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framework for the development of certifiable software. 
The driving idea is to piggyback on two of the most 
active and innovative trends that have recently 
emerged in the software engineering community: (1) 
Effective collaboration through open source 
communities, and (2) Empowering development 
methodologies such as Agile, Lean and eXtreme 
programming. 

• Ada Programming Language Use in Lockheed 
Martin – An Update 

Judith Klein, Lockheed Martin (USA) 

The United States Federal Aviation Administration’s 
mission is to provide a safe, secure, and efficient 
global aviation system that contributes to national 
security and the promotion of U.S. aviation. To that 

end, FAA depends on large, complex, highly available 
software systems to manage the vast National Airspace 
System (NAS). Ada is used extensively in the 
development of said systems. As a system architect on 
En Route Automation Modernization (ERAM), I will 
discuss advantages and challenges encountered in the 
development of ERAM. 

An informal study on the topic of Ada’s use in 
Lockheed Martin will provide the basis for discussion. 
The kinds of programs/projects using Ada, the size of 
the Ada development efforts, the estimated life span of 
the programs/projects, and general comments on 
vendors supplying products in support of the 
development effort are aspects in the survey. 
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The Boeing Company, Seattle, WA, USA;  Tel: +1 253 657 5338; email: john.s.harbaugh2@boeing.com 
 

Abstract 
Once fielded, software systems enter the maintenance 
phase of their life cycle.  During this phase, changes 
will be made to improve a system’s functionality.  An 
emphasis on functionality alone can lead to a 
situation where structural qualities assume a lower 
priority.  Software developed under these conditions 
can, over time, become more difficult, and therefore 
more costly, to maintain.  This paper presents the 
results of a recent effort by The Boeing Company to 
improve the data recording and extraction capability 
of a large Ada 95 Command, Control and 
Communications (C3) system.   It shows how the 
reliability and structural qualities of the software 
were improved using the software engineering 
perspectives of design patterns and refactoring.  
These improvements led in turn to a high level of 
maintenance-phase productivity for current and 
future work. 

1   Introduction 
The technical details of this effort were influenced by the 
software engineering topics of “design patterns” 
popularized by Gamma et al. [1], and from the code 
maintenance practice known as “refactoring” and described 
by Fowler [2]. The synthesis of these topics was first 
discussed by Kerievsky [3].  

Both of these approaches work best when applied as first 
principles.  During the course of our work, certain 
principles kept proving useful to guide our efforts.  From 
Design Patterns, two principals kept occurring:  One that 
favors encapsulating those parts of the system that change, 
and another that favors aggregation over inheritance.  From 
refactoring, we realize the continuing benefits of low 
coupling and high cohesion for any large computer 
program.   

A third influence on our work was the Ada 95 language 
itself.   Since our work was to be done in Ada 95 and there 
were relatively few guides or examples of design patterns 
as realized in Ada 95 (unlike C++ or Java), we needed to 
study the problem at a fundamental level.  The result 
simultaneously improved the architecture qualities of the 
software while causing minimal changes to the existing 
mission computing subprograms. By taking advantage of 
the uniquely Ada features of hierarchical packages and 
subtyping, typically no more than minor specification 
changes were required. 

2   Original Design 
Our experience for this paper comes from work done on a 
large (>5MSLOC) Command, Communications, and 
Control (C3) computing system that was implemented 
using the Ada 95 computing language [4].  This system 
controls a variety of sensors, and fuses their information 
with information from various data links.  Crews of trained 
operators control the overall system using a variety of 
display consoles.  During a mission, data from these 
sources are recorded as Ada streams to a Mission Data 
Recorder (MDR) for later extraction and analysis.   

Three distinct sources of data are recorded during a 
mission.  Sensor and data link I/O consume the greatest 
bandwidth, and are recorded from the High-Speed Interface 
(HSI) in interface-specific binary formats.   Data from 
applications internal to mission computing are another 
significant contributor to mission data recordings.  
Application data are recorded as Ada streams of either 
record types or tagged types.  Operator console inputs 
account for a third distinct source of recording data.  All 
three recording streams are recorded to the in-flight media, 
then transferred to a mission support center for post-
mission extraction and reporting.   Following a mission, the 
mission support center extracts mission data recording into 
various intermediate formats and distributes them to the 
end. Figure 1 illustrates the overall data flow between these 
activities. 

The original data extraction program ran as a tightly-
coupled process within the mission-computing program, 
sharing data types and subprograms with mission 
computing and requiring all of mission computing be 
operating in order to extract any data.  Furthermore, at 
elaboration each recorded class registered a callback to an 
associated extraction method with a callback registry.  This 
callback was then used by the data extraction subsystem to 
extract the mission data recording into the desired form. 

Our customer wanted to streamline the processing of post-
mission data, and recognized that requiring the entire 
mission-computing program be running in order to perform 
any extraction was a significant bottleneck, one that 
consumed significant computing resources, and required 
several minutes to start.  They desired a solution that would 
allow data extraction to run separately from the mission 
computing software, would be a basis for future product 
development, and could be achievable on a small budget 
and short schedule.  They turned to the Boeing Company 
for our experience with large C3 systems and Ada 
development to deliver a comprehensive solution. 
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Figure 1   Original Recording & Extraction Data Flow 

2.1   Entangling Dependencies 
The original data extraction program was designed as a 
process within the overall mission-computing program.  
This introduced a web of closure dependencies during 
compilation. Examples of this coupling included: 

• Dependence on mission-computing environment 
variables established via shell scripts and checked 
at startup. 

• Distributed system management services – All 
mission-computing processes are controlled by 
distributed system management. 

• Use of CORBA communications – CORBA 
implementation is tightly tied to system 
management and mission computing threading 
architecture. 

• Use of distributed event logging. 
Even though the data extraction process did not use these 
features of mission computing, data extraction could not 
run without them.  Thus, the essential problem we faced 
was not so much functional as it was structural:  How to 
allow the concerns of mission computing to vary 
independently from those of data extraction, while 
minimally affecting the existing code base?   

The sources of this tightly-coupled structure were twofold. 
The first was the way in which the recorded data was 
declared.  The original developers followed the common 
Ada practice of declaring a private type and its primitive 
operations in a single package specification.  Either 
because of the data type’s closure, or because of the closure 
of the package it which it is declared, entangling 
dependencies abounded.   Since the same data type was 
used in both mission computing and data extraction, 
declaring an object of any of these data types would bring 
in their entire closure, i.e., all of mission computing. In 
order to de-couple data extraction from the rest of mission 
computing, the operational dependencies of the objects 
needed to be separated from those of data extraction, with 
the data extraction context dependent on a small set of 
basic data types. 

The second was the coupling caused by indirect execution 
of the class-specific extraction methods via callback.  

When mission computing elaborated at startup, each 
recording client registered its externalization methods as 
callbacks in a common registry.  The data-extraction 
process retrieved these methods as needed, using them to 
read and convert the recorded data to the externalized form.  
For data extraction to run without the remainder of mission 
computing, the externalizations methods needed to be made 
independent of classes with the aforementioned problem 
with dependencies. 

3   Pattern-Based Solution 
3.1   Recordable Type Pattern 
Several design patterns, including strategy, decorator, 
adaptor, and façade, were explored for creating a stand-
alone data extraction capability. The key architectural 
qualities (i.e., variability, extensibility, coupling/cohesion, 
complexity, efficiency) and cost were evaluated to 
determine a preferred approach.  The conclusion was to 
implement a strategy pattern using Ada95 to encapsulate 
the distinct processing needs of the mission computing and 
data extraction.  Figure 2 illustrates our “light weight” 
implementation of the strategy pattern using Unified 
Modeling Language (UML) notation. 

