta Systems In Aerospace (DASIA'2009), Istanbul, Turkey.

☺ June 02-04 14th IEEE International Conference on the Engineering of Complex Computer Systems
(ICECCS'2009), Potsdam, Germany. Topics include: Avionics and Automobile Software; Formal
Methods and Approaches to Manage and Control Complex Systems; Interoperability and
Standardization; Real-time and Embedded Systems; Software Architecture and System Engineering;
Systems and Software Safety and Security; Tools, Environments, and Languages for Complex Systems;
Verification Techniques for Complex Software Systems; etc.

June 03-06 5th International Conference on Open Source Systems (OSS'2009), Skövde, Sweden. Topics include:
Software engineering perspectives (F/OSS development environments; Testing, assuring and certifying
F/OSS quality and security; F/OSS usability, scalability, maintainability and other quality issues; F/OSS
and standards, ...); Emerging perspectives (Licensing, IPR and other legal issues in F/OSS; F/OSS and
innovation; ...); Studies of F/OSS deployment (Case studies of F/OSS deployment, migration models,
success and failure; F/OSS in vertical domains and the 'secondary' software sector, e.g., automotive,
telecommunications, medical devices; F/OSS applications catalog; ...); etc.

♦ June 08-12 14th International Conference on Reliable Software Technologies - Ada-
Europe'2009, Brest, France. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda.

June 09-12 4th IFIP Conference on Distributed Computing Techniques (DisCoTec'2009), Lisbon, Portugal.
Includes the FMOODS/FORTE'2009, DAIS'2009, and Coordination'2009 conferences.

June 09-11 11th International Conference on Languages, Models, and Architectures for
Concurrent and Distributed Software (Coordination'2009). Topics include:
Distributed and Concurrent Programming Models (multicore programming, data parallel
programming, event-driven programming, ...); Distributed Software Management
(component and module systems for distributed software, configuration and deployment
architectures, ...); Case Studies (application of novel distributed and concurrent
techniques); etc.

June 09-11 IFIP International Conference on Formal Techniques for Distributed Systems
(FMOODS/FORTE'2009). Formed joinlty from the 11th Formal Methods for Open
Object-Based Distributed Systems (FMOODS) and the 29th Formal Techniques for
Networked and Distributed Systems (FORTE). Topics include: Languages and Semantic
Foundations (new modeling and language concepts for distribution and concurrency,
semantics for different types of languages, including programming languages, modeling
languages, and domain specific languages; real-time aspects; ...); Formal Methods and
Techniques (design, specification, analysis, verification, validation and testing of
various types of distributed systems); Practical Experience with Formal Methods
(industrial applications, case studies and software tools for applying formal methods and
description techniques to the development and analysis of real distributed systems); etc.

June 09-11 9th IFIP International Conference on Distributed Applications and Interoperable
Systems (DAIS'2009). Topics include: Innovative distributed applications; Models and
concepts supporting distributed applications; Middleware supporting distributed
applications; Software engineering of distributed applications; etc.

June 15-21 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'2009),
Dublin, Ireland. Topics include: the design, development, implementation, evaluation, and use of
programming languages; including: Extracting parallelism from programs, Exploiting explicit
parallelism in programs, Memory management, Language constructs for parallelism, Program analyses,
Type systems and program logics, Debugging techniques and tools, Language designs and extensions,
Checking or improving the safety, security, or correctness of programs, etc.

☺ June 19-20 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES'2009). Topics include: Programming language issues in
embedded systems, including Language features to exploit multi-core, single-chip
SIMD, ..., Language features for distributed real-time control, and other complex

32 Conference Calendar

Volume 30, Number 1, March 2009 Ada User Journal

embedded systems, Language features to enhance reliability and security, Virtual
machines, concurrency, inter-processor synchronization mechanisms, memory
management techniques; Compiler issues in embedded systems, including Interaction
between embedded computer architectures, operating systems and compilers, Support
for debugging, profiling, exception and interrupt handling, for reliability and security,
etc.; Tools for analysis, specification, design and implementation of embedded systems,
including Distributed real-time control, and other complex systems, Validation and
verification, system integration and testing, Timing analysis, timing predictability,
WCET analysis and real-time scheduling analysis, Performance monitoring and tuning,
Runtime system support for embedded systems, etc.; Novel embedded architectures.

June 16-18 Code Generation 2009, Cambridge, UK. Topics include: Tool and technology development and
adoption; Code Generation and Model Transformation tools and approaches; Defining and
implementing modelling languages; Language evolution and modularization; etc.

☺ June 18 Workshop on Entwicklung zuverlaessiger Software-Systeme, Regensburg, Germany. Topics include
(in German): Realzeitanforderungen, Sprachen, Nachweis der Erfuellung der Sicherheits-
Anforderungen, etc.

June 22-24 4th International Workshop on Systems Software Verification (SSV'2009), Aachen, Germany.
Theme: "Real Software, Real Problems, Real Solutions". Topics include: static analysis, model-driven
development, embedded systems development, programming languages, verifying compilers, software
certification, software tools, experience reports, etc.

June 22-26 29th International Conference on Distributed Computing Systems (ICDCS'2009), Montreal, Canada.
Topics include: findings in any aspects of distributed and parallel computing, such as Distributed
Middleware, Reliability and Dependability, Security, etc.

June 23-26 5th European Conference on Model Driven Architecture Foundations and Applications (ECMDA-
FA'2009), Enschede, the Netherlands. Topics include: Metamodeling foundations and tools; Model
Transformation and Code Geneation; MDA for Complex Systems and Systems of Systems; MDA for
Embedded Systems and Real-Time Systems; MDA for High-Integrity Systems, Safety-Critical, and
Security-Critical Systems; MDA in the Automotive, Aerospace, Telecommunications, Electronics
Industries; Comparative Studies of MDA Methods and Tools; MDA for Legacy Systems; etc. Deadline
for submissions: April 6th, 2009 (tools, posters).

June 26 – July 02 21st International Conference on Computer Aided Verification (CAV'2009), Grenoble, France.
Topics include: Algorithms and tools for verifying models and implementations, Program analysis and
software verification, Verification techniques for security, Applications and case studies, Verification in
industrial practice, etc.

☺ June 26-27 Workshop on Exploiting Concurrency Efficiently and Correctly (EC)2. Topics
include: advances in programming languages and tools for developing concurrent
software; programming constructs for concurrency; formalization of concurrency
libraries; verification tools; introducing concurrency in education; etc.

☺ June 29 DSN2009 - Workshop on Architecting Dependable Systems (WADS'2009), Lisbon, Portugal. Topics
include: the structuring, modelling, and analysis of dependable software systems, such as: Rigorous
design (architectural description languages, formal development, ...); Verification & validation (theorem
proving, type checking, ...); Fault tolerance; System evaluation; Enabling technologies; Application
areas (safety-critical systems, embedded systems, ...); etc.

☺ June 29 – July 03 47th International Conference Objects, Models, Components, Patterns (TOOLS Europe'2009),
Zurich, Switzerland. Topics include: all aspects of object technology and neighboring fields, in
particular model-based development, component-based development, and patterns (design, analysis and
other applications); more generally, any contribution addressing topics in advanced software
technology; contributions showcasing applications along with a sound conceptual contribution are
particularly welcome.

☺ June 29 – July 03 9th International Conference on New Technologies of Distributed Systems (NOTERE'2009),
Montreal, Canada. Topics include: Middleware; Existing paradigms revisited: object, component, ...;
Fault-Tolerance and dependability; Information assurance and security; Formal methods and tools; etc.

Conference Calendar 33

Ada User Journal Volume 30, Number 1, March 2009

☺ July 01-03 21st Euromicro Conference on Real-Time Systems (ECRTS'2009), Dublin, Ireland. Topics include:
applications (consumer electronics; multimedia and entertainment; process control; avionics, aerospace;
automotive; telecommunications); software technologies (compiler support, component-based
approaches, middleware and distribution technologies, programming languages, operating systems);
system design and analysis (modelling and formal methods, reliability and security in RT systems,
scheduling and schedulability analysis, worst-case execution time analysis, validation techniques, ...).

June 30 9th International Workshop on Worst-Case Execution Time Analysis (WCET'2009).
Topics include: any issue related to timing analysis, in particular Integration of WCET
and schedulability analysis; Evaluation, case studies, benchmarks; Tools for WCET
analysis; Program design for timing predictability; Integration of WCET analysis in
development processes; WCET analysis for multi-threaded and multi-core systems; etc.
Deadline for submissions: April 13, 2009.

July 01-03 9th International Conference on Application of Concurrency to System Design (ACSD'2009),
Augsburg, Germany. Topics include: (Industrial) case studies of general interest, gaming applications,
consumer electronics and multimedia, automotive systems, (bio-)medical applications, internet and grid
computing, ...; Synthesis and control of concurrent systems, (compositional) modelling and design,
(modular) synthesis and analysis, distributed simulation and implementation, ...; etc.

July 03-08 14th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2009), Paris, France.

July 05-12 36th International Colloquium on Automata, Languages and Programming (ICALP'2009), Rhodes,
Greece. Topics include: Parallel and Distributed Computing; Principles of Programming Languages;
Formal Methods and Model Checking; Models of Concurrent and Distributed Systems; Models of
Reactive Systems; Program Analysis and Transformation; Specification, Refinement and Verification;
Type Systems and Theory; etc.

☺ July 06-10 23rd European Conference on Object Oriented Programming (ECOOP'2009), Genova, Italy. Topics
include: research results or experience in all areas relevant to object technology, including work that
takes inspiration from, or builds connections to, areas not commonly considered object-oriented;
examples are: Analysis, design methods and design patterns; Concurrent, real-time or parallel systems;
Distributed systems; Language design and implementation; Programming environments and tools; Type
systems, formal methods; Compatibility, software evolution; Components, Modularity; etc. Deadline
for submissions: May 1, 2009 (posters, demos). Deadline for early registration: May 20, 2009.

☺ July 06 19th Doctoral Symposium and PhD Students Workshop. Topics include: Design
Patterns, Concurrency, Real-time, Embeddedness, Distribution, Language
Workbenches, Generative Programming, Language Design, Language Constructs, Static
Analysis, Language Implementation, Methodology, Practices, Design Languages,
Software Evolution, Formal methods, Tools, Programming environments, etc.

☺ July 07 1st International Workshop on Distributed Objects for the 21st Century
(DO21'2009). Topics include: State-of-the-art distributed object systems; Language
abstractions for developing Software as a Service; Combining objects with other
paradigms (e.g. events, publish/ subscribe, tuples, dataflow, REST, ...); Alternative
(non-OO) approaches to the above (and their pros/cons); etc. Deadline for submissions:
April 8, 2009.

☺ July 07 8th Workshop on Parallel/High-Performance Object-Oriented Scientific Computing
(POOSC'2009). Topics include: identifying specific problems impeding greater
acceptance and widespread use of object-oriented programming in scientific computing;
proposed and implemented solutions to these problems; and new or novel approaches,
techniques or idioms for scientific and/or parallel computing. Specific areas of interest
include: alternatives or extensions to mainstream object-oriented languages (e.g. C++,
Java); performance issues and their realized or proposed resolution; issues specific to
handling or abstracting parallelism, including the handling or abstraction of
heterogeneous and multicore microarchitectures; higher level languages (e.g. domain
specific languages) or their embedding into OO languages to support parallelism or
specific tasks in scientific computing; grand visions (of relevance); etc. Deadline for
submissions: April 8, 2009.

34 Conference Calendar

Volume 30, Number 1, March 2009 Ada User Journal

July 13-16 2009 International Conference on Software Engineering Theory and Practice (SETP'2009),
Orlando, Florida, USA. Topics include: Case studies, Component-based software engineering, Critical
software engineering, Distributed and parallel software architectures, Education aspects of software
engineering, Embedded software engineering, Model Driven Architecture (MDA), Model-oriented
software engineering, Object-oriented methodologies, Program understanding, Programming languages,
Quality issues, Real-time software engineering, Real-time software systems, Reliability, Reverse
engineering, Software design patterns, Software maintenance, Software reuse, Software safety and
reliability, Software security, Software specification, Software tools, Verification and validation of
software, etc. Event includes: special session on Object-Oriented Programming.

☺ July 13-16 WORLDCOMP2009 - International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA'2009), Las Vegas, Nevada, USA. Topics include:
Parallel/Distributed applications; Reliability and fault-tolerance; Real-time and embedded systems;
Software tools and environments for parallel and distributed platforms: operating systems, compilers,
languages, debuggers, monitoring tools, software engineering on parallel/distributed systems, ...; Object
oriented technology and related issues; Scheduling and resource management; etc.

July 19-23 ACM International Symposium on Software Testing and Analysis (ISSTA'2009), Chicago, USA.

☺ July 19 2nd International Workshop on Defects in Large Software Systems
(DEFECTS'2009). Topics include: Techniques to detect, locate, or predict defects;
Empirical studies of defects; Types of defects that occur in software; Evolution of
defects over time; Tools for post-deployment defect detection and reporting; Experience
using certain techniques to identify or predict defects; etc. Deadline for submissions:
April 13, 2009.

July 29-31 3rd IEEE International Symposium on Theoretical Aspects of Software Engineering (TASE'2009),
Tianjin, China. Topics include: Specification and Verification; Program Analysis; Model-Driven
Engineering; Software Architectures and Design; Object Orientation; Embedded and Real-Time
Systems; Component-Based Software Engineering; Software Safety, Security and Reliability; Reverse
Engineering and Software Maintenance; Type System; Dependable Concurrency; etc.

☺ August 10-12 7th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA'2009), Chengdu and Jiuzhai Valley, China. Topics include: all aspects of parallel and distributed
computing and networking, such as Parallel/distributed system architectures, Tools and environments
for software development, Distributed systems and applications, Reliability, fault-tolerance, and
security, etc.

August 10-13 28th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2009), Calgary, Alberta, Canada.

August 24-28 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE'2009), Amsterdam, the
Netherlands. Topics include: Specification and verification, Software architecture and design, Tools and
environments, Software quality and performance, Formal methods, Component-based software
engineering, Distributed systems and middleware, Embedded and real-time systems, Open standards and
certification, Dependability (safety, security, reliability), Case studies and experience reports, etc.
Deadline for submissions: May 4, 2009 (doctoral symposium abstracts), June 5, 2009 (demos, posters).

