

Ada User Journal Volume 30, Number 2, June 2009

ADA
USER
JOURNAL

Volume 30
Number 2
June 2009

Contents
Page

Editorial Policy for Ada User Journal 66

Editorial 67

News 69

Conference Calendar 98

Forthcoming Events 106

K. Fairlamb
“Ada UK Conference 2009” 111

Articles from the Industrial Track of Ada-Europe 2009

 J. S. Harbaugh
“Pattern-Based Refactoring Shrinks Maintenance Costs” 115

Ada-Europe 2009 Tutorials

 Q. Ochem
“Building Cross Language Applications with Ada” 119

 R. I. Davis, I. Broster
“Execution Time: Analysis, Verification and Optimization for Reliable Systems” 121

 P. Rogers
“Software Fault Tolerance” 125

Ada Gems 129

Ada-Europe Associate Members (National Ada Organizations) 132

Ada-Europe 2009 Sponsors Inside Back Cover

66

Volume 30, Number 2, June 2009 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 67

Ada User Journal Volume 30, Number 2, June 2009

Editorial

I am writing this Editorial in the aftermath of the Ada-Europe 2009 conference in Brest, France As usual, the conference
attracted a large number of Ada practioners, for a full week of workshops, tutorials, paper presentations, and, very important,
fruitful informal interactions. This success of the conference is very valuable for the Ada community, and I am sure that it
will be repeated, or even improved, next year in Valencia, Spain.

From the very rich program of the week, and apologizing in advance to the readers, I would like to point out the interesting
poster exhibition provided during the conference, with the topic “Thirty Years of the Ada User Journal” (based on the article
with the same name published in the March issue of the Journal). And I am happy to announce that the posters will also be
exhibited at the SIGAda conference, next fall.

As for this second issue of volume thirty, it starts with the information of the News and Calendar sections, by Marco
Panunzio and Dirk Craeynest, their respective editors. The forthcoming events section provides details on the 2009 SIGAda
conference, which will take place next November in the Tampa Bay area, Florida, USA, and on the 15th International
Conference on Reliable Software Technologies – Ada-Europe 2010 that will take place June 2010 in Valencia, Spain. The
issue also provides a brief report on the Ada UK Conference 2009, which took place last March, in London, UK, by Kathy
Fairlamb of AdaCore, France.

The technical part of the issue starts with a contribution from the Industrial Track of the Ada-Europe 2009 conference. John
Harbaugh, of the Boeing Company, USA, presents details of an effort to improve part of a large Ada 95 Command, Control
and Communications system, using design patterns and refactoring.

Afterwards, the reader will find summaries of three of the tutorials that were provided at the Ada-Europe 2009 conference.
The first, by Quentin Ochem, of AdaCore, France, addressed multi language programming, and how to interface Ada with
native languages, such as C or C++, and languages running in virtual machines, such as Java or Python. The second tutorial,
provided by Robert Davis and Ian Broster, of Rapita Systems, UK, addressed the always difficult issue of execution time
measurements and how to obtain accurate worst-case execution time estimates. In the third tutorial, Pat Rogers, of AdaCore,
USA, detailed how to specify software fault tolerance mechanisms in Ada. Finally, the issue ends with two interesting Ada
Gems, by Pat Rogers and Bob Duff, related to Stream I/O and Overload Resolution.

Luís Miguel Pinho

Porto
June 2009

Email: lmp@isep.ipp.pt

68

Volume 30, Number 2, June 2009 Ada User Journal

FOR IMMEDIATE RELEASE

Thirty years of the Ada User Journal

BREST, France (June 11, 2009) – On the occasion of Ada-Europe 2009, the 14th annual Conference
on Reliable Software Technologies, Ada-Europe, the international organization that promotes the
knowledge and use of Ada in European academia, research and industry, inaugurated the celebrations
of the 30th Anniversary of the Ada User Journal.

Ada User Journal, the quarterly publication of Ada-Europe, keeps its readership abreast of
developments in the standardization, use and promotion of the Ada programming language and
technology, as well as issues related with reliable software technologies and engineering in Europe and
the rest of the world. The Journal also currently maintains an on-line accessible archive of past editions
since early 2002.

The origins of the Ada User Journal date back to the birth of Ada UK News, which started publication in
March 1980. As the first Editor, Prof. Ian Pyle, at the time Chair of Computer Science at the University
of York, UK, put it in his inaugural Editorial, “Ada has elicited interest in both the industrial and
academic worlds. Perhaps for the first time we can find ourselves pulling in the same direction to the
benefit of us all. This is an opportunity for bridging the industrial/academic gulf which we must not lose”.
And in fact this vision is still one of the cornerstones of the Journal Editorial policy.

The current name of the Journal first appeared in Volume 15 in the year 1994, when it was still
published by Ada UK. Ada-Europe published the Ada-Europe News since June 1989, until it was
merged with the Ada User Journal in March 1998. From that time onward, Ada-Europe and Ada UK
jointly published the Journal until Ada-Europe took over as the sole publisher from Volume 23 in 2002.

To mark this anniversary celebration, the March 2009 issue of the Ada User Journal features a special
article entitled “Thirty years of the Ada User Journal”, which recalls its three decades of history.
Celebratory posters were also exhibited at the Ada-Europe 2009 conference. A special issue of the
Journal, to be released in March 2010, will reprint a selection of the best articles published in the
Journal over the past 30 years.

About Ada-Europe
Ada-Europe is the international non-profit organization that promotes the knowledge and use of Ada
into academia, research and industry in Europe. Current member organizations of Ada-Europe are:
Ada-Belgium, Ada in Denmark, Ada-Deutschland, Ada-France, Ada-Spain, Ada in Sweden and Ada-
Switzerland. Ada-Europe also includes and welcomes individual members from other European
countries with no national organization, and has a total membership in the region of 300.

A PDF version of this press release is available at www.ada-europe.org.

Press contact
Dirk Craeynest, Ada-Europe Vice-President, Dirk.Craeynest@cs.kuleuven.be

 69

Ada User Journal Volume 30, Number 2, June 2009

News
Marco Panunzio
University of Padua. Email: panunzio@math.unipd.it

Contents

Ada-related Oraganizations 69
Ada-related Events 69
Ada and Education 73
Ada-related Resources 73
Ada-related Tools 74
Ada-related Products 76
Ada and GNU/Linux 80
Ada Inside 80
Ada in Context 83

Ada-related
Organizations
ARA — ACATS 3.0J
and 3.0K
From: Ada Information Clearinghouse
Date: Mon, 30 Mar 2009
Subject: Ada Conformity Assessment Test

Suite
URL: http://www.adaic.com/whatsnew.html
ACATS Modification List 3.0J and the
associated test files have been posted
From: Ada Information Clearinghouse
Date: Thu, 9 Apr 2009
Subject: Ada Conformity Assessment Test

Suite
URL: http://www.adaic.com/whatsnew.html
ACATS Modification List 3.0K and the
associated test files have been posted.
[see also "ARA — ACATS 3.0E" in AUJ
29‑3 (Sep 2008), p.149 —mp]

Ada 2005 R2 Language
Reference Manual
From: Ada Information Clearinghouse
Date: Fri, 20 Mar 2009
Subject: Ada 2005 R2 Language Reference

Manual
URL: http://www.adaic.com/standards/

ada1z.html
The documents on this page consolidate a
possible second amendment to Ada 95
with the previously standardized
Amendment 1, Technical Corrigendum 1,
and the Ada Standard (International
Standard ISO/IEC 8652:1995).
The Amendment (Amendment 2) will be
produced by the ISO/IEC JTC 1/SC
22/WG 9 Ada Rapporteur Group (ARG).
The final form of Amendment 2, or
whether its standardization will succeed,
are not known at this time. Thus, any
proposed feature may be substantially

changed or withdrawn before the
Amendment begins standardization.
These draft documents are not an official
publication or work product of the ARG,
but rather are provided by the ARA as a
service to the Ada community. The intent
is that this will be a modest update to the
Ada language, and thus the language will
continue to be known as Ada 2005 after
Amendment 2 is completed (rather than
Ada 2012 or some similar name). To
differentiate it from the existing language
when that is necessary for
comprehensibility, we are calling it Ada
2005 R2 (Ada 2005 Release 2).
For more on the possible amendment, see
the ARG working site.
[http://www.ada-auth.org/
amendment2.html —mp]
The current (Ada 2005) consolidated
standard is available here.
[http://www.adaic.com/standards/
ada05.html —mp]
This is draft 7. This version contains AIs
that were ARG-approved through the
February 2009 ARG meeting, along with
some presentation issues (AI05-0092-1).
Send editorial comments on the
documents to agent@ada-auth.org.
Editorial comments are those that do not
change the meaning of the text, such a
spelling errors, doubled words, etc.
Substantive comments should be
submitted to the Ada-Comment mailing
list (ada-comment@ada-auth.org) as
outlined in Introduction of the draft
standard.

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal. —
mp]

Ada-Belgium 2009
From: Dirk Craeynest

<dirk@aqua.cs.kuleuven.be>
Date: Sat, 2 May 2009 14:57:37 +0200

CEST
Subject: Ada-Belgium Spring 2009 Event,

incl. Debian packaging workshop
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

A d a - B e l g i u m S p r i n g 2 0 0 9

E v e n t

Sunday, May 17, 2009, 12:00-19:00
Leuven, Belgium

including at 14:00

2009 Ada-Belgium General Assembly
and at 15:00

Workshop on Creating Debian Packages
of Ada Software

<http://www.cs.kuleuven.ac.be/~dirk/

ada-belgium/events/local.html>

Announcement
The next Ada-Belgium event will take
place on Sunday, May 17, 2009 in
Leuven.
Last year, the Ada-Belgium Board
decided to propose a more interactive and
social format than our traditional evening
events based on a General Assembly
followed by a technical presentation. As
the new format was appreciated by all
those present, this year's event once more
starts at noon, runs until 7pm, and
includes a barbecue, a key signing party,
the 16th General Assembly of the
organization, and a workshop on
packaging Ada software for Debian
hosted by Ludovic Brenta, principal
maintainer of Ada in Debian.
Schedule
 ⁃ 12:00 welcome and getting started
(setting up computers and preparing food
- please be there!)
 ⁃ 13:00 barbecue
 ⁃ 14:00 Ada-Belgium General Assembly
 ⁃ 14:45 key signing party
 ⁃ 15:00 workshop on creating Debian

packages of Ada software
 ⁃ 19:00 end
Participation
Everyone interested (members and non-
members alike) is welcome at any or all
parts of this event.
For practical reasons registration is
required. If you would like to attend,

70 Ada-related Events

Volume 30, Number 2, June 2009 Ada User Journal

please send an email before Tuesday,
May 12, to Dirk Craeynest
<Dirk.Craeynest@cs.kuleuven.be> with
the subject "Ada-Belgium Spring 2009
Event", so you can get precise directions
to the place of the meeting.
If you are a member but have not renewed
your affiliation yet, please do so by
paying the appropriate fee before the
General Assembly (you have also
received a printed request via normal
mail). If you are interested to become a
new member, please register by filling out
the 2009 membership application form[1]
and by paying the appropriate fee before
the General Assembly.
After payment you will receive a receipt
from our treasurer and you are considered
a member of the organization for the year
2009 with all member benefits[2]. Early
renewal ensures you receive the full Ada-
Belgium membership benefits (including
the Ada-Europe indirect membership
benefits package).
As mentioned at earlier occasions, we
have a limited stock of documentation
sets and Ada related CD-ROMs that were
distributed at previous events. Most
important are back issues of the Ada User
Journal[3]. These will be available on a
first-come first-serve basis at the General
Assembly for current and new members.
[1] http://www.cs.kuleuven.be/~dirk/ada-
belgium/forms/member-form09.html
[2] http://www.cs.kuleuven.be/~dirk/ada-
belgium/member-benefit.html
[3] http://www.ada-
europe.org/journal.html
Barbecue
The organization will provide food and
beverage to all Ada-Belgium members.
Non-members who want to participate at
the barbecue are also welcome: they can
choose to join the organization or pay the
sum of 10 Euros per person to the
Treasurer of the organization.
General Assembly
All Ada-Belgium members have a vote at
the General Assembly, can add items to
the agenda, and can be a candidate for a
position on the Board[4]. See the separate
official convocation[5] for all details.
[4] http://www.cs.kuleuven.be/~dirk/
ada-belgium/board/
[5] http://www.cs.kuleuven.be/~dirk/
ada-belgium/events/09/090517-abga-
conv.html
Key Signing Party
Wouldn't it be nice if a majority of people
used GPG to sign their email every day so
that you could send all non-signed email
into the spam bin? To make that dream
come true, please join and expand the
global Web of Trust![6]
What you should bring with you:

⁃ an official ID card issued by your
national government;

⁃ your GPG key fingerprint (i.e. the
output of gpg --fingerprint) on small
paper slips; a dozen copies or so should
be enough.

What you will go home with:
 ⁃ signatures from all other participants;
 ⁃ automatic inclusion in the global Web

of Trust;
 ⁃ the ability to digitally sign or encrypt

anything you like.
[6] http://en.wikipedia.org/wiki/
Web_of_Trust
Workshop: Packaging Ada Software for
Debian
Debian[7], "The Universal Operating
System", is simply the best platform for
the enthusiast Ada developer. The
features that distinguish Debian from the
rest are:
⁃ a binary distribution that avoids the

need to recompile Florist, ASIS,
GtkAda and all other Ada packages;

⁃ a large number of packages intended for
Ada developers;

⁃ a clear and consistent policy[8] making
all packages integrate seamlessly and
interoperate;

⁃ outstanding support for the Ada part of
the GNU Compiler Collection (GCC)
with unique innovations like libgnatvsn
and libgnatprj not found anywhere else;

⁃ backports of bug fixes from the
bleeding edge of GCC development into
the safe and stable compiler used for all
Debian packages;

⁃ support for more hardware architectures
than any other Ada distribution: alpha,
amd64, hppa, i386, ia64, kfreebsd-i386,
powerpc, s3980 and sparc (with mips,
mipsel and ppc64 added recently).

⁃ a choice between "stable", "testing" and
"unstable" versions of Debian to suit
personal preferences;

⁃ Debian is the mother of Ubuntu,
Knoppix and dozens of other
distributions which sometimes
incorporate the Ada packages.

The goal of the workshop is to help
people participate in this effort to bring
even more Ada software to Debian, or to
help maintain the existing packages.
What you should bring with you:
⁃ your computer, already installed with

Debian unstable or with an unstable
chroot already created (see below);

⁃ network cables (or WiFi already
configured);

⁃ monitor and keyboard, if your computer
is not a laptop;

⁃ power cables;

⁃ some Ada software you would like to
see in Debian but is not there (not
necessarily software that you wrote; any
software with a license permitting
redistribution in source and binary form
will do).

Note 1: if your computer does not run
Debian as its main operating system, you
can install Debian in a virtual machine
(VMWare or other), in a jail on a
FreeBSD system (Debian kfreebsd-i386),
or in a chroot on any other distribution.
Danny Beullens will offer help and
assistance to those who would like to
install Debian in a VMWare virtual
machine.
Note 2: if you would like to install Debian
as your main operating system but are
uncomfortable doing so by yourself,
please get in touch with your nearest
Linux User Group (e.g.
http://www.bxlug.be in Brussels).
What Ludovic Brenta will do for you:
⁃ set up a local Debian mirror, so you can

install or upgrade packages necessary
for Ada package development;

⁃ explain how to package Ada software
for Debian;

⁃ help you package your own program or
library;

⁃ answer questions about GNAT, GCC,
Debian, etc.;

⁃ if your package is suitable for inclusion
in Debian, sponsor it for you.

What you will go home with:
⁃ your own .deb packages installed on

your computer;
⁃ better understanding of how packaging

works;
⁃ better understanding of the Debian

Policy for Ada;
⁃ if your package is suitable, your name

on the Debian Package Tracking System
and your package on the next Debian
DVD or CDROM distribution.

[7] http://www.debian.org
[8] http://people.debian.org/~lbrenta/
debian-ada-policy.html
Directions
To permit this more interactive and social
format, the event takes place at private
premises in Leuven. As instructed above,
please inform us by e-mail if you would
like to attend, and we'll provide you
precise directions to the place of the
meeting. Obviously, the number of
participants we can accommodate is not
unlimited, so don't delay…
Looking forward to meet many of you in
Leuven!
Dirk Craeynest
President Ada-Belgium
Dirk.Craeynest@cs.kuleuven.be

Ada-related Events 71

Ada User Journal Volume 30, Number 2, June 2009

Acknowledgments
We would like to thank our sponsors for
their continued support of our activities:
AdaCore, Katholieke Universiteit Leuven
(K.U.Leuven), Offis nv/sa - Aubay
Group, and Université Libre de Bruxelles
(U.L.B.).

Ada-Europe 2009 Call for
Paricipation
From: Dirk Craeynest

<dirk@aqua.cs.kuleuven.be>
Date: Sun, 19 Apr 2009 23:16:19 +0200

CEST
Subject: 14th Int.Conf.on Reliable Software

Technologies, Ada-Europe 2009
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,
comp.lang.misc

Call for Participation

*** PROGRAM SUMMARY ***

14th International Conference on
Reliable Software Technologies –

Ada-Europe 2009

8 - 12 June 2009, Brest, France

http://www.ada-europe.org/
conference2009.html

Organized by Ada-Europe,

in cooperation with ACM SIGAda

 Early registration discount until May 15

Ada-Europe organizes annual
international conferences since the early
80's. This is the 14th event in the
Reliable Software Technologies series,
previous ones being held at Montreux,
Switzerland ('96), London, UK ('97),
Uppsala, Sweden ('98), Santander, Spain
('99), Potsdam, Germany ('00), Leuven,
Belgium ('01), Vienna, Austria ('02),
Toulouse, France ('03), Palma de
Mallorca, Spain ('04), York, UK ('05),
Porto, Portugal ('06), Geneva, Switzerland
('07), Venice, Italy ('08).
The Advance Program brochure with full
information will shortly be available on
the conference web site. It will contain
the list of accepted papers, industrial and
educational presentations, as well as
detailed descriptions of tutorials and
keynote presentations.
Also check the conference web site for
registration, accommodation and travel
information.
Quick overview

⁃ Mon 8 & Fri 12: tutorials, workshops
⁃ Tue 9 - Thu 11: paper, industrial &

vendor presentations, exhibition
Proceedings
⁃ published by Springer-Verlag
⁃ volume 5570 in Lecture Notes in

Computer Science series (LNCS)
⁃ will be available at conference
Invited speakers
⁃ John Benito, Blue Pilot Consulting,

USA, "ISO JTC1/SC22/WG23 Work on
Programming Language
Vulnerabilities"

⁃ Pierre Sens, LIP6, Université Pierre et
Marie Curie, Paris, France, "Fault
Tolerance in Large Scale Distributed
Systems"

⁃ Peter H. Feiler, Software Engineering
Institute, Carnegie Mellon University,
USA, "Validation of Safety-Critical
Systems with AADL"

Tutorials (full day)
- "Building Cross Language Applications

Using Ada", Quentin Ochem, AdaCore,
France

- "SPARK - the Libre Language and
Toolset for High-Assurance Software",
Roderick Chapman, Praxis High
Integrity Systems, UK

Tutorials (half day)
⁃ "An Introduction to Parallel and Real-

Time Programming with Ada", John
McCormick, University of Northern
Iowa, USA

⁃ "Software Fault Tolerance", Pat Rogers,
AdaCore, USA

⁃ "Software Measures for Building
Dependable Software Systems",
William Bail, MITRE, USA

⁃ "Modeling for Schedulability Analysis
with the UML Profile for MARTE",
Julio Medina, Universidad de Cantabria,
Spain, and Huascar Espinoza, CEA-
List, France

⁃ "Hard Real-Time and Embedded
Systems Programming", Pat Rogers,
AdaCore, USA

⁃ "Designing Real-Time, Concurrent, and
Embedded Software Systems using
UML and Ada", Rob Pettit, The
Aerospace Corporation, USA

⁃ "Object-Oriented Programming in Ada
2005", Matthew Heaney, On2
Technologies, USA

⁃ "Execution Time: Analysis,
Verification, and Optimization in
Reliable Systems", Ian Broster, Rapita
Systems, UK

Workshops (full day)
⁃ "Software Vulnerabilities"
⁃ "AADL"
Papers and Presentations

⁃ 19 refereed technical papers in sessions
on High-Integrity, Testing, Education,
Real-Time, Model-Driven Engineering,
MDE and AADL, Ensuring Software
Integrity

⁃ 6 industrial presentations on current
practice and challenges

⁃ submissions by authors from 19
countries, and accepted contributions
from Argentina, Australia, China,
France, Italy, Spain, Switzerland, UK,
and USA

Exhibition
⁃ 5 exhibitors already committed:

AdaCore, Aonix, Ellidiss Software,
IBM, and Rapita Systems; others
expressed interest

⁃ vendor presentation track for exhibitors
Social evening events
⁃ Tuesday: welcome reception at

Oceanopolis, Brittany's sea park by the
Marina in Brest, including a guided
tour, concert and buffet

⁃ Wednesday: conference banquet by the
sea side in the charming village of
Porspoder, located 25 km northwest of
Brest

Registration
⁃ early registration discount up to Fri May

15, 2009
⁃ additional discount for academia, Ada-

Europe and ACM SIGAda members
⁃ registration includes copy of printed

proceedings at event
⁃ includes coffee breaks and lunches
⁃ three day conference registration

includes social events
⁃ payment possible by bank transfer or

credit card
We recommend all participants to book
hotel accommodation as soon as possible,
as numerous events are organized in June
in Brest.
For more info and latest updates see the
conference web site at http://www.ada-
europe.org/conference2009.html or
contact the local chair at ae2009-
reg@mlistes.telecom-bretagne.eu.
[…]

IRTAW-14 Call for Papers
From: Dirk Craeynest

<dirk@cs.kuleuven.ac.be>
Date: Sat, 25 Apr 2009 05:47:25 +0000

UTC
Subject: IRTAW-14 Call for Papers,

International Real-Time Ada Workshop
Newsgroups: comp.lang.ada
Posted per request of the organizers.
Please note the deadline is about 2 weeks
from now: Friday 8 May.
[…]

72 Ada-related Events

Volume 30, Number 2, June 2009 Ada User Journal

Workshop announcement - Call for

Papers
IRTAW-14

14th International Real-Time Ada
Workshop, 2009

Portovenere, Italy
7-9 October 2009

Organized in cooperation with Ada-
Europe

Deadline for Papers: 8th May 2009.
See workshop web site for details of the
Call.
For over 20 years the series of
International Real-Time Ada Workshop
meetings has provided a forum for
identifying issues with real-time system
support in Ada and for exploring possible
approaches and solutions, and has
attracted participation from key members
of the research, user, and implementer
communities worldwide. Recent IRTAW
meetings have significantly contributed to
the Ada 2005 standard, especially with
respect to the tasking features, the real-
time and high-integrity systems annexes,
and the standardization of the Ravenscar
profile.
Workshop Web site:
http://events.math.unipd.it/irtaw14/
Hotel Location :
http://www.royalsporting.com/
index.php?&id_lang=1
Neil Audsley PC Chair
neil@cs.york.ac.uk

Safety-Critical Embedded
Software Testing
Symposium
From: Vector Software Press Center
Date: Thu, 26 Mar 2009
Subject: Vector Software to host a Safety

Critical Embedded Software Testing
Symposium

URL: http://www.vectorcast.com/pdf/
press-release-for-symposium.pdf

East Greenwich, RI – March 26, 2009.
Vector Software, the leading provider of
software test tools for embedded systems,
today announced that it will host the
Safety Critical Embedded Software
Testing Symposium on Thursday, May
14, 2009 from 8:30 a.m. to 12:00 p.m.
EST.
The Symposium will focus on best
practices to reduce time, effort and cost in
validating your embedded software.
The event will take place at the Forefront
Center in Waltham, MA. Further
information can be found on the Vector
Software web site at
http://www.vectorcast.com/news/
newsletters/symposium.html

The Safety Critical Embedded Software
Testing Symposium is a must attend event
for those looking for answers to their
software testing challenges.
Topics to be discussed include:
⁃ Best practices to meet FAA, FDA and

other regulatory agency requirements
⁃ How to optimize your code to ensure

testing success
⁃ How some of our customers accomplish

their testing objectives
⁃ Via a comprehensive live demonstration

on an embedded target, how
VectorCAST, the industry-leading
embedded software testing tool,
addresses unit testing, integration
testing, code coverage analysis, system
testing, and regression testing

About Vector Software
Vector Software, Inc. is the leading
independent provider of automated
software testing tools for developers of
safety-critical embedded applications.
Vector Software’s VectorCAST line of
products, automate and manage the
complex tasks associated with unit,
integration, and system level testing.
The VectorCAST tools support the C,
C++, and Ada programming languages.
[…]

Review of Ada Issues
From: Dirk Craeynest

<Dirk.Craeynest@cs.kuleuven.be>
Date: Mon, 13 Apr 2009 14:42 +0200
Subject: Review of Ada Issues for June 2009

SC22/WG9 meeting (fwd)
Mailing list:

ada-belgium-info@cs.kuleuven.ac.be
Dear Ada-Belgium friend,
The following message was just posted to
the Ada-Belgium members' mailing list
and is reposted here for your information.
[…]

Dear Ada-Belgium member,
As you may know, there is an upcoming
meeting of ISO's Ada language working
group (ISO/IEC JTC1/SC22/WG9)
scheduled at the end of the Ada-Europe
2009 conference next June in Brest,
France.
The Chairman of the Ada Rapporteur
Group (ARG) of WG9 informed the
Heads of Delegation that the Ada Issues
(AIs) listed below have entered Editorial
Review, and are intended to be submitted
to WG9 for approval at the above
mentioned meeting.
The AIs can be found at
http://www.ada-auth.org/
AI05-SUMMARY.html

AI05-0003-1/03 2008-11-14 - Qualified
expressions and "names"
AI05-0009-1/09 2009-03-10 -
Confirming rep. clauses and
independence
AI05-0050-1/06 2008-11-18 - Return
permissions are not enough for build-in-
place
AI05-0054-2/05 2008-11-26 - Variable
views of constant objects
AI05-0067-1/08 2008-11-18 - Objects
that are built in place
AI05-0069-1/03 2007-11-26 - Holder
container
AI05-0095-1/03 2008-11-19 - Address of
intrinsic subprograms
AI05-0099-1/03 2008-11-19 - The tag,
not the type, of an object determines if it
is controlled
AI05-0100-1/03 2008-11-19 - Placement
of pragmas
AI05-0101-1/04 2008-11-13 - Remote
functions must support external streaming
AI05-0103-1/04 2009-03-09 - Return
statements should require at least static
compatibility
AI05-0106-1/03 2008-11-20 -
Representation items are not allowed on
generic formal parameters
AI05-0108-1/02 2008-11-18 - The
incomplete view from a limited view does
not have a discriminant part
AI05-0109-1/02 2008-11-18 - Impossible
check in S'Class'Input
AI05-0112-1/02 2009-03-09 - Names for
anonymous aspects of representation
AI05-0116-1/02 2008-11-20 - The value
of Alignment for a class-wide object
AI05-0118-1/02 2008-11-17 - How do
parameter associations associate?
AI05-0120-1/02 2008-11-18 - The
current instance of a protected object is a
constant view
AI05-0126-1/02 2008-11-14 -
Dispatching when there is no declared
operation
AI05-0128-1/02 2009-03-09 - "/=" is a
primitive operation
AI05-0129-1/03 2009-03-09 - A limited
view does not contain views of
incomplete types
AI05-0132-1/02 2009-03-09 - A library
unit pragma must apply to a library unit
AI05-0133-1/02 2009-03-09 - Extending
a type with a self-referencing discriminant
constraint on a component
AI05-0134-1/02 2009-03-09 - Full
conformance should include the profiles
of anonymous access-to-subprogram
Those AIs are now being circulated
within the Ada community for review,
with the intention to return comments to

Ada-related Resources 73

Ada User Journal Volume 30, Number 2, June 2009

the ARG in time to properly answer them
before the WG9 meeting.
Comments for the Belgian delegation
should be sent to me at
<Dirk.Craeynest@cs.kuleuven.be>.
The deadline is 18:00 GMT+2,
Wednesday, May 13th, 2009.
Early comments are encouraged.
Dirk Craeynest
ISO/IEC JTC1/SC22/WG9, Head of
Delegation, Belgium
Dirk.Craeynest@cs.kuleuven.be
[…]

Ada and Education
 “Ada for Software
Engineers” textbook
From: Ada Information Clearinghouse
Date: Wed, 27 May 2009
Subject: Ada 2005 version of Ben-Ari's Ada

textbook
URL: http://www.adaic.com/whatsnew.html
An Ada 2005 version of Ben-Ari's
popular Ada textbook has been published.
Ada for Software Engineers (Second
Edition with Ada 2005)
Prof. Mordechai (Moti) Ben-Ari,
Department of Science Teaching,
Weizmann
Institute of Science
http://stwww.weizmann.ac.il/g-cs/benari
ISBN-13: 978-1-84882-313-6
"Ada for Software Engineers" teaches the
language as it is used in practice through
relatively large case-studies such as a
discrete event simulation.
The presentation emphasizes the features
for object-oriented and systems
programming that were introduced in Ada
95, as well as the new features in Ada
2005. A graduated introduction to the
terminology and style of the language
reference manual makes this an ideal
textbook for practicing software
engineers.

AdaCore — Introducing
SPARK Pro Webinar
From: AdaCore InSight Webinar Series
Date: Tuesday, 21 Apr 2009
Subject: Introducing SPARK Pro
URL: http://www.adacore.com/home/

products/gnatpro/webinars/
The InSight webinar series continued with
a presentation by Rod Chapman on the
AdaCore/Praxis new joint offering -
SPARK Pro. SPARK Pro combines the
proven SPARK Ada language and
supporting toolset with AdaCore’s GNAT
Programming Studio (GPS) integrated

development environment, backed by
unrivaled support systems. SPARK is a
language specifically designed to support
the development of software used in
applications where correct operation is
vital either for reasons of safety or
security. The SPARK Toolset offers static
verification that is unrivalled in terms of
its soundness, low false-alarm rate, depth
and efficiency. The toolset also generates
evidence for correctness that can be used
to build a constructive assurance case in
line with the requirements of industry
regulators and certification schemes.
This webinar presents the concepts behind
the Correctness-by-Construction
methodology and includes a demo of the
SPARK Pro toolset.

Ada-related Resources
SPARK Proof
From: JP Thornley

<jpt@diphi.demon.co.uk>
Date: Thu, 19 Mar 2009 12:13:57 +0000
Subject: ANN: SPARK Proof - Tutorials and

Tools
Newsgroups: comp.lang.ada
I have put a couple of tutorials on SPARK
proof onto www.sparksure.com; one for
proof of absence of run-time error (i.e.
using the optional proof annotations) and
one for using the Proof Checker. Both
tutorials contain several sections, with
worked examples and exercises.
I have also updated a couple of tools that
help with SPARK proof:
1) VC_View makes it easier to read and
interpret SPARK verification conditions.
2) PCHIF is an interface to the Proof
Checker that makes it easier to recall and
edit previously entered commands and to
control the commands that are saved.
(Previous versions of PCHIF were very
unstable, but this is now sorted, thanks to
Dmitry Kazakov and Maxim Reznik for
their Gtk Router.)
The tutorials and the tools (Windows
executables only at present) can be
downloaded from www.sparksure.com.

Tokeneer — Update of
proofs
From: Phil Thornley

<phil.jpthornley@googlemail.com>
Date: Mon, 27 Apr 2009 02:59:57 -0700

PDT
Subject: ANN: Tokeneer - Proofs updated to

use User Rules
Newsgroups: comp.lang.ada
The Tokeneer code is an excellent
example of SPARK, but the work was
completed several years ago and prior to
major improvements being made to the
proof capabilities of the SPARK Toolset.
Consequently the published example does

not fully demonstrate those capabilities
nor does it provide examples of how to
use them.
I have now revised many of the proofs to
use User Rules, with a reduction in
unsimplified VCs from 110 to 24. The
Proof Checker is not now required to
complete any of the proofs (although it is
still used to prove VCs that justify two of
the rules).
The files needed to update the published
version of Tokeneer are available from
www.sparksure.com. There is a note
included with the files describing the
changes made and the approach used.
From: Roderick Chapman

<roderick.chapman@googlemail.com>
Date: Wed, 29 Apr 2009 00:20:39 -0700

PDT
Subject: Re: ANN: Tokeneer - Proofs

updated to use User Rules
Newsgroups: comp.lang.ada
Nice work Phil. We're planning to release
an updated Tokeneer package later this
year following the GPL release of the
SPARK Toolset, so we'll try to include
these if that's OK. What licence are your
new rules under?
From: Phil Thornley

<phil.jpthornley@googlemail.com>
Date: Thu, 30 Apr 2009 04:10:43 -0700

PDT
Subject: Re: ANN: Tokeneer - Proofs

updated to use User Rules
Newsgroups: comp.lang.ada
I'll be more than happy for you to include
them in an updated Tokeneer release.
> What licence are your new rules under?
The files are supplied for anyone to use as
they want, with no restricitions on how
they can be used. I'll sort out actual terms
for your copies by email.

Book on Ada 95 by Jean-
Pierre Rosen
From: Pascal Pignard

<sur.pignard@wanadoo.fr>
Date: Sun, 10 May 2009 18:46:00 CEST
Subject: Méthodes de génie logiciel avec

Ada
Mailing list: ada-france.ada-france.org
The book "Méthodes de génie logiciel
avec Ada 95" by Jean-Pierre Rosen,
printed in June 1995 in the wake of the
Ada 95 standard and now out of printing,
has found a new life on Wikibooks.
The idea is to place it in the Internet in
collaborative mode in order to extend and
enrich it. I naturally thought to Wikipedia
and Wikibooks altough it is my first
attempt to use them as a contributor.
I hope many of you will appreciate the
text by Jean-Pierre Rosen that I tried to
reproduce as faithfully as possible, and
will contribute to its enrichment.

74 Ada-related Tools

Volume 30, Number 2, June 2009 Ada User Journal

Foreword: A quick overview of the Ada
language
http://fr.wikibooks.org/wiki/
Méthodes_de_génie_logiciel_avec_Ada
[translated from French —mp]

Ada-related Tools
New homepage for RAPID
From: Oliver Kellogg

<okellogg@freenet.de>
Date: Sat, 21 Mar 2009 14:57:26 -0700

PDT
Subject: ANN: RAPID has a new home
Newsgroups: comp.lang.ada
The Rapid Ada Portable Interface
Designer project is being revived and has
its new home at:
http://savannah.nongnu.org/projects/rapid/
The Tcl/Tk and Gtk backends have been
updated to newer toolkit versions. The
other backends (JGNAT, .NET,
GWindows) are not currently maintained.
Contributors are very welcome.
The Subversion repository is at
http://svn.savannah.nongnu.org/svn/rapid/
trunk/
Thanks go to Martin Carlisle, the original
RAPID author, for his cooperation.
From: Jerry Bauck

<lanceboyle@qwest.net>
Date: Sun, 22 Mar 2009 14:28:58 -0700

PDT
Subject: Re: ANN: RAPID has a new home
Newsgroups: comp.lang.ada
Glad to see this. How about a couple of
screen shots (current link on project web
site is old and dead) and a simple code
example or two?
From: Oliver Kellogg

<okellogg@freenet.de>
Date: Mon, 23 Mar 2009 00:13:18 -0700

PDT
Subject: Re: ANN: RAPID has a new home
Newsgroups: comp.lang.ada
It's in the making. Please check back in a
week or so.
(Right now I'm concentrating on the core
RAPID implementation, see svn trunk.)

