

K. Fair lamb 113

Ada User Journal Volume 30, Number 2, June 2009

framework for the development of certifiable software.
The driving idea is to piggyback on two of the most
active and innovative trends that have recently
emerged in the software engineering community: (1)
Effective collaboration through open source
communities, and (2) Empowering development
methodologies such as Agile, Lean and eXtreme
programming.

• Ada Programming Language Use in Lockheed
Martin – An Update

Judith Klein, Lockheed Martin (USA)

The United States Federal Aviation Administration’s
mission is to provide a safe, secure, and efficient
global aviation system that contributes to national
security and the promotion of U.S. aviation. To that

end, FAA depends on large, complex, highly available
software systems to manage the vast National Airspace
System (NAS). Ada is used extensively in the
development of said systems. As a system architect on
En Route Automation Modernization (ERAM), I will
discuss advantages and challenges encountered in the
development of ERAM.

An informal study on the topic of Ada’s use in
Lockheed Martin will provide the basis for discussion.
The kinds of programs/projects using Ada, the size of
the Ada development efforts, the estimated life span of
the programs/projects, and general comments on
vendors supplying products in support of the
development effort are aspects in the survey.

 115

Ada User Journal Volume 30, Number 2, June 2009

Pattern-Based Refactoring Shrinks
Maintenance Costs
John S. Harbaugh
The Boeing Company, Seattle, WA, USA; Tel: +1 253 657 5338; email: john.s.harbaugh2@boeing.com

Abstract
Once fielded, software systems enter the maintenance
phase of their life cycle. During this phase, changes
will be made to improve a system’s functionality. An
emphasis on functionality alone can lead to a
situation where structural qualities assume a lower
priority. Software developed under these conditions
can, over time, become more difficult, and therefore
more costly, to maintain. This paper presents the
results of a recent effort by The Boeing Company to
improve the data recording and extraction capability
of a large Ada 95 Command, Control and
Communications (C3) system. It shows how the
reliability and structural qualities of the software
were improved using the software engineering
perspectives of design patterns and refactoring.
These improvements led in turn to a high level of
maintenance-phase productivity for current and
future work.

1 Introduction
The technical details of this effort were influenced by the
software engineering topics of “design patterns”
popularized by Gamma et al. [1], and from the code
maintenance practice known as “refactoring” and described
by Fowler [2]. The synthesis of these topics was first
discussed by Kerievsky [3].

Both of these approaches work best when applied as first
principles. During the course of our work, certain
principles kept proving useful to guide our efforts. From
Design Patterns, two principals kept occurring: One that
favors encapsulating those parts of the system that change,
and another that favors aggregation over inheritance. From
refactoring, we realize the continuing benefits of low
coupling and high cohesion for any large computer
program.

A third influence on our work was the Ada 95 language
itself. Since our work was to be done in Ada 95 and there
were relatively few guides or examples of design patterns
as realized in Ada 95 (unlike C++ or Java), we needed to
study the problem at a fundamental level. The result
simultaneously improved the architecture qualities of the
software while causing minimal changes to the existing
mission computing subprograms. By taking advantage of
the uniquely Ada features of hierarchical packages and
subtyping, typically no more than minor specification
changes were required.

2 Original Design
Our experience for this paper comes from work done on a
large (>5MSLOC) Command, Communications, and
Control (C3) computing system that was implemented
using the Ada 95 computing language [4]. This system
controls a variety of sensors, and fuses their information
with information from various data links. Crews of trained
operators control the overall system using a variety of
display consoles. During a mission, data from these
sources are recorded as Ada streams to a Mission Data
Recorder (MDR) for later extraction and analysis.

Three distinct sources of data are recorded during a
mission. Sensor and data link I/O consume the greatest
bandwidth, and are recorded from the High-Speed Interface
(HSI) in interface-specific binary formats. Data from
applications internal to mission computing are another
significant contributor to mission data recordings.
Application data are recorded as Ada streams of either
record types or tagged types. Operator console inputs
account for a third distinct source of recording data. All
three recording streams are recorded to the in-flight media,
then transferred to a mission support center for post-
mission extraction and reporting. Following a mission, the
mission support center extracts mission data recording into
various intermediate formats and distributes them to the
end. Figure 1 illustrates the overall data flow between these
activities.

The original data extraction program ran as a tightly-
coupled process within the mission-computing program,
sharing data types and subprograms with mission
computing and requiring all of mission computing be
operating in order to extract any data. Furthermore, at
elaboration each recorded class registered a callback to an
associated extraction method with a callback registry. This
callback was then used by the data extraction subsystem to
extract the mission data recording into the desired form.

Our customer wanted to streamline the processing of post-
mission data, and recognized that requiring the entire
mission-computing program be running in order to perform
any extraction was a significant bottleneck, one that
consumed significant computing resources, and required
several minutes to start. They desired a solution that would
allow data extraction to run separately from the mission
computing software, would be a basis for future product
development, and could be achievable on a small budget
and short schedule. They turned to the Boeing Company
for our experience with large C3 systems and Ada
development to deliver a comprehensive solution.

116 Pat tern-Based Refactor ing Shr inks Maintenance Costs

Volume 30, Number 2, June 2009 Ada User Journal

Figure 1 Original Recording & Extraction Data Flow

2.1 Entangling Dependencies
The original data extraction program was designed as a
process within the overall mission-computing program.
This introduced a web of closure dependencies during
compilation. Examples of this coupling included:

• Dependence on mission-computing environment
variables established via shell scripts and checked
at startup.

• Distributed system management services – All
mission-computing processes are controlled by
distributed system management.

• Use of CORBA communications – CORBA
implementation is tightly tied to system
management and mission computing threading
architecture.

• Use of distributed event logging.
Even though the data extraction process did not use these
features of mission computing, data extraction could not
run without them. Thus, the essential problem we faced
was not so much functional as it was structural: How to
allow the concerns of mission computing to vary
independently from those of data extraction, while
minimally affecting the existing code base?

The sources of this tightly-coupled structure were twofold.
The first was the way in which the recorded data was
declared. The original developers followed the common
Ada practice of declaring a private type and its primitive
operations in a single package specification. Either
because of the data type’s closure, or because of the closure
of the package it which it is declared, entangling
dependencies abounded. Since the same data type was
used in both mission computing and data extraction,
declaring an object of any of these data types would bring
in their entire closure, i.e., all of mission computing. In
order to de-couple data extraction from the rest of mission
computing, the operational dependencies of the objects
needed to be separated from those of data extraction, with
the data extraction context dependent on a small set of
basic data types.

The second was the coupling caused by indirect execution
of the class-specific extraction methods via callback.

When mission computing elaborated at startup, each
recording client registered its externalization methods as
callbacks in a common registry. The data-extraction
process retrieved these methods as needed, using them to
read and convert the recorded data to the externalized form.
For data extraction to run without the remainder of mission
computing, the externalizations methods needed to be made
independent of classes with the aforementioned problem
with dependencies.

3 Pattern-Based Solution
3.1 Recordable Type Pattern
Several design patterns, including strategy, decorator,
adaptor, and façade, were explored for creating a stand-
alone data extraction capability. The key architectural
qualities (i.e., variability, extensibility, coupling/cohesion,
complexity, efficiency) and cost were evaluated to
determine a preferred approach. The conclusion was to
implement a strategy pattern using Ada95 to encapsulate
the distinct processing needs of the mission computing and
data extraction. Figure 2 illustrates our “light weight”
implementation of the strategy pattern using Unified
Modeling Language (UML) notation.

