
  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

ADA 
USER 
JOURNAL 

Volume 31 
Number 1 

March 2010 
 

Contents 
Page 

Editorial Policy for Ada User Journal 2 

Editorial 3 

Quarterly News Digest 5 

Conference Calendar 29 

Forthcoming Events 36 

Special Issue: Ada User Journal 30th Anniversary  

 B. Tooby  
“Opinion: The Word 'Coding' Considered Harmful” 41 

 E. Schonberg 
“Origins and history of GNAT” 42 

 J. Barnes 
“We don't know nothing” 45 

 B. Dobbing 
“The Ravenscar Tasking Profile for High Integrity Real-Time Programs” 47 

 J. Barnes 
“The SPARK way to Correctness is Via Abstraction” 55 

 S. T. Taft 
“Object-Oriented Programming Enhancements in Ada 200Y” 65 

 P. Leroy 
“Memories of a Language Designer” 74 

Ada-Europe Associate Members (National Ada Organizations) 76 

Ada-Europe 2009 Sponsors  Inside Back Cover 
 



2  

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

Editorial Policy for Ada User Journal 
Publication 
Ada User Journal — The Journal for 
the international Ada Community — is 
published by Ada-Europe. It appears 
four times a year, on the last days of 
March, June, September and 
December. Copy date is the last day of 
the month of publication. 

Aims 
Ada User Journal aims to inform 
readers of developments in the Ada 
programming language and its use, 
general Ada-related software 
engineering issues and Ada-related 
activities in Europe and other parts of 
the world. The language of the journal 
is English. 

Although the title of the Journal refers 
to the Ada language, any related topics 
are welcome. In particular papers in 
any of the areas related to reliable 
software technologies. 

The Journal publishes the following 
types of material: 

• Refereed original articles on 
technical matters concerning Ada 
and related topics. 

• News and miscellany of interest to 
the Ada community. 

• Reprints of articles published 
elsewhere that deserve a wider 
audience. 

• Commentaries on matters relating 
to Ada and software engineering. 

• Announcements and reports of 
conferences and workshops. 

• Reviews of publications in the 
field of software engineering. 

• Announcements regarding 
standards concerning Ada. 

Further details on our approach to 
these are given below. 

Original Papers 
Manuscripts should be submitted in 
accordance with the submission 
guidelines (below). 

All original technical contributions are 
submitted to refereeing by at least two 
people. Names of referees will be kept 
confidential, but their comments will 
be relayed to the authors at the 
discretion of the Editor. 

The first named author will receive a 
complimentary copy of the issue of the 
Journal in which their paper appears. 

By submitting a manuscript, authors 
grant Ada-Europe an unlimited license 
to publish (and, if appropriate, 
republish) it, if and when the article is 
accepted for publication. We do not 
require that authors assign copyright to 
the Journal. 
Unless the authors state explicitly 
otherwise, submission of an article is 
taken to imply that it represents 
original, unpublished work, not under 
consideration for publication else-
where. 

News and Product Announcements 
Ada User Journal is one of the ways in 
which people find out what is going on 
in the Ada community. Since not all of 
our readers have access to resources 
such as the World Wide Web and 
Usenet, or have enough time to search 
through the information that can be 
found in those resources, we reprint or 
report on items that may be of interest 
to them. 

Reprinted Articles 
While original material is our first 
priority, we are willing to reprint (with 
the permission of the copyright holder) 
material previously submitted 
elsewhere if it is appropriate to give it 
a wider audience. This includes papers 
published in North America that are 
not easily available in Europe. 
We have a reciprocal approach in 
granting permission for other 
publications to reprint papers originally 
published in Ada User Journal. 

Commentaries 
We publish commentaries on Ada and 
software engineering topics. These 
may represent the views either of 
individuals or of organisations. Such 
articles can be of any length – 
inclusion is at the discretion of the 
Editor. 
Opinions expressed within the Ada 
User Journal do not necessarily 
represent the views of the Editor, Ada-
Europe or its directors. 

Announcements and Reports 
We are happy to publicise and report 
on events that may be of interest to our 
readers. 

Reviews 
Inclusion of any review in the Journal 
is at the discretion of the Editor. 
A reviewer will be selected by the 
Editor to review any book or other 
publication sent to us. We are also 
prepared to print reviews submitted 
from elsewhere at the discretion of the 
Editor. 

Submission Guidelines 
All material for publication should be 
sent to the Editor, preferably in 
electronic format. The Editor will only 
accept typed manuscripts by prior 
arrangement.  
Prospective authors are encouraged to 
contact the Editor by email to 
determine the best format for 
submission. Contact details can be 
found near the front of each edition. 
Example papers conforming to 
formatting requirements as well as 
some word processor templates are 
available from the editor. There is no 
limitation on the length of papers, 
though a paper longer than 10,000 
words would be regarded as 
exceptional. 
 
 



 3  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

Editorial 
Welcome to the special issue commemorating the 30th 
Anniversary of the Ada User Journal.  

In this past year we celebrated this anniversary with some 
initiatives: a special paper about the history of the Journal was 
published in the first issue of Volume 30, one year ago; and a 
poster-based history presentation was offered at both the Ada-
Europe 2009 and the SIGAda 2009 conferences.  

We are now dedicating the March 2010 issue, the official 30th 
anniversary issue, to re-print selected papers from the Journal’s 
30-year history. The intent of this initiative is to offer our 
readership a sample of the papers that may be considered to have 
had the most impact and relevance at the time of publication, in 
the several incarnations of the Ada User Journal (Ada UK News, 
Ada-Europe News, Ada User and Ada User Journal).  

In order to evaluate and select the papers to re-print, a small 
group of former editors and distinguished readers of the Journal 
was set up. These “Guest Editors of the 30th Anniversary 
Issue” are Albert Llemosi, Andy Wellings, Dan Simpson, Dirk 
Craeynest, Ian Pyle, Jean-Pierre Rosen, John Barnes, Juan 
António de la Puente, Michael González Harbour and Tullio 
Vardanega. We are grateful to them for their invaluable 
collaboration in the preparation of this issue.  

Resulting from this process, limited only by the Journal’s size 
limits, we re-print seven papers, spanning almost three decades, 
ranging from small points of view to large technical papers. Some 
of them had to be re-set from the available (paper only) copies 
and others regenerated from the sources. They may look 
different, but have the same ageless contents (unless errors were 
introduced in the editing process for which I apologize). 

The first paper (in chronological order), “Opinion: The Word 
'Coding' Considered Harmful” by Brian Tooby, was originally 
printed in Ada User, Vol. 7 N. 3, in September 1986, and 
provides an interesting view of the role that was then expected to 
be played by the Ada specification and the Ada body in 
supporting the modular, computer-aided, design of programs.  

In the second paper, Edmond Schonberg presents the “Origins 
and history of GNAT”, originally printed in the Ada-Europe 
News, Issue 20, in March 1995. This is the first paper of an issue 
entirely dedicated to the GNAT compiler, undoubtedly one of the 
tools which helped keep Ada alive and well. This particular paper 
provides information on how GNAT came to be, and of its 
connection to the development of Ada 95.  

The following paper, by John Barnes, is “We don't know 
nothing”, and it was originally printed in Ada User, Vol. 17 N. 4, 
in December 1996. The paper provides a humorous, but to the 
point and valid, description of the different language design 
perspectives of Ada and C/C++. 

The paper “The Ravenscar Tasking Profile for High Integrity 
Real-Time Programs”, by Brian Dobbing, was printed in the Ada 

User Journal, Vol. 19 N. 4, in January 1999. It provides an 
advance description of the Ravenscar profile, which provided 
Ada with a subset for building concurrent high-integrity 
applications, an important effort resulting from the International 
Real-Time Ada Workshop (IRTAW) series. 

The paper, “The SPARK way to Correctness is Via Abstraction”, 
also by John Barnes, appeared in the Ada User Journal, Vol. 22 
N. 4, in December 2001. This paper provides an overview of 
SPARK, one of the most significant technologies developed 
around Ada for safety critical systems.  

The following paper, “Object-Oriented Programming 
Enhancements in Ada 200Y”, by Tucker Taft, appeared in the 
Ada User Journal, Vol. 24, N. 2, in June 2003. It presents a 
detailed description of the most important object-oriented 
features being developed in the 2005 revision of the language. 

Last, but definitely not least, the issue re-prints a paper by Pascal 
Leroy, “Memories of a Language Designer”, published in the 
Ada User Journal, Vol. 27 N. 3, in September 2006. In this paper, 
the author, at that time the Chairperson of the Ada Rapporteur 
Group, offers his behind-the-scene reflections on the 2005 
revision process.  

I would like to congratulate the authors of these papers, also 
thanking them for their contributions to the Journal.  

Continuing with the contents of this issue, I wish to underline the 
name change of the former News section to better reflect the 
nature of its contents, which I know that you will continue to find 
useful. The issue also provides a calendar of relevant events, 
where I note the several Ada-related and focused events of 2010, 
two of which (Ada-Europe and SIGAda) are presented in more 
detail in the Forthcoming Events section. The Ada Gems and Ada 
User Guide sections are not included due to space restrictions. 
However they will come back in the next issues of the Journal. 

I also refer the readers to the latest additions to the Online 
Archive of the Ada User Journal, which now provides the full 
contents of issues since March 2001. Its contents are slowly being 
extended when electronic sources of older issues become 
available. If you have in your possession some of these files, or 
you know of their whereabouts, please contact us. Also, Ada-
Europe is missing a copy of the proceedings of the 1st 
International Conference on Reliable Software Technologies – 
Ada-Europe 1996, which took place in Montreux, Switzerland. If 
you have a spare copy, then please consider donating it to Ada-
Europe. 

As a final personal note, I would like to add that it was very 
movitating to organize this celebration year. I hope that you find 
the results as rewarding as I did, and that you will continue 
supporting the Journal, both by reading and disseminating it, and 
by continuing to provide its worthwhile contents. 
 

  Luís Miguel Pinho  
 Porto, March 2010 
 Email: lmp@isep.ipp.pt  



4 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

 
An Invitation to Join Ada-Europe 

 

What is Ada-Europe? 

Ada-Europe is an international organization, set up to promote 
the use of Ada. It aims to spread the use and the knowledge of 
Ada and to promote its introduction into academic and research 
establishments. Above all, Ada-Europe intends to represent 
European interests in Ada and Ada-related matters.  

In its current form, Ada-Europe was established in 1988. As there 
is no European legal framework to govern such organizations, it 
was established according to Belgian Law. Currently, the member 
organizations are: Ada-Belgium, Ada-Denmark, Ada-
Deutschland, Ada-France, Ada-Spain, Ada in Sweden and Ada in 
Switzerland. Individual members of these organizations can 
become indirect members of Ada-Europe. Direct membership is 
available to individuals in countries without national member 
organization.  

What does Ada-Europe do? 

The best-known of Ada-Europe's activities is its annual 
conference. These conferences usually attract 100 to 150 
participants. They involve three days of lectures and 
presentations, and provide the perfect opportunity to discuss new 
information and exchange experiences with fellow Ada users. As 
well as the usual conference features, you have the opportunity to 
attend an additional two days of tutorials dealing with specialist 
Ada matters. The conference also hosts an exhibition, where Ada-
related products are presented.  

Ada-Europe offers a framework for setting up working groups 
and task groups to discuss and investigate technical aspects of 
using Ada on a European basis. It provides grants for Ada-related 
conferences and activities.  

The members of Ada-Europe also receive the quarterly Ada User 
Journal, produced by Ada-Europe. This journal contains Ada-
related papers, experience reports, details of past, present and 
future Ada events and activities, and reviews of new publications 
and products. The journal is usually distributed via the national 
member organizations, but can also be mailed directly at 
additional postage costs.  

A reduced registration fee at the annual Ada-Europe conference 
is an additional benefit to direct and indirect members registered 
with Ada-Europe by their national organizations. On a semi-
regular basis, Ada-Europe "surprises" its individual members 
with useful material: in 2006 for example, the then recently 
published Ada 2005 Reference Manual was such a surprise 
benefit of Ada-Europe membership. 

 

 

 

 

 

 

 

 

How to become a member of Ada-Europe? 

Individuals 

If you want to become a member of Ada-Europe, please join your 
national Ada organisation and become an indirect member of 
Ada-Europe. In some countries, indirect membership in Ada-
Europe is automatically part of your national membership; in 
other countries, it is an optional element of your national 
membership.  

As benefits you will receive:  

• a free copy of the quarterly Ada User Journal, distributed 
via the national Ada organisations  

• a reduced registration fee at the annual Ada-Europe 
conference (exceeding the cost of your indirect 
membership)  

• in some years, a "surprise" distribution (in 2008 it was the 
"Ada 2005 Rationale" published by Springer)  

Your benefits run from April to March of the following year.  

If your country does not have a national Ada organisation, you 
can contact the Secretary of Ada-Europe to become a direct 
member of Ada-Europe. Your benefits are the same as for 
indirect members, except that the Journal is shipped directly to 
you.  

Institutions 

National Ada organisations are the primary promoters of 
corporate memberships. In case a national Ada organisation 
exists in your country, it can offer its corporate members to 
designate individuals as indirect members of Ada-Europe at the 
Ada-Europe individual indirect membership fee (plus any fees 
that your national organization charges).  

In case no national organisation exists in your country, corporate 
membership may be established directly with Ada-Europe.  

Further information 

For further information please refer to Ada-Europe’s website at 
http://www.ada-europe.org, or contact the General Secretary of 
Ada-Europe. 
 

National organizations contacts are available on the last page. 



 5 

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

Quarterly News Digest 
Marco Panunzio 
University of Padua. Email: panunzio@math.unipd.it 
 

Contents 
 
Ada-related Organizations 5 
Ada-related Events 5 
Ada Semantic Interface  

Specification (ASIS) 6 
Ada and Education 6 
Ada-related Resources 8 
Ada-related Tools 8 
Ada-related Products 13 
Ada and GNU/Linux 15 
Ada and Microsoft  16 
References to Publications 17 
Ada Inside 17 
Ada in Context 19 

Ada-related 
Organizations 
New ARA sponsorship levels 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Wed, 16 Dec 2009 18:34:55 -0600 
Subject: New ARA sponsorship levels 
Newsgroups: comp.lang.ada 
The Ada Resource Association has 
announced new sponsorship levels, 
including an inexpensive "contributor" 
sponsorship. The new levels allow any 
organization of any size to help support 
the evolution and marketing of Ada. 
Sponsors get increased visibility on the 
Ada IC website along with other benefits. 
More information on the new sponsorship 
levels and their benefits can be found at: 
http://www.adaic.com/ara/sponsor.html 
Show your support for Ada: sponsor the 
ARA today! 
Randy Brukardt 
Disclaimer: The vast majority of my 
funding for Ada standardization activities 
comes from the ARA. So I'm more than a 
little interested in the organization having 
additional sponsors. 

Ada-related Events 
[To give an idea about the many Ada-
related events organized by local groups, 
some information is included here. If you 
are organizing such an event feel free to 
inform us as soon as possible. If you 
attended one please consider writing a 
small report for the Ada User Journal.  
—mp] 

Ada-Europe — Call for 
Industrial Presentations 
From: Dirk Craeynest 

<dirk@asgard.cs.kuleuven.be> 
Date: Sun, 3 Jan 2010 19:30:51 +0100 CET 
Subject: FINAL CfIP, Conf. Reliable 

Software Technologies, Ada-Europe 
2010 

Newsgroups: comp.lang.ada, 
fr.comp.lang.ada,comp.lang.misc 

--------------------------------------------------- 
 

FINAL Call for Industrial Presentations 
 

15th International Conference on 
Reliable Software Technologies - Ada-

Europe 2010 
 

14 - 18 June 2010, Valencia, Spain 
 

http://www.ada-
europe.org/conference2010.html 

 
*** DEADLINE Monday 11 JANUARY 

2010 *** 
 
--------------------------------------------------- 
The 15th International Conference on 
Reliable Software Technologies - Ada-
Europe 2010 will take place in Valencia, 
Spain. Following its traditional style, the 
conference will span a full week, 
including a three-day technical program 
and vendor exhibition from Tuesday to 
Thursday, along with parallel tutorials and 
workshops on Monday and Friday. 
In addition to the usual Call for Papers, 
the conference also seeks industrial 
presentations which may deliver value 
and insight, but do not fit the selection 
process for regular papers. 
Authors of industrial presentations are 
invited to submit a short overview (at 
least 1 page in size) of the proposed 
presentation to the Conference Chair 
Jorge Real (jorge@disca.upv.es) by 11 
January 2010. The Industrial Program 
Committee will review the proposals and 
make the selection. 
The authors of selected presentations shall 
prepare a final short abstract and submit it 
to the Conference Chair by 10 May 2010, 
aiming at a 20-minute talk.  The authors 
of accepted presentations will be invited 

to submit corresponding articles for 
publication in the Ada User Journal, 
which will host the proceedings of the 
Industrial Program of the Conference. 
In addition to the award for best regular 
paper, Ada-Europe will also offer an 
honorary award for the best presentation, 
considering both regular and industrial 
presentations. 
Schedule 
11 January 2010: Submission of industrial 
presentation proposals 
01 February 2010: Notification of 
acceptance to all authors 
10 May 2010: Industrial presentations 
required 
14-18 June 2010: Conference 
Industrial Committee 
Guillem Bernat, Rapita Systems, UK 
Roderick Chapman, Praxis High Integrity 
Systems, UK 
Dirk Craeynest, Aubay Belgium & 
K.U.Leuven, Belgium 
Pierre Dissaux, Ellidiss Technologies, 
France 
Franco Gasperoni, AdaCore, France 
Hubert Keller, Forschungszentrum 
Karlsruhe GmbH, Germany 
Ismael Lafoz, EADS CASA, Spain 
Ahlan Marriott, White-Elephant GmbH, 
Switzerland 
Erhard Plödereder, Universität Stuttgart, 
Germany 
José Simó, Universidad Politécnica de 
Valencia, Spain 
Alok Srivastava, Northrop Grumman, 
USA 
Rei Stråhle, Saab Systems, Sweden 
--------------------------------------------------- 
Please circulate widely. 

ACM SIGAda 2010 — Call 
for Technical Contributions 
From: Michael Feldman 

<mfeldman@seas.gwu.edu> 
Date: Wed, 03 Feb 2010 16:18:51 -0600 
Subject: Call for Technical Contributions -- 

ACM SIGAda 2010 
Newsgroups: comp.lang.ada 
--------------------------------------------------- 
Call for Technical Contributions -- ACM 
SIGAda 2010 



6  Ada and Educat ion 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

--------------------------------------------------- 
ACM Annual International Conference on 
Ada and Related Technologies: 
Engineering Safe, Secure, and Reliable 
Software 
Hyatt Fair Lakes Hotel 
Fairfax, Virginia (USA) (near 
Washington, DC) 
October 24-28, 2010 
Submission Deadline: June 25, 2010 
Sponsored by ACM SIGAda 
ACM's Special Interest Group on the Ada 
Programming Language in cooperation 
with SIGBED, SIGCAS, SIGCSE, 
SIGPLAN, Ada-Europe, and the Ada 
Resource Association 
http://www.acm.org/sigada/conf/ 
sigada2010 
[see the Forthcoming Events section in 
this issue —lmp ] 

Ada Semantic Interface 
Specification (ASIS) 
ASISEyes 
From: Yannick Duchêne 

<yannick_duchene@yahoo.fr> 
Date: Tue, 12 Jan 2010 20:33:49 -0800 PST 
Subject: ASISEyes : show you the ASIS 

interpretation of an Ada source 
Newsgroups: comp.lang.ada 
[…] 
Here is ASISEyes, which as its name 
suggest, is a little application which 
integrates well in GPS (possibly others 
IDE also) and whose purpose is to make 
you see, side by side, the ASIS view 
(interpretation) of an Ada source, beside 
the Ada source. 
This is an aid in two main areas: 
1) Learning and understanding ASIS 
(how does ASIS view this and that ?) 
2) Debugging aid when an ASIS 
application seems to fail (what was the 
semantic context returned by ASIS when 
this great ASIS application break at that 
point of that source) ? 
The distribution comes in two archives : 
one ZIP for Windows users and one tar.gz 
for Unix-like users 
http://www.les-ziboux.rasama.org/ 
download/asiseyes-for-gps.zip 
http://www.les-ziboux.rasama.org/ 
download/asiseyes-for-gps.tar.gz 
As it is an ASIS application, it must be 
built for your environment, compiler and 
ASIS implementation. 
There are some limitations and usages 
notes which are documented in the 
README.txt file and the other 
README-gps.txt file. The "gps" 

directory contains files required for the 
integration into GPS.  
Please, read the notes which comes with 
this directory. 
[…] 

Ada and Education 
Seminar on Ada and 
SPARK at K.U.Leuven 
From: <Dirk.Craeynest@cs.kuleuven.be> 
Date: Sat, 6 Feb 2010 18:16:30 +0100 CET 
Subject: Tue Feb 23 Seminar - Ada and 

SPARK for education and research 
Newsgroups: comp.lang.ada, 

fr.comp.lang.ada, comp.lang.misc, 
be.education, be.comp.programming 

 
The Computer Science Department of the 

K.U.Leuven 
and the Ada-Belgium organization 

are pleased to announce the seminar 
 

T e c h n o l o g y   U p d a t e : 
A d a   a n d   S P A R K 

f o r   e d u c a t i o n   a n d   r e s e a r c h 
 

State-of-the-art programming language 
technology with Ada 

Formal specifications made practical with 
SPARK 

organized with support from AdaCore and 
Altran Praxis 

 
on Tuesday, February 23, 2010, 14:00-

18:00 
at the K.U.Leuven, Department of 

Computer Science 
Celestijnenlaan 200A, B-3001 Leuven 

(Heverlee), Belgium 
 
http://distrinet.cs.kuleuven.be/events/ 
AdaEvent/ 
------------ 
Introduction 
------------ 
Ada is a state-of-the-art programming 
language especially suitable for large, 
long-lived applications where safety, 
security, and reliability are critical. Due to 
its approach of detecting errors as soon as 
possible it is also generally usable for all 
types of applications. SPARK is a 
formally-defined programming language 
based on Ada, intended to be secure and 
to support the development of high-
integrity software. 
This event is primarily intended for the 
educational and research community, and 

will present experts from academia and 
industry who believe that using Ada and 
SPARK in education and research is 
fundamental to form the software 
engineers of tomorrow. Why Ada? 
Because they believe that Ada is the right 
choice for a range of courses including 
elementary programming, data structures, 
software engineering and for more 
advanced courses and research in 
compiler construction, real-time systems, 
robotics, cryptography, etc. Ada and 
SPARK embody the best contemporary 
ideas in software technology, and students 
exposed to these languages at an early 
stage of their career become more skilled 
and principled programmers. 
The event will focus on the technical 
advantages of these programming 
languages, the tools and support available 
for academics, as well provide an insight 
into their academic and industrial use 
through real-life case studies. 
-------- 
Schedule 
-------- 
- 13:30-14:00 Arrival 
- 14:00-14:50 "What's New in the World 

of Ada", Robert Dewar, AdaCore, New 
York, USA 

- 14:50-15:20 "Ada in Industry, an 
Experience Report", Philippe 
Waroquiers, EUROCONTROL/CFMU, 
Brussels, Belgium 

- 15:20-15:40 Break 
- 15:40-16:10 "Ada in Research and 

Education, an Experience Report", 
Erhard Plödereder, University Stuttgart, 
Germany 

- 16:10-17:00 "SPARK - The Libre 
Language and Toolset for High-
Assurance Software", Rod Chapman, 
Altran Praxis, Bath, UK 

- 17:00-18:00 Networking drink 
All presentations will be in English. 
------------- 
Presentations 
------------- 
"What's New in the World of Ada" 
Robert Dewar, AdaCore, New York, USA 
This talk will briefly review the history 
and main features of Ada, its usage in 
academic and industrial projects, and will 
then cover new developments in the Ada 
language and Ada language tools. New 
features of Ada 2012 will be discussed as 
well as the current status of their 
implementation in GNAT. The talk will 
also discuss interesting new tools that are 
available for Ada development, including 
CodePeer, the new static analysis system 
being developed jointly by AdaCore and 
SofCheck, and Couverture, a novel 
approach to coverage analysis, suitable 



Ada and Educat ion 7  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

for both certified critical systems, and 
mainstream application development. 
Robert Dewar is co-founder, President 
and CEO of AdaCore and is a Professor 
of Computer Science at the Courant 
Institute of New York University. He has 
been involved with Ada for over 20 years 
and, as co-director of both the Ada-Ed 
projects and the GNAT project, led the 
team that developed the first validated 
Ada compiler at NYU. Robert was one of 
the authors of the requirements document 
for the Ada revision, and served as a 
distinguished reviewer for both Ada 83 
and Ada 95. He has co-authored several 
renowned compilers including the 
SPITBOL (SNOBOL) compiler, the 
Realia COBOL compiler for the PC (now 
marketed by Computer Associates), and 
the Alsys Ada compiler. He has also 
written several real time operating 
systems for Honeywell Inc. Among his 
many publications, Robert is a principal 
author (with Professor Edmond 
Schonberg) of GNAT, the GNU Ada 
Compiler. A talented public speaker, he is 
frequently invited to share his thoughts in 
public on computers and on open-source 
software. 
--- 
"Ada in Industry, an Experience Report" 
Philippe Waroquiers, EUROCONTROL/ 
CFMU, Brussels, Belgium 
The presentation will give details about 
how Ada is used at the CFMU to develop 
ETFMS (Flow Management system) and 
IFPS (Flight Plan processing system). 
IFPS processes all the flight plans for of 
the flights departing from, landing in, or 
crossing Europe. ETFMS balances the 
traffic load with the capacity, ensuring an 
efficient usage of the airspace capacity 
while maintaining safety. 
Philippe Waroquiers works in the 
Engineering division of 
EUROCONTROL/CFMU. The CFMU 
(Central Flow Management Unit) is the 
operational unit of EUROCONTROL, the 
European Organization for the Safety of 
Air Navigation. Philippe is involved in 
the functional specification, architecture 
and development of its mission critical 
systems. 
--- 
"Ada in Research and Education, an 
Experience Report" 
Erhard Plödereder, University Stuttgart, 
Germany 
The University of Stuttgart uses Ada as 
the programming language of choice for 
the introductory courses in Computer 
Science and Software Engineering. The 
talk will expand on the reasons for this 
decision and the discussions about it. It 
will attempt to separate winning 
arguments from the grist of many. It will 
also address issues on the road to teaching 
computer science students a general 

understanding of programming languages, 
in order to enable them to pick up future 
languages easily and without prejudice. 
Finally, a large on-going research project 
using Ada will be briefly described. 
Prof. Dr. Erhard Plödereder is Head of the 
Department of Programming Languages 
and Compilers at the University of 
Stuttgart, Germany. Presently he is also 
serving as Dean of the Faculty of 
Computer Science, Electrical Engineering 
and Information Technology. A former 
chair of IFIP WG2.4 and of several ISO 
Rapporteur Groups, Ada-Europe 
President, and long-term researcher in 
program analysis, he has a keen interest in 
programming languages, their strengths 
and weaknesses, as a teacher, a user, and 
a researcher. 
--- 
"SPARK - The Libre Language and 
Toolset for High-Assurance Software" 
Rod Chapman, Altran Praxis, Bath, UK 
This presentation introduces SPARK - a 
language specifically designed to support 
the development and verification of high-
assurance software. This presentation 
covers the concepts behind SPARK, the 
language design and the capabilities of the 
verification tools. It will also cover the 
uses of SPARK in teaching software 
engineering and will look at current and 
potential research topics for the academic 
community, as well as recent and on-
going industrial projects. 
The presenter will be Dr. Roderick 
Chapman of Altran Praxis. Rod has been 
involved with the design of both safety- 
and security-critical software with Praxis 
for many years, including significant 
contributions to many of Praxis' key-note 
projects such as SHOLIS, MULTOS CA, 
Tokeneer, and the development of the 
SPARK language and verification tools. 
Rod is a well-known conference speaker. 
He has presented papers, tutorials and 
workshops at many international events 
including SSTC, NSA HCSS, and ACM 
SIGAda.  He was the opening key-note 
speaker at Ada Europe 2006.  Rod is a 
Chartered Engineer, a Fellow of the BCS, 
and an SEI-certified PSP Instructor. 
------------- 
Participation 
------------- 
Attendance is free, but registration is 
necessary. 
To register, please provide your name, 
email address and affiliation, either by 
email to 
<adaspark2010@cs.kuleuven.be>, or via 
the web form at 
<http://distrinet.cs.kuleuven.be/ 
events/AdaEvent/registration.php>. 
For directions to the Computer Science 
Department of the K.U.Leuven, see 

<http://distrinet.cs.kuleuven.be/events/ 
AdaEvent/route.html>. 
Please circulate among your contacts in 
education and research who may be in the 
neighborhood at that time, or live or work 
close-by. 
From: Dirk Craeynest 

<Dirk.Craeynest@cs.kuleuven.be> 
Date: Tue, 2 Mar 2010 10:24:00 +0100 

CET 
Subject: [ada-france] Presentations on-line 

- Ada&SPARK for Education&Research 
Mailing list: ada-france.org 
[…] 
All presentations at this half-day Seminar, 
held at the university in Leuven last week, 
are available now on the web sites of 
Ada-Belgium and the Distrinet research 
group: see URLs above. 
For each presentation a PDF version can 
be downloaded; some are also available in 
other formats (ODP or PPTX): 
- "What's New in the World of Ada",  

Robert Dewar, AdaCore, New York, 
USA 

- "Ada in Industry, an Experience 
Report", Philippe Waroquiers, 
EUROCONTROL/CFMU, Brussels, 
Belgium 

- "Ada in Research and Education, an 
Experience Report", Erhard Plödereder, 
University Stuttgart, Germany 

- "SPARK - The Libre Language and 
Toolset for High-Assurance Software",  
Rod Chapman, Altran Praxis, Bath, UK 

The seminar went very well, with a good 
mix of people from academia, research 
and industry, not only from Belgium, but 
also from the U.K., the Netherlands, 
Germany and France.  Many participants 
told us they really appreciated the event; 
some of the feedback we received: 
"… was really interesting being there." 
"… a most interesting Ada meeting at the 
K.U.Leuven." 
"I did find all the presentations very 
interesting as well as the informal 
discussions with the people present." 
Thanks again to all presenters for their 
collaboration, to AdaCore for the many 
Ada books we handed out, to the 
participants for their interest, as well as 
for all the efforts many speakers and 
participants went through to come to 
Leuven at a time when both European 
high speed rail and air travel was 
disrupted. 
Enjoy the on-line presentations! 
[find the presentations at 
http://distrinet.cs.kuleuven.be/events/ 
AdaEvent/abstracts.html —mp]



8  Ada-related Tools 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

Ada-related Resources 
Ada, data structures and 
Big-O notation 
From: Rick Duley <rickduley@gmail.com> 
Date: Wed, 17 Feb 2010 15:20:02 -0800 

PST 
Subject: Ada-based Primer in Big-Oh 

Notation 
Newsgroups: comp.lang.ada 
In preparing a tutorial on binary trees I am 
looking for an introductory article on Big-
Oh Notation. The NIST article at 
http://www.itl.nist.gov/div897/sqg/dads/ 
HTML/bigOnotation.html is, as expected, 
excellent - if you are comfortable with 
mathematics.  
The students at whom this tutorial is 
aimed struggle with mathematics, and 
would be much more comfortable with 
Rob Bell's article at http://rob-bell.net/ 
2009/06/a-beginners-guide-to-big-o-
notation/. 
Unfortunately, the examples in Rob's 
article are not in Ada. Can anyone point 
me to a tutorial at a similar level to Rob's 
in which Ada examples are used? 
From: John McCormick 

<mccormick@cs.uni.edu> 
Date: Thu, 18 Feb 2010 06:57:40 -0800 

PST 
Subject: Re: Ada-based Primer in Big-Oh 

Notation 
Newsgroups: comp.lang.ada 
[…] 
Section 5.4 of my book, Ada Plus Data 
Structures (Dale and McCormick, 2007), 
discusses various ways to compare 
implementations. That discussion includes 
an introduction to Big-O and textural 
descriptions of the common orders of 
magnitude. After this introduction, the 
Big-O of each algorithm developed in the 
book is discussed. As the material is 
spread out throughout the book, 
organizing it into a single tutorial would 
take some effort. 
This is our students' first exposure to Big-
O. They see it again in several other 
classes. It seems to take several spirals 
through the concept adding more details 
each time for Big-O to sink in. 
It would not be difficult to translate Rob's 
examples into Ada. 
[…] 

Ada-related Tools 
Simple Components for Ada 
v3.7 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Sat, 26 Dec 2009 12:58:51 +0100 

Subject: ANN: Simple components for Ada 
v3.7 released 

Newsgroups: comp.lang.ada 
The current version provides 
implementations of smart pointers, sets, 
maps, directed graphs, directed weighted 
graphs, stacks, tables, string editing, 
unbounded arrays, expression analyzers, 
lock-free data structures, synchronization 
primitives (events, race condition free 
pulse events, arrays of events, re-entrant 
mutexes, deadlock-free arrays of 
mutexes), pseudo-random non-repeating 
numbers, symmetric encoding and 
decoding, IEEE 754 representations 
support; strings editing and tables 
management. 
http://www.dmitry-kazakov.de/ada/ 
components.htm 
The focus of this release is an 
implementation of directed graphs (this 
includes trees). The nodes of directed 
graphs are supported of any type 
including limited and indefinite types. 
The directed weighted graphs are 
provided as well. The weights can be of 
any indefinite type. Use of weighted 
graphs is illustrated on the example of the 
suffix tree. 
[see also "Simple Components 3.4, 3.5 
and 3.6" in AUJ 30-3 (Sep 2009), p.142 
—mp] 

On the status of AdaCL and 
synchronization of 
containers in Ada 
From: Michael Rohan 

<michael@zanyblue.com> 
Date: Sun, 21 Feb 2010 14:09:00 -0800 

PST 
Subject: Status of AdaCL: Ada Class 

Library 
Newsgroups: comp.lang.ada 
[…] 
I remembered a previous post on a 
command line handling library, searched 
and found AdaCL. The Orto package 
seems to be something, on the surface, 
that might be really useful but it depends 
on the Charles library which appears to be 
a pre-Ada2005 container library. The date 
associated with the latest release on the 
download page is 2007-12-09. Is this 
project "dead"? 
From: Björn Persson <bjorn@xn--

rombobjrn-67a.se> 
Date: Mon, 22 Feb 2010 02:51 +0100 
Subject: Re: Status of AdaCL: Ada Class 

Library 
Newsgroups: comp.lang.ada 
[…] 
Orto isn't dead, but it's dormant while I'm 
focusing on other projects. I can't speak 
for Charles or for the rest of AdaCL, but 
Orto and EAstrings are "alive" and if you 
find any bugs in them then I want to hear 
about it. 