RAPID 3.2
From: Oliver Kellogg

<okellogg@users.sourceforge.net>
Date: Mon, 30 Mar 2009 07:53:08 +0200
Subject: RAPID 3.2 is released
Newsgroups: comp.lang.ada
After a lengthy pause since the last
version, an update to the Rapid Ada
Portable Interface Designer has been
released and is available at
http://savannah.nongnu.org/
files/?group=rapid

Here are the news for RAPID 3.2:
⁃ Tested with Tcl/Tk version 8.{4,5,6a}

and TASH version 8.6-0
⁃ Tested with gtk+-2.{10,12,14} and

GtkAda from svn trunk of Jan 2009
⁃ GUI file format maintains backward

compatibility with RAPID 3.01
⁃ New command line switch -ni supports

non-interactive Ada code generation for
a given .gui file without launching the
RAPID GUI

⁃ New widget: FRAME, for creating an
empty space with a border

⁃ New widget: TEXTBOX, similar to
TEXTENTRY but for read-only text,
supports optional user variable of type
Ada.Strings.Unbounded.Unbounded_Str
ing

⁃ TEXTENTRY now also supports
unsigned user types

⁃ CHECKBUTTON optional user
variable can now be any two-valued
enum type in addition to Boolean

⁃ The procedures Fill_Window,
Generate_and_Fill_Window,
Read_Window are not created if they
are null operations. In other words, they
are only created if there are user
variables to read or write.

⁃ The JGNAT, .NET, and GWindows
peers are not included as they are not
currently maintained.

⁃ This release is only tested on Linux and
it does not contain a Windows exe.

For more info, see
http://savannah.nongnu.org/projects/rapid/

Milter API
From: Björn Persson <bjorn@xn--

rombobjrn-67a.se>
Date: Sat, 18 Apr 2009 18:35:49 +0200
Subject: Ann: Milter API
Newsgroups: comp.lang.ada
I needed to write a milter to expel the
spammers from my mailbox, and
naturally I wanted to write it in Ada. I
couldn't find a binding to Libmilter so I
made one. I present the first public
version of the Ada Milter API:
http://www.rombobjörn.se/Milter_API
The binding is in a "works for me" state.
It's written to match the version of
Libmilter that comes with Sendmail
8.13.8, because that's what I currently
have on my server. It provides almost all
of the features in that version of
Libmilter, but a few pieces are missing
because I don't use them and they weren't
trivial to implement. Later versions of
Libmilter also have new features that the
binding doesn't support yet.
I use Milter API with Postfix 2.3.8 and it's
working great, but functions that I don't
use are pretty much untested. I haven't

even tried it with Sendmail, because I use
Postfix.
There is also a binding to the syslog
functions, which Milter API uses:
http://www.rombobjörn.se/System_Log
Thanks in part to Milter API, I no longer
need to obfuscate my email address.
From: Albrecht Käfer

<albrecht_kaefer@yahoo.de>
Date: Fri, 24 Apr 2009 17:40:32 +0200
Subject: Re: Ann: Milter API
Newsgroups: comp.lang.ada
> […] Those links appear to be broken --
they're not working for me, anyway.
Then your browser doesn't support
international URLs. Use these:
http://www.xn--rombobjrn-67a.se/
Milter_API
http://www.xn--rombobjrn-67a.se/
System_Log

Ada binding to GMP and
MPFR
From: Vincent Diemunsch

<vincent.diemunsch@gmail.com>
Date: Wed, 20 May 2009 07:19:09 -0700

PDT
Subject: Ada binding to GMP and MPFR
Newsgroups: comp.lang.ada
[…]
As the libraries GMP (http://gmplib.org/)
and MPFR (http://www.mpfr.org/)
becomes part of the GNAT free compiler
(since they are part of the new GCC) and
since these libraries have excellent
performances, I thought it could be
interesting to create an Ada binding for
them.
I searched on Internet and found two old
binding but non convinced me and they
seemed to have been dropped out.
Therefore, I have undertaken to write my
own binding for GMP and MPFR in Ada
2005, and I have just managed to
successfully test basic operations for them
such, as adding or multiplying
MPFR_Floats of different precision…
Now I wonder if someone could be
interested in hosting the sources on an
Internet page, so that anybody could
download them and test them and
eventually make improvements…
The Binding is as follows :
⁃ A THIN BINDING composed of two

files :
 o gmp.ads
 o mpfr.ads

It basically translates in Ada most
functions of gmp.h and mpfr.h but it's not
exhaustive.
There are also some specific files for
target dependent types:
 o mp_x86_32bits.ads

Ada-related Tools 75

Ada User Journal Volume 30, Number 2, June 2009

 o mp_x86_64bits.ads...
⁃ A THICK BINDING with the following

specification files:
 o gmp.Integers.ads;
 o gmp.Rationals.ads;
 o mpfr.Floats.ads;

These files declare the following types:

Unbounded_Integer,
Unbounded_Fraction, MPFR_Float

that can be seen as extensions of the
typical Ada Integer and Float, with
operator overloading "+", "*", ... and
elementary functions.
I know that some work needs to be done
to:
⁃ complete the gmp.ads and mpfr.ads files
⁃ fully test the binding
⁃ have a good integration in the Ada

"spirit".
Therefore, I require your help:
⁃ Where may i found a place to put the

files (or a SVN repository ;-)
⁃ Would you be interested in giving

comments on implementation especially
for MPFR_Types ?

[…]
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 20 May 2009 07:30:24 -0700

PDT
Subject: Re: Ada binding to GMP and

MPFR
Newsgroups: comp.lang.ada
[…]
I can offer hosting on the Ada-France
monotone server[1,2] but I think it would
be more productive if you would assign
your copyright to the FSF[3] and submit
your binding for inclusion in GCC. That
way, your bindings would become part of
GCC along with the libraries themselves
and would be packaged along with GCC
into most distributions. This requires that
you use the same license, i.e. GPL version
3 or later with an additional clause
permitting use in proprietary programs.
[1] http://www.ada-france.org/
article130.html (French version)
[2] http://www.ada-france.org/
article131.html (English version)
[3] http://gcc.gnu.org/contribute.html
From: qunying <zhu.qunying@gmail.com>
Date: Wed, 20 May 2009 08:24:34 -0700

PDT
Subject: Re: Ada binding to GMP and

MPFR
Newsgroups: comp.lang.ada
[…]
What Ludovic suggested is the best way.
In case you don't want that route, as you

are using a gmail account, I think the
most easy route for you is to host it in
http://code.google.com/projecthosting/
as long as it uses the selected few open
sources licenses, no pre-approval is
required. The drawback is that it only
support svn so far, and the Mercurial
support is still not open to all.
Others required approval from the hosting
site:
http://sourceforge.net/
http://savannah.gnu.org/
http://github.com/
[…]
From: Vincent Diemunsch

<vincent.diemunsch@gmail.com>
Date: Wed, 27 May 2009 08:35:44 -0700

PDT
Subject: Re: Ada binding to GMP and

MPFR
Newsgroups: comp.lang.ada
Thanks for your response. I have tried to
host in GOOGLE Source:
http://code.google.com/p/
adabindinggmpmpfr/
I will now continue to test it. I would be
very interested to recieve comments on it:
⁃ on the specification, if it is easy to use

and clear,
⁃ on the implementation,
[…]
From: John B. Matthews

<nospam@nospam.invalid>
Date: Wed, 27 May 2009 13:47:43 -0400
Subject: Re: Ada binding to GMP and

MPFR
Newsgroups: comp.lang.ada
[…]
Somewhat tangentially, on Mac OS X,
GNAT from MacAda looks for MPFR
and GMP in /usr/local/lib. Users may
wish to know that the libraries may be
conveniently built from source using
MacPorts:
http://www.macports.org/
http://trac.macports.or/browser/trunk/
dports/devel/mpfr/Portfile
http://trac.macports.org/browser/trunk/
dports/devel/gmp/Portfile
http://www.macada.org/
See also:
http://trac.macports.org/browser/trunk/
dports/lang/gnat-gcc/Portfile
From: Vincent Diemunsch

<vincent.diemunsch@gmail.com>
Date: Fri, 29 May 2009 05:01:52 -0700

PDT
Subject: Re: Ada binding to GMP and

MPFR
Newsgroups: comp.lang.ada
[…]

I have put the license FSF version 3 on all
the files and created a project in:
http://code.google.com/p/
adabindinggmpmpfr/
Now I would like to test it a bit more
before submitting it to GCC.
[…]

APQ 3.0 Beta1
From: Marcelo C. de Freitas

<marcelo.batera@gmail.com>
Date: Wed, 11 Mar 2009 18:37:02 -0700

PDT
Subject: APQ 3.0-b1 released
Newsgroups: comp.lang.ada
[…]
Just to announce the 3.0-b1 release for
APQ. It can be downloaded from:
http://adaworks.net/releases/apq-3.0-b1/
This is the first beta release since we took
over APQ maintenance and it features:
⁃ build system fully based on gpr files
⁃ each database driver has it's own folder
⁃ bug fixes
⁃ Under a new license :: MGPL (the same

license for both closed and open
sourced projects)

Big thanks to:
 Adèle Helena Ribeiro
 Adrian-Ken Rueegsegger
 Alex Abate Biral
 Jesse Lang
 Peter C. Chapin
who have contributed to this release. And
thanks also Warren W. Gay who have
made APQ a reality in the first place. We
are just trying to give our best to make
this an even better database binding for
Ada.
Go there, download, test and submit bug
reports please!
For the curious ones, the plans for the
next release includes:
⁃ ODBC support (it's already

implemented but build system is broken
and doesn't support unixODBC yet)

⁃ handling data types by their primitives
instead of string type

From: Marcelo C. de Freitas
<marcelo.batera@gmail.com>

Date: Wed, 11 Mar 2009 18:59:46 -0700
PDT

Subject: Re: APQ 3.0-b1 released
Newsgroups: comp.lang.ada
I forgot to mention:
⁃ Microsoft SQL Support in the new apq-

ct_lib module
⁃ both apq-ct_lib and apq-sybase can be

compiled against FreeTDS as an
alternative to Sybase's library.

76 Ada-related Products

Volume 30, Number 2, June 2009 Ada User Journal

Various Ada scripts
From: Oliver Kellogg

<okellogg@users.sourceforge.net>
Date: Thu, 02 Apr 2009 04:08:07 +0200
Subject: ANN: Updates to Ada related

scripts
Newsgroups: comp.lang.ada
[…]
Updates are available for ada2idl.pl and
adareps2c.pl at
http://freenet-homepage.de/okellogg/
x.html
⁃ ada2idl.pl version 0.4 fixes conversion

of record components
⁃ adareps2c.pl version 0.3 fixes

placement of __attribute__((packed))

Valgrind 3.4.1
From: Valgrind Webpage
Date: Sat, 28 Feb 2009
Subject: Release of Valgrind 3.4.1
URL: http://valgrind.org/docs/manual/

dist.news.html
Release 3.4.1 (28 February 2009)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
3.4.1 is a bug-fix release that fixes some 
regressions and assertion failures in debug 
info reading in 3.4.0, most notably 
incorrect stack traces on amd64-linux on 
older (glibc-2.3 based) systems. Various 
other debug info problems are also fixed.  
A number of bugs in the exp-ptrcheck 
tool introduced in 3.4.0 have been fixed. 
In view of the fact that 3.4.0 contains 
user-visible regressions relative to 3.3.x, 
upgrading to 3.4.1 is recommended.   
Packagers are encouraged to ship 3.4.1 in 
preference to 3.4.0. 
The fixed bugs are as follows.  Note that 
"n-i-bz" stands for "not in bugzilla" -- that 
is, a bug that was reported to us but never 
got a bugzilla entry. We encourage you to 
file bugs in bugzilla (http://bugs.kde.org/ 
enter_valgrind_bug.cgi) rather than 
mailing the developers (or mailing lists) 
directly -- bugs that are not entered into 
bugzilla tend to get forgotten about or 
ignored. 
n-i-bz  Fix various bugs reading icc-11 
generated debug info 
n-i-bz  Fix various bugs reading gcc-4.4 
generated debug info 
n-i-bz  Preliminary support for glibc-2.10 
/ Fedora 11 
n-i-bz  Cachegrind and Callgrind: handle 
non-power-of-two cache sizes, so as to 
support (eg) 24k Atom D1 and Core2 
with 3/6/12MB L2. 
179618  exp-ptrcheck crashed / exit 
prematurely 
179624  helgrind: false positive races with 
pthread_create and recv/open/close/read 

134207  pkg-config output contains 
@VG_PLATFORM@ 
176926  floating point exception at 
valgrind startup with PPC 440EPX 
181594  Bogus warning for empty text 
segment 
173751  amd64->IR: 0x48 0xF 0x6F 0x45 
(even more redundant rex prefixes) 
181707  Dwarf3 doesn't require 
enumerations to have name 
185038  exp-ptrcheck: "unhandled 
syscall: 285" (fallocate) on x86_64 
185050  exp-ptrcheck: sg_main.c:727 
(add_block_to_GlobalTree): Assertion 
'!already_present' failed. 
185359  exp-ptrcheck unhandled syscall 
getresuid() 
(3.4.1.RC1:  24 Feb 2008, vex r1884, 
valgrind r9253). 
(3.4.1: 28 Feb 2008, vex r1884, valgrind 
r9293). 

Ada-related Products 
AdaCore / Praxis — SPARK 
Pro 
From: AdaCore Press Center 
Date: Tuesday February 17, 2009 
Subject: Praxis and AdaCore Announce 

SPARK Pro 
URL: http://www.adacore.com/2009/03/24 

/spark-pro/ 
NEW YORK, PARIS and LONDON, 
March 24, 2009 - Ada UK Conference - 
Developers creating safety critical and 
high assurance systems will benefit from 
today’s launch of SPARK Pro. The new 
open source development environment 
has been created by Praxis, international 
specialist in critical systems engineering, 
and AdaCore, the leading provider of 
commercial software solutions for the 
Ada language. 
SPARK Pro combines the proven SPARK 
language and supporting toolset with 
AdaCore’s easy-to-use GNAT 
Programming Studio (GPS) Integrated 
Development Environment, backed by 
unrivalled support services. This provides 
a powerful method for developing critical 
systems. 
Developed by Praxis, SPARK is a 
language specifically designed to support 
the development of software used in 
applications where correct operation is 
vital either for reasons of safety or 
security. The SPARK Toolset offers static 
verification that is unrivalled in terms of 
its soundness, low false-alarm rate, depth 
and efficiency. The toolset also generates 
evidence for correctness that can be used 
to build a constructive assurance case in 
line with the requirements of industry 
regulators and certification schemes. 
There are versions of SPARK based on 

Ada 83, Ada 95, and Ada 2005, so all 
leading Ada compilers and tools work 
out-of-the-box with SPARK. 
The new development environment will 
be globally available from AdaCore, with 
support delivered by both companies 
using AdaCore’s web based GNAT 
Tracker support system. Existing SPARK 
users have the option to transition to the 
new environment, which is also available 
as a standalone product. The launch of 
SPARK Pro is the first available product 
following the technical and marketing 
partnership announced in Q4 2008 
between Praxis and AdaCore. 
“SPARK continues to be used for the 
development of new, advanced, critical 
systems as well as support of existing 
operational systems, so it is vital that it 
continues to develop – SPARK Pro is a 
major step forward in usability and 
support through our partnership with 
AdaCore,” said Keith Williams, Praxis 
Managing Director. “The launch of 
SPARK Pro integrates the strengths of the 
best development tools in the market. Our 
partnership combines our proven 
expertise with AdaCore’s user interface, 
global reach and support systems to 
deliver the perfect solution for safety and 
security developers. This is great news for 
the SPARK language and our existing and 
future customers.” 
“AdaCore and Praxis share a commitment 
to enabling high-quality, high-integrity 
development,” said Robert Dewar, 
AdaCore President and CEO. “I am 
excited by the possibilities of this 
partnership. The SPARK technology is an 
outstanding demonstration of the fact that 
formal methods technologies are practical 
today, and hold enormous promise for the 
future. The launch of SPARK Pro, which 
integrates SPARK Pro and GNAT Pro 
into a coherent FLOSS tool set and 
environment, extends the benefits of 
SPARK to existing and new GNAT Pro 
users.  
I expect this combination to play a major 
role in high-integrity development, 
especially for the increasingly important 
security-critical area”. 
“Praxis has worked with AdaCore for 
many years and the development of 
common technology was the next logical 
step,” said Sylvain Haman, Praxis 
Director.  
“SPARK Pro will enable our clients 
world-wide to ensure correctness of their 
software while enjoying the convenience 
of an enhanced development 
environment.” 
Praxis and AdaCore have a long history 
of working together on high profile 
systems. These include the Tokeneer 
project developed by Praxis for the US 
National Security Agency (NSA) using 
the SPARK Ada language and toolset and 
AdaCore GNAT Pro. 



Ada-related Products 77  

Ada User Journal Volume 30, Number 2, June 2009 

Webinar 
A joint webinar between AdaCore and 
Praxis to discuss the benefits and provide 
a demonstration of SPARK Pro will be 
held on April 21, 2009. It will begin at 
5pm European Daylight Time/4pm GMT 
Daylight Time/11am Eastern Daylight 
Time/8am Pacific Daylight Time. To 
register please visit  
https://adacore.webex.com/adacore/ 
onstage/g.php?t=a&d=718810241. 
About Praxis 
Praxis is a systems engineering company 
specializing in safety and mission critical 
applications. Praxis leads the world in 
specific areas of advanced systems 
engineering, such as ultra low defect 
software engineering, safety engineering 
for complex or novel systems, and 
tools/methods for systems engineering. 
Praxis offers clients a range of services 
including turn-key systems development, 
consultancy, training and R&D. Key 
market sectors are Aerospace, Defence, 
Air Traffic Management, Railways, 
Nuclear and Automotive.  
The company operates internationally 
with active projects in North America, 
Asia and Europe. The headquarters of 
Praxis are in Bath (UK) with further 
offices in London, Loughborough, and 
Paris. It is wholly owned by Altran 
Technologies, which is a global leader in 
innovation engineering and has 18,500 
staff across the world.  
www.praxis-his.com 
About AdaCore 
Founded in 1994, AdaCore is the leading 
provider of commercial software solutions 
for Ada, the state-of-the-art programming 
language designed for large, long-lived 
applications where safety, security, and 
reliability are critical. AdaCore’s flagship 
product is the GNAT Pro development 
environment, which comes with expert 
on-line support and is available on more 
platforms than any other Ada technology. 
AdaCore has an extensive world-wide 
customer base; see  
www.adacore.com/home/company/ 
customers/  
for further information. 
Ada and GNAT Pro see a growing usage 
in high-integrity and safety-certified 
applications, including commercial 
aircraft avionics, military systems, air 
traffic management/control, railway 
systems and medical devices, and in 
security-sensitive domains such as 
financial services. 
AdaCore has North American 
headquarters in New York and European 
headquarters in Paris.  
www.adacore.com 
Press Contacts 
press@adacore.com 

Leena Chauhan 
Praxis 
leena.chauhan@praxis-his.com  

AdaCore — Traceability 
Analysis Package for DO-
178B 
From: AdaCore Press Center 
Date: Wednesday March 11, 2009 
Subject: AdaCore Launches Traceability 

Analysis Package for DO-178B 
URL: http://www.adacore.com/2009/03/11/ 

adacore-launches-traceability-analysis-
package-for-do-178b/ 

PARIS, NEW YORK and 
AMSTERDAM, March 11, 2009 – 
Avionics 2009 - AdaCore, leading 
provider of Ada tools and support, today 
announced the availability of the GNAT 
Pro Traceability Analysis Package. This 
product and services solution comprises 
an Ada language feature analysis, 
including test cases and GNAT Pro switch 
recommendations, that can help 
developers demonstrate compliance of 
safety-critical software with the DO-178B 
avionics standard. 
Depending on the application’s criticality 
level, DO-178B demands varying depths 
of analysis for showing coverage of the 
requirements by the software.  
In general it is sufficient to demonstrate 
coverage based on the source code. 
However, at the highest level (DO-178B, 
Level A), if the compiler generates object 
code not directly traceable to source code, 
then the developer needs to perform 
additional verification on the object code 
to establish the correctness of such 
generated code. The GNAT Pro 
Traceability Analysis Package provides a 
product/services solution that can reduce 
this effort. 
“For a system at DO-178B Level A, a 
failure could be catastrophic and cause the 
loss of human life,” said Cyrille Comar, 
Managing Director, AdaCore Europe. 
“The release of the Traceability Analysis 
Package is a natural extension of our tool 
support for developers working in this 
critical area. It uses our intimate 
knowledge of both the Ada programming 
language and the GNAT Pro technology 
to provide accurate source-to-object code 
traceability analysis.” 
“The GNAT Pro Traceability Analysis 
Package allows developers to use richer 
subsets of Ada while reducing 
certification costs,” said Robert Dewar, 
AdaCore President/CEO. “Although the 
code compiled for a more sophisticated 
feature might not be directly traceable to 
the source program construct, the analyses 
supplied in the Package provide the 
additional verification needed for 
compliance with DO-178B, Level A. The 

result is an overall reduction of effort and 
better usage of Ada language features.” 
The GNAT Pro Traceability Analysis 
Package includes the following items, 
which AdaCore prepares based on a 
safety-oriented coding standard supplied 
by the customer: 
⁃ Consistency analysis of the coding 

standard 
⁃ Recommendations for those compilation 

switches and language restrictions 
offering the best tradeoff between 
performance of generated code and ease 
of showing traceability between source 
and object code 

⁃ A test suite representative of the subset 
of the Ada language allowed by the 
customer’s coding standard 

⁃ The analysis, for each test, of the 
traceability of the generated object code 

⁃ Additional verification to establish the 
correctness of generated code that is not 
directly traceable to source code. 

The Traceability Analysis Package 
complements AdaCore’s existing GNAT 
Pro High-Integrity Edition for DO-178B. 
This environment includes GNATcheck, a 
coding standard verification tool. With 
GNATcheck developers can enforce the 
specified coding standard or language 
subset covered by the Traceability 
Analysis Package. 
Along with its partners, AdaCore is also 
heavily involved in “Project Coverage”, 
the first Open Source code coverage 
project for DO-178B and safety-critical 
systems. “Project Coverage” will produce 
a Free Software coverage analysis toolset 
together with artifacts that allow the tools 
to be used by developers of safety-critical 
and mission-critical projects, including 
systems that need to be certified under 
safety standards such as DO-178B. 
“Project Coverage” participants are 
AdaCore, Open Wide, ENST and LIP6 
with financial support from French public 
funds. 
About GNAT Pro 
The GNAT Pro development 
environment, available on more platforms 
than any other Ada toolset, combines 
industry-leading technology with an 
expert support infrastructure and provides 
a natural solution for organizations that 
need to create reliable, efficient, and 
maintainable code. GNAT Pro is the first-
to-market implementation of the Ada 
2005 standard, allowing users to take 
advantage of the many enhancements in 
areas such as object-oriented 
programming, real-time support, and 
predefined libraries. 
At the heart of GNAT Pro is a full-
featured, multi-language development 
environment complete with libraries, 
bindings and a range of supplementary 
tools. All GNAT Pro technology is 



78  Ada-related Products 

Volume 30, Number 2, June 2009 Ada User Journal 

distributed with complete source code. 
GNAT Pro is based on the widely used 
GCC technology, is subjected to a 
rigorous quality assurance process, and is 
backed by rapid and expert support 
service. 
[…] 

AdaCore — GNAT Pro for 
AVR 
From: AdaCore Press Center 
Date: Tuesday March 31, 2009 
Subject: GNAT Pro available for 8-bit AVR 

Microcontroller 
URL: http://www.adacore.com/2009/03/31/ 

8-bit-avr-microcontroller/ 
SAN JOSE, Calif. and PARIS, March 31, 
2009 - Embedded Systems Conference - 
AdaCore, provider of the highest quality 
Ada tools and support, today announced 
availability of its GNAT Pro Ada 
development environment for the Atmel® 
AVR® 8-bit microcontroller. This brings 
the high-level language benefits of Ada to 
the embedded systems community who 
have requirements for low-power and 
small-memory devices, easing the job of 
developing safety-critical and high-
security deeply embedded applications. 
The first user of GNAT Pro for AVR will 
be the UK’s Atomic Weapons 
Establishment (AWE). AWE is a long-
standing Ada user, and GNAT Pro’s 
support for the AVR processor will enable 
AWE to extend its Ada usage to new 
projects. 
GNAT Pro for AVR benefits from the 
features and functionalities of GNAT 
Pro’s existing High Integrity Edition. It 
comes with a Zero Footprint run-time 
library that is particularly well adapted to 
meet the small memory constraints of the 
AVR microcontroller. GNAT Pro for 
AVR demonstrates the suitability of the 
Ada programming language for safety-
critical development for architectures 
ranging from 8-bit to 32-bit and 64-bit 
processors. 
“The industry has long been waiting for 
an Ada solution on 8-bit microcontrollers. 
GNAT Pro for AVR demonstrates 
AdaCore’s capability to answer the needs 
of customers who work in highly 
constrained environments,” said Michaël 
Friess, Technical Sales Manager at 
AdaCore. “Organizations such as AWE 
that are using the AVR microcontroller 
will find a product that takes into account 
the increasing interest in formal methods, 
providing a natural fit with SPARK and 
Praxis High-Integrity Systems’ 
correctness-by-construction approach.” 
Atmel’s low-power, high-performance 
AVR microcontroller handles demanding 
8-bit applications. With a single cycle 
instruction RISC CPU, innovative 
picoPowerTM technology, and a rich 
feature set, the AVR architecture ensures 

fast code execution combined with the 
lowest possible power consumption. 
“Following an extensive evaluation, we 
decided to standardize on Ada as our 
development language of choice due to its 
early error detection and its support for 
our safety-critical, high-reliability 
requirements,” said a spokesperson for the 
UK Atomic Weapons Establishment. 
“Since many of our projects include 
deeply embedded systems, GNAT Pro for 
AVR is an ideal solution.” 
[…] 

AdaCore — GNAT GPL 
2009 
From: Dirk Craeynest 

<Dirk.Craeynest@cs.kuleuven.be> 
Date: Thu, 28 May 2009 22:18:00 CEST 
Subject: GNAT GPL 2009 available 
Mailing list: ada-belgium-info 

@cs.kuleuven.be 
Dear Ada-Belgium friend, 
We hereby forward you an announcement 
from our long time corporate member and 
sponsor AdaCore about the new GNAT 
GPL 2009 release. 
[…] 
----- Forwarded message ----- 
Dear GNAT GPL user, 
We are pleased to announce the release of 
GNAT GPL 2009, the Ada Toolset for 
Academic users and FLOSS developers. It 
introduces many new features including: 
⁃ Ability to generate byte code for the 

JVM 
⁃ Improved support for the .NET 

Framework 
⁃ Addition of the Ada-Java Interfacing 

Suite (AJIS) that enables native Ada 
code to be called from Java. 

⁃ Availability on the Mac OS X (64 bit) 
platform 

⁃ Automatic C/C++ binding generators 
⁃ Addition of the GNAT Component 

Collection (GNATcoll) providing  new 
APIs that can be extended by the user 
community. 

GNAT GPL 2009 comes with version 
4.3.1 of the GNAT Programming Studio 
IDE and GNATbench 2.3, the GNAT 
plug-in for Eclipse. 
It is available for the GNU Linux, Mac 
OS X (64 bit), .NET, JVM and Windows 
platforms. 
GNAT GPL 2009 can be downloaded 
from the "Download" section on the new 
Libre website:  
https://libre.adacore.com 
[For AJIS, see http://www.adacore.com/ 
2008/06/17/ada-java_interfacing_suite 

For GNATcoll, see 
http://www.adacore.com/2008/06/17/ 
gnat_component_collection —mp] 

AdaLog — AdaControl 
1.11r3 
From: Jean-Pierre Rosen 

<rosen@adalog.fr> 
Date: Fri, 13 Mar 2009 13:03:42 +0100 
Subject: AdaControl 1.11r3 released 
Newsgroups: comp.lang.ada 
Adalog is pleased to announce the release 
of a new version of AdaControl. 
This release includes small bug fixes, 
various improvements, and of course new 
rules, reaching 375 possible checks. 
Small but useful improvement: if pfni (the 
utility that prints the full name of an 
entity) is called on a constant or a variable 
which is initialized to a static value, it 
prints that value after full static 
evaluation. This means that from GPS, 
you can right-click on an identifier, select 
"print full name", and get the fully 
evaluated initial value. 
As usual, source and executable 
(GPL2008) versions are available for 
download from 
http://www.adalog.fr/adacontrol2.htm 
[see also “AdaLog — AdaControl” in 
AUJ 29.4 (Dec 2008), p.237 —mp] 

Lattix — Lattix 5.0 
From: Lattix Press Center 
Date: Thu, 28 May 2009 
Subject: Lattix Releases Lattix 5.0 
URL: http://www.lattix.com/news/articles/ 

Lattix50.php 
Award-winning software architecture 
management solution has powerful new 
capabilities for analyzing and re-
architecting complex systems 
Boston, MA–June 1, 2009– Lattix Inc., a 
leading provider of innovative software 
architecture management solutions, today 
announced the release of its newest 
solution, Lattix 5.0. This solution includes 
powerful new functionality to enable 
architects, developers and managers to 
identify issues, restructure and measure 
their system architecture. 
In addition to performance improvements 
and feature enhancements, Lattix 5.0 
contains very innovative new algorithms 
and architecture metrics. Also new in 
Lattix 5.0 are integrations to IBM 
Rational’s Rhapsody for UML/SysML 
models and to Klocwork for C/C++ 
codebases. 
"Our new algorithms and metrics provide 
not only the means to improve the 
modularity of your system and reduce 
defects, but also to measure and track 
improvements in the architecture” 
explains Neeraj Sangal, president and 
founder of Lattix. “Now it will be 



Ada-related Products 79  

Ada User Journal Volume 30, Number 2, June 2009 

possible for our customers to explore 
solutions to issues in their systems and 
assess the impact of proposed changes on 
the system quality.” 
"Our team at Conway had more than 230 
projects in the Eclipse workspace which 
were required by every developer due to 
circular dependencies,” explains Van 
Smity, technical lead at Conway 
Transportation. “Using Lattix's DSM 
partitioning algorithms, we optimized the 
projecct build order and our project 
sprawl is now free of circular 
dependencies. The new partitioning and 
reporting options available in Lattix 5.0 
gives us greater visibility of system 
degredation and metrics to track the 
progress and effectiveness of future 
architectural decisions.” 
New capabilities in this major release 
include: 
⁃ Architecture Metrics: Lattix offers the 

most comprehensive set of “state of the 
art” architectural metrics. These metrics 
actually enable architects to pin-point 
complexity and identify architectural 
problems. Among the new metrics in 
Lattix 5.0 are ones which have a proven 
correlation to the defect rate of projects. 
Lattix also provides metric values for 
some of the leading industry projects 
allowing architects to compare how 
their own projects stack up to them. 

⁃ Partitioning Algorithms: Lattix now 
provides ten different partitioning 
algorithms to cover a broad range of use 
cases for the analysis and re-architecting 
of system elements. New sequencing 
and clustering algorithms facilitate 
grouping of elements even though they 
are cyclically coupled. 

⁃ System Reorganization Algorithms: 
These new algorithms can be used to 
restructure systems which lack 
sufficient structure or which can be 
improved by replacing the existing 
structure with a more modular one. 
Elements of selected subsystems can be 
redistributed automatically or through 
the use of labels applied by the user 
with the Lattix tagging capability. 

⁃ Compound Projects: It is now possible 
to create a compound project that 
consists of multiple individual projects. 
This enables the aggregation of projects 
while allowing each project to be 
maintained individually, which typically 
occurs in large projects involving 
numerous teams. 

Also new to Lattix 5.0 is a direct 
integration with IBM Rational’s 
Rhapsody. The Lattix for Rhapsody 
module, which is now part of the Lattix 
UML/SysML solution, provides a 
powerful systematic approach to review, 
refactor, and maintain architecture in 
large scale Rhapsody models. With Lattix 
for Rhapsody, a designer can readily 
identify undesirable interdependencies in 

the model which prevent modularity and 
increase complexity. As the model 
changes, Lattix for Rhapsody can be used 
to enforce the architecture and expose key 
design decisions for the entire team. For 
more information, please visit  
http://www.lattix.com/products/ 
LDMforRhapsody.php. 
“Lattix integrates with Rhapsody to help 
teams improve the quality of their models 
and achieve enhanced productivity,” said 
Michael Loria, vice president, Business 
Development, IBM Rational Software. 
“By using Lattix and Rhapsody, users are 
provided with an automated approach to 
managing software architecture that 
maximizes the value of their investment 
in IBM Rational software”. 
About Lattix 5.0 
Lattix 5.0 provides the most 
comprehensive solution for systems that 
include UML/SysML models, codebases, 
databases, and frameworks. Lattix 5.0 
supports XMI and IBM Rational 
Rhapsody models; Ada, C/C++, Java, 
.NET, and Pascal languages; Oracle, SQL 
Server, and Sybase databases; and Spring 
and Hibernate frameworks. Lattix 5.0 also 
provides support for full web-based 
reporting of architectural metrics, 
violations, and incremental changes. To 
learn more about Lattix 5.0 and explore 
the different solutions that are available, 
please visit  
http://www.lattix.com/products/ 
products.php. 
Lattix 5.0 enables companies to improve 
and maintain quality, lower defect rates, 
enhance testability, lower costs through 
more effective development, and manage 
risks by better understanding of the 
impact of proposed changes. 
Availability 
Lattix 5.0 is available immediately from 
Lattix in the US or from our partners 
throughout Europe, the Middle East, and 
Asia Pacific. A variety of license options 
are available, from individual user to 
enterprise floating licenses. A free 
evaluation license is also available for 
download from  
http://www.lattix.com/dl/ 
gettingstarted.php. 
About Lattix 
Lattix is a leader of software architecture 
management solutions that deliver higher 
software quality and lower risk 
throughout the application lifecycle.   
Lattix provides a powerful new approach 
of utilizing dependency models for 
automated analysis and enforcement of 
architectures.  
Lattix is located in Andover, MA. More 
information about Lattix can be found at  
www.lattix.com.  

Midoan — Mika 1.1 
From: info@midoan.com 
Date: Mon, 25 May 2009 11:42:51 -0700 

PDT 
Subject: ANNOUNCE Mika by Midoan New 

Release : Automated Test Data 
Generation for Ada 

Newsgroups: comp.lang.ada 
Midoan Software Engineering Solutions 
Ltd. (http://www.midoan.com/) 
announces a new release of Mika, the first 
commercial testing tool for Ada that 
automatically generates test inputs from 
your source code. 
Mika is an entirely automatic tool that 
analyses your Ada code and generates, 
carefully constructed, tests that will 
exercise all the branches or decision 
within your code at a level suitable for 
integration testing. With Mika, manual 
test data generation is no longer 
necessary. 
Version 1.1 can be downloaded at  
http://www.midoan.com/download.html 
Of note in this new release is the 
possibility of using any GNAT compiler 
(including GNAT Pro). 
Version 1.1 (25 May 2009) 
⁃ Improvements include: 
 o Mika is tool chain independent: any 

GNAT compiler can be used; 
 o Tests are generated even in the absence 

of test points; 
 o Error messages are more informative; 
 o GNAT's specific attributes are now 

compiler dependent and generated on 
the fly; 

 o Tests generation for exponent 
expressions with integer argument is 
more powerful; 

 o A direct uninstall is available; 
⁃Subset enlargements include: 
 o Mika is now based on Ada 2005; 
 o Additional GNAT's specific attributes 

are appropriately handled (including 
storage_unit and word_size); 

 o Additional constructs are ignored rather 
than causing a failure (including 
Exception handlers); 

 o The Address predefined attribute 
returns a dummy value rather than fail; 

 o Qualified array expressions are now 
appropriately handled rather than 
causing a failure (array aggregates were 
already handled); 

⁃Bug fixes include: 
 o Use of derived array and derived record 

types objects was sometimes causing 
errors; 

 o Zero exponent expression with integer 
argument did not always return 1;



80 Ada Inside  

Volume 30, Number 2, June 2009 Ada User Journal 

 o Qualified expressions were sometimes 
causing errors for integer, floats and 
enumeration types; 

See http://www.midoan.com/ for further 
information including examples and 
documentation. 