Figure 2 Strategy Pattern Implementation

J. S. Harbaugh 117

Ada User Journal Volume 30, Number 2, June 2009

Figure 3 Static Publisher Design

In the context of Ada, we use the solid association arrows
to indicate a parent/child relationship, and a dashed
association to indicate simple “withing”. This convention
reflects the stronger form of visibility within package
hierarchies. In this implementation, the boxes represent
packages and not actual subclasses, as would be expected
in a purely object-oriented approach. For this reason, use
of inheritance notation would be misleading.

The strategy class is implemented with a new “recordable
type” for each application type being recorded. The
recordable type is a (potentially) discriminated record type
with no significant dependency on other mission computing
data types, and which cannot introduce problematic
dependencies through closure. This recordable type is
declared publicly in a package specification without any
primitive operations.

For our system, the strategy was made concrete by
extending it with two child packages, one for mission
computing conversion operations, and another to support
operations specific to data extraction. Each context (i.e.,
mission computing or data extraction) then “withs in” the
desired concrete strategy, getting only the methods (and
closure) needed. By segregating contextual code in
separate packages, we can ensure that the mission
computing program cannot include extraction code and visa
versa. If needs change, the pattern easily expands to
include new concrete strategies.

In terms of design patterns, hierarchical packages support
the concept of aggregation. In Design Patterns, the authors
recommend favoring aggregation over inheritance. This
lightweight implementation takes this advice to the extreme
by favoring aggregation to the exclusion of inheritance.
We consider this a light-weight implementation because of
the lack of inheritance, and because the recordable type is

public. Consideration was given to making the recordable
type private, with getter and setter methods for each
component, but this approach offered no real benefit over a
publicly declared type.

We used two approaches to translate mission-computing
data to a recordable type. For data in the mission-
computing application layer, conversion routines were
introduced into the concrete mission computing strategy to
convert the domain data representation to its recordable
counterpart. This minimizes perturbations to the existing
code base, thereby reducing the potential for introducing
errors into existing mission computing code

For the High-Speed Interface (HSI), use of conversion
routines could have introduced unacceptable processing
overhead due to the high data rates involved. Fortunately,
these data types were already free of entangling
dependencies internally, but still were problematic because
of the closure of their declaring packages. For these types,
the mission computing type declarations were relocated to a
strategy package as a recordable type. The original
declarations were then replaced with subtypes (for numeric
types and strings) or derived types (for enumeration types)
of what was now a recordable type. Because no additional
constraints are imposed, the subtype functions as
essentially a renaming of the recordable type. Existing
references to what are now subtypes require nothing more
than recompilation.

Due to the unique syntax of enumeration types, it turned
out to be least invasive to the existing code base to
redeclare them as derived types rather than subtypes.
Changes were limited, typically requiring nothing more
than adding a few explicit type conversions. Had we used
subtypes instead, every existing literal value would have
had to be changed to name the new strategy package.

118 Pat tern-Based Refactor ing Shr inks Maintenance Costs

Volume 30, Number 2, June 2009 Ada User Journal

3.2 Static Publishers
Since data extraction was to become a stand-alone
program, a registry of extraction callbacks was no longer
needed. Instead, a set of statically invoked “publishers”
replaced the callback registry, as illustrated in Figure 3.

Here, a package hierarchy was used to aggregate
functionality common to all publishers, then to general
groups of publishers, and finally to the individual concrete
publishers. As with the recordable types, the package
hierarchy for publishers is used to aggregate functionality,
not type extension. Each concrete publisher “withs in”
recordable extraction methods as needed. In the interest of
clarity, Figure 3 shows this relationship only for the
mission analysis publishers.

Compared to the previous callback registry, this approach
is considered to be a more reliable solution, due to the
determinism and compile-time checking of static method
invocation.

4 Conclusions
By combining the techniques of design patterns and
refactoring, our team of two developers was able to
complete a challenging job within an aggressive schedule.
Understanding the existing code base and settling on an
implementation consumed approximately 50% of the entire
effort, with the remainder devoted to code and test. The
introduction of the recordable types made it possible to not
disturb the existing code base. In fact, all of the existing
recording and data extraction code was left intact.
Because of its tight coupling and loose cohesion, the effort
to remove the existing code and re-qualify the system
would have consumed the available budget. In the process
of refactoring, we achieved substantial reuse of existing bit-
level extraction code while enhancing overall code
maintainability with a design that can easily be extended to
new publishers in the future.

The benefits of pattern-based refactoring can be realized in
any modern, object-oriented language. Each possesses
unique properties for encapsulation, name space,
inheritance, and threading. Our experience helps confirm
the value of design patterns, not as cookie-cutter solutions,
but as guides to reasoning about the problem at hand and
evaluating potential solutions relative to the
implementation language.

The pattern-based design was technically successful and
was also successful from the perspective of program
management. Due to the modular nature of the strategies
and publishers, project scheduling and tracking was
straightforward. The consistent “cookie cutter” form of the
strategies made it possible to bring in other developers to
implement individual recordable types as their schedules
permitted, allowing greater utilization of the entire staff.

The improved structure gained by applying pattern-based
refactoring allows existing capabilities to be modified, and
new ones added with the knowledge that the effort will be
localized. Beyond enabling us to meet the cost, schedule
and quality goals of the current effort, the time spent
improving the code structure has laid the groundwork for
future business.

References
[1] Design Patterns: Elements of Reusable Object-

Oriented Software, Gamma, Helms, Johnson,
Vlissides, 1995

[2] Refactoring. Improving the Design of Existing Code.
Martin Fowler, 1999

[3] Refactoring To Patterns. Joshua Kerievsky, 2004

[4] Ada 95 Reference Manual ISO/IEC 8652:1995(E). S.
Tucker Taft and Robert Duff, 1995

 119

Ada User Journal Volume 30, Number 2, June 2009

Building Cross Language Applications with Ada
Quentin Ochem
AdaCore, 46 rue d’Amsterdam 75009 Paris FRANCE; Tel: +33 (0)1 49 70 66 42; email: ochem@adacore.com

Abstract
This tutorial concerns multi language programming,
and in particular multi-language programming with
Ada. We’ll discuss interfacing solutions with native
languages such as C, C++ and languages running on
virtual machines such as Java or Python. We’ll also
consider middleware such as Corba or web services.
Keywords: C, C++, Java, binding, python, CORBA,
wsdl, Ada.

1 Introduction
Building complex applications often requires putting
together pieces of software or requirements that have never
before been made to work together. Thinking of a project
with a high integrity kernel written in Ada, using a set of
low level libraries and drivers written in C or C++, with a
graphical interface done in Java and unit tests driven by
Python is not thinking of science-fiction anymore. It’s
actual concrete and day-to-day work. Unfortunately, having
all of these technologies talking to one another is not
straightforward and often requires a deep knowledge of
both sides of the interface along with extensive manual
work.

In this tutorial, we'll first study how to directly interface
Ada with native languages, such as C or C++. We'll then
look in depth at communications with languages running on
virtual machines, such as Java, Python and the .NET
framework. Finally, we'll see how Ada can be interfaced
with an arbitrary language using a middleware solution,
such as SOAP or CORBA. We’ll see how communication
can be done manually by using low level features and APIs,
and how a substantial part of this process can be automated
using high level binding generators.

2 Interfacing criteria
There are three main issues to consider when dealing with
language interfacing: safety, efficiency and simplicity.