 
Figure 2   Strategy Pattern Implementation 
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Figure 3   Static Publisher Design 

In the context of Ada, we use the solid association arrows 
to indicate a parent/child relationship, and a dashed 
association to indicate simple “withing”.  This convention 
reflects the stronger form of visibility within package 
hierarchies.  In this implementation, the boxes represent 
packages and not actual subclasses, as would be expected 
in a purely object-oriented approach.  For this reason, use 
of inheritance notation would be misleading. 

The strategy class is implemented with a new “recordable 
type” for each application type being recorded.  The 
recordable type is a (potentially) discriminated record type 
with no significant dependency on other mission computing 
data types, and which cannot introduce problematic 
dependencies through closure.  This recordable type is 
declared publicly in a package specification without any 
primitive operations.    

For our system, the strategy was made concrete by 
extending it with two child packages, one for mission 
computing conversion operations, and another to support 
operations specific to data extraction.  Each context (i.e., 
mission computing or data extraction) then “withs in” the 
desired concrete strategy, getting only the methods (and 
closure) needed.   By segregating contextual code in 
separate packages, we can ensure that the mission 
computing program cannot include extraction code and visa 
versa.  If needs change, the pattern easily expands to 
include new concrete strategies.   

In terms of design patterns, hierarchical packages support 
the concept of aggregation.  In Design Patterns, the authors 
recommend favoring aggregation over inheritance.  This 
lightweight implementation takes this advice to the extreme 
by favoring aggregation to the exclusion of inheritance.  
We consider this a light-weight implementation because of 
the lack of inheritance, and because the recordable type is 

public. Consideration was given to making the recordable 
type private, with getter and setter methods for each 
component, but this approach offered no real benefit over a 
publicly declared type. 

We used two approaches to translate mission-computing 
data to a recordable type.  For data in the mission-
computing application layer, conversion routines were 
introduced into the concrete mission computing strategy to 
convert the domain data representation to its recordable 
counterpart.  This minimizes perturbations to the existing 
code base, thereby reducing the potential for introducing 
errors into existing mission computing code 

For the High-Speed Interface (HSI), use of conversion 
routines could have introduced unacceptable processing 
overhead due to the high data rates involved.   Fortunately, 
these data types were already free of entangling 
dependencies internally, but still were problematic because 
of the closure of their declaring packages.  For these types, 
the mission computing type declarations were relocated to a 
strategy package as a recordable type.  The original 
declarations were then replaced with subtypes (for numeric 
types and strings) or derived types (for enumeration types) 
of what was now a recordable type.   Because no additional 
constraints are imposed, the subtype functions as 
essentially a renaming of the recordable type.  Existing 
references to what are now subtypes require nothing more 
than recompilation.   

Due to the unique syntax of enumeration types, it turned 
out to be least invasive to the existing code base to 
redeclare them as derived types rather than subtypes.   
Changes were limited, typically requiring nothing more 
than adding a few explicit type conversions.  Had we used 
subtypes instead, every existing literal value would have 
had to be changed to name the new strategy package. 
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3.2   Static Publishers 
Since data extraction was to become a stand-alone 
program, a registry of extraction callbacks was no longer 
needed.  Instead, a set of statically invoked “publishers” 
replaced the callback registry, as illustrated in Figure 3. 

Here, a package hierarchy was used to aggregate 
functionality common to all publishers, then to general 
groups of publishers, and finally to the individual concrete 
publishers.  As with the recordable types, the package 
hierarchy for publishers is used to aggregate functionality, 
not type extension. Each concrete publisher “withs in” 
recordable extraction methods as needed.  In the interest of 
clarity, Figure 3 shows this relationship only for the 
mission analysis publishers. 

Compared to the previous callback registry, this approach 
is considered to be a more reliable solution, due to the 
determinism and compile-time checking of static method 
invocation. 

4   Conclusions 
By combining the techniques of design patterns and 
refactoring, our team of two developers was able to 
complete a challenging job within an aggressive schedule.  
Understanding the existing code base and settling on an 
implementation consumed approximately 50% of the entire 
effort, with the remainder devoted to code and test.   The 
introduction of the recordable types made it possible to not 
disturb the existing code base.  In fact, all of the existing 
recording and data extraction code was left intact.   
Because of its tight coupling and loose cohesion, the effort 
to remove the existing code and re-qualify the system 
would have consumed the available budget. In the process 
of refactoring, we achieved substantial reuse of existing bit-
level extraction code while enhancing overall code 
maintainability with a design that can easily be extended to 
new publishers in the future. 

The benefits of pattern-based refactoring can be realized in 
any modern, object-oriented language.  Each possesses 
unique properties for encapsulation, name space, 
inheritance, and threading.  Our experience helps confirm 
the value of design patterns, not as cookie-cutter solutions, 
but as guides to reasoning about the problem at hand and 
evaluating potential solutions relative to the 
implementation language. 

The pattern-based design was technically successful and 
was also successful from the perspective of program 
management.  Due to the modular nature of the strategies 
and publishers, project scheduling and tracking was 
straightforward.  The consistent “cookie cutter” form of the 
strategies made it possible to bring in other developers to 
implement individual recordable types as their schedules 
permitted, allowing greater utilization of the entire staff.  

The improved structure gained by applying pattern-based 
refactoring allows existing capabilities to be modified, and 
new ones added with the knowledge that the effort will be 
localized.  Beyond enabling us to meet the cost, schedule 
and quality goals of the current effort, the time spent 
improving the code structure has laid the groundwork for 
future business.    
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Abstract 
This tutorial concerns multi language programming, 
and in particular multi-language programming with 
Ada. We’ll discuss interfacing solutions with native 
languages such as C, C++ and languages running on 
virtual machines such as Java or Python. We’ll also 
consider middleware such as Corba or web services.  
Keywords: C, C++, Java, binding, python, CORBA, 
wsdl, Ada. 

1   Introduction 
Building complex applications often requires putting 
together pieces of software or requirements that have never 
before been made to work together. Thinking of a project 
with a high integrity kernel written in Ada, using a set of 
low level libraries and drivers written in C or C++, with a 
graphical interface done in Java and unit tests driven by 
Python is not thinking of science-fiction anymore. It’s 
actual concrete and day-to-day work. Unfortunately, having 
all of these technologies talking to one another is not 
straightforward and often requires a deep knowledge of 
both sides of the interface along with extensive manual 
work.  

In this tutorial, we'll first study how to directly interface 
Ada with native languages, such as C or C++. We'll then 
look in depth at communications with languages running on 
virtual machines, such as Java, Python and the .NET 
framework. Finally, we'll see how Ada can be interfaced 
with an arbitrary language using a middleware solution, 
such as SOAP or CORBA. We’ll see how communication 
can be done manually by using low level features and APIs, 
and how a substantial part of this process can be automated 
using high level binding generators.  

2   Interfacing criteria 
There are three main issues to consider when dealing with 
language interfacing: safety, efficiency and simplicity.  

Safety is usually achieved by carrying out as many checks 
as possible at compile-time. Unfortunately, interfacing 
often requires designating objects and subprograms by 
strings only checked at run-time, which often leads to 
problems which only become apparent at run-time. 

Efficiency depends on the way calls are made and data is 
transmitted. Calls may or may not require indirection; data 
may or may not require copies, and transfer across a 
network. Significant performances loss may appear when 
interfacing through e.g. protocols such as Sockets. 