Ada and GNU/Linux 
On big files in 32-bit and 64-
bit systems 
From: Olivier Scalbert 

<olivier.scalbert@algosyn.com> 
Date: Mon, 25 May 2009 21:13:30 +0200 
Subject: Large files on 32 and 64 bits ystem 
Newsgroups: comp.lang.ada 
[…] 
I need to create a file that has 2540160000 
bytes, that is a little more than 2**31 
bytes. 
On a 64 bits Linux box, it is ok, but on a 
32 bits Linux box, I have:  
raised 
Ada.IO_EXCEPTIONS.DEVICE_ERRO
R : s-fileio.adb:1135 
The file length is: 2147483647, which is 
2**31 - 1 
Is it possible to write more than 2**31 
bytes with an Ada program on a 32 bits 
Linux? 
From: Dennis Lee Bieber 

<wlfraed@ix.netcom.com> 
Date: Mon, 25 May 2009 15:19:04 -0700 
Subject: Re: Large files on 32 and 64 bits 

ystem 
Newsgroups: comp.lang.ada 
Not an actual answer, but it may depend 
upon how the filesystem addressing was 
built - the above indicates 32-bit SIGNED 
offsets. 
32-bit unsigned would permit 4GB files 
rather than 2GB. 
Not sure what WinXP NTFS uses -- but 
since DV-AVI is 13GB/hour, and I've had 
many hours transferred, it must be using a 
64-bit addressing even on a 32-bit 
machine. 
The FAT filesystem used on memory 
cards tends to be limited to either 2GB or 
4GB per file, even though the card may 
be much longer (a limitation encountered 
on those video cameras using memory 
card storage, and also some audio 
recorders when running long sessions 
and/or high resolution [96kHz, 24-bit] - 
which breaks the data into files at the 
2GB point, often causing a loss as it takes 
a few seconds to close one file and start a 
new one) 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Mon, 25 May 2009 16:23:07 -0700 

PDT 

Subject: Re: Large files on 32 and 64 bits 
ystem 

Newsgroups: comp.lang.ada 
> […] raised 

Ada.IO_EXCEPTIONS.DEVICE_ERR
OR : s-fileio.adb:1135 

That line indicates that the GNAT run-
time library delegates the write to 
fwrite(3), so your question really boils 
down to whether the C run-time library 
has support for large files or not. What 
filesystem type do you use on your 
machines? I use XFS which supports files 
up to 8 exabytes :-) 
> The file length is: 2147483647, which is 

2**31 - 1 
This limitation exists on FAT16 ("msdos" 
in Linux parlance). Newer filesystems 
have higher limits. 
> Is it possible to write more than 2**31 

bytes with an Ada program on a 32 bits 
linux ? 

32-bit Linux has "large file support" using 
either a dedicated 64-bit API or the 
O_LARGEFILE flag supported in 
open(2) since glibc 2.2.  
It might be a good idea to check how 
GNAT's run-time library deals with this 
API […]. 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Tue, 26 May 2009 03:22:42 -0700 

PDT 
Subject: Re: Large files on 32 and 64 bits 

ystem 
Newsgroups: comp.lang.ada 
>[…] I use ext3. 
In this filesystem, files can grow to 16 GB 
to 2 TB depending on block size. 
[1] explains how large file support works 
in GNU/Linux. Basically, a C program 
supports LFS if it is compiled with the -
D_FILE_OFFSET_BITS=3D64 
preprocessor option on the command line. 
This changes the definition of fopen(3), 
fwrite(3) et al to use 64-bit file offsets 
instead of the default 32-bit file offsets. 
Unfortunately, the GNAT run-time library 
directly imports these functions from 
glibc without any preprocessor in 
between, so is restricted to 32-bit file 
offsets, and so does not support large 
files. 
It would be an interesting project for a 
beginning GCC hacker to implement LFS 
in libgnat. This would involve: 
⁃ wrapper functions in adaint.c that call 

fopen(3), fwrite(3), etc. 
⁃ compiling adaint.c with -

D_FILE_OFFSET_BITS=3D64 
⁃ calling the wrappers instead of the glibc 

functions in System.File_IO et al. (it 
may be a little bit tricky to import them 
properly on all platforms, with and 
without LFS). 

[1] http://www.suse.de/~aj/linux_lfs.html 
From: Robert A Duff 

<bobduff@shell01.TheWorld.com> 
Date: Tue, 26 May 2009 09:26:41 -0400 
Subject: Re: Large files on 32 and 64 bits 

ystem 
Newsgroups: comp.lang.ada 
> Unfortunately, the GNAT run-time 

library directly imports these functions 
from glibc without any preprocessor in 
between, so is restricted to 32-bit file 
offsets, and so does not support large 
files. 

Recent versions of GNAT have better 
support for large files. 
I don't know if this has made it into any 
public versions yet, probably not. 
From: Anonymous 
Date: Tue, 26 May 2009 00:49:19 GMT 
Subject: Re: Large files on 32 and 64 bits 

ystem 
Newsgroups: comp.lang.ada 
With GNAT: 
Ada.Direct_IO uses a file indexes that has 
the type of Count or Positive_Count. 
And these types are based on the positive 
range which is define as the size of a 
long_Integer which is normally in a 32-bit 
machine set to positive value of  ( 2**63 - 
1 ). 
So it is possible from Ada, but the 
interface links between Ada and the OS 
may limit the size. Or in some cases it 
could be the OS or device-drivers that is 
limiting the file size. 
But in looking at the routine 
System.FileIO.Write_Buf where the 
exception occurred and the 
Interfaces.C.Streams they both limit the 
file size to Standard'Address_Size or in 
the case of GNAT 32-bit version, to a 
positive range of 32-bit word aka 
(2GB -1). 
So, the answer is:  
On a 64-bit machine is limited to 2**64-1 
file size and on a 32-bit machine is 
limited to 2**32-1 file size. 

Ada Inside 
Use of Ada in the Sentinel-1 
satellite 
From: AdaCore Press Center 
Date: Tue, 26 May 2009 
Subject: Astrium in the UK Selects GNAT 

Pro for Environmental Satellite System 
URL: http://www.adacore.com/2009/05/26/ 

astrium/ 
PARIS, NEW YORK and ISTANBUL, 
May 26, 2009 - DASIA 2009 - AdaCore, 
provider of the highest quality Ada tools 
and support, today announced that 
Astrium in the UK, a wholly owned 
subsidiary of EADS, dedicated to 



Ada Inside 81  

Ada User Journal Volume 30, Number 2, June 2009 

providing civil and defense space systems 
and services, has selected the Ada 
programming language and AdaCore’s 
GNAT Pro development environment for 
use on the new Sentinel-1 environmental 
monitoring satellite. 
Sentinel-1 is the first of five families of 
satellites being developed for the Global 
Monitoring for Environment and Security 
(GMES) program. GMES, a joint 
initiative of the European Commission 
and the European Space Agency (ESA), is 
designed to support a sustainable 
European information network by 
monitoring, recording and analyzing 
environmental data and events around the 
globe. The Sentinel-1 project is scheduled 
to be completed in October 2011. 
This instrument provides high-resolution 
satellite images by extending radar 
capabilities to penetrate forests and scrub 
to reach the ground, and registering any 
movements or changes on the Earth’s 
surface within a resolution down to 5 
meters. Astrium in the UK will use 
GNAT Pro to implement the Application 
Software for the SAR Electronics Sub-
system which is used to control Sentinel-
1’s C-band Synthetic Aperture Radar 
(SAR). As part of the project, AdaCore 
will also port the GNAT Pro for LEON 
development environment to the Sensor 
Electronics Sub-system (SES) on-board 
computer, enabling compliance with the 
ESA’s stringent ECSS-E-40B and ECSS-
Q-80B space engineering and product 
assurance standards. The LEON2 
processor was commissioned by ESA and 
designed specifically for use in satellite 
systems. 
“Sentinel-1 is a large-scale project that 
promises to deliver superior 
environmental monitoring capabilities,” 
said Paul Southwood, software technical 
engineer, Sentinel-1 Onboard Software 
project, Astrium (UK). “We selected Ada 
based on its reliability and reusability and 
its strong track record in space 
applications. We also wanted a 
development partner that could provide 
the knowledge, flexibility and 
responsiveness to meet our specific needs 
and tight timescales. Astrium has worked 
with AdaCore on a number of successful 
satellite and space projects, including the 
TerraSAR-X, which was the first German 
radar satellite for Earth observation. This 
experience combined with company’s 
partnership approach and support 
capabilities made AdaCore the perfect 
choice for the Sentinel-1 project.” 
“AdaCore has a long and successful 
history in the space industry,” said José 
Ruiz, AdaCore’s team leader on the 
GNAT Pro Sentinel-1 port. “We are 
pleased that Astrium in the UK has 
chosen GNAT Pro as its language 
technology solution for Sentinel-1, and 
we look forward to providing a product 

that will fully meet their project’s 
requirements.” 
About Astrium 
Astrium, a wholly owned subsidiary of 
EADS, is dedicated to providing civil and 
defense space systems and services. In 
2008, Astrium had revenues of €4.3 
billion ($6.0 billion) and more than 
15,000 employees in France, Germany, 
the United Kingdom, Spain and the 
Netherlands. Its three main areas of 
activity are Astrium Space Transportation 
for launchers and orbital infrastructure, 
Astrium Satellites for spacecraft and 
ground segment, and Astrium Services for 
the development and delivery of satellite 
services. 
EADS is a global leader in aerospace, 
defense, and related services. In 2008, 
EADS generated revenues of €43.3 billion 
($60.6 billion) and employed a workforce 
of more than 118,000.  
www.astrium.eads.net 
[…] 

AdaCore — GNAT Pro used 
for C-130J software 
From: AdaCore Press Center 
Date: Monday June 1, 2009 
Subject: Lockheed Martin Selects GNAT 

Pro for C-130J Software 
URL: http://www.adacore.com/2009/06/01/ 

c-130j/ 
SAN DIEGO, NEW YORK and PARIS, 
June 1, 2009 - Avionics USA - AdaCore, 
a leading supplier of Ada development 
tools and support services, today 
announced that Lockheed Martin 
Aeronautics, Marietta, Georgia, will be 
using GNAT Pro to develop the Flight 
Management System Interface Manager 
and Radio Control software on the C-130J 
Super Hercules aircraft. The specific 
product is GNAT Pro High-Integrity 
Edition for a PowerPC target running 
VxWorks 653, the time- and memory-
partitioned real-time operating system 
from Wind River Systems. 
The Lockheed Martin C-130J Super 
Hercules is an advanced tactical airlifter, 
designed for mission flexibility, combat 
delivery, air-to-air refueling, special 
operations, disaster relief, and 
humanitarian missions. Its range, power, 
performance, safety redundancy, 
reliability, and sophisticated avionics 
allow the aircraft to meet demanding 
mission requirements. With Rolls-Royce 
AE2100D3 engines and Dowty R391 six-
bladed composite propellers, the Super 
Hercules can operate in hot climates, and 
handle short, high-elevation airstrips with 
maximum payload. 
The Super Hercules transports 33% more 
payload, using half the crew, while 
burning less fuel and flying faster, farther 
and higher than its predecessors. 

⁃ Faster: The C-130J is faster, climbs 
more quickly, and offers 21% more 
speed. Time-to-climb is 50% better than 
earlier model C-130s. 

⁃ Higher: The C-130J flies higher, climbs 
over the weather and has a 40% greater 
cruising altitude than the C-130H. 

⁃ Farther: The C-130J flies much farther 
with less fuel, providing up to 40% 
greater range than the C-130H. 

GNAT Pro is being used for the Block 7.0 
software upgrade of the C-130J - the 
second cooperative Block Upgrade 
initiative that is a true international 
partnership, with the development costs 
shared among the participating nations, 
including the US government. This 
upgrade includes a new Flight 
Management System developed 
cooperatively between GE Aviation, 
Grand Rapids, Michigan, and Lockheed 
Martin Aeronautics in Marietta, Georgia. 
Since GE Aviation has used the GNAT 
Pro development environment on the 787 
and C-130AMP upgrade programs, 
Lockheed Martin’s selection of GNAT 
Pro will make it easier for the two 
companies to work together on the C-130J 
upgrade. 
“AdaCore has been providing Lockheed-
Martin with Ada development technology 
and support services for many years, and I 
look forward to continuing this 
relationship on the C-130J upgrade 
project,” said Robert Dewar, President 
and CEO of AdaCore. “Avionics is a 
domain where errors can have 
catastrophic consequences, and I am 
pleased that Ada and GNAT Pro are being 
recognized as technologies that can 
provide the necessary safety and 
reliability.” 
In the United States, the C-130J is used 
by the U.S. Air Force, Air Force Reserve, 
Air National Guard, Marine Corps, 
United States Air Force Special 
Operations Forces, Mission Rescue Units 
and Coast Guard. International C-130J 
operators include the United Kingdom, 
Australia, Italy, Denmark and Norway, 
with Canada, India, Qatar and Iraq soon 
joining their ranks. 

Indirect Information on Ada 
Usage 
[Extracts from and translations of job-ads 
and other postings illustrating Ada usage 
around the world. —mp] 
Job offer: [United Kingdom]: Avionics 
Developer (Ada 95, C) 
[…] 
I am looking for a developer with at least 
3,5 years of experience in Ada 95 and C.  
This role will be to join our client based 
team. This team performs activities in the 
domain of on-board software 



82  Ada Inside 

Volume 30, Number 2, June 2009 Ada User Journal 

development, data processing and 
avionics validation. 
Candidates should also have demonstrable 
experience in Avionic & Functional 
Validation domains (or similar complex 
domain), as well as excellent 
understanding of Avionic and / or 
Functional Validation technical leads and 
Real-time HW-SW integration involving 
computer and buses (e.g. 1553B, 
Spacewire etc). 
The candidates will support the validation 
of the avionic components software, 
define AOCS [Attitude and Orbit Control 
System —mp] test cases and execute test 
cases and analyse the test results.  
The role will also involve the 
investigation and determination of the 
cause of test failures and production of 
test reports. 
[…] 
Job offer [United Kingdom]: 
[…] 
Experience of the full development and 
review lifecycle for safety/mission critical 
systems specified in DOORS, designed in 
Simulink and written in C, Ada 83 or Ada 
95. 
Software Engineers with experience in 
either low level testing of safety/mission 
critical systems using AdaTest or 
requirements based software integration 
testing in simulated environments. 
Knowledge of DO-178B and/or MISRA 
would be beneficial, as would knowledge 
of Artisan and UML. 
To apply for this position, candidates 
must be eligible to live and work in the 
UK and capable of gaining security 
clearance. 
Job offer [United Kingdom]: Principal 
Engineer - Hardware in the Loop 
My client develops some of the world’s 
most advanced defence systems; they are 
looking for a Principle Engineer to be 
responsible for the full range of HWIL 
activities and be the subject matter expert 
across relevant projects. 
This is a 'hands-on' role with many facets 
requiring an individual with a broad 
spectrum of skills and knowledge 
including: system modeling and design, 
software design, electronics design, as 
well as real-time computing and 
interfacing device drivers. 
The primary tasks for this role will 
include: 
⁃ the design, development, 

implementation and maintenance of 
real-time simulation environments 

⁃ i.a.w. project Technical Requirements 
including the modification of design 
reference models 

⁃ production and testing of software to 
support the overall simulation including 

control, input/output interfaces and data 
recording/analysis tools 

⁃ integration and commissioning of 
hardware into the test environment 

⁃ verification and validation of the overall 
simulation including the target 
generation and presentation systems 

⁃ development of simulation 
environments from first principles, 
resolution of complex problems and 
flexibility in approach by adapting to 
changing requirements 

Candidates for this role will be expected 
to have: 
⁃ A Degree or equivalent experience 
⁃ Proficiency in electronics, control 

systems, signal processing and 
mechanics 

⁃ Working knowledge of real time 
computing systems and architectures 

⁃ Previous experience in HWIL 
simulation (advantageous) 

⁃ Matlab/Simulink Experience 
⁃ Computer languages: C, C++, 

FORTRAN, Ada 
⁃ Requirements capture skills including 

interface definitions 
⁃ The ability to visualize and analyse 

complex systems 
An ideal background for a suitable 
candidate would include one of the 
following: 
⁃ Missile/Weapon Systems 
⁃ Combat Systems 
⁃ Command & Control Systems 
⁃ Radar System Design 
⁃ Control Systems 
⁃ Military Communications Systems 
⁃ Data Link Systems  
Job offer [United Kingdom]: 
Essential skills and experience: 
A proven track record in the design and 
development of safety-critical systems. 
Essential technical skills and experience 
include: 
⁃ A BSc or higher in a numerate degree 

(e.g. Computer Science) 
⁃ Ada 
⁃ UML 
⁃ Requirement capture (DOORS) 
⁃ Database development 
⁃ Experience in using configuration 

management tools 
[…] 
A current UK security clearance would be 
an asset. It must be possible to clear those 
not already holding a clearance. 
Desirable skills and experience include: 

⁃ Experience in avionics, transport and 
defence sectors 

⁃ Safety-critical related standards (e.g. 
DO-178B, EN 50128) 

⁃ Familiarity with C/C++, J2EE or .Net 
⁃ Familiarity with SysML 
⁃ Experience with Enterprise Architect 

and Artisan 
⁃ Systems Engineering 
Job offer [United States]: 
[…] 
The successful candidate can expect to 
participate in the design, development and 
integration of fighter aircraft sensor 
systems for real-time, man-in-the-loop 
simulations.  
This software models will be developed in 
either C++ and/or Ada, depending upon 
overall system application. 
In general, a Bachelor Degree in 
Electrical Engineering is preferred for this 
position. However, other technical 
disciplines (Physics, Math, Aerospace, 
Computer Engineering, and Computer 
Science) will be considered along with 
relevant work experience for applicability 
to this position. 
Prior use of C/C++ or Ada software 
languages is required as well as direct 
experience with real-time software 
systems and environments.  
[…] 
Qualifications: 
C++ or Ada Software Development 
Experience 
Software Modeling/simulation Experience 
Real-time, embedded systems experience 
[…] 
Job offer [Spain]: 
We are looking for a Computer Scientist, 
Software Engineer or 
Telecommunications Engineer with 
experience in Aerospace systems and 
good knowledge in C++. 
Required: 
⁃ experience in applying aerospace 

system / software engineering processes 
and standards (especially ECSS) 

⁃ experience in UML, object-oriented 
development processes techniques and 
tools 

⁃ experience in high-integrity, embedded, 
real-time systems 

⁃ experience in C++ 
⁃ high level of English 
Desirable: 
⁃ experience in model-driven 

development 
⁃ experience in space transportation 

systems



Ada in Context  83 

Ada User Journal Volume 30, Number 2, June 2009 

⁃ experience in integrated modular 
avionics 

⁃ experience in Ada 
⁃ French 
Job offer [Spain]: 
Technical Engineer or higher / MSc in 
Physics, Mathematics or Computer, 
Industrial, Telecommunications or 
Aerospace Engineering. 
⁃ Experience of 1/3 years in software 

engineering for safety-critical/real-time 
systems (railways, aerospace, defence, 
ATM) 

⁃ Excellent knowledge of Ada 83 / 95, C, 
C++ and UML 

⁃ Knowledge of development 
methodologies and software quality 
assurance is an advantage: CMMi, 
CENELEC, DO 178-B… 

[Translated from Spanish —mp] 
Job offer [Belgium]: 
Context and objectives 
⁃  The project consists in participating in 

the software design and development, 
enhancement and testing of software 
systems used for co-ordination in Air 
Traffic Management (ATM) within Air 
Traffic Flow Management (ATFM) and 
between ATFM, Air Traffic Control, 
Air Space Management, Airports and 
Airlines. 

⁃ Our client collects, validates and 
corrects flight plans for all air traffic 
crossing European airspace, forwards 
them to ATC centers and aerodromes, 
matches this traffic demand against 
capacity, and, after collaborative 
decision making between flow 
managers and ATC, regulates traffic to 
avoid overloads by giving a minimal 
delay to non-exempted flights, with 
respect for equity between the 
operators.  

Required profile 
⁃  Degree in Computer Sciences or 

Engineering. 
⁃  Ability to read, write and speak English 

is mandatory. 
⁃  Experience in Ada is mandatory. Ada 

95 knowledge is a must. 
⁃  C++ knowledge is an advantage. 
⁃  Good experience in design and 

implementation of application software 
using OO techniques. 

⁃  Good knowledge of relational 
databases (e.g. Oracle). 

⁃  Experience in development tools like 
Unix scripting, Emacs, test tools, 
ClearCase is an advantage. 

⁃  Experience in HP-UX, LINUX is an 
advantage. 

⁃  Motivated in the development of new 
Air Traffic Management systems. 

⁃  Strong algorithmic knowledge.  
Jobs requirements 
⁃  Being able to absorb large amounts of 

complex information. It is a necessary 
requirement to be able to maintain and 
to implement new requirements in a 
code base of roughly 1.5 MSLOC of 
Ada code. 

[…] 

Ada in Context 
Miscellaneous math routines 
From: johnscpg@googlemail.com 
Date: Tue, 12 May 2009 09:38:49 -0700 

PDT 
Subject: ANN: miscellaneous Math routines, 

GPL'd 
Newsgroups: comp.lang.ada 
[…] 
For those of you who like Ada with their 
numerics (is there anyone who doesn't?!) I 
have released a collection of math 
routines under the GPL license. Find them 
at: 
http://web.am.qub.ac.uk/users/j.parker/ 
miscellany 
The full set is tarred in the file: 
miscellany.10may09.tar.gz 
in the directory given above. 
Most are old classics I have found useful 
over the years (SVD, QR, LU, Runge-
Kutta, FFT, Arbitrary precision floating 
point). 
The random number generators are very 
new; the documentation should explain 
why I recommend them. The random 
number generators and the Arbitrary 
precision floating point are designed to 
make good use of the new 64-bit CPUs. 
From: John B. Matthews 

<jmatthews@wright.edu> 
Date: Tue, 12 May 2009 14:45:31 -0400 
Subject: Re: ANN: miscellaneous Math 

routines, GPL'd 
Newsgroups: comp.lang.ada 
Excellent. You might like to see my 
experimental implementation of 
Generic_Roots, using the Durand-Kerner-
Weierstrass method and distributed under 
the GNAT modified GPL: 
http://home.roadrunner.com/~jbmatthews/
misc/groots.html 
[see also “Generic_Roots” in AUJ 29.4 
pag.241 —mp] 
From: johnscpg@googlemail.com 
Date: Wed, 13 May 2009 02:39:50 -0700 

PDT 
Subject: Re: ANN: miscellaneous Math 

routines, GPL'd 
Newsgroups: comp.lang.ada 
Thanks for the pointer. Root finding BTW 
is one of those problems that cries out for 

extended precision floating pt. It’s rarely 
time-sensitive (rarely in inner loops), but 
very sensitive to precision…   
Last time I did it, it was on Mathematica 
in extended precision…  
I prefer Ada! If I did in Fortran I would 
always use REAL*16 (Quad-precision, 32 
digit floats) but only one Fortran (intel 
ifort) supports this as far as I know 
(except IBM's Fortran on powerpc). If I 
ever find the time I'll hook up your root 
finder to my Extended Precision package. 
[…] 
From: Jerry Bauck 

<lanceboyle@qwest.net> 
Date: Tue, 12 May 2009 14:02:56 -0700 

PDT 
Subject: Re: ANN: miscellaneous Math 

routines, GPL'd 
Newsgroups: comp.lang.ada 
Wow--numerical code that I can actually 
read! This looks awesome. 
I suppose that it would not be hard to 
adapt the code to use the vector and 
matrix declarations in the Annex G.3 part 
of Ada 2005, e.g. 

type Real_Vector is array  
   (Integer range <>) of Real'Base; 
type Real_Matrix is array  
   (Integer range <>, Integer range <>)  
   of Real'Base; 

replacing the scattered declarations such 
as 

type Data_Array is array (Array_Index)  
   of Real; 
type A_Matrix is array 
   (R_Index, C_Index) of Real; 

I really like the "standardized" way of 
these Ada 2005 declarations. 
From: johnscpg@googlemail.com 
Date: Wed, 13 May 2009 02:25:30 -0700 

PDT 
Subject: Re: ANN: miscellaneous Math 

routines, GPL'd 
Newsgroups: comp.lang.ada 
To instantiate the lin. alg. generics (in 
directory linearly) using the unconstrained 
arrays you typed above, declare a subtype 
m3: 

subtype Index is Integer range 1..191; 
type Real_Matrix is array  
   (Integer range <>, Integer  range <>)  
   of Real; 
subtype m3 is Real_Matrix  
   (Index, Index); 

The generics can now be instantiated with 
m3. 
Another interesting question is whether 
the generics (and the subprograms 
declared by the generic package) should 
be using unconstrained arrays: 



84  Ada in Context 

Volume 30, Number 2, June 2009 Ada User Journal 

generic 
   type Real is digits <>; 
   type Matrix is array  
   (Integer range <>, Integer  range <>)  
   of Real; 

In the old days if I did that the program 
would run way slow.. seemed to put the 
compiler under much stress… maybe ok 
now but I am not going to be the one to 
prove it. 
Here's another problem:  Very common 
for an application to require 
transformation of an arbitrary diagonal 
block of a matrix (or any block) rather 
than the full matrix. 
Unconstrained arrays don't provide any 
special benefit here… 
you still have to copy the block to another 
matrix, or handle it the way I do in these 
routines (tell the routine to operate on a 
specified block only). Once you've gone 
to this trouble, the benefit of 
unconstrained arrays is small. 
Another irritation:  suppose user declares 

  V : Vector (1..10); 
  M : Matrix (0..9, 0..9); 

or worse 

  M : Matrix (0..9, 2..11); 

or worse still 

  M : Matrix (0..11, 2..11); 

How do you handle it? 
1. shift indices during iteration inside 
loops in the lin alg program. 
2. slide arrays so indices coincide. 
3. Raise constraint_error; 
4. Assume they won't do it. 
I do 3. (See for example procedure 
Choleski_Decompose at end of 
Disorderly-Random-Deviates.adb  and 
near bottom of Disorderly-Random-
Deviates.ads.). But I'm not sure what to 
do. (I was going ask here on 
comp.lang.ada, but got lazy.) 
Generics with constrained arrays work ok 
for me here. 
From: Gautier de Montmollin 

<gdemont@users.sourceforge.net> 
Date: Wed, 13 May 2009 04:52:16 -0700 

PDT 
Subject: Re: ANN: miscellaneous Math 

routines, GPL'd 
Newsgroups: comp.lang.ada 
It's done here: 
http://www.cs.umbc.edu/~squire/adaclass/
gnatmath95 , 
generic_real_linear_equations.ads . 
For using with Ada 2005's matrices, all 
you need is to replace package 
Generic_Real_Arrays by 
Ada.Numerics.Generic_Real_Arrays 

From: johnscpg@googlemail.com 
Date: Wed, 13 May 2009 06:43:11 -0700 

PDT 
Subject: Re: ANN: miscellaneous Math 

routines, GPL'd 
Newsgroups: comp.lang.ada 
Thanks Gautier! After a quick inspection, 
I notice a lot of method 1, (shifting 
indices inside loops), but sometimes the 
author copies the entire input array over 
to a new local array with the desired 
indices (usually 1..N).   
Also raises an exception if there's a length 
mismatch. 

gcc-ada for Solaris x86_64 
From: Anonymous 
Date: Fri, 27 Mar 2009 13:22:19 +0000 

UTC 
Subject: Build gcc-ada on/for Solaris 

x86_64? 
Newsgroups: comp.lang.ada 
I would like to be able to use GCC ada on 
my Solaris 10 Intel box. I did some 
preliminary checking and it doesn't look 
like a trivial undertaking. 
I'm wondering if any of the participants in 
comp.lang.ada have done this or anything 
similar. 
I have GCC 3.4.x running on the Solaris 
box from Sun's Companion CD but it was 
not built with Ada support. 
I have 64 and 32 bit Linux boxes both 
running GCC 4.2.4 with Ada. Maybe it's 
simple (!) to build a cross target from this 
system? 
I read somewhere that the GCC Ada 
version isn't necessarily the same as the 
GCC version. Is there a reason why I can't 
use 4.2.4 Ada on a GCC 3.4 base? Is gcc-
ada at the 3.4 level worth having? 
[…] 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Fri, 27 Mar 2009 08:06:53 -0700 

PDT 
Subject: Re: Build gcc-ada on/for Solaris 

x86_64? 
Newsgroups: comp.lang.ada 
[…] 
I suggest you install the package gcc3ada 
from www.blastwave.org; this is GCC 
3.4.5 with Ada enabled. If you would like 
a more recent version, use gcc3ada to 
compile GCC 4.3.3 with Ada.  
It would be nice if you would then 
contribute your packages back to 
blastwave. 
PS. I recommend against package 
gcc4ada (GCC 4.0.2) because of bugs 
resulting from the introduction of Tree-
SSA in GCC 4.0 (i.e. impedance 
mismatches between the Ada front-end 
and the GCC 4.0 back-end). 

AuroraUX Project 
From: AuroraUX Project 
Date: Mon, 01 Jun 2009 
Subject: Core Operating System for High 

Integrity Scientific Computing 
URL: http://auroraux.blastwave.org/ 

index.php/Main_Page 
A few words about the project 
AuroraUX is a Solaris-derived kernel- 
and user-land. The core of the project are 
its utilities written in Ada. When 
necessary, poorly implemented features 
get fixed or rewritten, as well. 
Ada? 
Yes, Ada. Ada was chosen because it 
encompasses every ideology that the core 
developers believe should exist in a 
system. 
Ada has more compile time checks than 
you can shake a stick at and she keeps an 
eye on many things at runtime, too.  
Code can generally be read by just about 
anyone with english language skills 
meaning that documentation can actually 
be written by a "normal" person. 
The language was designed such that even 
it's syntax promotes integrity of software. 
But many thanks go to the powerful type 
system. These are only the tips of an 
iceberg and not necessarily the most 
important reasons.  
Of course, some have shunned Ada 
saying it's a military language or it's an 
avionics language. Yes, and C is a text-
processing language and C++ is for 
mobile phones. 
And while we won't be able to escape the 
grips of C for obvious reasons, we can 
certainly make the world a happier one by 
throwing out (with discretion, for now) as 
much as we can and replacing it with an 
improved userland crafted with a 
language designed for real-time, 
embedded, safety-critical, reliable and 
maintainable systems by using our 
favorite lady, Ada. 
AuroraUX is a noble, non-trivial goal, but 
with the determination and spirit of the 
existing developers, it will flourish--
though they would appreciate any help 
that is offered. :)  
[…] 
Project Constellations 
Major components are meticulously 
documented. 
⁃ Hydra Custom package manager 

compatible with SVR4 packages 
⁃ Misc GCC Ada frontend GNAT GPL 

and tool-chain 
⁃ Nebula Installer featuring textual and 

graphical installers 
⁃ Singularity AuroraUX Kernel with 

userland written in Ada 



Ada in Context 85  

Ada User Journal Volume 30, Number 2, June 2009 

⁃ StarDust AuroraUX projects with 
complementary software from 
Blastwave, ISV and user projects 

⁃ SuperNova X.org with an desktop 
environment written in Ada 

⁃ Universe Common Tools and 
development items moved from Misc as 
needed 

[verbatim from the home page of the 
project —mp]  

Arguments for using Ada 
From: Georg Maubach 
Date: 19 May 2009 08:41:24 GMT 
Subject: Arguments for using Ada 
Newsgroups: comp.lang.ada 
[…] 
I am preparing a general suggestion for 
improvement into the group-wide ideas 
and innovation management system of my 
employer. For this I would like to back up 
me suggestion with some articles about 
the advantages of using Ada. 
I have so far: 
Proof that a software development project 
using Ada takes less - instead of more 
time - than expected: "The Return of Ada"  
http://gcn.com/Articles/2008/04/11/  
The-return-of-Ada.aspx?Page=1 
Proof that complex systems within the 
logistics and transportation industry work 
more reliable and can be better 
maintained using Ada than other 
languages: "European Train Control 
System"  
http://www.adaic.com/atwork/euro.html 
List of software systems based on Ada 
that work without defects and are 
therefore never heard of  
http://www.seas.gwu.edu/~mfeldman/ 
ada-project-summary.html 
http://www.cs.kuleuven.ac.be/~dirk/   
ada-belgium/success/success.html 
Ada is tought at German universities, 
programmers could be recruited from 
there  
http://www.ada-deutschland.de/ful/ 
index.html 
Proof of the activities of the Ada user 
community:  
⁃ FOSDEM 2009 - Ada Developers 

Conference Room  
http://www.cs.kuleuven.be/~dirk/ ada-
belgium/events/09/090207-fosdem.html 
⁃ Ada Europe Conference 2009  
http://www.ada-europe.org/ 
conference2009.html 
⁃ ACM SigAda Conference 2009 
http://www.sigada.org/conf/sigada2009/ 
⁃ Discussion Group  
comp.lang.ada 

Tools and Utilities can be bought from 
many manufacturers, supplier change is 
possible if needed, no single supplier 
dependency  
http://www.ibm.com/software/awdtools/ 
developer/ada/, http://www.eds.com/, 
http://www.adacore.com, 
http://www.aonix.com, 
http://www.ddci.com, 
http://www.ghs.com 
Training courses are available from 
different suppliers 
http://www.ddci.com/, 
http://www.abssw.com, 
http://www.classwide.com 
What is missing are articles relating to the 
following: 
⁃ There are enough Ada programmers 

available. 
⁃ Ada can be used with more success than 

other languages. There was a software 
development project at a university 
which asked a first group of students to 
use C (not successful) and asked a 
second group of students using Ada 
(successful). 

⁃ Links with content (e.g. research) that 
proofs that development with Ada 
results in less defects than programs in 
other languages 

⁃ Links with content (e.g. research) that 
proofs that development with Ada 
results in better maintainable software 

Can you help me with links and 
information on the aspects still missing? 
From: Christoph Grein 

<christoph.grein@eurocopter.com> 
Date: Tue, 19 May 2009 02:13:39 -0700 

PDT 
Subject: Re: Arguments for using Ada 
Newsgroups: comp.lang.ada 
> […] There was a software development 

project at a university which asked a 
first group of students to use C (not 
successful) and asked a second group of 
students using Ada (successful). 