Safety is usually achieved by carrying out as many checks
as possible at compile-time. Unfortunately, interfacing
often requires designating objects and subprograms by
strings only checked at run-time, which often leads to
problems which only become apparent at run-time.

Efficiency depends on the way calls are made and data is
transmitted. Calls may or may not require indirection; data
may or may not require copies, and transfer across a
network. Significant performances loss may appear when
interfacing through e.g. protocols such as Sockets.

Simplicity is probably the most important criteria of all for
programmer. It’s about how easy it is to write the interface
layer. While it’s always possible to do things manually,
tool vendors often provide either stub generators, or even
better, direct binding generators from one language
specification to the other.

3 Ada and C
Interfacing Ada and C is probably the most common
interfacing scenario. Having said that, it carries a lot of
potential mistakes and should be done with great care.
Programmers may need to be aware of low level details on
the memory layout and calls convention, as Ada objects &
subprograms are not compatible with C by default.

Programmers are advised to keep things as simple as
possible. Advanced C structures such as unions, arrays or
strings can still be bound but need additional knowledge on
the compilers behaviour.

4 C++ and binding generators
While writing manually C interfacing can be tedious, using
an automatic binding generator is probably a comfortable
solution. Recent version of gcc distributed with GNAT
GPL and GNAT Pro include a new switch automatically
generating an Ada specification out of a C or C++ header
file.

In addition to the C constructions, the binding generator
also supports C++ classes, and maps them into Ada tagged
types. Such types can then be derived in Ada, and
primitives can be overridden, leading to cross-language
classes and cross language dispatching.

5 GNATCOLL.Scripts and Python
GNATCOLL is a collection of components distributed with
GNAT, and contains amongst other things a standard
interface to scripting languages. The default backend
provided works for Python, but any scripting language with
reflective capability would fit into the framework. A set of
functionality exporting Ada subprograms to a scripting
environment, or calling directly scripting code is provided.
This tool has been extensively used in the development of
GPS – the GNAT Programming Studio – for providing an
interface for extensibility and as a mean to drive tests.

6 Java and GNAT-AJIS
Java and native languages such as C are most often
interfaced using the JNI – the Java Native Interface.
Unfortunately, this layer is extremely tedious to use, and
provides almost no type safety.

120 Bui ld ing Cross Language Appl icat ions with Ada

Volume 30, Number 2, June 2009 Ada User Journal

In order to workaround these problems, GNAT now comes
with a binding generator from Ada to Java, giving a
callable Java interface generated from an Ada specification.
This generator supports a wide range of Ada features, such
as subprograms, global variables, access to subprograms,
exceptions... Ada tagged types are mapped to Java classes,
which can then be extended in Java. As for the C++ case,
the resulting classes are cross-language, and can be used in
a cross-language dispatching call.

This tool has been extensively used in the GNATbench
Eclipse Plugin, in order to retrieve code that have been
previously written in Ada for the GNAT Programming
Studio.

7 The JVM and .Net
Both the JVM and the .Net bytecodes embed a specification
description. This specification can then be used to generate
a direct binding. This is the purpose of e.g. the jvm2ada
tool, taking a Java bytecode .class file, and generating an
Ada specification for the GNAT for the JVM compiler, or
the cil2ada tool doing the same for the .Net platform.

This feature is particularly impressive on the .Net platform.
There are a huge number of languages targeting .Net, each
of them generating this intermediate representation in the
bytecode. This makes it possible to interface practically any
languages with any other one, provided that one binding
generator has been provided from the common
representation to the target language.

8 CORBA
While it has been originally designed for distributed
programming, CORBA has been used in a number of cases
to solve multi-language programming issues. It provides an
intermediate specification representation, the IDL, coming
with stub generator for most languages.

IDL generators can be used to create a callable interface, or
stubs for the implementation code. Since this language is
the common denominator of all, programmes don’t have to
care about the interface between two or more particular
languages anymore, but only about the way of interfacing

to that common representation. However, the
communication layer is implemented on top of sockets, and
the performance loss can easily be a show stopper when
many data exchanges are involved.

9 Web languages
Web languages traditionally lie within the boundaries of
scripting languages, such as Perl, PHP or JavaScript.
However, the notion of web application is emerging, with a
whole new set of challenges going much further than
websites in terms of application architecture and data
computation. For these applications, using structured and
constrained language such as Ada is starting to make sense,
hence the question regarding the interfacing with the
existing code.

Server-side applications can be interfaced with regular
techniques which have been explained so far. However, a
common way of creating multiple language – or peer –
applications is to rely on web services. These services
somehow act in the same way to CORBA, and comes with
a specification language conceptually close to the IDL :
WSDL.

Client side computation currently lacks solutions –
JavaScript seems to be the only portable technology
available natively on all browsers. Google decided to bet on
that fact, and provided a Java to JavaScript compiler as part
of its GWT toolset. An Ada to JavaScript compiler could
be envisioned in a similar manner. The question of directly
interfacing JavaScript code with Ada raises a whole new
set of interesting questions, JavaScript begin extremely
relaxed in terms of typing.

Conclusion
Multi-language programming certainly carries doubt and
raises a huge number of questions, which are becoming
more and more unavoidable these days. Fortunately, tool
vendors have invested a lot of time and effort into making
these things easier, and can now provide users with advise,
support and tools, now making this reasonable to do in an
industrial and challenging context.

 121

Ada User Journal Volume 30, Number 2, June 2009

Execution Time: Analysis, Verification and
Optimization for Reliable Systems
Robert I. Davis and Ian Broster
Rapita Systems Ltd, York Science Park, Heslington, York, YO10 5DG, UK; Tel: +44 1904 567747;
email: rob.davis@rapitasystems.com, ianb@rapitasystems.com

Abstract
Verifying and optimizing real-time software to meet
timing requirements can be a costly and time
consuming task. To achieve reliable timing behaviour,
it is necessary to focus attention on the worst case. In
this paper, we discuss how detailed execution time
measurements can be used to provide an accurate
worst-case execution time estimate for embedded
real-time software, and also to identify those
subprograms that contribute most to the worst-case
execution time. We describe a strategy for targeted
optimization of these worst-case hotspots that
provides a cost effective way of ensuring that time
constraints are met, as well as creating headroom for
additional functionality, without the need for costly
hardware upgrades.
Keywords: execution time, worst-case execution time,
WCET, timing analysis, optimization.

1 Introduction
Software execution time can be identified as a fundamental
cause of correct or incorrect timing behaviour in embedded
real-time systems. Depending on the nature of the system
and its requirements, there may be a more or less stringent
need to show that the system will always meet its timing
requirements. For example, the developers of safety critical
systems, such as flight control systems, must be able to
show to a very high degree of confidence that the software
will always execute within its time constraints. In other
systems, incorrect timing behaviour can have a major
impact on the performance and reliability of the system and
the customer’s perception of product quality.

The fundamental reason why it is difficult to obtain reliable
software timing behaviour is that the source code does not
provide information about execution time. Contrast this
with subprogramal behaviour, where, to a large extent, the
programmer is able to reason precisely about the software
behaviour by reviewing the source code. The execution
time of source code, on the other hand, depends not only on
the code, but also on the compiler, the target hardware, and
interactions with other parts of the system.

To obtain confidence in the timing behaviour of a real-time
system, engineers typically measure the end-to-end
execution time of major software components such as
partitions and tasks during system tests. These

measurements reveal how often, if at all, execution time
budgets are exceeded.