Simplicity is probably the most important criteria of all for 
programmer. It’s about how easy it is to write the interface 
layer. While it’s always possible to do things manually, 
tool vendors often provide either stub generators, or even 
better, direct binding generators from one language 
specification to the other. 

3   Ada and C 
Interfacing Ada and C is probably the most common 
interfacing scenario. Having said that, it carries a lot of 
potential mistakes and should be done with great care. 
Programmers may need to be aware of low level details on 
the memory layout and calls convention, as Ada objects & 
subprograms are not compatible with C by default. 

Programmers are advised to keep things as simple as 
possible. Advanced C structures such as unions, arrays or 
strings can still be bound but need additional knowledge on 
the compilers behaviour. 

4   C++ and binding generators 
While writing manually C interfacing can be tedious, using 
an automatic binding generator is probably a comfortable 
solution. Recent version of gcc distributed with GNAT 
GPL and GNAT Pro include a new switch automatically 
generating an Ada specification out of a C or C++ header 
file. 

In addition to the C constructions, the binding generator 
also supports C++ classes, and maps them into Ada tagged 
types. Such types can then be derived in Ada, and 
primitives can be overridden, leading to cross-language 
classes and cross language dispatching. 

5   GNATCOLL.Scripts and Python 
GNATCOLL is a collection of components distributed with 
GNAT, and contains amongst other things a standard 
interface to scripting languages. The default backend 
provided works for Python, but any scripting language with 
reflective capability would fit into the framework. A set of 
functionality exporting Ada subprograms to a scripting 
environment, or calling directly scripting code is provided. 
This tool has been extensively used in the development of 
GPS – the GNAT Programming Studio – for providing an 
interface for extensibility and as a mean to drive tests. 

6   Java and GNAT-AJIS 
Java and native languages such as C are most often 
interfaced using the JNI – the Java Native Interface. 
Unfortunately, this layer is extremely tedious to use, and 
provides almost no type safety. 



120  Bui ld ing Cross Language Appl icat ions with Ada 

Volume 30, Number 2, June 2009 Ada User Journal 

In order to workaround these problems, GNAT now comes 
with a binding generator from Ada to Java, giving a 
callable Java interface generated from an Ada specification. 
This generator supports a wide range of Ada features, such 
as subprograms, global variables, access to subprograms, 
exceptions... Ada tagged types are mapped to Java classes, 
which can then be extended in Java. As for the C++ case, 
the resulting classes are cross-language, and can be used in 
a cross-language dispatching call. 

This tool has been extensively used in the GNATbench 
Eclipse Plugin, in order to retrieve code that have been 
previously written in Ada for the GNAT Programming 
Studio. 

7   The JVM and .Net 
Both the JVM and the .Net bytecodes embed a specification 
description. This specification can then be used to generate 
a direct binding. This is the purpose of e.g. the jvm2ada 
tool, taking a Java bytecode .class file, and generating an 
Ada specification for the GNAT for the JVM compiler, or 
the cil2ada tool doing the same for the .Net platform. 

This feature is particularly impressive on the .Net platform. 
There are a huge number of languages targeting .Net, each 
of them generating this intermediate representation in the 
bytecode. This makes it possible to interface practically any 
languages with any other one, provided that one binding 
generator has been provided from the common 
representation to the target language. 

8   CORBA 
While it has been originally designed for distributed 
programming, CORBA has been used in a number of cases 
to solve multi-language programming issues. It provides an 
intermediate specification representation, the IDL, coming 
with stub generator for most languages. 

IDL generators can be used to create a callable interface, or 
stubs for the implementation code. Since this language is 
the common denominator of all, programmes don’t have to 
care about the interface between two or more particular 
languages anymore, but only about the way of interfacing 

to that common representation. However, the 
communication layer is implemented on top of sockets, and 
the performance loss can easily be a show stopper when 
many data exchanges are involved. 

9   Web languages 
Web languages traditionally lie within the boundaries of 
scripting languages, such as Perl, PHP or JavaScript. 
However, the notion of web application is emerging, with a 
whole new set of challenges going much further than 
websites in terms of application architecture and data 
computation. For these applications, using structured and 
constrained language such as Ada is starting to make sense, 
hence the question regarding the interfacing with the 
existing code. 

Server-side applications can be interfaced with regular 
techniques which have been explained so far. However, a 
common way of creating multiple language – or peer – 
applications is to rely on web services. These services 
somehow act in the same way to CORBA, and comes with 
a specification language conceptually close to the IDL : 
WSDL.  

Client side computation currently lacks solutions – 
JavaScript seems to be the only portable technology 
available natively on all browsers. Google decided to bet on 
that fact, and provided a Java to JavaScript compiler as part 
of its GWT toolset. An Ada to JavaScript compiler could 
be envisioned in a similar manner. The question of directly 
interfacing JavaScript code with Ada raises a whole new 
set of interesting questions, JavaScript begin extremely 
relaxed in terms of typing. 

Conclusion 
Multi-language programming certainly carries doubt and 
raises a huge number of questions, which are becoming 
more and more unavoidable these days. Fortunately, tool 
vendors have invested a lot of time and effort into making 
these things easier, and can now provide users with advise, 
support and tools, now making this reasonable to do in an 
industrial and challenging context. 
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Abstract 
Verifying and optimizing real-time software to meet 
timing requirements can be a costly and time 
consuming task. To achieve reliable timing behaviour, 
it is necessary to focus attention on the worst case. In 
this paper, we discuss how detailed execution time 
measurements can be used to provide an accurate 
worst-case execution time estimate for embedded 
real-time software, and also to identify those 
subprograms that contribute most to the worst-case 
execution time. We describe a strategy for targeted 
optimization of these worst-case hotspots that 
provides a cost effective way of ensuring that time 
constraints are met, as well as creating headroom for 
additional functionality, without the need for costly 
hardware upgrades. 
Keywords: execution time, worst-case execution time, 
WCET, timing analysis, optimization. 

1   Introduction 
Software execution time can be identified as a fundamental 
cause of correct or incorrect timing behaviour in embedded 
real-time systems. Depending on the nature of the system 
and its requirements, there may be a more or less stringent 
need to show that the system will always meet its timing 
requirements. For example, the developers of safety critical 
systems, such as flight control systems, must be able to 
show to a very high degree of confidence that the software 
will always execute within its time constraints. In other 
systems, incorrect timing behaviour can have a major 
impact on the performance and reliability of the system and 
the customer’s perception of product quality. 

The fundamental reason why it is difficult to obtain reliable 
software timing behaviour is that the source code does not 
provide information about execution time. Contrast this 
with subprogramal behaviour, where, to a large extent, the 
programmer is able to reason precisely about the software 
behaviour by reviewing the source code. The execution 
time of source code, on the other hand, depends not only on 
the code, but also on the compiler, the target hardware, and 
interactions with other parts of the system. 

To obtain confidence in the timing behaviour of a real-time 
system, engineers typically measure the end-to-end 
execution time of major software components such as 
partitions and tasks during system tests. These 

measurements reveal how often, if at all, execution time 
budgets are exceeded.  

Recording a series of end-to-end execution time 
measurements allows engineers to see the distribution of 
execution times for each major software component and 
also the high-water mark: the longest execution time that 
was actually observed. This is often used as an indicator of 
the worst-case execution time, and gives some degree of 
confidence in the timing behaviour of the system. 