I had intended to switch from Charles to 
Ada.Containers, but I changed my mind 
when I learned that Ada.Containers can't 
even be read by multiple tasks at once. As 
far as I know the Charles containers can 
be accessed by multiple tasks as long as 
none of them modifies the container. The 
internal data structure in Orto? Which 
makes use of Charles? isn't modified after 
the parsing is done, so if you parse the 
command line before you start any 
additional tasks, you can then freely look 
up parameters in multiple tasks. 
I believe Charles still works, but I could 
probably use some other container library 
if there is a compelling reason to stop 
using Charles. 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Wed, 24 Feb 2010 17:48:18 -0600 
Subject: Re: Status of AdaCL: Ada Class 

Library 
Newsgroups: comp.lang.ada 
[…] 
For the record, we've studied this several 
times and have always concluded that 
hidden synchronization is dangerous. That 
is, synchronization should be explicit. 
Beyond that, it is impossible to come up 
with a reasonable definition of what 
should be locked -- it really depends on 
the use of the containers. 
In the case of the containers, task safety 
of iterators and similar features is 
something that defies a reasonable 
definition. The problem gets worse if you 
include features used together (such as 
using First and Next to create a loop of 
some sort). We'd probably need to make 
the locks visible in order for them to be 
useful. 
It's easy to wrap container operations in a 
protected object, and that is always 
allowed (such operations are not 
potentially blocking). That allows 
tailoring the locking for the actual usage, 
and even hiding the actual container to 
prevent abuse. 
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de> 
Date: Thu, 25 Feb 2010 10:22:16 +0100 
Subject: Re: Status of AdaCL: Ada Class 

Library 
Newsgroups: comp.lang.ada 
 […] 
Indeed, aren't there advantages in hiding 
data stores like Ada.Containers behind 
some facade, whether the use is sequential 
or not: everything else always smells of 
exposed internal data structures, or lack of 
abstraction. 
There need to be good reasons for using 
List, Set, etc. as is, I think. Just like there 
should be good reasons to expose arrays. 
From: Stephen Leake 

<stephen_leake@stephe-leake.org> 
Date: Thu, 25 Feb 2010 07:23:22 -0500 



Ada-related Tools 9  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

Subject: Re: Status of AdaCL: Ada Class 
Library 

Newsgroups: comp.lang.ada 
> For the record, we've studied this 

several times and have always 
concluded that hidden synchronization 
is dangerous. […] 

I agree with this, but I think the OP was 
implying that you needed locking even for 
read-only access of Ada.Containers from 
multiple tasks; is that true? I don't see 
why it should be; each task declares its 
own cursors, which don't interfere with 
each other. 
Of course, there's nothing enforcing the 
read-only, so this is not very safe. 
From: Alex R. Mosteo 

<alejandro@mosteo.com> 
Date: Thu, 25 Feb 2010 15:16:17 +0100 
Subject: Re: Status of AdaCL: Ada Class 

Library 
Newsgroups: comp.lang.ada 
 […] 
I think that the downward closure 
subprograms update some flags inside the 
container. E.g., in GNAT doubly linked 
lists, within the Query_Element: 

procedure Query_Element 
   (Position : Cursor; 
    Process : not null access procedure  
                  (Element : Element_Type)); 

Pretty read-only, it seems, but inside you 
find: 

declare 
   C : List renames 
        Position.Container.all' 
        Unrestricted_Access.all; 
   B : Natural renames C.Busy; 
   L : Natural renames C.Lock; 
 
 begin 
   B := B + 1; 
   L := L + 1; 
(…) 

So, basically, yes, even certain read-only 
uses are not thread-safe (Element would 
be, at least in GNAT implementation). 
Never thought of this before, but even 
wrapping a call to that in a protected 
function would be dangerous, since 
protected functions are concurrent? And 
that's a procedure with only "in" 
arguments, which would be callable from 
such a function. Am I right here? 
From: Simon J. Wright 

<simon.j.wright@mac.com> 
Date: Thu, 25 Feb 2010 12:19:39 -0800 

PST 
Subject: Re: Status of AdaCL: Ada Class 

Library 
Newsgroups: comp.lang.ada 

I believe you are: LRM 9.5.1(1), 
"protected functions provide concurrent 
read-only access to the data". 
My normal mode of operation is to wrap 
the use of the Container (OK, Booch 
Component!) in a package and use a lock 
to ensure single-threaded access, with the 
Container outside any PO. 
From: Martin Krischik 

<krischik@users.sourceforge.net> 
Date: Wed, 24 Feb 2010 20:54:49 +0100 
Subject: Re: Status of AdaCL: Ada Class 

Library 
Newsgroups: comp.lang.ada 
> The date associated with the latest 

release on the download page is 2007-
12-09. Is this project "dead"? 

Not dead as such - just not extended for a 
while. But if you find a bug add it to the 
tracker and I'll have a look. 

GNAT 4.3.4 for 
OpenBSD/amd64 
From: Tero Koskinen 

<tero.koskinen@iki.fi> 
Date: Wed, 27 Jan 2010 23:57:20 +0200 
Subject: GNAT 4.3.4 binaries for 

OpenBSD/amd64 
Newsgroups: comp.lang.ada 
[…] I recently got an amd64(x86_64) 
system and put OpenBSD there. There 
was no native GNAT for 
OpenBSD/amd64, so I had to create one 
by cross-compiling the compiler on i386. 
To spare others from the same operation, I 
made my GCC and GNAT packages 
available at 
http://tkoskine.iki.fi/openbsd/amd64/ 
index.html 
They work on the latest OpenBSD 4.6-
current (or 4.7-beta) and installation 
happens with pkg_add: 
pkg_add http://tkoskine.iki.fi/openbsd/ 
amd64/gcc-4.3.4.tgz 
pkg_add http://tkoskine.iki.fi/openbsd/ 
amd64/gnat-4.3.4.tgz 
I am sure there are some bugs left, but the 
packages can be used for bootstrapping if 
nothing else. 
Makefile rules ("port" in OpenBSD terms) 
to create packages can be found from 
GNUAda repository: 
http://gnuada.svn.sf.net/viewvc/gnuada/ 
trunk/OpenBSD/current/lang/gcc/ 

AVR-Ada 1.1 
From: Rolf Ebert 

<rolf.ebert_nospam_@gmx.net> 
Date: Sat, 27 Feb 2010 08:07:53 -0800 PST 
Subject: [Ann] new AVR-Ada release 
Newsgroups: comp.lang.ada 
We are proud to announce a new release 
of AVR-Ada, one of the first GCC-based 

Ada compilers targeting 8-bit 
microcontrollers. 
See the project documentation at 
http://avr-ada.sourceforge.net/ 
This is a binary release for Windows and 
a source release for other platforms. That 
means you get a working compiler on 
Windows and patches, instructions, and a 
build script for building your own cross 
compiler for other platforms (Linux). The 
run time system, the support packages, 
and the sample programs are included in 
both distributions. If you want to use 
AVR-Ada on Windows you first have to 
install WinAVR-20100110. 
The download is available at the green 
button on page 
http://sourceforge.net/projects/avr-ada 
If you have difficulties in building or 
using the compiler or you want to chat 
about a project, please join and use the 
mailing list at 
http://lists.sourceforge.net/mailman/ 
listinfo/avr-ada-devel. 
Status 
The AVR-Ada project makes available 
the gcc based Ada compiler GNAT for 
the AVR 8-bit microcontrollers (it does 
not work for AVR32). 
More specifically the project provides: 
- a GNAT compiler based on the existing 

AVR and Ada support in GCC 
- a minimalistic Ada runtime system 
- an extensiv and useful AVR specific 

support library 
- support packages for accessing LCDs, 

Dallas' 1-wire sensors, or the Sensirion 
humidity and temperature sensors. 

The current release of AVR-Ada is V1.1. 
It is based on gcc-4.3.3. 
The Ada run time system (RTS) is still 
not even a *run* time system. It is more a 
compile time system :-). Most files in the 
RTS are only needed at compile time. As 
a consequence we don't have support for 
exceptions nor for tasking 
(multithreading). 
There is extensive AVR specific support. 
Type and interface definitions, timing 
routines, eeprom access, UART, and most 
importantly the necessary port and 
interrupt definitions for most AVR parts. 
Some sample programs in the apps/ 
directory show how to use the compiler 
and the library. 
Some applications that had been built 
using AVR-Ada: 
- a data logger for a weather station 
- a closed loop heating control system 
- an astronomical "GoTo" mount for a 

telescope on an AVR90USB128 
- a small robot based on the Asuro 

platform 



10  Ada-related Tools 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

- a limited IP stack with ARP, ICMP and 
UDP (no TCP yet) 

- sample programs for the very popular 
Arduino platform 

You are invited to have fun with AVR-
Ada. For professional and safety critical 
applications ask Adacore. They offer their 
well known support also for a AVR cross 
compiler. 
[see also "AVR-Ada 1.0" in AUJ 30-1 
(Mar 2009), p.7 —mp] 

GCC 4.4.2 for Mac OS X 
From: Martin Krischik 

<krischik@users.sourceforge.net> 
Date: Tue, 08 Dec 2009 18:30:56 +0100 
Subject: Announce: gcc 4.4.2 for Mac OS X 
Newsgroups: comp.lang.ada 
[…] 
I just released GCC 4.4.2 for Mac OS X. 
You find it here: 
http://sourceforge.net/projects/ 
gnuada/files/ 
[…] 
From: Martin Krischik 

<krischik@users.sourceforge.net> 
Date: Wed, 09 Dec 2009 10:27:59 +0100 
Subject: Re: Announce: gcc 4.4.2 for Mac 

OS X 
Newsgroups: comp.lang.ada 
> […] Which version of MacOS X? 
Compiled on Leopard. But from what I 
know the compiler runs on SnowLeopard 
as well - but tests are not finished yet. 
From: Jerry Bauck 

<lanceboyle@qwest.net> 
Date: Mon, 14 Dec 2009 16:36:06 -0800 

PST 
Subject: Re: Announce: gcc 4.4.2 for Mac 

OS X 
Newsgroups: comp.lang.ada 
[…] 
Thanks, Martin. Can you let us know 
when someone gets a positive (or 
negative) result on Snow Leopard? As 
you probably know, the MacAda group is 
having trouble getting a Snow Leopard 
compiler running. 
From: Bill Findlay 

<yaldnif.w@blueyonder.co.uk> 
Date: Tue, 15 Dec 2009 00:48:35 +0000 
Subject: Re: Announce: gcc 4.4.2 for Mac 

OS X 
Newsgroups: comp.lang.ada 
[…] 
Like the other compiler I've tried on Snow 
Leopard, it does not support 64-bit mode, 
throwing up spurious data alignment 
errors; and it generates seriously incorrect 
code for inlined subprograms, even in 32-
bit mode, so that optimized binaries are 
unusable. 
From: Martin Krischik 

<krischik@users.sourceforge.net> 

Date: Tue, 15 Dec 2009 09:21:23 +0100 
Subject: Re: Announce: gcc 4.4.2 for Mac 

OS X 
Newsgroups: comp.lang.ada 
[…] 
Currently the compile fails. Probably 
because it is a 32 -> 64 bit cross compile. 
I wonder it the initial compile need to be 
done by someone with access to GNAT 
Pro/GAP x86_64.darwin10. 
>  As you probably know, the MacAda 

group is having trouble getting a Snow 
Leopard compiler running. 

No I did not. But I guessed it. Anyway, 
my build script is on-line and anybody is 
invited to improve on it: 
http://trac.macports.org/browser/trunk/ 
dports/lang/gnat-gcc/Portfile 

GNAT GPL 2009 for Mac 
OS X (Snow Leopard) 
From: Simon J. Wright 

<simon.j.wright@mac.com> 
Date: Tue, 22 Dec 2009 04:09:09 -0800 

PST 
Subject: GNAT GPL 2009 for Mac OS X 

(Snow Leopard) 
Newsgroups: comp.lang.ada 
I've just released a 32-bit build of GNAT 
GPL 2009 for Snow Leopard; find it at  
http://sourceforge.net/projects/ 
gnuada/files/  
(navigate to GNAT_GPL Mac OS X/ 
2009-snow-leopard-i386). 
From: Simon J. Wright 

<simon.j.wright@mac.com> 
Date: Tue, 22 Dec 2009 09:10:35 -0800 

PST 
Subject: Re: GNAT GPL 2009 for Mac OS X 

(Snow Leopard) 
Newsgroups: comp.lang.ada 
>  […] Many thanks -- I'll try it ASAP. 

Any chance of a 64-bit build? 
Will have a go, but it's a cross-build so 
may take some getting my head round! 
From: Simon J. Wright 

<simon.j.wright@mac.com> 
Date: Fri, 25 Dec 2009 09:52:43 -0800 PST 
Subject: Re: GNAT GPL 2009 for Mac OS X 

(Snow Leopard) 
Newsgroups: comp.lang.ada 
Not actually a cross build, which would 
be specified by configuring with  
--target=3Dx86_64-apple-darwin10.2.0; I 
don't know what the technical name is, 
but configuring with --build=3Dx86_64-
apple-darwin10.2.0 does the trick. 
Unfortunately the built compiler won't 
handle exceptions; a severe failing. 
Perhaps Apple have changed the OS 
features that GNAT uses to support 
exception handling? (I tried configuring 
with --enable-sjlj-exceptions, no joy). 
From: Simon J. Wright 

<simon.j.wright@mac.com> 

Date: Wed, 23 Dec 2009 15:38:48 -0800 
PST 

Subject: Re: GNAT GPL 2009 for Mac OS X 
(Snow Leopard) 

Newsgroups: comp.lang.ada 
>  […] I thought OS X was officially 

supported by AdaCore. From the 
viewpoint of a casual bystander, it 
looks like someone is asleep at the 
wheel. 

[…] 
I have taken the source code provided by 
AdaCore in GNAT GPL 2009 about 9 
months before Snow Leopard was 
released to the world and rebuilt it with 
one change (caused by Apple's removal of 
sigreturn()). 
I don't know any of AdaCore's customers 
who are supported on Mac OS X so I can't 
say what AdaCore's advice to them has 
been; possibly those customers who 
mustmustmust upgrade have been 
provided with wavefronts. 
From: Simon J. Wright 

<simon.j.wright@mac.com> 
Date: Thu, 24 Dec 2009 07:01:31 -0800 

PST 
Subject: Re: GNAT GPL 2009 for Mac OS X 

(Snow Leopard) 
Newsgroups: comp.lang.ada 
[…] 
The cross-build (I think I may be wrong 
about that; perhaps there's an 'architecture' 
switch?) eventually produced a compiler. 
Unfortunately it wouldn't process the 
simplest exception properly (SIGABRT). 
I then had the idea, since the problem that 
stops building is that init.c calls 
sigreturn() which isn't present in Snow 
Leopard, why not fake up our own 
sigreturn() that does exactly what the 
patch did, then link against that? 
This turned out to work as hoped, result 
being that we can use Apple's GNAT-
GPL-2009 on Snow Leopard; see 
http://sourceforge.net/projects/ 
gnuada/files/(navigate to GNAT_GPL 
Mac OS X/2009-snow-leopard, get 
sigreturn.tar.bz2). 
Sadly, the failure to handle exceptions 
with the 64-bit compiler is unchanged (the 
32-bit compiler is OK): 

with Ada.Text_IO; use Ada.Text_IO; 
procedure Raiser is 
begin 
   begin 
      raise Constraint_Error; 
   exception 
      when Constraint_Error => 
         Put_Line ("CE raised."); 
   end; 
end Raiser; 

[…] 



Ada-related Tools 11  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

Visual Ada Developer 7.3 
From: Leonid Dulman 

<leonid.dulman@gmail.com> 
Date: Sat, 19 Dec 2009 03:07:09 -0800 PST 
Subject: Ann: Visual Ada Developer VAD 

7.3 
Newsgroups: comp.lang.ada 
Visual Ada Developer (VAD) 7.3 is now 
available at 
http://users1.jabry.com/adastudio/ 
index.html 
VAD is free software; you can 
redistribute it and/or modify it under the 
terms of the GNU General Public License 
as published by the Free Software 
Foundation; either version 2 of the 
License, or (at your option) any later 
version. 
VAD is distributed in the hope, that it will 
be useful, but without any warranty; 
without even the implied warranty of 
merchantability or fitness for a particular 
purpose. 
VAD 7.3 Common description. 
1. VAD ( Visual Ada Developer ) is a 
Tcl/Tk oriented Ada-95(TCL) GUI 
builder portable to difference platforms, 
such as Windows NT/Vista/7,Unix 
(Linux), and Mac. 
You may use it as IDE for any Ada-
95(C,C++,TCL) project. 
VAD generated Ada sources, you may 
compile and build executable or generate 
TCL script to interpret with Tcl/Tk. 
VAD 7.3 was tested in Windows  32bit 
and  64bit and Linux x86-64 Kubuntu 
9.10 
2. Used software 
GNAT GPL 2009 Ada-05 compiler (or 
any others) 
TCL/TK 8.5.x 
http://tcl.activestate.com/software/tcltk/ 
TCL/TK 8.6.x 
http://tcl.activestate.com/software/tcltk/ 
Warning! VAD 7.3 has two realization, 
for Tcl/Tk 8.5.x and Tcl/Tk 8.6.x , you 
need to install and test Tcl/Tk first. 
From version tcl/tk 8.5.0.1 ActiveState 
distribution includes many of VAD used 
packages (Itcl,Img,Tktable,BWidgets, 
Tkhtml and so on). 
You may choose your preferred version at 
link time. (I recommend to work with 8.5) 
[…] 
Warning! Many of Tcl/Tk packages were 
tested for TCL/TK 8.5 and 8.6 in 
Windows and x86-64 Linux, you may 
download them from my website  
http://users1.jabry.com/adastudio/ 
index.html 
[see also "Visual Ada Developer 7.2" in 
AUJ 30-3 (Sep 2009), p.143 —mp] 

GWenerator 0.99 
From: Gautier de Montmollin 

<gdemont@users.sourceforge.net> 
Date: Sun, 28 Feb 2010 09:14:48 -0800 

PST 
Subject: Ann: GWenerator 0.99 
Newsgroups: comp.lang.ada 
[…] 
There is a new release of the GWenerator. 
What's new: 
- Ada background or on-demand build 
- A few improvements on supported 

controls 
Download: 
http://sourceforge.net/projects/gnavi/ 
What is the GWenerator ? 
With GWenerator you can design 
Graphical User Interfaces with various 
existing software like Visual Studio or the 
free ResEdit (http://resedit.net), and 
program Windows applications in Ada 
using the GWindows object-oriented 
library. 
GWenerator produces Ada sources 
corresponding to dialogs and menus, as a 
background task, as soon as a new design 
has been saved. On request, it produces 
also a test application with all dialogs. 
Optionally, it launches a new Ada build, 
automatically or on request. 
The command-line equivalent tool, 
rc2gw, does the code generation on 
request. 
Unlike some other GUI libraries, 
GWindows is Windows-only (at least 
currently) - that the "minus" side. So it is 
intended to target Windows-centric 
environments. 
On the "plus" side, a GWindows 
application can hold in a single 
executable. A priori, there is no need to 
provide any run-time framework, toolkit, 
dll, installation wizard or to worry about 
version conflicts, paths, admin rights. 
This makes the deployment of an 
application trivial or of minimal 
complexity. 
The archive contains numerous examples 
and stress-tests downloaded from Internet. 
[see also "GWenerator 0.97 and 0.975" in 
AUJ 30-3 (Sep 2009), p.143 —mp] 

QtAda 2.4 and relation with 
QtAda by Godunko et al. 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Sun, 6 Dec 2009 11:15:35 +0100 
Subject: Announce : QtAda version 2.4 
Newsgroups: comp.lang.ada 
Leonid Dulman asked me to announce 
this: 
QtAda is an Ada-95(05) interface to Qt4 
graphics library Qt version 4.6.0 open 

source and qt4c.dll(libqt4c.so) built with 
Microsoft Visual Studio 2008 (2010 beta) 
in Windows MINGW GCC Windows 
compiler and GCC in Linux. 
Package tested with the GNAT GPL 2009 
Ada compiler in Windows 32bit and 64bit 
and Linux x86-64 Kubuntu 9.10. 
Qtada it's composed by 9245 procedures 
and functions, distributed in 256 
packages. It supports GUI, SQL, 
Multimedia, Web, Net and many others 
thinks. 
QtAda for Windows and Linux (Unix) is 
available from 
http://users1.jabry.com/adastudio/ 
index.html 
From: Dirk Heinrichs 

<dirk.heinrichs@online.de> 
Date: Sun, 06 Dec 2009 19:59:47 +0100 
Subject: Re: Announce : QtAda version 2.4 
Newsgroups: comp.lang.ada 
[…] 
Although I appreciate this very much, I 
think it's not a good idea to have two 
different efforts to provide the same 
interface. Wouldn't it be better to join 
forces? 
It could be completed in less time and 
would have a larger user base which also 
finds possible bugs much faster so that in 
the end the outcome would be an even 
better interface. 
Maybe joining both projects would even 
result in a larger developer group who 
work on it (and maybe also on a KDE4 
interface). 
[…] 
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de> 
Date: Mon, 07 Dec 2009 11:52:44 +0100 
Subject: Re: Announce : QtAda version 2.4 
Newsgroups: comp.lang.ada 
[…] 
OTOH, competition, if possible, may 
provide for different approaches to 
writing Qt programs in Ada. One or the 
other approach might more portable, or be 
better in some situation. If I'm not 
mistaken, Qt4Ada (by Leonid Dulman) 
can be used with Ada 95 compilers; it 
does not depend on so many Ada 2005 
anonymous access types as QtAda does. 
(Can the latter be compiled at all with 
compilers other than a recent GNAT?) 
http://users1.jabry.com/adastudio/ 
index.html 
http://www.qtada.com/ 
http://qt4ada.sourceforge.net/ (by Yves 
Bailly, I don't know whether this is an 
active project) 
Licenses might differ, too, I think. 
From: Dirk Heinrichs 

<dirk.heinrichs@online.de> 
Date: Mon, 07 Dec 2009 19:01:35 +0100 
Subject: Re: Announce : QtAda version 2.4 



12  Ada-related Tools 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

Newsgroups: comp.lang.ada 
>  […] OTOH, competition, if possible, 

may provide for different approaches to 
writing Qt programs in Ada. 

Usually I would agree to this argument. 
However, we are talking about projects to 
provide an Ada interface for a GUI toolkit 
written in another language, not about a 
project to actually _develop_ a GUI 
toolkit. 
>  One or the other approach might more 

portable, or be better in some situation. 
If I'm not mistaken, Qt4Ada (by Leonid 
Dulman) can be used with Ada 95 
compilers; it does not depend on so 
many Ada 2005 anonymous access 
types as QtAda does. 

Any reason why all of this can't be 
achieved by a single project? 
>  (Can the latter be compiled at all with 

compilers other than a recent GNAT?) 
That's IMHO another reason to have only 
one project. At least two persons have 
used much of their time to achieve more 
or less the same goal, which is really 
great, but in the end both projects lack 
important functionality which is present 
in the other. 
[…] 
From: Florian Weimer 

<fw@deneb.enyo.de> 
Date: Sat, 12 Dec 2009 15:43:23 +0100 
Subject: Re: Announce : QtAda version 2.4 
Newsgroups: comp.lang.ada 
[…] 
I believe there's a license discrepancy, but 
QtAda's licensing appears to be rather 
unclear. 
From: Vadim Godunko 

<vgodunko@gmail.com> 
Date: Thu, 17 Dec 2009 00:43:46 -0800 

PST 
Subject: Re: Announce : QtAda version 2.4 
Newsgroups: comp.lang.ada 
[…] 
QtAda's licensing is pretty clear: QtAda 
GPL Edition available under GPL license, 
QtAda Professional edition covered by 
GNAT Modified GPL. 
Someone can ask why we don't use LGPL 
as Nokia do? The answer is very simple - 
Nokia licenses Qt Open Source Edition 
under GPL/LGPL with minor exception, 
to protect youself from free use Qt in 
commercial closed source projects (You 
must provide all your source code on 
Nokia's request). 
[see also "QtAda 3.0 and 2.2" and "QtAda 
2.1.1 for Qt 4.5.2" in AUJ 30-3 (Sep 
2009), p.145 —mp] 

OS2Ada 1.0 
From: Leonid Dulman 

<leonid.dulman@gmail.com> 
Date: Sat, 6 Feb 2010 23:14:27 -0800 PST 

Subject: Announce : OS2Ada version 1.0 
Newsgroups: comp.lang.ada 
OS2Ada is an Ada-95(05) API and PM 
interface to IBM eComStation (Os/2) 
operating system. OS2Ada is available at 
http://users1.jabry.com/adastudio/ 
index.html 
I am open for any forms of cooperation. 
Thanks for any help. 

OpenToken 4.0a 
From: Stephen Leake 

<stephen_leake@stephe-leake.org> 
Date: Sat, 27 Feb 2010 10:29:10 -0500 
Subject: OpenToken 4.0a released 
Newsgroups: comp.lang.ada 
I've released a new version of 
OpenToken; 4.0a 
It will be in Debian Squeeze, and in 
Debian testing before that. 
See http://www.stephe-leake.org/ 
ada/opentoken.html to download source 
and see full list of changes. 
Major changes: 
Lookahead and backtracking is supported 
in recursive descent parsers. This can 
generate horribly inefficient parsers if you 
are not careful. 
Fixed major bug in LALR parser 
generator related to which production gets 
the accept action. This bug made many 
small grammars unworkable; now they all 
work. 
Syntax errors reported by LR and 
recursive descent parsers include the list 
of expected tokens. 
The examples have been improved to 
more clearly demonstrate the differences 
and similarities between LR parsing and 
recursive descent parsing with 
OpenToken. 
There are new examples of recursive 
descent parsing, showing that naive 
grammars can work, if inefficiently. 
The OpenToken.Token.List_Mixin, 
.Sequence_Mixin, .Selection_Mixin now 
specify actions via procedure pointers at 
run-time, rather than via overloaded 
procedures. This significantly simplifies 
specifying recursive descent grammars. 
Language_Lexers.HTML_Lexer supports 
the <pre> tag; the contents are treated as a 
comment. 
[see also "OpenToken 3.1a" in AUJ 30-4 
(Dec 2009), p.208 —mp] 

Alog 0.3 
From: Adrian-Ken Rueegsegger 

<ken@codelabs.ch> 
Date: Sat, 19 Dec 2009 22:03:50 +0100 
Subject: Announce: Alog 0.3 released 
Newsgroups: comp.lang.ada 
We are proud to announce the release of 
Alog version 0.3. 

Alog is a stackable logging framework for 
Ada. It aims to be straight forward to use 
and easily extendable. It provides support 
for various logger types, log facilities, 
loglevel policies and message 
transformations. 
Further information about Alog can be 
found on the project website [1]. 
[…] 
[1] - http://www.nongnu.org/alog/ 

Strings Edit for Ada v2.4 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Sat, 26 Dec 2009 12:50:47 +0100 
Subject: ANN: Strings edit v2.4 released 
Newsgroups: comp.lang.ada 
Provides string editing: 
1. Integer numbers (generic, package  

Integer_Edit); 
2. Integer sub- and superscript numbers; 
3. Floating-point numbers (generic, 

package Float_Edit); 
4. Roman numbers (the type Roman); 
5. Strings; 
6. Ada-style quoted strings; 
7. UTF-8 encoded strings; 
8. Unicode maps and sets; 
9. Wildcard pattern matching. 
http://www.dmitry-kazakov.de/ 
ada/strings_edit.htm 
Changes to the previous version: 
1. Bug fix in the function Is_Prefix, which 

uses character maps. 
[see also "Strings Edit for Ada v2.3" in 
AUJ 30-4 (Dec 2009), p.208 —mp] 

Safe Pointers 
From: Cristoph Grein 

<christoph.grein@eurocopter.com> 
Date: Wed, 30 Dec 2009 09:49:11 -0800 

PST 
Subject: Safe Pointers 
Newsgroups: comp.lang.ada 
Safe Pointers provide a reference 
counting facility to deal with access types 
without compromising safety, i.e. safe 
pointers clean up behind themselves 
properly; no dangling references can ever 
be produced. 
Ada 95 and Ada 2005 differ enough so 
that two versions exist. A new Ada 2005 
version is ready: 
http://www.christ-usch-grein.homepage. 
t-online.de/Ada/Safe_Pointers.html 

Zip-Ada v.38 
From: Gautier de Montmollin 

<gdemont@users.sourceforge.net> 
Date: Sun, 28 Feb 2010 09:09:16 -0800 

PST



Ada-related Products 13  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

Subject: Ann: Zip-Ada v.38 
Newsgroups: comp.lang.ada 
Hello! 
There is a new Zip-Ada release. 
What's new: 
- The "-fast_dec" and "-rand_stable" 

options were added for ReZip. 
- Zip.Create is significantly faster on a 

large number of files (~1000 or 
multiples). 