Recording a series of end-to-end execution time
measurements allows engineers to see the distribution of
execution times for each major software component and
also the high-water mark: the longest execution time that
was actually observed. This is often used as an indicator of
the worst-case execution time, and gives some degree of
confidence in the timing behaviour of the system.

In this paper, we examine the process of software execution
time analysis, verification, and optimization to achieve
within-budget execution times. In Section 2, we discuss the
limitations of high-water mark measurements and outline
why it is important to obtain more detailed timing
information. In Section 3, we present a proven, effective
and efficient strategy aimed at resolving the problem of
execution time budget overruns. In Section 4 we outline the
results of a study where this strategy was applied.

2 Why detailed timing information is
important
There is a fundamental issue inherent in the simple end-to-
end measurements used to obtain high-water mark
execution times. The high-water marks may not reflect the
longest time that the code could take to execute. This
typically happens when the longest path through the code
has not been exercised by the tests.

While code coverage tools can be used to make simple
checks that the available tests cover all of the code, for
example statement, condition and decision coverage, it is
possible, and in fact is often the case, that the longest path
through the code has not been executed by the tests. This is
due to different sections of code taking their longest
execution times at different times, and for different values
of input data.

For non-trivial code, it is very hard to devise tests that are
certain to drive the code down its longest path. This is
because the number of distinct paths increases
exponentially with the number of decision points in the
code. Further, when there are loops in the code, it is not in
general possible to tell from end-to-end measurements,
whether the loops have executed for their maximum
possible number of iterations.

End-to-end execution time measurements are useful in
obtaining basic confidence in system timing behaviour;
however, they are not a reliable indicator that execution

122 Execut ion Time: Analysis, Ver i f icat ion and Opt imizat ion for Rel iable Systems

Volume 30, Number 2, June 2009 Ada User Journal

time budgets will always be met once the system is
deployed. Over-reliance on these end-to-end measurements
can result in operational problems with deployed systems
that can eventually and painstakingly be traced back to
budget overruns. All too often, these are the hardest and
most expensive problems to solve due to the intermittent
nature of the faults.

Further, as software is developed, and more features are
added, for example during software upgrades, the high-
water mark execution times may show that the software
takes too long to execute; however, these measurements
provide no information about which parts of the code
contribute most to the overall execution time, and so they
offer no indication as to what code to optimize. This is a
significant problem, as optimizing code that is not on the
worst-case path is worse than a waste of time; it does not
address the timing issues, and wholesale attempts to re-
write large volumes of code to be more efficient are
extremely costly and may introduce bugs into the software.

An effective way of obtaining much more detailed timing
information is to add lightweight instrumentation points at
each decision point in the code. Whenever it is executed,
each instrumentation point outputs its identifier, which can
be time stamped and recorded by a suitable data capture
device [1]; thus running a series of tests on the
instrumented system results in the creation of a timing
trace. By combining timing measurements from the trace
data with structural information obtained from analysis of
the code, it is possible to determine a wealth of information
about the timing behaviour of the software, including:

o The worst-case execution time of the software, even if
the worst-case path has not actually been executed
during testing.

o How many times each subprogram and sub-path was
executed during testing. If some sub-paths have not
been covered, then there are gaps in testing which
should be addressed.

o The maximum number of iterations for each loop.
These can be compared with predictions to see if the
expected maximum number of iteration is seen, or
even exceeded in practice.

o Which lines of code are on the worst-case path, and
equally important, which ones aren’t and so do not rate
as candidates for optimization.

o How much each subprogram and each sub-path
contributes to the worst-case execution time.
Identifying the sections of code with high contributions
to the worst-case execution time, so called worst-case
hotspots, is an excellent way of finding the best
candidates for optimization when the overall execution
time needs to be reduced.

o How the end-to-end execution times of each
subprogram vary over the different tests, and hence
show the correlation between particular test cases and
long execution times.

For commercial scale applications, it would be possible
although extremely laborious to instrument programs by
hand; however, the volume of trace data typically produced
would make manual attempts to combine trace data with
program structural information infeasible. Fortunately, the
tasks of program instrumentation, trace processing,
combining trace data with program structural information,
data mining, and presentation are all amenable to
automation. Automated execution time and performance
measurement tools, such as the RapiTime toolset [2] from
Rapita Systems Ltd. provide an integrated solution to these
problems.

The availability of detailed timing information has the
following benefits:

o It enables engineers to take a systematic and scientific
approach to obtaining confidence in the timing
behaviour of the system. As opposed to spending a
great deal of time and effort trying to track down
intermittent timing bugs revealed post deployment.

o Detailed information about the contribution of
subprograms and blocks of code to the worst-case
execution time, enables worst-case hotspots to be
identified that form potential candidates for
optimization.

o ”What-if?” analysis quantifies the maximum
performance gains obtainable by optimizing selected
software components. Together, with hotspot analysis,
this ensures that optimization effort is only applied
where it will have the maximum benefit in terms of
reducing the overall execution time, and ensuring
correct timing behaviour of the system.

3 Optimization strategy
When detailed execution time measurements are taken
during extensive testing, they can highlight problems where
certain software components overrun or have the potential
to overrun their budgets. Such problems can occur during
initial system development, or as a result of adding new
functionality as part of a mid-life upgrade. When faced
with the problem of a software component that overruns its
execution time budget, it is essential that a systematic and
scientific approach is taken to resolving the problem. The
following sections describe a proven, effective and efficient
strategy for dealing with the problem of execution time
budget overruns:

3.1 Execution time budget re-allocation
The simplest and most cost effective solution to execution
time budget overruns is to increase the execution time
budget, at the expense of some other software component
that has been shown not to require its entire execution time
budget. For this re-allocation to be effective, it is of course
important to have accurate timing information about all of
the software components in the system, otherwise the
timing issue is simply shifted from one component to
another.

R. I . Davis, I . Broster 123

Ada User Journal Volume 30, Number 2, June 2009

If budget re-allocation alone cannot be used to solve the
problem, then the next course of action is normally
software optimization. We note that in a system with many
components, for example multiple partitions and tasks, not
all of the execution time reduction required need come
from the overrunning component. A mixture of budget re-
allocation and optimization could be more effective, as
assessing a number of software components provides more
scope for finding subprograms which contribute
significantly to the worst-case execution time, and yet can
be simply and easily optimized.

3.2 Selecting candidates for optimization
It is important to be clear about the goal of optimization. To
achieve reliable timing behaviour, the worst-case execution
time of a software component must be within the specified
execution time budget; hence we are interested in
optimizing the worst-case execution time, not the average-
case execution time. Optimizing for the worst case is
different from optimizing for the average case. It requires a
focus on code on the worst-case path, which is often not the
same as the code that executes most frequently.

Many well known optimizations, while excellent for
improving average-case performance actually make the
worst-case execution time worse. For example, early exits
from loops can reduce the average number of iterations of a
loop, reducing the average-case execution time. By
contrast, when the worst case is considered, adding a
conditional test for an early exit from a loop does not
change the maximum number of iterations that the loop can
take; however, it does add additional code that is executed
on every iteration of the loop increasing the worst-case
execution time.

Optimization is a compromise between several different
factors, in particular: execution time, code and memory
space, readability, maintainability and effort. For example,
some optimizations may lead to code structures that are
very hard to maintain but result in a significant reduction in
execution time. The key to an effective optimization
strategy is to prioritize those optimizations where the
minimum effort, and the minimum amount of compromise
in other factors, is required to gain the maximum benefit in
terms of execution time reduction. In this respect, access to
detailed timing information is necessary to manage the
optimization process effectively.