In this paper, we examine the process of software execution 
time analysis, verification, and optimization to achieve 
within-budget execution times. In Section 2, we discuss the 
limitations of high-water mark measurements and outline 
why it is important to obtain more detailed timing 
information. In Section 3, we present a proven, effective 
and efficient strategy aimed at resolving the problem of 
execution time budget overruns. In Section 4 we outline the 
results of a study where this strategy was applied. 

2   Why detailed timing information is 
important 
There is a fundamental issue inherent in the simple end-to-
end measurements used to obtain high-water mark 
execution times. The high-water marks may not reflect the 
longest time that the code could take to execute. This 
typically happens when the longest path through the code 
has not been exercised by the tests.  

While code coverage tools can be used to make simple 
checks that the available tests cover all of the code, for 
example statement, condition and decision coverage, it is 
possible, and in fact is often the case, that the longest path 
through the code has not been executed by the tests. This is 
due to different sections of code taking their longest 
execution times at different times, and for different values 
of input data. 

For non-trivial code, it is very hard to devise tests that are 
certain to drive the code down its longest path. This is 
because the number of distinct paths increases 
exponentially with the number of decision points in the 
code. Further, when there are loops in the code, it is not in 
general possible to tell from end-to-end measurements, 
whether the loops have executed for their maximum 
possible number of iterations. 

End-to-end execution time measurements are useful in 
obtaining basic confidence in system timing behaviour; 
however, they are not a reliable indicator that execution 



122  Execut ion Time: Analysis,  Ver i f icat ion and Opt imizat ion for  Rel iable Systems 

Volume 30, Number 2, June 2009 Ada User Journal 

time budgets will always be met once the system is 
deployed. Over-reliance on these end-to-end measurements 
can result in operational problems with deployed systems 
that can eventually and painstakingly be traced back to 
budget overruns. All too often, these are the hardest and 
most expensive problems to solve due to the intermittent 
nature of the faults. 

Further, as software is developed, and more features are 
added, for example during software upgrades, the high-
water mark execution times may show that the software 
takes too long to execute; however, these measurements 
provide no information about which parts of the code 
contribute most to the overall execution time, and so they 
offer no indication as to what code to optimize. This is a 
significant problem, as optimizing code that is not on the 
worst-case path is worse than a waste of time; it does not 
address the timing issues, and wholesale attempts to re-
write large volumes of code to be more efficient are 
extremely costly and may introduce bugs into the software. 

An effective way of obtaining much more detailed timing 
information is to add lightweight instrumentation points at 
each decision point in the code. Whenever it is executed, 
each instrumentation point outputs its identifier, which can 
be time stamped and recorded by a suitable data capture 
device [1]; thus running a series of tests on the 
instrumented system results in the creation of a timing 
trace. By combining timing measurements from the trace 
data with structural information obtained from analysis of 
the code, it is possible to determine a wealth of information 
about the timing behaviour of the software, including: 

o The worst-case execution time of the software, even if 
the worst-case path has not actually been executed 
during testing. 

o How many times each subprogram and sub-path was 
executed during testing. If some sub-paths have not 
been covered, then there are gaps in testing which 
should be addressed. 

o The maximum number of iterations for each loop. 
These can be compared with predictions to see if the 
expected maximum number of iteration is seen, or 
even exceeded in practice. 

o Which lines of code are on the worst-case path, and 
equally important, which ones aren’t and so do not rate 
as candidates for optimization. 

o How much each subprogram and each sub-path 
contributes to the worst-case execution time. 
Identifying the sections of code with high contributions 
to the worst-case execution time, so called worst-case 
hotspots, is an excellent way of finding the best 
candidates for optimization when the overall execution 
time needs to be reduced. 

o How the end-to-end execution times of each 
subprogram vary over the different tests, and hence 
show the correlation between particular test cases and 
long execution times. 

For commercial scale applications, it would be possible 
although extremely laborious to instrument programs by 
hand; however, the volume of trace data typically produced 
would make manual attempts to combine trace data with 
program structural information infeasible. Fortunately, the 
tasks of program instrumentation, trace processing, 
combining trace data with program structural information, 
data mining, and presentation are all amenable to 
automation. Automated execution time and performance 
measurement tools, such as the RapiTime toolset [2] from 
Rapita Systems Ltd. provide an integrated solution to these 
problems. 

The availability of detailed timing information has the 
following benefits: 

o It enables engineers to take a systematic and scientific 
approach to obtaining confidence in the timing 
behaviour of the system. As opposed to spending a 
great deal of time and effort trying to track down 
intermittent timing bugs revealed post deployment. 

o Detailed information about the contribution of 
subprograms and blocks of code to the worst-case 
execution time, enables worst-case hotspots to be 
identified that form potential candidates for 
optimization.  

o ”What-if?” analysis quantifies the maximum 
performance gains obtainable by optimizing selected 
software components. Together, with hotspot analysis, 
this ensures that optimization effort is only applied 
where it will have the maximum benefit in terms of 
reducing the overall execution time, and ensuring 
correct timing behaviour of the system. 

3   Optimization strategy 
When detailed execution time measurements are taken 
during extensive testing, they can highlight problems where 
certain software components overrun or have the potential 
to overrun their budgets. Such problems can occur during 
initial system development, or as a result of adding new 
functionality as part of a mid-life upgrade. When faced 
with the problem of a software component that overruns its 
execution time budget, it is essential that a systematic and 
scientific approach is taken to resolving the problem. The 
following sections describe a proven, effective and efficient 
strategy for dealing with the problem of execution time 
budget overruns: 

3.1   Execution time budget re-allocation 
The simplest and most cost effective solution to execution 
time budget overruns is to increase the execution time 
budget, at the expense of some other software component 
that has been shown not to require its entire execution time 
budget. For this re-allocation to be effective, it is of course 
important to have accurate timing information about all of 
the software components in the system, otherwise the 
timing issue is simply shifted from one component to 
another. 
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If budget re-allocation alone cannot be used to solve the 
problem, then the next course of action is normally 
software optimization. We note that in a system with many 
components, for example multiple partitions and tasks, not 
all of the execution time reduction required need come 
from the overrunning component. A mixture of budget re-
allocation and optimization could be more effective, as 
assessing a number of software components provides more 
scope for finding subprograms which contribute 
significantly to the worst-case execution time, and yet can 
be simply and easily optimized. 

3.2   Selecting candidates for optimization 
It is important to be clear about the goal of optimization. To 
achieve reliable timing behaviour, the worst-case execution 
time of a software component must be within the specified 
execution time budget; hence we are interested in 
optimizing the worst-case execution time, not the average-
case execution time. Optimizing for the worst case is 
different from optimizing for the average case. It requires a 
focus on code on the worst-case path, which is often not the 
same as the code that executes most frequently. 

Many well known optimizations, while excellent for 
improving average-case performance actually make the 
worst-case execution time worse. For example, early exits 
from loops can reduce the average number of iterations of a 
loop, reducing the average-case execution time. By 
contrast, when the worst case is considered, adding a 
conditional test for an early exit from a loop does not 
change the maximum number of iterations that the loop can 
take; however, it does add additional code that is executed 
on every iteration of the loop increasing the worst-case 
execution time. 

Optimization is a compromise between several different 
factors, in particular: execution time, code and memory 
space, readability, maintainability and effort. For example, 
some optimizations may lead to code structures that are 
very hard to maintain but result in a significant reduction in 
execution time. The key to an effective optimization 
strategy is to prioritize those optimizations where the 
minimum effort, and the minimum amount of compromise 
in other factors, is required to gain the maximum benefit in 
terms of execution time reduction. In this respect, access to 
detailed timing information is necessary to manage the 
optimization process effectively. 