John McCormick's Model Railroad: 
http://www.adaic.org/atwork/trains.html 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Tue, 19 May 2009 02:18:04 -0700 

PDT 
Subject: Re: Arguments for using Ada 
Newsgroups: comp.lang.ada 
> Tools and Utilities can be bought from 

many manufacturers, supplier change is 
possible if needed, no single supplier 
dependency […] 

I don't think this is relevant to most 
pointy-haired bosses.  
They're content to become a captive 
customer of Microsoft, Sun (Java) and 
Intel (processors). Instead, I think the 
relevant idea is that they can choose one 
reliable supplier  

that provides support in the long term, and 
happily become captive. 
> Training courses are available from 

different suppliers […] 
Also www.adalog.fr. 
> What is missing are articles relating to 

the following: 
> 
> ⁃ There are enough Ada programmers 

available. 
At Eurocontrol we never have a problem 
recruiting Ada programmers, or people 
willing to convert to Ada. But pointy-
haired bosses like to point out "the lack of 
Ada programmers" when they run out of 
excuses for poor engineering decisions.  
If a programmer can learn Java or C#, 
they can learn Ada. 
[…] 
> ⁃ Links with content (e.g. research) that 

proofs that development with Ada 
results in less defects than programs in 
other languages 

http://www.adaic.com/whyada/  
ada-vs-c/cada_art.html 
> ⁃ Links with content (e.g. research) that 

proofs that development with Ada 
results in better maintainable software 

http://www.adaic.com/whyada/ 
ada-vs-c/cada_art.html 
> Can you help me with links and 

information on the aspects still 
missing? 

http://www.adaic.com/whyada/ 
I think the biggest hurdle to overcome is 
the lemming mentality; even if you point 
out that a pointy-haired boss is thinking 
like a lemming, they are still happy about 
that because they want their programmers 
to be interchangeable (i.e. disposable). 
Some do not even understand the value of 
good education and tools for good 
software engineering. 
Also, before you convince pointy-haired 
bosses, you need to win the hearts and 
minds of developers. So, I would suggest 
you discuss your idea with some 
developers first, and not try to have 
managers force Ada on them. You will be 
better able to convince managers if 
several top developers back your 
suggestions. 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Tue, 19 May 2009 02:38:16 -0700 

PDT 
Subject: Re: Arguments for using Ada 
Newsgroups: comp.lang.ada 
There is statistical proof that the number 
of Ada programmers is increasing: 
http://qa.debian.org/popcon-
graph.php?packages=gnat+gnat-4.1+gnat-
4.3&show_installed=on&want_legend=o
n&want_ticks=on&from_date=&to_date=



86  Ada in Context 

Volume 30, Number 2, June 2009 Ada User Journal 

&hlght_date=&date_fmt=%25Y-
%25m&beenhere=1 
From: Roderick Chapman 

<roderick.chapman@googlemail.com> 
Date: Tue, 19 May 2009 04:28:38 -0700 

PDT 
Subject: Re: Arguments for using Ada 
Newsgroups: comp.lang.ada 
> ⁃ Links with content (e.g. research) that 

proofs that development with Ada 
results in less defects than programs in 
other languages 

I would add "The existence of SPARK" to 
your list of things that are special and/or 
notable about Ada. 
For data on defect rates, see the various 
publications regarding SPARK usage on 
www.sparkada.com 
Also see Andy German's paper from 
CrossTalk (google for "German Crosstalk 
QinetiQ"). 
See the Tokeneer system from 
www.adacore.com/tokeneer 
From: Peter Hermann 
Date: Tue, 19 May 2009 12:29:39 +0000 

UTC 
Subject: Re: Arguments for using Ada 
Newsgroups: comp.lang.ada 
"some" more links: 
http://www.ihr.uni-stuttgart.de/forschung/ 
ada/resources_on_ada/ 
From: Mike Silva 

<snarflemike@yahoo.com> 
Date: Thu, 21 May 2009 07:23:23 -0700 

PDT 
Subject: Re: Arguments for using Ada 
Newsgroups: comp.lang.ada 
I've always been impressed by the finding 
that some Ada code certified to DO-178B 
had only one tenth the residual error rate 
of some C code also certified to DO-
178B.   
Maybe the Praxis folk can help you 
document that finding.  
In addition, you should peruse all their 
online publications. 
Here's the reference to the one-tenth 
residual error figure: 
http://www.praxis-his.com/sparkada/ 
pdfs/spark_c130j.pdf 
From: Roderick Chapman 

<roderick.chapman@googlemail.com> 
Date: Thu, 21 May 2009 11:33:10 -0700 

PDT 
Subject: Re: Arguments for using Ada 
Newsgroups: comp.lang.ada 
[...] 
> Maybe the Praxis folk can help you 

document that finding. 
It's in Andy German's paper from 
CrossTalk - see my posting above. 

Advantages of Ada over C 
for embedded systems 
programming  
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Sat, 7 Mar 2009 14:16:28 +0100 
Subject: Re: C vs. ada for embeded system 
Newsgroups: comp.lang.ada 
> why ada is better of "C" language for 

embedded system? 
That depends on many factors. What 
worked for us was: 
1. Portability. We develop and test under 
Windows. The target platform is used 
only incidentally. We use same code for 
both, no single line of preprocessor; 
2. Language standard; 
3. Tasking support (yes, we needed tasks); 
4. OOPL; 
5. Excellent support (AdaCore). 
Disadvantages: 
1. Damn difficult to get a compiler; 
2. Tool chain (IDE, debugger etc) for Ada 
is not that good. Well not bad when 
compared with Workbench/Eclipse, but 
still no match to Visual Studio; 
3. Initial costs are much higher than for C. 
From: Martin Dowie 

<martin.dowie@btopenworld.com> 
Date: Sat, 7 Mar 2009 10:12:55 -0800 PST 
Subject: Re: C vs. ada for embeded system 
Newsgroups: comp.lang.ada 
[…] 
For me the features which aid embedded 
systems in particular are: 
1. Built-in real-time clock 
2. Built-in fixed point numbers 
3. Portability 
4. Less buggy* 
* that's taking an average bunch of 
engineers who know their chosen 
language to a decent level. You can get 
dummies writing cr*p Ada and super-
programmers turning out bug-free C. 
Which matches your current team? Which 
matches your future team? 
The features that are in the 'pro' column 
for Ada that aren't specific to embedded 
systems are: 
1. Ranged elementary types (i.e. int and 

float with ranges that run-time checks) 
2. Built-in tasking 
3. No pre-processor 
4. Proper arrays (=> proper Strings) 
5. Built-in container libraries 
6. Exceptions 
7. Packages (i.e. proper modules - not 

faked up with 'guard macros' => no 

unintentional dependencies via 
'#include') 

8. Named parameter association 
[…] 
From: Jeffrey R. Carter 

<jrcarter@acm.org> 
Date: Sat, 07 Mar 2009 18:29:08 GMT 
Subject: Re: C vs. ada for embeded system 
Newsgroups: comp.lang.ada 
[…] 
Where we have hard data, they show that 
Ada results in delivery at half the cost and 
with 1/4 the errors of C, and the errors 
cost 1/10 as much to correct.  
(Of course, that's not specific to 
embedded systems.) 
From: Per Sandberg 

<per.sandberg@bredband.net> 
Date: Sat, 07 Mar 2009 20:54:18 +0100 
Subject: Re: C vs. ada for embeded system 
Newsgroups: comp.lang.ada 
Well, would say that that depends entirely 
where you think its worth spend your 
time. 100 hours upfront designing and 
fighting the compiler or 500 hours after 
delivery fighting with the debugger. 
And in my experience that counts for all 
kinds of systems. 
From: Anonymous 
Date: Sat, 07 Mar 2009 23:26:39 GMT 
Subject: Re: C vs. ada for embeded system 
Newsgroups: comp.lang.ada 
Ada is a more perfect portable language 
while C has become a damaged language 
by the use of macros and conditional 
statements. Which initially allowed C and 
other software written in C to become 
portable has now branched into a 
nightmare for programmers to maintain 
the older software. 
Ada has no language defined macros or 
conditional statements only a number of 
packages that need to be rewritten for 
each platform and/or OS used. And the 
specific machine and platform dependent 
code of these packages are transparent to 
the programmers and their software. 
Giving a better and more portable 
language to use. 
Plus, the built-in features like tasking and 
safety makes Ada a winner. Of course, the 
closer you get to perfection for a language 
the higher the cost. 
[…] 
From: John McCormick 

<mccormick@cs.uni.edu> 
Date: Mon, 9 Mar 2009 09:02:32 -0700 

PDT 
Subject: Re: C vs. ada for embeded system 
Newsgroups: comp.lang.ada 
You can see the results of completion 
rates for a 10-15K line project done in 
both C and Ada in my Real-Time 
Embedded Systems class over the past 20 
years. The class runs for one semester (15 



Ada in Context 87  

Ada User Journal Volume 30, Number 2, June 2009 

weeks).  The bottom line is that NO 
student team ever completed the minimal 
project requirements in C. Over 80% of 
the teams working in Ada completed the 
project. My latest publications on the 
matter are: 
“We've been working on the railroad: a 
laboratory for real-time embedded 
systems”, McCormick, J. W., SIGCSE 
Bulletin, Volume 37, Number 1, Feb. 
2005, Page(s): 530-534. 
“Instrumentation education through 
model railroading”, McCormick, J.W., 
Instrumentation & Measurement 
Magazine, IEEE, Volume 9, Issue 5, Oct. 
2006 Page(s): 40 - 45 
“Model Railroading and Computer 
Fundamentals”, McCormick, J.W., 
Journal of Computer Science Education, 
Volume 17, Number 2, June 2007, 
Page(s): 129 - 139 
From: Martin Krischik 

<krischik@users.sourceforge.net> 
Date: Tue, 10 Mar 2009 18:33:24 +0100 
Subject: Re: C vs. ada for embeded system 
Newsgroups: comp.lang.ada 
[…] 
Interesting - where the students allowed to 
choose the language or was it forced upon 
them? 
Do the students know before hand of the 
dire C results? 
From: Christoph Grein 

<christoph.grein@eurocopter.com> 
Date: Wed, 11 Mar 2009 03:14:47 -0700 

PDT 
Subject: Re: C vs. ada for embeded system 
Newsgroups: comp.lang.ada 
[…] you can find the article here: 
http://www.adaic.com/atwork/trains.html 
It's a very interesting reading and answers 
all your questions. 
From: John McCormick 

<mccormick@cs.uni.edu> 
Date: Wed, 11 Mar 2009 07:07:01 -0700 

PDT 
Subject: Re: C vs. ada for embeded system 
Newsgroups: comp.lang.ada 
> Interesting - where the students allowed 

to choose the language or was it forced 
upon them? 

Forced :) Christoph pointed out an older 
article that is easy to access. We used C 
the first 7 years leading to a very 
frustrated professor. Even when I gave 
them over 50% of the C code, they still 
failed. Two attempts were made by Ada 
graduates to write the systems in C++ and 
Real-Time Java. Neither succeeded. 
I have a video of the laboratory at  
http://www.cs.uni.edu/~mccormic/ 
RealTime/ 
You can also see a user's manual that 
describes the system the students 
implement. 

A comparison between Ada 
and Eiffel 
From: Tomek Walkuski 

<tomek.walkuski@gmail.com> 
Date: Sun, 24 May 2009 01:39:14 -0700 

PDT 
Subject: Ada vs Eiffel - Ada programmer 

approach 
Newsgroups: comp.lang.ada 
[…] 
I do not want to start another flame war 
which language is better.  
I think that Ada and Eiffel target same 
field and I want to ask you, Ada 
programmers, about: 
⁃ what, in your opinion, is better in Ada, 

in contrast to Eiffel? 
⁃ what, in your opinion, is worse in Ada, 

in contrast to Eiffel? 
Please, share your thoughts if you have an 
experience in both languages. 
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de> 
Date: Sun, 24 May 2009 14:17:51 +0200 
Subject: Re: Ada vs Eiffel - Ada 

programmer approach 
Newsgroups: comp.lang.ada 
[…] 
⁃ Eiffel has garbage collection by default. 

Good for programs that can afford it. 
⁃ Eiffel offers a little less to support 

systems/hardware programming 
directly. For example, the base type 
system is frozen, which means that you 
cannot have basic types of the range 0 .. 
100 kind, the advice being to use DbC 
assertions instead. For bit operations we 
can use features from class 
NATURAL_32… 

-  There is class POINTER/ 
POINTER_REF; it may be necessary to 
use "extern", i.e. C, for hardware 
address things… Not sure about the 
latter, though. Ada's loop is more 
flexible, which I guess matters when a 
program is to run in 64kB or less, or 
when I want tight control over inner 
loops. 

⁃ Eiffel has, or used to have, a 
"standardized" separate cluster language 
for namespace things and also 
configuration. (Currently being, uh, 
reworked?) I like the configuration part 
because it removes vendor specific 
language without impeding vendors I 
should think. You can't see the 
"namespaces" in the source proper. 
Good or bad? Advice is: Use 
EiffelStudio. 

⁃ Eiffel's concurrency features are 
basically experimental. (Side note: the 
Redmond amoeba has recently 
embraced the word "task".) While 
Eiffel's "separate" and SCOOP are 
defined, class THREAD is mentioned a 

lot… The SmartEiffel language is said 
not to be thread safe at this time. 

⁃ Ada's separate specification is only 
possible using deferred classes in Eiffel. 
You can then use the cluster language to 
rename this or that class as a "body" 
class, implementing any deferred 
feature. Using deferred this way seems 
like a misuse to me. 

⁃ Eiffel has full multiple inheritance. Not 
sure this is a big deal, in practice, 
compared to mix-in generics, but it is 
being used to add characteristics such as 
HASHABLE or INDEXABLE.  Seems 
somewhat less "flexible" than Ada 
generic actuals that can be supplied 
from just about anywhere, including 
from local scopes. (Not sure there are 
no Eiffel tricks here, using [anonymous] 
agents, though). 

⁃ Eiffel's Design by Contract is only 
beginning to be present in Ada. (Not 
mentioning SPARK.) Still praying… 

⁃ Eiffel is flat (anonymous agents being 
an exception of sorts…), Ada allows 
nesting, including local types. 

I really missed the explicit packaging 
structure of Ada when writing the same 
(sequential) program in both Eiffel and 
Ada. 
From: Pascal Obry <pascal@obry.net> 
Date: Sun, 24 May 2009 18:31:24 +0200 
Subject: Re: Ada vs Eiffel - Ada 

programmer approach 
Newsgroups: comp.lang.ada 
[…] 
> ⁃ what, in your opinion, is better in 

Ada, in contrast to Eiffel? 
⁃ a strong standard (Eiffel community is 

sadly split these days). 
⁃ string type system 
⁃ tasking 
⁃ distributed annex 
⁃ support for interfacing with hardware 

(e.g. representation clauses). 
⁃ not everything is a class (composability 

of Ada, packages, tagged types, child 
packages...) 

⁃ more components and binding to 
common libraries 

⁃ bigger and more active community 
> ⁃ what, in your opinion, is worse in 

Ada, in contrast to Eiffel? 
⁃ memory management (not GC - I know 

that there is nothing in the standard that 
forbid it - and this would be certainly 
really handful for some domain) 

⁃ multiple inheritance 
⁃ DbC with pre-condition/post-

condition/invariant 
[…] 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 



88  Ada in Context 

Volume 30, Number 2, June 2009 Ada User Journal 

Date: Tue, 26 May 2009 06:37:49 -0700 
PDT 

Subject: Re: Ada vs Eiffel - Ada 
programmer approach 

Newsgroups: comp.lang.ada 
[…] 
> ⁃ memory management (not GC - I 

know that there is nothing in the 
standard that forbid it - and this would 
be certainly really handful for some 
domain) 

I agree that it would be nice if some Ada 
compilers would provide an optional 
garbage collector. One exists as a third-
party add-on to GNAT but I've never used 
it and it's not part of AdaCore's or the 
FSF's distributions. 
In fact, I would like it if the garbage 
collector could optionally log all 
deallocations while the program runs, so I 
can find memory leaks, correct them, and 
remove the garbage collector later. 
> ⁃ multiple inheritance 
I'm not sure this is a good thing. In fact, 
I'm not sure simple inheritance is always a 
good thing, either. I tend to prefer 
composition and generics. 
> ⁃ DbC with pre-condition/post-

condition/invariant 
When I read Bertrand Meyer's "Object-
Oriented Software Construction", I too 
thought that DbC was a brilliant idea. 
Now I'm less convinced. I see two major 
drawbacks to DbC: 
⁃ pre/post conditions and invariants 

involve run-time checks most of the 
time (if not all the time). They slow the 
program down if enabled, or become 
useless when disabled for performance. 
I like static checking much better; Ada 
provides a lot of that out of the box 
(much more than Eiffel) and SPARK 
goes way beyond even that. 

⁃ in most of the examples I saw in the 
literature, only very simple subprograms 
would have a contract and the contract 
would mostly repeat the body of the 
subprogram. This redundancy is 
counter-productive. For more complex 
subprograms, it can be very difficult to 
write pre- and post-conditions and 
invariants; Ada's pragma Assert 
provides what I need in these (rare) 
cases  because I can put such pragmas 
in the middle of a subprogram, for 
example. 

From: Tim Rowe 
<spamtrap@tgrowe.plus.net> 

Date: Tue, 26 May 2009 16:07:06 +0100 
Subject: Re: Ada vs Eiffel - Ada 

programmer approach 
Newsgroups: comp.lang.ada 
[…] 
I still think it's a brilliant idea, but suffers 
from *Design* by Contract getting 
confused with *Programming* by 
Contract; not least because "Design by 

Contract" is a trademark, so people 
needed a different name to refer to the 
approach, but I'm not sure Bertrand 
Meyer always kept the distinction clear 
either. 
Both of the problems you describe are 
programming issues, not design issues. 
There's nothing about the *design* 
process that mandates any run-time 
checks or that requires you to have pre- 
and post-conditions expressed in the 
target language. That's a matter for coding 
standards. To me, Design by Contract 
simply means working out and 
documenting in advance under what 
circumstances a section of code can 
legitimately be entered, and, if that is 
satisfied, what we can guarantee on exit. 
Learning to do that rigorously and 
diligently has certainly improved my own 
design. 
We had that before Meyer coined the term 
"Design by Contract" of course. We used 
to call it "specification". 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Tue, 26 May 2009 16:51:35 +0200 
Subject: Re: Ada vs Eiffel - Ada 

programmer approach 
Newsgroups: comp.lang.ada 
[…] 
> ⁃ in most of the examples I saw in the 

literature, only very simple 
subprograms would have a contract and 
the contract would mostly repeat the 
body of the subprogram. This 
redundancy is counter-productive. 

That is when the contract is thought to be 
an equivalent of correctness proof. But it 
is not. A contract is much weaker, so that 
a program which fulfills its contract is not 
necessarily a correct program. Weaker 
contracts have an advantage to remain 
statically checkable for complex 
programs, leaving proofs of correctness 
aside. 
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de> 
Date: Tue, 26 May 2009 18:37:29 +0200 
Subject: Re: Ada vs Eiffel - Ada 

programmer approach 
Newsgroups: comp.lang.ada 
> […] This redundancy is counter-

productive. 
I thought that too, but I don't consider 
redundancy counter-productive any more; 
it makes me think twice. In fact, trying to 
find a post-condition - which must be 
consistent with the module invariant, for 
which there isn't any support in Ada yet - 
has forced me to simplify program 
structure. Isn't that a good thing? 
> For more complex subprograms, it can 

be very difficult to write pre- and post-
conditions and invariants; Ada's 
pragma Assert provides what I need in 
these (rare) cases because I can put 

such pragmas in the middle of a 
subprogram, for example. 

Eiffel has "check" and "debug" which are 
more specific than pragma Assert. 
> Both of the problems you describe are 

programming issues, not design issues. 
There's nothing about the *design* 
process that mandates any run-time 
checks or that requires you to have pre- 
and post-conditions expressed in the 
target language. That's a matter for 
coding standards. To me, Design by 
Contract simply means working out and 
documenting in advance under what 
circumstances a section of code can 
legitimately be entered, and, if that is 
satisfied, what we can guarantee on 
exit. 

This "section of code" bit is important; 
loop invariants and variants are part of 
Eiffel DbC. 
---- 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Tue, 26 May 2009 19:39:39 +0200 
Subject: Re: Ada vs Eiffel - Ada 

programmer approach 
Newsgroups: comp.lang.ada 
[…] 
Whatever you check or assert at run-time 
that is not a contract. The effect of 
checking is a behavior. Contract check 
cannot be a behavior. That is the 
inconsistency of Eiffel's approach, as well 
as one of Ada's pragmas if they have any 
run-time effects. 
Ada's static typing system and SPARK do 
it right. 
---- 
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de> 
Date: Tue, 26 May 2009 19:59:26 +0200 
Subject: Re: Ada vs Eiffel - Ada 

programmer approach 
Newsgroups: comp.lang.ada 
SPARK imposes limitations that are not 
present when employing DbC. SPARK 
cannot replace DbC, or improve it, and 
vice versa, basically because DbC (not 
used as static assertions only) and SPARK 
are largely incommensurable. 
This means that DbC and SPARK are 
both right: You will --# hide certain uses 
of Ada constructs in SPARK, for 
example. Likewise, you will not check all 
assertions in some situations when using 
Eiffel DbC. 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Tue, 26 May 2009 23:28:47 +0200 
Subject: Re: Ada vs Eiffel - Ada 

programmer approach 
Newsgroups: comp.lang.ada 
[…] 
> SPARK imposes some very strong 

constraints on the developer (for good 



Ada in Context 89  

Ada User Journal Volume 30, Number 2, June 2009 

reasons) to build and *prove* 
something right. 

Yes. The amount of checks and so the 
limitations imposed by them depends on 
the word "something" you used above. 
You can require to prove less or more, but 
never all. 
Many programmers are already satisfied 
with much less than SPARK offers, e.g. 
with strong static typing, which gives a 
proof of no type errors. But, continuing 
this example, dynamic typing gives no 
such proof. Therefore it is either not 
strong (most of dynamically typed 
language are in fact weakly typed) or else 
the dynamic type checks (like dispatch in 
Ada) are not error checks, but merely 
correct contracted behavior. 
In my view run-time checks as a form of 
contract enforcement is a bad practice, 
which makes the programmer believe in 
safety that does not exist.  
Instead of that he should consider his 
design to define the behavior for the cases 
where the "contract" can be violated, 
making a new contract that is never 
violated and thus requires no checks. 

On the platform 
independence of Ada 
From: Patrick Gunia 

<patrick.gunia@googlemail.com> 
Date: Wed, 11 Mar 2009 07:04:02 -0700 

PDT 
Subject: Ada Platform Independence 
Newsgroups: comp.lang.ada 
I'm currently working on an analysis of an 
Ada system focusing on the current state 
of platform independence. As my 
experience with the porting of Ada 
software to different operating system is 
limited and close to zero, I'd like to ask 
which concepts of the language might 
cause problems. I don't mean aspects like 
including platform-dependent libraries or 
calling system functions from Ada code. I 
know that this will lead to portability 
problems. I'm more interested in problems 
with the Ada language itself.  
For example use of representation clauses 
or I/O statements.  
I've been searching a while to find a 
listing of parts of the Ada standard which 
might cause problems, but didn't succeed.  
[…] 
From: Jean-Pierre Rosen 

<rosen@adalog.fr> 
Date: Wed, 11 Mar 2009 16:37:44 +0100 
Subject: Re: Ada Platform Independence 
Newsgroups: comp.lang.ada 
[…] 
Ada allows writing portable programs, 
however it does not guarantee in itself 
that programs will be portable. The 
language purposely allowed to depend on 
the peculiarities of the target. Care is still 
needed to achieve portable code.  

Common difficulties include: 
⁃ Relying on the characteristics of 

predefined types (Integer and Duration) 
⁃ Differences on the implementation of 

Address. Some compilers (mainly 
Ada83) defined Address as an integer 
type, while current common practice is 
to make it private, which causes 
problems if people are doing 
(uncontrolled) address arithmetic 

⁃ Representation clauses. Compilers vary 
in their support of representation 
clauses, sometimes for good reasons: 
some representation clauses that are 
acceptable on some targets would lead 
to unreasonable code on a different 
hardware. Representation clauses may 
also depend on predefined types; f.e., if 
you have a record field of type 
Duration, you may have problems when 
moving a program from an 
implementation where Duration is 32 
bits to one where Duration is 64 bits 

⁃ Outrageously wrong code written by 
people who write "C-in-Ada", with lots 
of unchecked conversions between 
pointers and addresses. 

In practice, most portability problems are 
rooted in insufficient training of the 
people who wrote the code initially. 
From: Patrick Gunia 

<patrick.gunia@googlemail.com> 
Date: Wed, 11 Mar 2009 10:00:18 -0700 

PDT 
Subject: Re: Ada Platform Independence 
Newsgroups: comp.lang.ada 
[…] 
> ⁃Differences on the implementation of 

Address. Some compilers (mainly 
Ada83) defined Address as an integer 
type, while current common practice is 
to make it private, which causes 
problems if people are doing 
(uncontrolled) address arithmetic 

I also thought of this aspect. I have the big 
advantage that the software is only 
executed on a very limited range of 
hardware configurations. Using the same 
compiler implementation for different 
platforms (for example GNAT) would 
solve this problem? 
[…] 
> ⁃Outrageously wrong code written by 

people who write "C-in-Ada", with lots 
of unchecked conversions between 
pointers and addresses. 

The code uses unchecked_conversions to 
call imported C-functions. I don't think 
that I can avoid this problem. Though the 
software is always executed on 32-bit 
systems, thus this should also work out, or 
am I getting something terribly wrong 
here? 
From: Jean-Pierre Rosen 

<rosen@adalog.fr> 
Date: Thu, 12 Mar 2009 10:44:16 +0100 
Subject: Re: Ada Platform Independence 

Newsgroups: comp.lang.ada 
> […] Using the same compiler 

implementation for different plattforms 
(for example GNAT) would solve this 
problem? 

As far as I know, GNAT (and presumably 
most Ada 95 compilers, since it is 
implementation advice) define Address as 
private. 
[…] 
Unchecked_Conversion was commonly 
used in Ada83. Using pragma Import and 
Interfaces.C is preferred since Ada95. I 
would suggest migrating the code to use 
these features. 
From: Martin Dowie 

<martin.dowie@btopenworld.com> 
Date: Wed, 11 Mar 2009 10:33:49 -0700 

PDT 
Subject: Re: Ada Platform Independence 
Newsgroups: comp.lang.ada 
[…] 
I've ported Ada code from 68k to i386 
from no-OS to VxWorks to Win32 and in 
each case the biggest hurdle has been 
'how good is the original code'. 
Assumptions on the sizes and ranges, esp. 
of the predefined types (especially 
Integer), can cause problems. 
Fixed-point numbers are different 
between revisions of the language (e.g. 
Ada83 vs. Ada95 vs. Ada2005) but 
should be portable enough between 
different ports using the same language. A 
solution is to providing your definition 
not dependent on a particular underlying 
representation being used. 
The 'favourite' gotcha is usually using 
non-standard additions to standard 
packages. E.g. XD-Ada extended the 
contents of package 'System' to include 
8/16/32-bit signed/unsigned integer. Easy 
to deal with - just define a package called 
'XDAda_System' and defines subtypes of 
the types in Interfaces in it. Then do a 
global find/replace for all occurrences of 
'with System' (and 'use'!) and you're 90% 
there. 
I ported 45kSLOC from no-OS XD-Ada 
to GNAT GPL 2008 Windows/Intel in an 
hour the other week (where 'ported' means 
getting a clean compilation / link and not 
actually running it). 

Interrupt Handling and 
Timing Events 
From: Reto Buerki <reet@codelabs.ch> 
Date: Fri, 15 May 2009 18:26:12 +0200 
Subject: Interrupt handler and 

Ada.Real_Time.Timing_Events 
Newsgroups: comp.lang.ada 
I hit a rather strange issue today mixing 
signal/interrupt handling with 
Ada.Real_Time.Timing_Events. We have 
a real life application where we use 
timing events but we also need a signal 



90  Ada in Context 

Volume 30, Number 2, June 2009 Ada User Journal 

handler to catch signals from the 
environment (SIGTERM etc.). 
I wrote a small reproducer to illustrate the 
problem. The following protected object 
is used as an interrupt handler, which can 
be attached to a specific interrupt/signal: 

with Ada.Interrupts; 
package Handlers is 
   protected type Signal_Handler  
      (Signal : Ada.Interrupts.Interrupt_ID) 
   is 
      pragma Interrupt_Priority; 
      entry Wait; 
   private 
      procedure Handle_Signal; 
      pragma Attach_Handler  
          (Handle_Signal, Signal); 
      Occured : Boolean := False; 
   end Signal_Handler; 
end Handlers; 
 
package body Handlers is 
   protected body Signal_Handler is 
      procedure Handle_Signal is 
      begin 
         Occured := True; 
      end Handle_Signal; 
      entry Wait when Occured is 
      begin 
         if Wait'Count = 0 then 
            Occured := False; 
         end if; 
      end Wait; 
   end Signal_Handler; 
 
end Handlers; 

The handler is used like this: 

with Ada.Text_IO; 
with Ada.Interrupts.Names; 
--  Uncommenting the next line breaks  
-- interrupt handler 
--  with Ada.Real_Time.Timing_Events; 
 
with Handlers; 
procedure Interrupt_Problem is 
   use Ada.Interrupts; 
   Handler : Handlers.Signal_Handler  
         (Signal => Names.SIGTERM); 
begin 
   if Is_Attached (Interrupt =>  
         Names.SIGTERM) then 
      Ada.Text_IO.Put_Line ("Attached  
                        handler to SIGTERM"); 
   else 
      Ada.Text_IO.Put_Line ("Could not  
                          attach to SIGTERM!"); 
      return; 
   end if; 
 

   Handler.Wait; 
   Ada.Text_IO.Put_Line ("Interrupt  
                                     received…"); 
end Interrupt_Problem; 
 
As expected, when sending SIGTERM to 
the running 'Interrupt_Problem' process 
"Interrupt received…" is displayed. So far 
so good. 
As commented in the source code, as soon 
as the Ada.Real_Time.Timing_Events 
package is with'ed, this mechanism 
breaks. 
The signal handler is not invoked any 
more when I send a SIGTERM signal to a 
running 'Interrupt_Problem' process, it 
just terminates without triggering the 
Handler.Wait. 
What could be the cause for this 
behavior? Is there a problem with this 
code? 
[…] 
From: Adam Beneschan 

<adam@irvine.com> 
Date: Fri, 15 May 2009 09:54:17 -0700 

PDT 
Subject: Re: Interrupt handler and 

Ada.Real_Time.Timing_Events 
Newsgroups: comp.lang.ada 
[…] 
My guess would be that when 
Ada.Real_Time.Timing_Events is 
with'ed, this causes elaboration code for 
the Timing_Events package to be 
executed (before Interrupt_Problem), and 
there must be something that this 
elaboration does that interferes with the 
Attach_Handler mechanism. I can't find 
anything in the language definition of 
Timing_Events that would cause this, so 
it must be a problem particular to your 
Ada compiler implementation, and you 
should contact the vendor, or at least let 
us know what compiler you're using so 
that others who may have some 
knowledge of that particular compiler 
might be able to help. 
[…] 
From: Reto Buerki <reet@codelabs.ch> 
Date: Sat, 16 May 2009 01:24:04 +0200 
Subject: Re: Interrupt handler and 

Ada.Real_Time.Timing_Events 
Newsgroups: comp.lang.ada 
[…] I'm using FSF GNAT 4.3.2 on 
Debian Lenny. […] 
From: sjw <simon.j.wright@mac.com> 
Date: Fri, 15 May 2009 23:28:47 -0700 

PDT 
Subject: Re: Interrupt handler and 

Ada.Real_Time.Timing_Events 
Newsgroups: comp.lang.ada 
On Mac OS X/GCC 4.3.3, the program as 
written outputs "raised 
PROGRAM_ERROR : Interrupt 15 is 
reserved". 

Changed to SIGUSR1: now runs as 
designed. 
Sending SIGTERM is ignored (this seems 
odd). 
Uncomment Timing_Events: doesn't 
report anything, but ps shows "User 
defined signal 1   ./interrupt_problem"  
and when I run ps again the process has 
gone. 
This is all deep stuff (and apparently OS-
dependent)!  
[…] 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Fri, 15 May 2009 09:56:54 -0700 

PDT 
Subject: Re: Interrupt handler and 

Ada.Real_Time.Timing_Events 
Newsgroups: comp.lang.ada 
[…] 
Ada.Real_Time.Timing_Events's 
elaboration block creates a task and 
promotes it to an outer level (i.e. it is no 
longer dependent on a master).   
The only way to terminate this task is by 
sending it SIGTERM, so the task attaches 
another signal handler to SIGTERM 
before yours.  
That handler catches the signal and does 
not propagate it to any other handler. 
See System.Task_Primitives. 
Operations.Initialize. 
I'm afraid there is no way out :) maybe 
you can use another signal in your task? 
From: Yannick Duchêne 

<yannick_duchene@yahoo.fr> 
Newsgroups: comp.lang.ada 
Subject: Re: Interrupt handler and 

Ada.Real_Time.Timing_Events 
Date: Fri, 15 May 2009 16:24:36 -0700 

PDT 
[…] 
Do you know why it is not propagated ? 
SIGTERM is supposed to be intended to 
the whole of an application, not only to a 
part of it. 
From: Reto Buerki <reet@codelabs.ch> 
Date: Sat, 16 May 2009 02:20:54 +0200 
Subject: Re: Interrupt handler and 

Ada.Real_Time.Timing_Events 
Newsgroups: comp.lang.ada 
I tried attaching the handler to various 
signals. As soon as the timer task is 
started in the 
Ada.Real_Time.Timing_Events 
elaboration block, my own handler is not 
triggered any more. This seems odd.  
We are using 
Ada.Real_Time.Timing_Events to 
implement an event-driven architecture in 
our application. The Timing_Event type 
seemed perfect for this. 
Nevertheless, the application should still 
be able to react to signals it may receive 



Ada in Context 91  

Ada User Journal Volume 30, Number 2, June 2009 

from the operating system. Is it really 
Timing_Events XOR interrupt handling? 
From: Jeffrey R. Carter 

<spam.jrcarter.not@nospam.acm.org> 
Date: Sat, 16 May 2009 00:38:54 GMT 
Subject: Re: Interrupt handler and 

Ada.Real_Time.Timing_Events 
Newsgroups: comp.lang.ada 
[…] 
Timing_Events are certainly suited for 
this. However, they were added in the 
most recent revision of the language. 
Event-driven systems were implemented 
in Ada long before that revision. Should 
you be unable to get your application to 
work with Timing_Events, you can use 
the old-fashioned way to achieve the same 
thing. This is done by having tasks that 
execute delay statements and then call the 
appropriate protected operations.  
Effectively, a Timing_Event object is 
shorthand for such a task. 
From: Reto Buerki <reet@codelabs.ch> 
Date: Fri, 29 May 2009 17:59:46 +0200 
Subject: Re: Interrupt handler and 

Ada.Real_Time.Timing_Events 
Newsgroups: comp.lang.ada 
Thanks for your answer. Re-
implementing the Timing_Events 
functionality seems to be the only 
possible solution for the moment.  
I sent a bug report about this issue to 
report@adacore.com and added it to the 
GCC bug database (bug #40285). 

On the overhead of 
exception handling 
From: Peter C. Chapin 

<pcc482719@gmail.com> 
Date: 24 Apr 2009 11:52:27 GMT 
Subject: Exception handling overhead? 
Newsgroups: comp.lang.ada 
[…] I'm creating a type intended to 
represent lines of editable text. It will 
provide some specialized services and is 
not intended to be a general purpose 
string type. At the moment I'm wrapping 
the type 
Ada.Strings.Unbounded.Unbounded_Stri
ng (I'm really using Wide_Strings, but I 
don't think that's important right now).  
I may want to change that underlying 
implementation in the future so I don't 
want to directly expose my current choice 
to my clients.  
Thus I'm providing some subprograms 
that do some minor things and then just 
forward to subprograms in 
Ada.Strings.Unbounded. 
My question is about exceptions. To 
avoid exposing my implementation choice 
and to give me more control in the long 
run I've defined my own exception for (as 
an example) an out of bounds access: 

Bad_Index : exception; 

Naturally I want to raise this exception if 
the client tries to access a character not in 
my buffer. This leads to two possibilities. 

function Element (B : Buffer;  
                               Index : Positive)  
      return Character is 
begin 
  if Index >  
            Ada.Strings.Unbounded.Length 
            (B.Internal_String) then 
    raise Bad_Index; 
  end if; 
  return Ada.Strings. 
             Unbounded.Element  
             (B.Internal_String, Index); 
end Element; 

This entails two checks on the index 
value: the one I'm doing and the one being 
done inside 
Ada.Strings.Unbounded.Element.  
Another approach is: 

function Element(B : Buffer;  
                              Index : Positive)  
      return Character is 
begin 
  return Ada.Strings. 
             Unbounded.Element  
             (B.Internal_String, Index); 
exception 
  when Ada.Strings.Index_Error => 
           raise Bad_Index; 
end Element; 

This lets the check exist in only one place 
but it invokes the machinery of exception 
handling. 
Now I know that in C++ there are 
implementation methods that allow zero 
execution time overhead in the case when 
an exception is not thrown (at the expense 
of increasing executable size and making 
thrown exceptions slower). Compilers are 
not required to use such methods, of 
course, but I know of at least one that 
does… or that can if the right options are 
selected.  
I'm wondering about how this might work 
in Ada. Does Ada admit such 
implementation methods? If so, do 
compilers commonly use them? From a 
raw performance point of view which of 
the two approaches above would be 
"better?" 
For the record… I understand that in my 
application it probably doesn't matter 
much either way. I also understand that 
the answer is likely to be very compiler 
specific. This is mostly a question of 
academic interest. 
[…] 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Fri, 24 Apr 2009 05:06:30 -0700 PDT 
Subject: Re: Exception handling overhead? 