Download: http://unzip-ada.sf.net 
[…] 
[see also "Zip-Ada" in AUJ 30-4 (Dec 
2009), p.208 —mp] 

Excel Writer v.05 
From: Gautier de Montmollin 

<gdemont@users.sourceforge.net> 
Date: Sun, 28 Feb 2010 09:17:04 -0800 

PST 
Subject: Ann: Excel Writer v.05 
Newsgroups: comp.lang.ada 
[…] 
There is a new release of Excel Writer. 
What's new: 
- Some new built-in Excel numeric 

formats 
- Usage of Excel_Out instead of 

Ada.Text_IO (and conversely) made a 
bit easier 

- Should compile on any Ada 95+ 
compiler (a non-compliant detail was 
fixed) 

Download:  
http://excel-writer.sf.net 

Ada-related Products 
AdaCore — CodePeer Tool 
From: AdaCore Press Center 
Date: Tue, 12 Jan 2010 
Subject: AdaCore Launches CodePeer Tool 
URL: http://www.adacore.com/2010/01/12/ 

codepeer-launch/ 
Automated code review assistant helps 
eliminate bugs and vulnerabilities 
NEW YORK and PARIS, January 12, 
2010 – AdaCore, a leading supplier of 
Ada development tools and support 
services, today announced the release of 
CodePeer, a source code analysis tool that 
detects run-time and logic errors in Ada 
programs. Serving as an efficient and 
accurate code reviewer, CodePeer 
identifies constructs that are likely to lead 
to run-time errors such as buffer 
overflows, and it flags legal but suspect 
code typical of logic errors. Going well 
beyond the capabilities of typical static 
analysis tools, CodePeer also produces a 
detailed analysis of each subprogram, 
including pre- and postconditions. Such 

an analysis makes it easier to find 
potential bugs and vulnerabilities early: if 
the implicit specification deduced by 
CodePeer does not match the 
component’s requirements, a reviewer is 
alerted immediately to a likely logic error. 
CodePeer can be used both during system 
development − to prevent errors from 
being introduced or as part of a systematic 
code review process to dramatically 
increase the efficiency of human review − 
and retrospectively on existing code, to 
detect and remove latent bugs. 
Developed by AdaCore in partnership 
with SofCheck, Inc., CodePeer can be 
used either as a standalone tool or fully 
integrated into the GNAT Pro Ada 
development environment. It is highly 
flexible, with performance that can be 
tuned based on the memory and speed 
available on the developer’s machine, and 
can efficiently exploit multi-core CPUs. 
CodePeer can be run on partially 
complete programs; it does not require 
stubs or drivers. 
CodePeer analyzes programs for a wide 
range of flaws including use of 
uninitialized data, pointer misuse, buffer 
overflow, numeric overflow, division by 
zero, dead code, and concurrency faults 
(race conditions). These sorts of errors 
can be difficult and expensive to detect 
and correct with conventional debugging, 
but CodePeer identifies them statically, 
without running the program, and 
determines not only where the failure 
could occur, but identifies where the bad 
values originate, be it within the current 
subprogram or from some distant 
subprogram that reached the point of 
failure through a series of calls. CodePeer 
also looks for code that, although 
syntactically and semantically correct, is 
performing a suspect computation, such 
as an assignment to a variable that is 
never subsequently referenced, or a 
conditional test that always evaluates to 
the same true or false value. 
“Even the best programmers using the 
best programming languages will 
sometimes make mistakes,” said Robert 
Dewar, President and CEO of AdaCore. 
“The key is to detect and correct errors 
early, and, thanks to our partnership with 
SofCheck, CodePeer is now available for 
precisely that purpose. We expect this 
tool to be especially valuable to our 
customers with safety-critical or high-
security requirements, since CodePeer can 
identify potential hazards and 
vulnerabilities.” 
Internally CodePeer uses static control-
flow, data-flow, and value propagation 
techniques to identify possible errors. It 
mathematically analyzes every line of 
code without executing the program, 
considering all combinations of program 
input across all paths within the program. 
It automatically generates both human-
readable and machine-readable 

component specifications in the form of 
preconditions, postconditions, inputs, 
outputs, and heap allocations, which 
along with the error messages can be 
displayed graphically or as in-line 
comments in the source code listing to 
help immediately pinpoint the root cause 
of any defect. In a multi-threaded system 
CodePeer identifies where race conditions 
might occur. To increase performance and 
usability it internally maintains a 
historical error database, which allows it 
to highlight just the new coding problems 
and to track trends across multiple 
analyses. 
“The technology underlying CodePeer 
was developed over many years of work 
on highly optimizing compilers,” noted 
Tucker Taft, Founder and CTO of 
SofCheck, “but now we are taking all the 
information the compiler was using 
internally for its own optimization 
purposes, augmenting it with advanced 
whole-program analyses, and presenting it 
in a way that allows the programmer to 
fix their software before it breaks.” 
Webinar  
A webinar introducing CodePeer will be 
presented on March 9, 2010 at 11:00 am 
(EST) / 5:00 pm (GMT). For more 
information, or to register, please visit 
http://www.adacore.com/home/gnatpro/ 
webinars/ 
Pricing and Availability 
CodePeer is immediately available. Please 
contact AdaCore (sales@adacore.com) 
for information on pricing and supported 
configurations. 
About AdaCore 
Founded in 1994, AdaCore is the leading 
provider of commercial software solutions 
for Ada, a state-of-the-art programming 
language designed for large, long-lived 
applications where safety, security, and 
reliability are critical. AdaCore’s flagship 
product is the GNAT Pro development 
environment, which comes with expert 
on-line support and is available on more 
platforms than any other Ada technology. 
AdaCore has an extensive worldwide 
customer base; see 
http://www.adacore.com/home/company/
customers/ for further information. 
Ada and GNAT Pro see a growing usage 
in high-integrity and safety-certified 
applications, including commercial 
aircraft avionics, military systems, air 
traffic management/control, railway 
systems and medical devices, and in 
security-sensitive domains such as 
financial services. 
AdaCore has North American 
headquarters in New York and European 
headquarters in Paris.  
www.adacore.com 



14  Ada-related Products 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

AdaCore — GNAT Pro 
support for PikeOS 
From: AdaCore Press Center 
Date: Tue, 26 Jan 2010 
Subject: New Safety-Critical RTOS Platform 

for GNAT Pro High-Integrity Edition 
URL: http://www.adacore.com/2010/01/26/ 

support-for-pike-os/ 
SANTA CLARA, NEW YORK and 
PARIS, January 26, 2010 – Real-Time & 
Embedded Computing Conferences 
(RTECC) – AdaCore and SYSGO today 
further strengthened their partnership by 
announcing the release of the GNAT Pro 
High-Integrity Edition for DO-178B 
toolset targeting SYSGO’s PikeOS 
platform, a safety-critical real-time 
operating system (RTOS). GNAT Pro has 
been ported to this platform in direct 
response to growing customer demand. 
This new development follows GNAT 
Pro support for ELinOS™. 
PikeOS has been gaining popularity with 
avionics developers as a next-generation 
RTOS for ARINC-653; with Ada’s and 
AdaCore’s proven track record in the 
safety-critical market, including avionics 
and rail transportation, GNAT Pro is a 
natural match. GNAT Pro High-Integrity 
Edition for PikeOS comes with the Zero 
Footprint (ZFP) and Ravenscar run-time 
libraries. The ZFP run-time library of 
GNAT Pro High-Integrity Edition for 
DO-178B has been used on multiple 
safety-critical projects and allows simple 
sequential application development that 
eases certification to DO-178B Level A. 
The Ravenscar run-time library adds 
support for deterministic multi-tasking. 
AdaCore provides both run-times libraries 
to allow developers to choose the one best 
suited to their application requirements. 
PikeOS provides an embedded platform 
where multiple virtual machines can run 
simultaneously in a secure environment. 
The Safe and Secure Virtualization (SSV) 
technology allows multiple operating 
system APIs, called “Personalities”, to 
run concurrently on one machine, for 
example an ARINC-653 application 
together with Linux. GNAT Pro High-
Integrity Edition for PikeOS provides 
ZFP and Ravenscar run-times for both 
PikeOS Native and APEX (ARINC 653) 
personalities. 
The PikeOS microkernel architecture 
supports a range of domains, from cost-
sensitive, resource-constrained devices to 
large, complex systems. Because of its 
simplicity and compactness, PikeOS is 
suitable for the most demanding real-time 
applications. PikeOS is certifiable to 
safety standards, including DO-178B, IEC 
61508 and EN 50128. It is also MILS 
compliant. 
“AdaCore has created an entire family of 
products to support development of both 
safety- and security-critical applications 

with our GNAT Pro High-Integrity 
Family,” said Robert Dewar, AdaCore 
President and CEO. “We strive to 
continuously expand the number of 
options available to our customers for 
safety- and security-critical development. 
Support for PikeOS is now the latest 
RTOS addition to our High-Integrity 
Family of products.” 
“With new certifiable run-times and 
qualifiable tools, AdaCore has been 
strengthening its offering dedicated to the 
development of safety-critical systems,” 
said Michaël Friess, AdaCore EU Sales & 
Business Development Manager. 
“SYSGO has rapidly gained renown and 
trust in the safety-critical market. It was a 
natural choice for AdaCore to expand our 
GNAT Pro High-Integrity Edition family 
to the PikeOS platform, foster the fruitful 
partnership with SYSGO, and provide our 
joint customers with a flexible and 
efficient solution.” 
“Our product PikeOS has one of the 
fastest growth rates in the sectors 
requiring safety and security critical 
applications,” declares Jacques Brygier, 
VP Marketing at SYSGO. “The 
successful partnership we have built with 
AdaCore regarding our embedded Linux 
product ELinOS makes our collaboration 
in the safety-critical domain even more 
logical, as both companies have in 
common an excellent reputation and 
experience in this very demanding 
business.” 
About SYSGO 
SYSGO excels in providing operating 
system technology, middleware, and 
software services for the real-time and 
embedded device market. A 
differentiating capability of SYSGO is the 
secure and certifiable PikeOS™ 
paravirtualization operating system which 
is built upon a small, fast, and safe 
microkernel and supports the cohabitation 
of independent operating system 
personalities on a single platform, 
including ELinOS™, SYSGO’s 
embedded Linux development 
environment. SYSGO supports 
international customers with services for 
embedded Linux, real-time capabilities 
and certification for safety-critical 
applications. Target markets include 
Aerospace & Defense, Industrial 
Automation, Automotive, Transportation 
and Network Infrastructure. SYSGO 
customers include Airbus, Honeywell, 
Thales, Daimler, Raytheon, Rheinmetall, 
Rockwell-Collins, Siemens and Rohde & 
Schwarz. Today, the company has six 
facilities in Europe, including Germany, 
France and The Czech Republic and 
offers a global distribution and support 
network, extending to North America and 
the Pacific Rim. SYSGO, ELinOS and 
PikeOS are trademarks or registered 
trademarks of SYSGO AG in Germany 
and in several other countries all over the 

world. Linux is the registered trademark 
of Linus Torvalds in the U.S. and other 
countries. All other product and service 
names mentioned are the trademarks of 
their respective companies. 

AdaCore — GNAT Pro 6.3 
From: AdaCore Press Center 
Date: Tue, 9 Feb 2010 
Subject: AdaCore Releases GNAT Pro 6.3 
URL: http://www.adacore.com/2010/02/09/ 

gnat-pro-6-3/ 
BRISTOL, United Kingdom, NEW 
YORK and PARIS, February 9, 2010 – 
Safety-Critical Systems Symposium – 
AdaCore, a leading supplier of Ada 
development tools and support services, 
today announced the latest major release 
of its GNAT Pro Ada development 
environment. GNAT Pro 6.3 is now 
available on several new platforms 
including 64-bit Windows, Windows 7, 
Mac OS X Snow Leopard, VxWorks 
MILS, and PikeOS (ARINC 653). The 
product incorporates performance 
improvements and a variety of 
enhancements, many based on customer 
feedback, and it offers the first 
implementation of new Ada 2012 
features. GNAT Pro 6.3 works with a 
number of complementary tools, sold 
separately, including the CodePeer  
automated code review and validation 
tool. 
“We continually strive to provide our 
customers with world-class development 
tools, technical consulting, and product 
support that exceed their expectations,” 
said Robert Dewar, President and CEO of 
AdaCore. “GNAT Pro 6.3 demonstrates 
our commitment to this goal and 
continues the company’s tradition of 
providing annual major releases for our 
products.” 
“With this new release, GNAT Pro 
supports a wide range of additional 
platforms, with a particular emphasis on 
64 bit architectures,” said Cyrille Comar, 
Managing Director, AdaCore Europe. 
“This regular adaptation to new 
environments is critical for many of our 
customers who work on safety critical 
applications whose lifespans cross many 
hardware generations and operating 
system transitions. Our challenge is to 
find, every year, more efficient ways of 
producing and qualifying to the highest 
standards, an increasing number of tools 
running on an increasing number of 
platforms.” 
New GNAT Pro 6.3 features include: 
- Support for 64-bit code generation on 

Windows 
- Support for Windows 7 
- Improvements to a number of tools, 

including: 
 o Pretty printer (gnatpp)



Ada and GNU/Linux 15  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

 o Coding standard verifier 
(GNATcheck) 

 o Stack size analyzer (GNATstack) 
- Other tool enhancements: 

 o Unused dispatching subprogram 
elimination (gnatelim) 

 o More flexible project handling 
 o More efficient gnatmake and gprbuild 
 o C and C++ binding generation 

- Compiler and debugger enhancements, 
including: 
 o Many additional warnings 
 o More flexible enabling/disabling of 

warnings 
 o Faster Unbounded_String 

implementation 
 o Removal of redundant run-time 

checks 
 o Support for Ada 2012 conditional 

expressions 
 o Code generation (speed and size) 

improvements 
 o More compact debugging information 
 o Improved interfacing with C++ 

GNAT Pro 6.3 also includes a new 
version of the GNAT Programming 
Studio (GPS) IDE, GPS 4.4.1, and an 
improved download interface in 
AdaCore’s GNAT Tracker support tool. 
About GNAT Pro 
The GNAT Pro development 
environment, available on more platforms 
than any other Ada toolset, is a full-
featured, multi-language development 
environment complete with libraries, 
bindings and a range of supplementary 
tools. It provides a natural solution for 
organizations that need to create reliable, 
efficient, and maintainable code. GNAT 
Pro implements all three versions of the 
Ada language standard – Ada 83, Ada 95, 
and Ada 2005 – and the latest version of 
GNAT Pro implements some of the new 
features in Ada 2012. GNAT Pro is based 
on the widely used GCC technology and 
is backed by rapid and expert support 
service.  

Tidorum — Bound-T 
WCET and stack analyser 
From: Niklas Holsti 

<niklas.holsti@tidorum.fi> 
Date: Thu, 04 Mar 2010 17:45:36 +0200 
Subject: [ANN] Bound-T WCET and stack 

analyser: free downloads 
Newsgroups: comp.arch.embedded 
No-cost downloads of size-limited 
versions of the Bound-T static WCET and 
stack-usage analyser are now offered on 
the Bound-T website at  
http://www.bound-t.com/. 

Bound-T applies static program analysis 
to the machine code of executable binary 
files to compute upper bounds on the 
worst-case execution time (WCET) and 
the worst-case stack usage of selected 
subprograms. The results are useful for 
verifying that real-time programs are 
schedulable and do not fail due to stack 
overflow. 
Bound-T is now available for the target 
processors Intel-8051, Atmel AVR, 
ARM7TDMI, ERC32 (SPARC V7), 
Renesas H8/300, and ADSP-21020. 
Bound-T can be used on Intel/Linux, 
Intel/MS-Windows, and Mac OS/X host 
PCs. The website offers downloads for 
the first two hosts. Bound-T for the Mac 
will be provided on request. 
Bound-T analyses the target program by 
reading and decoding binary instructions 
from the executable file; building the 
control-flow graphs and call graph; 
modelling the computation to find bounds 
on the number of iterations of (some) 
loops and bounds on the stack usage; and 
finally computing an upper bound on the 
execution time with Integer Linear 
Programming (the Implicit Path 
Enumeration technique). At present, 
WCET analysis in Bound-T works for 
processors with fixed, deterministic 
instruction execution times. Pipeline 
effects are modelled, but caches and other 
dynamic accelerators are not. 
The no-cost downloadable versions are 
limited to about 1000 instructions per 
analysis. The total size of the target 
program is not limited. The no-cost 
versions are offered under a liberal 
licence (http://www.bound-
t.com/download/tr-li-no-cost.pdf) that 
allows any kind of use, including 
commercial use. 
On behalf of Tidorum Ltd, the developer 
of Bound-T, I hope that you will find the 
tool useful. While the no-cost versions of 
course do not include a promise of 
technical support, Tidorum welcomes all 
feedback on Bound-T and will respond 
within our resources.  
From: Niklas Holsti 

<niklas.holsti@tidorum.fi> 
Date: Thu, 04 Mar 2010 19:31:18 +0200 
Subject: Bound-T WCET and stack usage 

analyser: free downloads 
Newsgroups: comp.lang.ada 
As some of you may already have seen on 
other newsgroups, free downloads are 
now offered of a tool called Bound-T that 
uses static program analysis of machine 
code to compute upper bounds on the 
execution time (WCET) and stack usage 
of embedded programs. I do not mean to 
repeat the announcement here (see 
comp.arch.embedded or comp.realtime), 
but just to add that Bound-T is written in 
Ada, and has also been used to analyse 
Ada code, as well as C, C++, and 
assembly-language code. 

For more information see 
http://www.bound-t.com/.  

Ada and GNU/Linux 
gprbuild and GCC 4.4.2 
From: Michael Rohan 

<michael@zanyblue.com>  
Date: Thu, 31 Dec 2009 15:02:42 -0800 

PST 
Subject: Using gprbuild with GCC 4.4.2? 
Newsgroups: comp.lang.ada 
[…] 
I've been using GNAT from GCC 4.4.2 
for a while (tend to like to rebuild my 
compiler). I decided recently to explore 
the functionality of AWS from Ada Core 
however it uses "gprbuild" to build which 
is not included in the standard GCC 
release.  Is it possible to simply grab it 
from the source release from Ada Core 
and "plug it into" a GCC 4.4.2 build? Has 
anyone tried this? 
[…] 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Thu, 31 Dec 2009 15:38:11 -0800 

PST 
Subject: Re: Using gprbuild with GCC 

4.4.2? 
Newsgroups: comp.lang.ada 
[…] 
http://www.debian.org 
http://packages.debian.org/source/sid/ 
libaws 
From: Stephen Leake 

<stephen_leake@stephe-leake.org> 
Date: Fri, 01 Jan 2010 05:47:15 -0500 
Subject: Re: Using gprbuild with GCC 

4.4.2? 
Newsgroups: comp.lang.ada 
[…] 
Also note that I'm working on packaging 
gprbuild for Debian. It's currently 
working; just needs some polishing to 
include the docs and examples. 
You can check it out from the Ada France 
monotone server at 
www.ada-france.org, branch 
org.debian.gprbuild. 

PolyORB available in 
Debian 
From: Reto Buerki <reet@codelabs.ch> 
Date: Wed, 17 Feb 2010 18:54:29 +0100 
Subject: Announce: PolyORB available in 

Debian 
Newsgroups: comp.lang.ada 
I'm proud to announce that the PolyORB 
middleware library has been accepted in 
the Debian testing distribution and will be 
part of the next Debian stable release 
"Squeeze" [1]. 



16  Ada and Microsoft  

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

I would like to thank the co-maintainers 
Xavier Grave and Ludovic Brenta for 
their excellent work and support during 
the packaging process. 
PolyORB provides an uniform solution to 
build distributed applications; relying 
either on industrial-strength middleware 
standards such as CORBA, the 
Distributed System Annex of Ada 95, 
distribution programming paradigms such 
as Web Services, Message Oriented 
Middleware (MOM), or to implement 
application-specific middleware. 
The following application personalities 
are currently supported by the Debian 
package: 
- CORBA 
- DSA 
- MOMA 
Please feel free to test the package and 
report possible problems directly to the 
Debian Bug Tracking System (BTS) [2]. 
For those who would like to experiment 
with the PolyORB package without 
installing Debian testing or unstable can 
use the unofficial i386, amd64 backport 
packages for Debian stable from [3]. The 
backport does no support the DSA 
application personality because it requires 
a newer compiler than the one available in 
Debian stable. 
[1] - http://packages.qa.debian.org/p/ 
polyorb.html 
[2] - http://www.debian.org/Bugs/ 
[3] - http://www.codelabs.ch 

libxmlezout and liblog4ada 
in Debian 
From: Xavier Grave 

<xavier.grave@ipno.in2p3.fr> 
Date: Sat, 20 Feb 2010 11:57:50 +0100 
Subject: Announce: XML EZ OUT and 

Log4Ada in Debian 
Newsgroups: comp.lang.ada 
[…] 
I'm happy to announce that libxmlezout 
and liblog4ada reached Debian testing a 
few days ago. 
libxmlezout 1.06 is the package for XML 
EZ OUT [1], it is a facility to produce xml 
to string, file and so on… 
liblog4ada 1.0 is a package for Log4Ada 
[2] using libxmlezout. It is compatible 
with the log4j framework [3]. 
I'd like to thanks Ludovic Brenta to be my 
Debian mentor, sponsor and for tutoring 
me through this work. Thanks also to 
Marc Criley for his software [1] and help 
for the packaging of libxmlezout. 
I hope it will be of some use. 
Please feel free to test the package and 
report possible problems directly to the 
Debian Bug Tracking System (BTS) 
(Reto TM) [4]. 

[1] http://www.mckae.com/xmlEz.html 
[2] http://green.ada-france.org:8081/ 
branch/changes/org.log4Ada 
[3] http://logging.apache.org/log4j/ 
[4] http://bugs.debian.org 

Mailing list for Ada in 
Debian 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Fri, 26 Feb 2010 08:28:48 -0800 PST 
Subject: Ada in Debian: new dedicated 

mailing list, debian-ada@ 
lists.debian.org 

Newsgroups: comp.lang.ada 
I have requested and been granted the 
creation of a new mailing list[1] with web 
archives[2]. 
I started out in 2003 as (almost) the sole 
maintainer of Ada in Debian but, in the 
past couple of years, several people have 
joined in the effort.  It has become 
necessary to coordinate work of all these 
people.  Several of these people seconded 
my request (in fact, Xavier was the one 
who nudged me to make the request in the 
first place; thanks to him). The list will 
thus replace private emails as a means of 
coordination, making this much more 
public. 
This list is intended for: 
- discussion of the Debian Policy for 

Ada[3] 
- release coordination among Ada 

packages in Debian 
- packaging advice 
- general help for Ada programmers using 

the Debian packages 
This list is not moderated; posting is 
allowed by anyone. 
Posting address: debian-ada@ 
lists.debian.org 
Intended audience: 
- maintainers of Ada packages in Debian 
- people who would like to join in the 

effort 
- programmers using the Ada packages in 

Debian 
- people considering Debian as an Ada 

development platform 
If you wish to subscribe to the mailing 
list, please visit [1]. 
[1] http://lists.debian.org/debian-ada/ 
[2] http://lists.debian.org/debian-ada/ 
recent 
[3] http://people.debian.org/~lbrenta/ 
debian-ada-policy.html 

Ada and Microsoft 
GNAT 2009, Windows and 
system libraries 
From: Maciej Sobczak 

<maciej@msobczak.com> 
Date: Wed, 10 Feb 2010 03:13:11 -0800 

PST 
Subject: GNAT 2009, Windows and system 

libraries 
Newsgroups: comp.lang.ada 
I have a problem writing a proper .gpr file 
for a project that is composed of Ada and 
C++ code and that uses Windows socket 
API.  
I have no problem linking Ada with the 
C++ library, the problem is with system 
library known as Ws2_32.lib. 
When compiling a similar project with a 
C++ compiler, it is enough to add 
Ws2_32.lib to the compiler invocation 
command and it just works. I cannot, 
however, find a proper way of doing it 
with Ada projects. 
This is my try (Ws2_32.gpr): 

project Ws2_32 is 
   for Externally_Built use "true"; 
   for Source_Dirs use (); 
   for Library_Dir use  
      "C:\Program Files\ 
        Microsoft SDKs\Windows\ 
        v6.0A\Lib"; 
   for Library_Name use "Ws2_32"; 
   for Library_Kind use "dynamic"; 
end Ws2_32; 

This .gpr file is "withed" by the project 
file of the final Ada program. This 
approach works for my own libraries, but 
is ineffective with the system library and 
gnatlink reports zillions of unresolved 
references. 
[…] 
From: Yannick Duchêne 

<yannick_duchene@yahoo.fr> 
Date: Wed, 10 Feb 2010 03:40:25 -0800 

PST 
Subject: Re: GNAT 2009, Windows and 

system libraries 
Newsgroups: comp.lang.ada 
[…] 
Forgive me if it ever does not fulfill your 
requirements (you may want to rely on 
GPR project files only), here is how I do 
when I need this kind of linkage : I put 
some pragma Linker_Options  
("-lkernel32"); pragma Linker_Options 
("-lwsock32"); in the private part of 
specification files. 
Notice the "-l" as a prefix and the lack of 
any "-Wl," 
If you opt for this solution, make sure you 
put this in a specification file which is 



Ada Inside 17  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

required by all package which depends on 
it (a root package is a good place). 
From: Maciej Sobczak 

<maciej@msobczak.com> 
Date: Wed, 10 Feb 2010 07:21:20 -0800 

PST 
Subject: Re: GNAT 2009, Windows and 

system libraries 
Newsgroups: comp.lang.ada 
>  I have a problem writing a proper .gpr 

file for a project that is composed of 
Ada and C++ code and that uses 
Windows socket API. 

After struggling a while, I was able to 
compile everything by hand - that is, by 
manually running the GNAT toolchain. 
The problem with the use of .gpr files is 
that in the final invocation of gnatlink, 
libraries are listed in the order that comes 
from the depth-first traversal of all .gpr 
files that are connected by "with" 
relationships, which leads to unresolved 
references. The order that I need is depth-
first (or more generally, topologically 
sorted). 
How can I change the order of all 
dependent libraries that are used in the 
final invocation of gnatlink? 
From: Maciej Sobczak 

<maciej@msobczak.com> 
Date: Wed, 10 Feb 2010 07:35:31 -0800 

PST 
Subject: Re: GNAT 2009, Windows and 

system libraries 
Newsgroups: comp.lang.ada 
[…] 
Final update: I was able to get the clean 
compile with proper order of "with" 
clauses in .gpr files. The only curiosity is 
that libraries are passed to linker in the 
order that is *reverse* to the order of 
relevant "with" statements. 
I'm not sure if that was intended, but as 
long as I can control the results, it is just a 
minor detail. 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Wed, 10 Feb 2010 07:45:52 -0800 

PST 
Subject: Re: GNAT 2009, Windows and 

system libraries 
Newsgroups: comp.lang.ada 
[…] 
The problem seems a little deeper than 
that. 

with "a"; 
with "b"; 
project P is 
   ... 
end P; 

translates to: 

ld -o p p.o -lb -la 

which is appropriate if libb.so needs to 
see the symbols in liba.so. However, in 

that case, b.gpr ought to have a with "a"; 
clause. If b.gpr lacks the clause, nothing 
allows the project manager to assume that 
libb.so needs liba.so. I suspect that the 
project manager was trying to be too 
clever for its own good; it was potentially 
hiding a problem (missing "with a" in 
b.gpr) while breaking the Law of Least 
Astonishment. 
I'm not sure whether this is a genuine bug 
or not. Mmmh. Meditate on this, I will. 

References to 
Publications 
Embedded.com — 
“Executing software 
contracts” 
From: Ada Information Clearinghouse news 
Date: Fri, 19 Feb 2010 
Subject: Executing software contracts 
URL: http://www.adaic.com/whatsnew.html 
Jack Ganssle at Embedded.com discusses 
the Sofcheck and AdaCore CodePeer tool 
in Executing software contracts; in 
particular he examines the tool's ability to 
create contracts for subprograms. 
[Read the article by Jack Ganssle at 
http://www.embedded.com/222900387  
—mp] 

Ada Inside 
Websites powered by Ada 
Web Server 
From: Tero Koskinen 

<tero.koskinen@iki.fi> 
Date: Mon, 21 Dec 2009 21:26:28 +0200 
Subject: stronglytyped.org - Web site 

powered by Ada Web Server (AWS) 
Newsgroups: comp.lang.ada 
[…] 
I know that there is already some sites 
running AWS[1], but they are still 
somewhat rare, so I decided to share my 
site, stronglytyped.org. 
The site is running on a Linux-based 
Virtual Private Server (VPS), which 
actually hosts three web sites: 
http://www.stronglytyped.org/ 
- the main site, currently no content, just 

links to Ada resources 
http://ahven.stronglytyped.org/ 
- web pages for my unit testing 

framework 
http://tkoskine.iki.fi/ 
- my personal homepage 
Technical details: 
This all is done using AWS' virtual 
hosting capabilities and there is NO other 
web server (like Apache or lighttpd) used. 

The executable runs under restricted 
account and I forward port 80 to the 
actual server port using iptables. (Because 
ports below 1024 are available only for 
root.) 
The VPS is Linode 360 setup from 
linode.com and it is running Debian 
stable. 
In addition, there is subdomain  
http://hg.stronglytyped.org/ 
which hosts some of my public Ada code, 
but it is served externally by 
http://bitbucket.org/ (Python/Django-
powered site). 
Oh, and special thanks to Debian Ada 
maintainers, who provide a nice set of 
Ada packages (including AWS) working 
out of the box. 
[1] Like http://ada-ru.org/ or parts of 
libre.adacore.com 
From: Jeffrey R. Carter 

<jrcarter@acm.org> 
Date: Wed, 23 Dec 2009 15:15:00 -0800 

PST 
Subject: Re: stronglytyped.org - Web site 

powered by Ada Web Server (AWS) 
Newsgroups: comp.lang.ada 
[…] 
FWIW, blazedialer.com is also an AWS 
site, but I can't give out a login for 
exploring it. 
From: Pascal Obry <pascal@obry.net> 
Date: Thu, 24 Dec 2009 09:20:46 +0100 
Subject: Re: stronglytyped.org - Web site 

powered by Ada Web Server (AWS) 
Newsgroups: comp.lang.ada 
[…] 
The photo critic oriented Web site 
http://v2p.fr.eu.org (fully GPL) is also 
AWS based. It is for french speakers 
though. 
We are using Google code to host it: 
http://code.google.com/p/vision2pixels/ 
It is possible to download sources from 
Git repository or to explorer the sources 
there: 
http://git.savannah.gnu.org/ 
gitweb/?p=v2p.git 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Mon, 21 Dec 2009 16:07:15 -0800 

PST 
Subject: Re: stronglytyped.org - Web site 

powered by Ada Web Server (AWS) 
Newsgroups: comp.lang.ada 
>  […] Oh, and special thanks to Debian 

Ada maintainers, who provide a nice 
set of Ada packages (including AWS) 
working out of the box. 

Thanks for that. I do not ask or receive 
payment for all that work; my only 
reward is this kind of recognition, so your 
post is very motivating. I uploaded AWS 
2.7 to unstable just a few days ago. 



18  Ada Inside 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

Also, you are now correct to use the 
plural since several people have started 
contributing to Ada in Debian. […] 
From: Thomas Løcke <tl@ada-dk.org> 
Date: Mon, 21 Dec 2009 21:21:35 +0100 
Subject: Re: stronglytyped.org - Web site 

powered by Ada Web Server (AWS) 
Newsgroups: comp.lang.ada 
[…] 
http://ada-dk.org is also hosted on a 
Linode 360 setup. They do indeed provide 
a great service at a very reasonable price. 

Indirect Information on Ada 
Usage 
[Extracts from and translations of job-ads 
and other postings illustrating Ada usage 
around the world. —mp] 
Job offer [United Kingdom]: Embedded 
Software Engineer 
Two Software Engineers are required to 
join a team of software engineers, 
developing new embedded platforms for 
global projects, designed to safety-critical 
and standards including ARINC 653 and 
POSIX.  
[…] Key Responsibilities:  
- Design of real-time embedded 

architectural and services software 
compliant with international standards 
for safety critical systems.  

- Integration of bespoke software with 
commercial RTOS’s and software 
services components.  

- Hardware/software integration, debug 
and test  

- Support to application software teams in 
the use of the processing platforms  

Qualifications and Experience:  
- First-hand experience in low-level 

platform and embedded software design, 
including the use of PowerPC or similar 
microprocessors.  

- Hands-on experience in high-integrity 
software development programs 
including the use of software design and 
testing tools.  

- Knowledge of Safety-Critical 
Engineering Standards, SIL, Def-Stan / 
Mil-Stan, ARINC 653 etc.  

- Experience in a high-integrity industry 
such as Railway, Aerospace or Defence  

- Knowledge of high level languages such 
as Ada and C++  

Job offer [United Kingdom]: Software 
Test Engineer 
The role is to develop Ada 95 software 
applications and create tests based on 
previously prepared UML use cases. The 
Artisan Studio development environment 
uses templates to help produce an object-
oriented software framework for a 
Tactical Processor system. The 

application software is intended to run as 
part of an open architecture. 
General Requirements 
- Avionics experience desirable 
- Ability to work in a team under tight 

timescales essential 
- Experience of DO-178B useful 
Software Test Engineer 
- 5+ years test experience of large systems 

at the system / integration level 
- Not unit testers 
- Use case familiarisation - source of 

requirements 
- Artisan Studio familiarisation - 

exploring Artisan use case model (or 
similar tool) 

- Writing test scripts against use cases 
- Hardware/Software integration 
- Target environment using "Green Hills 

AdaMULTI" 
- DOORS 
Job offer [United Kingdom]: Software 
Engineer 
[…] You will take responsibility for the 
development of Safety Critical software 
within the software engineering 
department, throughout the full life cycle. 
[…] Key Responsibilities : 
- Prepare requirements specifications 
- Prepare design documentation 
- Write software code (C, C++, Ada, C# ) 
- Develop test specifications and perform 

tests 
- Support of Integration and System 

Testing 
[…] Qualifications and Experience : 
- Degree in computer, software 

engineering, electronics or mathematical 
subjects 

- Software engineering experience from 
safety-critical field (aerospace, nuclear, 
railway, defence, medical devices etc..) 

- Proficient in coding in C, C++ and Ada 
- OO Analysis 
- Knowledge of networking protocols 

such as TCP/IP  
Job offer [United Kingdom]: Software 
Engineer 
We are looking to recruit graduate-level 
software engineers to support defence 
projects […]. The ideal candidate would 
be a university graduate in Software 
Engineering or a related course and have 
some commercial experience in object 
oriented and UML software development. 
Ideally, you will have some commercial 
experience in Ada, C, C#, C++, Java or 
VB.NET 

You will be involved in the design, 
development, test, debug and support of 
the software. 
Job offer [United Kingdom]: Software 
Technical Lead 
Technical Project Lead / Design Lead 
[…] 
Short Description: 
The Project Technical Lead / Technical 
Design Authority is responsible for the 
project technical delivery from inception 
to delivering to the client, overseeing 
requirements, design, development, test 
and installation and delivery. 
Essential Skills: 
- C++, Java or Ada development 

background 
- Linux 
- UML 
- Object Oriented Design 
- Enterprise Architecture 
- Strong Design background 
Day to Day Responsibilities: 
The position is to provide technical 
leadership / technical design across team 
members and customers at all stages of 
the project lifecycle - from initial bid and 
proposal, project initiation, requirements 
gathering, system design, implementation, 
test, acceptance and in-service support. 
The applicant should be able to show 
good evidence of full lifecycle knowledge 
and that they are capable of technically 
leading multi-disciplined teams. 
Project Technical Lead must be 
experienced in: 
- System Design / System Architecture of 

high performance operational systems; 
- Working with software engineers to 

ensure design is developed as required; 
- Software development and system 

integration -proficient in Linux, C++, 
UML and structured functional and 
architectural modelling methods; 

- Object Orientated Design(OOD) and 
modular design patterns; 

- Implementing and maintaining project 
processes (CMM/CMMi desirable); 

- Enterprise Architecture; 
- Must have strong communication and 

interpersonal skills; 
- Direct experience of customer 

requirements capture; 
- Development of solutions to strict 

delivery timescales and budgets; 
- Architectural design across all project 

disciplines, including hardware, 
software, test, delivery and support. 