Firstly, it is important to identify, those subprograms or 
sections of code that contribute the most to the overall 
worst-case execution time. These worst-case hotspots 
represent potential candidates for optimization. 

Worst-case hotspot analysis of complex applications shows 
a common trend, typical we see that: 

o Most subprograms are not actually on the worst-case 
path, and so contribute nothing to the worst-case 
execution time. Optimization of these subprograms 
would not reduce the worst-case execution time at all. 

o Many subprograms contribute a small amount to the 
worst-case execution time and so do not represent 

good candidates for optimization. Expending effort 
reducing the execution time of a subprogram that 
contributes less than 1% to the total is unlikely to be 
worthwhile. 

o A small number of subprograms contribute a large 
fraction of the overall worst-case execution time and 
are therefore potential candidates for optimization. 

Using worst-case hotspot analysis, engineers can easily 
identify the relatively small number of subprograms where 
optimization could potentially have a large impact on the 
overall worst-case execution time. However, before 
reviewing the source code of the top 10 to 20 candidates for 
optimization, it is important to ask the following questions: 

“What if the execution time of this subprogram were 
reduced by 50%, 80% or even 100%, what would the effect 
on the overall worst-case execution time be?” 

Asking this question is important, because even though a 
subprogram may be a worst-case hotspot, its optimization 
may not necessarily lead to a significant reduction in the 
overall worst-case execution time if by optimizing that 
code, the worst-case path switches to another path. For 
example, consider the code fragment below: 

If some_condition  then  
   A; -- in worst-case path. Takes 10 ms 
else 
   B; -- not in worst-case path. Takes 5ms    
end if; 

In this example, reducing the execution time of subprogram 
A by more than 5 ms, switches the worst-case path to 
subprogram B, therefore both subprograms A and B need to 
be optimized together to reduce the worst-case execution 
time further. 

Detailed evidence indicating where optimization will have 
the maximum benefit, and the extent to which optimization 
can be expected to reduce the worst-case execution time, 
enables effective management of the optimization process. 
Typically, a small number of candidate subprograms are 
selected for optimization. The source code for these 
subprograms is then reviewed and prototype optimizations 
implemented. 

After completing the prototype optimizations it is necessary 
to determine what was actually gained. This can be 
achieved by repeating the timing measurement and analysis 
process to quantify the reduction in the overall worst-case 
execution time. Once this second set of results has been 
obtained, then a decision can be made as to which 
optimizations to keep. If the gain is not significant 
compared to the compromise in other factors, such as 
maintainability, then a prototype optimization may be 
discarded. 

Finally, if the results show that the optimizations have 
resulted in the execution time budget being met, then the 
prototyped optimizations can be included in the main code 
base. If the execution time budget is still exceeded, then 
further candidates for optimization can be examined, or 
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budget re-allocation and optimization of another sub-
system considered. 

To summarise, a proven strategy for resolving execution 
time budget overruns is as follows: 

1. Obtain detailed timing information via measurement of 
on-target execution times, and analysis of the code 
structure. 

2. Re-allocate execution time budgets where possible. 
3. Select candidates for optimization based on their 

contribution to the overall worst-case execution time. 
4. Quantifying the maximum potential gains by 

determining what the impact on the overall worst-case 
execution time would be if the execution time of each 
candidate were substantially reduced. 

5. Prototype optimizations for the best candidates, i.e. 
those with the largest potential gains. 

6. Quantify the worst-case execution time reductions 
achieved via timing measurements on the target. 

7. Adopt the most effective optimizations into the 
development code. 

4   Hawk Mission Computer: Operational 
Flight Program 
This section describes how the above strategy was applied 
in a study performed by engineers from Rapita Systems 
Ltd. and BAE Systems, aimed at reducing the worst-case 
execution time of software components in the Operational 
Flight Program of the BAE Systems’ Hawk Mission 
Computer1. For a full description of this study see [3]. 

The Operational Flight Program is written in Ada and 
consists of hundreds of thousands of lines of code divided 
into 25 partitions, themselves divided into tasks, executed 
in a cyclic schedule. This system was running close to 
capacity, in terms of available execution time. In order to 
provide capacity for new functionality, a study was 
conducted to identify optimization opportunities that would 
reduce the worst-case execution time of the system by at 
least 10%; thus avoiding the need for an expensive 
hardware upgrade. 

Previous efforts at understanding the timing behaviour of 
the system had been based on determining the execution 
time of each partition via high-water marks measured on 
the target microprocessor. A typical situation was that 
painstaking optimization of a subprogram would result in 
unit tests showing a significant reduction in execution time 
while making little or no impact on the overall high-water 
mark. In contrast, simpler optimizations could sometimes 
have a significant impact, reducing the high-water mark 
readings. This occurred when, in the first case, the code 
was not actually on the worst-case path, and in the second 
case, when the subprogram was both on the worst-case path 
and called a large number of times on that path. 
                                                           
1 Hawk is a fast jet trainer, famously flown by the Red Arrows display 
team. 

In all, 5 out of 25 software partitions were analysed in the 
study, amounting to over 100,000 lines of Ada code. Three 
of the partitions, A, B and C were comprehensively 
analysed, with improvements and targets for optimization 
selected on the basis of the information provided using the 
RapiTime toolset. Optimizations were prototyped for these 
partitions and the performance analysis re-run to quantify 
the improvements obtained.  

The detailed timing information provided by RapiTime 
showed that 1.2% of the code contributed more than 29% 
of the overall worst-case execution time. These blocks of 
code were obvious targets for optimization. A detailed 
study of some 1250 lines of code identified specific targets 
for optimization and hence opportunities for execution time 
reduction. The best candidates were prototyped and 
implemented and the new system analysed to verify the 
effectiveness of the changes. The optimized partitions had 
an execution time that was over 23% smaller than before, 
creating headroom for additional functionality without the 
need for costly hardware upgrades. 

 
Figure 1: Reduction in worst-case execution time achieved 

using RapiTime 

5   Summary and conclusions 
This paper discussed how a focus on worst-case execution 
times is important in achieving reliable system timing 
behaviour. The limitations of high-water mark 
measurements were discussed, and the need for more 
detailed timing information explained. The key 
contribution of this paper is the description of a strategy for 
managing and resolving the problem of execution time 
budget overruns via a focus on worst-case execution times. 
This strategy was proven to be both efficient and effective 
in a study of an Avionics system implemented in Ada (the 
Operational Flight Program of the BAE Systems’ Hawk 
Mission Computer). 
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Abstract 
The following is a summary of the tutorial by that 
name provided at the Conference on Reliable 
Software Technologies, Ada Europe 2009. Brest, 
France.  8-12 June 2009. 
Keywords: software, fault tolerance, error recovery, 
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1   Introduction 
Today’s extremely demanding applications are made 
possible by the flexibility and power of digital computer 
technology.  For example, advanced fighter aircraft are 
made inherently unstable to produce extreme 
manoeuvrability.  Only the speed and flexibility of 
computer technology make it possible to control such 
aircraft in flight; a human pilot can not do so.   

Unfortunately, errors in large complex systems appear 
unavoidable with current technology, even given stringent 
development and testing procedures.  Complexity is such 
that full testing is not feasible and complete proofs of 
correctness are at best inherently limited by the potential 
for specification faults.  