Firstly, it is important to identify, those subprograms or
sections of code that contribute the most to the overall
worst-case execution time. These worst-case hotspots
represent potential candidates for optimization.

Worst-case hotspot analysis of complex applications shows
a common trend, typical we see that:

o Most subprograms are not actually on the worst-case
path, and so contribute nothing to the worst-case
execution time. Optimization of these subprograms
would not reduce the worst-case execution time at all.

o Many subprograms contribute a small amount to the
worst-case execution time and so do not represent

good candidates for optimization. Expending effort
reducing the execution time of a subprogram that
contributes less than 1% to the total is unlikely to be
worthwhile.

o A small number of subprograms contribute a large
fraction of the overall worst-case execution time and
are therefore potential candidates for optimization.

Using worst-case hotspot analysis, engineers can easily
identify the relatively small number of subprograms where
optimization could potentially have a large impact on the
overall worst-case execution time. However, before
reviewing the source code of the top 10 to 20 candidates for
optimization, it is important to ask the following questions:

“What if the execution time of this subprogram were
reduced by 50%, 80% or even 100%, what would the effect
on the overall worst-case execution time be?”

Asking this question is important, because even though a
subprogram may be a worst-case hotspot, its optimization
may not necessarily lead to a significant reduction in the
overall worst-case execution time if by optimizing that
code, the worst-case path switches to another path. For
example, consider the code fragment below:

If some_condition then
 A; -- in worst-case path. Takes 10 ms
else
 B; -- not in worst-case path. Takes 5ms
end if;

In this example, reducing the execution time of subprogram
A by more than 5 ms, switches the worst-case path to
subprogram B, therefore both subprograms A and B need to
be optimized together to reduce the worst-case execution
time further.

Detailed evidence indicating where optimization will have
the maximum benefit, and the extent to which optimization
can be expected to reduce the worst-case execution time,
enables effective management of the optimization process.
Typically, a small number of candidate subprograms are
selected for optimization. The source code for these
subprograms is then reviewed and prototype optimizations
implemented.

After completing the prototype optimizations it is necessary
to determine what was actually gained. This can be
achieved by repeating the timing measurement and analysis
process to quantify the reduction in the overall worst-case
execution time. Once this second set of results has been
obtained, then a decision can be made as to which
optimizations to keep. If the gain is not significant
compared to the compromise in other factors, such as
maintainability, then a prototype optimization may be
discarded.

Finally, if the results show that the optimizations have
resulted in the execution time budget being met, then the
prototyped optimizations can be included in the main code
base. If the execution time budget is still exceeded, then
further candidates for optimization can be examined, or

124 Execut ion Time: Analysis, Ver i f icat ion and Opt imizat ion for Rel iable Systems

Volume 30, Number 2, June 2009 Ada User Journal

budget re-allocation and optimization of another sub-
system considered.

To summarise, a proven strategy for resolving execution
time budget overruns is as follows:

1. Obtain detailed timing information via measurement of
on-target execution times, and analysis of the code
structure.

2. Re-allocate execution time budgets where possible.
3. Select candidates for optimization based on their

contribution to the overall worst-case execution time.
4. Quantifying the maximum potential gains by

determining what the impact on the overall worst-case
execution time would be if the execution time of each
candidate were substantially reduced.

5. Prototype optimizations for the best candidates, i.e.
those with the largest potential gains.

6. Quantify the worst-case execution time reductions
achieved via timing measurements on the target.

7. Adopt the most effective optimizations into the
development code.

4 Hawk Mission Computer: Operational
Flight Program
This section describes how the above strategy was applied
in a study performed by engineers from Rapita Systems
Ltd. and BAE Systems, aimed at reducing the worst-case
execution time of software components in the Operational
Flight Program of the BAE Systems’ Hawk Mission
Computer1. For a full description of this study see [3].

The Operational Flight Program is written in Ada and
consists of hundreds of thousands of lines of code divided
into 25 partitions, themselves divided into tasks, executed
in a cyclic schedule. This system was running close to
capacity, in terms of available execution time. In order to
provide capacity for new functionality, a study was
conducted to identify optimization opportunities that would
reduce the worst-case execution time of the system by at
least 10%; thus avoiding the need for an expensive
hardware upgrade.

Previous efforts at understanding the timing behaviour of
the system had been based on determining the execution
time of each partition via high-water marks measured on
the target microprocessor. A typical situation was that
painstaking optimization of a subprogram would result in
unit tests showing a significant reduction in execution time
while making little or no impact on the overall high-water
mark. In contrast, simpler optimizations could sometimes
have a significant impact, reducing the high-water mark
readings. This occurred when, in the first case, the code
was not actually on the worst-case path, and in the second
case, when the subprogram was both on the worst-case path
and called a large number of times on that path.

1 Hawk is a fast jet trainer, famously flown by the Red Arrows display
team.

In all, 5 out of 25 software partitions were analysed in the
study, amounting to over 100,000 lines of Ada code. Three
of the partitions, A, B and C were comprehensively
analysed, with improvements and targets for optimization
selected on the basis of the information provided using the
RapiTime toolset. Optimizations were prototyped for these
partitions and the performance analysis re-run to quantify
the improvements obtained.

The detailed timing information provided by RapiTime
showed that 1.2% of the code contributed more than 29%
of the overall worst-case execution time. These blocks of
code were obvious targets for optimization. A detailed
study of some 1250 lines of code identified specific targets
for optimization and hence opportunities for execution time
reduction. The best candidates were prototyped and
implemented and the new system analysed to verify the
effectiveness of the changes. The optimized partitions had
an execution time that was over 23% smaller than before,
creating headroom for additional functionality without the
need for costly hardware upgrades.

Figure 1: Reduction in worst-case execution time achieved

using RapiTime

5 Summary and conclusions
This paper discussed how a focus on worst-case execution
times is important in achieving reliable system timing
behaviour. The limitations of high-water mark
measurements were discussed, and the need for more
detailed timing information explained. The key
contribution of this paper is the description of a strategy for
managing and resolving the problem of execution time
budget overruns via a focus on worst-case execution times.
This strategy was proven to be both efficient and effective
in a study of an Avionics system implemented in Ada (the
Operational Flight Program of the BAE Systems’ Hawk
Mission Computer).

References
[1] “RTBx1200 Series Trace Data Loggers” Rapita Systems

Ltd. Data sheet available from www.rapitasystems.com.

[2] “RapiTime White Paper” 12th June 2008, available from
www.rapitasystems.com.

[3] G. Bernat, R.I. Davis, N. Merriam, J. Tuffen, A. Gardner, M.
Bennett, D. Armstrong. “Identifying Opportunities for
Worst-case Execution Time Reduction in an Avionics
System”. Ada User Journal pp. 189-194, Volume 28,
Number 3, Sept. 2007

 125

Ada User Journal Volume 30, Number 2, June 2009

Software Fault Tolerance
Patrick Rogers
AdaCore, 207 Charleston St., Friendswood, Texas, USA 77546; email: rogers@adacore.com

Abstract
The following is a summary of the tutorial by that
name provided at the Conference on Reliable
Software Technologies, Ada Europe 2009. Brest,
France. 8-12 June 2009.
Keywords: software, fault tolerance, error recovery,
Ada.

1 Introduction
Today’s extremely demanding applications are made
possible by the flexibility and power of digital computer
technology. For example, advanced fighter aircraft are
made inherently unstable to produce extreme
manoeuvrability. Only the speed and flexibility of
computer technology make it possible to control such
aircraft in flight; a human pilot can not do so.