Desirable Skills: 
- OpenGL



Ada in Context 19  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

- GIS (Geospatial Information Systems) 
- Iterative Methodologies 
- System Architectures 
- Experience of test architecture and 

process 
- Experience of Defence and/or aircraft 

industry processes and standards 
Job offer [Italy]: Software Developer 
We are looking for a software developer 
with good programming knowledge and 
good proficiency in methodologies for 
software design/modeling and 
configuration management. 
Technical requirements: 
- Good knowledge of C/C++, Ada 83 or 

Ada 95 
- Good knowledge of UML, OOA/OOD 
The ideal candidate has at least 3 years of 
experience. 
Educational background: Laurea [M.Sc. 
—mp] degree, preferably in Aeronautical 
Engineering or Computer Engineering. 
[translated from Italian —mp] 
Job offer [United States]: System 
Software Engineer 
[…] 
Required: 
- A four year engineering degree and a 

minimum of eight years prior business, 
regional or air transport avionics product 
design/system engineering experience 
(or at least 12 years experience in lieu of 
a degree) 

- Excellent written and verbal 
communication skills 

Preferred: 
- Interest in aircraft systems and 

operations is highly desired but not 
absolutely necessary 

- Knowledge of RC ProLine II, 4, 21 or 
Air Transport Avionics systems as well 
as current and developing avionics 
industry standards is highly desirable 

- Knowledge of C++, DOORS, Ada 
Project: 
This position will be involved with the 
avionics systems of Bombardier and/or 
Cessna aircrafts. Tasks will include 
writing system specifications for a wide 
variety of avionics subsystems; 
coordination within design and 
development engineering for the capture 
of technical requirements; system logical 
and physical interconnection/interface 
design; prototype test and evaluation; 
aircraft systems integration testing; and 
other testing as required to demonstrate 
compliance with certification 
requirements. The candidate may also be 
responsible for providing progress status, 
on assigned projects, including 
management of specific work packages 
for scope, and schedule in accordance 

with established systems engineering 
processes. 
Job offer [United States]: Junior Software 
Engineer 
[…] is seeking a Jr. Software Engineer 
who will join the software development 
team in support of the Multidisciplinary 
Engineering Services contract on-site at 
NASA Goddard Space Flight Center in 
Greenbelt, MD. The team is responsible 
for the developing the Goddard Dynamic 
Simulator (GDS) software and 
responsibilities include include software 
programming and unit and integration for 
GDS models using VHDL and FPGAs. 
Required Skills: 
- Must have a BS degree in Electrical 

Engineering, Computer Science or 
related technical discipline or possess 
equivalent experience in lieu of a degree 

- Must have a minimum of 2+ years 
related engineering and/or software 
development experience involving 
electronics hardware and low level 
software development 

- Must be familiar with VHDL 
programming for FPGA's 

- Must be familiar with working in a 
Linux/UNIX OS programming 
environment 

- Must have experience working within a 
scientific or research environment 

Desired Skills: 
- MS degree in Electrical Engineering is 

desirable 
- Digital circuit design and Ada 

programming experience is desirable  

Ada in Context 
New ACM challenge is 
language-discriminatory 
From: Jean-Pierre Rosen 

<rosen@adalog.fr> 
Date: Fri, 18 Dec 2009 12:26:46 +0100 
Subject: New ACM challenge is language-

discriminatory 
Newsgroups: comp.lang.ada 
ACM has launched a new programming 
challenge: 
http://queue.acm.org/icpc/ 
index.cfm?page=faq 
However, the only languages allowed are 
C++, C# and Java. I could understand 
reasons for having everyone compete with 
the same language, but if more than one is 
allowed, it should be open to all 
(including our favorite language, of 
course ;-) ). 
Is anyone on this list influential enough at 
ACM to address this issue, or should we 
start a (mail) mass action? 

From: Georg Bauhaus <rm.dash-
bauhaus@futureapps.de> 

Date: Fri, 18 Dec 2009 16:06:56 +0100 
Subject: Re: New ACM challenge is 

language-discriminatory 
Newsgroups: comp.lang.ada 
Just a thing that I noted when last looking 
at ACM Queue (a while ago), namely that 
the language selection seems to be in 
accord with 
(a) ACM sponsors, 
(b) perception of dominating languages in 
magazines for job seekers, CS professors, 
and labor merchants. 
And maybe they don't have Ada staff to 
look at solutions written in languages 
other than the currently supported?  
("Currently" is encouraging, anyway.) 
From: Adam Beneschan 

<adam@irvine.com> 
Date: Fri, 18 Dec 2009 08:26:08 -0800 PST 
Subject: Re: New ACM challenge is 

language-discriminatory 
Newsgroups: comp.lang.ada 
[…] 
"All"? Georg implied that they may not 
have the staff to look at Ada solutions, but 
I'm sure that they at least have a few 
people there that can understand it; there 
have got to be tons of other obscure 
programming languages that nobody there 
would be able to understand. Plus, are any 
of the judges going to be enthusiastic 
about looking at a Forth program, or at an 
APL program that someone wrote in one 
line just to prove that they could?? :) 
So some discrimination seems necessary--
-the line has to be drawn somewhere.  
Too bad they drew it on the wrong side of 
our language. 
From: Stephen Leake 

<stephen_leake@stephe-leake.org> 
Date: Fri, 18 Dec 2009 21:49:41 -0500 
Subject: Re: New ACM challenge is 

language-discriminatory 
Newsgroups: comp.lang.ada 
[…] 
The competition doesn't mention anything 
about needing to read the code. 
Once you sign in, you can get more info: 
Player implementations are external to the 
game itself. A player is a separate 
executable that communicates with the 
game via standard input and standard 
output. The player is executed when the 
game starts up and continues running until 
the game is finished. At the start of each 
turn, the game engine sends the player a 
description of the game state. The player 
reads this description from standard input, 
chooses a move and sends it back by 
writing it to standard output. 
… 
Player code will be compiled and will run 
on a virtual machine running on a 3.0 Ghz 



20  Ada in Context 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

Xeon processor installed with version 5.2 
CentOS. Java submissions will be 
compiled and run with version 1.6 of the 
Sun JDK, and C++ submissions will be 
compiled with version 4.1.2 of g++. 
So there's no technical reason the code 
can't be in Ada. Or any other language 
supported by the CentOS distribution! 
From: Stephen Leake 

<stephen_leake@stephe-leake.org> 
Date: Fri, 18 Dec 2009 21:52:39 -0500 
Subject: Re: New ACM challenge is 

language-discriminatory 
Newsgroups: comp.lang.ada 
[…] 
I don't see the actual definition of how to 
"win" the competition, but the implication 
is the only thing that counts is winning 
games against other code submissions - 
no judging of code. 
We should at least ask for a rationale for 
the language choices. 
From: Karl Nyberg <karl@grebyn.com> 
Date: Fri, 18 Dec 2009 13:16:06 -0800 PST 
Subject: Re: New ACM challenge is 

language-discriminatory 
Newsgroups: comp.lang.ada 
[…] 
There is a feedback page associated with 
the ACM Queue initiative. As a longtime 
ACM member (since 1978), I have used 
this feature to request justification for the 
limitation specified in the competition and 
the mechanisms necessary to remove it. 
Similar feedback is certainly welcome, 
I'm sure... :-) 

On the body of generic units 
From: xorquewasp@googlemail.com 
Date: Sat, 9 Jan 2010 04:23:27 -0800 PST 
Subject: GNAT requires body of generic unit 

to be present at build? 
Newsgroups: comp.lang.ada 
A discussion arose in #ada on 
irc.freenode.net about GNAT requiring 
the body of a generic unit to be present 
when compiling code that uses the 
generic. 
A quote from the Ada 95 issues: 
{AI95-00077-01} {AI95-00114-01} 
{extensions to Ada 83} Ada 83 allowed 
implementations to require that the body 
of a generic unit be available when the 
instantiation is compiled; that permission 
is dropped in Ada 95. This isn't really an 
extension (it doesn't allow Ada users to 
write anything that they couldn't in Ada 
83), but there isn't a more appropriate 
category, and it does allow users more 
flexibility when developing programs. 
How come GNAT still requires this? 
From: Simon J. Wright 

<simon.j.wright@mac.com> 
Date: Sun, 10 Jan 2010 06:23:43 -0800 PST 
Subject: Re: GNAT requires body of generic 

unit to be present at build? 

Newsgroups: comp.lang.ada 
[…] 
AI95-00077-01 Issue 6 starts by saying 
"The NOTE in 10.1.4(10), which says that 
separate compilation of generic bodies is 
required, is correct. This implies that an 
implementation must be capable of 
detecting legality errors in a compilation 
unit that instantiates a generic unit, 
without seeing the generic body. It does 
not imply that the compiler must generate 
code without seeing the generic body." 
So compiling with -gnatc (semantic check 
only) is OK in the absence of a generic 
body: 
-- The generic body is present, code 
generation OK 

nidhoggr:tests simon$ gnatmake -I../src 
-c -u –f collection_test_support.ads 
gcc -c -I../src 
   collection_test_support.ads 

--  Move the generic body 

nidhoggr:tests simon$ mv ../src/bc-
containers-collections-unbounded.adb 
../src/bc-containers-collections-
unbounded.adb 

--  Code generation fails 

nidhoggr:tests simon$ gnatmake -I../src 
-c -u –f collection_test_support.ads  
gcc -c -I../src   
   collection_test_support.ads 
collection_test_support.ads:24:06: body 
of generic unit "Unbounded" not found 
gnatmake: "collection_test_support.ads" 
compilation error 

--  Semantic checks OK 

nidhoggr:tests simon$ gnatmake -I../src 
-c -u –f collection_test_support.ads 
-gnatc 
gcc -c -I../src –gnatc 
   collection_test_support.ads 

On static libraries imported 
in a shared library 
From: Andrei Krivoshei 

<andrei.krivoshei@gmail.com> 
Date: Tue, 19 Jan 2010 10:02:26 -0800 PST 
Subject: GNAT GPL 2009: Shared library 

project cannot import static library 
project? 

Newsgroups: comp.lang.ada 
[…] 
I have tried to compile a shared library 
project using: "GPS 4.3.1 (20090114) 
hosted on pentium-mingw32msv & 
GNAT GPL 2009 (20090519)". 
My shared library project imports a static 
library project and compiler (gnatmake) 
raise an error: "Shared library project 

cannot import static library project". 
Why??? 
Using the GNAT GPL 2008 with the 
same projects don't raise any errors. 
[…] 
From: Andrei Krivoshei 

<andrei.krivoshei@gmail.com> 
Date: Wed, 20 Jan 2010 05:15:36 -0800 

PST 
Subject: Re: GNAT GPL 2009: Shared 

library project cannot import static 
library project? 

Newsgroups: comp.lang.ada 
[…] 
More exactly, I have used the next 
sequence of commands: 

# gnatmake -c -gnatc  -PMyProject.gpr -
d -XLegacy=3DAda2005 
# gnatdll -d ../libMyDLL.dll -e 
./src/libMyDLL.def -I../obj -n 
../obj/mydll.ali 

[…] 
From: Vadim Godunko 

<vgodunko@gmail.com> 
Date: Thu, 21 Jan 2010 11:01:57 -0800 PST 
Subject: Re: GNAT GPL 2009: Shared 

library project cannot import static 
library project? 

Newsgroups: comp.lang.ada 
[…] 
It is an error condition not detected by 
GNAT GPL 2008. 
From: Simon J. Wright 

<simon.j.wright@mac.com> 
Date: Wed, 20 Jan 2010 12:12:45 -0800 

PST 
Subject: Re: GNAT GPL 2009: Shared 

library project cannot import static
 library project? 

Newsgroups: comp.lang.ada 
[…] 
>  My shared library project imports a 

static library project and compiler 
(gnatmake) raise an error: "Shared 
library project cannot import static 
library project". Why??? 

Perhaps because a shared library needs to 
be compiled to be position-independent ( 
-fPIC on some platforms) but a static 
library doesn't? 
[…] 
Have you tried gprbuild? would 
(probably, I don't know Windows) know 
how to run gnatdll. 
From: Per Sandberg 

<per.sandberg@bredband.net> 
Date: Sat, 23 Jan 2010 23:07:59 +0100 
Subject: Re: GNAT GPL 2009: Shared 

library project cannot import static 
library project? 

Newsgroups: comp.lang.ada 
Having a dynamic library importing a 
static library may lead to very 



Ada in Context 21  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

"interesting" behavior of programs in a 
larger context, if there is any "static" data 
in the static library and therefore this is 
treated as an error by default with the 
GNAT tools. 
This default behaviour could be 
suppressed with switches to gprbuild if 
you know what you are doing and have 
read the manuals in depth and understand 
all the implications. 
[…] 

Dynamic linking in Ada 
From: Steven Shack 

<stevenshack@stevenshack.com> 
Date: Thu, 3 Dec 2009 01:36:21 -0800 
Subject: Loadable module in Ada. 
Newsgroups: comp.lang.ada 
I'd like to create a loadable module in an 
Ada program. I've searched around, but 
can't seem to find any examples of this. 
Say I've got some calculation or a driver 
and I'd like to have multiple different 
versions of it with the same interface. I'd 
like to be able to load and replace these 
modules at runtime. 
In C I'd do this with pic code, dlsym and 
function pointers. I can't seem to find the 
equivalent in Ada. Can anyone help me 
out? 
From: Xavier Grave 

<xavier.grave@ipno.in2p3.fr> 
Date: Thu, 03 Dec 2009 11:00:44 +0100 
Subject: Re: Loadable module in Ada. 
Newsgroups: comp.lang.ada 
[…] 
I have done something that seems to fit 
with your need. 
Here is a link where you will find a tgz 
file compiling/running under Linux using 
dlsym. It is based on an abstract class that 
your plugin should inherit of. 
http://dl.free.fr/pWQwqMpVK [The link 
is no longer valid —mp] 
Be very careful about the elaboration code 
when you do some "with" of other 
package. One on the "best" policy is to be 
the more restrictive that you can with the 
packages you "with" (pragma Pure and so 
on...) 
[…] 
From: Mark Lorenzen 

<mark.lorenzen@gmail.com> 
Date: Thu, 3 Dec 2009 05:40:17 -0800 PST 
Subject: Re: Loadable module in Ada. 
Newsgroups: comp.lang.ada 
[…] 
I'm not sure what you mean by loadable 
module, but if you mean dynamic linking 
at run-time, you should take a look at this 
very interesting article: 
http://www.adacore.com/wp-content/ 
uploads/2005/04/dynamic_plugin_loading
_with_ada.pdf 

Note that you will of course still need 
support from the OS, so there is no pure 
Ada solution, just as there is no pure C 
solution (the dl* system calls just happen 
to have a C API). 
From: Pascal Obry <pascal@obry.net> 
Date: Thu, 03 Dec 2009 21:06:18 +0100 
Subject: Re: Loadable module in Ada. 
Newsgroups: comp.lang.ada 
Steven, look at the Gwiad module: 
http://code.google.com/p/gwiad/ 

$ git clone git://repo.or.cz/gwiad.git 

It is a framework using whatever OS 
services underneath based on Ada 
interface. 
[…] 

Internationalization in Ada 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Sat, 12 Dec 2009 01:23:07 -0800 PST 
Subject: Re: Internationalization for Ada 
Newsgroups: comp.lang.ada 
>  […] Is there a preferred way for 

internationalization in Ada 2005 - like 
GNU gettext for GNU/Linux? If 
anyone has experience with this topic, I 
would be glad for a link which directs 
me into the right direction, also if there 
is something special for GtkAda. […] 

See the package GtkAda.Intl in GtkAda. 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Sat, 12 Dec 2009 12:51:35 +0100 
Subject: Re: Internationalization for Ada 
Newsgroups: comp.lang.ada 
[…] 
Yes, but there is also another way based 
on widget style properties, which I prefer. 
Each variable text is made a style 
property of its container widget. When the 
widget is initialized, its class record is 
initialized as well. Here the necessary 
style properties are added: 

if <the class record was initialized> then 
   Class_Install_Style_Property 
   (  Class_Record,  -- Freshly initialized  
                                   class record 
      Gnew_String 
      (  Name    => "fancy text", 
         Nick    => "hey", 
         Default => "hey", 
         Blurb   => "The text to appear  
                           in the label" 
     )  ); 
 
In the widget's "style_set" event handler 
the texts are actually set. E.g. 

procedure Style_Set ( 
   Widget  : access    
      Gtk_Fancy_Widget_Record'Class)  

is 
begin 
   Set_Text ( 
           Widget.Label,  
           Style_Get Widget, "fancy text"); 
   ... 

The texts and other styles are then defined 
in the GTK resource file. That need to be 
done only if necessary, because there is a 
default for any property. Only in order to 
change the texts you provide and load 
another resource file. This can be done 
several times, if you properly handle the 
event "style_set". 
The advantage of this method is that it 
does not require any tools or any 
additional files to work. It does not 
depend on the OS and its settings. (E.g. 
when I use German locale, I still don't 
want texts in German). Style properties 
can be more than only texts. For example 
you can have images there. The way 
properties are matched are very 
elaborated, you can define quite complex 
rules (by class name, by widget name 
etc), instead of simple equality in the case 
of locales. 
A more detailed description how to deal 
with GTK style properties in GtkAda: 
http://www.dmitry-kazakov.de/ada/ 
gtkada_contributions.htm#4 
On GTK resource files see: 
http://library.gnome.org/devel/gtk/ 
unstable/gtk-Resource-Files.html 
From: Christophe Chaumet 

<devteam@chaumetsoftware.com> 
Date: Sun, 13 Dec 2009 15:35:00 +0100 
Subject: Re: Internationalization for Ada 
Newsgroups: comp.lang.ada 
 […] 
For my own usage I have a package "intl" 
which contains all the string literals and 
there is an instance of this package for 
each language (intl-fr.ads, intl-en.ads,...)  
and I have defined a variable in GPS 
called 'language'. In the project file there 
is something like: 

package Naming is 
   case language is 
    when "french" => for  
     Specification ("intl") use "intl_fr.ads"; 
    when "english" => for  
     Specification ("intl") use "intl-en.ads"; 
   end case; 
end Naming; 

When I want to generate an executable in 
a language I just select the proper value 
and the build do all the job. This works 
only with GPS, but its is independent of 
any other package like Gtk. 
[…] 
From: Jacob Sparre Andersen 

<sparre@nbi.dk> 



22  Ada in Context 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

Date: Mon, 14 Dec 2009 16:18:49 +0100 
Subject: Re: Internationalization for Ada 
Newsgroups: comp.lang.ada 
>  For my own usage I have a package 

"intl" which contains all the string 
literals and there is an instance of this 
package for each language […] 

But this means that translation has to be 
done _before_ compilation. 
One of the benefits of using the GNU 
Gettext system is that translators can 
translate and distribute translations 
independent of the compiled program. 
From: Georg Bauhaus <rm-

host.bauhaus@maps.futureapps.de> 
Date: Sat, 12 Dec 2009 13:17:57 +0100 
Subject: Re: Internationalization for Ada 
Newsgroups: comp.lang.ada 
[…] 
GtkAda's binding to libintl/GNU gettext 
seems the obvious choice in this case. 
There is, however, another mode of 
handling text that benefits from the Ada 
type system. The two can in fact be 
combined to yield an enhancement. 
One way to distinguish a message from a 
menu text from a button text from a log 
entry template text or ... is to ignore their 
difference and make them all string 
literals, then inspect their context, and 
possibly follow some preprocessing 
conventions so that tools outside the 
language can hopefully set up a database 
– non-standard, though widespread in its 
niche – of strings to be loaded. 
You wouldn't be doing this to whole 
numbers in Ada, would you? The obvious 
choice is to define different types of 
numbers for your different numbers. Or to 
think even harder about what you can do 
to go from one "measurements unit 
locale" to another, in case the numbers 
represent quantities of a certain type.  
The pieces of text just enumerated belong 
to different sets of entities, part of 
different behavior of the program, serving 
different functions (labels, help text, log 
entries). Aren't they be worth a type? The 
text types will then serve two purposes: 
1 -  distinguish the different kinds of 

information that now happen to be 
represented(!) as objects of type 
string.  

2 -  use standard Ada programming to 
produce translation files guided by the 
text types. 

Don't know, though, whether there isn't 
too big a blind spot here. 
The point is, you use plain Ada tools to 
(1)  search your program for just the 

instances of text you want, 
(2)  make the findings available in a 

format of some translation tool, e.g. 
Gtk's or Qt's translation tools (The 
latter does _not_ require your program 
to use Qt.) 

(3)  use any mechanism of choice to load 
the translations 

Part 3, with whichever mechanism, 
requires some form of unique identifier. 
This text identifier could be the variable's 
fully qualified name---unavailable at run 
time in Ada, but available to ASIS base 
tools. 
Or you choose yourself a unique 
enumeration literal, like the codes of SQL 
diagnostic messages. 
Or some numbering scheme such as the 
one that HTTP uses for status codes and 
corresponding message text. 

package Example is 
    type Fillin_Slot_Count is  
         range 0 .. Max_Fillin_Slots; 
     --  "A % has been found on line %"  
     -- has 2 slots 
    type Label_Text is access String; 
    type Label_ID is 
        (Name_Field, Age_Field, 
         Amount_Field, ...); 
    Known_Message : array (Label_ID) 
         of Label_Text; 
    type Field_Label 
           (Lang : Supported_Language; 
            For_ID : Label_ID) 
     is 
       new Limited_Controlled with 
       record 
          Text : Known_Messages  
               (For_ID); 
          Insertions : Fillin_Slot_Count; 
       end record; 
    overriding procedure Initialize  
         (Object : in out Field_Label); 
    --  check consistency, 
    --  e.g. is no of slot markers = 
    --  Object.Insertions? 
    procedure Finalize  
         (Object : in out Field_Label); 
    --  free storage used etc. 
    Confirmation_Button := ... 
       Field_Label'(Lang => en_UK, 
           For_ID => Confirmation_Button, 
           Text => Known_Message (...))); 
end Example; 

The important variable in Example is 
Known_Messages. With it, it is now easy 
to write a simple Ada program that 
performs part (2) above.  That is, the 
program writes out a representation of all 
messages to be translated, in the format 
needed by your preferred translation tool.  
For example, GNU Gettext or Qt 
Linguist. 
Likewise, the definitions in package 
Example above provide all information 
needed to load a specific message in a 
specific language at run time. 

Interfacing Ada code 
compiled with different 
compilers 
From: David Henry <tfc.duke@gmail.com> 
Date: Wed, 2 Dec 2009 06:54:05 -0800 PST 
Subject: Interfacing Ada with Ada 
Newsgroups: comp.lang.ada 
[…] 
Is it possible to interface Ada code 
compiled with an older compiler (GNAT 
3.14) and for which I just have specs 
(ads), objects and ali files (so I can't 
recompile it), with Ada code compiled 
with a newer compiler (GNAT 2009), and 
for which I have all the sources? 
From: Jean-Pierre Rosen 

<rosen@adalog.fr> 
Date: Wed, 02 Dec 2009 17:21:35 +0100 
Subject: Re: Interfacing Ada with Ada 
Newsgroups: comp.lang.ada 
[…] 
Simple answer: no. The ali file contains 
the version of the compiler that was used, 
and the binder will refuse a unit from a 
different version. 
Now, if you are in a desperate situation, 
you can try and edit the ali file to fool the 
binder (it is a plain text file, and quite 
easy to understand). Who knows? If you 
are very lucky, it might even work… 
From: Pascal Obry <pascal@obry.net> 
Date: Wed, 02 Dec 2009 18:40:52 +0100 
Subject: Re: Interfacing Ada with Ada 
Newsgroups: comp.lang.ada 
>  Simple answer: no. The ali file contains 

the version of the compiler that was 
used, and the binder will refuse a unit 
from a different version. 

Hum... For "simple" code not using the 
Ada runtime, won't it work to consider 
this old Ada code as it was some external 
C code: 
0. Remove all .ali files coming from 3.14   

compiler. Move away specs too. 
1. Create interface specs for say "old.o" 

object code: 

  procedure Foo (P : in Integer); 
  pragma Import (Ada, Foo); 

2. When linking add the old object file 

  $ gnatmake xyz -largs old.o 

If the old code uses the Ada runtime 
(tasks, controlled objects, …) this just 
won't work of course. 
From: Simon J. Wright 

<simon.j.wright@mac.com> 
Date: Wed, 2 Dec 2009 14:15:47 -0800 PST 
Subject: Re: Interfacing Ada with Ada 
Newsgroups: comp.lang.ada 
[…] 
Your problem (well, one of them!) is 
going to be with getting elaboration right. 



Ada in Context 23  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

Then there's differences between the 
runtimes expected by generated code. 
For the elaboration problem, do you have 
enough 3.14 artifacts to allow you to run 
the 3.14 binder? You could maybe make a 
library out of the 3.14 code (+ 3.14 
runtime)? 
Not sure how much reliance I'd want to 
place on the result. 
From: David Henry <tfc.duke@gmail.com> 
Date: Wed, 2 Dec 2009 23:48:39 -0800 PST 
Subject: Re: Interfacing Ada with Ada 
Newsgroups: comp.lang.ada 
[…] 
I'm afraid my old code is using the GNAT 
runtime :( 
I imagined once something like 
interfacing old code with C and then the C 
with new code. But linking may be hard, 
especially with the GNAT runtime 
dependency. 
From: Pascal Obry <pascal@obry.net> 
Date: Thu, 03 Dec 2009 21:03:00 +0100 
Subject: Re: Interfacing Ada with Ada 
Newsgroups: comp.lang.ada 
[…] 
Yes, if there is some GNAT runtime 
dependencies that's almost impossible. 
Especially in your case where you have 
code using a very old runtime where some 
routines may have changed or even 
removed in new runtime. 
From: Florian Weimer 

<fw@deneb.enyo.de> 
Date: Sat, 05 Dec 2009 11:22:22 +0100 
Subject: Re: Interfacing Ada with Ada 
Newsgroups: comp.lang.ada 
[…] 
If your platform has a decent linker, you 
can link the old code and only make very 
few symbols available. You need to link 
the GNAT run-time library statically, but 
that's probably the least of your problems. 

On deprecated subprograms 
in Ada 
From: Michael Rohan 

<michael@zanyblue.com> 
Date: Wed, 20 Jan 2010 19:47:28 -0800 

PST 
Subject: No "pragma Deprecated (NAME)"? 
Newsgroups: comp.lang.ada 
[…] 
I was re-organizing some code and 
wanted to change some 
procedure/function names, e.g., 

function To_String (T : My_Type)  
   return String; 

becomes 

function Name (T : My_Type)  
   return String; 

Without consulting the docs, I tried 

function Name (T : My_Type)  
   return String; 
function To_String (T : My_Type)  
   return String 
   renames Name; 
pragma Deprecated (To_String); 

I guess I'm too used to annotating 
methods in Java and was surprised I 
couldn't do this in Ada. 
The only way to do this is to simply 
rename and fix the compilation errors 
which is may be in the Ada style: just get 
it right. 
[…] 
From: Jeffrey R. Carter 

<jrcarter@acm.org> 
Date: Wed, 20 Jan 2010 20:57:55 -0700 
Subject: Re: No "pragma Deprecated 

(NAME)"? 
Newsgroups: comp.lang.ada 
[…] 
"Deprecated" is not a language-defined 
pragma, but unrecognized pragmas should 
be ignored (ARM 2.8). I see nothing 
wrong with your function renaming. What 
error message did you get? 
From: Michael Rohan 

<michael@zanyblue.com> 
Date: Wed, 20 Jan 2010 20:00:36 -0800 

PST 
Subject: Re: No "pragma Deprecated 

(NAME)"? 
Newsgroups: comp.lang.ada 
[…] 
Yes, it generated a warning as un-
recognized but I was hoping for the 
functionality, i.e., the implementation of 
this pragma where usage of the old name 
generates deprecated warning when used. 
[…] 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Thu, 21 Jan 2010 01:30:33 -0800 PST 
Subject: Re: No "pragma Deprecated 

(NAME)"? 
Newsgroups: comp.lang.ada 
[…] 
GNAT has an implementation-defined 
"pragma Obsolescent", see 
http://gcc.gnu.org/onlinedocs/gnat_rm/ 
Pragma-Obsolescent.html 

Support for Transport 
Layer Security in Ada 
From: Riccardo Bernardini 

<framefritti@gmail.com> 
Date: Fri, 18 Dec 2009 04:44:06 -0800 PST 
Subject: Transport Layer Security for Ada? 
Newsgroups: comp.lang.ada 
[…] 
a really fast question: does it exist a freely 
available package for using TLS 
(Transport Layer Security) for Ada (even 

GNAT-dependent is OK)? (e.g., a binding 
to the GNU TLS library) 
[…] 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Fri, 18 Dec 2009 07:26:51 -0800 PST 
Subject: Re: Transport Layer Security for 

Ada? 
Newsgroups: comp.lang.ada 
[…] 
There used to be one as part of AWS but 
they removed it. You can still get the last 
version of the sources from AdaCore's 
Subversion repository: 
http://libre2.adacore.com/viewvc/trunk/ 
AWS/ssl/ssl-gnutls.ads?revision=8743& 
view=markup&sortby=log&pathrev=8743 
(yes, it is a single file AFAICT). 

Implementation of 
Ada.Execution_Time in 
GNAT 
From: Ingo Sander 

<sander.ingo@gmail.com> 
Date: Fri, 4 Dec 2009 03:09:35 -0800 PST 
Subject: gnat: Execution_Time is not 

supported in this configuration 
Newsgroups: comp.lang.ada 
[…] 
I cannot get the package 
Ada.Execution_Time to work with 
GNAT, although the GNAT 
documentation says that the real-time 
annex is fully supported… I use the 
GNAT version 4.4 on a Ubuntu 9.10 
distribution. 
The typical error message I get is 

gcc -c executiontime.adb 
Execution_Time is not supported in this 
configuration compilation abandoned 

How can I configure GNAT to support 
the Ada.Execution_Time package? 
[…] 
Below follows an example program that 
generates the error message. 
[…] 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Fri, 4 Dec 2009 12:26:26 +0100 
Subject: Re: gnat: Execution_Time is not 

supported in this configuration 
Newsgroups: comp.lang.ada 
[…] 
I cannot tell anything about Ubuntu, but 
the program you provided contains 
language errors. 
It also has the problem that "delay" is 
non-busy in Ada, i.e. the program will 
count 0 CPU time for a very long time, at 
least under Windows, where the system 
services, which I presume, 



24  Ada in Context 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

Ada.Execution_Time relies on, are 
broken. 
Anyway, here is the code which works to 
me: 

with Ada.Text_IO; use Ada.Text_IO; 
with Ada.Real_Time;  
use Ada.Real_Time; 
with Ada.Execution_Time;   
use Ada.Execution_Time; 
procedure ExecutionTime is 
   task T; 
   task body T is 
      Start : CPU_Time := Clock; 
   begin 
      loop 
         Put_Line (Duration'Image 
               (To_Duration (Clock - Start))); 
         for I in 1..40 loop 
            Put ("."); -- This does something! 
         end loop; 
      end loop; 
   end T; 
begin 
   null; 
end ExecutionTime; 

Under Windows this shows rather poor 
performance, which again is not 
surprising, because as I said there is no 
way to implement Ada.Execution_Time 
under Windows. 
Maybe Linux counts CPU time better, I 
never investigated this issue. 
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de> 
Date: Fri, 04 Dec 2009 13:10:26 +0100 
Subject: Re: gnat: Execution_Time is not 

supported in this configuration 
Newsgroups: comp.lang.ada 
The reasons are explained in the GNAT 
source files. 
[…] 

--  This unit is not implemented in  
-- typical GNAT implementations that lie 
-- on top of operating systems, because  
-- it  is infeasible to implement in such  
--  environments. 
--  If a target environment provides 
--  appropriate support for this package 
--  then the Unimplemented_Unit 
-- pragma should be removed from this  
-- spec and an appropriate body  
-- provided. 
 
with Ada.Task_Identification; 
with Ada.Real_Time; 
 
package Ada.Execution_Time is 
   pragma Preelaborate; 
 
   pragma Unimplemented_Unit; 

From: Ingo Sander 
<sander.ingo@gmail.com> 

Date: Mon, 7 Dec 2009 00:08:55 -0800 PST 
Subject: Re: gnat: Execution_Time is not 

supported in this configuration 
Newsgroups: comp.lang.ada 
 […] 
Still I wonder why it is written in the 
GNAT reference specification that the 
real time annex is fully implemented [1]. 
"Real-Time Systems (Annex D) The 
Real-Time Systems Annex is fully 
implemented." 
According to the ARM 'Execution Time' 
is part of the real-time annex [2], so it 
should be implemented. 
So, does "fully implemented" mean that it 
is only in principle fully implemented, but 
that the underlying OS/hardware (in my 
case 64-bit Ubuntu-Linux (9.10) on an 
Intel QuadCore) has to support this 
features as well? 
[…] 
[1] http://gcc.gnu.org/onlinedocs/gnat_ 
rm/Specialized-Needs-Annexes.html# 
Specialized-Needs-Annexes 
[2] http://www.adaic.org/standards/ 
05rm/html/RM-D-14.html 
From: John B. Matthews 

<jmatthews@wright.edu> 
Date: Mon, 07 Dec 2009 12:13:20 -0500 
Subject: Re: gnat: Execution_Time is not 

supported in this configuration 
Newsgroups: comp.lang.ada 
[…] 
I'm guessing "fully implemented" on 
supported platforms and "not required in 
all implementations [1]." GNAT actually 
meets the implementation and 
documentation requirements [2]. My OS 
simply doesn't have the required facilities; 
it's designed for a GUI user, not real-time. 
If I were cross-developing, I'd perhaps 
create a fake body. 
On Linux, it might be possible to get 
something relatively informative out of 
/proc/<PID>/task/<TID>/stat. 
[1]<http://gcc.gnu.org/onlinedocs/gnat_ 
rm/Specialized-Needs-Annexes.html# 
Specialized-Needs-Annexes> 
[2]<http://www.adaic.org/standards/05rm/
html/RM-D-14.html> 
From: John B. Matthews 

<jmatthews@wright.edu> 
Date: Fri, 04 Dec 2009 13:28:24 -0500 
Subject: Re: gnat: Execution_Time is not 

supported in this configuration 
Newsgroups: comp.lang.ada 
[…] 
> How can I configure gnat to support the 

Ada.Execution_Time package? 
I defer to Dmitry A. Kazakov about 
Windows, but this variation produces 
similar results on MacOS 10.5 & Ubuntu 
9.10 using GNAT 4.3.4: 

with Ada.Text_IO; use Ada.Text_IO; 
with Ada.Real_Time;  
use Ada.Real_Time; 
procedure ExecutionTime is 
   task T; 
   task body T is 
      Start : Time := Clock; 
      Interval : Time_Span :=  
               Milliseconds(100); 
   begin 
      loop 
       Put_Line(Duration'Image 
                (To_Duration(Clock - Start))); 
         delay To_Duration(Interval); 
      end loop; 
   end T; 
begin 
   null; 
end ExecutionTime; 
 
<console> 
$ ./executiontime 
 0.000008000 
 0.100168000 
 0.200289000 
 0.300409000 
 0.400527000 
 0.500575000 
… 
</console> 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Fri, 4 Dec 2009 20:01:57 +0100 
Subject: Re: gnat: Execution_Time is not 

supported in this configuration 
Newsgroups: comp.lang.ada 
[…] 
Your code counts the wall clock time. On 
the contrary Ada.Execution_Time should 
do the task time, i.e. the time the task 
actually owned the processor or, maybe, 
the time the system did something on the 
task's behalf. 
This package heavily depends on the OS 
services at least when the tasks are 
mapped onto the OS scheduling items 
(like threads). 
As far as I know it is impossible to 
implement it reasonably under Windows, 
because the corresponding service (used 
by the Task Manager too) counts time 
quanta instead of the time. This causes a 
massive systematic error if tasks are 
switched before they consume their 
quanta. I.e. *always* when you do I/O or 
communicate to other tasks. The bottom 
line, under Windows 
Ada.Execution_Time can be used only for 
tasks that do lengthy computations 
interrupted only by the scheduler, so that 
all counted quanta were consumed and no 
time were spent in uncounted quanta.  