☺ August 25-28 15th International European Conference on Parallel and Distributed Computing (Euro-Par'2009),
Delft, the Netherlands. Topics include: all aspects of parallel and distributed computing, such Support
tools and environments, High performance architectures and compilers, Distributed systems and
algorithms, Parallel and distributed programming, Multicore and manycore programming, Theory and
algorithms for parallel computation, etc.

☺ August 25 EuroPar2009 - 3rd Workshop on Highly Parallel Processing on a Chip (HPPC'2009).
Topics include: programming models, languages and software libraries, implementation
techniques, support and performance tools, performance evaluation, parallel algorithms
and applications, migration of existing codebase, teaching of parallel computing, for/on
highly parallel multi-core systems. Deadline for paper submissions: June 5, 2009.

☺ Aug 31 – Sep 04 10th International Conference on Parallel Computing Technologies (PaCT'2009), Novosibirsk,
Russia. Topics include: New developments, applications, and trends in parallel computing technologies;

Conference Calendar 35

Ada User Journal Volume 30, Number 1, March 2009

All aspects of the applications of parallel computer systems; Languages, environment and software tools
supporting parallel processing; General architecture concepts; Teaching parallel processing; etc.

Aug 31 – Sep 05 20th International Conference on Concurrency Theory (CONCUR'2009), Bologna, Italy. Topics
include: concurrency theory and its applications, e.g. semantics, cross-fertilization between industry and
academia, etc. Deadline for submissions: April 10, 2009 (papers).

☺ September 01-04 International Conference on Parallel Computing 2009 (ParCo'2009), Lyon, France. Topics include:
all aspects of parallel computing, including applications, hardware and software technologies as well as
languages and development environments.

☺ September 01-04 4th Latin-American Symposium on Dependable Computing (LADC'2009), João Pessoa, Brazil.
Topics include: Dependability of software (analysis, architecture, testing, verification & validation,
software certification); Dependability of maintenance; Security; Dependability and human issues;
Safety; etc. Deadline for submissions: June 15, 2009 (fast abstracts, student forum).

September 09-11 8th International Conference on Software Methodologies, Tools, and Techniques (SoMeT'2009),
Prague, Czech Republic. Topics include: Software methodologies, and tools for robust, reliable, non-
fragile software design; Automatic software generation versus reuse, and legacy systems, source code
analysis and manipulation; Intelligent software systems design, and software evolution techniques;
Software optimization and formal methods for software design; Software security tools and techniques,
and related Software Engineering models; Software Engineering models, and formal techniques for
software representation, software testing and validation; etc.

☺ September 12-16 18th International Conference on Parallel Architectures and Compilation Techniques
(PACT'2009), Raleigh, North Carolina, USA. Topics include: Parallel computational models; Compilers
and tools for parallel computer systems; Support for concurrency correctness in hardware and software;
Parallel programming languages, algorithms and applications; Middleware and run-time system support
for parallel computing; Reliability and fault tolerance for parallel systems; Modeling and simulation of
parallel systems and applications; Parallel applications and experimental systems studies; etc.

September 14-17 Joint 8th Working International Conference on Software Architecture and 3rd European
Conference on Software Architecture (WICSA/ECSA'2009), Cambridge, UK. Topics include:
architecture description languages; architecture reengineering, discovery and recovery; software
architects' roles and responsibilities, training, education and certification; etc. Deadline for submissions:
April 10, 2009 (papers), April 20, 2009 (workshops), April 28, 2009 (tutorials).

September 16-18 12th International Conference on Quality Engineering in Software Technology (CONQUEST'2009),
Nuremberg, Germany. Topics include: specific real-life case studies with detailed quality analysis and
evaluation; quality engineering issues in domains such as Medical IT, Automotive, Avionics, Transport,
and IT; etc.

☺ September 22-25 38th International Conference on Parallel Processing (ICPP'2009), Vienna, Austria. Topics include:
Programming Models, Languages, and Compilers: from high-level abstractions to efficient code, etc.

October 04-09 ACM/IEEE 12th International Conference on Model Driven Engineering Languages and Systems
(MoDELS'2009), Denver, Colorado, USA. Topics include: Development of domain-specific modeling
languages, Tools and meta-tools for modeling languages and model-based development, Evolution of
modeling languages and models, Experience stories in general (successful and unsuccessful), Issues
related to current model-based engineering standards, Experience with model-based engineering tools,
etc. Deadline for submissions: April 26, 2009 (abstracts), May 10, 2009 (papers).

October 05-06 2nd International Conference on Software Language Engineering (SLE'2009), Denver, Colorado,
USA. Topics include: the engineering of artificial languages used in software development including
general-purpose programming languages, domain-specific languages, modeling and meta-modeling
languages, data models, and ontologies. Deadline for submissions: July 3, 2009 (abstracts), July 10,
2009 (papers).

♦ October 07-09 14th International Real-Time Ada Workshop (IRTAW'2009), Portovenere, Italy
(tentative dates).

☺ October 12-14 IMCSIT2009 - 2nd Workshop on Advances in Programming Languages (WAPL'2009), Mragowo,
Poland. Topics include: Compiling techniques; Domain-specific languages; Formal semantics and

36 Conference Calendar

Volume 30, Number 1, March 2009 Ada User Journal

syntax; Generative and generic programming; Languages and tools for trustworthy computing;
Language concepts, design and implementation; Metamodeling and modeling languages; Model-driven
engineering languages and systems; Practical experiences with programming languages; Program
analysis, optimization and verification; Program generation and transformation; Programming tools and
environments; Proof theory for programs; Specification languages; Type systems; etc. Deadline for
submissions: May 5, 2009 (full papers).

☺ October 25-29 24th Annual Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA'2009), Orlando, Florida, USA. Topics include: the intersection between programming
languages and software engineering; key programming models and programming methods and related
software engineering ideas, technologies, tools, and applications; critical evaluation of accepted
practices, proposals for new programming models, exploration and extension of well-established
models, and other novel approaches to building systems; etc. Deadline for submissions: July 2, 2009
(posters, demonstrations, student research competition, doctoral symposium, onward! films, student
volunteers).

Oct 30 – Nov 07 16th International Symposium on Formal Methods (FM'2009), Eindhoven, the Netherlands. Theme:
"Theory meets practice". Topics include: every aspect of the development and application of formal
methods for the improvement of the current practice on system developments; of particular interest are
papers on tools and industrial applications; etc. Deadline for submissions: December 22, 2009
(workshops), May 4, 2009 (papers).

♦ November 01-05 ACM Annual International Conference on Ada and Related Technologies
(SIGAda'2009), Tampa Bay area, Florida, USA. Sponsored by ACM SIGAda, in
cooperation with SIGCAS, SIGCSE, SIGPLAN, Ada-Europe, and Ada Resource
Association. Deadline for submissions: June 30, 2009.

☺ November 02-03 14th International ERCIM Workshop on Formal Methods for Industrial Critical Systems
(FMICS'2009), Eindhoven, the Netherlands. Topics include: Design, specification, code generation and
testing based on formal methods; Verification and validation methods that address shortcomings of
existing methods with respect to their industrial applicability; Tools for the development of formal
design descriptions; Case studies and experience reports on industrial applications of formal methods,
focusing on lessons learned or identification of new research directions; Impact of the adoption of
formal methods on the development process and associated costs; Application of formal methods in
standardization and industrial forums; etc. Deadline for submissions: April 7, 2009 (papers).

☺ December 09-11 15th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2009), Shenzhen,
China. Topics include: Parallel and Distributed Applications and Algorithms, Multi-core and
Multithreaded Architectures, Resource Management and Scheduling, Security, Dependable and
Trustworthy Computing and Systems, Real-Time Systems, etc. Deadline for submissions: June 1, 2009.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2010

☺ January 20-22 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2010),
Madrid, Spain. Topics include: all aspects of programming languages and systems, with emphasis on
how principles underpin practice. Deadline for submissions: July 8, 2009 (abstracts), July 15, 2009
(papers).

March 20-25 European Joint Conferences on Theory and Practice of Software (ETAPS'2009), Paphos, Cyprus.
Events include: FOSSACS, Foundations of Software Science and Computation Structures; FASE,
Fundamental Approaches to Software Engineering; ESOP, European Symposium on Programming; CC,
International Conference on Compiler Construction; TACAS, Tools and Algorithms for the
Construction and Analysis of Systems.

Forthcoming Events 37

Ada User Journal Volume 30, Number 1, March 2009

Preliminary Call for Participation

14th International Conference on Reliable Software
Technologies – Ada-Europe 2009

8-12 June 2009, Brest, France
http://www.ada-europe.org/conference2009.html

The Conference
The 14th International Conference on Reliable Software Technologies – Ada-Europe 2009 will take place in Brest, France, on 8-12 June
2009. The conference has established itself as an international forum for providers, practitioners and researchers into reliable software
technologies. Following its consolidated tradition, the conference will span a full week, with at its centre from Tuesday to Thursday a
three-day technical program accompanied by vendor exhibitions, and at either end on Monday and Friday a string of parallel tutorials
and workshops. The previous editions in this conference series were held at Montreux, Switzerland (‘96), London, UK (‘97), Uppsala,
Sweden (‘98), Santander, Spain (‘99), Potsdam, Germany (‘00), Leuven, Belgium (‘01), Vienna, Austria (‘02), Toulouse, France (‘03),
Palma de Mallorca, Spain (‘04), York, UK (‘05), Porto, Portugal (‘06), Geneva, Switzerland (‘07) and Venice, Italy (’08).

The conference presentations will illustrate current work in the theory and practice of the analysis, design, programming, verification
and maintenance of long-lived, high-integrity software systems for a variety of application domains. The program also features
outstanding keynotes and a robust track of industrial presentations. As usual, the conference provides ample time for Q&A sessions,
panel discussions and social events. Participants include practitioners and researchers from industry, academia and government
organizations interested in the promotion and development of reliable software technologies.

Overall Program
The conference program altogether features 10 tutorials, a technical program of 19 thoroughly refereed papers, a collection of 6
industrial presentations reflecting current practice and challenges in real-life software projects, three eminent invited speakers, a rich
exhibition, two workshops on Software Vulnerabilities and on AADL, and an especially attractive social program. Springer will
publish the proceedings of the regular program of the conference as Volume 5570 of the LNCS. The Ada User Journal will publish the
proceedings of the other tracks of the program.

Keynote Addresses
Three eminent keynote speakers have been selected to open each day of the core conference program:

� John Benito (Blue Pilot Consulting, USA), a leading member of the international standardization and programming languages
community, will deliver a talk entitled: “ISO JTC 1/SC 22/WG 23 work on programming language vulnerabilities”.

� Pierre Sens (LIP6, Université Pierre et Marie Curie, Paris), a leading researcher in software technologies for distributed systems
who presents us fault tolerance technologies in a talk entitled: “Fault tolerance in large scale distributed systems”.

� Peter H. Feiler (SEI/CMU, USA), a worldwide expert in architecture modeling and verification, will discuss how AADL can be
used for such a purpose in a talk entitled: “Validation of safety-critical systems with AADL”.

38 Forthcoming Events

Volume 30, Number 1, March 2009 Ada User Journal

Tutorial Program
The two days at either side of the core conference program include a rich selection of tutorials delivered by domain experts who will
cover a variety of topics of interest to the conference community:

� Building cross language applications using Ada, Quentin Ochem (AdaCore, France).

� An introduction to parallel and real-time programming with Ada, John Mc Cormick (University of Northern Iowa, USA).

� Software fault-tolerance, Pat Rogers (AdaCore, USA).

� Software measures for building dependable software systems, William Bail (MITRE, USA).

� Modeling for schedulability analysis with the UML profile for MARTE, Julio Medina (Universidad de Cantabria, Spain), Huascar
Espinoza (CEA-List, France).

� SPARK - the libre language and toolset for high-assurance software, Roderick Chapman (Praxis High Integrity Systems, UK).

� Hard real-time and embedded systems programming, Pat Rogers (AdaCore, USA).

� Designing real-time, concurrent, and embedded software systems using UML and Ada, Rob Pettit (The Aerospace Corporation, USA).

� Object-oriented programming in Ada 2005, Matthew Heaney (On2 Technologies, USA).

� Execution time: analysis, verification, and optimization in reliable systems, Ian Broster (Rapita Systems, UK).

Technical Program
The technical program of the conference includes 19 thoroughly peer-refereed papers on a wealth of subjects pertinent to the
conference themes, from submissions coming from as many as 19 countries worldwide. The program also features a collection of 6
industrial presentations of challenges faced and solutions devised in real-life projects and a half-day vendor-presentation session.

Exhibition
The exhibition will open in the mid-morning break on Tuesday and run continuously until the end of the afternoon break on Thursday.
Breaks will last one full hour to allow attendees comfortable time to visit the exhibition.

Conference Venue
Brest enjoys a wonderful location, on the shores of a very large bay, with the beauty of inland and coastal Brittany all around it. The
town of Brest was destroyed during the second world war and (quickly) rebuilt in a modern style. The city is a centre of commerce,
combining the cobbled streets and fortifications of the old port with all the attractions and facilities of the modern city. Anyone who
loves ports will want to see the dock yards. Its 17th century castle was spared by the bombs and gives a good point of view of the
harbour. The Brest castle now houses a museum and offices of the harbour authorities. The fine arts museum Musee des Beaux-arts is
worth finding for it's collection of Pont-Aben school paintings. Brest is famous today for being the home of Oceanopolis - the largest
aquarium in Europe. The Oceanpolis is not just an aquarium but a huge research centre and exhibition of sea life and all it's aspects,
with huge tanks of fish and sea mammals.

Social Program
The social program of the conference will open with a welcome reception at Oceanopolis: Brittany’s sea park by the Marina in Brest.
The Sea Park is organized around 3 buildings which highlight the diversity and the habitat of the seas around the world: a temperate
building which presents sea life around Brittany, the tropical building displays tropical and colorful fishes and sharks, the polar
building is home of about 40 penguins. The 50 aquariums make it possible to observe the various animals and plants in their habitat
and numerous activities (interactive games, posters, movies, ...) provide valuable information to discover the under-sea world. Ellidiss
Technologies sponsors the reception at Oceanopolis.

The conference banquet will take place by the sea side, in the charming village of Porspoder, located 25 km North West of Brest: this
area provides a spectacular landscape of rough cliffs and sandy coves, and impressive marine streams due to the collision of the
Channel and the Atlantic waters. AdaCore sponsors the banquet.