Newsgroups: comp.lang.ada 
GNAT provides two exception handling 
mechanisms: zero-cost and 
setjump/longjump. "Zero-cost" really 
means zero _distributed_ cost, i.e. you 
incur a cost only when raising an 
exception, as you describe. The older 
setjump/longjump mechanism costs some 
execution time and memory whether you 
raise exceptions or not. It is possible to 
select either mechanism when compiling 
your program.  
For some details, see the short mailing list 
thread starting at [1]. 
[1] http://gcc.gnu.org/ml/gcc/  
2006-10/msg00270.html 
Of course, this is compiler-specific. 
[…] 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Fri, 24 Apr 2009 14:42:26 +0200 
Subject: Re: Exception handling overhead? 
Newsgroups: comp.lang.ada 
[…] 
Plus, I guess that whatever distributed 
overhead exceptions might have, it should 
be negligible comparing to the overhead 
of unbounded strings. 
From: Anonymous 
Date: Fri, 24 Apr 2009 14:06:13 GMT 
Subject: Re: Exception handling overhead? 
Newsgroups: comp.lang.ada 
You must disable the compiler default 
Range checking, like: 

function Element( B : Buffer; Index : 
Positive ) return Character is 
  begin 
     declare 
     -- Temporary disable system checks 
     pragma Suppress ( Range_Check ); 
     begin 
       if Index >  
           Ada.Strings.Unbounded.Length  
              ( B.Internal_String ) then 
         raise Bad_Index; 
       end if; 
     end; 
     return Ada.Strings. 
                Unbounded.Element (  
                B.Internal_String, Index ); 
  end Element; 

From: Georg Bauhaus <rm.dash-
bauhaus@futureapps.de> 

Date: Fri, 24 Apr 2009 17:48:56 +0200 
Subject: Re: Exception handling overhead? 
Newsgroups: comp.lang.ada 
> You must disable the compiler default 

Range checking, like: 
Or Index_Check. However, this only 
gives an implementation permission to 
omit certain checks. So I wonder whether 
pragma Suppress ( *_Check ) will have an 
effect on the library code, or whether the 



92  Ada in Context 

Volume 30, Number 2, June 2009 Ada User Journal 

library will have to be recompiled, and 
then, whether recompilation of the library 
will still produce correct code. 

Programming graphic 
systems in Ada 
From: Olivier Scalbert 

<olivier.scalbert@algosyn.com> 
Date: Thu, 23 Apr 2009 11:27:59 +0200 
Subject: Programming graphic systems 
Newsgroups: comp.lang.ada 
[…] 
When playing with my GPS, I was 
thinking of the beautiful graphic systems 
used in safety critical environment 
(medical, aircraft, ATC, …). 
I assume lots of them must be written in 
Ada. I was asking myself how are they 
programmed mainly at the graphic level. 
Does the application part use a graphic 
toolkit provided by the graphic board 
manufacturer or do you have to program 
all the graphic primitives yourself in Ada 
(as Bresenham line algorithm, …) and 
written to the raster memory (which must 
be very cool!) ? 
[…] 
From: Martin Dowie 

<martin.dowie@btopenworld.com> 
Date: Thu, 23 Apr 2009 04:54:03 -0700 

PDT 
Subject: Re: Programming graphic systems 
Newsgroups: comp.lang.ada 
[…] 
For aircrafts, you usually have an 
OpenGL API to the graphics card, though 
I'm not aware of any 'safety critical' 
display systems, DO-178B /Level C is 
fairly typical. I'm sure there must be Level 
A/B display systems… 
In older systems, you might have a 
cursive display and primitives provided 
by your (often) bespoke hardware (e.g. 
move, draw_to, fill, etc). You then create 
'scripts' to draw what you need. 
From: Paul Zacharzewski 

<paul@ipquickly.com> 
Date: Thu, 23 Apr 2009 13:17:26 -0600 
Subject: Re: Programming graphic systems 
Newsgroups: comp.lang.ada 
[…] 
I remember reading about an X11 system 
rewritten in Ada, a while ago. 
Does anyone else knows something about 
this? 
From: Samuel Tardieu <sam@rfc1149.net> 
Date: Fri, 24 Apr 2009 01:55:42 +0200 
Subject: Re: Programming graphic systems 
Newsgroups: comp.lang.ada 
[…] 
Are you referring to XInada? 
http://www.topgraphx.com/version_am/ 
fichier_prod_xinada.htm 
From: Anonymous 

Date: Thu, 23 Apr 2009 23:01:42 +0200 
Subject: Re: Programming graphic systems 
Newsgroups: comp.lang.ada 
[…] I'd say glass cockpits are pretty new. 
At least for civil aircrafts. And my guess 
is that most would use something like 
SCADE. 
http://www.esterel-technologies.com/ 
products/scade-display/ 
[…] 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Thu, 23 Apr 2009 14:31:37 -0700 

PDT 
Subject: Re: Programming graphic systems 
Newsgroups: comp.lang.ada 
[…] 
Until a couple of years ago, I used to 
work for Barco avionics [1,2] and indeed 
most of our devices were programmed in 
Ada. We wrote our own display drivers in 
Ada; they worked by writing into the 
graphics processor's registers over PCI 
and I2C. For bitmaps and video, we 
would write into a RAM buffer then point 
the graphics board to the buffer (i.e. write 
the address of the buffer in a register of 
the board).   
However, to draw the geometrical 
symbols for the flight instruments, we 
would of course use the hardware 
primitives rather than re-implement them 
in software.  
After writing a command and parameters 
in a set of registers, we would wait for a 
completion flag to become true in another 
register. 
[1] http://www.barco.com/aerospace 
[2] http://www.cs.kuleuven.ac.be/~dirk/ 
ada-belgium/events/07/070612-abga.html 
For air (or rail, or seaport) traffic control, 
Barco also offers 2048x2048-pixel liquid 
crystal displays with an X server 
embedded in them.   
I didn't work in that division so I can't 
provide any more details. 
Nowadays I work in air traffic flow 
management [3] and we use an in-house 
binding to Motif for older screens and 
GtkAda for newer ones. 
ETFMS is a mission-critical, soft-real-
time, distributed application. 
It is neither life-critical (i.e. nobody dies 
if it crashes) nor embedded (i.e. no DO-
178B certification is needed) and the real-
time requirements are in seconds, not 
micro- or nanoseconds, so we can use 
mainstream graphical subsystems (i.e. 
X11 on "normal" workstations and 
servers). 
[3] http://www.cfmu.eurocontrol.int/ 
cfmu/public/standard_page/ 
developments_etfms_index.html 
From: Dimonax 
Date: Fri, 24 Apr 2009 19:22:52 GMT 

Subject: Re: Programming graphic systems 
Newsgroups: comp.lang.ada 
[…] 
Actually if you know how to write 
callbacks to a C API with Ada, then 
getting started isn't all that complicated. 
There are a few people even in this 
newsgroup that have written small 
graphics engines on the OpenGL API. 
However if you plan to utilize tasking and 
such for your programs, you'll need 
access to the technical documentation of 
your video hardware, since OpenGL isn't 
multithreaded and DirectX is pretty much 
a black box when it comes to serious 
graphics programming. You might find a 
graphics card vendor whose drivers also 
include non-standard support for tasks 
and threads, but it's unlikely. 
Of course I'm referring to the common 
hardware your likely to find at your local 
computer shop. The requirements for the 
big multimillion dollar flight simulators 
are going to be completely different. 
I played with this a few years ago using a 
Matrox G400 video card and the 
documentation which, at the time, was 
freely available. It can be done, and done 
well, but it takes a lot of patience to get it 
running. 
Also if your running on Linux, you'll find 
the half-in kernelspace half-in userspace 
architecture infuriating(one reason I 
decided to write my own driver.) 
The best card to learn the ins and outs of 
this type of programming, with any 
language(not just Ada) is one where the 
tech docs are open. Lately ATI has been 
pretty forthcoming with their tech docs, 
so I'd start with them. 

Aborting a call to 
Accept_Socket 
From: Tony Truand 

<truand.tony@gmail.com> 
Date: Tue, 21 Apr 2009 08:40:13 -0700 

PDT 
Subject: Aborting a call to Accept_Socket 
Newsgroups: comp.lang.ada 
I would like to abort a call to 
Accept_Socket() if no connection request 
arrives within a specified time (20 
seconds). For me, a quite simple solution 
(perhaps not safe) is to use an 
asynchronous transfer of control like this: 

procedure Server is 
       … 
begin 
   GNAT.Sockets.Initialize; 
   … 
   loop 
   … 
     select 
       delay 20.0; 
       exit; 



Ada in Context 93  

Ada User Journal Volume 30, Number 2, June 2009 

     then abort 
       GNAT.Sockets.Accept_Socket (…); 
     end select; 
     … 
   end loop; 
end Server; 

The expected behaviour was the end of 
the program after 20 seconds (if no 
connection request arrives).  
I observe: after 20 seconds the program 
will terminate only if a connection request 
arrives. Is this behaviour correct? 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Tue, 21 Apr 2009 18:21:57 +0200 
Subject: Re: Aborting a call to 

Accept_Socket 
Newsgroups: comp.lang.ada 
Yes, it is. Asynchronous transfer of 
control is not guaranteed to work with an 
outstanding calls. Most likely it does not 
work as in this case. The behavior is 
correct because Ada does not know how 
to abort a socket operation in order to 
implement this statement. Ada RM 
contains a list of abort deferred things, 
which includes potentially any call to any 
external operation. Specifically for 
sockets there is a solution: you close the 
socket from another task. That will kill 
accept with an error code. 
From: Maciej Sobczak 

<maciej@msobczak.com> 
Date: Tue, 21 Apr 2009 14:03:01 -0700 

PDT 
Subject: Re: Aborting a call to 

Accept_Socket 
Newsgroups: comp.lang.ada 
> I would like to abort a call to 

Accept_Socket() if no connection 
request arrives within a specified time 
(20 seconds). 

Then you want to use the selector with 
timeout. 
In order to wait for the listening socket 
put it in the "reading" selector set. 
If the Check_Selector finishes with the 
Status equal to Completed, it means that 
you can call Accept_Socket without 
blocking, because there is an incoming 
connection pending. Otherwise the 
timeout has expired, which means that 
there was no incoming connection during 
the given time. 
> For me, a quite simple solution (perhaps 

not safe) is to use an asynchronous 
transfer of control 

Unfortunately there is no integration of 
ATC and I/O.  
Especially when it comes to non-standard 
I/O. 
From: Anonymous 
Date: Tue, 21 Apr 2009 23:24:13 GMT 
Subject: Re: Aborting a call to 

Accept_Socket 

Newsgroups: comp.lang.ada 
You must use the Selectors routines in the 
Socket package. 
Then set the Timeout parameter to 20 
second in procedure Check_Selector. 
This routine will wait until an event has 
occurred. Once returned then you can 
check the return value for the parameter 
Status to determine which one of the 
following three events has occurred: 
Completed, Expired, or Aborted. 
⁃ Complete: one of the expected events 

occurred 
⁃ Expired: no event occurred before the 

expiration of the timeout 
⁃ Aborted: an external action cancelled 

the wait operation before any event 
occurred. 

Ada on Beagleboard 
From: Olivier Scalbert 

<olivier.scalbert@algosyn.com> 
Date: Thu, 30 Apr 2009 08:33:33 +0200 
Subject: Ada and beagleboard 
Newsgroups: comp.lang.ada 
Do you think it is possible to experiment a 
little of Ada on the beagleboard? 
http://beagleboard.org/ 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Thu, 30 Apr 2009 01:00:30 -0700 

PDT 
Subject: Re: Ada and beagleboard 
Newsgroups: comp.lang.ada 
Yes, I think it is possible. There are two 
options, both requiring a significant 
amount of work: 
1) cross-compilation 
You'd build a cross-compiler targeting 
arm-linux. If your host is Debian, I'd be 
interested in your patches so that future 
Debian releases support such a cross-
compiler out of the box[1]. 
[1] http://lists.debian.org/debian-
gcc/2009/02/msg00053.html and replies 
2) native compilation 
It should be possible to install Debian's 
ARM port on the board. 
Unfortunately gnat-4.3 is not currently 
supported on arm, so you'd have to build 
it using the cross-compiler. I'd be happy 
to integrate your patches so that future 
Debian releases include gnat on arm. The 
128 MB of RAM might prove insufficient 
to run gnat comfortably, especially if the 
board doesn't support paging. 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Thu, 30 Apr 2009 06:56:03 -0700 

PDT 
Subject: Re: Ada and beagleboard 
Newsgroups: comp.lang.ada 
[…] 

> What would be a comfortable amount 
of RAM in your estimation? 

If you want to build GNAT, at least 1 GB 
is necessary(*).  
This requirement would apply, for 
example, to a Debian "build daemon" 
which recompiles all packages in Debian 
natively (including, therefore, GNAT and 
other large packages). 
If you only want to compile your own 
small programs with GNAT, 512 MB 
should be sufficient; less if you can use 
paging to disk; but, again, I don't know 
whether the BeagleBoard supports paging 
or not. 
(*) I used to use an IBM ThinkPad T22 
with a Pentium III@900 MHz and 256 
MB RAM. Building GNAT 3.15p on it 
was OK; building GCC 4.1 with only C 
and Ada enabled took 7 hours and heavy 
swapping. GCC 4.3 is even larger. I 
replaced my T22 with a dual-core laptop 
with 2 GB RAM which I upgraded to 3 
GB for the purposes of recompiling 
GNAT. 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Mon, 4 May 2009 00:50:08 -0700 

PDT 
Subject: Re: Ada and beagleboard 
Newsgroups: comp.lang.ada 
I just came across an alternative to the 
BeagleBoard that just might have enough 
resources to build GNAT: the "plug 
computer", see 
http://plugcomputer.org/ 
It has 512 MB RAM, 512 MB Flash and a 
1.2 GHz ARM processor. 

Benchmarking GNAT GPL 
From: johnscpg@googlemail.com 
Date: Mon, 1 Jun 2009 04:38:24 -0700 PDT 
Subject: benchmarking GPL 
Newsgroups: comp.lang.ada 
In celebration of the arrival of the new 
GNAT GPL (20090519) I decided to do 
some benchmarking to see how the 
optimizer's coming along. I was slightly 
more than rather pleased with the results. 
Results in gory detail are appended 
below. 
I compared 6 (smallish) programs, written 
in both Ada and Fortran. Four of them are 
in C also. All of the routines can be found 
at: 
http://web.am.qub.ac.uk/users/j.parker/ 
bench_depository/ 
4 compilers are used: 
⁃ gcc 4.3.4, 
⁃ Intel Fortran ifort 11.0 (latest version), 
⁃ GNAT GPL (20090519), 
⁃ gfortran (based on gcc version 4.3.2). 
Operating system: Debian Linux, Lenny. 



94  Ada in Context 

Volume 30, Number 2, June 2009 Ada User Journal 

Processor: Intel x86-64 (Xeon X5460 @ 
3.16GHz). 
The Intel Fortran (ifort) is an aggressive 
optimizing compiler, especially on 
numerical linear algebra. Its use here is 
reassuring: if our gcc-family results on 
numerical calculations were suboptimal 
by a large factor, ifort would likely let us 
know. It also has the easiest optimization 
flags: it's a simple choice between -O3, -
fast, -ipo and a few other things that make 
almost no difference. 
Two of the 6 programs I wrote myself: an 
FFT benchmark called fft1tst.adb, and a 
jacobi eigendecomposition called 
jacobi_eigen_bench_1.adb. Both are 
accompanied by near identical fortran 
versions. This exhausted my entire supply 
of inter-language benchmarking routines, 
so 4 of the test programs I downloaded 
from a depository of small benchmarking 
routines: 
http://shootout.alioth.debian.org/gp4/ 
I downloaded C, Fortran, Ada versions of: 
nsievebits, nbody, binarytree, mandelbrot. 
I made small modifications to 2 of the 
Ada programs. In one case I degraded the 
Ada code to a slower, older version so 
that it was identical to the C version I was 
comparing with. In the other case I 
replaced a packed boolean array with an 
array of unsigned ints. These were the 
only changes to any of the programs, so 
the exercise mostly amounted to finding 
good optimization flags. I tried to find 
good optimization flags for the C and 
Fortran compilations too, and managed to 
speed up a few of them after several 
attempts. The original Ada test programs 
were written by Pat Rogers and Pascal 
Obry.  (Thanks!) 
Inter-language benchmarks shouldn't be 
taken too seriously, but I learned a few 
useful things: 
the -mfpmath=387 and -mfpmath=387,sse 
flags came as real surprize to me. In 
several cases they made all the difference. 
I also noticed that GNAT seems to be be 
doing a better job of optimizing 
operations on packed boolean arrays, and 
a better job on some linear algebra 
problems. Unless I'm mistaken, in the lin 
alg case (jacobi_eigen below) the 
improvement over the old days is almost a 
factor of 2. Thanks GNAT! 
[…] 
FFT1TST2: 
Compilation Commands: 
gnatmake fft1tst2.adb -O3 -gnatNp  
-march=native 
gfortran fft1tst2.f -O3 -march=native  
-o fft1tst2 
ifort fft1tst2.f -O3 -WB -xT -o fft1tst2 
Execute: 
time ./fft1tst2 

Running Time (using 8192 data points): 
GNAT: 2.748 seconds 
gfortran: 2.812 seconds 
ifort: 2.816 seconds 
Running Time (using 4096 data points): 
GNAT: 1.000 seconds 
gfortran: 1.004 seconds 
ifort: 1.088 seconds 
Running Time (using 1024 data points): 
GNAT: 0.168 seconds 
gfortran: 0.184 seconds 
ifort: 0.176 seconds 
Notes: 
The Ada and the Fortran77 FFT's were 
written over 17 years ago. Both are Radix 
4 fast fourier transforms. These versions 
were written for benchmarking rather than 
ultimate speed: the idea was to make the 2 
the same wherever possible, for 
language/compiler comparisons. If I use -
ffast-math in the GNAT compilation it 
runs exactly the same speed as the 
gfortran (very slightly slower), so I 
suspect -ffast-math is always used by 
gfortran. 
JACOBI_EIGEN 
Compilation Commands: 
gnatmake jacobi_eigen_bench_1.adb -O3 
-gnatNp -march=native  
-ffast-math -funroll-loops -o eig 
gfortran jacobi_eigen.f90 -O3  
-march=native  
-ffast-math -funroll-loops -o eig 
ifort jacobi_eigen.f90 -O3 -ipo -static  
-o eig 
Execute: 
time ./eig 
Running Time (100x100 matrices (100 
iterations)): 
GNAT: 1.636 seconds 
gfortran: 1.720 seconds 
ifort: 1.440 seconds 
Running Time (1000x1000 matrices (1 
iteration)): 
GNAT: 23.7 seconds 
gfortran: 39.7 seconds 
ifort: 37.9 seconds 
Notes: 
Matrix size and no of iterations has to be 
typed in at the top of the 2 routines: 
jacobi_eigen.f90, 
jacobi_eigen_bench_1.adb. 
A year ago the GNAT executables for 
Jacobi were much slower than gfortran, 
and ifort. 
Don't know what happened in the 
1000x1000 case, but I am not displeased. 

Notice we are using the same compiler 
flags in the gfortran and GNAT cases. 
The number of arithmetical operations 
performed by these routines is exactly 
proportional to No_of_Rotations, which is 
output on completion. The difference 
between the Fortran No_of_Rotations and 
the Ada No_of_Rotations is under 3% 
here. 
NBODY: 
Compilation Commands: 
gnatmake nbody.adb -O3 -gnatNp  
-march=native -ffast-math -funroll-loops -
ftracer -freorder-blocks-and-partition -
mfpmath=387,sse 
gfortran nbody.f90 -O3 -march=native  
-funroll-all-loops -o nbody 
ifort nbody.f90 -O3 -no-prec-div -o nbody 
gcc nbody.c -O3 -o nbody 
Execute: 
time ./nbody 24000000 
Running Time: 
GNAT: 4.908 seconds 
gfortran: 5.602 seconds 
ifort: 4.660 seconds 
GCC: 4.472 seconds 
Notes: 
The obscure compilation flags (-ftracer -
freorder-blocks-and-partition) are not 
needed if you write the inner loop of 
nbody_pck.Advance a bit differently. I 
just wanted to use the original version of 
nbody.adb. nbody2.adb is more like the C 
version and has simpler optimization 
flags, but runs at same speed as 
nbody.adb. The gcc C is about 9% faster 
than nbody.adb -a small but interesting 
difference I don't understand. 
NSIEVEBITS: 
Compilation Commands: 
gnatmake nsievebits2.adb -O3 -gnatnp  
-march=native -funroll-loops -ftracer 
gfortran nsievebits.f90 -O3 -march=native 
-funroll-loops -o nsievebits2 
ifort nsievebits.f90 -O3 -ipo -static  
-o nsievebits2 
gcc nsievebits.c -O3 -march=native  
-funroll-loops -o nsievebits2 
Execute: 
time ./nsievebits2 11 
Running Time: 
GNAT: 0.320 seconds 
gfortran: 0.388 seconds 
ifort: 0.372 seconds 
GCC: 0.364 seconds 
Notes: 
nsievebits2.adb uses an array of unsigned 
ints to replace the packed boolean array in 
nsievebits.adb. Both methods could not be 



Ada in Context 95  

Ada User Journal Volume 30, Number 2, June 2009 

more legitimate in this exercise. GNAT 
has improved remarkably: the packed 
boolean array version (nsievebits.adb) is 
now competitive with the other languages. 
MANDELBROT: 
Compilation Commands: 
gnatmake mandelbrot.adb -O3 -gnatnp  
-march=native -ffast-math -funroll-loops -
mfpmath=387 
gfortran mandelbrot.f90 -O3 
 -march=native -funroll-loops  
-o mandelbrot 
ifort mandelbrot.f90 -O3 -ipo -static  
-o mandelbrot 
gcc mandelbrot.c -O3 -march=native  
-ffast-math -funroll-loops -mfpmath=387  
-o mandelbrot 
Execute: 
time ./mandelbrot 3000 
Running Time: 
print-to-screen disabled:  (these are 
meaningful timings.) 
GNAT: 0.980 seconds 
gfortran: 1.112 seconds 
ifort: 1.180 seconds 
GCC: 0.960 seconds 
[…] 
Notes: 
[…] The Fortran uses the original 
complex number implementation of the 
mandelbrot inner loop. I modified the Ada 
version was to use exactly the same inner 
loop as the C version (even though the 
modification slowed down the Ada 
version). In both the Ada and the C 
versions it was the -mfpmath=387 flag 
(which I assume disables sse) that did the 
trick of speeding them up. 
BINARYTREES: 
Compilation Commands: 
gnatmake  binarytrees.adb -O3 -gnatnp  
-march=native -ftracer 
gfortran  binarytrees.f90 -O3  
-march=native -o binarytrees 
ifort binarytrees.f90 -fast -static  
-o binarytrees 
gcc binarytrees.c -O3 -march=native -lm  
-o binarytrees 
Execute: 
time ./binarytrees 16 
Running Time (fastest observed): 
GNAT: 1.232 seconds 
gfortran: 1.084 seconds 
ifort: 1.676 seconds 
GCC: 1.060 seconds 
Notes: 
Insensitive to optimization flags. 

Unchecked_Union with 
empty variant 
From: Ivan Levashew 

<octagram@bluebottle.com> 
Date: Sun, 15 Mar 2009 19:34:36 +0600 
Subject: Unchecked_Union with empty 

variant 
Newsgroups: comp.lang.ada 

procedure Check_Unions is 
   type Complex_Record  
     (Kind : Integer := 0) is record 
      Constant_Part : Character; 
      Constant_Part2 : Character; 
      case Kind is 
         when 0 => 
               Variant_Part1 : Character; 
        when 1 => 
               Variant_Part2 : Character; 
        when 2 => 
               Variant_Part3 : Character; 
        when others => 
               null; 
      end case; 
   end record; 
   pragma Unchecked_Union  
      (Complex_Record); 
begin 
    null; 
end Check_Unions; 

It gives an error: 
C:\…\GEMA-
Win32API\Ada_test>gnatmake -gnat05 
Check_Unions.adb 
gcc -c -gnat05 check_unions.adb 
check_unions.adb:14:04: 
Unchecked_Union may not have empty 
component list 
gnatmake: "check_unions.adb" 
compilation error 
What's the problem? 
I can't see any words "empty" or "null" 
here: 
http://www.adaic.com/standards/05aarm/h
tml/AA-B-3-3.html 
From: Stephen Leake 

<stephen_leake@stephe-leake.org> 
Date: Mon, 16 Mar 2009 17:52:54 -0400 
Subject: Re: Unchecked_Union with empty 

variant 
Newsgroups: comp.lang.ada 
There is 14/2: 
All objects of an unchecked union type 
have the same size. 
GNAT may be interpreting that to mean 
all variants must be the same size. But 
that's not true, it accepts an Integer: 

   type Complex_Record  
     (Kind : Integer := 0) is record 
      Constant_Part : Character; 
      Constant_Part2 : Character; 

      case Kind is 
         when 0 => 
            Variant_Part1 : Character; 
         when 1 => 
            Variant_Part2 : Integer; 
         when 2 => 
            Variant_Part3 : Character; 
         when others => 
            Variant_Part4 : Character; 
        end case; 
   end record; 

So it looks like a compiler bug. 
From: Ivan Levashew 

<octagram@bluebottle.com> 
Date: Tue, 17 Mar 2009 13:21:02 +0600 
Subject: Re: Unchecked_Union with empty 

variant 
Newsgroups: comp.lang.ada 
GNAT supported Unchecked_Union in 
Ada 95 mode. UU wasn't in Ada 95 
standard, and GNAT could only handle 
pure union (without declarative part). Ada 
2005 allowed declarative parts.  
I have a theory that GNAT developers 
allowed declarative parts but forgot to 
disable restriction applicable to records 
meant to be union mirrors. 
Anyway I have to deal with current tools 
so I defined several Union_n subtypes. 
From: Adam Beneschan 

<adam@irvine.com> 
Date: Mon, 16 Mar 2009 08:16:18 -0700 

PDT 
Subject: Re: Unchecked_Union with empty 

variant 
Newsgroups: comp.lang.ada 
[…] 
I can't find any rule that makes this 
illegal. The error message indicates, 
though, that someone at GNAT thought it 
was illegal---i.e. it's not simply a "bug" 
due to incorrectly implementation of the 
requirements, but was rather a 
misinterpretation of the standard. But 
either way, I think the compiler is wrong. 

Problem with discriminants 
and interfaces  
From: Reto Buerki <reet@codelabs.ch> 
Date: Mon, 09 Mar 2009 18:21:34 +0100 
Subject: Discriminant & interface not 

implemented by full type 
Newsgroups: comp.lang.ada 
I have the following simple test 
application: 

package Full_View is 
   type Base_Type (Num : Integer) is  
      tagged private; 
   type Base_Interface is interface; 
   type New_Type is new Base_Type  
      (Num => 11) and 
      Base_Interface with private; 
 



96  Ada in Context 

Volume 30, Number 2, June 2009 Ada User Journal 

private 
   type Base_Type (Num : Integer) is  
      tagged record 
         My_Number : Integer := Num; 
      end record; 
   type New_Type is new Base_Type  
      (Num => 11) and 
      Base_Interface with null record; 
end Full_View; 

Trying to compile this with gnat gcc 4.3 
in Debian/Lenny results in the following 
error: 
full_view.ads:7:09: interface 
"Base_Interface" not implemented by full 
type (RM-2005 7.3 (7.3/2)) 
When removing the (Num => 11) 
discriminant initialization or the 

Base_Interface interface from the 
New_Type type extension, the code 
compiles fine. 
Is this a compiler bug? Seems to me that 
the consistency check of the partial and 
full view of a tagged type covering 
interfaces does not like discriminants. 
[…] 
From: Adam Beneschan 

<adam@irvine.com> 
Date: Wed, 11 Mar 2009 18:44:40 -0700 

PDT 
Subject: Re: Discriminant & interface not 

implemented by full type 
Newsgroups: comp.lang.ada 
Sure looks like a compiler bug to me. The 
program definitely doesn't violate the RM 
section paragraph that the error message 
refers to. 

From: Per Sandberg 
<per.sandberg@bredband.net> 

Date: Thu, 12 Mar 2009 07:21:08 +0100 
Subject: Re: Discriminant & interface not 

implemented by full type 
Newsgroups: comp.lang.ada 
Compiles fine with GNATPro 6.2.1 
From: Reto Buerki <reet@codelabs.ch> 
Date: Thu, 12 Mar 2009 14:07:06 +0100 
Subject: Re: Discriminant & interface not 

implemented by full type 
Newsgroups: comp.lang.ada 
I filed a GCC bug report [1]. 
[1] http://gcc.gnu.org/bugzilla/ 
show_bug.cgi?id=39441 
 



98  Conference Calendar 

Volume 30, Number 2, June 2009 Ada User Journal 

Conference Calendar 
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on 
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific 
Ada focus. Items marked with ☺ denote events with close relation to Ada. 
The information in this section is extracted from the on-line Conferences and events for the international Ada community at: 
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full 
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly. 
 

2009 
 

☺ July 01-03 21st Euromicro Conference on Real-Time Systems (ECRTS'2009), Dublin, Ireland. Topics include: 
applications (consumer electronics; multimedia and entertainment; process control; avionics, aerospace; 
automotive; telecommunications); software technologies (compiler support, component-based 
approaches, middleware and distribution technologies, programming languages and operating systems); 
system design and analysis (modelling and formal methods, reliability and security in RT systems, 
scheduling and schedulability analysis, worst-case execution time analysis, validation techniques, ...); 
etc. 

June 30 9th International Workshop on Worst-Case Execution Time Analysis (WCET'2009). 
Topics include: any issue related to timing analysis, in particular Integration of WCET 
and schedulability analysis; Evaluation, case studies, benchmarks; Tools for WCET 
analysis; Program design for timing predictability; Integration of WCET analysis in 
development processes; WCET analysis for multi-threaded and multi-core systems; etc. 

☺ June 30 Workshop on the Definition, evaluation, and exploitation of modelling and 
computing standards for Real-Time Embedded Systems (STANDRTS'2009). Topics 
include: methodologies or tools for the design validation or verification of RTES based 
on modelling standards; modelling languages and formalisms like UML, SySML, 
MARTE, EAST-ADL, AUTOSAR, AADL; automatic code generation for current and 
prospective standard languages like Ada, C, Esterel; etc. 

July 01-03 9th International Conference on Application of Concurrency to System Design (ACSD'2009), 
Augsburg, Germany. Topics include: (Industrial) case studies of general interest, gaming applications, 
consumer electronics and multimedia, automotive systems, (bio-)medical applications, internet and grid 
computing, ...; Synthesis and control of concurrent systems, (compositional) modelling and design, 
(modular) synthesis and analysis, distributed simulation and implementation, ...; etc. 

July 03-08 14th Annual Conference on Innovation and Technology in Computer Science Education 
(ITiCSE'2009), Paris, France. 

July 05-12 36th International Colloquium on Automata, Languages and Programming (ICALP'2009), Rhodes, 
Greece. Topics include: Parallel and Distributed Computing; Principles of Programming Languages; 
Formal Methods and Model Checking; Models of Concurrent and Distributed Systems; Models of 
Reactive Systems; Program Analysis and Transformation; Specification, Refinement and Verification; 
Type Systems and Theory; etc. 

☺ July 06-10 23rd European Conference on Object Oriented Programming (ECOOP'2009), Genova, Italy. Topics 
include: research results or experience in all areas relevant to object technology, including work that 
takes inspiration from, or builds connections to, areas not commonly considered object-oriented; 
examples are: Analysis, design methods and design patterns; Concurrent, real-time or parallel systems; 
Distributed systems; Language design and implementation; Programming environments and tools; Type 
systems, formal methods; Compatibility, software evolution; Components, Modularity; etc. 

☺ July 06 19th Doctoral Symposium and PhD Students Workshop. Topics include: Design 
Patterns, Concurrency, Real-time, Embeddedness, Distribution, Language 
Workbenches, Generative Programming, Language Design, Language Constructs, Static 
Analysis, Language Implementation, Methodology, Practices, Design Languages, 
Software Evolution, Formal methods, Tools, Programming environments, etc. 



Conference Calendar 99  

Ada User Journal Volume 30, Number 2, June 2009 

☺ July 07 1st International Workshop on Distributed Objects for the 21st Century 
(DO21'2009). Topics include: State-of-the-art distributed object systems; Language 
abstractions for developing Software as a Service; Combining objects with other 
paradigms (e.g. events, publish/ subscribe, tuples, dataflow, REST, ...); Alternative 
(non-OO) approaches to the above (and their pros/cons); etc. 

☺ July 07 8th Workshop on Parallel/High-Performance Object-Oriented Scientific Computing 
(POOSC'2009). Topics include: identifying specific problems impeding greater 
acceptance and widespread use of object-oriented programming in scientific computing; 
proposed and implemented solutions to these problems; and new or novel approaches, 
techniques or idioms for scientific and/or parallel computing. Specific areas of interest 
include: alternatives or extensions to mainstream object-oriented languages (e.g. C++, 
Java); performance issues and their realized or proposed resolution; issues specific to 
handling or abstracting parallelism, including the handling or abstraction of 
heterogeneous and multicore microarchitectures; higher level languages (e.g. domain 
specific languages) or their embedding into OO languages to support parallelism or 
specific tasks in scientific computing; grand visions (of relevance); etc. 

July 13-16 2009 International Conference on Software Engineering Theory and Practice (SETP'2009), 
Orlando, Florida, USA. Topics include: Case studies, Component-based software engineering, Critical 
software engineering, Distributed and parallel software architectures, Education aspects of software 
engineering, Embedded software engineering, Model Driven Architecture (MDA), Model-oriented 
software engineering, Object-oriented methodologies, Program understanding, Programming languages, 
Quality issues, Real-time software engineering, Real-time software systems, Reliability, Reverse 
engineering, Software design patterns, Software maintenance, Software reuse, Software safety and 
reliability, Software security, Software specification, Software tools, Verification and validation of 
software, etc. Event includes: special session on Object-Oriented Programming. 

☺ July 13-16 International Conference on Parallel and Distributed Processing Techniques and Applications 
(PDPTA'2009), Las Vegas, Nevada, USA. Topics include: Parallel/Distributed applications; Reliability 
and fault-tolerance; Real-time and embedded systems; Software tools and environments for parallel and 
distributed platforms: operating systems, compilers, languages, debuggers, monitoring tools, software 
engineering on parallel/distributed systems, ...; Object oriented technology and related issues; 
Scheduling and resource management; etc. 

July 19-23 ACM International Symposium on Software Testing and Analysis (ISSTA'2009), Chicago, Illinois, 
USA. 

☺ July 19 2nd International Workshop on Defects in Large Software Systems 
(DEFECTS'2009). Topics include: Techniques to detect, locate, or predict defects; 
Empirical studies of defects; Types of defects that occur in software; Evolution of 
defects over time; Tools for post-deployment defect detection and reporting; Experience 
using certain techniques to identify or predict defects; etc. 

July 19-20 Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging 
(PADTAD'2009). Topics include: Curriculum and education for multi-core design, 
programming, testing, and analysis; Tools for testing or debugging of Multi-
threaded/Parallel/Distributed (MPD) applications; Debugging and testing MPD 
applications; Using static analysis or formal verification to enhance debugging and 
testing of MPD applications; Detecting race conditions and deadlocks; Replay of MPD 
applications; Finding timing bugs early in the process; Testing real-time MPD 
applications; Testing the fault tolerance of MPD applications; Pilots in applying new 
testing techniques to MPD applications; Teaching of MPD system design, verification 
and testing; etc. 