Unfortunately, errors in large complex systems appear
unavoidable with current technology, even given stringent
development and testing procedures. Complexity is such
that full testing is not feasible and complete proofs of
correctness are at best inherently limited by the potential
for specification faults.

Tolerating software imperfections is very difficult, and
successful approaches used to tolerate hardware faults do
not necessarily apply. Typical fault tolerant systems design
techniques can not cope with the complexity and scale of
current and future applications. Their inadequacy stems
from their assumptions: correct algorithm design,
knowledge of all possible failure modes, complete
knowledge of internal interactions of the components, and
complete knowledge of external interactions with the
environment. In particular, although the components
individually may be well understood, at the point of
component and subsystem interaction overall complexity
comes into play, precluding anticipation of all possible
faults. The problem is, therefore, one of handling
unanticipated faults.

1.1 Faults, Errors, and Failures
The concepts of fault, error, and failure are directly linked
in a causal relationship: faults lead to errors, which
ultimately lead to failures. A fault is a physical defect or
flaw within a hardware or software component. This is
essentially the definition found in a typical dictionary. An
error is the manifestation of a fault: a deviation from
accuracy or correctness in state. A failure is an externally
observable event representing a deviation from the
authoritative service specification.

1.2 Causes of Faults
Specification mistakes are considered the cause of the
majority of safety mishaps. Specification mistakes include
architectural flaws as well as hardware and software design
specification errors

Implementation mistakes are the intuitive cause of faults.
These mistakes include poor design and construction, poor
component selection, and poor software coding.

1.3 Characteristics of Faults
 ‘Transient’ faults are temporary. They are caused by
circumstances or events that cannot be recreated in a
controllable way, such as gamma rays that flip a bit in
memory, or highly unusual combinations of events.

 ‘Intermittent’ faults enter the system, stay active for a
while and then disappear, only to return again.

‘Permanent’ faults are completely repeatable and (as the
name indicates) always cause an associated failure (using
the standard causal definition).

1.4 Failure Hypothesis
The chosen system failure model is a critical design
decision because it drives the use of redundancy for
tolerating faults. This assumption of a failure model is
called the ‘failure hypothesis’. For a given failure
hypothesis, the number of redundant components required
can be calculated. The choice of failure hypothesis is one
of the central decisions about the form of fault tolerance to
be used. Architectural decisions are made on the basis of
the number and kinds of faults to be tolerated. In all cases,
fault tolerance mechanisms are built to handle the number
of faults required, and no more: if more faults are
experienced than expected, they will not be handled. As
will be seen, some architectures directly detect when the
number of tolerable faults is exceeded; others require
additional facilities.

2 Dealing With Faults
There are two ways to deal with faults: fault prevention and
fault tolerance. Fault intolerance aims to prevent the
existence of faults. Fault tolerance is intended to handle
faults when they occur in an executing system.

2.1 Fault Prevention
There are two means of fault prevention: avoiding their
introduction during production, and removing them before
deployment. In both cases faults are dealt with prior to
execution. ‘Fault avoidance’ is a design activity that
attempts to prevent faults from being introduced into the
deployed system. ‘Design’ is intended to include all

126 Software Fault Tolerance

Volume 30, Number 2, June 2009 Ada User Journal

production phases of the life cycle, including requirements
definitions, design methods, design reviews, programming
techniques, testing, and other quality control measures.

‘Fault removal’ is a design (i.e., implementation) activity
focused upon testing. Testing is inherently limited by the
inability to test under completely realistic conditions, by
the potential for specification errors, and, of course, by the
fact that testing can only show the presence of errors, not
their absence.

2.2 Fault Tolerance
In contrast to fault avoidance, fault tolerance schemes
consider faults inevitable and deal with them after
deployment. As a run-time activity, therefore, fault
tolerance may be defined as the ability of a system to
continue to perform in the presence of faults.

If faulty software or hardware components are to be dealt
with during execution, some additional resource is
necessary. Therefore, fault tolerance is based on one of
several forms of redundancy.

3 Software Redundancy Mechanisms
There are two general approaches to achieving fault
tolerance: a ‘static’ architecture and a ‘dynamic’
architecture. In a static architecture, a given function is
executed by several computing resources, and a correct
result is selected from one of the outputs produced. The
term ‘static’ is applied to this approach because the result
of the adjudication of the outputs does not affect the
architecture; subsequent provision of a result is achieved
using the same computing resources (in the archetypal
usage).

In a dynamic fault tolerance architecture, a given function
is executed by a single computing resource. If a result
cannot be produced, alternate resources are used to
compute the result. The term ‘dynamic’ is applied because
failure to produce a result directly affects the architecture:
redundant resources detect faults and alter the architecture
accordingly, such that subsequent invocation does not use
the same (faulty) computing resources.

3.1 Error Recovery
Error (fault) recovery is the central component of dynamic
fault tolerance strategies: it must transform a faulty system
into one with a valid, perhaps degraded, state. Two
approaches to fault recovery have been identified:
backward error recovery and forward error recovery.

Backward error recovery mechanisms attempt to simulate
the reversal of time to a point at which the system state was
error-free. They do so by saving state when it is assumed
to be valid, and then restoring that state as necessary. The
act of saving state is called ‘taking a checkpoint'.

Forward error recovery mechanisms attempt to make
selective changes to an erroneous state, to move to a new,
error-free state. Most modern programming languages
provide direct support for forward error recovery via
exceptions. As a form of forward error recovery,

exceptions are not applicable to design faults, since such
faults are unanticipated.

3.2 Software Mechanisms for Tolerating Software
Design Faults
Continuity of service in the presence of software faults
requires at least one additional component capable of
meeting the functional specification. Simple replication,
however, as applied for hardware fault tolerance, would
simply replicate the faulty software.

To avoid the occurrence of the same fault, and on the
assumption that software design faults are indeed
permanent, this additional component must be implemented
differently from the one that failed (although it will be
designed to the same specification). Software diversity is,
therefore, the underlying principle of the systematic
mechanisms described in the following sections. Two
approaches to diversity have been identified: ‘design’
diversity, and ‘data’ diversity. By far, design diversity is
the most widely explored and used. In that approach,
completely separate, distinct designs and implementations
are used, with the expectation that the differences will
result in different faults being exhibited (if any).

3.2.1 N-Version Programming
N-Version Programming (NVP) is the software instance of
the N-Modular Redundancy (NMR) approach used to
handle hardware faults. In the NVP approach, N separate,
complete variants are developed, and each is executed in
parallel whenever the component is invoked. The N results
are compared at cross-check points to detect faults, usually
using a majority-based voting adjudicator. Faulty variants
are detected by their differences from the other variants’
outputs, and are masked out by the adjudicator. As in
NMR, the value of N is chosen so that the required number
of faults may be tolerated. The value of N is selected such
that the number of faults to be tolerated is less than the
majority represented by N.

3.2.2 Recovery Blocks
Recovery blocks are the classic example of dynamic
redundancy, in that reconfiguration by selection of an
alternate variant does not occur until a fault is detected.