Ada in Context 25  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

I don't know, if or how, this works under 
Linux or Max OS. 
From: John B. Matthews 

<jmatthews@wright.edu> 
Date: Fri, 04 Dec 2009 16:50:01 -0500 
Subject: Re: gnat: Execution_Time is not 

supported in this configuration 
Newsgroups: comp.lang.ada 
Ah, thank you for clarifying this. Indeed, 
one sees the secular growth in the output 
as overhead accumulates. I meant to 
suggest that other parts of Annex D may 
be supported on a particular platform, 
even if Ada.Execution_Time is not. 
[…] 
I should have mentioned that both 
systems specify "pragma 
Unimplemented_Unit" in 
Ada.Execution_Time. On Mac OS X 
10.5, Ada.Real_Time.Time_Span_Unit is 
0.000000001, but I'm unaware of a Mac 
clock having better than microsecond 
resolution, as suggested in the output 
above. I'm running Linux in VirtualBox, 
so I suspect any results reflect the host OS 
more than anything else. 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Fri, 4 Dec 2009 20:59:25 -0600 
Subject: Re: gnat: Execution_Time is not 

supported in this configuration 
Newsgroups: comp.lang.ada 
[…] 
Obviously this depends on the purpose. 
For many profiling tasks, the Windows 
implementation is just fine. The quanta 
seem to be short enough that most tasks 
run long enough to be counted. (And I/O 
has probably already be reduced to the 
minimum before even applying a profiler, 
if not, you're probably profiling the I/O 
first, not the CPU.) But I would have to 
agree that it isn't all that real-time. 
In any case, thanks for the clear 
explanation of the limitations of the 
Windows services. I'm sure that I'll run 
into them sooner or later and I'll hopefully 
remember your explanation. 

Ensuring resource cleanup 
From: Florian Weimer 

<fw@deneb.enyo.de> 
Date: Mon, 08 Feb 2010 15:16:12 +0100 
Subject: Ensuring resource cleanup 
Newsgroups: comp.lang.ada 
It looks as if I might need to do some Ada 
maintenance programming soon. I can use 
the GNAT from GCC 4.3. 
Are there any new ways to ensure 
resource cleanup? 
I tried to use Ada.Finalization. 
Limited_Controlled in the past, but there 
were several issues with it: there was 
some run-time overhead (because of the 
tag and because the finalizer is abort-
deferred, which seemed to defeat inlining 

and scalar replacement of aggregates), it 
was impossible to instantiate generics 
containing such types below the library 
level, and having multiple different types 
inherting from Limited_Controled in the 
same package often resulted in multi-
dispatch errors (and using 'Class required 
exposing the tagged nature of the type in 
the interface, which has other drawbacks). 
Explicit cleanup using cleanup 
subprograms is okay, too, provided that 
there is some tool to ensure that they are 
used properly. This is despite the rather 
cumbersome syntax: 

declare 
   X : Object; 
begin 
   Init (X); 
   begin 
     Make_Use_Of (X); 
     exception 
       when others => 
          Cleanup (X); 
          raise; 
   end; 
   Cleanup (X); 
end; 

But I'd really have a tool that ensures that 
Init and Cleanup calls are properly paired 
in this way. 
Are there other approaches I don't know 
about yet? 
From: Jean-Pierre Rosen 

<rosen@adalog.fr> 
Date: Mon, 08 Feb 2010 16:29:38 +0100 
Subject: Re: Ensuring resource cleanup 
Newsgroups: comp.lang.ada 
[…] 
Such a tool exists, of course ;-). 
AdaControl rule Unsafe_Paired_Calls. 
From: Robert A Duff 

<bobduff@shell01.TheWorld.com> 
Date: Mon, 08 Feb 2010 10:31:20 -0500 
Subject: Re: Ensuring resource cleanup 
Newsgroups: comp.lang.ada 
>  […] I tried to use 

Ada.Finalization.Limited_Controlled in 
the past, but there were several issues 
with it: there was some run-time 
overhead AdaCore is working on a 
more efficient implementation of 
finalization. 

    (because of the tag and because the 
finalizer is abort-deferred, … 

I think if you use the appropriate pragma 
Restrictions, so the compiler knows there 
are no aborts, it will avoid the cost of 
deferring and undeferring aborts (which is 
quite high on some systems). 
> …which seemed to defeat inlining 
Inlining of what?  The Initialize and 
Finalize calls? It seems feasible to inline 
them in most cases, but I'm not sure if 
GNAT is capable of that. Try it. 

> …and scalar replacement of 
aggregates), it was impossible to 
instantiate generics containing such 
types below the library level,… 

Ada 2005 allows such nesting (with or 
without generics). 
>  …and having multiple different types 

inheriting from Limited_Controlled in 
the same package often resulted in 
multi-dispatch errors (and using 'Class 
required exposing the tagged nature of 
the type in the interface, with has other 
drawbacks). 

Yes, but in my experience these are minor 
issues. 
Another way to avoid multi-dispatch is to 
put the procedure in a nested package.   
Both workarounds are annoying, I admit. 
>  […] But I'd really have a tool that 

ensures that Init and Cleanup calls are 
properly paired in this way. 

You could wrap with this procedure: 

procedure With_Cleanup ( 
      Action : not null access  
                          procedure (...)); 

so you only have to write the above 
pattern once (per type that needs cleanup), 
and you can call it with any Action 
procedure you like. 
Note that this is slightly different from 
using Limited_Controlled, because it does 
not clean up in case of abort. If you don't 
use abort, then this is not an issue. 
[…] 
From: Florian Weimer 

<fw@deneb.enyo.de> 
Date: Mon, 08 Feb 2010 17:01:55 +0100 
Subject: Re: Ensuring resource cleanup 
Newsgroups: comp.lang.ada 
[…] 
What is the appropriate pragma?  This 
doesn't seem to have an effect: 
[…] 
Most of the benefit of inlining them, 
because there are multiple subprogram 
calls involved, including indirect ones. I 
doubt GCC treats them as intrinsics, so 
they interfere with register allocation etc. 
GCC doesn't seem to be able to 
devirtualize the implicit call to Finalize, 
either. 
I don't understand why GNAT needs to 
maintain a separate finalization list, 
either. C++ use regular exception 
handling for this task. 
> […] 
    procedure With_Cleanup (Action : not 

null access procedure (...)); 
   […] 
Yes, I need to try that. Back when the 
original code was written, anonymous 
access-to-subprogram types were still 
rather buggy. 



26  Ada in Context 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

From: Robert A Duff 
<bobduff@shell01.TheWorld.com> 

Date: Mon, 08 Feb 2010 11:18:42 -0500 
Subject: Re: Ensuring resource cleanup 
Newsgroups: comp.lang.ada 
[…] 
That one says "I promise not to say 'with 
Ada.Asynchronous_Task_Control'", 
which is not related to aborts. It is 
considered obsolescent, because there's 
now a more general No_Dependence 
restriction. 
To get rid of aborts, I think you need both 
No_Abort_Statements and 
Max_Asynchronous_Select_Nesting => 
0. I believe this will cause the overhead of 
abort deferral to go away, but to be sure, 
you should try it. 
>  […] I don't understand why GNAT 

needs to maintain a separate 
finalization list, either. C++ use regular 
exception handling for this task. 

The new implementation of finalization I 
mentioned avoids those lists. Except that 
lists are needed in the case of heap-
allocated objects, because they need to be 
finalized when the scope of the access 
type is left (unless finalized early by 
Unchecked_Deallocation). C++ does not 
require that, so is easier to implement, at 
the cost of possibly missing some 
finalizations. 
But anyway, efficient finalization is most 
important for stack-allocated objects. 
>  […] Back when the original code was 

written, anonymous access-to-
subprogram types were still rather 
buggy. 

And inefficient, because they used 
trampolines. GNAT got rid of trampolines 
except in some corner cases. Note that 
trampolines will cause your program to 
crash if DEP is enabled on Windows (or 
the equivalent feature on Linux). There's a 
restriction for that, too -- search the 
GNAT docs for "trampoline". 
From: Robert A Duff 

<bobduff@shell01.TheWorld.com> 
Date: Mon, 08 Feb 2010 15:47:51 -0500 
Subject: Re: Ensuring resource cleanup 
Newsgroups: comp.lang.ada 
> Max_Asynchronous_Select_Nesting => 

0 does indeed the trick. 
Don't you need No_Abort_Statements as 
well? 
[…] 
You're welcome. What goes on at run 
time for a select-then-abort is very similar 
to what goes on for aborting a task. 
Deferring aborts applies to both. 

On the proposal for pre- and 
post-conditions in Ada 
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de> 

Date: Thu, 04 Feb 2010 12:26:11 +0100 
Subject: Specifying the order of ops on an 

ADT with aspects 
Newsgroups: comp.lang.ada 
Defining a private type, I'd like to know 
whether it is possible to specify, with the 
help of the new aspects, possible orders of 
calling the operations. 
Showing my ignorance, to which extent 
might it be possible to analyse the order 
of calls at compile time? 
(AI05-0145-{1,2}, AI05-0183) 

generic 
   type P is private; 
package Order is 
   pragma Pure (Order); 
   -- ascertain that Pre functions do  
   -- not have side effects 
   type States is (S0, S1, S2, S3); 
   type T is tagged private; 
   function State_Of (Object : in T) 
       return States; 
   procedure Op1 (Object : in out T;  
                               Param : in P) 
       with Pre => State_Of (Object) = S0; 
   procedure Op2 (Object : in out T; 
                               Param : in P) 
       with Pre => State_Of (Object) = S1  
                        and Knoptuous (Object); 
   procedure Op3 (Object : in out T; 
                               Param : in P) 
        with Pre => State_Of (Object)  
                            in S1 .. S2; 
   function Knoptuous (Object : in T) 
       return Boolean; 
private 
   type T is tagged 
      record 
         State_Of : States := S0; 
      end record; 
end Order; 

From: Yannick Duchêne 
<yannick_duchene@yahoo.fr> 

Date: Thu, 4 Feb 2010 10:07:17 -0800 PST 
Subject: Re: Specifying the order of ops on 

an ADT with aspects 
Newsgroups: comp.lang.ada 
[…] 
Your package example looks good to me, 
except the assumption you've made about 
"analyse the order of calls at compile 
time" 
The new pre-post-condition […], is not 
intended to be checked at compile time 
nor even at run time. I gonna miss this last 
one (the first one would be a heavy pain 
to implement), but I suppose some 
compiler vendors will probably have an 
option for that and will go the Eiffel way 
with this contract clauses: enable or  
disable clauses-check, just like you can 
enable or disable generation of debugging 
information with any compiler. 

AI05-0145-2 says 
http://www.ada-auth.org/cgi-
bin/cvsweb.cgi/ai05s/ai05-0145-
2.txt?rev=1.4 
> This is based on the previous alternative 

AI05-0145-1. The Pre/Post aspects are 
specified using the aspect_specification 
syntax defined in AI05-0183-1. There 
is no message associated with the 
failure of a precondition or 
postcondition check: it was deemed that 
these annotations are intended for 
verification, and that for debugging 
purposes the Assert pragma is 
sufficient. 

The last sentence is the most important 
for your topic. 
All providing I've really understood your 
question 
"intended for verification, and that for 
debugging purposes the Assert pragma is 
sufficient" 
I was exactly feeling the opposite, that 
Assert pragmas are not sufficient and are 
hard to maintain and copy in 
implementations accordingly to contracts 
in specifications. 
From: Yannick Duchêne 

<yannick_duchene@yahoo.fr> 
Date: Fri, 5 Feb 2010 08:55:31 -0800 PST 
Subject: Re: Specifying the order of ops on 

an ADT with aspects 
Newsgroups: comp.lang.ada 
> I agree that no message for a failing 

precondition or post-condition check is 
bad. A newer Ada standard does not 
necessitate a better language. 

Don't be sad, pretty sure most of vendors 
will provide it ;) After all, the Ada 
standard does not specify anything either 
about debugging information and the like, 
and indeed, that's not its area. This may be 
the reason why of the actual ARG vote. 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Fri, 5 Feb 2010 19:34:17 +0100 
Subject: Re: Specifying the order of ops on 

an ADT with aspects 
Newsgroups: comp.lang.ada 
 […] 
Whatever, but I see no need in yet another 
syntax for run-time assertions. Statically 
checked contracts in the form of pre- and 
post-conditions would be a great language 
improvement […] 
And my painful experience tells me that 
no check is optional. There is either one 
or none. I bet that any suppressed check 
will eventually fail in the production 
code, unless you do things like code 
coverage etc, but these would eliminate 
the very need to check something that you 
already proved to hold. 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Fri, 5 Feb 2010 16:15:12 -0600 



Ada in Context 27  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

Subject: Re: Specifying the order of ops on 
an ADT with aspects 

Newsgroups: comp.lang.ada 
[…] 
I think you guys miss the point of that 
statement. A Precondition that fails raises 
Assert_Error (unless suppressed, of 
course). That gets handled in the normal 
way, whatever your implementation does 
for unhandled exceptions. Nothing new 
here. 
But the original proposal included an 
optional message string, similar to the one 
the Assert pragma has. We decided to 
drop that because programs that fail 
Preconditions are just wrong, and there is 
no need to go into detail *why* they're 
wrong. 
I'd expect Janus/Ada to report something 
like: 
** Unhandled Assert_Error - precondition 
check failed 
In any case, Ada has nothing to say about 
how unhandled exceptions are reported. 
We're working hard on a proposal to give 
the compiler enough information to be 
able to do static analysis of 
preconditions/postconditions, etc. We 
won't mandate that this time, but we 
surely want the possibility to exist -- 
otherwise there is little value to specifying 
these over plain old Assert pragmas. 
(Perhaps next time we'll be able to 
mandate some static checking.) 

Data structures for syntax 
trees 
From: Tero Koskinen 

<tero.koskinen@iki.fi> 
Date: Mon, 1 Feb 2010 21:34:41 +0200 
Subject: Data structures for syntax trees 
Newsgroups: comp.lang.ada 
 […] 
I am looking for advice on what kind of 
data structures to use for abstract syntax 
trees. At the moment, I want to present 
JSON language as a tree: 
http://www.json.org/ 
The requirement is that the data structure 
works with GNAT GPL and Janus/Ada. 
So far, the Janus/Ada part has been giving 
me trouble. (With GNAT everything 
works.) 
I have tried to avoid access types and 
create a tree structure using tagged types. 
However, Janus/Ada has some bugs with 
either class-wide types or parameterized 
types containing controlled types and 
passing/copying them around causes 
crashes when the produced executable is 
run. RR Software is aware of the issue, 
but hasn't been able to give an estimate 
when the issue will be fixed. So, I am 
looking for alternatives. 
My current (crashing[1]) attempt is 
available at 

http://bitbucket.org/tkoskine/jdaughter/ 
src/950f001bf2aa/src/json-data.ads 
http://bitbucket.org/tkoskine/jdaughter/ 
src/950f001bf2aa/src/json-parser.adb 
(Basically I have bunch of tagged types 
derived from JSON_Root_Type and a few 
container types, which take 
JSON_Root_Type'Class objects.) 
RR Software told me that using access 
types should work, but I would avoid that 
as long as possible.  
Is there still some nice way to avoid 
access types (in the public API at least) 
while also not using class-wide or 
controlled types? 
And what kind of data structures others 
have used to present syntax trees? 
[1] crash usually happens in line 134 or 
146 of json-data.adb 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Mon, 1 Feb 2010 21:03:44 +0100 
Subject: Re: Data structures for syntax trees 
Newsgroups: comp.lang.ada 
[…] 
I am using access types to non-controlled 
class-wide objects allocated in an arena 
pool. A syntax tree is usually removed as 
a whole. 

Tree_Pool : Stack_Storage.Pool ( 
         2048, 128); 
type Node is abstract tagged limited  
         null record; 
function Image (Item : Node)  
         return String is abstract; 
type Node_Ptr is access Node'Class; 
for Node_Ptr'Storage_Pool  
        use Tree_Pool; 
 
type Term is abstract new Node  
   with record 
       Location : Parsers.Multiline_Source. 
                                                  Location; 
end record; 
 
type Expression (Count : Positive) is     
   new Node with record 
      Operation : Operations; 
      Location  : Parsers.Multiline_Source. 
                                                 Location; 
  Operands  : Argument_List (1..Count); 
end record; 

And so on. The example can be found 
here: 
http://www.dmitry-kazakov.de/ada/ 
components.htm#12.9 
I cannot tell if that works with Janus, I 
don't have the compiler. 
Alternatively I would use a directed 
graph. That again would be access types 
to the arena pool of the graph nodes, 

parent-child relations maintained 
implicitly by the pool. 

Use of 'use at' inside a 
record 
From: PForan <pforan@gmail.com> 
Date: Wed, 9 Sep 2009 13:07:51 -0700 PDT 
Subject: using the 'use at' feature inside a 

record? 
Newsgroups: comp.lang.ada 
[…] 
I have a question about the "use at" 
feature and how it can be used inside a 
record to simulate C's unions. I often have 
an array of bytes, as well as a string which 
is "use at"'ed on top of the byte buffer, 
very useful as I can play with the data in 
any way I choose. i.e. 

byte_buf: array(1..100) of unsigned_8; 
str_buf: string(1..100); 
for str_buf use at byte_buf'address; 

Is it possible to have something like this 
within a record? 
[…] 
From: Stephen Leake 

<stephen_leake@stephe-leake.org> 
Date: Thu, 10 Sep 2009 19:42:47 -0400 
Subject: Re: using the 'use at' feature inside 

a record? 
Newsgroups: comp.lang.ada 
'use at' is obsolete (LRM J.7); you should 
now use: 

for str_buf'address use  
    byte_buf'address; 

If you are implementing an Ada variant 
record type that must match a C union 
type that has no field for the discriminant, 
use pragma Unchecked_Union (LRM 
B.3.3). 
From: Per Sandberg 

<per.sandberg@bredband.net> 
Date: Thu, 10 Sep 2009 05:17:33 +0200 
Subject: Re: using the 'use at' feature inside 

a record? 
Newsgroups: comp.lang.ada 
Well there are always unchecked unions: 
"ARM B.3.3 Pragma Unchecked_Union" 

type foo (dummy : Integer := 0) is 
record 
  case dummy is 
   when 1 => as_integer  : integer; 
   when 2 => as_float : Short_Float; 
   when 3 => as_String : String (1 .. 4); 
   when others => 
     as_Stream_Element_Array : 
     Ada.Streams.Stream_Element_Array  
                                                     (1 .. 4); 
  end case; 
end record; 
pragma unchecked_Union(foo); 

The above construct is an exact equivalent 
of C's unions. 



Conference Calendar 29  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

Conference Calendar 
Dirk Craeynest 
K.U.Leuven. Email: Dirk.Craeynest@cs.kuleuven.be 
 
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on 
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific 
Ada focus. Items marked with ☺ denote events with close relation to Ada. 
The information in this section is extracted from the on-line Conferences and events for the international Ada community at: 
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full 
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly. 
 

2010 
 
April 06-09 21st Australian Software Engineering Conference (ASWEC'2010), Auckland, New Zealand. Topics 

include: Empirical Research in Software Engineering; Formal Methods; Legacy Systems and Software 
Maintenance; Measurement, Metrics, Experimentation; Object and Component-Based Software 
Engineering; Open Source Software Development; Quality Assurance; Real-Time and Embedded 
Software; Software Design and Patterns; Software Engineering Education; Software Re-use and Product 
Development; Software Risk Management; Software Security, Safety and Reliability; Software 
Verification and Validation; Software Vulnerabilities; Standards and Legal Issues; Testing, Analysis and 
Verification; etc. 

April 06-10 3rd IEEE International Conference on Software Testing, Verification and Validation (ICST'2010), 
Paris, France. Topics include: Verification & validation, Quality assurance, Empirical studies, 
Inspections, Tools, Embedded software, Novel approaches to software reliability assessment, etc. 

April 13-15 2nd NASA Formal Methods Symposium (NFM'2010), Washington, D.C., USA. Topics include: 
Formal verification, including theorem proving, model checking, and static analysis; Model-based 
development; Techniques and algorithms for scaling formal methods, such as parallel and distributed 
techniques; Empirical evaluations of formal methods techniques for safety-critical systems; etc. 
Deadline for registration: April 9, 2010. 

☺ April 13-16 5th European Conference on Computer Systems (EuroSys'2010), Paris, France. Topics include: 
various issues of systems software research and development, such as systems aspects of Dependable 
computing, Distributed computing, Parallel and concurrent computing, Programming-language support, 
Real-time and embedded computing, Security, etc. 

April 13-16 ACM-BCS Visions of Computer Science conference (Visions'2010), Edinburgh, UK. Topics include: 
Programming Methods and Languages; Software Engineering, and System Design Tools; Distributed 
and Pervasive Systems; Robotics; Medical Applications; etc. 

April 15-16 2nd International Workshop on Software Engineering for Resilient Systems (SERENE'2010), 
London, UK. Topics include: methods and tools that ensure resilience to faults, errors and malicious 
attacks; Requirements, software engineering & re-engineering for resilience; Verification and validation 
of resilient systems; Error, fault and exception handling in the software life-cycle; Frameworks, patterns 
and software architectures for resilience; etc. Deadline for registration: April 8, 2010 (spring school), 
April 10, 2010 (workshop). 

☺ April 19-23 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2010), Atlanta, 
Georgia, USA. Topics include: Parallel and distributed algorithms; Applications of parallel and 
distributed computing; Parallel and distributed software, including parallel and multicore programming 
languages and compilers, runtime systems, middleware, libraries, parallel programming paradigms, 
programming environments and tools, etc. 

☺ April 19 15th International Workshop on High-Level Parallel Programming Models and 
Supportive Environments (HIPS'2010). Topics include: all areas of parallel 
applications, language design, compilers, run-time systems, and programming tools; 
New programming languages and constructs for exploiting parallelism and locality; 



30  Conference Calendar 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

Experience with and improvements for existing parallel languages and run-time 
environments; Parallel compilers, programming tools, and environments; Programming 
environments for heterogeneous multicore systems; etc. 

April 26-29 22nd Annual Systems and Software Technology Conference (SSTC'2010), Salt Lake City, Utah, USA. 

April 27 Introduction to SPARK 9 webinar, Internet. Topics include: the new features of 
the AdaCore/Altran Praxis joint offering - SPARK Pro 9. 

☺ April 27 EDCC2010 - Workshop on Critical Automotive applications: Robustness and Safety (CARS'2010), 
Valencia, Spain. Topics include: design, implementation and operation of critical automotive 
applications and systems, with particular emphasis on dependability issues, software engineering for 
robustness, security and safety issues, real-time embedded systems technologies, architectural solutions 
and development processes for dependable automotive embedded systems. 

☺May 01-08 32nd International Conference on Software Engineering (ICSE'2010), Cape Town, South Africa. 
Topics include: Engineering of distributed/parallel software systems; Engineering of embedded and 
real-time software; Engineering secure software; Patterns and frameworks; Programming languages; 
Reverse engineering and maintenance; Software architecture and design; Software components and 
reuse; Software dependability, safety and reliability; Software economics and metrics; Software tools 
and development environments; Theory and formal methods; etc. 

☺ May 01 3rd International Workshop on Multicore Software Engineering (IWMSE'2010). 
Topics include: Frameworks for multicore software; Modeling techniques for multicore 
software; Software components and composition; Programming models and their impact 
on multicore software engineering; Testing and debugging parallel applications; 
Software reengineering for parallelism; Development environments and tools for 
multicore software; Experience reports from research projects or industrial projects; etc. 

May 02 6th International Workshop on Software Engineering for Secure Systems 
(SESS'2010). Topics include: Architecture and design of trustworthy systems, 
Separation of the security concern in complex systems, Secure programming, Static 
analysis for security, Trustworthiness verification and clearance, Defining and 
supporting the process of building secure software, etc. 

May 31 – June 02 10th International Conference on Computational Science (ICCS'2010), Amsterdam, The Netherlands. 
Topics include: recent developments in methods and modelling of complex systems for diverse areas of 
science, advanced software tools, etc. 

May 31 3rd International Workshop on Software Engineering for Computational Science 
and Engineering (SECSE'2010). Topics include: Lessons learned from the 
development of CSE applications; The use of empirical studies to better understand the 
environment, tools, languages, and processes used in CSE application development and 
how they might be improved; etc. 

May 31 7th International Workshop on Practical Aspects of High-level Parallel 
Programming (PAPP'2010). Topics include: high-level parallel language design, 
implementation and optimisation; modular, object-oriented, functional, logic, constraint 
programming for parallel, distributed and grid computing systems; industrial uses of a 
high-level parallel language; etc. 

May 31 – June 02 10th Annual International Conference on New Technologies of Distributed Systems 
(NOTERE'2010), Tozeur, Tunisia. Topics include: Domain Specific languages for distributed systems; 
Reliability and scalability of distributed systems; Modeling, Formal and Semi-formal methods, and tools 
for distributed systems; Software and middleware for embedded distributed systems and their 
applications; etc. 

☺ June 01-04 DAta Systems In Aerospace (DASIA'2010), Budapest, Hungary. 

June 05 Ada-Belgium Spring 2010 Event, Leuven, Belgium. Includes: 2010 Ada-Belgium 
General Assembly and Workshop on Creating Debian Packages of Ada Software. 
Deadline for registration: May 14, 2010. 



Conference Calendar 31  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

☺ June 06-09 10th International Conference on State-of-the-art in Scientific and Parallel Computing 
(PARA'2010), Reykjavík, Iceland. Topics include: High Performance Computing (HPC) programming 
tools, HPC software engineering, Parallel computing in physics, Scientific computing tools, etc. 
Deadline for submissions: April 1, 2010 (abstracts). 

June 07-09 DisCoTec2010 - 10th IFIP International Conference on Distributed Applications and Interoperable 
Systems (DAIS'2010), Amsterdam, The Netherlands. Theme: "Applications and services for a complex 
world". Topics include: models, methodology and concepts supporting distributed applications; 
middleware and software engineering techniques supporting distributed applications; etc. 

June 14-15 2nd USENIX Workshop on Hot Topics in Parallelism (HotPar'2010), Berkeley, California, USA. 
Topics include: the broad impact of multicore computing in all fields, including application design, 
languages and compilers, systems, and architecture. 

♦ June 14-18 15th International Conference on Reliable Software Technologies - Ada-
Europe'2010, Valencia, Spain. Sponsored by Ada-Europe, in cooperation with ACM 
SIGAda. Deadline for early registration: May 24, 2010. 

June 16-18 Code Generation 2010, Cambridge, UK. Topics include: Model-driven software development, Tool 
and technology development and adoption, Code Generation and Model Transformation tools and 
approaches, Defining and implementing modelling languages, Language evolution and modularization, 
Case studies, etc. 

☺ June 21-23 Automotive - Safety & Security 2010, Stuttgart, Germany. Organized by Gesellschaft für Informatik 
mit den Fachgruppen Ada, etc, and Ada-Deutschland. Topics include (in German): Zuverlässigkeit und 
Sicherheit für fahrbetriebs-kritische Software und IT-Systeme; Evaluation und Zertifizierung von 
Sicherheitseigenschaften automobiler Firmware/Software; Multi-Core-Architekturen; Zuverlässige 
Echtzeit-Betriebssysteme; Fortschritte bei Normen und Standardisierungen; etc. 

June 21-23 AMAST2010 - 10th International Conference on Mathematics of Program Construction 
(MPC'2010), Québec City, Canada. Topics of interest range from algorithmics to support for program 
construction in programming languages and systems, such as type systems, program analysis and 
transformation, programming-language semantics, security, etc. 

☺ June 21-25 24th European Conference on Object Oriented Programming (ECOOP'2010), Maribor, Slovenia. 
Topics include: research results or experience in all areas relevant to object technology, including work 
that takes inspiration from, or builds connections to, areas not commonly considered object-oriented; 
such as: Analysis, design methods and design patterns; Concurrent, real-time or parallel systems; 
Distributed systems; Language design and implementation; Programming environments and tools; Type 
systems, formal methods; Compatibility, software evolution; Components, modularity; etc. 

☺ June 21 1st International Workshop on Real-time Object-Oriented TechnologieS 
(ROOTS'2010). Topics include: New real-time programming paradigms and language 
features; Reports on R&D progress in the field; Emerging tools and trends; Emerging 
standards (or the need for new standards); Practical experiences, particularly from 
industry; Safety-critical software certification; etc. Deadline for paper submissions: 
April 19, 2010. 

☺ June 22 2nd International Workshop on Distributed Objects for the 21st Century 
(DO21'2010). Topics include: constructive ideas, new programming paradigms, novel 
programming language abstractions, domain specific languages, frameworks, tools or 
architectures for distributed object computing; State-of-the-art distributed object 
systems; Multi-paradigm approaches; Alternative (non-OO) approaches (and their 
pros/cons); etc. Deadline for paper submissions: April 19, 2010. 

June 21-25 10th International Conference on Application of Concurrency to System Design (ACSD'2010), 
Braga, Portugal. Topics include: (Industrial) case studies of general interest, gaming applications, 
consumer electronics and multimedia, automotive systems, (bio-)medical applications, internet and grid 
computing, ...; Synthesis and control of concurrent systems, (compositional) modelling and design, 
(modular) synthesis and analysis, distributed simulation and implementation, ...; etc. 

June 23-25 CompArch2010 - 1st International Symposium on Architecting Critical Systems (ISARCS'2010), 
Prague, Czech Republic. Topics include: Rigorous development, Fault tolerance based on the 



32  Conference Calendar 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

architecture, Safety-critical systems & architecture, Secure systems & architecture, Relevant domains 
with critical systems, Industrial needs, etc. 

June 26-30 15th Annual Conference on Innovation and Technology in Computer Science Education 
(ITiCSE'2010), Ankara, Turkey. 