In cooperation with SIGAda

 For the latest information on the conference consult: http://www.ada-europe.org/conference2009.html

Forthcoming Events 39

Ada User Journal Volume 30, Number 1, March 2009

14TH INTERNATIONAL REAL-TIME ADA WORKSHOP
IRTAW-14

7-9 October 2009

Portovenere
Italy

http://events.math.unipd.it/irtaw14/

CALL FOR PAPERS

For over 20 years the series of International Real-Time Ada Workshop meetings has provided a forum for identifying
issues with real-time system support in Ada and for exploring possible approaches and solutions, and has attracted
participation from key members of the research, user, and implementer communities worldwide. Recent IRTAW meetings
have significantly contributed to the Ada 2005 standard, especially with respect to the tasking features, the real-time and
high-integrity systems annexes, and the standardization of the Ravenscar profile.

In keeping with this tradition, and in light of Ada 2005 implementations beginning to appear, and thought of post Ada
2005 language changes, the goals of IRTAW-14 will be to:

• examine experiences in using Ada 2005 for the development of real-time systems and applications;
• report on or illustrate implementation approaches for the real-time features of Ada 2005;
• consider the added value of developing other real-time Ada profiles in addition to the Ravenscar profile;
• examine the implications to Ada of the growing use of multiprocessors in the development of real-time systems,

particularly with regard to predictability, robustness, and other issues;
• examine and develop paradigms for using Ada 2005 for real-time distributed systems, taking into account robustness

as well as hard, flexible and application-defined scheduling;
• consider the definition of specific patterns and libraries for real-time systems development in Ada;
• identify how Ada relates to the certification of safety-critical and/or security-critical real-time systems;
• review the status and contents of ISO reports related to real-time Ada and consider the interest of developing new

secondary standards or extensions;
• examine the status of the Real-Time Specification for Java and other languages for real-time systems development,

and consider user experience with current implementations and with issues of interoperability with Ada in embedded
real-time systems;

• consider the lessons learned from industrial experience with Ada and the Ravenscar Profile in actual real-time
projects;

• consider the language vulnerabilities of the Ravenscar and full language definitions.

Participation at IRTAW-14 is by invitation following the submission of a position paper addressing one or more of the
above topics or related real-time Ada issues. Alternatively, anyone wishing to receive an invitation, but for one reason or
another is unable to produce a position paper, may send in a one-page position statement indicating their interests. Priority
will, however, be given to those submitting papers.

Position papers should not exceed ten pages in typical IEEE conference layout, excluding code inserts. All accepted
papers will appear, in their final form, in the Workshop Proceedings, which will be published as a special issue of Ada Letters
(ACM Press). Selected papers will also appear in the Ada User Journal.

Please submit position papers, in PDF format, to the Program Chair by e-mail: neil@cs.york.ac.uk

Program Committee
Neil Audsley (Program Chair), Ben Brosgol, Alan Burns, Michael González Harbour, Stephen Michell, Javier Miranda, Luís
Miguel Pinho, Juan Antonio de la Puente, Jorge Real, José Ruiz, Tullio Vardanega (Local Chair) and Andy Wellings.

Important Dates
Receipt of Position Paper: 8 May 2009
Notification of Acceptance: 22 May 2009
Final Copy of Paper: 16 September 2009
Workshop Date: 7-9 October 2009

40 Forthcoming Events

Volume 30, Number 1, March 2009 Ada User Journal

Call for Technical Contributions – SIGAda 2009

ACM Annual International Conference
on Ada and Related Technologies:

Engineering Safe, Secure, and Reliable Software
Hilton St. Petersburg Bayfront Hotel

Tampa Bay, Florida, USA
November 1-5, 2009

Submission Deadline: June 30, 2009
Sponsored by ACM SIGAda

http://www.acm.org/sigada/conf/sigada2009

SUMMARY: Reliability, safety, and security are among the most critical requirements of contemporary
software. The application of software engineering methods, tools, and languages all interrelate to affect how and
whether these requirements are met.
Such software is in operation in many domains of application. Much has been accomplished in recent years, but
much remains to be done. Our tools, methods, and languages must be continually refined; our management
process must remain focused on the importance of reliability, safety, and security; our educational institutions
must fully integrate these concerns into their curricula.
The conference will gather industrial and government experts, educators, software engineers, and researchers
interested in developing, analyzing, and certifying reliable, safe, secure software. We are soliciting technical
papers and experience reports with a focus on, or comparison with, Ada.
We are especially interested in experience in integrating these concepts into the instructional process at all levels.

POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:
z Transitioning to Ada 2005
z Challenges for developing reliable, safe, secure

software
z Ada and SPARK in the classroom and student

laboratory
z Language selection for highly reliable systems
z Mixed-language development
z Use of high reliability subsets or profiles such as

MISRA C, Ravenscar, SPARK
z High-reliability standards and their issues
z Software process and quality metrics
z System of Systems
z Real-time networking/quality of service

guarantees

• Analysis, testing, and validation
• Use of ASIS for new Ada tool development
• High-reliability development experience reports
• Static and dynamic analysis of code
• Integrating COTS software components
• System Architecture & Design
• Information Assurance
• Ada products certified against Common Criteria /

Common Evaluation Methodology
• Distributed systems
• Use of new Ada 2005 features/capabilities
• Fault tolerance and recovery
• Performance analysis

KINDS OF TECHNICAL CONTRIBUTIONS:

TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically
10-20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings
and in ACM Ada Letters. The Proceedings will be entered into the widely-consulted ACM Digital Library
accessible online to university campuses, ACM's 80,000 members, and the software community.
EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature.
If your abstract is accepted, you will be expected to produce a full paper, which will appear in the proceedings.
Extended abstracts will be double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its
relationship with previous work by you and others (with bibliographic references), results to date, and future
directions.

Forthcoming Events 41

Ada User Journal Volume 30, Number 1, March 2009

EXPERIENCE REPORTS present timely results on the application of Ada and related technologies. Submit a
1-2 page description of the project and the key points of interest of project experiences. Descriptions will be
published in the final program or proceedings, but a paper will not be required.
PANEL SESSIONS gather a group of experts on a particular topic who present their views and then exchange
views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic,
coordinator, and potential panelists.
WORKSHOPS are focused work sessions, which provide a forum for knowledgeable professionals to explore
issues, exchange views, and perhaps produce a report on a particular subject. A list of planned workshops and
requirements for participation will be published in the Advance Program. Workshop proposals, up to 5 pages in
length, will be selected by the Program Committee based on their applicability to the conference and potential for
attracting participants.
TUTORIALS offer the flexibility to address a broad spectrum of topics relevant to Ada, and those enabling
technologies which make the engineering of Ada applications more effective. Submissions will be evaluated
based on relevance, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial proposals
should include the expected level of experience of participants, an abstract or outline, the qualifications of the
instructor(s), and the length of the tutorial (half-day or full-day). Tutorial presenters receive complimentary
registration to the other tutorials and the conference.
HOW TO SUBMIT: Send contributions by June 30, 2009, in Word, PDF, or text format as follows:
Technical Articles, Extended Abstracts, Experience Reports, and Panel Session Proposals: Program Chair, Lt.
Col. Jeff Boleng (Jeff.Boleng@usafa.edu)

Workshop Proposals: Workshops Chair, Bill Thomas (BThomas@mitre.org)
Tutorial Proposals: Tutorials Chair, Richard Riehle (RDRiehle@nps.edu)

FURTHER INFORMATION:
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and
university curricula. The Conference welcomes a grant application from anyone whose goals meet this
description. The benefits include full conference registration with proceedings and registration costs for 2 days of
conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students from
GNAT Academic Program member institutions, which can be combined with conference grants. For more details
visit the conference web site or contact Prof. Michael B. Feldman (mfeldman@gwu.edu).
OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper
selected by the program committee as the outstanding student contribution to the conference.
SPONSORS AND EXHIBITORS: Please contact Alok Srivastava (Alok.Srivastava@auatac.com) for
information about becoming a sponsor and/or exhibitor at SIGAda 2009.
IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be
particularly aware and careful about visa requirements, and should plan travel well in advance. Visit the
conference website for detailed information pertaining to visas.

ANY QUESTIONS?:
Please submit your questions on the conference to the Conference Chair, Greg Gicca (gicca@adacore.com) or
Local Arrangements Chair Currie Colket (colket@acm.org).

 43

Ada User Journal Volume 30, Number 1, March 2009

Thirty Years of the Ada User Journal
John Barnes
11 Albert Road, Caversham, Reading, RG4 7AN, UK; Tel: +44 118 947 4125; email: jgpb@jbinfo.demon.co.uk

Abstract
This nostalgic paper looks back over the evolution of
the Ada User Journal and highlights some memorable
and forgettable events.
Keywords: Journal, Ada.

1 Introduction
Luís Miguel Pinho sent me an email recently pointing out
that the Ada User Journal was about to embark on its
thirtieth volume and could I possibly write a brief survey of
its background to celebrate this event. I said yes and this
paper is the outcome.

It so happens that I do have (thanks to Alan Burns) every
copy going back to Volume 1, Number 1 issued in March
1980. So I had plenty of stuff to dig around in.

It wasn't always called Ada User Journal. Indeed it was not
originally a publication of Ada-Europe at all. It started out
as Ada UK News. But since the numbering system has
remained continuous it is clearly in spirit the same
publication.

Here are some key dates and volume numbers showing the
transition from Ada UK News to the Ada User Journal.

1980 Volumes 1 – 6 Ada UK News

1986 Volumes 7 – 14 Ada User

1994 Volumes 15 – ?? Ada User Journal

Volumes 1–18 were published by Ada UK. Volumes 19–22
were published jointly by Ada UK and Ada-Europe.
Volumes 23 onwards were and continue to be published by
Ada-Europe.

2 Ada UK News
The first issue was simply some stapled pages of A4. The
editorial was written by Prof. Ian Pyle then Chair of
Computer Science at the University of York and the
founding Chairman of Ada Language UK Ltd. Ian said:

"Each issue of the newsletter will be edited by a guest
editor. I have the pleasure of starting the ball rolling, and
taking the opportunity to say something about Ada in
general. To my mind, the most important fact is that Ada
has elicited interest in both the industrial and academic
worlds. Perhaps for the first time we can find ourselves
pulling in the same direction to the benefit of us all. This is
an opportunity for bridging the industrial/academic gulf
which we must not lose."

This first issue included reports on the Test and Evaluation
Workshop in cool Boston in October 1979 and the Ada
Environment Workshop in sunny San Diego in November.

One remark from each is worth noting. On Ada generally,
the report from Boston said that there was enormous
commitment to the language and that no-one said "Ada is a
wretched language, we cannot use it"; the tenor was "Ada is
great but needs refining". From San Diego, Jean Sammett
did a straw poll on two questions: Should there be subsets
of Ada? (40% yes, 30% no); and Will there be subsets of
Ada? (90% yes, 0% No).

The next issues had rotating editors and were undoubtedly
printed locally. Thus issue 2 was printed by Ferranti
Computer Systems. These issues all had plain green covers
although in some cases the green was unpleasant. Issues 1
and 2 are shown in Figure 1.

Figure 1 The first two issues of Ada UK News

Volume 2 was erratic and showed the typical problems of
producing a regular publication: numbers 3 and 4 were
rolled into one.

Volume 3 seems to have been even more erratic. There
were only two issues and the first was bound with an ugly
spiral binder.

But Volume 4 showed an enormous improvement. There
was now a proper Publication Coordinator, Ros Spry, who
made it all happen. And it now had a genuine ISSN
number.

Those were exciting days. Ada was a focus for much
thought. But she was slow both in coming and going. The
compilers were slow to arrive and slow to go when they did
arrive.

44 Thir ty Years of the Ada User Journal

Volume 30, Number 1, March 2009 Ada User Journal

3 Ada User
Volume 7 in 1986 saw the introduction of a new name, Ada
User. This aimed to reflect that it was not just an Ada UK
publication but one for all those interested in Ada.
Moreover, people were now actually using Ada and not just
talking about it. So the journal had a new shiny and stripy
green cover. And Ros Spry was now Publication Manager.
In the editorial for the first of the new series, Brian Tooby
of High Integrity Systems said:

"Some people may be surprised at how widespread Ada has
become. It is now a truly international basis for technology,
a common infrastructure for building software systems, a
language with powerful host and target computers already
designed around it."

Ian Pyle took over as permanent editor in July 1986 and the
National Computing Centre in Manchester took over
production in April 1987. This was partly because the NCC
was now a Validation Authority for Ada.

1987 was also the year of the 1st International Real-Time
Ada Workshop which was held in Devon and numbers 3
and 4 of Volume 8 contain interesting reports on the
discussions.

Publication moved to Chapman and Hall in July 1990. And
Dan Simpson of the then Brighton Polytechnic took over as
editor from Volume 12 in January 1991. Publication with
Chapman and Hall resulted in a much more professional
appearance with material set in two columns. As Dan said
in the editorial:

"... with this issue we are pleased to start our association
with Chapman and Hall. They have an established
reputation in both book and journal publishing and we are
sure that the relationship ... will prove fruitful to everyone,
particularly the readers. The improvements in format imply
a slightly longer lead time in production but, as good
software engineers, we shall improve the front-end of the
life-cycle to keep the total elapsed time no longer than
before."

But it was the time of the 1990s recession and Chapman
and Hall gave up at the end of 1992. Production was
transferred to IOS press in Amsterdam, and the format was
reduced. Ada User seemed to be shrivelling away.

Figure 2 The first issues of Ada User and Ada User Journal

4 Ada User Journal
The name was changed to Ada User Journal with effect
from Volume 15 in 1994. Curiously enough, there is no
explanation of why in the editorial, and publication
remained with IOS and in the reduced format. Figure 2
shows the first issues of Ada User and Ada User Journal.

But despite being smaller there was good stuff about Ada
9X to read about.

Starting with Volume 17, the A4 format was resumed and
publication was brought back to the UK. Jim Briggs of
Portsmouth became editor in June 1996

5 Ada-Europe News
Readers will recall that there have been two instantiations
of Ada-Europe. The first Ada-Europe was run by the
European Commission and was legally incorporated in
Strasbourg. The first president of the old Ada-Europe was
Garth Glynn. The second and current Ada-Europe is an
independent Belgian company. The old Ada-Europe
transferred its assets to the new Ada-Europe (with some
difficulty but that is another story).