July 29-31 3rd IEEE International Symposium on Theoretical Aspects of Software Engineering (TASE'2009), 
Tianjin, China. Topics include: Specification and Verification; Program Analysis; Model-Driven 
Engineering; Software Architectures and Design; Object Orientation; Embedded and Real-Time 
Systems; Component-Based Software Engineering; Software Safety, Security and Reliability; Reverse 
Engineering and Software Maintenance; Type System; Dependable Concurrency; etc. 



100  Conference Calendar 

Volume 30, Number 2, June 2009 Ada User Journal 

☺ August 10-12 7th IEEE International Symposium on Parallel and Distributed Processing with Applications 
(ISPA'2009), Chengdu and Jiuzhai Valley, China. Topics include: all aspects of parallel and distributed 
computing and networking, such as Parallel/distributed system architectures, Tools and environments 
for software development, Distributed systems and applications, Reliability, fault-tolerance, and 
security, etc. 

August 10-13 28th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing 
(PODC'2009), Calgary, Alberta, Canada. 

☺ August 19-21 13th Brazilian Symposium on Programming Languages (SBLP'2009), Gramado, Rio Grande do Sul, 
Brazil. Topics include: Programming language design and implementation, Design and implementation 
of programming language environments, Object-oriented programming languages, Program 
transformations, Program analysis and verification, Compilation techniques, etc. 

August 24-28 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT 
Symposium on the Foundations of Software Engineering (ESEC/FSE'2009), Amsterdam, the 
Netherlands. Topics include: Specification and verification, Software architecture and design, Tools and 
environments, Software quality and performance, Formal methods, Component-based software 
engineering, Distributed systems and middleware, Embedded and real-time systems, Open standards and 
certification, Dependability (safety, security, reliability), Case studies and experience reports, etc. 
Deadline for early registration: July 19, 2009. 

☺ August 25-28 15th International European Conference on Parallel and Distributed Computing (Euro-Par'2009), 
Delft, the Netherlands. Topics include: all aspects of parallel and distributed computing, such Support 
tools and environments, High performance architectures and compilers, Distributed systems and 
algorithms, Parallel and distributed programming, Multicore and manycore programming, Theory and 
algorithms for parallel computation, etc. 

August 24 2nd Workshop on Productivity and Performance (PROPER'2009). Topics include: 
tools and tool approaches for parallel program development and analysis; success stories 
about optimization or parallel scalability achieved using tools; etc. 

☺ August 25 3rd Workshop on Highly Parallel Processing on a Chip (HPPC'2009). Topics include: 
programming models, languages and software libraries, implementation techniques, 
support and performance tools, performance evaluation, parallel algorithms and 
applications, migration of existing codebase, teaching of parallel computing, for/on 
highly parallel multi-core systems. 

☺ Aug 31 – Sep 04 10th International Conference on Parallel Computing Technologies (PaCT'2009), Novosibirsk, 
Russia. Topics include: New developments, applications, and trends in parallel computing technologies; 
All aspects of the applications of parallel computer systems; Languages, environment and software tools 
supporting parallel processing; General architecture concepts; Teaching parallel processing; etc. 

☺ September 01-04 International Conference on Parallel Computing 2009 (ParCo'2009), Lyon, France. Topics include: 
all aspects of parallel computing, including applications, hardware and software technologies as well as 
languages and development environments. Deadline for early registration: July 15, 2009. 

☺ September 01-04 4th Latin-American Symposium on Dependable Computing (LADC'2009), João Pessoa, Brazil. 
Topics include: Dependability of software (analysis, architecture, testing, verification & validation, 
software certification); Dependability of maintenance; Security; Dependability and human issues; 
Safety; etc. 

September 01-05 20th International Conference on Concurrency Theory (CONCUR'2009), Bologna, Italy. Topics 
include: concurrency theory and its applications, e.g. semantics, cross-fertilization between industry and 
academia, etc. Deadline for early registration: July 31, 2009. 

September 09-11 8th International Conference on Software Methodologies, Tools, and Techniques (SoMeT'2009), 
Prague, Czech Republic. Topics include: Software methodologies, and tools for robust, reliable, non-
fragile software design; Automatic software generation versus reuse, and legacy systems, source code 
analysis and manipulation; Intelligent software systems design, and software evolution techniques; 
Software optimization and formal methods for software design; Software security tools and techniques, 
and related Software Engineering models; Software Engineering models, and formal techniques for 
software representation, software testing and validation; etc. 



Conference Calendar 101  

Ada User Journal Volume 30, Number 2, June 2009 

☺ Sep 12-16 18th International Conference on Parallel Architectures and Compilation Techniques 
(PACT'2009), Raleigh, North Carolina, USA. Topics include: Parallel computational models; Compilers 
and tools for parallel computer systems; Support for concurrency correctness in hardware and software; 
Parallel programming languages, algorithms and applications; Middleware and run-time system support 
for parallel computing; Reliability and fault tolerance for parallel systems; Modeling and simulation of 
parallel systems and applications; Parallel applications and experimental systems studies; etc. 

September 14-17 Joint 8th Working International Conference on Software Architecture and 3rd European 
Conference on Software Architecture (WICSA/ECSA'2009), Cambridge, UK. Topics include: 
architecture description languages; architecture reengineering, discovery and recovery; software 
architects' roles and responsibilities, training, education and certification; etc. 

September 15 Safecomp2009 - Workshop on the Design of Dependable Critical Systems (DDCS'2009), Hamburg, 
Germany. Topics include: Automotive and aerospace, Robotics, etc. Deadline for submissions: July 30, 
2009 (papers, demos). 

September 16-18 12th International Conference on Quality Engineering in Software Technology (CONQUEST'2009), 
Nuremberg, Germany. Topics include: specific real-life case studies with detailed quality analysis and 
evaluation; quality engineering issues in domains such as Medical IT, Automotive, Avionics, Transport, 
and IT; etc. 

☺ Sep 22-25 38th International Conference on Parallel Processing (ICPP'2009), Vienna, Austria. Topics include: 
Programming Models, Languages, and Compilers: from high-level abstractions to efficient code, etc. 

☺ Sep 27-30 28th IEEE International Symposium on Reliable Distributed Systems (SRDS'2009), Niagara Falls, 
New York, USA. Topics include: Security and high-confidence systems, Safety-critical systems and 
critical infrastructures, Fault-tolerance in embedded systems, Analytical or experimental evaluations of 
dependable distributed systems, Formal methods and foundations for dependable distributed computing, 
etc. Deadline for submissions: July 6, 2009 (workshop papers). 

☺ Sep 28 – Oct 02 4th Working Conference on Programming Languages (ATPS'2009), Luebeck, Germany. Topics 
include: All paradigms of programming languages (imperative, object-oriented, functional, logic, 
concurrent, parallel, or graphical programming languages) as well as languages to support the 
implementation of distributed systems and concepts for the integration of different paradigms; Design of 
programming languages as well as domain-specific languages; Implementation and optimization 
techniques; Analysis and transformation of programs; Type systems; Modelling languages, object 
orientation; Verification of programs and implementations; Tools and programming environments; 
Experiences with specific applications; Techniques, methods, concepts, and tools to improve the safety 
and reliability of programs; etc. 

October 04-09 ACM/IEEE 12th International Conference on Model Driven Engineering Languages and Systems 
(MoDELS'2009), Denver, Colorado, USA. Topics include: Development of domain-specific modeling 
languages, Tools and meta-tools for modeling languages and model-based development, Evolution of 
modeling languages and models, Experience stories in general (successful and unsuccessful), Issues 
related to current model-based engineering standards, Experience with model-based engineering tools, 
etc. 

☺ October 06 2nd International Workshop on Model Based Architecting and Construction of 
Embedded Systems (ACES-MB'2009). Topics include: model-oriented counterparts of 
specific design and implementation languages with particularly well-behaved semantics, 
such as synchronous languages and models (Lustre/SCADE, Signal/Polychrony, 
Esterel), super-synchronous models (TTA, Giotto), scheduling-friendly models (HRT-
UML, Ada Ravenscar), etc. Deadline for submissions: July 20, 2009. 

October 05-06 2nd International Conference on Software Language Engineering (SLE'2009), Denver, Colorado, 
USA. Topics include: the engineering of artificial languages used in software development including 
general-purpose programming languages, domain-specific languages, modeling and meta-modeling 
languages, data models, and ontologies. Deadline for submissions: July 3, 2009 (abstracts), July 10, 
2009 (papers). 

October 07-09 14th International Real-Time Ada Workshop (IRTAW'2009), Portovenere, Italy. 
In cooperation with Ada-Europe. 



102  Conference Calendar 

Volume 30, Number 2, June 2009 Ada User Journal 

☺ October 11 5th Workshop on Programming Languages and Operating Systems (PLOS'2009), Big Sky, MT, 
USA. Topics include: critical evaluations of new programming language ideas in support of OS 
construction; type-safe languages for operating systems; language-based approaches to crosscutting 
system concerns, such as security and run-time performance; language support for system verification; 
the use of OS abstractions and techniques in language runtimes; etc. 

☺ October 12-14 IMCSIT2009 - 2nd Workshop on Advances in Programming Languages (WAPL'2009), Mragowo, 
Poland. Topics include: Compiling techniques; Domain-specific languages; Formal semantics and 
syntax; Generative and generic programming; Languages and tools for trustworthy computing; 
Language concepts, design and implementation; Metamodeling and modeling languages; Model-driven 
engineering languages and systems; Practical experiences with programming languages; Program 
analysis, optimization and verification; Program generation and transformation; Programming tools and 
environments; Proof theory for programs; Specification languages; Type systems; etc. 

October 13-16 16th Working Conference on Reverse Engineering (WCRE'2009), Lille, France. Topics include: all 
areas of software maintenance, evolution, reengineering, and migration, such as Program 
comprehension, Mining software repositories, Empirical studies in reverse engineering, Redocumenting 
legacy systems, Reverse engineering tool support, Reengineering to distributed architectures, Software 
architecture recovery, Program analysis and slicing, Reengineering patterns, Program transformation 
and refactoring, etc. 

☺ October 25-29 24th Annual Conference on Object-Oriented Programming, Systems, Languages, and Applications 
(OOPSLA'2009), Orlando, Florida, USA. Topics include: the intersection between programming 
languages and software engineering; key programming models and programming methods and related 
software engineering ideas, technologies, tools, and applications; critical evaluation of accepted 
practices, proposals for new programming models, exploration and extension of well-established 
models, and other novel approaches to building systems; etc. Deadline for submissions: July 2, 2009 
(posters, demonstrations, student research competition, doctoral symposium, onward! films, student 
volunteers). 

☺ October 25 8th "Killer Examples" workshop. Topics include: examples that expose bad practice 
and so lead to better appreciation of good practice, as obtained by following sound 
object-oriented principles. Deadline for submissions: September 8, 2009. 

October 25-29 Onward! 09. Topics include: different ways of thinking about, approaching, and 
reporting on programming languages and software engineering research. 

October 26 3rd Workshop on Assessment of Contemporary Modularization Techniques 
(ACoM.09). Topics include: Lessons learned from assessing new modularization 
techniques; Empirical studies and industrial experiences; Comparative studies between 
new modularization techniques and conventional ones; etc. Deadline for submissions: 
August 21, 2009 (abstracts), August 28, 2009 (papers). 

Oct 30 – Nov 07 16th International Symposium on Formal Methods (FM'2009), Eindhoven, the Netherlands. Theme: 
"Theory meets practice". Topics include: every aspect of the development and application of formal 
methods for the improvement of the current practice on system developments; of particular interest are 
papers on tools and industrial applications; etc. 

November 04 8th International Workshop on Parallel and Distributed Methods in Verification 
(PDMC'2009). Topics include: multi-core/distributed model checking, slicing and 
distributing the state space, parallel/distributed theorem proving and constraints solving, 
tools and case studies, industrial applications, etc. Deadline for submissions: August 1, 
2009 (abstracts), August 7, 2009 (papers). 

November 06 2nd International Conference on Teaching Formal Methods (TFM'2009). Topics 
include: experiences of teaching FMs, both successful and unsuccessful; educational 
resources including the use of books, case studies and the internet; the advantages of 
FM-trained graduates in the workplace; changing attitudes towards FMs in students, 
academic staff and practitioners; etc. 

♦ Nov 01-05 ACM Annual International Conference on Ada and Related Technologies 
(SIGAda'2009), St. Petersburg, Tampa Bay area, Florida, USA. Sponsored by ACM 



Conference Calendar 103  

Ada User Journal Volume 30, Number 2, June 2009 

SIGAda, in cooperation with SIGCAS, SIGCSE, SIGPLAN, Ada-Europe, and Ada 
Resource Association. Deadline for submissions: October 16, 2009 (grants for 
educators). 

☺ November 02-03 14th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2009), 
Eindhoven, the Netherlands. Topics include: Design, specification, code generation and testing based on 
formal methods; Verification and validation methods that address shortcomings of existing methods 
with respect to their industrial applicability; Tools for the development of formal design descriptions; 
Case studies and experience reports on industrial applications of formal methods, focusing on lessons 
learned or identification of new research directions; Impact of the adoption of formal methods on the 
development process and associated costs; Application of formal methods in standardization and 
industrial forums; etc. 

November 16-19 20th International Symposium on Software Reliability Engineering (ISSRE'2009), Mysuru-
Bengaluru, India. Topics include: Reliability, availability, and safety of software systems; Validation, 
verification, and testing; Software quality and productivity; Software security; Fault tolerance, 
survivability, and resilience of software systems; Open source software reliability engineering; 
Supporting tools and automation; Industry best practices; etc.; Empirical studies of any of the above 
topics. 

☺  Nov 23-27 7th IEEE International Conference on Software Engineering and Formal Methods (SEFM'2009), 
Hanoi, Vietnam. Topics include: formal methods technology transfer; software specification, 
verification and validation; component-based development; programming languages and type theory; 
program analysis; real-time, hybrid and embedded systems; safety-critical and fault-tolerant systems; 
software architectures and their description languages; light-weight formal methods; CASE tools and 
tool integration; applications of formal methods and industrial case studies; etc. 

☺ Dec 08-11 15th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2009), Shenzhen, 
China. Topics include: Parallel and Distributed Applications and Algorithms, Multi-core and 
Multithreaded Architectures, Resource Management and Scheduling, Security, Dependable and 
Trustworthy Computing and Systems, Real-Time Systems, etc. 

December 10 Birthday of Lady Ada Lovelace, born in 1815.  Happy Programmers' Day! 

 

2010 
 

☺ January 20-22 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2010), 
Madrid, Spain. Topics include: all aspects of programming languages and systems, with emphasis on 
how principles underpin practice. Deadline for submissions: July 8, 2009 (abstracts), July 15, 2009 
(papers). 

☺ February 03-04 2nd International Symposium on Engineering Secure Software and Systems (ESSoS'2009), Pisa, 
Italy. Topics include: security architecture and design for software and systems, systematic support for 
security best practices, programming paradigms for security, processes for the development of secure 
software and systems, etc. Deadline for submissions: September 15, 2009 (abstracts), September 30, 
2009 (papers), October 24, 2009 (tutorials). 

February 17-19 18th Euromicro International Conference on Parallel, Distributed and network-based Processing 
(PDP'2010), Pisa, Italy. Topics include: Parallel Computer Systems (embedded parallel and distributed 
systems, fault-tolerance, multi/many core systems, ...); Models and Tools for Parallel Programming 
Environments: Advanced Applications (numerical applications with multi-level parallelism, real time 
distributed applications, distributed business applications, ...); Languages, Compilers and Runtime 
Support Systems (parallel languages, object-oriented languages, dependability issues, scheduling, ...); 
etc. Deadline for paper submissions: July 20, 2009. 

☺  March 10-13 41st ACM Technical Symposium on Computer Science Education (SIGCSE'2010), Milwaukee, 
Wisconsin, USA. 



104  Conference Calendar 

Volume 30, Number 2, June 2009 Ada User Journal 

March 15-18 14th European Conference on Software Maintenance and Reengineering (CSMR'2010), Madrid, 
Spain. Topics include: Experience reports and empirical studies on maintenance, reengineering, and 
evolution; Description of education-related issues to evolution, maintenance and reengineering; 
Mechanisms and techniques for reengineering systems as services; etc. Deadline for submissions: 
October 9, 2009 (abstracts), October 16, 2009 (full papers), October 23, 2009 (workshops, industry track 
submissions, tool demonstrations, doctoral symposium, European Projects track). 

March 20-25 European Joint Conferences on Theory and Practice of Software (ETAPS'2009), Paphos, Cyprus. 
Events include: FOSSACS, Foundations of Software Science and Computation Structures; FASE, 
Fundamental Approaches to Software Engineering; ESOP, European Symposium on Programming; CC, 
International Conference on Compiler Construction; TACAS, Tools and Algorithms for the 
Construction and Analysis of Systems. 

March 22-26 25th ACM Symposium on Applied Computing (SAC'2010), Sierre and Lausanne, Switzerland. 

☺ Mar 22-26 Track on Object-Oriented Programming Languages and Systems (OOPS'2010). 
Topics include: Language design and implementation; Type systems, static analysis, 
formal methods; Integration with other paradigms; Components and modularity; 
Distributed, concurrent or parallel systems; Interoperability, versioning and software 
adaptation; etc. Deadline for submissions: September 8, 2009 (full papers). 

☺ Mar 22-26 Track on Software Engineering (SE'2010). Topics include: technologies, theories, and 
tools used for producing highly dependable software more effectively and efficiently; 
such as Safety and Security; Dependability and Reliability; Fault Tolerance and 
Availability; Architecture, Framework, and Design Patterns; Standards; Maintenance 
and Reverse Engineering; Verification, Validation, and Analysis; Formal Methods and 
Theories; Component-Based Development and Reuse; Empirical Studies, and Industrial 
Best Practices; etc. Deadline for submissions: September 8, 2009 (full papers). 

☺ Mar 22-26 Track on Real-Time Systems (RTS'2010). Topics include: all aspects of real-time 
systems design, analysis, implementation, evaluation, and case-studies, including 
scheduling and schedulability analysis; worst-case execution time analysis; modeling 
and formal methods; validation techniques; reliability; compiler support; component-
based approaches; middleware and distribution technologies; programming languages 
and operating systems; embedded systems; etc. Deadline for submissions: September 8, 
2009 (full papers). 

Mar 22-26 Track on Software Verification and Testing (SVT'2010). Topics include: 
development of technologies to improve the usability of formal methods in software 
engineering, tools and techniques for verification of large scale software systems, real 
world applications and case studies applying software verification, static and run-time 
analysis, correct by construction development, software certification and proof carrying 
code, etc. Deadline for submissions: September 8, 2009 (papers). 

April 06-09 3rd IEEE International Conference on Software Testing, Verification and Validation (ICST'2010), 
Paris, France. Topics include: Verification & validation, Quality assurance, Empirical studies, 
Inspections, Tools, Embedded software, Novel approaches to software reliability assessment, etc. 
Deadline for submissions: September 25, 2009 (abstracts, workshops), October 2, 2009 (full papers). 

April 13-16 5th European Conference on Computer Systems (EuroSys'2010), Paris, France. Topics include: 
various issues of systems software research and development, such as systems aspects of Dependable 
computing, Distributed computing, Parallel and concurrent computing, Programming-language support, 
Real-time and embedded computing, Security, etc. Deadline for submissions: October 19, 2009. 

☺ May 02-08 32nd International Conference on Software Engineering (ICSE'2010), Cape Town, South Africa. 
Topics include: Engineering of distributed/parallel software systems; Engineering of embedded and 
real-time software; Engineering secure software; Patterns and frameworks; Programming languages; 
Reverse engineering and maintenance; Software architecture and design; Software components and 
reuse; Software dependability, safety and reliability; Software economics and metrics; Software tools 
and development environments; Theory and formal methods; etc. Deadline for submissions: September 
6, 2009 (technical/research papers); September 17, 2009 (workshops); October 5, 2009 (tutorials, 



Conference Calendar 105  

Ada User Journal Volume 30, Number 2, June 2009 

education papers, software engineering in practice track); November 26, 2009 (doctoral symposium 
Papers); January 7, 2010 (research demonstration papers, new and emerging results papers). 

♦ June 14-18 15th International Conference on Reliable Software Technologies - Ada-
Europe'2010, Valencia, Spain. Sponsored by Ada-Europe, in cooperation with ACM 
SIGAda (approval pending). Deadline for submissions: November 16, 2009 (papers, 
tutorials, workshops), January 11, 2010 (industrial presentations). 

December 10 Birthday of Lady Ada Lovelace, born in 1815.  Happy Programmers' Day! 

 

 



106  Forthcoming Events 

Volume 30, Number 2, June 2009 Ada User Journal 

 

SIGAda 2009 Advance Program 
ACM Annual International Conference 

on Ada and Related Technologies: 
Engineering Safe, Secure, and Reliable Software 

Hilton St. Petersburg Bayfront Hotel 
St. Petersburg (Tampa Bay area), Florida, USA 

November 1-5, 2009 

 

 
 

Sponsored by the ACM Special Interest Group on the Ada Programming Language (SIGAda) 
in cooperation with Ada-Europe, Ada Resource Association, and ACM Special Interest Groups on Embedded Systems, 

Programming Languages, Computers and Society, and Computer Science Education 
 

 

Special Keynote Presentations 

 

Echo: A New Approach to Formal Verification Based on Ada 
The Technology, and Experience in Security and Medical Devices  
John Knight 
University of Virginia 
Computer Science Department 

 

Ada Through the Eyes of Developing Large, Mature, Reliable 
Systems 
Richard Schmidt 
Lockheed Martin 
Information Systems & Global Services - Civil Group 

 

A Look at Ada from Both Sides Now: 
Government and Defense Contractor Perspectives 
J.C. Smart 
Raytheon 
Intelligence and Information Systems 

 
 

Corporate Sponsors – Platinum Corporate Sponsors – Silver 

  

 
VISIT http:/ /www.sigada.org/conf/sigada2009 TODAY 

FOR UP-TO-THE-MINUTE TUTORIAL, PROGRAM, AND EXHIBIT INFORMATION 
AND ONLINE REGISTRATION 



Forthcoming Events 107  

Ada User Journal Volume 30, Number 2, June 2009 

SIGAda 2009 VENUE & HOTEL 
Hilton St. Petersburg Bayfront 

333 First Street South 
St. Petersburg, Florida 33701 (USA) 

Tel: 1-727-894-5000 
Fax: 1-727-823-4797 

 

 
 

The SIGAda 2009 Conference will be held at the Hilton St. Petersburg Bayfront Hotel. This is a beautiful spot 
located directly on Tampa Bay, Florida. The weather in November is typically in the high 70’s F (20 degrees C) 
with minimal rain fall. It is easily accessible from either the Tampa or Clearwater/St Petersburg airports. And it is 
about 1-1/2 hours away from the Orlando International Airport and its associated theme parks. The Tampa Bay 
area also has the Busch Gardens theme park, the Salvador Dali museum, and numerous beaches on the Gulf coast. 
The hotel has reserved a block of rooms for the SIGAda 2009 conference. The conference rate is $95 for single or 
double occupancy rooms, $105 for triple occupancy rooms, and $115 for quadruple occupancy rooms. A 12% tax 
will be added per night. All reservations must be guaranteed by credit card. Reservations must be received by 
October 1, 2009. For further information, see http://www.sigada.org/conf/sigada2009/hotel-rates.html 

EXHIBITORS 
SIGAda 2009 will include vendor participation, featuring presentations on their products and services. For specific 
information, please contact the Exhibits Chair, Alok Srivastava, Northrup Grumman, 
Alok.Srivastava@AUATAC.com. 

GRANTS TO EDUCATORS 
As in past years, SIGAda is offering grants to educators to attend the conference. Grants cover the registration and 
tutorial fees; travel funds are not covered, but members of the GNAT Academic Program may be eligible for travel 
funds from AdaCore. Applications must be sent by e-mail, no later than October 16, 2009. Grantees will receive 
instructions for on-line registration, which will be accepted through October 28, 2009. Grant program details are 
available from the conference website or Prof. Michael B. Feldman, mfeldman@gwu.edu. 

WORKSHOPS / BOFS 
Focused workshops are important in shaping Ada technology to better meet the needs of the Ada community. 
Workshops are free for those registered for the conference. Workshop descriptions are listed at the SIGAda 2009 
website. Additional workshops or Birds-of-a-Feather (BoF) sessions are welcome. Workshops have a focused 
objective and result in a report to be published in ACM Ada Letters. BoFs are informal discussion groups. If you 
would like to propose a Workshop or BoF, please contact the Workshops Chair, Bill Thomas, 
BThomas@MITRE.Org 

CONFERENCE TEAM 
Conference Chair 
Greg Gicca 
AdaCore 
gicca@adacore.com 

Tutorial Chair 
Richard Riehle 
Naval Postgraduate School 
rdriehle@nps.edu 

SIGAda and Conference Treasurer 
Geoff Smith  
Lightfleet Corporation 
gsmith@lightfleet.com 

Program Chair 
Jeff Boleng, Lt Col, USAF 
US Air Force Academy 
jeff.boleng@usafa.edu 

Webmaster & Proceedings Chair 
Clyde Roby 
Institute for Defense Analyses 
ClydeRoby@ACM.Org  

SIGAda Vice Chr, Meetings/Conferences
Alok Srivastava 
Northrop Grumman 
Alok.Srivastava@AUATAC.Com 

Workshops Chair 
Bill Thomas 
The MITRE Corporation 
BThomas@MITRE.org  

Publicity Co-Chair 
Michael Feldman 
George Washington University (ret.) 
mfeldman@gwu.edu 

SIGAda International Representative 
Dirk Craeynest 
K.U. Leuven (Belgium) 
dirk.craeynest@cs.kuleuven.be 

Exhibits Chair 
Alok Srivastava 
Northrop Grumman 
Alok.Srivastava@AUATAC.Com 
Local Arrangements Chair 
Currie Colket 
colket@acm.org 

Publicity Co-Chair 
Ron Price 
Softcrafts  
softcrafts@aol.com 
SIGAda Chair 
Ricky E. Sward 
The MITRE Corporation 
rsward@mitre.org 

Registration Chair 
Thomas A. Panfil 
US Department of Defense 
Phone and FAX +1 301-498-7313 
Office Phone: +1 410 854-5818 
tapanfil@acm.org 



108  Forthcoming Events 

Volume 30, Number 2, June 2009 Ada User Journal 

 

Preliminary Call for Papers 
15th International Conference on  
Reliable Software Technologies – 

Ada-Europe 2010 
14-18 June 2010, Valencia, Spain 

http://www.ada-europe.org/conference2010.html 

 

Conference Chair 

Jorge Real 
Universidad Politécnica de 
Valencia, Spain 
jorge@disca.upv.es 

Program Co-Chairs 

Jorge Real 
Universidad Politécnica de 
Valencia, Spain 
jorge@disca.upv.es 
 
Tullio Vardanega  
University of Padua, Italy 
tullio.vardanega@math.unipd.it  

Tutorial Chair 

Albert Llemosí  
Universitat de les Illes Balears, 
Spain 
albert.llemosi@uib.cat 

Exhibition Chair 

Ahlan Marriott 
White Elephant GmbH, 
Switzerland 
Ada@white-elephant.ch 

Industrial Chair 

Erhard Plödereder 
University of Stuttgart, Germany 
ploedere@informatik.uni-stuttgart.de 

Publicity Chair 

Dirk Craeynest 
Aubay Belgium & K.U.Leuven, 
Belgium 
Dirk.Craeynest@cs. kuleuven.be 

 

 

 

In cooperation with 
ACM SIGAda 

(approval pending) 
 

 

General Information 

The 15th International Conference on Reliable Software Technologies – Ada-Europe 2010 will take 
place in Valencia, Spain. Following its traditional style, the conference will span a full week, including 
a three-day technical program and vendor exhibition from Tuesday to Thursday, along with parallel 
tutorials and workshops on Monday and Friday. 

Schedule 

 

Topics 

The conference has successfully established itself as an international forum for providers, practitioners 
and researchers into reliable software technologies. The conference presentations will illustrate current 
work in the theory and practice of the design, development and maintenance of long-lived, high-
quality software systems for a variety of application domains. The program will allow ample time for 
keynotes, Q&A sessions, panel discussions and social events. Participants will include practitioners and 
researchers representing industry, academia and government organizations active in the promotion 
and development of reliable software technologies. To gather experience on the latest periodic revision 
of the Ada language standard, contributions that present and discuss the potential of the revised 
language are especially welcome. 

All prospective contributions, whether regular papers, industrial presentations, tutorials or workshops, 
should address the topics of interest to the conference, which for this edition include but are not 
limited to: 

· Methods and Techniques for Software Development and Maintenance: Requirements Engineering, 
Object-Oriented Technologies, Model-driven Architecture and Engineering, Formal Methods, Re-
engineering and Reverse Engineering, Reuse, Software Management Issues. 

· Software Architectures: Design Patterns, Frameworks, Architecture-Centered Development, 
Component and Class Libraries, Component-based Design and Development. 

· Enabling Technologies: Software Development Environments, Compilers, Debuggers, Run-time 
Systems, Middleware Components, Concurrent and Distributed Programming, Ada Language and 
Technology. 

· Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis, 
Verification, Validation, Testing of Software Systems. 

· Theory and Practice of High-Integrity Systems: Real-Time, Distribution, Fault Tolerance, Security, 
Reliability, Trust and Safety, Languages Vulnerabilities. 

· Embedded Systems: Multicore Architectures, Architecture Modeling,  HW/SW Co-Design, 
Reliability and Performance Analysis. 

· Mainstream and Emerging Applications: Manufacturing, Robotics, Avionics, Space, Health Care, 
Transportation, Energy, Games and Serious Games, etc. 

· Experience Reports: Case Studies and Comparative Assessments, Management Approaches, 
Qualitative and Quantitative Metrics. 

· Ada and Education: Where does Ada stand in the software engineering curriculum; how learning 
Ada serves the curriculum; what it takes to form a fluent Ada user; lessons learned on Education 
and Training Activities with bearing on any of the conference topics. 

16 November 2009 Submission of regular papers, tutorial and workshop proposals 
11 January 2010 Submission of industrial presentation proposals 
1 February 2010 Notification of acceptance to all authors 

1 March 2010 Camera-ready version of regular papers required 
10 May 2010 Industrial presentations, tutorial and workshop material required 

14-18 June 2010 Conference 
 



Forthcoming Events 109  

Ada User Journal Volume 30, Number 2, June 2009 

Program Committee 
 
Alejandro Alonso, Universidad Politécnica de 

Madrid, Spain 
Ted Baker, Florida State University, USA 
John Barnes, John Barnes Informatics, UK 
Johann Blieberger, Technische Universität Wien, 

Austria  
Jørgen Bundgaard, Rovsing A/S, Denmark 
Bernd Burgstaller, Yonsei University, Korea 
Alan Burns, University of York, UK 
Rod Chapman, Praxis High Integrity Systems, UK 
Dirk Craeynest, Aubay Belgium & K.U.Leuven, 

Belgium 
Alfons Crespo, Universidad Politécnica de 

Valencia, Spain  
Juan A. de la Puente, Universidad Politécnica de 

Madrid, Spain  
Raymond Devillers, Université Libre de Bruxelles, 

Belgium  
Franco Gasperoni, AdaCore, France 
Michael González Harbour, Universidad de 

Cantabria, Spain  
José Javier Gutiérrez, Universidad de Cantabria, 

Spain  
Andrew Hately, Eurocontrol CRDS, Hungary  
Peter Hermann, Universität Stuttgart, Germany 
Jérôme Hugues, Telecom Paris, France  
Hubert Keller, Institut für Angewandte Informatik, 

Germany  
Albert Llemosí, Universitat de les Illes Balears, 

Spain  
Kristina Lundqvist, Mälardalen University, Sweden 

& MIT, USA 
Franco Mazzanti, ISTI-CNR Pisa, Italy  
John McCormick, University of Northern Iowa, 

USA  
Julio Medina, Universidad de Cantabria, Spain 
Stephen Michell, Maurya Software, Canada  
Javier Miranda, Universidad Las Palmas de Gran 

Canaria, Spain  
Daniel Moldt, University of Hamburg, Germany  
Laurent Pautet, Telecom Paris, France 
Luís Miguel Pinho, Polytechnic Institute of Porto, 

Portugal  
Erhard Plödereder, Universität Stuttgart, Germany  
Jorge Real, Universidad Politécnica de Valencia, 

Spain  
Alexander Romanovsky, University of Newcastle 

upon Tyne, UK  
Jean-Pierre Rosen, Adalog, France  
Sergio Sáez, Universidad Politécnica de Valencia, 

Spain  
Ed Schonberg, AdaCore, USA 
Theodor Tempelmeier, Univ. of Applied Sciences 

Rosenheim, Germany 
Jean-Loup Terraillon, European Space Agency, 

The Netherlands  
Santiago Urueña, Grupo de Mecánica de Vuelo, 

Spain 
Tullio Vardanega, Università di Padova, Italy  
Francois Vernadat, LAAS-CNRS & INSA 

Toulouse, France 
Daniel Wengelin, Saab, Sweden 
Andy Wellings, University of York, UK  
Jürgen Winkler, Friedrich-Schiller-Universität, 

Germany  
Luigi Zaffalon, University of Applied Sciences, W. 

Switzerland  
 
 

Industrial Committee 
To be announced 

, Sweden 
 

Call for Regular Papers 

Authors of regular papers which are to undergo peer review for acceptance are invited to submit 
original contributions. Paper submissions shall be in English, complete and not exceeding 14 LNCS-
style pages in length. Authors should submit their work via the Web submission system accessible 
from the Conference Home page. The format for submission is solely PDF. Should you have problems 
to comply with format and submission requirements, please contact the Program Chairs. 

Proceedings 

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS) series 
by Springer, and will be available at the start of the conference. The authors of accepted regular 
papers shall prepare camera-ready submissions in full conformance with the LNCS style, not 
exceeding 14 pages and strictly by 1 March 2010. For format and style guidelines authors should refer 
to the following URL: http://www.springer.de/comp/lncs/authors.html. Failure to comply and to register 
for the conference will prevent the paper from appearing in the proceedings. 
The conference is ranked class A in the CORE ranking and is listed among the top quarter of 
CiteSeerX Venue Impact Factor. 

Awards 

Ada-Europe will offer honorary awards for the best regular paper and the best presentation. 

Call for Industrial Presentations 

The conference also seeks industrial presentations which may deliver value and insight, but do not fit 
the selection process for regular papers. Authors of industrial presentations are invited to submit a 
short overview (at least 1 page in size) of the proposed presentation to the Conference Chair by 11 
January 2010. The Industrial Program Committee will review the proposals and make the selection. 
The authors of selected presentations shall prepare a final short abstract and submit it to the 
Conference Chair by 10 May 2010, aiming at a 20-minute talk. The authors of accepted presentations 
will be invited to submit corresponding articles for publication in the Ada User Journal, which will 
host the proceedings of the Industrial Program of the Conference. 

Call for Tutorials 

Tutorials should address subjects that fall within the scope of the conference and may be proposed as 
either half- or full-day events. Proposals should include a title, an abstract, a description of the topic, 
a detailed outline of the presentation, a description of the presenter's lecturing expertise in general and 
with the proposed topic in particular, the proposed duration (half day or full day), the intended level 
of the tutorial (introductory, intermediate, or advanced), the recommended audience experience and 
background, and a statement of the reasons for attending. Proposals should be submitted by e-mail to 
the Tutorial Chair. The authors of accepted full-day tutorials will receive a complimentary conference 
registration as well as a fee for every paying participant in excess of 5; for half-day tutorials, these 
benefits will be accordingly halved. The Ada User Journal will offer space for the publication of 
summaries of the accepted tutorials. 

Call for Workshops 

Workshops on themes that fall within the conference scope may be proposed. Proposals may be 
submitted for half- or full-day events, to be scheduled at either end of the conference week. Workshop 
proposals should be submitted to the Conference Chair. The workshop organizer shall also commit to 
preparing proceedings for timely publication in the Ada User Journal. 