In the recovery block mechanism, complete stand-alone
programs are not implemented. Rather, for a given unit of
functionality, a primary variant is implemented as a
module, instead of a complete program; design diversity is
incorporated via alternate modules. The primary module is
the only one executed under normal conditions. Only when
an error is detected by application of an acceptance test do
alternative variants execute, and even then only one
executes at a time. Alternatives are successively called,
and the acceptance test successively applied against the
results, until either a satisfactory result is obtained or no
remaining alternate variants are available (in which case the
failure is propagated). Hypothetical syntax for expressing
recovery blocks is shown below:

P. Rogers 127

Ada User Journal Volume 30, Number 2, June 2009

ensure acceptance_test by primary_variant
 else by variant_2
 else by variant_3
 …
 else by variant_N
 else error

Central to the concept is that the current, valid state is
saved prior to execution of the primary module. This saved
state is successively restored prior to the execution of each
of the alternative modules whenever the acceptance test
fails. Therefore, recovery blocks use backward error
recovery.

3.2.3 Error Recovery in Concurrent Applications
The facilities examined for use within a process are not
applicable by themselves in co-operative concurrent
programming environments. They are limited because
errors in co-operating processes can propagate amongst the
group, since, by definition, such processes communicate.
Error recovery in one process must, therefore, involve all
that have communicated with that process because their
individual states are mutually dependent. Recovery blocks
et cetera do not manage recovery activities beyond that of a
single thread of control.

Atomic Actions
Atomic Actions are a means of fault propagation control
and assessment. They achieve containment by the
enforcement of semantics requiring their effects to be both
indivisible and instantaneous when viewed by processes
not involved in the action. Specifically, no data flow
between application processes during an atomic action
unless they are participants in that action and partial
execution of an action cannot be observed by non-
participating processes. The Ada extended rendezvous is
an atomic action involving only two processes (not

considering nesting). More generally, atomic actions can
be built to handle as many processes as necessary.

Conversations
Conversations are a structural combination of atomic
actions with backward error recovery (in the form of
recovery blocks) for co-operating processes. Conversations
ensure a consistent recovery line because each process
takes a checkpoint upon entrance to the conversation.
Whenever one of the processes involved suffers a fault (i.e.,
does not pass the local acceptance test) all processes roll-
back to the common checkpoint, ensuring consistency of
the processes’ recovery. Furthermore, conversations form
a synchronisation boundary to ensure consistency, in that
all processes leave the conversation together with a
common view of the activities within.

4 Sample Concrete Implementations
Backward error recovery can be supported via reusable
components because it is independent of the application. In
this part of the tutorial we examined reusable Ada 2005
implementations of backward error recovery in the form of
state management, recovery blocks, and conversations.

5 Concluding Remarks
After reviewing the goals of the tutorial and the tutorial
concluded with a discussion of whether design diversity is
still considered a viable technique, with a number of
references provided for both sides of the debate.

6 Suggested Reading
M. Lyu, Ed. Software Fault Tolerance, in Trends In
Software, vol. 3, Chichester: John Wiley & Sons, 1995.

L. Pullum, Software Fault Tolerance Techniques &
Implementation: Artech House, Inc., 2001.

A. Burns and A. J. Wellings, Real-Time Systems and
Programming Languages, 3rd. ed: Addison-Wesley, 2001.

 129

Ada User Journal Volume 30, Number 2, June 2009

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Gem #39: Efficient Stream I/O for
Array Types
Pat Rogers, AdaCore
Date: 9 June 2008

Abstract: Reading and writing values from/to streams is easy
with Ada’s “stream attributes” but for some array types the
default attribute implementations could be made more
efficient. In this Gem we show how the user can define these
more efficient implementations.

Let’s get started…
Ada has the notion of “streams” that are much like those of
other languages: sequences of elements comprising values of
arbitrary, possibly different, types. Placing a value into a
stream is easy using the language-defined “stream attributes”.
The programmer simply calls the type-specific attribute
routine and specifies the stream and the value. For example, to
place an Integer value V into a stream S, one could write the
following:

Integer’Write (S, V);

Strictly speaking, S is not a stream but, rather, an access value
designating a stream. The Integer’Write routine will convert
the value of V into an array of “stream elements” – essentially
an array of storage elements – and then put them into the
stream designated by S. Actually, placing the bytes into the
stream is accomplished by dynamically dispatching to a
procedure specific to the stream representation.
Although this discussion is couched in terms of placing values
into streams, you should understand that reading values from
streams is very similar to writing them and that the same
efficiency issue and solution apply.
For composite types, such as array or record types, each
component value is individually written to the stream using the
approach described above. Consider an array type “A”
specifying Integer as the component type. The default version
of A’Write will call Integer’Write for each component. Thus,
each Integer value is converted to the array of storage elements
and written to the stream. This component-driven behavior is
necessary because programmers can define their own versions
of the stream attributes, and naturally will expect them to be
called even when the types in question are used as component
types within enclosing array or record types.
But suppose the array type is structurally just a sequence of
contiguous bytes, and the component type does not have a
user-defined stream attribute defined. In that case, calling the
component-specific attribute for each array component is
unnecessary and inefficient.
For example, suppose you are working with Military-Standard
1553B for communicating application values between remote
devices. Ultimately, Mil-Std-1553B sends and receives 32-

word buffers, where each word is an unsigned 16-bit value.
Suppose as well that you want to write and read these buffers
to and from streams. We can override the stream attributes so
that a whole buffer value is written directly to the stream
instead of writing it one buffer component at a time.
The buffer type could be declared as follows:

 type Buffer is array (1..32) of Interfaces.Unsigned_16;

We can then override the stream attributes for type Buffer.
First we declare the routines:

 procedure Read_Buffer
 (Stream : not null access
 Ada.Streams.Root_Stream_Type’Class;
 Item : out Buffer);

 procedure Write_Buffer
 (Stream : not null access
 Ada.Streams.Root_Stream_Type’Class;
 Item : in Buffer);

All such stream attributes have the same formal parameter
types, i.e., an access parameter designating the class-wide root
stream type defined by the language, and the type to be written
to, or read from, that stream.
We then “tie” the routines to the stream attributes for type
Buffer, thereby overriding the default versions:

 for Buffer’Read use Read_Buffer;
 for Buffer’Write use Write_Buffer;

The language-defined root stream type and array element type
are declared in package Ada.Streams:

package Ada.Streams is

 type Root_Stream_Type is abstract
 tagged limited private;

 type Stream_Element is mod 2 ** Standard’Storage_Unit;
 type Stream_Element_Offset is range
 -(2 ** (Standard’Address_Size - 1)) ..
 +(2 ** (Standard’Address_Size - 1)) - 1;
 …
 type Stream_Element_Array is
 array (Stream_Element_Offset range <>) of
 aliased Stream_Element;

 procedure Read
 (Stream : in out Root_Stream_Type;
 Item : out Stream_Element_Array;
 Last : out Stream_Element_Offset)
 is abstract;

 procedure Write
 (Stream : in out Root_Stream_Type;

130 Ada Gems

Volume 30, Number 2, June 2009 Ada User Journal

 Item : Stream_Element_Array)
 is abstract;
 …
end Ada.Streams;

The user-defined Read_Buffer and Write_Buffer routines will
call these stream-oriented Read and Write procedures (via
dynamic dispatching) once for the entire Buffer array value,
instead of calling them once per array component. Both
routines are very similar, so we will omit the body of of
Read_Buffer for the sake of brevity and show just the
implementation of Write_Buffer:

 procedure Write_Buffer
 (Stream : not null access
 Ada.Streams.Root_Stream_Type’Class;
 Item : in Buffer)
 is
 Item_Size : constant Stream_Element_Offset :=
 Buffer’Object_Size / Stream_Element’Size;

 type SEA_Pointer is
 access all Stream_Element_Array (1 .. Item_Size);

 function As_SEA_Pointer is
 new Ada.Unchecked_Conversion (
 System.Address, SEA_Pointer);
 begin
 Ada.Streams.Write (
 Stream.all,
 As_SEA_Pointer (Item’Address).all);
 end Write_Buffer;