The new Ada-Europe started its own journal known as
Ada-Europe News in June 1989. The first president was
Toomas Kaer and he put together the first issue which like
the first issue of Ada UK News was very plain.

Issues 2 to 6 were also plain but from issue 7 a really
professional style was adopted as seen in Figure 3.

The editor of issues 2 to 8 was Juan António de la Puente
and the editor of issues 9 to 11 was Francisco Gómez
Molinero. They worked together as joint editors for issues
12-16. And then Albert Llamosi took over as editor from
issue 17 in November 1993.

Ada Europe-News continued for several years as a high
quality journal with valuable content and good presentation
but it proved difficult to produce it on a regular basis.

In 1997, the boards of Ada UK and Ada-Europe reflected
on the fact that there were three journals about Ada: Ada
Letters in the US, Ada User Journal in the UK and Ada-
Europe News in Europe.

Figure 3 The first and last issues of Ada-Europe News

J. Barnes 45

Ada User Journal Volume 30, Number 1, March 2009

It was becoming clear that the community would be better
served by a smaller number of better journals. Accordingly,
Ada-Europe and Ada UK decided to merge Ada-Europe
News and the Ada User Journal.

And so the last Ada-Europe News was that of December
1997. In the editorial, the then President remarked that it
was an example of "The King is dead, Long Live the
King!"

6 Ada User Journal revitalized
Volume 19 was the first of the new series with a greatly
increased circulation and more material. Jim Briggs
continued as editor and he was now assisted by Dirk
Craeynest as news editor and Michael González Harbour as
deputy editor.

It really was a new start with much more content, a newly
designed cover and an enhanced editorial board.

It continued thus for three years with Jim Briggs as editor
but Volume 22 brought yet another change as shown in
Figure 4.

7 Professional quality
Although the journal was greatly improved with the merger
with Ada-Europe News it still did not look quite as
professional as it had been with Chapman and Hall ten
years earlier. The problem was lack of uniform style and
layout particularly with regard to submitted papers.

Accordingly, a complete redesign was decided upon. The
accessibility of modern computer technology enabled
authors to write everything for themselves so that we could
bypass the need for typesetting with its risk of errors.

New glamorous colourful covers were designed under the
guidance of Michael Gonzalez with the logos of Ada UK
and Ada-Europe emblazoned on back and front. And
templates were produced for articles in two columns and
news in three columns to ensure uniformity of style.

Figure 4 Joint productions of Ada UK and Ada-Europe

And so was born the quality journal we have today. The
first editor of the new journal was Neil Audsley of York.
Ironically there was a minor mishap with the very first

issue – the format was slightly incorrect with just a few
millimetres trimmed from both dimensions.

8 Ada-Europe takes over
Ada UK ran into difficulties after one year of the new
design and so Ada-Europe took over as the sole publisher
from Volume 23 in 2002. And Tullio Vardanega became
editor with Volume 23 number 3.

Tullio bravely remained editor for many years and handed
over to our present editor Luís Miguel Pinho with effect
from Volume 28 number 3.

Curiously, the very last issue edited by Tullio had
difficulties – the front cover was not printed correctly and it
was trimmed slightly too small.

This issue is shown in Figure 5. Note the Ada-Europe logo
magnificently displayed on the back.

Figure 5 The issue of June 2007

Other matters I have not touched upon are printing and
distribution – distribution is always a problem. Not only do
issues have to be sent to members in many countries but for
the sake of economy it is often the case that those for a
particular country are sent in bulk and then redistributed by
National Ada Organizations and noble volunteers.

And for historic reasons copies have to be sent to various
copyright libraries such as those in Oxford, Cambridge and
Dublin.

10 A pearl among journals
In marriages, 25 years is a silver event and 50 years is a
golden one. But 30 years is the Pearl anniversary when you
are supposed to give a Pearl to your spouse. So maybe we
can find an appropriate acronym. As we know, Ada is a

Precise Elegant And Reliable Language

Maybe readers can think of an improvement based perhaps
on reserved words. Pragmatic, exceptional, and ??

Finally, let me finish by congratulating all those who have
contributed material, time, and energy throughout the past
thirty years both visibly as editors and authors and behind
the scenes in production and distribution. So here's wishing
many more years of publication to the Ada User Journal.

46

Volume 30, Number 1, March 2009 Ada User Journal

Progress Report: ISO/IEC 24772, Programming
Language Vulnerabilities
James W. Moore
The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, USA; email: James.W.Moore@ieee.org

John Benito
Blue Pilot Consulting, Inc, Santa Cruz, CA 95063-2998; USA; email: benito@bluepilot.com

Abstract
Any programming language has constructs that are
imperfectly defined, implementation-dependent, or
difficult to use correctly. As a result, software
programs sometimes execute in a manner that is
different than what was intended by the developer. In
some cases, the unintended functionality can be
exploited by hostile parties or can lead to failure
when used in unanticipated circumstances. The result
can be a compromise of safety, security, privacy,
dependability or some other critical property.
Security vulnerabilities are a particular concern
because an adaptive adversary can use a compromise
in any executing program—even a non-critical one—
as a springboard to make additional attacks on other
programs. This report describes an effort to develop
an authoritative account of the known weaknesses in
programming languages and how developers might
avoid those weaknesses.

1 Introduction
Despite the fact that all programming languages have
weaknesses, they manifest the weaknesses in different ways
and the weaknesses must be mitigated in different ways,
sometimes by better use of the language, sometimes by
tooling such as static analysis, and sometimes by other
methods such as review.

Some will be tempted to dismiss the problem, saying that
one should simply use a better programming language.
However, this viewpoint would overlook two factors:

• All programming languages have some weaknesses.
• The selection of a programming language for a project

is often not a technical decision but is often forced by
external concerns.

This article will describe progress on the planned ISO/IEC
TR 24772, Information Technology—Programming
Languages—Guidance to Avoiding Vulnerabilities in
Programming Languages through Language Selection and
Use.

The project is being conducted in ISO/IEC JTC 1/SC
22/WG 231. The WG has two officers—John Benito,
convener and James Moore, secretary—the authors of this
article.

2 The Technical Report
The “TR” in the designation of the document means that it
is not a standard (a document that prescribes requirements
for conformance), but a Technical Report—in this case, a
Type 3 Technical Report—a document that provides
guidance but not requirements. Therefore, the report will
consist of information and recommendations. The report
will describe programming language weaknesses in a
generic manner that spans a broad selection of languages.
However, since

• not all vulnerabilities are present in all languages;
• the ones that are present manifest themselves

differently in different languages;
• and mitigation of the manifested vulnerabilities differ

among the various languages

there is a need for language-specific material. Therefore,
the report will include annexes that are specific to various
programming languages. We plan to cooperate with other
SC 22 working groups (the ones responsible for the
standardized programming languages) to write these
annexes. We also hope to obtain annexes for languages
standardized by organizations that are outside of ISO/IEC.

Although the information in the Technical Report would be
useful for the development of software required to exhibit
any critically important property, the report is intended for
four specific audiences:

• Safety: those developing, qualifying, or maintaining a
system where it is critical to prevent behaviour that
might lead to loss of human life or human injury, or
damage to the environment.

1 The International Electrotechnical Commission (IEC) develops standards
for electrical and electronic devices; the International Organization for
Standardization (ISO) develops standards for nearly everything else. They
have a Joint Technical Committee (JTC 1) that deals with information
technology. One of its subcommittees (SC 22) deals with programming
languages. A working group (WG 23) of SC 22 is producing the subject
document.

J. W. Moore, J . Benito 47

Ada User Journal Volume 30, Number 1, March 2009

• Security: those developing, qualifying, or maintaining
a system where it is critical to exhibit security
properties of confidentiality, integrity, and availability.

• Mission-Critical: those developing, qualifying, or
maintaining a system where it is critical to prevent
behaviour that might lead to property loss or damage,
or economic loss or damage.

• Modeling and Simulation: those who are primarily
experts in areas other than programming but need to
use computation as part of their work and who require
high confidence in the applications they write and use.

The working group has taken two approaches to identifying
weaknesses in programming languages. An empirical
approach has relied on prior efforts that categorize
particular classes of vulnerabilities that appear to occur
frequently in the wild. This has been particularly helpful in
finding security-related weaknesses because large numbers
of security weaknesses result from a few identifiable
patterns of attack, such as buffer overrun and execution of
unvalidated remote content. An analytical approach has
built on prior efforts that identified weaknesses via a priori
analysis of particular programming languages. This has
been particularly helpful in identifying safety-related
weaknesses. We can speculate that it might also be helpful
in identifying the security weaknesses of the future as
current opportunities become less easily exploitable.

So the report will provide guidance to users of a broad
range of programming languages. In some cases, a
language-specific annex will provide specific guidance.
However, the generic discussions will be useful for users of
languages that are not specifically covered. The advice will
assist users in improving the predictability of the execution
of their software, even in the presence of an attacker or its
use in anticipated circumstances. It will also inform their
selection of an appropriate programming language for a
project, when they have the freedom to make that choice.

The working group also plans an outcome in addition to the
report itself. The working group will provide feedback to
its sibling working groups, suggesting ways in which the
standardized specification of the programming language
might be improved so that predictability of execution
would be improved.

The project has succeeded in gaining a broad base of
participation. Measured in various ways we have
participation from a variety of parties and interests. For
example, at some level, we have participation from:

• Eight nations: Canada, France, Germany, Italy, Japan,
Netherlands, United Kingdom, and USA

• Several programming languages: Ada, C, C++, C#,
C++CLI, Cobol, Fortran, Java, MUMPS

• Some organizations with a strong interest in
dependable software: the Computer Emergency
Response Team (CERT) of Carnegie Mellon
University, the US Food and Drug Administration, the
US National Security Agency, and the Motor Industry
Software Reliability Association

WG 23 has handled this project since its creation in
September 2008; previously the work was performed by an
ad hoc sub-group of SC 22 with the odd name of OWGV
(standing for “other working group – vulnerabilities”). Like
any ISO/IEC product, the report will go through a process
of ever-widening consensus formation. Working Drafts
were written by the working group and its predecessor. A
Preliminary Draft Technical Report (PDTR) is currently
under review and ballot by the parent, SC22. Comments
from that ballot will be resolved and the ballot repeated as
necessary until consensus is reached. Finally, the Draft
Technical Report (DTR) will be balloted for approval by
the grand-parent (JTC 1). Only after approval by at least
75% of the JTC 1 nations will the Technical Report be
published—probably in early 2010. That will probably not
be the end of the story—evolving attack patterns and the
evolution of the language standards will require future
revision of the report. Furthermore, there will be a
continuing effort to “recruit” additional language-
dependent annexes.

The working group conducts its work in person with nine
meetings to date, supplemented by a wiki, an email
reflector, and a website. The website can be accessed by the
public at http://aitc.aitcnet.org/isai/.

The current body of the draft document contains seven
major sections:

• Scope (an explanation of the intended use of the
document)

• References (any other standards that one must use with
this one)

• Terms and Definitions
• Symbols (none so far)
• Vulnerability Issues (an explanation of some general

concepts)
• Programming Language Vulnerabilities (discussions of

the programming language weaknesses)
• Application Vulnerabilities (other vulnerabilities that

don’t result from programming languages per se but
which are related to programming language usage)

In the current draft, 48 programming language weaknesses
are described as well as 18 application vulnerabilities.

The primary content of the Technical Report’s body are the
48 descriptions of programming language weaknesses. All
of them follow a uniform outline:

• Brief description of the vulnerability as it occurs in
execution

• Cross-reference to enumerations and other
classifications, e.g. CERT Coding Guidelines,
Common Weakness Enumeration (CWE), Joint Strike
Fighter (JSF) Coding Guidelines, MISRA C Coding
Guidelines.

• Description of failure mechanism, i.e. how the coding
problem leads to a vulnerability in the application

48 Progress Report : ISO/IEC 24772, Programming Language Vulnerabi l i t ies

Volume 30, Number 1, March 2009 Ada User Journal

• Applicable language characteristics, i.e. the types of
programming languages affected by the weakness

• Avoiding or mitigating the vulnerability, i.e. how one
can code to avoid the problem or, in some other way,
mitigate its effects

• Implications for standardization, i.e. recommendations
for groups creating language standards

This format is best explained by an example from the
current draft (Figure 1). Anything appearing in curly

brackets {} is our explanation of the intended content rather
than the content itself.

3 Conclusion
Currently, WG 23 has reasonably firm assurances that
language-dependent annexes will be provided for Ada, C,
and Fortran through cooperation with working groups 9,
14, and 5, respectively, of SC 22. We are hoping to find
additional groups with the expertise to write annexes for
other standards.

6.17 Boundary Beginning Violation [XYX] {Every description
is assigned an arbitrary three-letter code. This allows one to
reference a description even if subsequent versions of the report
are reorganized.}

6.17.1 Description of application vulnerability

{This is intended to be a very brief description of the vulnerability
as it occurs in execution.}

A buffer underwrite condition occurs when an array is indexed
outside its lower bounds, or pointer arithmetic results in an access
to storage that occurs before the beginning of the intended object.

6.17.2 Cross reference

{Cross references to CWE, JSF, MISRA, CERT, etc.}

6.17.3 Mechanism of failure

{This description is intended to depict the mechanism of failure
connecting the programming language weakness to the
vulnerability in the application.}

There are several kinds of failures (in some cases an exception
may be raised if the accessed location is outside of some
permitted range):

• A read access will return a value that has no relationship
to the intended value, e.g., the value of another variable
or uninitialized storage.

• An out-of-bounds read access may be used to obtain
information that is intended to be confidential.

• A write access will not result in the intended value
being updated and may result in the value of an
unrelated object (that happens to exist at the given
storage location) being modified.

• When the array has been allocated storage on the stack
an out-of-bounds write access may modify internal
runtime housekeeping information (e.g., a functions
return address) which might change a program’s control
flow.

6.17.4 Applicable language characteristics

{If the report does not contain an annex providing information
specific to the language of interest, the reader may consult this
section to determine whether the language is likely to have this
weakness.}

This vulnerability description is intended to be applicable to
languages with the following characteristics:

• Languages that do not detect and prevent an array being
accessed outside of its declared bounds.

• Languages that do not automatically allocate storage
when accessing an array element for which storage has
not already been allocated.