Tolerating software imperfections is very difficult, and 
successful approaches used to tolerate hardware faults do 
not necessarily apply.  Typical fault tolerant systems design 
techniques can not cope with the complexity and scale of 
current and future applications.  Their inadequacy stems 
from their assumptions: correct algorithm design, 
knowledge of all possible failure modes, complete 
knowledge of internal interactions of the components, and 
complete knowledge of external interactions with the 
environment.  In particular, although the components 
individually may be well understood, at the point of 
component and subsystem interaction overall complexity 
comes into play, precluding anticipation of all possible 
faults.  The problem is, therefore, one of handling 
unanticipated faults. 

1.1   Faults, Errors, and Failures 
The concepts of fault, error, and failure are directly linked 
in a causal relationship: faults lead to errors, which 
ultimately lead to failures.  A fault is a physical defect or 
flaw within a hardware or software component.  This is 
essentially the definition found in a typical dictionary.  An 
error is the manifestation of a fault: a deviation from 
accuracy or correctness in state.  A failure is an externally 
observable event representing a deviation from the 
authoritative service specification. 

1.2   Causes of Faults 
Specification mistakes are considered the cause of the 
majority of safety mishaps.  Specification mistakes include 
architectural flaws as well as hardware and software design 
specification errors 

Implementation mistakes are the intuitive cause of faults.  
These mistakes include poor design and construction, poor 
component selection, and poor software coding. 

1.3   Characteristics of Faults 
 ‘Transient’ faults are temporary.  They are caused by 
circumstances or events that cannot be recreated in a 
controllable way, such as gamma rays that flip a bit in 
memory, or highly unusual combinations of events.  

 ‘Intermittent’ faults enter the system, stay active for a 
while and then disappear, only to return again.  

‘Permanent’ faults are completely repeatable and (as the 
name indicates) always cause an associated failure (using 
the standard causal definition).  

1.4   Failure Hypothesis 
The chosen system failure model is a critical design 
decision because it drives the use of redundancy for 
tolerating faults. This assumption of a failure model is 
called the ‘failure hypothesis’.  For a given failure 
hypothesis, the number of redundant components required 
can be calculated.  The choice of failure hypothesis is one 
of the central decisions about the form of fault tolerance to 
be used.  Architectural decisions are made on the basis of 
the number and kinds of faults to be tolerated.  In all cases, 
fault tolerance mechanisms are built to handle the number 
of faults required, and no more: if more faults are 
experienced than expected, they will not be handled.  As 
will be seen, some architectures directly detect when the 
number of tolerable faults is exceeded; others require 
additional facilities. 

2   Dealing With Faults 
There are two ways to deal with faults: fault prevention and 
fault tolerance.  Fault intolerance aims to prevent the 
existence of faults.  Fault tolerance is intended to handle 
faults when they occur in an executing system. 

2.1   Fault Prevention 
There are two means of fault prevention: avoiding their 
introduction during production, and removing them before 
deployment.  In both cases faults are dealt with prior to 
execution.  ‘Fault avoidance’ is a design activity that 
attempts to prevent faults from being introduced into the 
deployed system.  ‘Design’ is intended to include all 
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production phases of the life cycle, including requirements 
definitions, design methods, design reviews, programming 
techniques, testing, and other quality control measures. 

‘Fault removal’ is a design (i.e., implementation) activity 
focused upon testing.  Testing is inherently limited by the 
inability to test under completely realistic conditions, by 
the potential for specification errors, and, of course, by the 
fact that testing can only show the presence of errors, not 
their absence. 

2.2   Fault Tolerance  
In contrast to fault avoidance, fault tolerance schemes 
consider faults inevitable and deal with them after 
deployment.  As a run-time activity, therefore, fault 
tolerance may be defined as the ability of a system to 
continue to perform in the presence of faults. 

If faulty software or hardware components are to be dealt 
with during execution, some additional resource is 
necessary.  Therefore, fault tolerance is based on one of 
several forms of redundancy.  

3   Software Redundancy Mechanisms 
There are two general approaches to achieving fault 
tolerance: a ‘static’ architecture and a ‘dynamic’ 
architecture.   In a static architecture, a given function is 
executed by several computing resources, and a correct 
result is selected from one of the outputs produced.  The 
term ‘static’ is applied to this approach because the result 
of the adjudication of the outputs does not affect the 
architecture; subsequent provision of a result is achieved 
using the same computing resources (in the archetypal 
usage).   

In a dynamic fault tolerance architecture, a given function 
is executed by a single computing resource.  If a result 
cannot be produced, alternate resources are used to 
compute the result.  The term ‘dynamic’ is applied because 
failure to produce a result directly affects the architecture: 
redundant resources detect faults and alter the architecture 
accordingly, such that subsequent invocation does not use 
the same (faulty) computing resources.  

3.1   Error Recovery 
Error (fault) recovery is the central component of dynamic 
fault tolerance strategies: it must transform a faulty system 
into one with a valid, perhaps degraded, state.  Two 
approaches to fault recovery have been  identified: 
backward error recovery and forward error recovery. 

Backward error recovery mechanisms attempt to simulate 
the reversal of time to a point at which the system state was 
error-free.  They do so by saving state when it is assumed 
to be valid, and then restoring that state as necessary.  The 
act of saving state is called ‘taking a checkpoint'. 

Forward error recovery mechanisms attempt to make 
selective changes to an erroneous state, to move to a new, 
error-free state.  Most modern programming languages 
provide direct support for forward error recovery via 
exceptions.  As a form of forward error recovery, 

exceptions are not applicable to design faults, since such 
faults are unanticipated.  

3.2   Software Mechanisms for Tolerating Software 
Design Faults 
Continuity of service in the presence of software faults 
requires at least one additional component capable of 
meeting the functional specification.  Simple replication, 
however, as applied for hardware fault tolerance, would 
simply replicate the faulty software.   

To avoid the occurrence of the same fault, and on the 
assumption that software design faults are indeed 
permanent, this additional component must be implemented 
differently from the one that failed (although it will be 
designed to the same specification).  Software diversity is, 
therefore, the underlying principle of the systematic 
mechanisms described in the following sections.  Two 
approaches to diversity have been identified: ‘design’ 
diversity, and ‘data’ diversity.  By far, design diversity is 
the most widely explored and used.  In that approach, 
completely separate, distinct designs and implementations 
are used, with the expectation that the differences will 
result in different faults being exhibited (if any). 

3.2.1   N-Version Programming 
N-Version Programming (NVP) is the software instance of 
the N-Modular Redundancy (NMR) approach used to 
handle hardware faults.  In the NVP approach, N separate, 
complete variants are developed, and each is executed in 
parallel whenever the component is invoked.  The N results 
are compared at cross-check points to detect faults, usually 
using a majority-based voting adjudicator.  Faulty variants 
are detected by their differences from the other variants’ 
outputs, and are masked out by the adjudicator.  As in 
NMR, the value of N is chosen so that the required number 
of faults may be tolerated.  The value of N is selected such 
that the number of faults to be tolerated is less than the 
majority represented by N.   

3.2.2   Recovery Blocks 
Recovery blocks are the classic example of  dynamic 
redundancy, in that reconfiguration by selection of an 
alternate variant does not occur until a fault is detected.   