☺ Jun 28 – Jul 02 48th International Conference on Objects, Models, Components, Patterns (TOOLS Europe'2010), 
Málaga, Spain. Topics include: Object technology, including programming techniques, languages, tools; 
Distributed and concurrent object systems; Real-time object-oriented programming and design; 
Experience reports, including efforts at standardisation; Applications to safety- and security-related 
software; Trusted and reliable components; Domain specific languages and language design; Language 
implementation techniques, compilers, run-time systems; Practical applications of program verification 
and analysis; etc. 

July 05-12 37th International Colloquium on Automata, Languages and Programming (ICALP'2010), 
Bordeaux, France. 

☺ July 07-09 9th International Symposium on Parallel and Distributed Computing (ISPDC'2010), Istanbul, 
Turkey. Topics include: Parallel Computing; Distributed Systems Methodology and Networking; 
Parallel Programming Paradigms and APIs; Tools and Environments for Parallel Program Analysis; 
Task Scheduling and Load Balancing; Performance Management in Parallel and Distributed Systems; 
Distributed Software Components; Real-time Distributed and Parallel Systems; Security in Parallel and 
Distributed Systems; Fault Tolerance in Parallel and Distributed Systems; Parallel Scientific Computing 
and Large Scale Simulations; Parallel and Distributed Applications; etc. 

July 12-14 2010 International Conference on Software Engineering Theory and Practice (SETP'2010), 
Orlando, Florida, USA. Topics include: Software development, maintenance, and other areas of 
software engineering and related topics. 

July 15-19 22nd International Conference on Computer Aided Verification (CAV'2010), Edinburgh, UK. Topics 
include: Algorithms and tools for verifying models and implementations, Program analysis and software 
verification, Applications and case studies, Verification in industrial practice, etc. 

☺ July 20-21 Workshop on Exploiting Concurrency Efficiently and Correctly ((EC)^2). Topics 
include: deficiencies in current languages and tools; multi-core software design, 
correctness issues, and correctness approaches; programming languages and paradigms 
that facilitate concurrency exploitation; novel approaches for teaching concurrency; 
significant case studies; etc. 

July 22-24 5th International Conference on Software and Data Technologies (ICSOFT'2010), Athens, Greece. 
Topics include: Software Engineering, Programming Languages, Distributed and Parallel Systems, etc. 

July 25-28 29th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing 
(PODC'2010), Zurich, Switzerland. Topics include: multiprocessor and multi-core architectures and 
algorithms; synchronization protocols, concurrent programming; fault-tolerance, reliability, availability; 
middleware platforms; distributed data management; security in distributed computing; specification, 
semantics, verification, and testing of distributed systems; etc. Deadline for submissions: April 27, 2010 
(brief announcements). 

☺ August 23-25 16th IEEE International Conference on Embedded and Real-Time Computing Systems and 
Applications (RTCSA'2010), Macau SAR, P.R.China. Topics include: Software design for 
heterogeneous multi-core embedded platform, Multi-thread programming for multi-core embedded 
platform, Embedded system design practices, Real-time scheduling, Timing analysis, Programming 
languages and run-time systems, Middleware systems, Design and analysis tools, Case studies and 
applications, etc. Deadline for submissions: April 9, 2010. Deadline for early registration: June 25, 
2010. 

☺ Aug 31 – Sep 03 16th International European Conference on Parallel and Distributed Computing (Euro-Par'2010), 
Ischia, Italy. Topics include: all aspects of parallel and distributed computing, such as Support tools and 
environments, Scheduling, High performance compilers, Distributed systems and algorithms, Parallel 
and distributed programming, Multicore and manycore programming, Theory and algorithms for 
parallel computation, etc. 



Conference Calendar 33  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

☺ Sep 11-15 19th International Conference on Parallel Architectures and Compilation Techniques 
(PACT'2010), Vienna, Austria. Topics include: ground-breaking research related to parallel systems 
ranging across instruction-level parallelism, thread-level parallelism, multiprocessor parallelism and 
large scale systems, such as Parallel computational models; Compilers and tools for parallel computer 
systems; Support for concurrency correctness in hardware and software; Parallel programming 
languages, algorithms and applications; Middleware and run-time system support for parallel 
computing; Reliability and fault tolerance for parallel systems; Modeling and simulation of parallel 
systems and applications; Parallel applications and experimental systems studies; Case studies of 
parallel systems and applications; etc. Deadline for submissions: April 3, 2010 (tutorials, workshops). 

☺ Sep 13-16 39th International Conference on Parallel Processing (ICPP'2010), San Diego, California, USA. 
Topics include: compilers and languages, etc. 

September 20-24 25th IEEE/ACM International Conference on Automated Software Engineering (ASE'2010), 
Antwerp, Belgium. Topics include: Component-based systems; Maintenance and evolution; Model-
based software development; Model-driven engineering and model transformation; Modeling language 
semantics; Open systems development; Product line architectures; Program understanding; Program 
transformation; Re-engineering; Specification languages; Software architecture and design; Testing, 
verification, and validation; etc. Deadline for submissions: May 17, 2010 (tool demonstration papers). 

☺ Sep 20 3rd International Workshop on Academic Software Development Tools 
(WASDeTT'2010). Topics include: How to integrate and combine independently 
developed tools? What are the positive lessons learned and pitfalls in building tools? 
What are effective techniques to improve the quality of academic tools? What particular 
languages and paradigms are suited to build tools? Deadline for submissions: July 19, 
2010. 

☺ Sep 20-21 15th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2010), 
Antwerp, Belgium. Topics include: Design, specification, code generation and testing based on formal 
methods; Verification and validation methods that address shortcomings of existing methods with 
respect to their industrial applicability; Tools for the development of formal design descriptions; Case 
studies and experience reports on industrial applications of formal methods, focusing on lessons learned 
or identification of new research directions; Impact of the adoption of formal methods on the 
development process and associated costs; Application of formal methods in standardization and 
industrial forums; etc. Deadline for submissions: April 10, 2010 (abstracts), April 18, 2010 (papers). 

September 20-22 15th European Symposium on Research in Computer Security (ESORICS'2010), Vouliagmeni, 
Athens, Greece. Topics include: Accountability, Information Flow Control, Formal Security Methods, 
Language-based Security, Security Verification, etc. Deadline for submissions: April 1, 2010. 

☺ Sep 27-29 CBSoft'2010 - 14th Brazilian Symposium on Programming Languages (SBLP'2010), Salvador, 
Bahia, Brazil. Topics include: Programming language design and implementation, Design and 
implementation of programming language environments, Object-oriented programming languages, 
Program transformations, Program analysis and verification, Compilation techniques, etc. Deadline for 
submissions: May 17, 2010 (abstracts), May 24, 2010 (papers). 

Sep 29 – Oct 01 9th International Conference on Software Methodologies, Tools and Techniques (SoMeT'2010), 
Yokohama, Japan. Topics include: Software methodologies, and tools for robust, reliable, non fragile 
software design; Software developments techniques and legacy systems; Automatic software generation 
versus reuse, and legacy systems; Intelligent software systems design, and software evolution 
techniques; Agile Software and Lean Methods; Software optimization and formal methods for software 
design; Software maintenance; Software security tools and techniques, and related Software Engineering 
models; Formal techniques for software representation, software testing and validation; Software 
reliability, and software diagnosis systems; Model Driven Development (DVD), code centric to model 
centric software engineering; etc. 

October 10-13 9th International Conference on Generative Programming and Component Engineering 
(GPCE'2010), Eindhoven, The Netherlands. Topics include: Generative techniques for Product-line 
architectures, Distributed, real-time and embedded systems, Model-driven development and 
architecture, Safety critical systems; Component-based software engineering (Reuse, distributed 
platforms and middleware, distributed systems, evolution, patterns, development methods, formal 



34  Conference Calendar 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

methods, etc.); Integration of generative and component-based approaches; Industrial applications; etc. 
Deadline for submissions: May 17, 2010 (abstracts), May 24, 2010 (papers). 

☺ October 17-20 25th Annual Conference on Object-Oriented Programming, Systems, Languages, and Applications 
(OOPSLA'2010), Reno/Tahoe, Nevada, USA. Topics include: all aspects of programming languages 
and software engineering, broadly construed; any aspect of software development, including 
requirements, modeling, prototyping, design, implementation, generation, analysis, verification, testing, 
evaluation, project cancellation, maintenance, reuse, regeneration, replacement, and retirement of 
software systems; tools (such as new programming languages, dynamic or static program analyses, 
compilers, and garbage collectors) or techniques (such as new programming methodologies, type 
systems, design processes, code organization approaches, and management techniques) designed to 
reduce the time, effort, and/or cost of software systems. 

♦ October 24-28 ACM SIGAda Annual International Conference on Ada and Related 
Technologies (SIGAda'2010), Fairfax, Virginia, USA (a suburb of Washington, DC). 
Sponsored by ACM SIGAda, in cooperation with SIGBED, SIGCAS, SIGCSE, SIGPLAN, 
Ada-Europe, and the Ada Resource Association. Deadline for submissions: June 25, 
2010 (technical articles, extended abstracts, experience reports, panel sessions, 
industrial presentations, workshops, tutorials). 

☺ Nov 01-03 29th IEEE International Symposium on Reliable Distributed Systems (SRDS'2010), Delhi, India. 
Topics include: security, safety-critical systems and critical infrastructures, fault-tolerance in embedded 
systems, analytical or experimental evaluations of dependable distributed systems, formal methods and 
foundations for dependable distributed computing, etc. Deadline for submissions: April 10, 2010 (full 
papers). 

November 08-12 13th Brazilian Symposium on Formal Methods (SBMF'2010), Natal, Rio Grande do Norte, Brazil. 
Topics include: Formal aspects of popular languages and methodologies; Logics and semantics of 
programming and specification languages; Type systems in computer science; Formal methods 
integration; Code generation; Formal design methods; Abstraction, modularization and refinement 
techniques; Techniques for correctness by construction; Formal methods and models for real-time, 
hybrid and critical systems; Models of concurrency, security and mobility; Theorem proving; Static 
analysis; Software certification; Teaching of, for and with formal methods; Experience reports on the 
use of formal methods; Industrial case studies; Tools supporting the formal development of 
computational systems; Development methodologies with formal foundations; etc. Deadline for 
submissions: June 10, 2010 (papers). 

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day! 

2011 
 
☺ February 09-10 3rd International Symposium on Engineering Secure Software and Systems (ESSoS'2011), Madrid, 

Spain. Topics include: security architecture and design for software and systems; verification techniques 
for security properties; systematic support for security best practices; programming paradigms for 
security; processes for the development of secure software and systems; etc. 

 
 



36  Forthcoming Events 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

 
 
 
 
 

15th International Conference on 

RELIABLE SOFTWARE TECHNOLOGIES 
ADA-EUROPE 2010 

VALENCIA, SPAIN, 14-18 JUNE 
http://www.ada-europe.org/conference2010 

  
In cooperation with 

ACM SIGAda  

GENERAL INFORMATION 
The 15th International Conference on Reliable Software Technologies – Ada-Europe 2010 will take place in 
Valencia, Spain, on 14-18 June 2010. The conference has established itself as an international forum for provid-
ers, practitioners and researchers into reliable software technologies. Following tradition, the conference will span 
a full week, with a three-day technical program from Tuesday to Thursday accompanied by vendor exhibitions, 
and a string of parallel tutorials on Monday and Friday. 

ABOUT THE VENUE 
Valencia, situated on the Mediterranean coast of eastern Spain, is the capital city of the autonomous region 
Comunidad Valenciana. Not many cities are capable of so harmoniously combining a fine array of sights from the 
distant past with innovative constructions now being erected. Valencia, founded in 138 BC, is one of these 
fortunate few. From the remains of the Roman forum located in today's Plaza de la Virgen to the emblematic City 
of Arts and Sciences, this town has transformed its physiognomy over the years while preserving its monuments 
from the past.  

Sightseeing around the city begins in the old quarter, where the conference venue is located. Still standing as 
proof of the old defending wall are the graceful Torres de Serranos, the spacious Torres de Quart and some 
remains of the apron wall in the basement of the Valencia Institute of Modern Arts. On the old riverbed of the 
river Turia lie the nursery gardens, along with the Fine Arts Museum and the modern part of the city. Life in the 
city spreads down to the seafront with the harbor and the beaches of Las Arenas and La Malvarrosa. 

SOCIAL PROGRAM 
The social program will schedule two events: a welcome reception on Tuesday in the Botanical Garden, and a 
banquet dinner on Wednesday in a typical Masía —an old country house— at a very short distance from the city. 



Forthcoming Events 37  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

 

OVERVIEW OF THE WEEK 
 Morning Late Morning Early Afternoon Afternoon 

Monday 
14 June 
Tutorials 

Developing High-Integrity Systems 
with GNATforLEON/ORK+ 
J. de la Puente, J. Zamorano 

Hypervisor Technology for Building 
Safety-Critical Systems: XtratuM 

I. Ripoll, A. Crespo 
Software Design Concepts and Pitfalls 

W. Bail 
How to Optimize Reliable Software 

I. Broster 
Using Object-Oriented Technologies 

in Secure Systems 
J. P. Rosen 

Developing Web-aware Applications 
in Ada with AWS 

J. P. Rosen 

Tuesday 
15 June 

Sessions & 
Exhibition 

Keynote Talk 
What to Make of 

Multicore Processors for 
Reliable Real-Time 

Systems? 
Theodore Baker 

Multicores 
and Ada 

Software 
Dependability Critical Systems 

Vendor Session Vendor Session 

Wednesday 
16 June 

Sessions & 
Exhibition 

Keynote Talk 
Control Co-design: 

Algorithms and their 
Implementation 
Pedro Albertos 

Real-Time 
Systems 

Industrial  
Presentations 

Industrial  
Presentations 

Thursday 
17 June 

Sessions & 
Exhibition 

Keynote Talk 
Ada: Made for  
the 3.0 World 
James Sutton 

Language 
Technology 

Industrial  
Presentations 

Distribution and 
Persistency  

Friday 
18 June 
Tutorials 

SPARK: the Libre Language and Toolset for High-Assurance Software 
R. Chapman 

C#, .NET and Ada: Keeping the Faith in a Language-Agnostic Environment 
B. Brosgol, J. Lambourg 

FURTHER INFORMATION 
The conference web site gives full and up to date details of the program and the venue, including travel advice, 
maps and hotels close by. A limited number of rooms have been blocked for the conference in several hotels 
nearby the conference venue, but please be prompt in booking your accommodation since the demand is high in 
Valencia for the conference dates. Online registration is open, with reduced fees until May 24. 

For Exhibiting and Sponsoring details please contact the Exhibition Chair, Ahlan Marriott, by email at 
Ada@white-elephant.ch. A sliding scale of sponsorship provides a range of benefits. All levels include display of 
your logo on the conference web site and in the program. The lowest level of support is very affordable. 
 

The organizers are grateful to the exhibitors and sponsors of the conference 
(preliminary list) 

               

             



38  Forthcoming Events 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

Call for Technical Contributions – SIGAda 2010 

 

ACM Annual International Conference 
on Ada and Related Technologies: 

Engineering Safe, Secure, and Reliable Software 
 Fairfax, Virginia (Washington DC Area), USA 

October 24-28, 2010 
Submission Deadline: June 25, 2010 

Sponsored by ACM SIGAda 
http://www.acm.org/sigada/conf/sigada2010 

SUMMARY: Reliability, safety, and security are among the most critical requirements of contemporary 
software. The application of software engineering methods, tools, and languages all interrelate to affect how and 
whether these requirements are met. 
Such software is in operation in many application domains. Much has been accomplished in recent years, but 
much remains to be done. Our tools, methods, and languages must be continually refined; our management 
process must remain focused on the importance of reliability, safety, and security; our educational institutions 
must fully integrate these concerns into their curricula. 
The conference will gather industrial and government experts, educators, software engineers, and researchers 
interested in developing, analyzing, and certifying reliable, safe, long-lived, secure software. We are soliciting 
technical papers and experience reports with a focus on, or comparison with, Ada. 
We are especially interested in experience in integrating these concepts into the instructional process at all levels. 
 
POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:  

• Challenges for developing reliable, safe, long-lived, 
secure software  

• Transitioning to Ada 2005 
• Ada and SPARK in the classroom and student 

laboratory 
• Language selection for highly reliable systems 
• Mixed-language development 
• Use of high reliability subsets or profiles such as 

MISRA C, Ravenscar, SPARK 
• High-reliability standards and their conformance to 

DO-178B and preparing for DO-178C 
• Software process and quality metrics 
• System of Systems 
• Real-time networking/quality of service guarantees 
• Real-Time Parallel Processing 

• Analysis, testing, and validation 
• Use of ASIS for new Ada tool development 
• High-reliability development experience reports 
• Static and dynamic analysis of code 
• Integrating COTS software components 
• System Architecture & Design 
• Information Assurance 
• Ada products certified against Common Criteria / 

Common Evaluation Methodology 
• Distributed systems 
• Fault tolerance and recovery 
• Performance analysis 
• Implementing Service Oriented Architecture 
• Embedded Hard Real-Time Systems 

 

 
KINDS OF TECHNICAL CONTRIBUTIONS:  
TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically 
10-20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings 
and in ACM Ada Letters. The Proceedings will be entered into the widely-consulted ACM Digital Library 
accessible online to university campuses, ACM's 80,000 members, and the software community. 
EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature. 
If your abstract is accepted, you will be expected to produce a full paper, which will appear in the proceedings. 
Extended abstracts will be double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its 
relationship with previous work by you and others (with bibliographic references), results to date, and future 
directions. 
 



Forthcoming Events 39  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

EXPERIENCE REPORTS present timely results on the application of Ada and related technologies. Submit a 
1-2 page description of the project and the key points of interest of project experiences. Descriptions will be 
published in the final program or proceedings, but a paper will not be required. 
PANEL SESSIONS gather a group of experts on a particular topic who present their views and then exchange 
views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic, 
coordinator, and potential panelists. 
INDUSTRIAL PRESENTATIONS Authors of industrial presentations are invited to submit a short overview (at 
least 1 page in size) of the proposed presentation to the Industrial Committee Chair by August 1st 2010. The 
authors of selected presentations shall prepare a final short abstract and submit it to the Committee Chair by 
October 1sth, 2010, aiming at a 20-minute talk. The authors of accepted presentations will be invited to submit 
corresponding articles for publication in the ACM Ada Letters. 
WORKSHOPS are focused work sessions, which provide a forum for knowledgeable professionals to explore 
issues, exchange views, and perhaps produce a report on a particular subject. A list of planned workshops and 
requirements for participation will be published in the Advance Program. Workshop proposals, up to 5 pages in 
length, will be selected by the Program Committee based on their applicability to the conference and potential for 
attracting participants. 
TUTORIALS offer the flexibility to address a broad spectrum of topics relevant to Ada, and those enabling 
technologies which make the engineering of Ada applications more effective. Submissions will be evaluated 
based on relevance, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial proposals 
should include the expected level of experience of participants, an abstract or outline, the qualifications of the 
instructor(s), and the length of the tutorial (half-day or full-day). Tutorial presenters receive complimentary 
registration to the other tutorials and the conference. 

HOW TO SUBMIT: Send contributions by June 25, 2010, in Word, PDF, or text format as follows: 
 

Technical Articles, Extended Abstracts, Experience Reports, and Panel Session Proposals to: Program Chair, 
Lt. Col. Jeff Boleng (Jeff.Boleng@usafa.edu) 
 

Tutorial Proposals to: Tutorials Chair, Dr. Robert Pettit (RPettit@gmu.edu) 
 

Industrial Presentations Proposals to: Industrial Committee Chair, Prof. Liz Adams (adamses@cs.jmu.edu) 
 
 

FURTHER INFORMATION: 
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to 
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and 
university curricula. The Conference welcomes a grant application from anyone whose goals meet this 
description. The benefits include full conference registration with proceedings and registration costs for 2 days of 
conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students from 
GNAT Academic Program member institutions, which can be combined with conference grants. For more details 
visit the conference web site or contact Prof. Michael B. Feldman (mfeldman@gwu.edu) 
 

OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper 
selected by the program committee as the outstanding student contribution to the conference. 
 

SPONSORS AND EXHIBITORS: Please contact Greg Gicca (Gicca@AdaCore.com) and Kristen Ferretti 
(kef@ocsystems.com) for information about becoming a sponsor and/or exhibitor at SIGAda 2010. 
 

IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be 
particularly aware and careful about visa requirements, and should plan travel well in advance. Visit the 
conference website for detailed information pertaining to visas. 
 

ANY QUESTIONS?: 
Please submit your questions to Conference Chair Alok Srivastava (alok.srivastava@auatac.com) or Local 
Arrangements Co-Chairs Avtar Dhaliwal (avtar_dhaliwal@gencosystems.com) and Florence Gubanc 
(fgg@ocsystems.com). 



 41  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

B. Tooby, “Opinion: The Word ‘Coding’ Considered Harmful” 
Originally printed in Ada User, Vol. 7, N. 3, September 1986 

Opinion: The Word 'Coding' Considered Harmful 
Brian Tooby * 
High Integrity Systems Ltd, Sawbridgeworth, Herts. 
 

Let us bury the word 'coding' as an activity relevant to Ada. 
Coding is the process of transforming the comprehensible 
into the incomprehensible, and is relevant only where 
machines are programmed in less abstract (or less 
meaningful) terms than Ada permits. 

We should recognize its equivalent today as (computer 
aided) design: what comes next is performed by the Ada 
development tools, and is Computer Implemented 
Manufacture. In fact the process of software systems 
development is now one of CAD/CIM, contrasted to the 
more widely understood hardware equivalent of 
CAD/CAM. Recognition of this fact in textbook 
descriptions of the life-cycle would have a beneficial 
clarifying influence on the development of the software 
engineering industry. This might even go so far as to 
change the nature of courses offered by schools, 
polytechnics and universities, resulting eventually in an 
increased number of badly needed qualified recruits to the 
industry. 

Programmers are supposed to be people who 'code'. 
Anyone from child to systems analyst can and does 
program a computer as part of work or play: that's a 
mechanistic description of the task. Ada teaches 
abstraction, so let's talk about software and systems design. 

For the purposes of project management, team working and 
modular engineering, it is still worth distinguishing the 
activities of 'architectural' or 'external' design from that of 
'detailed' or 'internal' design. The informal nature of this 
distinction is reflected in the fact that to carry out 
(completely) the first, one has to do (or imagine, or have 
available the results of) the second. 

The distinction is worthwhile because the human creative 
process is helped by having an early but hazy view of the 
whole system, and clarifying and correcting this picture as 
detail is filled in; however, the actual behaviour of the 
system, and its ultimate modularization, will depend on the 
mass of detail. Recognizing this fact shows that while 
formal specification techniques are of great importance, 
their role in the cloud-crystallization process itself is 
limited; one cannot specify in advance a full technical 
contract, or specification, for a (complex) component of a 
larger system, and give it to another person or team to 
'implement'. Semi-formal techniques, aided by paper 
analysis or prototyping, are used instead. 

However, the picture changes as we become able to 
construct a design from existing modules, particularly when 
these are accompanied by a full formal (static and dynamic) 
specification. In the near future this will be approximated, 
often surprisingly closely, by the Ada specification and the 
Ada body respectively. The challenge will be to improve on 
this, at least to the extent where it becomes possible to 
bring Ada module designs entirely into the software CAD 
domain. 

So let us say goodbye to 'programmers' and 'coding' in the 
world of software and systems engineering. The internal 
design of a module plays a much more subtle and 
influential role in the development of a complete system 
than those words suggest. Some improved clarity in 
describing our own profession might pay enormous 
dividends. 

* Affiliation and contacts as in the original publication  



42  

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

E. Schonberg, “Origins and history of GNAT”
Originally printed in Ada-Europe News, Issue 20, March 1995

Origins and history of GNAT 
Edmond Schonberg * 
New York University, Courant Institute, 251 Mercer Street, New York, NY 10012; email: schonberg@cs.nyu.edu.  
 

Introduction  
The GNAT project at New York University is in the 
process of completing a compiler for Ada95. Because 
GNAT (the GNU-NYU Ada Translator) uses the GCC 
retargettable code generator, it is relatively easy to port, 
and it already runs successfully on most modem machines, 
from RISC workstations to i86-based personal computers. 
The project is scheduled to be completed in June 1995. 
GNAT has been developed in collaboration with, and 
following the guidelines of the Free Software Foundation, 
and is distributed freely, with sources, electronically over 
the Internet and on various physical media. An independent 
software organization, Ada Core Technologies (ACT) has 
been created to insure the ongoing maintenance of GNAT 
beyond June 1995. ACT plans to formally validate GNAT 
on various platforms in the second quarter of 1995. 
Validated GNAT compilers will continue to be freely 
available to the software community. 

Early Ada activities at New York 
University 
The GNAT team at New York University has been 
involved with the definition and the implementation of Ada 
for close to 15 years, from the very first release of the 
preliminary reference manual for Ada83. The NYUADA 
project, as it was called then, was at first interested in 
optimization techniques for high-level languages. It was 
evident at once that the preliminary RM provided only a 
very partial definition of the semantics of the language, and 
that the presence of concurrency affected the potential 
meaning of all operations in a critical way. In an effort to 
provide an operational semantics of the language that could 
serve as a framework for optimization studies, Robert 
Dewar wrote an interpreter for Ada that focused on the 
most novel aspects of the language, the interaction between 
flow of control, tasking, and exceptions. In order to make 
this operational definition as perspicuous as possible, the 
interpreter was written in SETL, a very-high level language 
developed at New York University, and whose basic 
constructs are those of the theory of finite sets.  

The structure of the interpreter was that of a denotational 
definition, in the sense that its basic data structures were 
concrete representations of the continuation and the store, 
and the semantics of each primitive instruction was 
described in terms of explicit modifications of these. 
Tasking was described operationally by assigning a 
separate store and continuation to each task, and the 
granularity of the primitives in the interpreter provided a 
coherent description of the interaction between sequential 

flow of control, task communication, and the raising of 
exceptions. 

Ada/Ed 
This initial interpeter was less than 2000 lines long, and 
took as input a handwritten parse tree for Ada. In order to 
provide a definition of the static semantics as well, it was 
decided to complete the interpreter with a front-end that 
would produce a semantically analyzed abstract syntax tree. 
Gerry Fisher (now at IBM Corp.) used SETL to build an 
LALR parser for Ada, and to develop a series of novel 
algorithms for error recovery. Edmond Schonberg wrote 
the semantic analyzer, also in SETL. The resulting system 
was a full-fledged translator for the language, and was used 
by the ACVC team, headed by John Goodenough, in the 
development of the validation suite. The system was by any 
standards remarkably slow (10 lines/sec compilation rate, 1 
line/sec execution rate on a VAX/780) but in 1982-1983 
the only readily available translator for Ada, and was used 
as a teaching tool by a number of universities and industrial 
sites. Dubbed Ada/Ed, to emphasize its educational role, 
the system was the first validated translator for Ada. Its 
performance was the source of many jokes (''Ada/Ed is 
used for the real-time simulation of paper-and-pencil 
calculations") but it was for a while a usable educational 
resource, and it also fulfilled its original purpose of 
providing an informal operational definition of the 
language, complementary to the Reference Manual and to 
the Ada Compiler validation suite.  

Ada/Ed was also a complete prototype of a translator, and 
after 1984 the activities of the project turned towards a 
large-scale experiment in Software prototyping. The SETL 
text of Ada/Ed was used as the design document for a 
conventional byte-code interpreter, written in C, and whose 
performance was comparable to that of a conventional 
BASIC interpreter. This was done in two steps: first the 
denotational interpreter was transformed into a 
conventional interpreter operating on a linear code stream, 
and a bona fide code generator was added to produce the 
stream. This new component was written in SETL as well. 
Finally, the SETL system was translated into C.  

The result of this effort was Ada/Ed-C, which was also 
validated under the ACVC. Dave Shields, (now at IBM 
Corp.) led the effort of Setl-to-C translation, writing the 
implementation of a variety of set primitives and setting the 
guidelines so that the translation from Setl to C could be 
performed almost mechanically, requiring not detailed 
information about the Ada/Ed algorithms themselves. The 
design of the code generator and run-time library was the 
work of Philippe Kruchten (now at Rational) and Jean-
Pierre Rosen (now at Adalog in Paris). The C version was 

* Affiliation and contacts as in the original publication  



 43 

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

E. Schonberg, “Origins and history of GNAT” 
Originally printed in Ada-Europe News, Issue 20, March 1995 

completed by Bernard Banner and Gail Schenker, who are 
now senior members of the GNAT project.  

Ada/Ed-C was enhanced by Michael Feldman and his 
students, at George Washington University. They added a 
user-friendly shell, akin to the programming environment 
of Turbo-Pascal, that made the system much more 
accessible to beginning students. The result, called GWU-
Ada/Ed, has been used widely in introductory Ada courses 
worldwide. GWU-Ada/Ed owes its success to the 
combination of ease of use, relative completeness, and free 
availability.  

When the revision of the language started, the venerable 
Ada/Ed system found additional use as a prototyping tool. 
A major concern in the design of Ada95 has been to 
minimize the amount of surprises that implementers may 
face in making the transition between Ada83 compilers and 
Ada95 compilers. It is worth noting that in spite of what the 
designers of Ada83 considered a conservative language 
design, Ada did in fact push the limits of compiler 
technology in the previous decade, and robust compilers 
appeared on the market later than expected. To avoid a 
similar fate for Ada95 compilers, the Ada9X project office 
decided to fund several prototyping efforts, to evaluate the 
complication inherent in the constructs being proposed for 
the new language.  

The NYU team focused on object-oriented constructs 
(tagged types, type extensions, dynamic dispatching) and 
on the new generic facilities, which are closely related. 
These features (as they stood in 1991-92) were 
implemented in SETL within the old Ada/Ed system, and 
proved to be relatively straightforward to build, confirming 
the statements of the Mapping and Revision team that "the 
difficult parts of Ada9X are the Ada83 features". 

Towards Ada/9x 
In mid-1992, the NYU team received a contract from the 
Ada9X project office and the US Air Force, to build a free 
compiler for Ada9X, using the GCC technology for the 
code generation phase. The purpose of the system was to 
place the hands of Ada users, at the earliest possible date, a 
tool with which they could explore the new language. The 
emphasis was to be on early availability rather than 
completeness, and it was understood that the resulting 
system might not be validated and that early 
implementation of object-oriented features was more 
important than full semantic legality checks. In addition, 
the choice of GCC meant that we would adopt the 
copyright policies of the Free Software Foundation, and 
thus make the system available at no cost to the largest 
number of potential users.  

In addition to the distribution advantages, and to our 
sympathy towards the goals of the Free Software 
foundations, there were two important reasons for this 
choice. The first was technical: the quality of the code 
generated by the GCC compiler system, and its remarkable 
retargetability. The second was that the chief maintainer of 

GCC, Richard Kenner, was a senior staff member of 
another project at New York University, and was eager to 
extend GCC to other languages, other platforms, and other 
application areas.  

Our initial technical discussions with Richard Stallman, the 
founder and guiding spirit of the Free Software Foundation, 
led us to another important technical choice: the 
compilation model for GNAT should look as much as 
possible like the compilation model for other languages. 
This meant that interfacing with other languages would be 
much simpler. It also meant that the conventional Ada 
model of a monolithic program around which all 
compilations revolve would have to be substantially 
altered. Under the goading of Stallman, we found a way of 
enforcing the "one compilation, one object file" model, and 
at the same time of preserving the semantics of the Ada 
compilation rules, which turn out not to need a centralized 
library. The result is a system that is much more 
comfortable to non-Ada users, and that works well in a 
mixed-language programming environment. 

The Development of GNAT 
Another early technical (and political) decision was to use 
Ada itself to write GNAT. Even though the rest of GCC is 
written in C (close to 500K lines for the various front-ends, 
the common back-end, utilities, and machine description 
files) it was not acceptable to use C itself for the Ada 
component. We started by writing a compiler for a small 
subset of Ada83, and used a commercial compiler to 
compile it. In June 1993, the subset was sufficiently 
complete to compile itself, and the compiler was 
bootstrapped in time for the Ada-Europe conference. The 
use of Ada9X features in the compiler itself has grown 
substantially, as the implementation has become more 
complete, and GNAT currently can only be compiled with 
itself. The compiler uses child libraries very heavily, and 
tagged types more sparingly. Very little code makes uses of 
dynamic dispatching.  

The use of Ada for the front-end establishes a clear division 
of concerns between the two halves of the system, and 
allows us to program in our favorite language. However, it 
requires the construction of a new interface between a 
language specific front-end and a language-independent 
code generator. It turns out to be impractical to generate 
directly the abstract syntax tree used by other front-ends of 
GCC. This is due mostly to the semantic gap between Ada 
and C, the language for which the GCC internal form was 
designed. We chose instead to build the front-end around 
an AST that is well-suited to Ada, and to design a purely 
functional interface that traverses the Ada AST and 
generates on the fly the GCC tree that drives code 
generation. This tree transduction phase was dubbed Gigi 
(for Gnat-to-Gnu) and was originally designed by Franco 
Gasperoni, now at the Ecole Superieure de 
Telecommunications in Paris. Subsequent design and 
implementation of Gigi was the work of Brett Porter, 
Richard Kenner, Cyrille Comar, and other members of the 
GNAT team. 