6.17.5 Avoiding the vulnerability or mitigating its effects

{This section describes, in generic terms, how the problem might
be avoided or mitigated. A language-specific annex might contain
more specific information.}

Software developers can avoid the vulnerability or mitigate its ill
effects in the following ways:

• Use of implementation provided functionality to
automatically check array element accesses and prevent
out-of-bounds accesses.

• Use of static analysis to verify that all array accesses are
within the permitted bounds. Such analysis may require
that source code contain certain kinds of information,
e.g., that the bounds of all declared arrays be explicitly
specified, or that pre- and post-conditions be specified.

• Sanity checks could be performed on all calculated
expressions used as an array index or for pointer
arithmetic.

Some guideline documents recommend only using variables
having an unsigned type when indexing an array, on the basis that
an unsigned type can never be negative. This recommendation
simply converts an indexing underflow to an indexing overflow
because the value of the variable will wrap to a large positive
value rather than a negative one. Also some languages support
arrays whose lower bound is greater than zero, so an index can be
positive and be less than the lower bound.

In the past the implementation of array bound checking has
sometimes incurred what has been considered to be a high runtime
overhead (often because unnecessary checks were performed). It
is now practical for translators to perform sophisticated analysis
that significantly reduces the runtime overhead (because runtime
checks are only made when it cannot be shown statically that no
bound violations can occur).

6.17.6 Implications for standardization

{This section suggests how language standards might be
improved to improve the problem.}

• Languages that use pointer types should consider
specifying a standard for a pointer type that would
enable array bounds checking, if such a pointer is not
already in the standard.

Figure 1 Report draft example

 49

Ada User Journal Volume 30, Number 1, March 2009

This paper is based in the industrial talk “Distributed Status Monitoring and Control using Remote Buffers and Ada 2005”, presented at Ada-Europe
2008, and in the paper of the same name presented at SIGAda 2008 and published in Ada Letters, XXVII (3), December 2008.

Distributed Status Monitoring and Control Using
Remote Buffers and Ada 2005
Bradley J Moore
General Dynamics Canada, 1020 - 68th Ave N.E. Calgary, Alberta, Canada T2E 8P2; Tel: +011 403 730-1367;
email: brad.moore@gdcanada.com

Abstract
The ability to monitor status and control equipment
distributed over a network is a common network
management need. This paper describes an approach
to the design of a prototype dynamic network where
the assets of vehicles on a network can be monitored
and controlled at multiple remote stations. In
particular, Ada 2005 features are explored in
conjunction with Ada's Distributed Systems Annex
(DSA) features to utilize a suite of remote buffer
classes that implement an interface providing a
mechanism for sharing a distributed dataset. In
addition, the paper demonstrates an approach for
distributed interoperability between Ada and C++ by
using the DSA to distribute a C++ class hierarchy of
objects that can be accessed by application code
written in both languages. Finally, the paper exposes
a need and describes a possible solution for
enhancing existing DSA implementations in order to
extend support for more complex and constrained
networking environments.
Keywords: Ada 2005, Remote Interfaces, Multicast,
Distributed Systems Annex, C++, MANET, DTN

Acknowledgements
The General Dynamics Canada IR&D team, Mark Adcock,
Al Young, Curtis Osiowy, Jamel Mouallem for introducing
the author to DTN technologies and concepts, and to
Marius Ghinescu for providing funding assistance for travel
to support the presentation of this paper, and to Thomas
Orth, and Chris McPhee, for providing moral support, and
to my dear wife Heather, and three children Alyson, Sarah,
and Jackson for their support and understanding while the
author worked on the paper and prototype. Their assistance
is duly noted and appreciated.

1 Introduction
This paper suggests how Ada 2005 can be utilized to create
a distributed system that allows a dynamic network of
vehicles to be managed remotely from a number of
monitoring/management stations. The system accounts for
vehicles and monitoring stations joining and leaving the
network, and allows the monitoring stations to select the
classes of equipment to be managed. A wireless network

Figure 1: A semi-static MANET

constructed in such a manner is known as a Mobile Ad-hoc
Network (MANET). Networking in a MANET
environment has its own set of challenges. For instance,
there may be an absence of central servers, and IP
addresses of peers on the network may not be known.
Further challenges arise if the networking environment
involves interlinked heterogeneous networks where end to
end connectivity between nodes cannot be guaranteed.
Such a functioning network is known as a Delay Tolerant
Network (DTN) [1]. This paper sketches out a design for a
basic peer to peer MANET where nodes are connected on
such a challenged network. The paper also draws attention
to a perceived gap in availability of DTN networking
solutions written in Ada. This may become an important
niche area to complement Ada's existing niche in safety
critical and high reliability systems.

Figure 2: A peer to peer MANET

50 Distr ibuted Status Moni tor ing and Control Using Remote Buffers and Ada 2005

Volume 30, Number 1, March 2009 Ada User Journal

2 Application Prototype

A monitoring station may potentially be receiving
numerous status updates from multiple vehicles at the same
time. Buffering is used to accommodate such bursts in data
traffic. In particular, a reusable generic remote buffer
container abstraction is utilized allowing the monitoring
application to run more independently from the networking
communications. There exists one such buffer instance in
every monitoring application, and vehicles are able to write
data to the monitor application's buffer remotely.

There exists a hierarchical library of generic buffer
implementations [2] that can be combined in various ways to
assemble composite buffer implementations for different
purposes.

An Ada 2005 limited interface defines the set of operations
that can be performed on a buffer container, and multiple
layers of generic instantiation are possible to allow a
programmer to combine a low level buffer implemention (for
example a Bounded Buffer, or an Unbounded Buffer) with a
higher level synchronous implementation such as a Passive
Buffer, or a Ravenscar Buffer, to provide the desired
concurrency functionality.

Different monitoring applications might use different
classes of buffers depending on the needs of the
application. For example, an embedded application might
choose to use a bounded buffer class which has no heap
allocation, where the memory resources for the buffer are
allocated statically before the execution begins.

A desktop application might choose to use an unbounded
buffer which can grow in size to accommodate larger data
bursts, where memory usage is not so critical. A safety
critical device might choose a Ravenscar buffer, and a
logging device might choose to use a persistent buffer to
log to a file that is circular and bounded in size.

Another goal is to show interoperability with another
language. The idea of using the DSA for data distribution
in a large system may be more appealing if it can be done
without restricting the choice of programming languages
used throughout the system. Since the GNAT compiler
knows how to interface with the Gnu C++ Application
Binary Interface (ABI), the Ada compiler can directly
interface with C++ objects from this compiler [3]. Also,
since GCJ, the GNU Java compiler, shares the same ABI as
Gnu C++, Ada should be able to interface with Java
objects [4] for this compiler.

The C++ language does not directly support the streaming
of Ada objects however, so the technique used involves
deriving Ada classes from each concrete C++ class and
distributing the Ada classes via DSA. C++ code is passed
pointers to the distributed objects, which C++ sees as
regular C++ class objects. One advantage of this approach
is that the Ada compiler is able to generate the marshalling
and unmarshalling code used to stream the C++ objects in
most cases, since the derived classes are actually Ada
objects. The programmer does not need to provide such
routines.

Another advantage of this approach is that the details of
configuring the communications can be left out of the
application code. This provides a simpler abstraction for
the programmer, since the programmer is able to operate on
objects as if they were local objects without having to deal
with meta-language code generators and third party
communication libraries that may not be as portable to
future target platforms.

A further advantage arises because the compiler is aware of
the distributed nature of the library units, it can assist the
programmer in the design to help ensure that troublesome
constructs affecting the reliability of the distributed
applications are avoided.

3 Design summary
A Vehicle application runs in every vehicle. Each vehicle
maintains it's own status for all assets that are inside the
vehicle. In this prototype system, there are currently four
types of vehicle assets that can be monitored.

• A fuel sensor showing the amount of remaining fuel in
a fuel tank.

• A GPS device indicating the vehicle location.

• A Camera that can be mounted in multiple places on
the vehicle to capture the view from various angles as
the vehicle moves around. A video capture file may be
requested remotely, and transferred.

• A control device that can lock or unlock the doors of
the vehicle. The doors may be locked or unlocked
remotely from a monitoring station.

In this prototype, there are two classes of distributed
applications that provide the functionality.

• Vehicle applications

• Monitoring Station applications

4 Vehicle design
Vehicles can arrive and leave the network at any time.
Whenever a status item changes in the vehicle, an update is
sent out (published) on the network which can be processed
by any interested (subscribing) clients. Also, an interface is
provided so that a client can request the current status
snapshot for all assets of interest in a particular vehicle,
which in turn are sent (as a response) directly to the client
from the vehicle. A client can discover vehicles and their
assets using a multicast variant of this call, or the client
may make the request directly (unicast) to the vehicle if the
client has the Remote Access to Class-Wide (RACW) value
that designates the vehicle object.

An Update call is provided which allows the vehicle or a
remote client to update the vehicle's set of status records.
This is also a control feature, as the vehicle can respond to
a remote update request by configuring the vehicle
equipment to match the status request values. This could
then trigger a multicast status update to be sent (published)
from the vehicle to interested (subscribing) clients.

B. J. Moore 51

Ada User Journal Volume 30, Number 1, March 2009

Figure 3 : Buffer Class Hierarchy

For example, if the driver of a vehicle locked his keys in
the vehicle, he could call to a remote monitoring client
through some means and request that the doors be unlocked
remotely. This could result in the monitoring client sending
an update to the vehicle to change the door lock status to
the unlocked state. Once the vehicle received the update, it
would report the new door lock status to interested clients.

Certain types of status could be disallowed from remote
updates while others could be allowed. For example, it
would not make sense for the amount of remaining fuel to
be modified remotely.

4.1 Remote status buffer
For a vehicle to report a status update to a particular
monitoring station, it needs to have a remote reference to
the monitoring station. This is a challenge on a network
where there are no central servers, and requires a discovery
mechanism. This reference is a RACW value for the
monitors message buffer which designates a limited
interface to a Buffer.

The designated buffer object is a protected type
implemented as a reusable container to ensure safe
concurrent access. The vehicle application code is not
linked to the specific buffer implementation, it only needs
to be linked with the interface. This implies that different
monitoring applications can use different buffer
implementations so long as they are derived from the
common Buffer interface.

The buffer itself needs to be able to store any status objects
of a class hierarchy whereby a status object is the root class
of the tagged type class hierarchy. Because various types of

status objects can be stored in the buffer, the buffer needs
to be able to store objects of varying sizes. This suggests
the use of an Indefinite Buffer implementation that stores
class-wide status objects. The interface for this buffer is
instantiated in the following library level package.

with Status; use Status;
with Indefinite_Buffers;
package Status_Buffers is new
 Indefinite_Buffers
 (Element_Type => Status_Type'Class,
 Element_Index_Type => Positive);
pragma Pure (Status_Buffers);

4.2 Unicast vehicle access
The following package shows the remote unicast calls that
can be made to a vehicle. This is a Remote_Types package
that can be remotely accessed from the monitoring
applications. Essentially, the Current_Status subprogram is
used to request status records from the vehicle, and the
Update subprogram is used to update a particular status
record in the vehicle.

with Tag_Set;
 -- An Array of Tags used to select Status
 -- classes of interest
with Status; use Status;
with Status_Buffers; use Status_Buffers;
 -- Remote Client Buffer
private with Ada.Containers.Indefinite_Hashed_Maps;
 -- Ada 2005 features (private with and Containers)
package Vehicle_Server is
 pragma Preelaborate;

52 Distr ibuted Status Moni tor ing and Control Using Remote Buffers and Ada 2005

Volume 30, Number 1, March 2009 Ada User Journal

 pragma Remote_Types;
 -- Calls in this package can be made remotely
 subtype Vehicle_Id_Type is String (1 .. 20);
 type Client_Access is access all Status_Buffers.
 Remote_Buffer_Interface'Class;
 -- RACW to clients buffer
 type Vehicle_Type is tagged limited private;
 procedure Current_Status
 (Vehicle : Vehicle_Type;
 Client : Client_Access;
 Tags_Of_Interest : Tag_Set.Set);
 -- Request current snapshot of all status records
 -- in the vehicle that are inherited from specified tags
 procedure Update
 (Vehicle : in out Vehicle_Type;
 New_Status : Status_Type'Class);
 -- Update or add a status record in the vehicle
 function Vehicle_Serial_Number
 (Vehicle : Vehicle_Type)
 return Id_Type;
 procedure Is_Alive
 (Vehicle : access Vehicle_Type)
 is null;
 -- Null procedures are an Ada 2005 feature.
 -- Is_Alive is a null procedure but is still called remotely.
 -- If it can be called without raising an exception, then the
 -- communications are still good.
private
 use Ada.Containers;
 use type Status.Id_Type;
 -- The vehicles status objects are stored in an Ada 2005
 -- Hash table for lookups
 package Status_List is new
 Indefinite_Hashed_Maps
 (Key_Type => Id_Type,
 Element_Type => Status_Type'Class,
 Hash => Hash_Id,
 Equivalent_Keys => "="); -- "=" => <>
 -- Ensure safe concurrent access to the Status records
 protected type Status_List_Cache is
 procedure Update
 (Status_Item :
 in out Status_Type'Class);
 function Find (Status_Id : Id_Type)
 return Status_Type'Class;
 private
 Status_Items : Status_List.Map;
 end Status_List_Cache;
 type Vehicle_Type is tagged limited
 record
 Veh_Id : Vehicle_Id_Type;
 Serial_Number : Id_Type := 0;
 Current_Status_Set : Status_List_Cache;
 end record;
end Vehicle_Server;

4.3 Multicast vehicle access
Since this is a peer to peer network, there needs to be a way
for a client to discover the vehicles on the network. It is
also a better use of bandwidth if a status update going from

a vehicle to interested clients is sent once via a multicast
send, rather than separately to each client. Both these
functions are achieved via two multicast addresses. One
address is used for clients to send discovery requests to the
set of vehicles on the network. The other address is used for
vehicles to send status updates to the set of clients on the
network.

Currently there are no DSA implementations that provide the
support for multicast messaging, though the DSA interface
does not seem to have any obstacles to prevent such an
implementation. Multicast capabilities might be a good
feature to add to enable better support for peer to peer
programming. In the meantime, this can be worked around
without too much effort while still using the DSA
categorization pragmas to define the remote units as though
multicast support were present.