Call for Exhibitors 

The commercial exhibition will span the three days of the main conference. Vendors and providers of 
software products and services should contact the Exhibition Chair for information and for allowing 
suitable planning of the exhibition space and time. 



 111 

Ada User Journal Volume 30, Number 2, June 2009 

 

Ada Conference UK 2009 
K Fairlamb 
AdaCore, 46 rue d’Amsterdam, Paris 75009, France 

 

Abstract 
The Ada Conference UK 2009, operated by the Centre 
for Software Reliability (CS), took place this year on 
24 March at the Church House Conference Centre, 
Westminster, London. 

1   Introduction 
The 24th of March was a significant date in the Ada 
calendar this year, not least because it was Ada Lovelace 
Day, “an international day of blogging to draw attention to 
women excelling in technology” according to 
http://findingada.com/. 

It was also, of course, the date of the 2009 edition of the 
Ada Conference UK, a biennial event showcasing the many 
and varied uses of the Ada programming language in 
industry and academia worldwide.  

Following two previous editions of the event held in 
Manchester, the organisers this year decided to move the 
2009 event south to London, to the prestigious Church 
House Conference Centre, which sits in the shadows of the 
Houses of Parliament and the famous towers of 
Westminster Abbey. 

 
Figure 1   Conference Location 

Whether drawn primarily by the venue or by the 
programme of speakers, the event successfully managed to 
live up to its reputation as one of the largest professional 
Ada events in the world, attracting around 100 attendees 
from both the UK and abroad, proving that Ada is more 
than ever at the front of software developers’ minds as a 
language which provides answers for many of today’s most 
complex programming challenges – especially in the areas 
of real time, embedded and safety-critical applications and 
in particular as the need for robust and reliable software 
systems increases. 

The day was described by Tom Anderson of the CSR as a 
“Lockheed Martin sandwich”, with thought-provoking 
opening and closing keynotes by Jim Sutton (of Lean 
Programming fame) and Judith Klein (Lockheed Martin 
Fellow and Certified Systems Architect). The technical 
track offered talks on a diverse range of subjects by leading 
industrial experts, the abstracts of which are provided 
below and videos of which can be found on the AdaCore 
website at www.adacore.com. 

In addition to the technical track, a stream of well-attended 
vendor talks ran in parallel to the technical talks and a 
broad range of leading Ada toolset and service vendors 
displayed their technologies in the magnificent Church 
House Assembly Hall. 

The next Ada UK conference is already in preparation, so 
look out for a forthcoming announcement regarding dates 
and venue! 

 

2   Conference papers at Ada UK 
• Selecting a Programming Language, The Modern 

Way 

Jim Sutton, Lockheed Martin (USA) 

The choice of programming language has a significant 
impact on project performance. Key business 
indicators like productivity, quality, customer 
satisfaction, and insulation from legal challenges are 
all impacted. Even so, projects typically pick their 
language(s) by personal preference. Better languages 
are often overlooked because no one knew how the 
available options addressed their specific needs. Even 
projects in the domains for which Ada was designed 
sometimes settle on languages long ago shown to 
degrade critical success factors, like integrity, 
integration and verification.  

Projects do not set out to shoot themselves in the feet. 
There has been no accepted logical approach for 
selecting a programming language. Being a highly 
emotional subject, the easiest way to keep the peace 
has been to bow to the loudest voice. What projects 
need is an objective process for identifying the best 
language for their needs. That also provides them with 
a defense for their choice (including from legal “due 
diligence” claims). The systems engineering model 
provides an accountable process for selecting 
alternatives, called the “trade study”. Lean Production 
focuses processes of all sorts on their stakeholders’ 
most-important concerns. Combining the two yields a 



112  Ada Conference UK 2009 

Volume 30, Number 2, June 2009 Ada User Journal 

way for projects to select the language most 
advantageous to their needs and business performance. 

While increasing Ada’s usage is not the goal of 
adopting such a process, the objective way in which 
Ada itself was developed makes it a highly likely 
outcome. 

• Experiences with SPARK Ada on an 8-bit 
Embedded Microcontroller 

Damian Curtis & David Berry, AWE (UK) 

There is a need for high integrity software for small 
embedded systems. The Control Systems Group at 
AWE has developed a route to provide demonstrators 
of high integrity software systems on an 8-bit 
microcontroller. This presentation concerns the 
successes that AWE has had in demonstrating the use 
of SPARK and Ada on the AVR microcontroller. 

The presentation will cover the background to AWE’s 
software development approach, the successful 
demonstration of the approach (with a comparison to 
an equivalent development in C) and an outline of 
other demonstrator systems where this approach is to 
be applied. 

• Using Static Analysis as part of Code Review 

Tucker Taft, SofCheck (USA) 

As static analysis tools have become more 
sophisticated, their role in the software development 
process has become a subject of debate. Can the use of 
a static analysis tool substitute for other presumably 
more labor-intensive steps in the normal process of 
coding, testing, verification, validation, and ultimately 
possibly certification? 

This talk will address the issue of using static analysis 
as an aid to source code review, which is a labor 
intensive component of many phases of disciplined 
software development, from initial coding, through 
certification. Particular attention will be paid to 
reviewing code according to specific safety-critical 
software development standards such as DO-178B, or 
toward identifying specific security vulnerabilities, 
such as those identified within the Common Weakness 
Enumeration (CWE). We will identify specific features 
of a static analysis tool, such as the automatic 
extraction of pre-and postconditions from the code 
itself, that can facilitate productive code review, both 
for the relatively informal reviews that take place 
during the coding phase, and for the more formal 
reviews that may take place later in the development 
cycle. 

• Issues from the Cassini Project 

Stefan Helfert, MPI-K, Heidelberg, Germany 

• Tokeneer: An Open-Source Demonstration of High-
Assurance Software Engineering 

Janet Barnes, Praxis high Integrity Systems 

The Tokeneer ID Station (TIS) project was 
commissioned by the NSA as a demonstration vehicle 
to show exactly how the Praxis Correctness by 
Construction development approach matches up to the 
Common Criteria requirements for Evaluation 
Assurance Level 5 and to measure the productivity and 
defect rates under controlled conditions. The project 
developed this security application used a number of 
rigorous techniques including formalization of the 
specification in the Z notation, the use of SPARK as 
the development language and proof of adherence to 
the security properties. The whole TIS project is now 
open source, allowing Praxis to show the wider 
software community how we develop software to high-
assurance levels in a cost effective manner. 

In this presentation I will explain what the Tokeneer 
ID Station is and place it in the wider context of the 
Tokeneer system. I will describe the process by which 
Praxis undertook the development and explain the 
material that is now available open-source in the 
context of the process. 

• Leveraging the power of UML2 Ports – a Strategy 
for their Implementation in Ada 

Fraser Chadburn, IBM Rational Software 

UMLI.x was great for visualizing how classes are 
coupled. A key enhancement of UML2 was to improve 
support for modelling large-scale systems, including 
the ability to hierarchically decompose systems into 
parts with clear ports and interfaces. However, since a 
UML port can be contracted to provide any number of 
interfaces in UML2, Ada 95 presents a number of 
implementation challenges when mapping UML to 
code. This presentation will illustrate how these 
challenges are elegantly resolved by exploiting Ada 
2005 interfaces. It will show how the full power of 
UML2 ports and components and the ease by which 
the components can be re-used in multiple assemblies 
by getting Rhapsody to automatically generate the 
wiring code. 

• Project Coverage and the Open-DO Initiative 

Franco Gasperoni, AdaCore (France) 

In this presentation we introduce Project Coverage, the 
next generation of Open Source code coverage tools, 
offering a unique code coverage solution for both 
safety-critical and non safety-critical developers. 
Project Coverage, which can do both object-level and 
source-level code coverage, is unique in that it works 
directly on the executable for the target without 
instrumenting either the source or the object code and 
without requiring the actual hardware. How this magic 
is achieved will be explained in the first part of the 
presentation. 

The second part will introduce the Open-DO ‘as in 
DO-178B/C) initiative of which Project Coverage is 
part. The goal of the Open-DO initiative is to provide 
the foundation of a cooperative and open source 



K. Fair lamb 113  

Ada User Journal Volume 30, Number 2, June 2009 

framework for the development of certifiable software. 
The driving idea is to piggyback on two of the most 
active and innovative trends that have recently 
emerged in the software engineering community: (1) 
Effective collaboration through open source 
communities, and (2) Empowering development 
methodologies such as Agile, Lean and eXtreme 
programming. 

• Ada Programming Language Use in Lockheed 
Martin – An Update 

Judith Klein, Lockheed Martin (USA) 

The United States Federal Aviation Administration’s 
mission is to provide a safe, secure, and efficient 
global aviation system that contributes to national 
security and the promotion of U.S. aviation. To that 

end, FAA depends on large, complex, highly available 
software systems to manage the vast National Airspace 
System (NAS). Ada is used extensively in the 
development of said systems. As a system architect on 
En Route Automation Modernization (ERAM), I will 
discuss advantages and challenges encountered in the 
development of ERAM. 

An informal study on the topic of Ada’s use in 
Lockheed Martin will provide the basis for discussion. 
The kinds of programs/projects using Ada, the size of 
the Ada development efforts, the estimated life span of 
the programs/projects, and general comments on 
vendors supplying products in support of the 
development effort are aspects in the survey. 

 

 



 115 

Ada User Journal  Volume 30, Number 2, June 2009 

Pattern-Based Refactoring Shrinks  
Maintenance Costs 
John S. Harbaugh 
The Boeing Company, Seattle, WA, USA;  Tel: +1 253 657 5338; email: john.s.harbaugh2@boeing.com 
 

Abstract 
Once fielded, software systems enter the maintenance 
phase of their life cycle.  During this phase, changes 
will be made to improve a system’s functionality.  An 
emphasis on functionality alone can lead to a 
situation where structural qualities assume a lower 
priority.  Software developed under these conditions 
can, over time, become more difficult, and therefore 
more costly, to maintain.  This paper presents the 
results of a recent effort by The Boeing Company to 
improve the data recording and extraction capability 
of a large Ada 95 Command, Control and 
Communications (C3) system.   It shows how the 
reliability and structural qualities of the software 
were improved using the software engineering 
perspectives of design patterns and refactoring.  
These improvements led in turn to a high level of 
maintenance-phase productivity for current and 
future work. 

1   Introduction 
The technical details of this effort were influenced by the 
software engineering topics of “design patterns” 
popularized by Gamma et al. [1], and from the code 
maintenance practice known as “refactoring” and described 
by Fowler [2]. The synthesis of these topics was first 
discussed by Kerievsky [3].  

Both of these approaches work best when applied as first 
principles.  During the course of our work, certain 
principles kept proving useful to guide our efforts.  From 
Design Patterns, two principals kept occurring:  One that 
favors encapsulating those parts of the system that change, 
and another that favors aggregation over inheritance.  From 
refactoring, we realize the continuing benefits of low 
coupling and high cohesion for any large computer 
program.   

A third influence on our work was the Ada 95 language 
itself.   Since our work was to be done in Ada 95 and there 
were relatively few guides or examples of design patterns 
as realized in Ada 95 (unlike C++ or Java), we needed to 
study the problem at a fundamental level.  The result 
simultaneously improved the architecture qualities of the 
software while causing minimal changes to the existing 
mission computing subprograms. By taking advantage of 
the uniquely Ada features of hierarchical packages and 
subtyping, typically no more than minor specification 
changes were required. 

2   Original Design 
Our experience for this paper comes from work done on a 
large (>5MSLOC) Command, Communications, and 
Control (C3) computing system that was implemented 
using the Ada 95 computing language [4].  This system 
controls a variety of sensors, and fuses their information 
with information from various data links.  Crews of trained 
operators control the overall system using a variety of 
display consoles.  During a mission, data from these 
sources are recorded as Ada streams to a Mission Data 
Recorder (MDR) for later extraction and analysis.   

Three distinct sources of data are recorded during a 
mission.  Sensor and data link I/O consume the greatest 
bandwidth, and are recorded from the High-Speed Interface 
(HSI) in interface-specific binary formats.   Data from 
applications internal to mission computing are another 
significant contributor to mission data recordings.  
Application data are recorded as Ada streams of either 
record types or tagged types.  Operator console inputs 
account for a third distinct source of recording data.  All 
three recording streams are recorded to the in-flight media, 
then transferred to a mission support center for post-
mission extraction and reporting.   Following a mission, the 
mission support center extracts mission data recording into 
various intermediate formats and distributes them to the 
end. Figure 1 illustrates the overall data flow between these 
activities. 

The original data extraction program ran as a tightly-
coupled process within the mission-computing program, 
sharing data types and subprograms with mission 
computing and requiring all of mission computing be 
operating in order to extract any data.  Furthermore, at 
elaboration each recorded class registered a callback to an 
associated extraction method with a callback registry.  This 
callback was then used by the data extraction subsystem to 
extract the mission data recording into the desired form. 

Our customer wanted to streamline the processing of post-
mission data, and recognized that requiring the entire 
mission-computing program be running in order to perform 
any extraction was a significant bottleneck, one that 
consumed significant computing resources, and required 
several minutes to start.  They desired a solution that would 
allow data extraction to run separately from the mission 
computing software, would be a basis for future product 
development, and could be achievable on a small budget 
and short schedule.  They turned to the Boeing Company 
for our experience with large C3 systems and Ada 
development to deliver a comprehensive solution. 



116  Pat tern-Based Refactor ing Shr inks Maintenance Costs 

Volume 30, Number 2, June 2009 Ada User Journal 

 
Figure 1   Original Recording & Extraction Data Flow 

2.1   Entangling Dependencies 
The original data extraction program was designed as a 
process within the overall mission-computing program.  
This introduced a web of closure dependencies during 
compilation. Examples of this coupling included: 

• Dependence on mission-computing environment 
variables established via shell scripts and checked 
at startup. 

• Distributed system management services – All 
mission-computing processes are controlled by 
distributed system management. 

• Use of CORBA communications – CORBA 
implementation is tightly tied to system 
management and mission computing threading 
architecture. 

• Use of distributed event logging. 
Even though the data extraction process did not use these 
features of mission computing, data extraction could not 
run without them.  Thus, the essential problem we faced 
was not so much functional as it was structural:  How to 
allow the concerns of mission computing to vary 
independently from those of data extraction, while 
minimally affecting the existing code base?   

The sources of this tightly-coupled structure were twofold. 
The first was the way in which the recorded data was 
declared.  The original developers followed the common 
Ada practice of declaring a private type and its primitive 
operations in a single package specification.  Either 
because of the data type’s closure, or because of the closure 
of the package it which it is declared, entangling 
dependencies abounded.   Since the same data type was 
used in both mission computing and data extraction, 
declaring an object of any of these data types would bring 
in their entire closure, i.e., all of mission computing. In 
order to de-couple data extraction from the rest of mission 
computing, the operational dependencies of the objects 
needed to be separated from those of data extraction, with 
the data extraction context dependent on a small set of 
basic data types. 

The second was the coupling caused by indirect execution 
of the class-specific extraction methods via callback.  

When mission computing elaborated at startup, each 
recording client registered its externalization methods as 
callbacks in a common registry.  The data-extraction 
process retrieved these methods as needed, using them to 
read and convert the recorded data to the externalized form.  
For data extraction to run without the remainder of mission 
computing, the externalizations methods needed to be made 
independent of classes with the aforementioned problem 
with dependencies. 

3   Pattern-Based Solution 
3.1   Recordable Type Pattern 
Several design patterns, including strategy, decorator, 
adaptor, and façade, were explored for creating a stand-
alone data extraction capability. The key architectural 
qualities (i.e., variability, extensibility, coupling/cohesion, 
complexity, efficiency) and cost were evaluated to 
determine a preferred approach.  The conclusion was to 
implement a strategy pattern using Ada95 to encapsulate 
the distinct processing needs of the mission computing and 
data extraction.  Figure 2 illustrates our “light weight” 
implementation of the strategy pattern using Unified 
Modeling Language (UML) notation. 

 
Figure 2   Strategy Pattern Implementation 



J. S. Harbaugh 117  

Ada User Journal Volume 30, Number 2, June 2009 

 
Figure 3   Static Publisher Design 

In the context of Ada, we use the solid association arrows 
to indicate a parent/child relationship, and a dashed 
association to indicate simple “withing”.  This convention 
reflects the stronger form of visibility within package 
hierarchies.  In this implementation, the boxes represent 
packages and not actual subclasses, as would be expected 
in a purely object-oriented approach.  For this reason, use 
of inheritance notation would be misleading. 

The strategy class is implemented with a new “recordable 
type” for each application type being recorded.  The 
recordable type is a (potentially) discriminated record type 
with no significant dependency on other mission computing 
data types, and which cannot introduce problematic 
dependencies through closure.  This recordable type is 
declared publicly in a package specification without any 
primitive operations.    

For our system, the strategy was made concrete by 
extending it with two child packages, one for mission 
computing conversion operations, and another to support 
operations specific to data extraction.  Each context (i.e., 
mission computing or data extraction) then “withs in” the 
desired concrete strategy, getting only the methods (and 
closure) needed.   By segregating contextual code in 
separate packages, we can ensure that the mission 
computing program cannot include extraction code and visa 
versa.  If needs change, the pattern easily expands to 
include new concrete strategies.   

In terms of design patterns, hierarchical packages support 
the concept of aggregation.  In Design Patterns, the authors 
recommend favoring aggregation over inheritance.  This 
lightweight implementation takes this advice to the extreme 
by favoring aggregation to the exclusion of inheritance.  
We consider this a light-weight implementation because of 
the lack of inheritance, and because the recordable type is 

public. Consideration was given to making the recordable 
type private, with getter and setter methods for each 
component, but this approach offered no real benefit over a 
publicly declared type. 

We used two approaches to translate mission-computing 
data to a recordable type.  For data in the mission-
computing application layer, conversion routines were 
introduced into the concrete mission computing strategy to 
convert the domain data representation to its recordable 
counterpart.  This minimizes perturbations to the existing 
code base, thereby reducing the potential for introducing 
errors into existing mission computing code 

For the High-Speed Interface (HSI), use of conversion 
routines could have introduced unacceptable processing 
overhead due to the high data rates involved.   Fortunately, 
these data types were already free of entangling 
dependencies internally, but still were problematic because 
of the closure of their declaring packages.  For these types, 
the mission computing type declarations were relocated to a 
strategy package as a recordable type.  The original 
declarations were then replaced with subtypes (for numeric 
types and strings) or derived types (for enumeration types) 
of what was now a recordable type.   Because no additional 
constraints are imposed, the subtype functions as 
essentially a renaming of the recordable type.  Existing 
references to what are now subtypes require nothing more 
than recompilation.   

Due to the unique syntax of enumeration types, it turned 
out to be least invasive to the existing code base to 
redeclare them as derived types rather than subtypes.   
Changes were limited, typically requiring nothing more 
than adding a few explicit type conversions.  Had we used 
subtypes instead, every existing literal value would have 
had to be changed to name the new strategy package. 



118  Pat tern-Based Refactor ing Shr inks Maintenance Costs 

Volume 30, Number 2, June 2009 Ada User Journal 

3.2   Static Publishers 
Since data extraction was to become a stand-alone 
program, a registry of extraction callbacks was no longer 
needed.  Instead, a set of statically invoked “publishers” 
replaced the callback registry, as illustrated in Figure 3. 

Here, a package hierarchy was used to aggregate 
functionality common to all publishers, then to general 
groups of publishers, and finally to the individual concrete 
publishers.  As with the recordable types, the package 
hierarchy for publishers is used to aggregate functionality, 
not type extension. Each concrete publisher “withs in” 
recordable extraction methods as needed.  In the interest of 
clarity, Figure 3 shows this relationship only for the 
mission analysis publishers. 

Compared to the previous callback registry, this approach 
is considered to be a more reliable solution, due to the 
determinism and compile-time checking of static method 
invocation. 

4   Conclusions 
By combining the techniques of design patterns and 
refactoring, our team of two developers was able to 
complete a challenging job within an aggressive schedule.  
Understanding the existing code base and settling on an 
implementation consumed approximately 50% of the entire 
effort, with the remainder devoted to code and test.   The 
introduction of the recordable types made it possible to not 
disturb the existing code base.  In fact, all of the existing 
recording and data extraction code was left intact.   
Because of its tight coupling and loose cohesion, the effort 
to remove the existing code and re-qualify the system 
would have consumed the available budget. In the process 
of refactoring, we achieved substantial reuse of existing bit-
level extraction code while enhancing overall code 
maintainability with a design that can easily be extended to 
new publishers in the future. 

The benefits of pattern-based refactoring can be realized in 
any modern, object-oriented language.  Each possesses 
unique properties for encapsulation, name space, 
inheritance, and threading.  Our experience helps confirm 
the value of design patterns, not as cookie-cutter solutions, 
but as guides to reasoning about the problem at hand and 
evaluating potential solutions relative to the 
implementation language. 

The pattern-based design was technically successful and 
was also successful from the perspective of program 
management.  Due to the modular nature of the strategies 
and publishers, project scheduling and tracking was 
straightforward.  The consistent “cookie cutter” form of the 
strategies made it possible to bring in other developers to 
implement individual recordable types as their schedules 
permitted, allowing greater utilization of the entire staff.  

The improved structure gained by applying pattern-based 
refactoring allows existing capabilities to be modified, and 
new ones added with the knowledge that the effort will be 
localized.  Beyond enabling us to meet the cost, schedule 
and quality goals of the current effort, the time spent 
improving the code structure has laid the groundwork for 
future business.    

References 
[1] Design Patterns: Elements of Reusable Object-

Oriented Software, Gamma, Helms, Johnson, 
Vlissides, 1995 

[2] Refactoring. Improving the Design of Existing Code.  
Martin Fowler, 1999 

[3] Refactoring To Patterns. Joshua Kerievsky, 2004  

[4] Ada 95 Reference Manual ISO/IEC 8652:1995(E).  S. 
Tucker Taft and Robert Duff, 1995 



 119  

Ada User Journal Volume 30, Number 2, June 2009 

 

Building Cross Language Applications with Ada 
Quentin Ochem  
AdaCore, 46 rue d’Amsterdam 75009 Paris FRANCE; Tel: +33 (0)1 49 70 66 42; email: ochem@adacore.com 
 

Abstract 
This tutorial concerns multi language programming, 
and in particular multi-language programming with 
Ada. We’ll discuss interfacing solutions with native 
languages such as C, C++ and languages running on 
virtual machines such as Java or Python. We’ll also 
consider middleware such as Corba or web services.  
Keywords: C, C++, Java, binding, python, CORBA, 
wsdl, Ada. 

1   Introduction 
Building complex applications often requires putting 
together pieces of software or requirements that have never 
before been made to work together. Thinking of a project 
with a high integrity kernel written in Ada, using a set of 
low level libraries and drivers written in C or C++, with a 
graphical interface done in Java and unit tests driven by 
Python is not thinking of science-fiction anymore. It’s 
actual concrete and day-to-day work. Unfortunately, having 
all of these technologies talking to one another is not 
straightforward and often requires a deep knowledge of 
both sides of the interface along with extensive manual 
work.  

In this tutorial, we'll first study how to directly interface 
Ada with native languages, such as C or C++. We'll then 
look in depth at communications with languages running on 
virtual machines, such as Java, Python and the .NET 
framework. Finally, we'll see how Ada can be interfaced 
with an arbitrary language using a middleware solution, 
such as SOAP or CORBA. We’ll see how communication 
can be done manually by using low level features and APIs, 
and how a substantial part of this process can be automated 
using high level binding generators.  

2   Interfacing criteria 
There are three main issues to consider when dealing with 
language interfacing: safety, efficiency and simplicity.  

Safety is usually achieved by carrying out as many checks 
as possible at compile-time. Unfortunately, interfacing 
often requires designating objects and subprograms by 
strings only checked at run-time, which often leads to 
problems which only become apparent at run-time. 

Efficiency depends on the way calls are made and data is 
transmitted. Calls may or may not require indirection; data 
may or may not require copies, and transfer across a 
network. Significant performances loss may appear when 
interfacing through e.g. protocols such as Sockets. 

Simplicity is probably the most important criteria of all for 
programmer. It’s about how easy it is to write the interface 
layer. While it’s always possible to do things manually, 
tool vendors often provide either stub generators, or even 
better, direct binding generators from one language 
specification to the other. 

3   Ada and C 
Interfacing Ada and C is probably the most common 
interfacing scenario. Having said that, it carries a lot of 
potential mistakes and should be done with great care. 
Programmers may need to be aware of low level details on 
the memory layout and calls convention, as Ada objects & 
subprograms are not compatible with C by default. 

Programmers are advised to keep things as simple as 
possible. Advanced C structures such as unions, arrays or 
strings can still be bound but need additional knowledge on 
the compilers behaviour. 

4   C++ and binding generators 
While writing manually C interfacing can be tedious, using 
an automatic binding generator is probably a comfortable 
solution. Recent version of gcc distributed with GNAT 
GPL and GNAT Pro include a new switch automatically 
generating an Ada specification out of a C or C++ header 
file. 

In addition to the C constructions, the binding generator 
also supports C++ classes, and maps them into Ada tagged 
types. Such types can then be derived in Ada, and 
primitives can be overridden, leading to cross-language 
classes and cross language dispatching. 

5   GNATCOLL.Scripts and Python 
GNATCOLL is a collection of components distributed with 
GNAT, and contains amongst other things a standard 
interface to scripting languages. The default backend 
provided works for Python, but any scripting language with 
reflective capability would fit into the framework. A set of 
functionality exporting Ada subprograms to a scripting 
environment, or calling directly scripting code is provided. 
This tool has been extensively used in the development of 
GPS – the GNAT Programming Studio – for providing an 
interface for extensibility and as a mean to drive tests. 

6   Java and GNAT-AJIS 
Java and native languages such as C are most often 
interfaced using the JNI – the Java Native Interface. 
Unfortunately, this layer is extremely tedious to use, and 
provides almost no type safety. 



120  Bui ld ing Cross Language Appl icat ions with Ada 

Volume 30, Number 2, June 2009 Ada User Journal 

In order to workaround these problems, GNAT now comes 
with a binding generator from Ada to Java, giving a 
callable Java interface generated from an Ada specification. 
This generator supports a wide range of Ada features, such 
as subprograms, global variables, access to subprograms, 
exceptions... Ada tagged types are mapped to Java classes, 
which can then be extended in Java. As for the C++ case, 
the resulting classes are cross-language, and can be used in 
a cross-language dispatching call. 

This tool has been extensively used in the GNATbench 
Eclipse Plugin, in order to retrieve code that have been 
previously written in Ada for the GNAT Programming 
Studio. 

7   The JVM and .Net 
Both the JVM and the .Net bytecodes embed a specification 
description. This specification can then be used to generate 
a direct binding. This is the purpose of e.g. the jvm2ada 
tool, taking a Java bytecode .class file, and generating an 
Ada specification for the GNAT for the JVM compiler, or 
the cil2ada tool doing the same for the .Net platform. 

This feature is particularly impressive on the .Net platform. 
There are a huge number of languages targeting .Net, each 
of them generating this intermediate representation in the 
bytecode. This makes it possible to interface practically any 
languages with any other one, provided that one binding 
generator has been provided from the common 
representation to the target language. 

8   CORBA 
While it has been originally designed for distributed 
programming, CORBA has been used in a number of cases 
to solve multi-language programming issues. It provides an 
intermediate specification representation, the IDL, coming 
with stub generator for most languages. 

IDL generators can be used to create a callable interface, or 
stubs for the implementation code. Since this language is 
the common denominator of all, programmes don’t have to 
care about the interface between two or more particular 
languages anymore, but only about the way of interfacing 

to that common representation. However, the 
communication layer is implemented on top of sockets, and 
the performance loss can easily be a show stopper when 
many data exchanges are involved. 

9   Web languages 
Web languages traditionally lie within the boundaries of 
scripting languages, such as Perl, PHP or JavaScript. 
However, the notion of web application is emerging, with a 
whole new set of challenges going much further than 
websites in terms of application architecture and data 
computation. For these applications, using structured and 
constrained language such as Ada is starting to make sense, 
hence the question regarding the interfacing with the 
existing code. 

Server-side applications can be interfaced with regular 
techniques which have been explained so far. However, a 
common way of creating multiple language – or peer – 
applications is to rely on web services. These services 
somehow act in the same way to CORBA, and comes with 
a specification language conceptually close to the IDL : 
WSDL.  

Client side computation currently lacks solutions – 
JavaScript seems to be the only portable technology 
available natively on all browsers. Google decided to bet on 
that fact, and provided a Java to JavaScript compiler as part 
of its GWT toolset. An Ada to JavaScript compiler could 
be envisioned in a similar manner. The question of directly 
interfacing JavaScript code with Ada raises a whole new 
set of interesting questions, JavaScript begin extremely 
relaxed in terms of typing. 

Conclusion 
Multi-language programming certainly carries doubt and 
raises a huge number of questions, which are becoming 
more and more unavoidable these days. Fortunately, tool 
vendors have invested a lot of time and effort into making 
these things easier, and can now provide users with advise, 
support and tools, now making this reasonable to do in an 
industrial and challenging context. 



 121 

Ada User Journal  Volume 30, Number 2, June 2009 

Execution Time: Analysis, Verification and 
Optimization for Reliable Systems 
Robert I. Davis and Ian Broster 
Rapita Systems Ltd, York Science Park, Heslington, York, YO10 5DG, UK; Tel: +44 1904 567747; 
email: rob.davis@rapitasystems.com, ianb@rapitasystems.com 
 

Abstract 
Verifying and optimizing real-time software to meet 
timing requirements can be a costly and time 
consuming task. To achieve reliable timing behaviour, 
it is necessary to focus attention on the worst case. In 
this paper, we discuss how detailed execution time 
measurements can be used to provide an accurate 
worst-case execution time estimate for embedded 
real-time software, and also to identify those 
subprograms that contribute most to the worst-case 
execution time. We describe a strategy for targeted 
optimization of these worst-case hotspots that 
provides a cost effective way of ensuring that time 
constraints are met, as well as creating headroom for 
additional functionality, without the need for costly 
hardware upgrades. 
Keywords: execution time, worst-case execution time, 
WCET, timing analysis, optimization. 

1   Introduction 
Software execution time can be identified as a fundamental 
cause of correct or incorrect timing behaviour in embedded 
real-time systems. Depending on the nature of the system 
and its requirements, there may be a more or less stringent 
need to show that the system will always meet its timing 
requirements. For example, the developers of safety critical 
systems, such as flight control systems, must be able to 
show to a very high degree of confidence that the software 
will always execute within its time constraints. In other 
systems, incorrect timing behaviour can have a major 
impact on the performance and reliability of the system and 
the customer’s perception of product quality. 

The fundamental reason why it is difficult to obtain reliable 
software timing behaviour is that the source code does not 
provide information about execution time. Contrast this 
with subprogramal behaviour, where, to a large extent, the 
programmer is able to reason precisely about the software 
behaviour by reviewing the source code. The execution 
time of source code, on the other hand, depends not only on 
the code, but also on the compiler, the target hardware, and 
interactions with other parts of the system. 

To obtain confidence in the timing behaviour of a real-time 
system, engineers typically measure the end-to-end 
execution time of major software components such as 
partitions and tasks during system tests. These 

measurements reveal how often, if at all, execution time 
budgets are exceeded.  

Recording a series of end-to-end execution time 
measurements allows engineers to see the distribution of 
execution times for each major software component and 
also the high-water mark: the longest execution time that 
was actually observed. This is often used as an indicator of 
the worst-case execution time, and gives some degree of 
confidence in the timing behaviour of the system. 

In this paper, we examine the process of software execution 
time analysis, verification, and optimization to achieve 
within-budget execution times. In Section 2, we discuss the 
limitations of high-water mark measurements and outline 
why it is important to obtain more detailed timing 
information. In Section 3, we present a proven, effective 
and efficient strategy aimed at resolving the problem of 
execution time budget overruns. In Section 4 we outline the 
results of a study where this strategy was applied. 

2   Why detailed timing information is 
important 
There is a fundamental issue inherent in the simple end-to-
end measurements used to obtain high-water mark 
execution times. The high-water marks may not reflect the 
longest time that the code could take to execute. This 
typically happens when the longest path through the code 
has not been exercised by the tests.  

While code coverage tools can be used to make simple 
checks that the available tests cover all of the code, for 
example statement, condition and decision coverage, it is 
possible, and in fact is often the case, that the longest path 
through the code has not been executed by the tests. This is 
due to different sections of code taking their longest 
execution times at different times, and for different values 
of input data. 

For non-trivial code, it is very hard to devise tests that are 
certain to drive the code down its longest path. This is 
because the number of distinct paths increases 
exponentially with the number of decision points in the 
code. Further, when there are loops in the code, it is not in 
general possible to tell from end-to-end measurements, 
whether the loops have executed for their maximum 
possible number of iterations. 

End-to-end execution time measurements are useful in 
obtaining basic confidence in system timing behaviour; 
however, they are not a reliable indicator that execution 



122  Execut ion Time: Analysis,  Ver i f icat ion and Opt imizat ion for  Rel iable Systems 

Volume 30, Number 2, June 2009 Ada User Journal 

time budgets will always be met once the system is 
deployed. Over-reliance on these end-to-end measurements 
can result in operational problems with deployed systems 
that can eventually and painstakingly be traced back to 
budget overruns. All too often, these are the hardest and 
most expensive problems to solve due to the intermittent 
nature of the faults. 

Further, as software is developed, and more features are 
added, for example during software upgrades, the high-
water mark execution times may show that the software 
takes too long to execute; however, these measurements 
provide no information about which parts of the code 
contribute most to the overall execution time, and so they 
offer no indication as to what code to optimize. This is a 
significant problem, as optimizing code that is not on the 
worst-case path is worse than a waste of time; it does not 
address the timing issues, and wholesale attempts to re-
write large volumes of code to be more efficient are 
extremely costly and may introduce bugs into the software. 

An effective way of obtaining much more detailed timing 
information is to add lightweight instrumentation points at 
each decision point in the code. Whenever it is executed, 
each instrumentation point outputs its identifier, which can 
be time stamped and recorded by a suitable data capture 
device [1]; thus running a series of tests on the 
instrumented system results in the creation of a timing 
trace. By combining timing measurements from the trace 
data with structural information obtained from analysis of 
the code, it is possible to determine a wealth of information 
about the timing behaviour of the software, including: 

o The worst-case execution time of the software, even if 
the worst-case path has not actually been executed 
during testing. 

o How many times each subprogram and sub-path was 
executed during testing. If some sub-paths have not 
been covered, then there are gaps in testing which 
should be addressed. 

o The maximum number of iterations for each loop. 
These can be compared with predictions to see if the 
expected maximum number of iteration is seen, or 
even exceeded in practice. 

o Which lines of code are on the worst-case path, and 
equally important, which ones aren’t and so do not rate 
as candidates for optimization. 

o How much each subprogram and each sub-path 
contributes to the worst-case execution time. 
Identifying the sections of code with high contributions 
to the worst-case execution time, so called worst-case 
hotspots, is an excellent way of finding the best 
candidates for optimization when the overall execution 
time needs to be reduced. 

o How the end-to-end execution times of each 
subprogram vary over the different tests, and hence 
show the correlation between particular test cases and 
long execution times. 

For commercial scale applications, it would be possible 
although extremely laborious to instrument programs by 
hand; however, the volume of trace data typically produced 
would make manual attempts to combine trace data with 
program structural information infeasible. Fortunately, the 
tasks of program instrumentation, trace processing, 
combining trace data with program structural information, 
data mining, and presentation are all amenable to 
automation. Automated execution time and performance 
measurement tools, such as the RapiTime toolset [2] from 
Rapita Systems Ltd. provide an integrated solution to these 
problems. 

The availability of detailed timing information has the 
following benefits: 

o It enables engineers to take a systematic and scientific 
approach to obtaining confidence in the timing 
behaviour of the system. As opposed to spending a 
great deal of time and effort trying to track down 
intermittent timing bugs revealed post deployment. 

o Detailed information about the contribution of 
subprograms and blocks of code to the worst-case 
execution time, enables worst-case hotspots to be 
identified that form potential candidates for 
optimization.  

o ”What-if?” analysis quantifies the maximum 
performance gains obtainable by optimizing selected 
software components. Together, with hotspot analysis, 
this ensures that optimization effort is only applied 
where it will have the maximum benefit in terms of 
reducing the overall execution time, and ensuring 
correct timing behaviour of the system. 