In the above, we cannot simply convert the value of Item, of
array type Buffer, to a value of type Stream_Element_Array,
so we work with pointers instead. We define an access type
designating a Stream_Element_Array that is the exact size, in
terms of Stream_Elements, of the incoming Buffer value.
Note the use of the Buffer’Object_Size attribute in that
computation. That attribute gives us the size of objects of the
type Buffer, a wise approach since in general the size of a type
may not equal the size of objects of that type. We can then use
unchecked conversion to convert the address of the formal
parameter Item to this access type. Dereferencing that
converted access value (via .all) gives us a value of type
Stream_Element_Array that we can pass to the call to
Ada.Streams.Write.
Thus we avoid processing each component of type Buffer,
instead writing the entire Buffer value at once. That’s a much
more efficient approach. As we said earlier, reading values
from streams is analogous to writing values to them and only
differs in obvious, minor ways. That is true for using the
default stream attributes as well as in the implementation of
Read_Buffer.

Gem #50: Overload Resolution
Bob Duff, AdaCore
Date: 27 October 2008

Abstract: This Gem discusses some language-design issues
related to overload resolution.

Let’s get started…
Ada allows overloading of subprograms, which means that
two or more subprogram declarations with the same name can
be visible at the same place. Here, “name” can refer to
operator symbols, like “+”. Ada also allows overloading of
various other notations, such as literals and aggregates.
In most languages that support overloading, overload
resolution is done “bottom up” — that is, information flows
from inner constructs to outer constructs. (As usual, computer
folks draw their trees upside-down, with the root at the top.)
For example, if we have two procedures Print:

 procedure Print (S : Sequence);
 procedure Print (S : Set);
 X : Sequence;
 …
 Print (X);

the type of X determines which Print is meant in the call.
Ada is unusual in that it supports top-down overload resolution
as well:

 function Empty return Sequence;
 procedure Print_Sequence (S : Sequence);
 function Empty return Set;
 procedure Print_Set (S : Set);
 …
 Print_Sequence (Empty);

The type of the formal parameter S of Print_Sequence
determines which Empty is meant in the call. In C++, for
example, the equivalent of the “Print (X)” example would
resolve, but the “Print_Sequence (Empty)” would be illegal,
because C++ does not use top-down information.
If we overload things too heavily, we can cause ambiguities:

 function Empty return Sequence;
 procedure Print (S : Sequence);
 function Empty return Set;
 procedure Print (S : Set);
 …
 Print (Empty); -- Illegal!

The call is ambiguous, and therefore illegal, because there are
two possible meanings. One way to resolve the ambiguity is to
use a qualified expression to say which type we mean:

 Print (Sequence’(Empty));

Note that we’re now using both bottom-up and top-down
overload resolution: Sequence’ determines which Empty is
meant (top down) and which Print is meant (bottom up). You
can qualify an expression, even if it is not ambiguous
according to Ada rules — you might want to clarify the type
because it might be ambiguous for human readers.
Of course, you could instead resolve the “Print (Empty)”
example by modifying the source code so the names are
unique, as in the earlier examples. That might well be the best
solution, assuming you can modify the relevant sources. Too
much overloading can be confusing. How much is “too much”
is in part a matter of taste.
Ada really needs to have top-down overload resolution, in
order to resolve literals. In some languages, you can tell the
type of a literal by looking at it, for example appending “L”
(letter el) means “the type of this literal is long int”. That sort

Ada Gems 131

Ada User Journal Volume 30, Number 2, June 2009

of kludge won’t work in Ada, because we have an open-ended
set of integer types:

 type Apple_Count is range 0..100;
 procedure Peel (Count : Apple_Count);
 …
 Peel (20);

You can’t tell by looking at the literal 20 what its type is. The
type of formal parameter Count tells us that 20 is an
Apple_Count, as opposed to some other type, such as
Standard.Long_Integer. [Technically, the type of 20 is
universal_integer, which is implicitly converted to
Apple_Count -- it's really the result type of that implicit
conversion that is at issue. But that's an obscure point -- you
won't go _too_ far wrong if you think of the integer literal
notation as being overloaded on all integer types.]
Programmers sometimes wonder why the compiler can’t
resolve something that seems obvious. For example:

 type Apple_Count is range 0..100;
 procedure Slice (Count : Apple_Count);
 type Orange_Count is range 0..10_000;
 procedure Slice (Count : Orange_Count);
 …
 Slice (Count => 10_000); -- Illegal!

This call is ambiguous, and therefore illegal. But why? Clearly
the programmer must have meant the Orange_Count one,
because 10_000 is out of range for Apple_Count. And all the
relevant expressions happen to be static.
Well, a good rule of thumb in language design (for languages
with overloading) is that the overload resolution rules should
not be “too smart”. We want this example to be illegal to avoid
confusion on the part of programmers reading the code. As
usual, a qualified expression fixes it:

 Slice (Count => Orange_Count’(10_000));

Another example, similar to the literal, is the aggregate. Ada
uses a simple rule: the type of an aggregate is determined top
down (i.e., from the context in which the aggregate appears).

Bottom-up information is not used; that is, the compiler does
not look inside the aggregate in order to determine its type.

 type Complex is
 record
 Re, Im : Float;
 end record;
 procedure Grind (X : Complex);
 procedure Grind (X : String);
 …
 Grind (X => (Re => 1.0, Im => 1.0)); -- Illegal!

There are two Grind procedures visible, so the type of the
aggregate could be Complex or String, so it is ambiguous and
therefore illegal. The compiler is not required to notice that
there is only one type with components Re and Im, of some
real type — in fact, the compiler is not _allowed_ to notice
that, for overloading purposes.
We can qualify as usual:

 Grind (X => Complex’(Re => 1.0, Im => 1.0));

Only after resolving that the type of the aggregate is Complex
can the compiler look inside and make sure Re and Im make
sense.
This not-too-smart rule for aggregates helps prevent confusion
on the part of programmers reading the code. It also simplifies
the compiler, and makes the overload resolution algorithm
reasonably efficient.
How smart is “too smart” is in part a matter of taste. In fact, I
would make the Ada rules a little bit less smart, if I were
redesigning it from scratch. If we replaced the Grind on String
procedure with:

 procedure Grind (X : Integer);

then the above call would resolve, because the compiler
does use the fact that the aggregate must be some sort of
aggregate-ish type, like a record or array. I would prefer the
call to still be ambiguous in that case, but by and large, Ada
gets the rules just about right, so something that is confusingly
ambiguous to humans is usually ambiguous by the Ada rules.

132

Volume 30, Number 2, June 2009 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Peter Dencker
Steinäckerstr. 25
D-76275 Ettlingen-Spessartt
Germany
Email: dencker@web.de
URL: ada-deutschland.de

Ada-France
Association Ada-France
c/o Jérôme Hugues
Département Informatique et Réseau
École Nationale Supérieure des Télécomunications
46, rue Barrault
75634 Paris Cedex 135
France
Email: bureau@ada-france.org
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Saab Systems
S:t Olofsgatan 9A
SE-753 21 Uppsala
Sweden
Phone: +46 73 437 7124
Fax: +46 85 808 7260
Email: Rei.Strahle@saabgroup.com
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.ch