General purpose messaging package
A general purpose package is defined to provide messaging
capabilities. This provides an abstract type from which all
multicast data types are derived. It also defines the endpoint
type which defines the source and destinations of messages.
An endpoint is a string that can either be an IP address with
port number that designates a multicast address, or an
endpoint may be of the form of a URI that defines a DTN
endpoint.

package Messaging is
 pragma Pure;
 -- Endpoint may be in the form of a multicast IP address
 -- and port, or a DTN EID (Endpoint ID) e.g.
 -- “239.255.128.128:55505” or “dtn:\\foo.dtn\bar”
 subtype Endpoint_Type is String;
 -- Abstract type to be used to derive
 -- Multicast distributed data types
 type Messaging_Type
 is abstract tagged limited private;
 pragma Preelaborable_Initialization
 (Messaging_Type);
 procedure Subscribe
 (Subscriber : access Messaging_Type;
 Endpoint : Endpoint_Type) is null;
 -- Multicast Server side call to listen for incoming
 -- requests. This is null instead of abstract,
 -- because it is only implemented on the server side.
 -- This call typically just calls
 -- Messaging.Server.Subscribe providing a callback that
 -- invokes a local call on a multicast Remote_Types unit,
 -- by examining the Remote_Call_Data_Type record (see
 -- below) that was received on the multicast transport
 -- from the client.The callback knows how to interpret
 -- the specific derivation class of the
 -- Remote_Call_Data_Type interface.
 procedure Associate
 (Publisher : in out
 Messaging_Type'Class;
 Publisher_Endpoint : Endpoint_Type;
 Subscriber_Endpoint : Endpoint_Type);
 -- Multicast Client side call to associate a dummy
 -- multicast RACW object with a multicast endpoint

B. J. Moore 53

Ada User Journal Volume 30, Number 1, March 2009

 type Remote_Call_Data_Type is
 interface;
 -- Call Parameter Data for remote calls. Not needed once
 -- DSA supports multicast. A specific multicast type
 -- defines what this object looks like.
 -- The corresponding server and client knows how to
 -- manipulate these objects
private
 Max_Endpoint_Length : constant := 40;
 subtype Endpoint_Length is Positive
 range 1 .. Max_Endpoint_Length;
 type Messaging_Type
 is abstract tagged limited record
 Publisher,
 Subscriber : Endpoint_Type
 (1 .. Max_Endpoint_Length;
 end record;
 end Messaging;

The Subscribe call is a server side call that listens for
incoming multicast requests. It is intended that the
implementation of this call in the derived type call
Messaging.Server.Subscribe with a callback that invokes a
local call on a Remote_Types unit, by examining the
Remote_Call_Data_Type record that was received on the
multicast transport from the client side. The callback has
knowledge on how to interpret the specific derivation class
of the Remote_Call_Data_Type interface.

There is a client and a server component to this messaging
capability, which are both implemented in corresponding
child packages. The server (subscriber) listens for incoming
messages on the associated multicast transport, while the
client (publisher) sends multicast messages to the
subscribers.

General purpose messaging client package
The Messaging Client package effectively issues a remote
procedure call. Any parameter Call_Data passed to Publish
is written to a communications transport using the call data
structure provided.

package Messaging.Client is
 procedure Publish
 (Publisher : Messaging_Type'Class;
 Call_Data : Remote_Call_Data_Type'Class);
 -- Make a remote multicast procedure call
end Messaging.Client;

General purpose messaging server
The Messaging Server package provides a callback that is
used to take the parameter call data and generate the real
remote call at the server site. The package is implemented
as a task that monitors the multicast listener for incoming
messages, and reads procedure call data from the stream.

package Messaging.Server is
 type Callback_Type is access procedure
 (Subscriber : Messaging_Type'Class;
 Parameters : Remote_Call_Data_Type'Class);
 -- Callback to implementation of actual multicast server

 -- object. Server Implementation uses Call Data
 -- parameter to generate the remote call
 procedure Subscribe
 (Subscriber : access Messaging_Type'Class;
 Endpoint : Endpoint_Type;
 Callback : Callback_Type);
 -- The caller (A derived instance of
 -- Messaging_Type'Class that has invoked
 -- Messaging.Subscribe) specifies a callback that locally
 -- invokes a Remote call on a Remote Types unit, by
 -- interpreting the specific Remote_Call_Data_Type
 -- object received on a transport from a multicast client.
end Messaging.Server;

The caller that invokes Subscribe (A derived instance of
Messaging_Type'Class) specifies a callback that locally
invokes a Remote call on a Remote Types unit, by
interpreting the specific Remote_Call_Data_Type object
received on a socket from a multicast client.

Multicast vehicle discovery main package
Using the general purpose messaging packages, we now
need to define the remote multicast access to the vehicle.
This is still an abstract class, and is realized differently on
both the client and server side with corresponding child
packages.

with Messaging; use Messaging;
with Vehicle_Server; use Vehicle_Server;
with Status; use Status;
with Tag_Set;
package Vehicle_Discovery is
 pragma Remote_Types;
 type Vehicle_Discovery_Type
 is abstract limited new
 Messaging_Type with private;
 pragma Preelaborable_Initialization
 (Vehicle_Discovery_Type);
 not overriding procedure Find
 (All_Vehicles : Vehicle_Discovery_Type;
 Client : Vehicle_Server.Client_Access;
 Serial_Number : Id_Type := 0;
 Tags_Of_Interest : Tag_Set.Set)
 is abstract;
 type Vehicle_Discovery_Access
 is access all
 Vehicle_Discovery_Type'Class;
 -- Pseudo RACW type providing access to
 -- all vehicles on the network
 pragma Asynchronous
 (Vehicle_Discovery_Access);
 -- Multicast calls are asynchronous in nature.
private
 type Vehicle_Discovery_Type
 is abstract limited new
 Messaging_Type with null record;
 -- Structure used to contain data needed for remote calls
 type Vehicle_Call_Data
 is new Remote_Call_Data_Type with
 record

54 Distr ibuted Status Moni tor ing and Control Using Remote Buffers and Ada 2005

Volume 30, Number 1, March 2009 Ada User Journal

 Client : Vehicle_Server.Client_Access;
 Id : Id_Type;
 Tags_Of_Interest : Tag_Set.Set;
 end record;
end Vehicle_Discovery;

Vehicle discovery server package
There needs to be both a client and server side to the
multicast discovery package. The Server side resides in a
vehicle and responds to requests made from the monitoring
station.

package Vehicle_Discovery.Responder is
 pragma Remote_Types;
 type Discovery_Responder_Type
 is limited new Vehicle_Discovery_Type
 with private;
 pragma Preelaborable_Initialization
 (Discovery_Responder_Type);
 overriding procedure Find
 (All_Vehicles : Discovery_Responder_Type;
 Client : Vehicle_Server.Client_Access;
 Serial_Number : Id_Type := 0;
 -- 0 means all vehicles, otherwise
 -- “discover” a specific vehicle.
 Tags_Of_Interest : Tag_Set.Set);
 -- Server side code sends all current status records to the
 -- specified regular RACW 'Client' using DSA
 -- unicast remote call.
 overriding procedure Subscribe
 (Subscriber : access Discovery_Responder_Type;
 Endpoint : Endpoint_Type);
 -- Server side call to listen for incoming Find requests
private
 type Discovery_Responder_Type
 is limited new Vehicle_Discovery_Type
 with null record;
end Vehicle_Discovery.Responder;

Vehicle discovery client package
Similarly, on the client side, we need a corresponding
package that issues a remote multicast call. Every remote
call is converted to a Vehicle_Call_Data object and sent to
the server by issuing the Messaging.Publish call. Note that
the monitoring stations Client Buffer is passed as a
parameter so that the Vehicle can respond directly to the
requesting monitoring station.

package Vehicle_Discovery.Requestor is
 pragma Remote_Types;
 type Discovery_Requestor_Type
 is limited new Vehicle_Discovery_Type with private;

 pragma Preelaborable_Initialization
 (Discovery_Requestor_Type);
 overriding procedure Find
 (All_Vehicles : Discovery_Requestor_Type;
 Client : Vehicle_Server.Client_Access;
 Serial_Number : Id_Type := 0;
 Tags_Of_Interest : Tag_Set.Set);
 -- Send multicast request to retrieve current status for all

 -- vehicles on the network that have Tags_Of_Interest
 type Discovery_Requestor_Access
 is access all Discovery_Requestor_Type'Class;
 -- Pseudo RACW type used to send
 -- requests to remote vehicles
 pragma Asynchronous
 (Discovery_Requestor_Access);
private
 type Discovery_Requestor_Type
 is limited new Vehicle_Discovery_Type
 with null record;
end Vehicle_Discovery.Requestor;

4.4 Status Record Hierarchy
Status objects are simply objects of a class hierarchy that
can be extended to represent any information that needs to
be stored in a vehicle, and sent to interested clients. The
goal is to be able to pass around status objects that can be
implemented in multiple object oriented programming
languages such as Ada, C++, and Java. This way, the main
applications can be written in a language of choice, but the
objects are distributed as Ada objects by the DSA.

Clients and vehicles see and operate on the objects as
though they were local objects. Updates to the objects are
automatically distributed using infrastructure written in
Ada.

This does present some challenges however. C++ and Java
objects are not directly streamable in Ada using DSA. Ada
does have excellent support for interfacing with other
languages however [5]. Specifically, the GNAT compiler
knows about the gcc C++ ABI (Application Binary
Interface), which is also shared with the Gnu Java
compiler. GNAT can import and export classes to these
languages.

The technique employed is to derive Ada classes from C++
/Java classes, and pass them around using DSA. Code
written in Java or C++ see these objects as Java/C++
objects. In this example, The Status classes are
implemented in Ada and exported to C++, but it should
also be possible to implement the status classes in C++ and
import them into Ada.

Root status class in C++
First we show the Status base class written in C++. Status
is an abstract class, so there is no need to derive an Ada
class from the root Status class.

#ifndef STATUS_H
#define STATUS_H
#define INITIAL 0
#define CREATE 1
#define DELETE 2
#define UPDATE 3
#define DEPARTURE 4
class Status {
 public:
 static const char * className();
 // Get Ada external name of this class
 static void getListImage

B. J. Moore 55

Ada User Journal Volume 30, Number 1, March 2009

 (Status & status,
 char *buf, int len);
 virtual int getStatusKind ();
 virtual void setStatusKind(int kind);
 virtual int reserved();
 int getId ();
 int getModificationCount ();
 virtual void setModificationCount (int count);
 int hash ();
 bool isEquivalent (Status & status);
 private:
 virtual void modify ();
 int kind;
 int identifier;
 int modified;
};
#endif

Vehicle status class in C++
Vehicle Status objects are status objects that reside in a
vehicle and have a reportable status. Vehicle Status is also
an abstract class, and similarly does not need an Ada
derivation class to support streaming.

#ifndef VEHICLE_STATUS_H
#define VEHICLE_STATUS_H

#include "Status.h"

#define OPERATIONAL 0
#define FAULTY 1

class VehicleStatus : public Status {
 public:
 static char const * className();
 virtual int getState ();
 virtual void setState(int newState);

 private:
 int state;
};
#endif

Door lock class in C++
A Door lock represents the status of a control device in the vehicle
indicating whether the doors are locked or not.

#ifndef DOOR_LOCK_H
#define DOOR_LOCK_H
#include "VehicleStatus.h"
class DoorLock : public VehicleStatus {
 public:
 static char const * className();
 // Get the Ada external tag name for this class
 virtual bool isLocked ();
 virtual void lock();
 virtual void unlock();
 private:
 bool locked;
};
#endif

Ada version of root Status type
The corresponding stronger typed Ada version of this code,
including the derived classes for distribution purposes is
shown below. Note that non-virtual functions need to have
a pragma export to setup the link name to match the
mangled name that C++ is expecting to use. Virtual
functions do not need this export, because they are accessed
through virtual table structures in the object.

with Ada.Containers; use Ada.Containers;
package Status is
 pragma Pure;
 subtype Id_Type is Natural;
 subtype Update_Count_Type is Natural;

 type Status_Kinds is (Initial, Create, Delete, Update,
 Departure);
 subtype List_Image_Type is String (1 .. 100);
 type Status_Type is abstract tagged private;
 function Status_Kind (Status_Item : Status_Type)
 return Status_Kinds;
 pragma Export (CPP, Status_Kind, "getStatusKind");
 procedure Set_Status_Kind
 (Status_Item : in out Status_Type;
 Kind : Status_Kinds);
 pragma Export (CPP, Set_Status_Kind, "setStatusKind");
 function List_Image (Status_Item : Status_Type)
 return List_Image_Type is abstract;
 function Id (Status_Item : Status_Type'Class)
 return Id_Type;
 pragma Export (CPP, Id, "_ZN6Status5getIdEv");
 function Modification_Count
 (Status_Item : Status_Type'Class)
 return Update_Count_Type;
 pragma Export
 (CPP, Modification_Count,
 "_ZN6Status20getModificationCountEv");
 procedure Set_Modification_Count
 (Status_Item : in out Status_Type;
 Count : Update_Count_Type);
 pragma Export (CPP, Set_Modification_Count,
 "setModificationCount");
 function Hash_Id (Status_Id : Id_Type)
 return Hash_Type;
 function Hash (Status_Item : Status_Type'Class)
 return Hash_Type;
 pragma Export (CPP, Hash, "hash");
 function Is_Equivalent (Left, Right : Status_Type'Class)
 return Boolean;
 pragma Export (CPP, Is_Equivalent, "isEquivalent");

private
 procedure Modify (Status_Item : in out Status_Type);
 pragma Export (CPP, Modify, "modify");

 type Status_Type is abstract tagged
 record
 Kind : Status_Kinds;
 Identifier : Id_Type;

56 Distr ibuted Status Moni tor ing and Control Using Remote Buffers and Ada 2005

Volume 30, Number 1, March 2009 Ada User Journal

 Modified : Update_Count_Type := 0;
 end record;
 pragma Convention (CPP, Status_Type);
end Status;