3   Optimization strategy 
When detailed execution time measurements are taken 
during extensive testing, they can highlight problems where 
certain software components overrun or have the potential 
to overrun their budgets. Such problems can occur during 
initial system development, or as a result of adding new 
functionality as part of a mid-life upgrade. When faced 
with the problem of a software component that overruns its 
execution time budget, it is essential that a systematic and 
scientific approach is taken to resolving the problem. The 
following sections describe a proven, effective and efficient 
strategy for dealing with the problem of execution time 
budget overruns: 

3.1   Execution time budget re-allocation 
The simplest and most cost effective solution to execution 
time budget overruns is to increase the execution time 
budget, at the expense of some other software component 
that has been shown not to require its entire execution time 
budget. For this re-allocation to be effective, it is of course 
important to have accurate timing information about all of 
the software components in the system, otherwise the 
timing issue is simply shifted from one component to 
another. 



R. I .  Davis, I .  Broster 123  

Ada User Journal Volume 30, Number 2, June 2009 

If budget re-allocation alone cannot be used to solve the 
problem, then the next course of action is normally 
software optimization. We note that in a system with many 
components, for example multiple partitions and tasks, not 
all of the execution time reduction required need come 
from the overrunning component. A mixture of budget re-
allocation and optimization could be more effective, as 
assessing a number of software components provides more 
scope for finding subprograms which contribute 
significantly to the worst-case execution time, and yet can 
be simply and easily optimized. 

3.2   Selecting candidates for optimization 
It is important to be clear about the goal of optimization. To 
achieve reliable timing behaviour, the worst-case execution 
time of a software component must be within the specified 
execution time budget; hence we are interested in 
optimizing the worst-case execution time, not the average-
case execution time. Optimizing for the worst case is 
different from optimizing for the average case. It requires a 
focus on code on the worst-case path, which is often not the 
same as the code that executes most frequently. 

Many well known optimizations, while excellent for 
improving average-case performance actually make the 
worst-case execution time worse. For example, early exits 
from loops can reduce the average number of iterations of a 
loop, reducing the average-case execution time. By 
contrast, when the worst case is considered, adding a 
conditional test for an early exit from a loop does not 
change the maximum number of iterations that the loop can 
take; however, it does add additional code that is executed 
on every iteration of the loop increasing the worst-case 
execution time. 

Optimization is a compromise between several different 
factors, in particular: execution time, code and memory 
space, readability, maintainability and effort. For example, 
some optimizations may lead to code structures that are 
very hard to maintain but result in a significant reduction in 
execution time. The key to an effective optimization 
strategy is to prioritize those optimizations where the 
minimum effort, and the minimum amount of compromise 
in other factors, is required to gain the maximum benefit in 
terms of execution time reduction. In this respect, access to 
detailed timing information is necessary to manage the 
optimization process effectively. 

Firstly, it is important to identify, those subprograms or 
sections of code that contribute the most to the overall 
worst-case execution time. These worst-case hotspots 
represent potential candidates for optimization. 

Worst-case hotspot analysis of complex applications shows 
a common trend, typical we see that: 

o Most subprograms are not actually on the worst-case 
path, and so contribute nothing to the worst-case 
execution time. Optimization of these subprograms 
would not reduce the worst-case execution time at all. 

o Many subprograms contribute a small amount to the 
worst-case execution time and so do not represent 

good candidates for optimization. Expending effort 
reducing the execution time of a subprogram that 
contributes less than 1% to the total is unlikely to be 
worthwhile. 

o A small number of subprograms contribute a large 
fraction of the overall worst-case execution time and 
are therefore potential candidates for optimization. 

Using worst-case hotspot analysis, engineers can easily 
identify the relatively small number of subprograms where 
optimization could potentially have a large impact on the 
overall worst-case execution time. However, before 
reviewing the source code of the top 10 to 20 candidates for 
optimization, it is important to ask the following questions: 

“What if the execution time of this subprogram were 
reduced by 50%, 80% or even 100%, what would the effect 
on the overall worst-case execution time be?” 

Asking this question is important, because even though a 
subprogram may be a worst-case hotspot, its optimization 
may not necessarily lead to a significant reduction in the 
overall worst-case execution time if by optimizing that 
code, the worst-case path switches to another path. For 
example, consider the code fragment below: 

If some_condition  then  
   A; -- in worst-case path. Takes 10 ms 
else 
   B; -- not in worst-case path. Takes 5ms    
end if; 

In this example, reducing the execution time of subprogram 
A by more than 5 ms, switches the worst-case path to 
subprogram B, therefore both subprograms A and B need to 
be optimized together to reduce the worst-case execution 
time further. 

Detailed evidence indicating where optimization will have 
the maximum benefit, and the extent to which optimization 
can be expected to reduce the worst-case execution time, 
enables effective management of the optimization process. 
Typically, a small number of candidate subprograms are 
selected for optimization. The source code for these 
subprograms is then reviewed and prototype optimizations 
implemented. 

After completing the prototype optimizations it is necessary 
to determine what was actually gained. This can be 
achieved by repeating the timing measurement and analysis 
process to quantify the reduction in the overall worst-case 
execution time. Once this second set of results has been 
obtained, then a decision can be made as to which 
optimizations to keep. If the gain is not significant 
compared to the compromise in other factors, such as 
maintainability, then a prototype optimization may be 
discarded. 

Finally, if the results show that the optimizations have 
resulted in the execution time budget being met, then the 
prototyped optimizations can be included in the main code 
base. If the execution time budget is still exceeded, then 
further candidates for optimization can be examined, or 



124  Execut ion Time: Analysis,  Ver i f icat ion and Opt imizat ion for  Rel iable Systems 

Volume 30, Number 2, June 2009 Ada User Journal 

budget re-allocation and optimization of another sub-
system considered. 

To summarise, a proven strategy for resolving execution 
time budget overruns is as follows: 

1. Obtain detailed timing information via measurement of 
on-target execution times, and analysis of the code 
structure. 

2. Re-allocate execution time budgets where possible. 
3. Select candidates for optimization based on their 

contribution to the overall worst-case execution time. 
4. Quantifying the maximum potential gains by 

determining what the impact on the overall worst-case 
execution time would be if the execution time of each 
candidate were substantially reduced. 

5. Prototype optimizations for the best candidates, i.e. 
those with the largest potential gains. 

6. Quantify the worst-case execution time reductions 
achieved via timing measurements on the target. 

7. Adopt the most effective optimizations into the 
development code. 

4   Hawk Mission Computer: Operational 
Flight Program 
This section describes how the above strategy was applied 
in a study performed by engineers from Rapita Systems 
Ltd. and BAE Systems, aimed at reducing the worst-case 
execution time of software components in the Operational 
Flight Program of the BAE Systems’ Hawk Mission 
Computer1. For a full description of this study see [3]. 

The Operational Flight Program is written in Ada and 
consists of hundreds of thousands of lines of code divided 
into 25 partitions, themselves divided into tasks, executed 
in a cyclic schedule. This system was running close to 
capacity, in terms of available execution time. In order to 
provide capacity for new functionality, a study was 
conducted to identify optimization opportunities that would 
reduce the worst-case execution time of the system by at 
least 10%; thus avoiding the need for an expensive 
hardware upgrade. 

Previous efforts at understanding the timing behaviour of 
the system had been based on determining the execution 
time of each partition via high-water marks measured on 
the target microprocessor. A typical situation was that 
painstaking optimization of a subprogram would result in 
unit tests showing a significant reduction in execution time 
while making little or no impact on the overall high-water 
mark. In contrast, simpler optimizations could sometimes 
have a significant impact, reducing the high-water mark 
readings. This occurred when, in the first case, the code 
was not actually on the worst-case path, and in the second 
case, when the subprogram was both on the worst-case path 
and called a large number of times on that path. 
                                                           
1 Hawk is a fast jet trainer, famously flown by the Red Arrows display 
team. 

In all, 5 out of 25 software partitions were analysed in the 
study, amounting to over 100,000 lines of Ada code. Three 
of the partitions, A, B and C were comprehensively 
analysed, with improvements and targets for optimization 
selected on the basis of the information provided using the 
RapiTime toolset. Optimizations were prototyped for these 
partitions and the performance analysis re-run to quantify 
the improvements obtained.  

The detailed timing information provided by RapiTime 
showed that 1.2% of the code contributed more than 29% 
of the overall worst-case execution time. These blocks of 
code were obvious targets for optimization. A detailed 
study of some 1250 lines of code identified specific targets 
for optimization and hence opportunities for execution time 
reduction. The best candidates were prototyped and 
implemented and the new system analysed to verify the 
effectiveness of the changes. The optimized partitions had 
an execution time that was over 23% smaller than before, 
creating headroom for additional functionality without the 
need for costly hardware upgrades. 

 
Figure 1: Reduction in worst-case execution time achieved 

using RapiTime 

5   Summary and conclusions 
This paper discussed how a focus on worst-case execution 
times is important in achieving reliable system timing 
behaviour. The limitations of high-water mark 
measurements were discussed, and the need for more 
detailed timing information explained. The key 
contribution of this paper is the description of a strategy for 
managing and resolving the problem of execution time 
budget overruns via a focus on worst-case execution times. 
This strategy was proven to be both efficient and effective 
in a study of an Avionics system implemented in Ada (the 
Operational Flight Program of the BAE Systems’ Hawk 
Mission Computer). 

References 
[1] “RTBx1200 Series Trace Data Loggers” Rapita Systems 

Ltd. Data sheet available from www.rapitasystems.com. 

[2] “RapiTime White Paper” 12th June 2008, available from 
www.rapitasystems.com. 

[3] G. Bernat, R.I. Davis, N. Merriam, J. Tuffen, A. Gardner, M. 
Bennett, D. Armstrong. “Identifying Opportunities for 
Worst-case Execution Time Reduction in an Avionics 
System”. Ada User Journal pp. 189-194, Volume 28, 
Number 3, Sept. 2007 



 125 

Ada User Journal  Volume 30, Number 2, June 2009 

Software Fault Tolerance 
Patrick Rogers 
AdaCore, 207 Charleston St., Friendswood, Texas, USA 77546; email: rogers@adacore.com 

 

Abstract 
The following is a summary of the tutorial by that 
name provided at the Conference on Reliable 
Software Technologies, Ada Europe 2009. Brest, 
France.  8-12 June 2009. 
Keywords: software, fault tolerance, error recovery, 
Ada. 

1   Introduction 
Today’s extremely demanding applications are made 
possible by the flexibility and power of digital computer 
technology.  For example, advanced fighter aircraft are 
made inherently unstable to produce extreme 
manoeuvrability.  Only the speed and flexibility of 
computer technology make it possible to control such 
aircraft in flight; a human pilot can not do so.   

Unfortunately, errors in large complex systems appear 
unavoidable with current technology, even given stringent 
development and testing procedures.  Complexity is such 
that full testing is not feasible and complete proofs of 
correctness are at best inherently limited by the potential 
for specification faults.  

Tolerating software imperfections is very difficult, and 
successful approaches used to tolerate hardware faults do 
not necessarily apply.  Typical fault tolerant systems design 
techniques can not cope with the complexity and scale of 
current and future applications.  Their inadequacy stems 
from their assumptions: correct algorithm design, 
knowledge of all possible failure modes, complete 
knowledge of internal interactions of the components, and 
complete knowledge of external interactions with the 
environment.  In particular, although the components 
individually may be well understood, at the point of 
component and subsystem interaction overall complexity 
comes into play, precluding anticipation of all possible 
faults.  The problem is, therefore, one of handling 
unanticipated faults. 

1.1   Faults, Errors, and Failures 
The concepts of fault, error, and failure are directly linked 
in a causal relationship: faults lead to errors, which 
ultimately lead to failures.  A fault is a physical defect or 
flaw within a hardware or software component.  This is 
essentially the definition found in a typical dictionary.  An 
error is the manifestation of a fault: a deviation from 
accuracy or correctness in state.  A failure is an externally 
observable event representing a deviation from the 
authoritative service specification. 

1.2   Causes of Faults 
Specification mistakes are considered the cause of the 
majority of safety mishaps.  Specification mistakes include 
architectural flaws as well as hardware and software design 
specification errors 

Implementation mistakes are the intuitive cause of faults.  
These mistakes include poor design and construction, poor 
component selection, and poor software coding. 

1.3   Characteristics of Faults 
 ‘Transient’ faults are temporary.  They are caused by 
circumstances or events that cannot be recreated in a 
controllable way, such as gamma rays that flip a bit in 
memory, or highly unusual combinations of events.  

 ‘Intermittent’ faults enter the system, stay active for a 
while and then disappear, only to return again.  

‘Permanent’ faults are completely repeatable and (as the 
name indicates) always cause an associated failure (using 
the standard causal definition).  

1.4   Failure Hypothesis 
The chosen system failure model is a critical design 
decision because it drives the use of redundancy for 
tolerating faults. This assumption of a failure model is 
called the ‘failure hypothesis’.  For a given failure 
hypothesis, the number of redundant components required 
can be calculated.  The choice of failure hypothesis is one 
of the central decisions about the form of fault tolerance to 
be used.  Architectural decisions are made on the basis of 
the number and kinds of faults to be tolerated.  In all cases, 
fault tolerance mechanisms are built to handle the number 
of faults required, and no more: if more faults are 
experienced than expected, they will not be handled.  As 
will be seen, some architectures directly detect when the 
number of tolerable faults is exceeded; others require 
additional facilities. 

2   Dealing With Faults 
There are two ways to deal with faults: fault prevention and 
fault tolerance.  Fault intolerance aims to prevent the 
existence of faults.  Fault tolerance is intended to handle 
faults when they occur in an executing system. 

2.1   Fault Prevention 
There are two means of fault prevention: avoiding their 
introduction during production, and removing them before 
deployment.  In both cases faults are dealt with prior to 
execution.  ‘Fault avoidance’ is a design activity that 
attempts to prevent faults from being introduced into the 
deployed system.  ‘Design’ is intended to include all 



126  Software Fault  Tolerance 

Volume 30, Number 2, June 2009 Ada User Journal 

production phases of the life cycle, including requirements 
definitions, design methods, design reviews, programming 
techniques, testing, and other quality control measures. 

‘Fault removal’ is a design (i.e., implementation) activity 
focused upon testing.  Testing is inherently limited by the 
inability to test under completely realistic conditions, by 
the potential for specification errors, and, of course, by the 
fact that testing can only show the presence of errors, not 
their absence. 

2.2   Fault Tolerance  
In contrast to fault avoidance, fault tolerance schemes 
consider faults inevitable and deal with them after 
deployment.  As a run-time activity, therefore, fault 
tolerance may be defined as the ability of a system to 
continue to perform in the presence of faults. 

If faulty software or hardware components are to be dealt 
with during execution, some additional resource is 
necessary.  Therefore, fault tolerance is based on one of 
several forms of redundancy.  

3   Software Redundancy Mechanisms 
There are two general approaches to achieving fault 
tolerance: a ‘static’ architecture and a ‘dynamic’ 
architecture.   In a static architecture, a given function is 
executed by several computing resources, and a correct 
result is selected from one of the outputs produced.  The 
term ‘static’ is applied to this approach because the result 
of the adjudication of the outputs does not affect the 
architecture; subsequent provision of a result is achieved 
using the same computing resources (in the archetypal 
usage).   

In a dynamic fault tolerance architecture, a given function 
is executed by a single computing resource.  If a result 
cannot be produced, alternate resources are used to 
compute the result.  The term ‘dynamic’ is applied because 
failure to produce a result directly affects the architecture: 
redundant resources detect faults and alter the architecture 
accordingly, such that subsequent invocation does not use 
the same (faulty) computing resources.  

3.1   Error Recovery 
Error (fault) recovery is the central component of dynamic 
fault tolerance strategies: it must transform a faulty system 
into one with a valid, perhaps degraded, state.  Two 
approaches to fault recovery have been  identified: 
backward error recovery and forward error recovery. 

Backward error recovery mechanisms attempt to simulate 
the reversal of time to a point at which the system state was 
error-free.  They do so by saving state when it is assumed 
to be valid, and then restoring that state as necessary.  The 
act of saving state is called ‘taking a checkpoint'. 

Forward error recovery mechanisms attempt to make 
selective changes to an erroneous state, to move to a new, 
error-free state.  Most modern programming languages 
provide direct support for forward error recovery via 
exceptions.  As a form of forward error recovery, 

exceptions are not applicable to design faults, since such 
faults are unanticipated.  

3.2   Software Mechanisms for Tolerating Software 
Design Faults 
Continuity of service in the presence of software faults 
requires at least one additional component capable of 
meeting the functional specification.  Simple replication, 
however, as applied for hardware fault tolerance, would 
simply replicate the faulty software.   

To avoid the occurrence of the same fault, and on the 
assumption that software design faults are indeed 
permanent, this additional component must be implemented 
differently from the one that failed (although it will be 
designed to the same specification).  Software diversity is, 
therefore, the underlying principle of the systematic 
mechanisms described in the following sections.  Two 
approaches to diversity have been identified: ‘design’ 
diversity, and ‘data’ diversity.  By far, design diversity is 
the most widely explored and used.  In that approach, 
completely separate, distinct designs and implementations 
are used, with the expectation that the differences will 
result in different faults being exhibited (if any). 

3.2.1   N-Version Programming 
N-Version Programming (NVP) is the software instance of 
the N-Modular Redundancy (NMR) approach used to 
handle hardware faults.  In the NVP approach, N separate, 
complete variants are developed, and each is executed in 
parallel whenever the component is invoked.  The N results 
are compared at cross-check points to detect faults, usually 
using a majority-based voting adjudicator.  Faulty variants 
are detected by their differences from the other variants’ 
outputs, and are masked out by the adjudicator.  As in 
NMR, the value of N is chosen so that the required number 
of faults may be tolerated.  The value of N is selected such 
that the number of faults to be tolerated is less than the 
majority represented by N.   

3.2.2   Recovery Blocks 
Recovery blocks are the classic example of  dynamic 
redundancy, in that reconfiguration by selection of an 
alternate variant does not occur until a fault is detected.   

In the recovery block mechanism, complete stand-alone 
programs are not implemented.  Rather, for a given unit of 
functionality, a primary variant is implemented as a 
module, instead of a complete program; design diversity is 
incorporated via alternate modules.  The primary module is 
the only one executed under normal conditions.  Only when 
an error is detected by application of an acceptance test do 
alternative variants execute, and even then only one 
executes at a time.  Alternatives are successively called, 
and the acceptance test successively applied against the 
results, until either a satisfactory result is obtained or no 
remaining alternate variants are available (in which case the 
failure is propagated). Hypothetical syntax for expressing 
recovery blocks is shown below: 

 



P. Rogers 127  

Ada User Journal Volume 30, Number 2, June 2009 

   
ensure acceptance_test by primary_variant 
  else by variant_2 
  else by variant_3 
  … 
  else by variant_N 
  else error 
 
Central to the concept is that the current, valid state is 
saved prior to execution of the primary module.  This saved 
state is successively restored prior to the execution of each 
of the alternative modules whenever the acceptance test 
fails.  Therefore, recovery blocks use backward error 
recovery. 

3.2.3   Error Recovery in Concurrent Applications 
The facilities examined for use within a process are not 
applicable by themselves in co-operative concurrent 
programming environments.  They are limited because 
errors in co-operating processes can propagate amongst the 
group, since, by definition, such processes communicate.  
Error recovery in one process must, therefore, involve all 
that have communicated with that process because their 
individual states are mutually dependent.  Recovery blocks 
et cetera do not manage recovery activities beyond that of a 
single thread of control. 

Atomic Actions 
Atomic Actions are a means of fault propagation control 
and assessment.  They achieve containment by the 
enforcement of semantics requiring their effects to be both 
indivisible and instantaneous when viewed by processes 
not involved in the action.  Specifically, no data flow 
between application processes during an atomic action 
unless they are participants in that action and partial 
execution of an action cannot be observed by non-
participating processes.  The Ada extended rendezvous is 
an atomic action involving only two processes (not 

considering nesting).  More generally, atomic actions can 
be built to handle as many processes as necessary. 

Conversations 
Conversations are a structural combination of atomic 
actions with backward error recovery (in the form of 
recovery blocks) for co-operating processes.  Conversations 
ensure a consistent recovery line because each process 
takes a checkpoint upon entrance to the conversation.  
Whenever one of the processes involved suffers a fault (i.e., 
does not pass the local acceptance test) all processes roll-
back to the common checkpoint, ensuring consistency of 
the processes’ recovery.  Furthermore, conversations form 
a synchronisation boundary to ensure consistency, in that 
all processes leave the conversation together with a 
common view of the activities within. 

4   Sample Concrete Implementations 
Backward error recovery can be supported via reusable 
components because it is independent of the application.  In 
this part of the tutorial we examined reusable Ada 2005 
implementations of backward error recovery in the form of 
state management, recovery blocks, and conversations. 

5   Concluding Remarks 
After reviewing the goals of the tutorial and the tutorial 
concluded with a discussion of whether design diversity is 
still considered a viable technique, with a number of 
references provided for both sides of the debate. 

6   Suggested Reading 
M. Lyu, Ed. Software Fault Tolerance, in Trends In 
Software, vol. 3, Chichester: John Wiley & Sons, 1995. 

L. Pullum, Software Fault Tolerance Techniques & 
Implementation: Artech House, Inc., 2001. 

A. Burns and A. J. Wellings, Real-Time Systems and 
Programming Languages, 3rd. ed: Addison-Wesley, 2001. 



 129  

Ada User Journal  Volume 30, Number 2, June 2009 

Ada Gems 
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and 
related files, can be found at http://www.adacore.com/category/developers-center/gems/. 

 

Gem #39: Efficient Stream I/O for 
Array Types 
Pat Rogers, AdaCore 
Date: 9 June 2008 
 
Abstract: Reading and writing values from/to streams is easy 
with Ada’s “stream attributes” but for some array types the 
default attribute implementations could be made more 
efficient. In this Gem we show how the user can define these 
more efficient implementations.   
 
Let’s get started… 
Ada has the notion of “streams” that are much like those of 
other languages: sequences of elements comprising values of 
arbitrary, possibly different, types. Placing a value into a 
stream is easy using the language-defined “stream attributes”. 
The programmer simply calls the type-specific attribute 
routine and specifies the stream and the value. For example, to 
place an Integer value V into a stream S, one could write the 
following: 

Integer’Write (S, V); 

Strictly speaking, S is not a stream but, rather, an access value 
designating a stream. The Integer’Write routine will convert 
the value of V into an array of “stream elements” – essentially 
an array of storage elements – and then put them into the 
stream designated by S. Actually, placing the bytes into the 
stream is accomplished by dynamically dispatching to a 
procedure specific to the stream representation. 
Although this discussion is couched in terms of placing values 
into streams, you should understand that reading values from 
streams is very similar to writing them and that the same 
efficiency issue and solution apply. 
For composite types, such as array or record types, each 
component value is individually written to the stream using the 
approach described above. Consider an array type “A” 
specifying Integer as the component type. The default version 
of A’Write will call Integer’Write for each component. Thus, 
each Integer value is converted to the array of storage elements 
and written to the stream. This component-driven behavior is 
necessary because programmers can define their own versions 
of the stream attributes, and naturally will expect them to be 
called even when the types in question are used as component 
types within enclosing array or record types. 
But suppose the array type is structurally just a sequence of 
contiguous bytes, and the component type does not have a 
user-defined stream attribute defined. In that case, calling the 
component-specific attribute for each array component is 
unnecessary and inefficient. 
For example, suppose you are working with Military-Standard 
1553B for communicating application values between remote 
devices. Ultimately, Mil-Std-1553B sends and receives 32-

word buffers, where each word is an unsigned 16-bit value. 
Suppose as well that you want to write and read these buffers 
to and from streams. We can override the stream attributes so 
that a whole buffer value is written directly to the stream 
instead of writing it one buffer component at a time.  
The buffer type could be declared as follows: 

   type Buffer is array (1..32) of Interfaces.Unsigned_16; 

We can then override the stream attributes for type Buffer. 
First we declare the routines: 

   procedure Read_Buffer 
      (Stream : not null access 
             Ada.Streams.Root_Stream_Type’Class; 
       Item   : out Buffer); 
 
   procedure Write_Buffer 
      (Stream : not null access  
             Ada.Streams.Root_Stream_Type’Class; 
       Item   : in Buffer); 

All such stream attributes have the same formal parameter 
types, i.e., an access parameter designating the class-wide root 
stream type defined by the language, and the type to be written 
to, or read from, that stream. 
We then “tie” the routines to the stream attributes for type 
Buffer, thereby overriding the default versions: 

   for Buffer’Read use Read_Buffer; 
   for Buffer’Write use Write_Buffer; 

The language-defined root stream type and array element type 
are declared in package Ada.Streams: 

package Ada.Streams is 
 
   type Root_Stream_Type is abstract  
        tagged limited private; 
 
   type Stream_Element is mod 2 ** Standard’Storage_Unit; 
   type Stream_Element_Offset is range 
     -(2 ** (Standard’Address_Size - 1)) .. 
     +(2 ** (Standard’Address_Size - 1)) - 1; 
   … 
   type Stream_Element_Array is 
      array (Stream_Element_Offset range <>) of  
           aliased Stream_Element; 
 
   procedure Read 
     (Stream : in out Root_Stream_Type; 
      Item   : out Stream_Element_Array; 
      Last   : out Stream_Element_Offset) 
   is abstract; 
 
   procedure Write 
     (Stream : in out Root_Stream_Type; 



130  Ada Gems 

Volume 30, Number 2, June 2009 Ada User Journal 

      Item   : Stream_Element_Array) 
   is abstract; 
   … 
end Ada.Streams; 

The user-defined Read_Buffer and Write_Buffer routines will 
call these stream-oriented Read and Write procedures (via 
dynamic dispatching) once for the entire Buffer array value, 
instead of calling them once per array component. Both 
routines are very similar, so we will omit the body of of 
Read_Buffer for the sake of brevity and show just the 
implementation of Write_Buffer: 

   procedure Write_Buffer 
      (Stream : not null access  
                    Ada.Streams.Root_Stream_Type’Class; 
       Item   : in Buffer) 
   is 
      Item_Size : constant Stream_Element_Offset := 
                     Buffer’Object_Size / Stream_Element’Size; 
 
      type SEA_Pointer is 
         access all Stream_Element_Array (1 .. Item_Size); 
 
      function As_SEA_Pointer is 
         new Ada.Unchecked_Conversion ( 
                    System.Address, SEA_Pointer); 
   begin 
      Ada.Streams.Write ( 
                    Stream.all,  
                     As_SEA_Pointer (Item’Address).all); 
   end Write_Buffer; 

In the above, we cannot simply convert the value of Item, of 
array type Buffer, to a value of type Stream_Element_Array, 
so we work with pointers instead. We define an access type 
designating a Stream_Element_Array that is the exact size, in 
terms of Stream_Elements, of the incoming Buffer value. 
Note the use of the Buffer’Object_Size attribute in that 
computation. That attribute gives us the size of objects of the 
type Buffer, a wise approach since in general the size of a type 
may not equal the size of objects of that type. We can then use 
unchecked conversion to convert the address of the formal 
parameter Item to this access type. Dereferencing that 
converted access value (via .all) gives us a value of type 
Stream_Element_Array that we can pass to the call to 
Ada.Streams.Write. 
Thus we avoid processing each component of type Buffer, 
instead writing the entire Buffer value at once. That’s a much 
more efficient approach. As we said earlier, reading values 
from streams is analogous to writing values to them and only 
differs in obvious, minor ways. That is true for using the 
default stream attributes as well as in the implementation of 
Read_Buffer. 

Gem #50: Overload Resolution 
Bob Duff, AdaCore 
Date: 27 October 2008 
 
Abstract: This Gem discusses some language-design issues 
related to overload resolution.  
 

Let’s get started… 
Ada allows overloading of subprograms, which means that 
two or more subprogram declarations with the same name can 
be visible at the same place. Here, “name” can refer to 
operator symbols, like “+”. Ada also allows overloading of 
various other notations, such as literals and aggregates. 
In most languages that support overloading, overload 
resolution is done “bottom up” — that is, information flows 
from inner constructs to outer constructs. (As usual, computer 
folks draw their trees upside-down, with the root at the top.) 
For example, if we have two procedures Print: 

    procedure Print (S : Sequence); 
    procedure Print (S : Set); 
    X : Sequence; 
    … 
    Print (X); 

the type of X determines which Print is meant in the call. 
Ada is unusual in that it supports top-down overload resolution 
as well: 

    function Empty return Sequence; 
    procedure Print_Sequence (S : Sequence); 
    function Empty return Set; 
    procedure Print_Set (S : Set); 
    … 
    Print_Sequence (Empty); 

The type of the formal parameter S of Print_Sequence 
determines which Empty is meant in the call. In C++, for 
example, the equivalent of the “Print (X)” example would 
resolve, but the “Print_Sequence (Empty)” would be illegal, 
because C++ does not use top-down information. 
If we overload things too heavily, we can cause ambiguities: 

    function Empty return Sequence; 
    procedure Print (S : Sequence); 
    function Empty return Set; 
    procedure Print (S : Set); 
    … 
    Print (Empty); -- Illegal! 

The call is ambiguous, and therefore illegal, because there are 
two possible meanings. One way to resolve the ambiguity is to 
use a qualified expression to say which type we mean: 

    Print (Sequence’(Empty)); 

Note that we’re now using both bottom-up and top-down 
overload resolution: Sequence’ determines which Empty is 
meant (top down) and which Print is meant (bottom up). You 
can qualify an expression, even if it is not ambiguous 
according to Ada rules — you might want to clarify the type 
because it might be ambiguous for human readers. 
Of course, you could instead resolve the “Print (Empty)” 
example by modifying the source code so the names are 
unique, as in the earlier examples. That might well be the best 
solution, assuming you can modify the relevant sources. Too 
much overloading can be confusing. How much is “too much” 
is in part a matter of taste. 
Ada really needs to have top-down overload resolution, in 
order to resolve literals. In some languages, you can tell the 
type of a literal by looking at it, for example appending “L” 
(letter el) means “the type of this literal is long int”. That sort 



Ada Gems 131  

Ada User Journal Volume 30, Number 2, June 2009 

of kludge won’t work in Ada, because we have an open-ended 
set of integer types: 

    type Apple_Count is range 0..100; 
    procedure Peel (Count : Apple_Count); 
    … 
    Peel (20); 

You can’t tell by looking at the literal 20 what its type is. The 
type of formal parameter Count tells us that 20 is an 
Apple_Count, as opposed to some other type, such as 
Standard.Long_Integer. [Technically, the type of 20 is 
universal_integer, which is implicitly converted to 
Apple_Count -- it's really the result type of that implicit 
conversion that is at issue. But that's an obscure point -- you 
won't go _too_ far wrong if you think of the integer literal 
notation as being overloaded on all integer types.] 
Programmers sometimes wonder why the compiler can’t 
resolve something that seems obvious. For example: 

    type Apple_Count is range 0..100; 
    procedure Slice (Count : Apple_Count); 
    type Orange_Count is range 0..10_000; 
    procedure Slice (Count : Orange_Count); 
    … 
    Slice (Count => 10_000); -- Illegal! 

This call is ambiguous, and therefore illegal. But why? Clearly 
the programmer must have meant the Orange_Count one, 
because 10_000 is out of range for Apple_Count. And all the 
relevant expressions happen to be static. 
Well, a good rule of thumb in language design (for languages 
with overloading) is that the overload resolution rules should 
not be “too smart”. We want this example to be illegal to avoid 
confusion on the part of programmers reading the code. As 
usual, a qualified expression fixes it: 

    Slice (Count => Orange_Count’(10_000)); 

Another example, similar to the literal, is the aggregate. Ada 
uses a simple rule: the type of an aggregate is determined top 
down (i.e., from the context in which the aggregate appears). 

Bottom-up information is not used; that is, the compiler does 
not look inside the aggregate in order to determine its type. 

    type Complex is 
        record 
            Re, Im : Float; 
        end record; 
    procedure Grind (X : Complex); 
    procedure Grind (X : String); 
    … 
    Grind (X => (Re => 1.0, Im => 1.0)); -- Illegal! 

There are two Grind procedures visible, so the type of the 
aggregate could be Complex or String, so it is ambiguous and 
therefore illegal. The compiler is not required to notice that 
there is only one type with components Re and Im, of some 
real type — in fact, the compiler is not _allowed_ to notice 
that, for overloading purposes.  
We can qualify as usual: 

    Grind (X => Complex’(Re => 1.0, Im => 1.0)); 

Only after resolving that the type of the aggregate is Complex 
can the compiler look inside and make sure Re and Im make 
sense. 
This not-too-smart rule for aggregates helps prevent confusion 
on the part of programmers reading the code. It also simplifies 
the compiler, and makes the overload resolution algorithm 
reasonably efficient. 
How smart is “too smart” is in part a matter of taste. In fact, I 
would make the Ada rules a little bit less smart, if I were 
redesigning it from scratch. If we replaced the Grind on String 
procedure with: 

    procedure Grind (X : Integer); 

then the above call would resolve, because the compiler 
_does_ use the fact that the aggregate must be some sort of 
aggregate-ish type, like a record or array. I would prefer the 
call to still be ambiguous in that case, but by and large, Ada 
gets the rules just about right, so something that is confusingly 
ambiguous to humans is usually ambiguous by the Ada rules. 

 



132 

Volume 30, Number 2, June 2009 Ada User Journal 

National Ada Organizations 
 

Ada-Belgium 
attn. Dirk Craeynest 
c/o K.U. Leuven 
Dept. of Computer Science 
Celestijnenlaan 200-A 
B-3001 Leuven (Heverlee) 
Belgium 
Email: Dirk.Craeynest@cs.kuleuven.be 
URL: www.cs.kuleuven.be/~dirk/ada-belgium 
 

Ada in Denmark 
attn. Jørgen Bundgaard 
Email:   Info@Ada-DK.org 
URL: Ada-DK.org 
 

Ada-Deutschland 
Dr. Peter Dencker 
Steinäckerstr. 25  
D-76275 Ettlingen-Spessartt 
Germany 
Email: dencker@web.de 
URL: ada-deutschland.de 
 

Ada-France 
Association Ada-France 
c/o Jérôme Hugues 
Département Informatique et Réseau 
École Nationale Supérieure des Télécomunications 
46, rue Barrault 
75634 Paris Cedex 135 
France 
Email: bureau@ada-france.org 
URL: www.ada-france.org 
 

Ada-Spain 
attn. José Javier Gutiérrez 
Ada-Spain  
P.O.Box 50.403  
28080-Madrid 
Spain  
Phone: +34-942-201-394 
Fax: +34-942-201-402 
Email: gutierjj@unican.es 
URL: www.adaspain.org 
 

Ada in Sweden 
attn. Rei Stråhle 
Saab Systems 
S:t Olofsgatan 9A 
SE-753 21 Uppsala 
Sweden 
Phone: +46 73 437 7124 
Fax:    +46 85 808 7260 
Email: Rei.Strahle@saabgroup.com 
URL:   www.ada-sweden.org 
 

Ada Switzerland 
attn. Ahlan Marriott 
White Elephant GmbH 
Postfach 327 
8450 Andelfingen 
Switzerland 
Phone:   +41 52 624 2939 
e-mail: ada@white-elephant.ch 
URL: www.ada-switzerland.ch 
 

 


	Contents
	Editorial
	Thirty years of the Ada User Journal
	News
	Conference Calendar
	Forthcoming Events
	Ada Conference UK 2009
	Pattern-Based Refactoring Shrinks Maintenance Costs
	Building Cross Language Applications with Ada
	Execution Time: Analysis, Verification and Optimization for Reliable Systems
	Software Fault Tolerance
	Ada Gems