44   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

E. Schonberg, “Origins and history of GNAT”
Originally printed in Ada-Europe News, Issue 20, March 1995

Software development in a global 
community 
The Free Software Foundation is a non-profit organization 
founded by Richard Stallman, with the purpose of 
furthering the development of free software. The main 
products of the FSF are the extendable editor EMACS, the 
GCC suite of retargettable compilers, the run-time 
debugger GDB, and an operating system under 
development, originally called GNU (which is a self-
referential acronym that stands for "GNU is Not Unix"). 
The model of free software distribution fostered by the FSF 
is diametrically opposed to the existence of software 
patents. The FSF distributes its products under rules that 
are intended to encourage their spread and prevent 
proprietary claims from being attached to any of them. 
These rules are embedded in a copyright notice attached to 
every product, the Gnu Public Licence (GPL, also known 
as "copyleft''). The GPL gives unlimited rights of copying 
to any user of the software, and enjoins any user that 
modifies the software and redistributes it, to distribute the 
modified sources as well.  

The Free Software Foundation, by its very nature, has 
relied heavily on volunteer work. The maintenance of GCC 
and its various front-ends, as well as ports of the system to 
new machines and new operating systems, have depended 
on the efforts and the good will of many. The development 
of GNAT has benefited from the sane Internet-wide 
enthusiasm, and GNAT would have only a fraction of its 
impact on the Ada community if it weren't for the constant 
efforts of patient users. The distribution model of GCC is 
obviously a tremendous asset: enterprising users can 
examine the sources, spot errors, suggest improvements, 
volunteer better implementations, etc. Experienced GCC 
users can port the system to new platforms, leveraging on 
the ease with which GCC can be configured as a cross-
compiler. Thanks to their efforts, versions of GNAT for 

Linux, FreeBSD, NetBSD, NextStep, Amiga-DOS, and on 
Solaris, as well as a cross-compiler for the 1750A, have 
already appeared. An extensive list of contributors appears 
in the following paper 1. We must thank all of them, as well 
as those others whose names we do not have room to 
mention, and whose remarks have resulted in constant 
improvements in the quality of GNAT. 

Towards a long-lived GNAT 
The GNAT system has given the Ada community an 
opportunity to examine Ada95 even before the language 
received its ISO standardization, and long before GNAT 
itself was complete. The existence of a partial compiler has 
been of benefit to the user community, and the interest of 
this community has in turn facilitated the development and 
increasing polish of compiler itself. This appealing model 
of exploratory development must now give way to 
industrial practice. Serious use of any compiler by an 
industrial organization requires some guaranties about the 
ongoing support available for it. In the case of Ada, formal 
validation is required before mission-critical projects can 
use a given compiler, and repeated validations are required 
as the ACVC test suite evolves. The GNAT project at New 
York University is in no position to either validate GNAT 
or provide the long-term maintenance that users will need. 
Instead, we have decided to create a private organization 
whose purpose will be to maintain the compiler and insure 
that it remains freely available under the GPL model.  

This organization, Ada Core Technologies, will offer 
maintenance contracts to industrial users of GNAT that 
require them. Enhancements and bug fixes that follow from 
this maintenance activity will be incorporated into the 
system, which we will continue to distribute freely over the 
Internet. We hope that the synergy between developers and 
users of GNAT will continue, and that GNAT will help 
spread the use of the best-designed modern programming 
language. 

1  Editor’s note: “The GNAT project: A GNU-Ada 9X Compiler“,  Ada-Europe News, Issue 20, March 1995 



 45 

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

J. Barnes, “We don’t know nothing” 
Originally printed in Ada User, Vol. 17, N. 4, December 1996 

We don't know nothing 
John Barnes * 
John Barnes Informatics, 11 Albert Road, Caversham, Reading, RG4 7AN;  
tel: 01734 474125; email: jgpb@jbinfo.demon.co.uk. 
 

I ruminate from time to time about how little we really 
know about software. We have gathered a lot of 
information rather in the sense that botanists gathered data 
on flora in the nineteenth century. But it is hard to see 
much absolute truth in it all.  

The fact that we argue about the merits of one language 
over another must mean that there is no widespread 
understanding of any underlying principles against which 
languages can be measured. We are dominated by our own 
little experiences, by fashion and not by truth. But we do 
know a little and I will attempt to put forward some 
thoughts regarding our faint knowledge.  

A big problem is that myopic bean-counters have no view 
of anything beyond the next budget. Thus we are forced to 
move forward by evolution rather than revolution. 
Evolution appears comforting, seems to preserve 
investment in old programs (which probably need rewriting 
anyway e.g. to get the date right), and distributes costs over 
space and time so that they are hidden from the beanie. Of 
course the beanie doesn't know they are hidden, the poor 
fool believes they don't exist.  

But the costs of evolution are very high. They preserve 
outmoded working practices, force backward compatibility 
with old technology and as a consequence cause society to 
struggle with unnecessary complexity.  

Evolution is like a stone. It tends to roll downhill, but 
unlike a stone it gathers lots of moss. As languages evolve 
they gather all sorts of stuff (FORTRAN is a prime 
example) and take years to throw off redundant features; 
but the central structure inevitably becomes fossilised.  

But of course this is all my personal opinion and as an old 
friend once said with infinite wisdom "Opinions are like 
arseholes, everybody has one”. 

There is an analogy with physics and mathematics. Cast 
your mind back 100 years. It was a world of order and 
structure. Newton's laws had been solidly accepted for 
hundreds of years. Maxwell had cracked electromagnetic 
theory. And mathematics was seen as done with 
Whitehead's axiomatic approach,  

Of course, there were a few very minor anomalies. The 
orbit of Mercury seemed not right and there was the black 
body radiation business. But generally, it was a clockwork 
world: “give us the data and we can compute the future".  

And now; we “know” it is a world of chaos and doubt. 
Einstein showed that things weren't even straight. Dirac 
showed that God did play dice. And Goedel wrecked the 

foundations of mathematics by showing that things couldn't 
be proved.  

What a mess. This has been a chaotic century for 
mathematics and physics; but now we have the Standard 
model but of course that raises more questions than it 
answers. What are quarks made of? Why is an electron so 
big? One thing we do seem to learn is that the more we 
know the more we know we don't know. And physicists 
still grope for that elusive Theory of Everything. But does 
God laugh as he lets us peel each layer off the onion? Does 
he create new layers on the fly as required to keep us 
humble? 

Perhaps there is an analogy with software languages. 
ALGOL 60 was the revelation that there could be order. 
Perhaps ALGOL 68 was the classical world of software. It 
was pretty well understood and that seemed to be it.  

But now where are we. Is OOP the "New Physics" of 
software? It certainly causes doubt and confusion as we 
grope for that unified theory of programming.  

But how much of software language is based on God's real 
truth? As opposed to man's specific invention. Is there an 
ultimate knowable generic model of languages? And if so, 
is Ada 95 close to one instantiation of that model?  

So what do we know? If you were asked to design a 
language from scratch, what would you feel confident 
about? Pretty little really. I contend that we really know 
only two things: 

• assignment is not equality, and  
• bracketed control structures are best.  

Since assignment is not equality (and I think I feel 
comfortable that we know that), it seems to me that we 
should use a different symbol. Thus ALGOL 60 used := as 
distinct to =. After hundreds of years of mathematics it is 
clear that = is accepted for equality and that  

X = X + 1 

is always just false and cannot possibly mean anything else; 
so we need something other than = for assignment.  

And the other thing is the choice between structures such as  

if condition then one statement;  

as in ALGOL 60, Pascal and C. And  

if condition then several statements fi; 

as in ALGOL 68, Modula and Ada.  

The problem with the former approach is that we have to 
introduce some compound statement form if we want 

* Affiliation and contacts as in the original publication  



46  

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

J. Barnes, “We don’t know nothing”
Originally printed in Ada User, Vol. 17, N. 4, December 1996

several statements to be governed by the condition thus  

if condition then  
begin several statements end;  

The problem with the compound approach is illustrated by 
the following favourite example.  

if The_Signal = Clear then  -- Ada  
     Open_Gates;  
     Start_Train:  
end if;  

if (The_Signal == 0)           /* C */  
{    Open_Gates ();  
      Start_Train ();  
} 

Consider what happens if we accidentally add a semicolon 
at the end of the first line in both cases. In Ada it fails to 
compile and the error is mechanically detected before it can 
do any harm. 

In C it still compiles, a null statement is controlled by the 
condition and so the gates open and the train goes whatever 
the state of the signal. No error at compile time and a nasty 
runtime error is the result.  

Note also how C uses the unnatural == for = having ruined 
= by using it for assignment. And worse, consider what 
happens if one of the = is omitted. It then becomes an 
assignment whose result is used for the condition. So even 
if the signal were at Danger it is now set Clear as a nasty 
side effect!  

So expression languages have pitfalls as well so perhaps 
that is another piece of knowledge:  

• conditions and assignments should not be mixed.  

So ALGOL 68 fails this test as well.  

I don't think we know much else, we are not really even 
sure about a type Integer since we cannot agree about that 
upper limit. Of course we do seem to have experience of 
lots of other things and indeed it would be foolish to assert 
that our experience didn't count for something. But it is all 
warm glimpses rather than firm knowledge. Certainly OOP 
(as opposed to OOD) is exploratory hacking at the jungles 
of the unknown.  

Accepting my two (or three) pitiful bits of real knowledge, 
how do languages stand up to them?  

Well FORTRAN, PL/l, COBOL and C/C++ fail the := test. 
And ALGOL 60, Pascal and C/C++ fail the bracket test. 
And if we add the expression test then ALGOL 68 and 
C/C++ fail that. Note, dear reader, that C and C++ of 
widely used or classic languages are the only languages 
that completely fail to incorporate the only real knowledge 
we have. Millions of programmers out there are forced by 
their management and teachers to use dangerous and 
outmoded techniques. We need a revolution brothers. Stuff 
this evolution.  

And now to OOP. We feel that abstraction is good stuff. 
But it mustn't leak. A leaky abstraction with hidden holes is 

a dangerous beast. But isn't inheritance just one big leak?  

You get properties you don't see in the declaration. Thus 
given  

type Gender is (Male, Female);  
type Person(Sex: Gender) is abstract tagged  
   record  
      Birth: Date;  
   end record;  

then when you declare  

type Old_Person is new Person with  
   record  
      Pension: Money;  
   end record;  

the Old_Person has visible Sex even though it is not 
mentioned in the declaration. Things are not what they 
seem.  

And writing  

type Weight is (Light, Medium, Heavy);  
type Boxer(W: Weight) is new  
      Person(Sex => Male) with ... 

results in a type Boxer which does not have visible Sex 
even though it is mentioned in the declaration.  

Clearly however, if OOP is to deliver reuse then inheritance 
is likely in some form. But the design trick is to minimise 
the surprises associated with inheritance. Ada does this 
rather better than C++ by its cleaner rules for dispatching 
and its sharp distinction between a type and a set of types 
(T and T'Class). And Ada permits multiple inheritance in a 
controlled manner with no ad-hoc rules.  

The confusion between types and classes is a really sad 
thing about C++. A whole generation of programmers has 
been badly served by this confusion; an illustration of the 
sad drift of society into an illiterate and non-numerate mob.  

But Ada 95 is an opportunity to rectify this. Here we have a 
language that passes the three tests and is crisply clear 
about types, classes and inheritance.  

So where are we going. The realisation that software really 
matters is growing but there is little awareness among those 
of authority that the language in which it is written really 
matters. Of course, much else matters as well, but best 
practice should be used for all aspects of the development 
of software systems.  

Freedom is all the rage. What do we want? Freedom to 
make errors or freedom from errors? The pendulum of 
society is swung towards anarchy and the freedom of the 
individual. Towards the criminal rather than the victim. 
Towards rights rather than duties. But I believe we have a 
duty to write our software the best way we can. We should 
not hanker after some fantasy rights to write flaky 
programs that have the higher risk of damaging our fellow 
citizens and the environment.  

Let us hope the pendulum will swing back before we sink 
in a sea of C. 



 47 

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

B. Dobbing, “The Ravenscar Tasking Profile for High Integrity Real-Time Programs” 
Originally printed in Ada User, Vol. 19, N. 4, January 1999 

The Ravenscar Tasking Profile for High Integrity 
Real-Time Programs 
Brian Dobbing * 
Aonix, 5040 Shoreham Place, San Diego, CA 92122 USA; email: brian@uk.aonix.com. 
 

Abstract 
The Ravenscar Profile defines a simple subset of the 
tasking features of Ada in order to support efficient, 
high integrity applications that need to be analysed 
for their timing properties. This paper describes the 
Profile and gives the motivations for the features it 
does (and does not) include. An implementation of the 
Profile is then described in terms of development 
practice and requirements, run-time characteristics, 
certification, size, testing, and scheduling analysis. 
Support tools are discussed as are the means by 
which the timing characteristics of the run-time can 
be obtained. The important issue of enforcing the 
restrictions imposed by the Ravenscar Profile is also 
addressed. 

Introduction 
High-integrity systems traditionally do not make use of 
high-level language features such as Ada tasking. This is 
despite the fact that such systems are inherently concurrent. 
Concurrency is viewed as a “systems” issue. It is visible 
during design and in the construction of the cyclic 
executive that implements the separate code fragments, but 
it is not addressed within the software production phases. 
Notwithstanding this approach, the existence of an 
extensive range of concurrency features within Ada does 
allow concurrency to be expressed at the language level 
with the resulting benefits of having a standard approach 
that can be analysed and checked by the compiler, and 
supported by other tools.  

The requirement to analyse both the functional and 
temporal behaviour of high integrity systems imposes a 
number of restrictions on the concurrency model that can 
be employed. These restrictions then impact on the 
language features that are needed to support the model. 
Typical features of the concurrency model are as follows.  

• A fixed number of activities (we shall use the Ada 
term task to denote an independent concurrent 
activity).  

• Invocations. The invocation event can either be 
temporal (for a time-triggered task) or a signal from 
either another task or the environment. A high-
integrity application may restrict itself to only time-
triggered tasks.  

• Tasks only interact via the use of shared data. 
Updates to any shared data must be atomic.  

These constraints furnish a model that can be implemented 
using fixed priority scheduling (either preemptive or non-
preemptive) and analysed in a number of ways:  

• The functional behaviour of each task can be 
verified using the techniques appropriate for 
sequential code (e.g., [1]). Shared data is viewed as 
just environmental input when analysing a task. 
Timing analysis can ensure that such data is 
appropriately initialised and temporally valid.  

• Following the assignment of temporal attributes to 
each task (period, deadline, priority, etc.), the 
system-wide timing behaviour can be verified using 
the standard techniques in fixed priority analysis 
(e.g. [2]). 

Tasking Features 
The Ada95 language revision has both increased the 
complexity of the tasking features and provided the means 
by which subsets (or profiles) of these features can be 
defined. To all of the Ada83 features (dynamic task 
creation, rendezvous, abort) has been added protected 
objects, ATC (asynchronous transfer of control), task 
attributes, finalization, requeue, dynamic priorities and 
various low-level synchronization mechanisms. Subsets are 
facilitated by pragma Restrictions that allows various 
aspects of the language to be limited in scope or removed 
from the programmer completely.  

Whilst the full language produces an extensive collection of 
programming aids (e.g. see [3]) from which higher-level 
abstractions can be constructed, there are a number of 
motivations for defining restricted models:  

• increase efficiency by removing features with high 
overheads  

• reduce non-determinacy for safety-critical 
applications  

• simplify run-time kernel for high-integrity 
applications  

• remove features that lack a formal underpinning  

• remove features that inhibit effective timing analysis  

Of course, the necessary restrictions are not confined to the 
tasking model, but this paper only considers concurrency. 
To implement a restricted concurrency model in Ada 

* Affiliation and contacts as in the original publication  



48   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

B. Dobbing, “The Ravenscar Tasking Profile for High Integrity Real-Time Programs”
Originally printed in Ada User, Vol. 19, N. 4, January 1999

requires only a small selection of the available tasking 
features. At the Eighth International Real-Time Ada 
Workshop (1997) the following profile (called the 
Ravenscar Profile) was defined for high-integrity, efficient, 
real-time systems [4]. 

The Ravenscar Profile  
The Ravenscar Profile is defined by the following:  

• Task type and object declarations at the library level 
– that is, no hierarchy of tasks, and hence no exit 
protocols needed from blocks and subprograms.  

• No unchecked deallocation of protected and task 
objects – removes the need for dynamic objects.  

• No dynamic allocation of task or protected objects – 
removes the need for dynamic objects.  

• Tasks are assumed to be non-terminating – this is 
primarily because task termination is generally 
considered to be an error for a real-time program 
which is long-running and defines all of its tasks at 
start-up.  

• Library level Protected objects with no entries –
these provide atomic updates to shared data and can 
be implemented simply.  

• Library level Protected objects with a single entry – 
used for invocation signalling; but removes the 
overheads of a complicated exit protocol.  

• Barrier consisting of a single Boolean variable – no 
side effects are possible and exit protocol becomes 
simple.  

• Only a single task may queue on an entry – hence no 
queue required; this is a static property that can 
easily be verified, or it can lead to a bounded error at 
runtime.  

• No requeue – leads to complicated protocols, 
significant overheads and is difficult to analyse 
(both functionally and temporally).  

• No Abort or ATC – these features leads to the 
greatest overhead in the run-time system due to the 
need to protect data structures against asynchronous 
task actions.  

• No use of the select statement – non-deterministic 
behaviour is difficult to analyse, moreover the 
existence of protected objects has diminished the 
importance of the select statement to the tasking 
model.  

• No use of task entries – not necessary to program 
systems that can be analysed; it follows that there is 
no need for the accept statement.  

• "Delay until" statement but no “delay” statement – 
the absolute form of delay is the correct one to use 
for constructing periodic tasks. 

• "Real-Time" package – to gain access to the real-
time clock.  

• No Calendar package – "Real-Time" package is 
sufficient.  

• Atomic and Volatile pragmas – needed to enforce 
the correct use of shared data.  

• Count attribute (but not within entry barriers) – can 
be useful for some algorithms and has low overhead.  

• Ada.Task_Identification – can be useful for some 
algorithms and has low overhead, available in 
reduced form (no Abort_Task or task attribute 
functions Callable or Terminated)  

• Task discriminants – can be useful for some 
algorithms and has low overhead.  

• No user-defined task attributes – introduces a 
dynamic feature into the run-time that has 
complexity and overhead.  

• No use of dynamic priorities – ensures that the 
priority assigned at task creation is unchanged 
during the task's execution, except when the task is 
executing a protected operation.  

• Protected procedures as interrupt handlers – 
required if interrupts are to be handled.  

The inclusion of protected entries allows event based 
scheduling to be used. For many high integrity systems 
only time-triggered actions are employed, hence such 
entries and their associated interrupt handlers are not 
required.  

The profile defines dispatching to be FIFO within priority 
with protected objects having Ceiling Locking. However it 
also allows a non-preemptive policy to be defined. Co-
operative scheduling (that is, non-preemption between 
well-defined system calls such as "delay until" or the call of 
a protected object) can reduce the cost of testing as 
preemption can only occur at well-defined points in the 
code. It can also reduce the size of the run-time.  

With either dispatching policy, the Ravenscar Profile can 
be supported by a relatively small run-time. It is reasonable 
to assume that a purpose-built run-time (supporting only 
the profile) would be efficient and "certifiable" (i.e. built 
with the evidence necessary for its use in a certified 
system). An equivalent run-time for a constrained Ada 83 
tasking model has already been used in a certified 
application [5].  

With the profile, each task should be structured as an 
infinite loop within which is a single invocation event. This 
is either a call to "delay until" (for a time-triggered task) or 
a call to a protected entry (for an event-triggered task).  

The use of the Ravenscar profile allows timing analysis to 
be extended from just the prediction of the worst-case 
behaviour of an activity to an accurate estimate of the 
worst-case behaviour of the entire system. The 
computational model embodied by the Ravenscar profile is 
very simple and straightforward. It does not include, for 
example, the rendezvous or the abort, and hence does not 
allow control flow between tasks (other than by the release 



 49 

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

B. Dobbing, “The Ravenscar Tasking Profile for High Integrity Real-Time Programs” 
Originally printed in Ada User, Vol. 19, N. 4, January 1999 

of a task for execution in the event triggered model). But it 
does enable interfaces between activities (tasks) to be 
checked by the compiler.  

Preemptive execution, in general, leads to increased 
schedulability and hence is more efficient in the use of 
system's resources (e.g. CPU time). As preemption can 
occur at any time, it is not feasible to test all possible 
preemption points. Rather, it is necessary for the run-time 
system (RTS) to guarantee that the functional behaviour of 
a task will not be affected by interrupts or preemption. For 
a high integrity application evidence to support this 
guarantee would need to be provided by the compiler 
vendor (or RTS supplier). For the Ravenscar profile the 
RTS will be simple and small.  

Not only does the use of Ada increase the effectiveness of 
verification of the concurrency aspects of the application, it 
also facilitates a more flexible approach to the system's 
timing requirements. The commonly used cyclic executive 
approach imposes strict constraints on the range and 
granularity of periodic activities. The Ravenscar profile 
will support any range and a fine level of granularity. So, 
for example, tasks with periods of 50ms and 64ms can be 
supported together. Moreover, changes to the timing 
attributes of activities only require a re-evaluation of the 
timing analysis. Cyclic executives are hard to maintain and 
changes can lead to complete reconstruction.  

In a control system information may be translated through 
several stages. Input of sensor data may be scaled, filtered, 
used in control law calculations, scaled for output and 
finally output to a transducer. Safety critical standards e.g. 
DO-178B 6.4.4.2(a) requires that "the analysis should 
confirm the data coupling and control coupling between the 
code components". This has been achieved in the past using 
cyclic executives which pass data between the code 
components in strict sequence. With the introduction of 
more sophisticated sensors, and the requirements to build 
more responsive systems, the data input and output rates 
and the rates of the computational processes may not be the 
same. A natural mapping for such systems is to use tasks 
with event triggers which enable data to be acquired, 
processed and output to transducers, at rates which are 
optimal for each processing step. Events provide a direct 
link between data and the code used in its processing. The 
Ravenscar profile facilitates the construction of concurrent 
programs where the code/data coupling is controlled, 
defined by the language and checked by the compiler (in 
contrast to facilities offered by run-time kernels defined 
independently of the language). The analysis to confirm 
coupling would be performed by code reviews to show that 
data is only accessed through synchronised or protected 
constructs.  

Finally, note that the inclusion of a small number of event 
triggered activities does not fundamentally change the 
structure of the concurrent program or the timing analysis, 
but it does impose significant problems for the cyclic 
executive. Polling for 'events' is a common approach in 
high integrity systems; but if the 'event' is rare and the 
deadline for dealing with the event is short then the time 

triggered approach is very resource intensive. The event-
triggered approach will work with much less resources. 

Code Templates 
The profile does not require the application to use any 
particular coding style for the execution of the tasks, 
protected objects, and interrupt handlers. However if the 
application is required to undergo schedulability analysis, 
certain task templates and coding styles are useful in 
defining the activities that are to be analyzed. These are 
described below:  

Time-Triggered Task. The task body for a time-triggered 
task typically has, as its last statement, an outermost 
infinite loop containing one or more delay until statements 
[RM section 9.6]. (The basic form of a cyclic task has just a 
delay until statement either at the start or at the end of the 
statements within the loop.) The model supports only one 
time type for use as the argument – Ada.Real_Time.Time 
[RM section D.8] – which maps directly to the underlying 
system clock for the maximum precision. Note that task 
termination is a bounded error condition in the Ravenscar 
profile; hence the loop is infinite. Example: 

task body Cyclic is  
Next_Period: Ada.Real Time.Time := First_Release; 
Period: Ada.Real_Time.Time_Span := 
    Ada.Real_Time.Milliseconds(50):  
- - other declarations  

begin  
- - Initialization code  
loop  

delay until Next_Period; 
- - Periodic response code  
Next_Period := Next_Period + Period;  

end loop; 
end Cyclic; 

Event-Triggered Task. The task body for an event-
triggered task typically has, as its last statement, an 
outermost infinite loop containing as the first statement 
either a call to an Ada protected entry [RM section 9.5] or a 
call to wait for the state of an Ada "Suspension Object" 
[RM section D.10] to become true.  

The suspension object is the optimized form for a simple 
suspend/resume operation. The protected entry is used 
when extra operations are required:  

• Data can be transferred from signaller to waiter 
atomically (i.e., without risk of race condition) by 
use of parameters of the protected operations and 
extra protected data.  

• Additional code can be executed atomically as part 
of signalling by use of the bodies of the protected 
operations.  

Example: 

protected Event is  
 entry      Wait    (D: out Data); 
 procedure  Signal (D: in Data);  
private  



50   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

B. Dobbing, “The Ravenscar Tasking Profile for High Integrity Real-Time Programs”
Originally printed in Ada User, Vol. 19, N. 4, January 1999

 Current     : Data; - - Event data declaration  
 Signalled : Boolean := False;  
end Event; 
  
protected body Event is  
 entry Wait (D : out Data) when Signalled is  
 begin  
  D  := Current;  
  Signalled := False;  
 end Wait:  
 procedure Signal (D : in Data) is  
 begin  
  Current : = D;  
  Signalled := True:  
 end Signal;  
end Event;  
 
task body Sporadic is  
 My_Data : Data;  
 - - other declarations  
begin  
 - - Initialization code  
 loop  
  Event.Wait (D => My_Data);  
  - - Response code processing My_Data  
 end loop; 
end Sporadic; 

Interrupt Handlers. The code of an interrupt handler will 
often be used to trigger a response in an event-triggered 
task. This is because the code in the handler itself executes 
at the hardware interrupt and so typically the major part of 
the processing of the response to the interrupt is moved into 
the task, which executes at a software priority level with 
interrupts fully enabled. The interrupt handler typically will 
store any interrupt data in its protected object and then 
releases the waiting event-triggered task by changing the 
state of the protected data Boolean used as the entry barrier 
in the same protected object, as shown in the example 
protected object Event. 

Shared Resource Protected Object. A protected object 
used to ensure mutually exclusive access to a shared 
resource, such as global data, typically contains only 
protected subprograms as operations, i.e., no protected 
entries. Protected entries are used for task synchronization 
purposes. A protected procedure is used when the internal 
state of the protected data must be altered, and a protected 
function is used for information retrieval from the protected 
data when the data remains unchanged.  

Example:  

protected Shared_Data is  
 function Get return Data;  
 procedure Put (D : in Data);  
private  
 Current : Data; - - Protected shared data declaration  
end Shared_Data;  
 
protected body Shared_Data is  
 function Get return Data is  

 begin  
  return Current;  
 end Get;  
  
 procedure Put (D in Data) is  
 begin  
  Current := D;  
 end Put;  
end Shared_Data; 

Implementing the Ravenscar Profile  
Ada compiler vendor Aonix has undertaken the 
development of an Ada95 compilation system which 
implements the Ravenscar profile, known as Raven [6], 
hosted on Windows NT and Spare Solaris, and targeting the 
PowerPC, MC680xO and Intel range of processors. This 
section describes some of the key elements of this 
implementation.  

Development Practices  
The principle goal of the implementation was to develop a 
runtime system for Ada95 restricted as per the Ravenscar 
profile, which was suitable for inclusion in:  

• A safety-critical application requiring formal 
certification  

• A high-integrity system requiring functional 
determinism and reliability  

• A concurrent real-time system with timing deadlines 
requiring temporal determinism, e.g. schedulability 
analysis  

• A real-time system with execution time constraints 
requiring high performance  

• A real-time system with memory constraints 
requiring small and deterministic memory usage  

Consequently, a rigorous set of development practices was 
enforced based on the traditional software development 
model, including:  

• Documentation of the software requirements  

• Definition and documentation of the design to meet 
these requirements, including traceability  

• Formal design reviews  

• Formal code walk-throughs of the runtime 
implementation  

• Definition and documentation of the runtime tests to 
verify correct implementation of the design  

• Documentation of the formal verification test results  

• Capture of all significant items within a 
configuration management system 

Requirements  
The software requirements include the following elements:  



 51 

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

B. Dobbing, “The Ravenscar Tasking Profile for High Integrity Real-Time Programs” 
Originally printed in Ada User, Vol. 19, N. 4, January 1999 

• The runtime design shall support both the 
preemptive and non-preemptive implementations of 
the Ravenscar profile.  

• The runtime design shall optimise a purely 
sequential (non-tasking) program by not including 
any runtime overhead for tasking.  

• The design shall structure the runtime such that a 
library of additional runtime Ada packages which 
have not undergone formal certification can be 
supplied as a stand-alone "extras", for applications 
which require the extra functionality but not the 
rigors of certification.  

• The runtime algorithms shall be coded such that the 
worst case execution time is deterministic and as 
short as possible.  

• The runtime algorithms shall be coded such that the 
average case execution time is as short as possible.  

• The runtime algorithms shall be coded so as to 
minimise the use of global data, and so as not to 
acquire memory dynamically. (The total global 
memory requirement of the runtime system shall be 
small and deterministic.)  

• The runtime algorithms shall be coded so as to 
conform to the certification coding standards.  

• The runtime algorithms shall be coded as to conform 
to Ravenscar profile plus sequential code 
restrictions.  

• A coverage analysis tool shall be provided for 
certification purposes.  

• A schedulability analyser shall be provided which 
supports standard algorithms used in fixed-priority 
timing analysis.  

• Enforcement of the Ravenscar profile, plus other 
restrictions on sequential constructs, shall be per-
formed at compile-time wherever possible. (This 
eliminates runtime code to perform the checks, and 
the risk of runtime exceptions being raised in the 
event of check failure.)  

• The compilation system tools shall be verified using 
the Ada Compiler Validation Capability (ACVC) 
test suite, by coupling the tools to an alternate 
runtime system for the same target processor family, 
and which supports full Ada95. Runtime algorithms, 
which are common to the Raven runtime and the 
alternate runtime, shall also be verified in this way.  

• The runtime kernel shall be verified using the 
verification tests written to validate the correct 
implementation of the requirements.  

Design Considerations  
Enforcing the Restrictions: The Ravenscar profile 
restrictions apply only to the concurrency model. It was 
therefore necessary first to define the additional restrictions 
that apply to sequential code. These are not defined in this 

paper, but in essence they follow the same goals of 
ensuring deterministic execution, simplifying the runtime 
support, and eliminating constructs with high overhead.  

The requirement of enforcing as many restrictions as 
possible at compile time was met using the Ada95 pragma 
Restrictions [RM section 13.12]. A few of the needed 
restrictions were already defined using standard restriction 
identifiers in RM sections D.7 and H.4. However, many of 
the restrictions required new (implementation-defined) 
identifiers. These identifiers have been submitted to the 
ISO Annex H Rapporteur Group that has endorsed the 
Ravenscar Profile in its recommendations on the use of 
Ada in High-Integrity Systems. Within the Raven 
implementation, the set of needed restriction pragmas is 
supplied in source form to facilitate compilation into the 
Ada program library as configuration pragmas.  

A compiler that enforces a subset to satisfy safety 
requirements needs to be carefully constructed. The 
compilation algorithms should not be changed to 
implement a particular subset, thereby preserving the value 
of its maturity and testing, including ACVC validation. 
This is an important means of raising the trust in the 
correctness of the toolset being used. Instead, the changes 
to generate the subset compiler are confined to reporting on 
violations of the subset in response to the presence of 
pragma Restrictions. 

Two of the Ravenscar profile restrictions are enforced at 
runtime in the Raven product:  

• Violation of No_Task_Termination is classed as a 
bounded error, which is defined to cause permanent 
suspension of the task. A mechanism to invoke a 
user-written handler for this situation is provided, 
which gives a hook for the application to apply 
remedial action.  

• Violation of Max_Entry_Queue_Depth=1 is a 
runtime check since the Raven implementation has 
chosen not to restrict each protected entry to having 
only one statically determinable calling task, in 
keeping with the corresponding model which Ada95 
uses for Suspension Objects [RM section D.10 
(10)]. Consequently violation of this restriction 
results in Program_Error exception being raised. 

Runtime system code which processes bounded error 
conditions or raises exceptions when a restriction is 
violated, known as deactivated code (not dead code), is not 
excluded from certification considerations. DO-178B states 
[7] that the "software planning process should describe 
how the deactivated code will be defined, verified and 
handled to achieve system safety objectives." [DO-178B 
section 4.2(h)]. Coverage testing of this deactivated code is 
also required by DO-178B: "... additional test cases and 
test procedures (should be) developed to satisfy the 
required coverage objectives." [DO-178B section 
6.4.4.3(h)]. Thus the level of trust of this error handling 
code is the same as that of the remainder of the runtime 
system.  



52   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

B. Dobbing, “The Ravenscar Tasking Profile for High Integrity Real-Time Programs”
Originally printed in Ada User, Vol. 19, N. 4, January 1999

Compilation Unit Closures: The requirements for there to 
be no runtime overhead due to tasking in a purely 
sequential (non-tasking) program, and that a non-certifiable 
library of packages be available stand-alone, providing Ada 
features beyond the basic kernel functionality, are met 
using coding conventions regarding closures of library 
units, as regulated by the use of Ada context ('with') 
clauses.  