Ada version of vehicle status package
package Status.Vehicle is

 pragma Remote_Types;
 type Equipment_State_Type is
 (Operational, Faulty);
 type Vehicle_Equipment_Type
 is abstract new Status_Type with private;
 function Operational_State
 (Vehicle_Equipment : Vehicle_Equipment_Type)
 return Equipment_State_Type;
 pragma Export (CPP, Operational_State, "getState");
 procedure Set_Operational_State
 (Vehicle_Equipment : in out Vehicle_Equipment_Type;
 New_State : Equipment_State_Type);
 pragma Export (CPP, Set_Operational_State,
 "setState");
private
 type Vehicle_Equipment_Type is abstract
 new Status_Type with record
 State : Equipment_State_Type;
 end record;
 pragma Convention (CPP, Vehicle_Equipment_Type);
end Status.Vehicle;

Ada version of door lock status package
Since the Door Lock status is a concrete class, a true Ada
class needs to be derived from the C++ class so that object
of this class can be streamed using the DSA. The Ada
version of the class, in this case Ada_Door_Lock_Type,
does not add any additional components to the structure,
but uses pragma Convention Ada to indicate to the
compiler that this is a regular Ada object that should be
streamable. Door_Lock_Type has the C++ (CPP)
convention by default which it inherits from the
Vehicle_Equipment_Type.

package Status.Vehicle.Door_Locks is
 pragma Remote_Types;
 type Door_Lock_Type
 is new Vehicle_Equipment_Type with private;
 function Is_Locked (Door_Lock : Door_Lock_Type)
 return Boolean;
 procedure Lock_Doors
 (Door_Lock : in out Door_Lock_Type);
 procedure Unlock_Doors
 (Door_Lock : in out Door_Lock_Type);
 overriding function List_Image
 (Door_Lock : Door_Lock_Type)
 return List_Image_Type;
 type Ada_Door_Lock_Type
 is new Door_Lock_Type with private;

 -- Since this is a concrete type, we want to distribute such
 -- objects across the network. Therefore, we need to

 -- derive a true Ada class from the C++ type to
 -- enable C++ object to be distributed using DSA
 function Create
 (Status_Id : Id_Type;
 State : Equipment_State_Type;
 Locked : Boolean)
 return Ada_Door_Lock_Type;
 -- Objects are created as Ada objects, but will be viewed
 -- as C++/Java objects in those languages.
private
 type Door_Lock_Type is new
 Vehicle_Equipment_Type with
 record
 Locked : Boolean;
 end record;
 -- The Ada Derived class should not need to add any
 -- components to the C++ class.
 type Ada_Door_Lock_Type is new
 Door_Lock_Type with null record;
 pragma Convention (Ada, Ada_Door_Lock_Type);
end Status.Vehicle.Door_Locks;

Provide external tag names to C++
A separate package is needed to return the static external
tag names for C++, so that C++ clients can select the
derivation classes of interest to be reported from the
vehicles. This is a separate package because these
declarations are not allowed in a Remote_Types package.
Tag names are specified in C++ to allow monitoring
stations to indicate which status types should be reported
from a vehicle. Pragma Export statements are used to
generate the C++ mangled name so that these subprograms
can be accessed in C++.

with Interfaces.C.Strings;
 use Interfaces.C.Strings;
package Status.Class_Names is
 function Status_Class_Name return chars_ptr;
 function Vehicle_Status_Class_Name return chars_ptr;
 function GPS_Class_Name return chars_ptr;
 function Fuel_Sensor_Class_Name return chars_ptr;
 function Door_Lock_Class_Name return chars_ptr;
 function Camera_Class_Name return chars_ptr;
 function Summary_Class_Name return chars_ptr;
 pragma Export (CPP, Status_Class_Name,
 "_ZN6Status9classNameEv");
 pragma Export (CPP, Vehicle_Status_Class_Name,
 "_ZN13VehicleStatus9classNameEv");
 pragma Export (CPP, Door_Lock_Class_Name,
 "_ZN8DoorLock9classNameEv");
 pragma Export (CPP, Summary_Class_Name,
 "_ZN14VehicleSummary9classNameEv");
 pragma Export (CPP, GPS_Class_Name,
 "_ZN3GPS9classNameEv");
 pragma Export (CPP, Camera_Class_Name,
 "_ZN6Camera9classNameEv");
 pragma Export (CPP, Fuel_Sensor_Class_Name,
 "_ZN10FuelSensor9classNameEv");
end Status.Class_Names;

B. J. Moore 57

Ada User Journal Volume 30, Number 1, March 2009

5 Dispatcher (monitoring) design

A Dispatcher represents an application that monitors the
status of all vehicles on the network. A dispatcher also has
the capability of issuing commands to specific vehicles to
provide controlling features.

When a Dispatcher joins the network it makes a multicast
request to receive the current status from all vehicles
currently on the network. Once this initial status has been
received, the Dispatcher will continue to see updates for
status records modified in any vehicles on the network. A
dispatcher receives status updates through a local instance
of a remote buffer object. The dispatcher application reads
status update records received from the remote vehicles and
processes the records accordingly.

5.1 Dispatcher client package
The Dispatcher_Client package is meant to provide the
interface between the client application code and the
distributed data replication system. In most cases, a single
procedure call is provided to be called from multiple
languages. In some cases, there are two versions of the
same call when Ada language features can be used to
provide a more convenient calling prototype for that
language.

The design here is that client application code can register
for change notification, by specifying tags of interest. If the
object changed locally is derived from any of the tags in the
Tags_Of_Interest, then the client notification callback is
activated.

There may be multiple such registrations in a given
client application at any given time. For example,
there may be multiple windows displayed where each
window displays a different set of data.
Dispatcher client specification

with Ada.Tags; use Ada.Tags;
with Interfaces.C.Strings;
use Interfaces.C, Interfaces.C.Strings;
with Status; use Status;
with Vehicle_Client;
with Status.Vehicle.Summary;
use Status.Vehicle,
 Status.Vehicle.Summary;
package Dispatcher is
 subtype Registration_Type is unsigned;
 subtype bool is unsigned_char;
 type Status_Callback_Type is not null
 access procedure
 (Status_Item : Status_Type'Class);
 -- Callback to client when a status changes
 procedure Query_All -- For Ada callers
 (Tags_Of_Interest : Tag_Array;
 Process : Status_Callback_Type);
 -- Allows a client to process all locally cached objects
 -- using a client supplied access to subprogram
 -- parameter.
 procedure Query_All_C -- For C callers

 (Tags_Of_Interest : chars_ptr_array;
 Process : Status_Callback_Type);
 function Exists -- For Ada callers
 (Key : Id_Type)
 return Boolean;
 function Exists_C -- For C Callers
 (Key : Id_Type)
 return bool;
 -- Indicates if a given status Id exists locally
 function Lookup (Key : Id_Type)
 return Vehicle_Client.Status_Type_Access;
 -- Returns the status item corresponding to the input
 -- Status Id Key.
 procedure Discover_Vehicles
 (Tags_Of_Interest : Tag_Array);
 -- Multicast request to discover vehicles on the network.
 -- Will result in vehicles responding with all status records
 -- that are derived from classes in the Tags_Of_Interest.
 procedure Register -- For Ada Callers
 (Tags_Of_Interest : Tag_Array;
 Callback : Status_Callback_Type;
 Handle : out Registration_Type);
 -- Register client locally to receive change notifications
 -- for locally cached status objects that are derived from
 -- classes in the Tags_Of_Interest.
 procedure Register_C -- For C Callers
 (Tags_Of_Interest : chars_ptr_array;
 Callback : Status_Callback_Type;
 Handle : out Registration_Type);
 procedure Request_Current_Status
 (Vehicle : Vehicle_Access;
 Tags_Of_Interest : Tag_Array);
 -- Remote call to a specific vehicle to retrieve current
 -- status that satisfy the Tags_Of_Interest
 procedure Deregister
 (Handle : Registration_Type);
 -- Cancel a local registration for change notification.
 function Update (Status_Item : Status_Type'Class)
 return Boolean;
 -- Update a status item remotely in a vehicle
 procedure Delete (Status_Item : Status_Type'Class);
 -- Delete a status item remotely in a vehicle
private
 pragma Convention (C, Status_Callback_Type);
 pragma Export (C, Query_All_C, "queryAll");
 pragma Export (C, Exists_C, "exists");
 pragma Export (CPP, Lookup);
 pragma Export (C, Discover_Vehicles,
 "discoverVehicles");
 pragma Export (C, Register_C, “registerClient");
 pragma Export (C, Deregister, "deregisterClient");
 pragma Export (CPP, Update, "updateItem");
 pragma Export (CPP, Delete, "deleteItem");
end Dispatcher;

Dispatcher client body
It is helpful to show small excerpts of the body of the
Dispatcher client package to show how multicast
dispatching is setup and how the remote buffer is declared.

58 Distr ibuted Status Moni tor ing and Control Using Remote Buffers and Ada 2005

Volume 30, Number 1, March 2009 Ada User Journal

with System.RPC;
-- Ada 2005 standard library package
with Ada.Environment_Variables; use Ada;
-- NOTE Buffer type, in this case it is a
-- Synchronous Unbounded Buffer
with Status_Buffers. Passive_Unbounded_Buffer;
use Status_Buffers.Passive_Unbounded_Buffer;
with Tag_Set;
with Messaging;
with Vehicle_Discovery.Requestor;
use Vehicle_Discovery.Requestor;
with Vehicle_Status.Subscriber;
-- Not shown but the Vehicle Status packages are similar
-- to the Vehicle_Discovery mechanism. Vehicles use this
-- for sending multicast status updates to dispatchers. The
-- server in this case is in the dispatcher, while the client
-- resides in the vehicle, in contrast to the vehicle
-- discovery packages, which has it the other way around.
package body Dispatcher is
 -- Declare the Status Buffer that is accessed remotely.
 -- This buffer is capable of storing 1000 Vehicle Status
 -- records, before blocking occurs.
 Buffer_Instance : aliased Buffer
 (Maximum_Capacity => 1_000);
 -- Create the RACW type for the buffer that can be
 -- distributed remotely to the vehicles for unicast calls.
 -- This is used when a vehicle responds to a multicast
 -- discovery request and sends status data back to the
 -- requesting dispatcher
 Client_Instance : Vehicle_Status.Status_Updater_Type
 (Buffer => Buffer_Instance'Access);
 -- Create a multicast server that
 -- receive status updates from vehicles
 Status_Subscriber : aliased
 Vehicle_Status.Subscriber. Subscriber_Type;
 -- Create a multicast client object that can be used to
 -- discover Vehicles on the network. This is declared as a
 -- RACW, and represents all vehicles on the network. It is
 -- not really a RACW, we use the multicast packages to
 -- send the data, but conceptually it can be thought
 -- of a special kind of RACW
 Vehicle_Discovery : aliased Discovery_Requestor_Type;
 All_Vehicles : constant Discovery_Requestor_Access
 := Vehicle_Discovery'Access;
 Initialized : Boolean;
-- ...
 procedure Discover_Vehicles
 (Tags_Of_Interest : Tag_Array) is
 begin
 if not Initialized then
 -- Setup Publisher for vehicle discovery requests
 if Environment_Variables.Exists
 (“USE_DTN”) then
 -- Use a DTN transport
 Messaging.Associate
 (Publisher => Vehicle_Discovery,
 Publisher_Endpoint => "dtn://status-monitors.dtn/?"
 Subscriber_Endpoint => "dtn://vehicles.dtn/*");

 Vehicle_Status.Subscriber. Subscribe

 (Subscriber => Status_Subscriber'Access,
 Endpoint => "dtn://status-monitors.dtn/*");
 else
 -- Use simple multicast transport
 -- more suitable for wired network
 Messaging.Associate
 (Publisher => Vehicle_Discovery,
 Subscriber_Endpoint => "239.255.128.129:55507");
 Vehicle_Status.Subscriber. Subscribe
 (Subscriber => Status_Subscriber'Access,
 Endpoint => "239.255.128.128:55505");
 end if;
 Initialized := True;
 end if;
 -- Issue Multicast request to Discover Vehicles
 All_Vehicles.Find
 (Client => Buffer_Instance'Access,
 Tags_Of_Interest => Create_Tag_Set
 (Tag_Array'(1 => Vehicle_Equipment_Type'Tag)));
 end Discover_Vehicles;
 -- Unicast request for status from a remote vehicle. Note
 -- we pass the clients Buffer as a RACW so that the
 -- vehicle can respond directly to this dispatcher.
 procedure Request_Current_Status
 (Vehicle : Vehicle_Access;
 Tags_Of_Interest : Tag_Array) is
 begin
 -- Send RACW buffer to remote vehicle
 Vehicle.Current_Status
 (Client => Buffer_Instance'Access,
 Tags_Of_Interest => Create_Tag_Set
 (Tags_Of_Interest));
 exception
 when
 System.RPC.Communication_Error => Put_Line
 ("Vehicle died, " &
 "Remote Call Failed");
 end Request_Current_Status;
end Dispatcher;

5.2 Remote buffer implementation
As mentioned previously, Vehicles communicate with
clients by writing status objects into the remote clients
buffer, which is passed to the Vehicle as a Remote Access
to Class-Wide type (RACW) object.

Shown earlier was the instantiation of the Status Buffer
interface for the Indefinite Buffer of Class-Wide Status
records. On the client side, we now discuss the
implementation of the remote Buffering. Because the
Buffer is accessed remotely, this suggests that the buffer
implementation needs to be one of the synchronous buffer
classes to ensure safe concurrency. Since the number of
vehicles on the network is unknown, and because the
dispatcher is likely running on a desktop computer where
memory use is not restricted, the Unbounded Buffer
implementation might be a better choice than a Bounded
Buffer. A good choice in this case would be to use a
Passive Unbounded Buffer, which will only use as much
memory as needed to handle peak demands, and can be

B. J. Moore 59

Ada User Journal Volume 30, Number 1, March 2009

resized to smaller allocation during periods of low activity.
A Passive buffer supports concurrency which is needed
since there can be multiple writers and a reader accessing
the buffer at the same time.

Passive Unbounded Status Buffer Package
The Passive Unbounded Status Buffer is a blocking
Unbounded Buffer that supports multiple readers and
writers.

with Indefinite_Buffers.Passive_Unbounded;
package Status_Buffers. Passive_Unbounded_Buffer
 is new Status_Buffers.Passive_Unbounded;
pragma Preelaborate
 (Status_Buffers.Passive_Unbounded_Buffer);
pragma Remote_Types
 (Status_Buffers.Passive_Unbounded_Buffer);

 6 DTN alternative to multicast

The reusable messaging transport described previously
shows support for two types of transport. A simple multicast
transport is implemented, and a DTN transport. The simple
multicast transport is not reliable however, and is intended to
work in a wired network scenario where all vehicles and
monitors can see each other with good connectivity. The
DTN transport is better suited for a real mobile environment
where good connectivity between nodes cannot be assumed,
and end to end connectivity between all nodes is also not
likely, given the nature of radio communications spread over
a larger area, where terrain and obstacles can provide barriers
to communication. Communications in heterogeneous
networking environments can break down [6] particularly
when end to end connectivity between nodes is not
guaranteed or too sporadic for reliable use.