In the recovery block mechanism, complete stand-alone 
programs are not implemented.  Rather, for a given unit of 
functionality, a primary variant is implemented as a 
module, instead of a complete program; design diversity is 
incorporated via alternate modules.  The primary module is 
the only one executed under normal conditions.  Only when 
an error is detected by application of an acceptance test do 
alternative variants execute, and even then only one 
executes at a time.  Alternatives are successively called, 
and the acceptance test successively applied against the 
results, until either a satisfactory result is obtained or no 
remaining alternate variants are available (in which case the 
failure is propagated). Hypothetical syntax for expressing 
recovery blocks is shown below: 
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ensure acceptance_test by primary_variant 
  else by variant_2 
  else by variant_3 
  … 
  else by variant_N 
  else error 
 
Central to the concept is that the current, valid state is 
saved prior to execution of the primary module.  This saved 
state is successively restored prior to the execution of each 
of the alternative modules whenever the acceptance test 
fails.  Therefore, recovery blocks use backward error 
recovery. 

3.2.3   Error Recovery in Concurrent Applications 
The facilities examined for use within a process are not 
applicable by themselves in co-operative concurrent 
programming environments.  They are limited because 
errors in co-operating processes can propagate amongst the 
group, since, by definition, such processes communicate.  
Error recovery in one process must, therefore, involve all 
that have communicated with that process because their 
individual states are mutually dependent.  Recovery blocks 
et cetera do not manage recovery activities beyond that of a 
single thread of control. 

Atomic Actions 
Atomic Actions are a means of fault propagation control 
and assessment.  They achieve containment by the 
enforcement of semantics requiring their effects to be both 
indivisible and instantaneous when viewed by processes 
not involved in the action.  Specifically, no data flow 
between application processes during an atomic action 
unless they are participants in that action and partial 
execution of an action cannot be observed by non-
participating processes.  The Ada extended rendezvous is 
an atomic action involving only two processes (not 

considering nesting).  More generally, atomic actions can 
be built to handle as many processes as necessary. 

Conversations 
Conversations are a structural combination of atomic 
actions with backward error recovery (in the form of 
recovery blocks) for co-operating processes.  Conversations 
ensure a consistent recovery line because each process 
takes a checkpoint upon entrance to the conversation.  
Whenever one of the processes involved suffers a fault (i.e., 
does not pass the local acceptance test) all processes roll-
back to the common checkpoint, ensuring consistency of 
the processes’ recovery.  Furthermore, conversations form 
a synchronisation boundary to ensure consistency, in that 
all processes leave the conversation together with a 
common view of the activities within. 

4   Sample Concrete Implementations 
Backward error recovery can be supported via reusable 
components because it is independent of the application.  In 
this part of the tutorial we examined reusable Ada 2005 
implementations of backward error recovery in the form of 
state management, recovery blocks, and conversations. 

5   Concluding Remarks 
After reviewing the goals of the tutorial and the tutorial 
concluded with a discussion of whether design diversity is 
still considered a viable technique, with a number of 
references provided for both sides of the debate. 

6   Suggested Reading 
M. Lyu, Ed. Software Fault Tolerance, in Trends In 
Software, vol. 3, Chichester: John Wiley & Sons, 1995. 

L. Pullum, Software Fault Tolerance Techniques & 
Implementation: Artech House, Inc., 2001. 

A. Burns and A. J. Wellings, Real-Time Systems and 
Programming Languages, 3rd. ed: Addison-Wesley, 2001. 
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Ada Gems 
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and 
related files, can be found at http://www.adacore.com/category/developers-center/gems/. 

 

Gem #39: Efficient Stream I/O for 
Array Types 
Pat Rogers, AdaCore 
Date: 9 June 2008 
 
Abstract: Reading and writing values from/to streams is easy 
with Ada’s “stream attributes” but for some array types the 
default attribute implementations could be made more 
efficient. In this Gem we show how the user can define these 
more efficient implementations.   
 
Let’s get started… 
Ada has the notion of “streams” that are much like those of 
other languages: sequences of elements comprising values of 
arbitrary, possibly different, types. Placing a value into a 
stream is easy using the language-defined “stream attributes”. 
The programmer simply calls the type-specific attribute 
routine and specifies the stream and the value. For example, to 
place an Integer value V into a stream S, one could write the 
following: 

Integer’Write (S, V); 

Strictly speaking, S is not a stream but, rather, an access value 
designating a stream. The Integer’Write routine will convert 
the value of V into an array of “stream elements” – essentially 
an array of storage elements – and then put them into the 
stream designated by S. Actually, placing the bytes into the 
stream is accomplished by dynamically dispatching to a 
procedure specific to the stream representation. 
Although this discussion is couched in terms of placing values 
into streams, you should understand that reading values from 
streams is very similar to writing them and that the same 
efficiency issue and solution apply. 
For composite types, such as array or record types, each 
component value is individually written to the stream using the 
approach described above. Consider an array type “A” 
specifying Integer as the component type. The default version 
of A’Write will call Integer’Write for each component. Thus, 
each Integer value is converted to the array of storage elements 
and written to the stream. This component-driven behavior is 
necessary because programmers can define their own versions 
of the stream attributes, and naturally will expect them to be 
called even when the types in question are used as component 
types within enclosing array or record types. 
But suppose the array type is structurally just a sequence of 
contiguous bytes, and the component type does not have a 
user-defined stream attribute defined. In that case, calling the 
component-specific attribute for each array component is 
unnecessary and inefficient. 
For example, suppose you are working with Military-Standard 
1553B for communicating application values between remote 
devices. Ultimately, Mil-Std-1553B sends and receives 32-

word buffers, where each word is an unsigned 16-bit value. 
Suppose as well that you want to write and read these buffers 
to and from streams. We can override the stream attributes so 
that a whole buffer value is written directly to the stream 
instead of writing it one buffer component at a time.  
The buffer type could be declared as follows: 

   type Buffer is array (1..32) of Interfaces.Unsigned_16; 

We can then override the stream attributes for type Buffer. 
First we declare the routines: 

   procedure Read_Buffer 
      (Stream : not null access 
             Ada.Streams.Root_Stream_Type’Class; 
       Item   : out Buffer); 
 
   procedure Write_Buffer 
      (Stream : not null access  
             Ada.Streams.Root_Stream_Type’Class; 
       Item   : in Buffer); 

All such stream attributes have the same formal parameter 
types, i.e., an access parameter designating the class-wide root 
stream type defined by the language, and the type to be written 
to, or read from, that stream. 
We then “tie” the routines to the stream attributes for type 
Buffer, thereby overriding the default versions: 

   for Buffer’Read use Read_Buffer; 
   for Buffer’Write use Write_Buffer; 

The language-defined root stream type and array element type 
are declared in package Ada.Streams: 

package Ada.Streams is 
 
   type Root_Stream_Type is abstract  
        tagged limited private; 
 
   type Stream_Element is mod 2 ** Standard’Storage_Unit; 
   type Stream_Element_Offset is range 
     -(2 ** (Standard’Address_Size - 1)) .. 
     +(2 ** (Standard’Address_Size - 1)) - 1; 
   … 
   type Stream_Element_Array is 
      array (Stream_Element_Offset range <>) of  
           aliased Stream_Element; 
 
   procedure Read 
     (Stream : in out Root_Stream_Type; 
      Item   : out Stream_Element_Array; 
      Last   : out Stream_Element_Offset) 
   is abstract; 
 
   procedure Write 
     (Stream : in out Root_Stream_Type; 
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      Item   : Stream_Element_Array) 
   is abstract; 
   … 
end Ada.Streams; 