Technologies that allow communications in Delay Tolerant
Network (DTN) environments are a subject of active
research. The Delay Tolerant Networking Research Group
(http://www.dtnrg.org/wiki) represents a community of
researchers and industry dedicated to this topic. Their
research centers around RFC 4838 and the experimental
bundle protocol. There exists several publicly available
implementations of this protocol. Such technologies are
being considered for a wide variety of use including deep
space communications, tactical military networks, sensor
networks, and underwater acoustic networks.

These environments suggest a good fit for the Ada
programming language, in particular situations where high
reliability is needed. Though this may be a good niche area
for Ada, the author is not aware of any Ada implementations
available for use. The main thrust of DTN development
appears to consist of DTN2, written in C++, and ION,

written in C. In addition, there exists a couple of Java
implementations of the bundle protocol, and another one
written in Python. If the use of Ada is to be encouraged in
tactical networking and spacecrafts, then there needs to be a
DTN implementation made available for general use. A good
first step would be to provide Ada bindings to the DTN2
reference implementation. Such bindings were produced for
the prototype associated with this paper, and it is hoped that
these bindings can be made publicly available in 2009.

 7 Conclusions

Ada 2005 has language features that facilitate solutions for
the distributed programming problem domain with an
economy and ease of expression. The Distributed Systems
Annex can be used to distribute objects to applications
written in other languages including C++ and Java if the
compilers for the respective languages share a common
ABI. There is a window of opportunity to provide an Ada
implementation of the bundle protocol to support
communications in challenged DTN networking
environments. This would be a natural fit for extending
Ada's niche area of use to include reliable communications
to spacecraft and tactical military networking
environments.

References
[1] Warthman, F., Delay-Tolerant Networks (DTNs): A

Tutorial v1.1, Mar 2003
(http://www.dtnrg.org/docs/tutorials/warthman-1.1.pdf

[2] Moore, B.J., A Buffer Container Class Hierarchy using
Ada 2005, SIGAda'08, Proceedings of the 2008 ACM
SIGAda Annual International Conference

[3] Miranda, J., Schonberg, E. (March 21, 2007) Abstract
Interface Types in GNAT: Conversions, Discriminants,
and C++. Adacore Technical Paper
“http://www.adacore.com/wp-content/uploads/2007/
03/ifaces_ae06.pdf”

[4] Comar, C., Gingell, M., Hainque, O., Miranda, J. (July
20, 2006) Multi-Language Programming: The
Challenge and Promise of Class-Level Interfacing.
Adacore Technical Paper,
“http://www.adacore.com/wp-content/uploads/2006/
07/Class_level_interfacing.pdf”

[5] Taft, S.T., Duff, R. A., Bruckardt, R.L. And
Plödereder, E. Eds (2000). Consolidated Ada
Reference Manual. LNCS 2219, Springer-Verlag

[6] V. Serf et al, Delay-Tolerant Networking Architecture,
RFC 4838, “http://www.ietf.org/rfc/rfc4838.txt”

 61

Ada User Journal Volume 30, Number 1, March 2009

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Gem #6: The Ada95 Multiple Views
Idiom vs. Ada05 Interfaces
Matthew Heaney, On2 Technologies
Date: 18 June 2007

Abstract: The multiple views idiom is a technique that allows
you to create the effect of deriving from multiple tagged types
simultaneously. It is a powerful mechanism for composing
abstractions that complements interface types.

Let’s get started…
One of the major changes to the Ada language is the addition
of interfaces, stateless types that specify a set of operations.
Like a tagged type, you can derive from an interface type, but
unlike a tagged type, you can derive from multiple interfaces
simultaneously.
Typically you use an interface type as a kind of specification.
An abstraction can be written in terms of an interface type,
which makes the abstraction completely general, in that it can
be used with any type that implements that interface.
Ada95 does not have interface types, so an obvious question
is, Can you create the effect of deriving from multiple
interface types, but in Ada95? The answer is yes, using a
technique called the “multiple views” idiom. The technique
makes it possible for a type to provide different views of itself,
with each view having a different type. This is very much like
having multiple interfaces, but you have to build the
infrastructure yourself.
To illustrate the difference between interfaces and multiple
views, we’ll first design a simple abstraction for persistence in
terms of an interface type, and then redesign it using the
multiple views technique. An interface for persistence would
look something like this:

package Persistence_Types2 is
 type Persistence_Type is limited interface;

 procedure Write
 (Persistence : in Persistence_Type;
 Stream : not null access Root_Stream_Type’Class)
 is abstract;
 … -- Read not shown here
end Persistence_Types2;

Any type that derives from Persistence_Type is saying that it
can be saved out to (and loaded in from) some persistent
medium. Deriving from the interface type is easy:

package P2 is
 type T is limited new Persistence_Type
 with null record;

 overriding
 procedure Write
 (Persistence : in T;
 Stream : not null access
 Root_Stream_Type’Class);
 …
end P2;

Now all the application has to do is provide a persistence
mechanism, that accepts an object that supports the persistence
interface. Here’s our abstraction for doing that:

package Persistence_IO2 is
 … -- Initialization details omitted here
 procedure Save (Persistence : in
 Persistence_Type’Class);
end Persistence_IO2;

This provides the infrastructure that allows any type (here,
type T) that derives from Persistence_Type to be written to the
persistence medium. A file-based implementation might look
something like this:

package body Persistence_IO2 is
 File : Ada.Streams.Stream_IO.File_Type;
 …
 procedure Save
 (Persistence : in Persistence_Type’Class) is
 begin
 Persistence.Write (Stream (File));
 end Save;
end Persistence_IO2;

Now we did all this using an Ada05 interface type, but nothing
we did strictly requires an interface type. You can achieve the
same effect using a tagged type, which is how it would have
been done in Ada95. The “interface” is just an abstract tagged
null record:

package Persistence_Types is
 type Persistence_Type is
 abstract tagged limited null record;
 procedure Write
 (Persistence : in Persistence_Type;
 Stream : access Root_Stream_Type’Class)
 is abstract;
 … -- Read omitted here
end Persistence_Types;

Here the Persistence_Type is a tagged type instead of an
interface type, but it’s otherwise the same. Even the
Persistence_IO abstraction is the same as before. What is
different is how the type is used to support persistence in some
other type. That other type will provide a “persistence view”
of itself. We wish for the type to support multiple views (just
as it would were it implementing multiple interfaces), so it’s
not a simple matter of directly deriving from persistence type,

62 Ada Gems

Volume 30, Number 1, March 2009 Ada User Journal

since Ada does not support derivation from more than one
tagged type (this is true of both Ada95 and Ada05).
What we will do to implement a persistence view is to create
an intermediary type that derives from Persistence_Type, but
with an access discriminant that designates the parent (the type
that supports the view). This allows operations of the
intermediary type to bind to the parent type, since the
discriminant provides access to the parent’s state. To see how
this all works, let us first show what the public part of the
parent type looks like:

package P is
 type T is limited private;

 type Persistence_Class_Access is
 access all Persistence_Type’Class;

 function Persistence (Object : access T)
 return Persistence_Class_Access;
 … others views would be declared here
private
 … -- see text below
end P;

Type T supports persistence by providing a Persistence
function that returns an access value designating an instance of
Persistence_Type. The “persistence view” of type T is
obtained by invoking this accessor function. This mechanism
can be extended any number of times, by providing multiple
accessor functions that each return distinct views.
The Persistence function returns an access value that actually
designates a component of record T. The type of the
component is the intermediary type we mentioned earlier, that
derives from Persistence_Type, declared like this:

private
 type Persistence_View (Object : access T) is
 new Persistence_Type with null record; -- no state
 -- req’d here
 procedure Write
 (Persistence : in Persistence_View;
 Stream : access Root_Stream_Type’Class);

Note that the Persistence_View type is a null extension (it
doesn’t require any state of its own), but with an access
discriminant that designates the parent type T. This allows the
implementation of operation Write to see the representation of
the parent type, since the Persistence parameter has an access
discriminant that designates the T instance, and so the
operation has access to all of the state that needs to be written
to persistent storage.
The parent type T is implemented by declaring an aliased
component of the intermediary type:

 type T is limited record
 Persistence : aliased Persistence_View (T’Access);
 … -- rest of state here
 end record;
The Persistence component is aliased since function
Persistence returns an access value designating that
component:

 function Persistence (Object : access T)
 return Persistence_Class_Access is
 begin

 return Object.Persistence’Access;
 end;

The other difference between interface types and the multiple
views idiom is how a client would actually invoke the
operation to perform the persistence operation. In the interface
case it’s simple: type T derives from Persistence_Type
directly, so instances of type T can be passed to any operation
whose type is Persistence_Type’Class. The Persistence_IO
package has just such an operation, so the call would look like
this:

procedure Test_Persistence2 is
 Object : T;
begin
 …
 Persistence_IO2.Save (Object);
end;

You have to do a little more work in the multiple views case,
since the conversion from T to Persistence_Type isn’t
automatic. Here we need to explicitly invoke the Persistence
function to “convert” from type T to Persistence_Type’Class.
The accessor function has an access parameter and so we must
declare the instance of type T as aliased. The call looks like
this:

procedure Test_Persistence is
 Object : aliased T;
begin
 …
 Persistence_IO.Save (Persistence (Object’Access).all);
end;

That’s all there is to it. The multiple views idiom is actually a
very powerful mechanism for composing abstractions. I have
characterized the technique as an Ada95 idiom, but note that
even in Ada05 it is occasionally useful, such as when you need
to mix a tagged type into an existing hierarchy. The most
common example is needing to add controlledness to a leaf
type in a class, because the root type doesn’t itself derive from
controlled.

Gem #48: Extending Interfaces in
Ada 2005
Quentin Ochem, AdaCore
Date: 13 October 2008

Abstract: Ada 2005 introduced the notion of interfaces for
designing object classes. While interfaces are extremely
convenient for implementing new hierarchies, they can be
difficult to extend once they’ve started to be used. The
addition of a new primitive can break all type derivations, as a
type has to implement all abstract primitives inherited from its
parents. In this Gem, we’ll see two ways to overcome this
problem, one OOP-generic, and one specific to Ada 2005.

Let’s get started…
The classic OOP way
Let’s assume we have the following interface:

type Animal is interface;
procedure Eat (Beast : in out Animal) is abstract;

Ada Gems 63

Ada User Journal Volume 30, Number 1, March 2009

All types implementing the Animal interface have to override
the Eat operation:

type Cat is new Animal with record …
procedure Eat (Beast : in out Cat);

Now, after a while, the developer of Animal might feel the
need to let animals eat something specific, and would like to
add the following operation to the interface:

procedure Eat (Beast : in out Animal;
 Thing : in out A_Thing);

Unfortunately, there are hundreds of species of animals
implementing this interface, and having to migrate everything
will be too painful. Not to mention that most of them don’t
even need this new way of eating - they’re just happy eating
some random amount of anonymous food. Extending this
interface is just not the way to go - so the extension has to be
done separately, in a new interface, such as:

type Animal_Extension_1 is interface;
procedure Eat (Beast : in out Animal_Extension_1;
 Thing : in out A_Thing) is abstract;

So now, Animals that need to rely on this new way of eating
will need to be declared, such as:

type Cat is new Animal and Animal_Extension_1
 with record …

Note that it’s even possible to enforce the fact that an
extension of Animal has to be an Animal in the first place, by
writing:

type Animal_Extension_1 is interface and Animal;

which will lead to a simpler declaration for type Cat, as there’s
no longer a need to extend from two interfaces:

type Cat is new Animal_Extension_1 with record …

The rest of the code will remain completely untouched thanks
to this change. Calls to the new subprogram will require some

additional amount of work though, as we’ll first have to check
that the type of an Animal that we’re dealing with is indeed a
descendant of Animal_Extension_1, and perform a conversion
to that interface’s class, before calling the new version of Eat:

The_Animal : Animal’Class := ...
if The_Animal in Animal_Extension_1’Class then
 Animal_Extension_1’Class (The_Animal).
 Eat (Something);
end if;

The Ada 2005 Way
Ada 2005 introduces the notion of null procedures. A null
procedure is a procedure that is declared using “is null” and
logically has an empty body. Fortunately, null procedures are
allowed in interface definitions - they define the default
behavior of such a subprogram as doing nothing. Back to the
Animal example, the programmer can declare the interface’s
Eat primitive as follows:

procedure Eat (Beast : in out Animal;
 Thing : in out A_Thing) is null;

All of our hundreds of kinds of animals will automatically
inherit from this procedure, but won’t have to implement it.
The addition of this declaration does not break source
compatibility with the contract of the Animal interface.
Moreover, as no new types are involved, it’s a lot easier to
make calls to this subprogram - no more need to check
membership or write a type conversion, and we can just write:

The_Animal : Animal’Class := ...
The_Animal.Eat (Something);

which will execute as a no-op except for animals that have
explicitly overridden the primitive.

64

Volume 30, Number 1, March 2009 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Peter Dencker
Steinäckerstr. 25
D-76275 Ettlingen-Spessartt
Germany
Email: dencker@web.de
URL: ada-deutschland.de

Ada-France
Association Ada-France
c/o Jérôme Hugues
Département Informatique et Réseau
École Nationale Supérieure des Télécomunications
46, rue Barrault
75634 Paris Cedex 135
France
Email: bureau@ada-france.org
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Saab Systems
S:t Olofsgatan 9A
SE-753 21 Uppsala
Sweden
Phone: +46 73 437 7124
Fax: +46 85 808 7260
Email: Rei.Strahle@saabgroup.com
URL: www.ada-i-sverige.se

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	News
	Conference Calendar
	Forthcoming Events
	Thirty Years of the Ada User Journal
	Progress Report: ISO/IEC 24772, Programming Language Vulnerabilities
	Distributed Status Monitoring and Control Using Remote Buffers and Ada 2005
	Ada Gems