The user-defined Read_Buffer and Write_Buffer routines will 
call these stream-oriented Read and Write procedures (via 
dynamic dispatching) once for the entire Buffer array value, 
instead of calling them once per array component. Both 
routines are very similar, so we will omit the body of of 
Read_Buffer for the sake of brevity and show just the 
implementation of Write_Buffer: 

   procedure Write_Buffer 
      (Stream : not null access  
                    Ada.Streams.Root_Stream_Type’Class; 
       Item   : in Buffer) 
   is 
      Item_Size : constant Stream_Element_Offset := 
                     Buffer’Object_Size / Stream_Element’Size; 
 
      type SEA_Pointer is 
         access all Stream_Element_Array (1 .. Item_Size); 
 
      function As_SEA_Pointer is 
         new Ada.Unchecked_Conversion ( 
                    System.Address, SEA_Pointer); 
   begin 
      Ada.Streams.Write ( 
                    Stream.all,  
                     As_SEA_Pointer (Item’Address).all); 
   end Write_Buffer; 

In the above, we cannot simply convert the value of Item, of 
array type Buffer, to a value of type Stream_Element_Array, 
so we work with pointers instead. We define an access type 
designating a Stream_Element_Array that is the exact size, in 
terms of Stream_Elements, of the incoming Buffer value. 
Note the use of the Buffer’Object_Size attribute in that 
computation. That attribute gives us the size of objects of the 
type Buffer, a wise approach since in general the size of a type 
may not equal the size of objects of that type. We can then use 
unchecked conversion to convert the address of the formal 
parameter Item to this access type. Dereferencing that 
converted access value (via .all) gives us a value of type 
Stream_Element_Array that we can pass to the call to 
Ada.Streams.Write. 
Thus we avoid processing each component of type Buffer, 
instead writing the entire Buffer value at once. That’s a much 
more efficient approach. As we said earlier, reading values 
from streams is analogous to writing values to them and only 
differs in obvious, minor ways. That is true for using the 
default stream attributes as well as in the implementation of 
Read_Buffer. 

Gem #50: Overload Resolution 
Bob Duff, AdaCore 
Date: 27 October 2008 
 
Abstract: This Gem discusses some language-design issues 
related to overload resolution.  
 

Let’s get started… 
Ada allows overloading of subprograms, which means that 
two or more subprogram declarations with the same name can 
be visible at the same place. Here, “name” can refer to 
operator symbols, like “+”. Ada also allows overloading of 
various other notations, such as literals and aggregates. 
In most languages that support overloading, overload 
resolution is done “bottom up” — that is, information flows 
from inner constructs to outer constructs. (As usual, computer 
folks draw their trees upside-down, with the root at the top.) 
For example, if we have two procedures Print: 

    procedure Print (S : Sequence); 
    procedure Print (S : Set); 
    X : Sequence; 
    … 
    Print (X); 

the type of X determines which Print is meant in the call. 
Ada is unusual in that it supports top-down overload resolution 
as well: 

    function Empty return Sequence; 
    procedure Print_Sequence (S : Sequence); 
    function Empty return Set; 
    procedure Print_Set (S : Set); 
    … 
    Print_Sequence (Empty); 

The type of the formal parameter S of Print_Sequence 
determines which Empty is meant in the call. In C++, for 
example, the equivalent of the “Print (X)” example would 
resolve, but the “Print_Sequence (Empty)” would be illegal, 
because C++ does not use top-down information. 
If we overload things too heavily, we can cause ambiguities: 

    function Empty return Sequence; 
    procedure Print (S : Sequence); 
    function Empty return Set; 
    procedure Print (S : Set); 
    … 
    Print (Empty); -- Illegal! 

The call is ambiguous, and therefore illegal, because there are 
two possible meanings. One way to resolve the ambiguity is to 
use a qualified expression to say which type we mean: 

    Print (Sequence’(Empty)); 

Note that we’re now using both bottom-up and top-down 
overload resolution: Sequence’ determines which Empty is 
meant (top down) and which Print is meant (bottom up). You 
can qualify an expression, even if it is not ambiguous 
according to Ada rules — you might want to clarify the type 
because it might be ambiguous for human readers. 
Of course, you could instead resolve the “Print (Empty)” 
example by modifying the source code so the names are 
unique, as in the earlier examples. That might well be the best 
solution, assuming you can modify the relevant sources. Too 
much overloading can be confusing. How much is “too much” 
is in part a matter of taste. 
Ada really needs to have top-down overload resolution, in 
order to resolve literals. In some languages, you can tell the 
type of a literal by looking at it, for example appending “L” 
(letter el) means “the type of this literal is long int”. That sort 
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of kludge won’t work in Ada, because we have an open-ended 
set of integer types: 

    type Apple_Count is range 0..100; 
    procedure Peel (Count : Apple_Count); 
    … 
    Peel (20); 

You can’t tell by looking at the literal 20 what its type is. The 
type of formal parameter Count tells us that 20 is an 
Apple_Count, as opposed to some other type, such as 
Standard.Long_Integer. [Technically, the type of 20 is 
universal_integer, which is implicitly converted to 
Apple_Count -- it's really the result type of that implicit 
conversion that is at issue. But that's an obscure point -- you 
won't go _too_ far wrong if you think of the integer literal 
notation as being overloaded on all integer types.] 
Programmers sometimes wonder why the compiler can’t 
resolve something that seems obvious. For example: 

    type Apple_Count is range 0..100; 
    procedure Slice (Count : Apple_Count); 
    type Orange_Count is range 0..10_000; 
    procedure Slice (Count : Orange_Count); 
    … 
    Slice (Count => 10_000); -- Illegal! 

This call is ambiguous, and therefore illegal. But why? Clearly 
the programmer must have meant the Orange_Count one, 
because 10_000 is out of range for Apple_Count. And all the 
relevant expressions happen to be static. 
Well, a good rule of thumb in language design (for languages 
with overloading) is that the overload resolution rules should 
not be “too smart”. We want this example to be illegal to avoid 
confusion on the part of programmers reading the code. As 
usual, a qualified expression fixes it: 

    Slice (Count => Orange_Count’(10_000)); 

Another example, similar to the literal, is the aggregate. Ada 
uses a simple rule: the type of an aggregate is determined top 
down (i.e., from the context in which the aggregate appears). 

Bottom-up information is not used; that is, the compiler does 
not look inside the aggregate in order to determine its type. 

    type Complex is 
        record 
            Re, Im : Float; 
        end record; 
    procedure Grind (X : Complex); 
    procedure Grind (X : String); 
    … 
    Grind (X => (Re => 1.0, Im => 1.0)); -- Illegal! 

There are two Grind procedures visible, so the type of the 
aggregate could be Complex or String, so it is ambiguous and 
therefore illegal. The compiler is not required to notice that 
there is only one type with components Re and Im, of some 
real type — in fact, the compiler is not _allowed_ to notice 
that, for overloading purposes.  
We can qualify as usual: 

    Grind (X => Complex’(Re => 1.0, Im => 1.0)); 

Only after resolving that the type of the aggregate is Complex 
can the compiler look inside and make sure Re and Im make 
sense. 
This not-too-smart rule for aggregates helps prevent confusion 
on the part of programmers reading the code. It also simplifies 
the compiler, and makes the overload resolution algorithm 
reasonably efficient. 
How smart is “too smart” is in part a matter of taste. In fact, I 
would make the Ada rules a little bit less smart, if I were 
redesigning it from scratch. If we replaced the Grind on String 
procedure with: 

    procedure Grind (X : Integer); 

then the above call would resolve, because the compiler 
_does_ use the fact that the aggregate must be some sort of 
aggregate-ish type, like a record or array. I would prefer the 
call to still be ambiguous in that case, but by and large, Ada 
gets the rules just about right, so something that is confusingly 
ambiguous to humans is usually ambiguous by the Ada rules. 
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