Three runtime unit closures are defined: for the sequential 
program kernel, for the tasking program and for the 
'extensions' packages (which are not certifiable). The 
coding standards are such that the sequential kernel units 
are not allowed to 'with' tasking kernel units, and neither 
the sequential nor the tasking kernel units are allowed to 
'with' 'extensions' units. Thus the separation of concerns 
(sequential versus tasking and certifiable versus not-
certifiable) is enforced by the compiler using Ada 
semantics.  

Other Runtime Constraints: The principle requirements 
governing the style of coding to be used for the runtime 
system are highly compatible and complementary, leading 
to algorithms which are small, easy to understand, and 
functionally and deterministic, coupled with use of simple 
static data structures.  

Certifiability: The requirements for certifiability impinge 
on the source code by means of specifying fixed format 
header comments for compilation units and all 
subprograms. The information in these headers includes:  

• Overview of purpose or functionality  

• Requirement(s) which are met  

• Detailed definition of global data / parameter usage  

• Detailed definition of algorithm  

This description is checked against the actual code during 
walk-through audits, and is used to verify that the 
implementation conforms to the design, and that the design 
fully meets the requirements.  

Performance: Several techniques are used to improve the 
performance of the runtime. Simple and very short runtime 
subprograms can be defined as having calling convention 
Intrinsic [RM section 6.3.1] which means that their code is 
built into the compiler and is used directly in place of the 
call.  

Typically this is used for immutable code sequences such 
as arithmetic and relational operators for types such as 
Time and Time_Span in package Ada.Real_Time [RM 
section D.8] and for highly time critical simple operations 
such as getting the identity of the currently-executing task.  

Other short subprograms can be defined as being inlined 
[RM section 6.3.2] which gives similar performance gain 
by avoiding the procedure call and return overhead, but 
without having to actually build the generated assembler 
code into the compiler code generator.  

In addition, since the runtime code itself must abide by the 
restricted Ada subset, this automatically excludes use of 

non-deterministic and dynamic constructs, plus those with 
high execution overhead or code size. Thus the code is 
written using simple Ada constructs which translate to 
equivalently simple assembler code, making it fast to 
execute, easy to verify, readable and maintainable.  

Early indications of the performance of the runtime system 
are very encouraging and are listed in Table 1. 

PIWG T test  Rendezvous Protected Object  Protected Object  
(Microseconds)   (VxWorks)  (VxWorks)  (Ravenscar)  

T000001  67.54  8.24 1.8 

T000002  96.03  8.48  1.2  

T000003  84.31  8.26  1.5  

T000004  113.77  8.30  1.2  

T000005  107.81  8.30  1.1  

T000006  121.87  8.17  1.1  

T000007  97.49  8.20  1.8  

T000008  245.44  16.32  1.2 

Table 1 - Runtime Performance on Ultra 604133MHz  

Worst Case Execution Time: In order to perform accurate 
schedulability analysis, it is necessary to input the runtime 
execution overhead (see [8]). For hard real-time systems in 
which the failure to meet a hard timing deadline is 
catastrophic to the entire system, worst case execution 
times are generally used in the computations. The user can 
generally either analyse the Ada code [9] or measure the 
worst case time for application code using tests that 
exercise the various code paths, but for the runtime system 
operations, the user has no direct way of knowing which 
scenario will produce the worst case time, unless the 
runtime source code is available and also documentation to 
describe the criteria which determine the execution path at 
each decision point.  

Thus, for every runtime operation with variable execution 
time, or whose operation can include a voluntary context 
switch, the vendor must provide metrics which typically 
define the worst case execution time either as an absolute 
number of clock cycles or as a formula based on 
application-specific data (e.g. number of tasks). For the 
runtime tasking kernel implementing the Ravenscar profile, 
this set of metrics will include:  

• Entry and exit times for protected operations, 
including entry calls and barrier evaluation  

• Entry and exit times for processing of the delay until 
statement  

• Timer interrupt and user interrupt overheads 

• Rescheduling times, such as the time to select a new 
task to run and the time to perform a context switch  

Clearly, this imposes strict constraints on the algorithms 
used to implement these operations such that their worst 
case execution time is not overly excessive. For example, 



 53 

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

B. Dobbing, “The Ravenscar Tasking Profile for High Integrity Real-Time Programs” 
Originally printed in Ada User, Vol. 19, N. 4, January 1999 

use of a linear search proportional to the maximum number 
of tasks in the program would be unacceptable for a 
program with a large number of tasks. So, the runtime 
contains optimisations to minimise critical worst case 
timings.  

Runtime Size: The runtime was designed and coded to 
minimise the size of both the code and the data. For 
example, an important optimisation in the Ada pre-linker 
tool (the "binder") is elimination of uncalled subprograms 
from the executable image. But this optimisation is only 
fully effective if the code is structured in a very modular 
way. For example, the runtime treatment of user-defined 
interrupt handlers as protected procedures should not be 
included in the image if interrupts are not used by the 
program. A more extreme example of this is the 
requirement that no code or data which is specific to the 
tasking kernel should be included in the image if the 
program does not use tasking.  

In addition to this, the coding of the runtime data and 
algorithms was carefully crafted to optimise on speed and 
space, taking advantage of the various optimisations 
supported by the compiler.  

Regarding data usage, the runtime does not make any use 
of dynamically acquired memory, which is also a 
restriction on the sequential code of the application, thereby 
eliminating the need to support a heap with its associated 
non-determinism during allocation. The global data used is 
as small as possible, exploiting packing of data except 
where poor-quality code would be generated to access it. 
The data is packaged so that it is eliminated if the feature 
that it supports is not used (e.g. the interrupt handling table 
is eliminated when there are no interrupts in the program). 
The major component of the runtime data is the stack and 
Task Control Block (TCB) which is required for each task's 
execution. Each application program is required to declare 
the memory areas to be used for the stacks and TCBs in the 
Board Support Package. This provides a simple interface to 
tune the stack sizes to the worst case values, whilst also 
giving full application-level determinism on the amount of 
storage which is reserved for this purpose.  

Early indications of the size of the runtime system are very 
encouraging and are listed in Table 2. 

(K-bytes)  Code  Data  Stack  

Null program  3.7  0.45  0.81  

Hello World  4.2  0.52  0.86  

Minimal Tasking  12.1  1.10  1.80  

Table 2 -Application Program Sizes (Power PC)  

Additional Supporting Tools  
The additional tools that have been included in the 
implementation to support certification and schedulability 
analysis include:  

• Condition code and Coverage Analysis tool  

• Schedulability Analyser and Scheduler Simulation 
tool  

Coverage Analysis (AdaCover): Under the DO-178B 
guidelines [7], it is necessary to perform coverage analysis 
to show that all the object code (both the application. 
program part and the Ada runtime system) has been 
executed, including all possible outcomes of conditions, by 
the verification tests. The entire runtime system is 
subjected to coverage analysis as of its auditing process. 
For the user application code, the tool AdaCover is 
provided to assist in formal certification.  

AdaCover is in two logical parts:  

• A target-resident monitor which records the 
execution of every instruction in the program, 
including the results of every decision point.  

• A host-resident tool which annotates the compiler-
generated assembly code listings with the results of 
stage 1, thereby providing the user with a report of 
coverage at either the object code or source code 
level, for the set of executed verification tests.  

Schedulability Analysis (PerfoRMAx): The PerfoRMAx 
tool embodies classic schedulability analyser and scheduler 
simulation functionality. Given a definition of the actions 
performed by the tasks in the application in terms of their 
priority, execution time, period and interaction with shared 
resources, plus certain runtime system overhead times, the 
tool performs analysis of the schedulability of the task set 
based on a user-selectable scheduling theory, for example 
Rate Monotonic Analysis (RMA)[2].  

The tool is also able to provide a graphical view of the 
processor load based on a static simulation of the 
scheduling of the tasks by the runtime system, thereby 
giving clear indication of potential regions of 
unschedulability. If such regions exist, the tool outputs 
messages highlighting the cause of the unschedulability 
together with suggestions for corrective action.  

Testing  
The testing activity is split into two components:  

• Use of the ACVC test suite to verify the validation 
status of the compiler, binder and code generator 
support routines  

• Development of a specific test suite to certification 
level for the Raven runtime.  

ACVC Testing: Since a substantial number of ACVC tests 
violate Ravenscar profile restrictions, particularly relating 
to the tasking tests, it is not possible under current rules to 
validate such a subset. However by use of the same 
compilation system tools linked to a full Ada95 runtime 
system for the same target processor family, it is possible to 
run the full ACVC suite, thereby validating the correctness 
of the compiler, binder and common code generator 
support routines (e.g. block move). The validated compiler 
contains all the processing to treat pragma Restrictions, but 
since the tests do not include these pragmas in the source 



54   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

B. Dobbing, “The Ravenscar Tasking Profile for High Integrity Real-Time Programs”
Originally printed in Ada User, Vol. 19, N. 4, January 1999

code, no enforcement of the subset is performed and hence 
all the tests can execute.  

Certification Tests: A test suite has been created to verify 
the correctness of the kernel runtime sub-programs, thereby 
complementing the ACVC testing (which was not able to 
test these), whilst also ensuring the level of reliability 
specified by the requirements.  

Each test contains a header in the source code that includes:  

• Identification of the requirement to be tested  

• Identification of the runtime module under test  

• Test description  

• Test case definition, including inputs and expected 
results  

The results of executing the tests against each baseline 
development of the runtime system are documented. 

Packaging  
When the Raven product is purchased, an option is 
available to purchase separately all the material required for 
formal certification. This option includes:  

• Full runtime source code  

• Full development documentation which is relevant 
to certification  

• Full test pack, including sources, scripts and 
documentation, so that the tests can be re-executed 
on the runtime code during formal certification of an 
application.  

Conclusion  
This paper has described the Ravenscar profile, a subset of 
Ada95 tasking intended to model concurrency in safety-
critical, high-integrity, and general real-time systems. The 
use of a powerful, structured and highly checked language 
such as Ada is vitally important in all market sectors 
demanding high reliability and efficiency.  

The paper has also described a commercial-off-the-shelf 
implementation of the profile for the PowerPC, MC680x0 
and Intel processor families which has proved the 
feasibility of developing production-quality tool support 

and a certification-quality runtime system for the 
Ravenscar profile.  

On-going work within the International Standards 
Organisation Working Group 9 exists to incorporate the 
profile concepts within the recommendations on the use of 
Ada in high integrity systems.  

References  
[1] High Integrity Ada, The SPARK Examiner 

Approach, J. Barnes, Addison Wesley Longman Ltd 
(1997)  

[2] A Practioner's Handbook for Real-Time Analysis: A 
Guide to Rate Monotonic Analysis for Real-Time 
Systems, M.H.Klein et al, Kluwer Academic 
Publishers (1993)  

[3] Concurrency in Ada, A.Burns and A.J.Wellings, 
Cambridge University Press (1995)  

[4] Proceedings of the 8th International Real-Time Ada 
Workshop: Tasking Profiles, ACM Ada Letters 
(September 1997)  

[5] T-SMART – Task-Safe Minimal Ada Real-time 
Toolset, B. Dobbing and M. Richard-Foy, in 
Proceedings of the 8th International Real-Time Ada 
Workshop, pages 45-50, ACM Ada Letters 
(September 1997)  

[6] ObjectAda/Raven Compilation System for 
PowerPC, Aonix (1998)  

[7] Software Considerations in Airborne Systems and 
Equipment Certification, RTCA/DO-178B/ED-12B, 
RTCA Inc (December 1992)  

[8] Engineering and Analysis of Fixed Priority 
Schedulers, D.Katcher et a1, In IEEE Trans. 
Software Engineering 19 (1993)  

[9] Combining Static Worst-Case Timing Analysis and 
Program Proof, R.Chapman, A Burns, AJ. Wellings. 
In Real-Time Systems 11(2):145-171 (September 
1996)  

[RM] Ada95 Reference Manual, ANSI/ISO/IEC-8652: 
1995, Intermetrics Inc. (January 1995) 

 

 

 

 



 55  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

J. Barnes, “The SPARK way to Correctness is Via Abstraction” 
Originally printed in Ada User Journal, Vol. 22, N. 4, December 2001 

The SPARK way to Correctness is Via Abstraction 
John Barnes * 
11 Albert Road, Caversham, Reading RG4 7AN, United Kingdom; tel: +44 118 947 4125 

 

Abstract 
This paper gives a short introduction to the SPARK 
language and illustrates how the use of abstraction 
leads towards correctness. 
Keywords: Abstraction, Spark, Ada 

Introduction 
Abstraction is a key concept in the design of many systems 
whether they be made of intangible software or real hard 
stuff such as an automobile. A good system will be such 
that the various components interact through well-defined 
interfaces in an appropriate manner. This should eliminate 
unwanted interactions which might occur if the interfaces 
are not properly defined. The brake pedal of your car 
should not change the volume of the radio and so on. This 
desirable state can be achieved by ensuring that interactions 
only occur via defined interfaces and moreover that the 
functionality of the components are completely and 
correctly specified by the interface definitions (the whole 
truth and nothing but the truth). 

Ada provides interfaces through specifications – typically 
package specifications containing subprogram 
specifications. However, these subprogram specifications 
do not provide a full definition of the subprograms. All they 
provide is enough information to enable the compiler to 
construct calls of the subprograms but say little if anything 
about what the subprograms might actually do. Although 
the Ada approach enables information hiding to be 
achieved and good component specifications to be written, 
and indeed encourages these through its style, nevertheless 
it does not ensure correctness and completeness. 

SPARK enables Ada specifications to be strengthened by 
providing more information about interfaces and the 
behaviour of components. This extra information can be 
provided at various levels. At the simplest level it ensures 
that a component can only interact with certain objects but 
need say nothing about what it does to them; at the highest 
level it provides a complete definition of what it does to the 
objects. At the simplest level it thus prevents unexpected 
side effects whereas at the highest level it can lead to 
complete proofs of correctness. 

SPARK should be looked upon as a language in its own 
right. In practical terms, it is a subset of Ada with 
additional information provided through annotations which 
take the form of Ada comments. Programs are therefore 
compiled with a normal Ada compiler and in addition are 
examined with independent SPARK tools which also analyse 
the annotations. 

It is often felt that formal tools are hard to use and require a 
great deal of effort. One of the advantages of SPARK is its 
flexibility. It can be used for formal proof but a great deal 
of benefit can be obtained by its use at the simplest level 
which requires little effort. This paper outlines some 
important features of SPARK using a number of examples. 

Abstraction 
The first part of this paper introduces the basic ideas of 
abstraction and refinement. 

A simple example 
We start by considering a very simple example which 
shows how the SPARK annotations increase the level of 
information concerning abstraction. Consider the 
information given by the following Ada procedure 
specification 

procedure Add(X: in Integer); 

Frankly, it tells us very little. It just says that there is a 
procedure called Add and that it takes a single parameter of 
type Integer whose formal name is X. But it says nothing 
about what the procedure does. It might do anything at all. 
It certainly doesn’t have to add anything nor does it have to 
use the value of X. It could for example subtract two 
unrelated global variables and print the result to some file. 
But now consider what happens when we add the lowest 
level of SPARK annotation. The specification might become 

procedure Add(X: in Integer); 
--# global in out Total; 

This states that the only global variable that the procedure 
can access is that called Total. Moreover it has mode 
information similar to that of parameters; indeed a global 
variable can be looked upon as a parameter in which the 
actual is always the same. The SPARK rules also say more 
about the modes. Whereas in Ada the modes provide 
permission to read or update as appropriate, in SPARK such 
reading or updating is mandatory (SPARK generally abhors 
unused entities). So the specification tells us that the initial 
value of Total must be used (in) and that a new value will 
be produced (out) and also that the parameter X (in) must 
be used. 

So now we know rather a lot. We know that a call of Add 
will produce a new value of Total and that it will use the 
initial value of Total and the value of X. We also know that 
Add cannot affect anything else. It certainly cannot print 
anything nor have any other malevolent side effect. 

The next level of annotation gives the detailed dependency 
relations so that the specification becomes 

* Affiliation and contacts as in the original publication  



56   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

J. Barnes, “The SPARK way to Correctness is Via Abstraction”
Originally printed in Ada User Journal, Vol. 22, N. 4, December 2001

procedure Add(X: in Integer); 
--# global in out Total; 
--# derives Total from Total, X; 

In this particularly simple example, this adds no further 
information. We already knew that we had to use X and the 
initial value of Total and produce a new value of Total and 
this is precisely what this derives annotation says. 

Finally we can add the third level of annotation which 
concerns proof and obtain 

procedure Add(X: in Integer); 
--# global in out Total; 
--# derives Total from Total, X; 
--# post Total = Total~ + X; 

The postcondition explicitly says that the final value of 
Total is the result of adding its initial value (distinguished 
by ~) to the value of X. So now the specification is 
complete. 

It is important to emphasize that these annotations are part 
of the procedure specification. (In the case of distinct 
specification and body, the annotations are not repeated in 
the body; if there is no distinct specification then they occur 
in the body before the reserved word is.) The annotations 
separate the interaction between the caller and the 
specification from that between the specification and the 
implementation. Hence the Examiner (the main SPARK 
tool) carries out two sets of checks; it checks that the 
annotations are consistent with the procedure body and it 
also checks that the annotations are consistent with each 
call of the procedure. 

Thus when we come to implement Add, if we access a 
global other than Total or use Total or X in a way 
inconsistent with the mode information then the SPARK 
Examiner will produce appropriate error messages. 

Generally, the higher levels of annotation enable the 
Examiner to carry out a more searching analysis. 

State 
The idea of state is vitally important. Programs do things by 
changing the state of objects in a general sense. In Ada, 
state is typically held in the form of variables in packages. 
A simple example is provided by a random number 
generator in which the state of the sequence is held in a 
variable hidden in a package body. Consider 

package Random_Numbers 
--# own Seed; 
--# initializes Seed; 
is 
   procedure Random(X: out Float); 
   --# global in out Seed; 
   --# derives X, Seed from Seed; 
end Random_Numbers;  

package body Random_Numbers is 
   Seed: Integer; 
   Seed_Max: constant Integer := ... ; 

   procedure Random(X: out Float) is 
   begin 
      Seed := ... ; 
      X := Float(Seed) / Float(Seed_Max); 
   end Random; 

begin  -- initialization part 
   Seed := 12345; 
end Random_Numbers; 

This example shows the package body containing the 
declaration of a variable Seed and the body of the 
subprogram Random. Each call of Random updates the 
value of Seed using some pseudo-random algorithm and 
then updates X by dividing by the constant Seed_Max. 
Each successive value of Seed depends upon the previous 
value and is preserved between calls of Random. The 
variable Seed is initialized in the initialization part of the 
package body. 

This example also illustrates a number of other annotations. 
The variable Seed has to be mentioned in both an own 
annotation and an initialization annotation of the package 
specification. The own annotation makes it visible to other 
annotations and the initializes annotation indicates that it 
must be initialized by the elaboration of the package. The 
procedure Random contains a global annotation for Seed as 
well as a derives annotation. 

The initializes annotation can also be satisfied by 
initializing Seed in its declaration. An alternative approach 
might be to declare some procedure Start in the package 
Random_Numbers (to be called from outside) whose 
purpose is to assign a first value to Seed. In this case an 
initializes annotation would not be required but the 
Examiner will complain if flow analysis reveals that 
Random is being called before Start. 

It is important to observe that from the Ada point of view 
the variable Seed is not declared until the body and is thus 
not known to the compiler at the point of the specification 
of the subprogram Random. However, Seed is a global 
variable of Random from the point of view of SPARK and 
thus must be mentioned in the annotation for Random so 
that flow through Random may be tracked; the own 
annotation ensures that Seed is known to the Examiner at 
the specification of Random. 

The derives annotation shows explicitly that each call of 
Random produces a number X derived from Seed and also 
modifies Seed. As mentioned earlier this annotation is 
optional. 

The variable Seed is protected from manipulation by users 
of the procedure Random by being declared within the 
body of the package although it is visible in the annotations 
in the specification. It could be argued that making the 
existence of Seed known to the user is a violation of 
abstraction. However, we certainly ought to know that the 
procedure Random does something to some state external 
to itself otherwise we could deduce that each call of 
Random would inevitably produce the same value each 
time it is called. On the other hand we don't need to know 



 57  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

J. Barnes, “The SPARK way to Correctness is Via Abstraction” 
Originally printed in Ada User Journal, Vol. 22, N. 4, December 2001 

exactly what Seed is and indeed in this example the 
external view reveals no details.  

Abstract state machines 
The random number package is a very simple example of 
an abstract state machine. In general an abstract state 
machine is an entity, which has well defined states plus a 
set of operations, which cause state transitions; properties 
of the state can be observed by calling appropriate 
functions.  

An abstract state machine is typically represented in Ada by 
a package, with variables which record its state declared in 
its body. Procedures that act on the machine and functions 
that observe its state are specified in the visible part of the 
package specification. All other details are hidden in the 
package body. 

The following shows the full details of a single stack 
treated as an abstract state machine with the state initialized 
automatically on elaboration. 

package The_Stack 
--# own S, Pointer; 
--# initializes Pointer; 
is 
   procedure Push(X: in Integer); 
   --# global in out S, Pointer; 
   --# derives S from S, Pointer, X & 
   --# derives Pointer from Pointer; 

   procedure Pop(X: out Integer); 
   --# global in S; in out Pointer; 
   --# derives Pointer from Pointer &  
   --# derives X from S, Pointer; 
end The_Stack; 

package body The_Stack is 
   Stack_Size: constant := 100; 
   type Pointer_Range is range 0 .. Stack_Size; 
   subtype Index_Range is 
   Pointer_Range range 1 .. Stack_Size; 
   type Vector is array (Index_Range) of Integer; 
   S: Vector; 
   Pointer: Pointer_Range; 

   procedure Push(X: in Integer) is 
   begin 
      Pointer := Pointer + 1; 
      S(Pointer) := X; 
   end Push; 
   procedure Pop(X: out Integer) is 
   begin 
      X := S(Pointer); 
      Pointer := Pointer - 1; 
   end Pop; 
begin 
   Pointer := 0; 
end The_Stack; 

The stack state variables S and Pointer are declared in the 
body of the package and Pointer is initialized. These 
internal variables are not directly accessible to users of the 

stack object. However, their existence and the existence of 
the initialization of Pointer are made visible to the 
Examiner for the purpose of analysis by the own and 
initializes annotations in the package specification just as 
the variable Seed of the package Random was made 
visible.  

However, the above technique is not satisfactory since we 
have made visible considerable detail of the internal 
representation of the state of the machine, namely the 
existence of the individual variables S and Pointer. If at 
some later stage we need to change the implementation 
then there is a high risk that the specification will need to 
be changed because of the SPARK rules even though it 
would not need to be changed by the Ada rules. This would 
in turn give rise to tiresome dependencies since it would 
require all the calls to be reexamined and recompiled.  

(A minor problem with the package as written is that when 
we come to use it we will get messages saying that S is 
being used before it is given a value. Of course we know 
that the dynamic behaviour is such that the initialization of 
S is unnecessary but the Examiner is not aware of this. 
Perhaps the best solution is simply to initialize S as well.) 

Refinement 
The problems of unnecessary dependencies can be 
overcome by using abstract own variables to provide what 
is known as refinement. An abstract own variable does not 
correspond to a concrete Ada variable at all but instead 
represents a set of variables used in the implementation. 

As a consequence, an abstract own variable occurs in two 
annotations, the own variable clause in the package 
specification and then also in a refinement definition in the 
body giving the set onto which it is mapped. 

The stack example could then be rewritten as 

package The_Stack 
--# own State;  -- abstract variable 
--# initializes State; 
is 
   procedure Push(X: in Integer); 
   --# global in out State; 
   --# derives State from State, X; 

   procedure Pop(X: out Integer); 
   --# global in out State; 
   --# derives State, X from State;  
end The_Stack; 

package body The_Stack 
--# own State is S, Pointer; -- refinement definition 
is 
   Stack_Size: constant := 100; 
   type Pointer_Range is range 0 .. Stack_Size; 
   subtype Index_Range is  
  Pointer_Range range 1 .. Stack_Size; 
   type Vector is array (Index_Range) of Integer; 
   S: Vector; 
   Pointer: Pointer_Range; 



58   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

J. Barnes, “The SPARK way to Correctness is Via Abstraction”
Originally printed in Ada User Journal, Vol. 22, N. 4, December 2001

   procedure Push(X: in Integer) 
   --# global in out S, Pointer; 
   --# derives S from S, Pointer, X & 
   --# derives Pointer from Pointer; 
   is 
   begin 
      Pointer := Pointer + 1; 
      S(Pointer) := X; 
   end Push; 

   procedure Pop(X: out Integer) 
   --# global in S; in out Pointer; 
   --# derives Pointer from Pointer & 
   --# derives X from S, Pointer; 
   is 
   begin 
      X := S(Pointer); 
      Pointer := Pointer - 1; 
   end Pop; 

begin   -- initialization 
   Pointer := 0; 
   S := Vector'(Index_Range => 0); 
end The_Stack; 

This enables the more abstract specification to be linked 
with the concrete body. The refinement acts as the link and 
says that the abstract own variable State is implemented by 
the two concrete variables S and Pointer. 

Note moreover that the subprogram bodies have to have a 
refined version of their global and derives annotations (if 
provided) written in terms of the concrete variables. 

One consequence of the refinement is that both Pointer and 
S have to be initialized because we have promised that the 
abstract variable State will be initialized. Of course, as 
mentioned earlier, we know that the dynamic behaviour is 
such that the initialization of S is unnecessary and we could 
omit it in practice and ignore the consequential message 
from the Examiner.  

The various constituents of the refinement must either be 
variables declared immediately within the package body 
(such as S and Pointer) or they could be own variables of 
private child packages or of embedded packages declared 
immediately within the body. The process of refinement 
can be repeated since an own variable in the constituent list 
might itself be an abstract own variable of the child or 
embedded package. 

It is worth summarizing some key points regarding the 
visibility of state variables of abstract state machines. 

• The own annotation of an abstract state machine 
makes the existence of its state visible wherever the 
machine is visible.  

• Annotations of subprograms external to a machine 
which (indirectly) read or update its state (by 
executing subprograms of the machine) must indicate 
that they import or export the machine state.  

• Only the existence of the machine state (and its 
reading or updating) is significant in this context. The 
details can still be hidden by refinement.  

The second point is important and states that annotations 
have to be explicitly transitive. Thus a procedure that calls 
Push and Pop also has to be annotated to indicate that it 
changes the state of the stack. 

procedure Use_Stack 
--# global in out The_Stack.State; 
--# derives The_Stack.State from The_Stack.State; 
is 
begin 
   The_Stack.Push( ... ); 
   ... 
   The_Stack.Pop( ... ); 
   ... 
end Use_Stack; 

Finally note that one abstract state machine could be 
implemented using another abstract state machine 
embedded within it. Thus if a machine B is to be embedded 
in a machine A, this can be done by embedding the package 
representing B in the body of the package representing A. 
The state of B can then be represented as an item in the 
refinement. Alternatively the package representing B could 
be a private child of the package representing A.  

Refinement of course relates to top-down design and 
provides a natural way of implementing such a design. It is 
especially important that refinement can be cascaded; this 
avoids a combinatorial explosion of visible data items 
which might otherwise occur especially in large programs. 
The key point is that it makes the existence of state known 
without giving away the details - the irrelevant detail is 
kept hidden. 

The location of state 
It is very important to ensure that state is located sensibly. 
In order to illustrate this first consider the following simple 
example 

procedure Exchange(X, Y: in out Float) 
--# derives X from Y & 
--# derives Y from X; 
is 
   T: Float; 
begin 
   T := X;  X := Y;  Y := T; 
end Exchange; 

The parameters X and Y have mode in out. This requires 
them to be both read and updated. The (optional) derives 
annotation in addition states that the final value of X 
depends upon the initial value of Y and vice versa. Note 
that the final value of X does not depend upon the initial 
value of X. 

The scope of program objects should always be as 
restricted as possible. The rules of SPARK discourage the 
use of a global variable simply as a ‘temporary store’. For 



 59  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

J. Barnes, “The SPARK way to Correctness is Via Abstraction” 
Originally printed in Ada User Journal, Vol. 22, N. 4, December 2001 

example we might try to redefine the procedure Exchange 
so that the temporary T is global by writing 

procedure Exchange(X, Y: in out Float) 
--# global out T; 
--# derives X from Y & 
--# derives Y from X; 
is 
begin 
   T := X;  X := Y;  Y := T; 
end Exchange; 

But this is illegal because it violates one of several rules of 
completeness. The one that is violated here is that every 
variable mentioned in a global definition must be used 
somewhere in the dependency relation. We have to add T to 
the derives annotation thus 

--# derives X from Y & 
--# derives Y, T from X; 

and this forces us to admit that we actually change T. 
Moreover, flow analysis of a call of Exchange will reveal 
the use of T. Thus a succession of calls such as 

Exchange(A, B); 
Exchange(P, Q); 

results in the following message from the Examiner 

             Exchange(A, B); 

             ^1 

!!! (  1)   Flow Error   : Assignment to T is 

            ineffective. 

This is because the value of T produced by the first call of 
Exchange is overwritten by the second call without being 
used. Remember that analysis of the calls is done using 
only the abstract view presented by the specification and so 
the internal use of the value of T in the body is not relevant. 
Note further that this message will be produced even if the 
optional derives annotation is omitted. 

Unnecessary state should thus be avoided. Indeed, the use 
of unnecessary state as in this example requires annotations 
for T on the subprogram calling Exchange and so on 
transitively. The annotations therefore cascade and so the 
use of unnecessary state is very painful and thereby 
discouraged. 

But some state is necessary and we have seen how 
refinement may be used to ensure that although the 
existence of state in an abstract state machine must be made 
visible, nevertheless the fine details are properly hidden. 
(We can have our abstraction cake and still eat it!) 

There is an interesting analogy between abstraction through 
refinement and the composition of records out of 
components. Consider a private type defining a position 
where the full type reveals the details in terms of x- and y-
coordinates 

type Position is private; 

... 

type Position is 
   record 
      X_Coord, Y_Coord: Float; 
   end record; 

Such a record type is sensible because the two coordinates 
are logically related; we can then consider a value of the 
type Position as a single entity which can be manipulated as 
a whole without knowing the details of its inner 
construction. 

Refinement allows an abstract own variable to provide an 
external view of a more detailed set of variables within the 
package. Using the analogy to records, we should only use 
refinement to group together naturally related items. Thus 
the refinement of the variable State of the package 
The_Stack into the variables Pointer and S is appropriate.  

Proof 
For some applications formal proof is a valuable technique 
for showing correctness. SPARK has comprehensive 
facilities for proof including the ability to develop proofs 
with refinement when there are two views of a state. In 
order to illustrate this it is necessary to explain some of the 
basic techniques involved. 

The proof process 
The general idea is that we state certain hypotheses which 
we assert are always satisfied when a subprogram is called 
(the preconditions) and we also state the conditions which 
we want to be satisfied as a result of the call (the 
postconditions). These conditions are given as further 
annotations in the subprogram specification. We then have 
to show that the postconditions always follow from the 
preconditions. 

The Examiner processes the text and generates one or more 
theorems (conjectures really since they might not turn out 
to be true) which then have to be proved in order to show 
that the postconditions do indeed always follow from the 
preconditions. These theorems which are called verification 
conditions are often trivially obvious. If they are not then 
there are two tools which can be used. These are the 
Simplifier which carries out routine simplification and the 
Proof Checker which is an interactive assistant that enables 
the user to explore the problem and hopefully construct a 
valid proof. 

In order for the proof tools to function correctly, they need 
to be aware of the various rules which can be used. For the 
predefined types these are built into the system but other 
rules can be provided as we shall see in a moment. 

As a first example consider once more the procedure 
Exchange. There is no precondition since it is designed to 
work no matter what the values of the parameters happen to 
be. But there is of course a postcondition and so the 
procedure becomes 

procedure Exchange(X, Y: in out Float) 
--# derives X from Y & 
--# derives Y from X; 
--# post X = Y~ and Y = X~ ; 



60   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

J. Barnes, “The SPARK way to Correctness is Via Abstraction”
Originally printed in Ada User Journal, Vol. 22, N. 4, December 2001

is 
   T: Float; 
begin 
   T := X;  X := Y;  Y := T; 
end Exchange; 

Note again the use of the tilde character with in out 
parameters; the decorated form indicates the initial 
imported value of the parameter whereas the undecorated 
form indicates the final exported value. 

The verification condition generated by the Examiner for 
the procedure Exchange is  

H1:    true . 
        -> 
C1:    y = y . 
C2:    x = x . 

The notation used is that there are a number of hypotheses 
(H1, H2, ...) followed by a number of conclusions (C1, C2, 
...) which have to be verified using the hypotheses. Note 
that the conditions are written in a language known as FDL 
(Functional Definition Language) which has a strong 
mathematical flavour. 

In this example there is no precondition and so effectively 
no hypotheses (this is represented as the single hypothesis 
H1 which is true). The two conclusions to be proved are 
that y = y and x = x which are reasonably self-evident and 
so it is pretty clear that the procedure Exchange is correct. 

If we were stubborn and wanted to be completely confident 
then we could submit the above verification condition to 
the Simplifier which would reduce it to simply 

*** true .        /* all conclusions proved */ 

Verification conditions often appear mysterious and not 
obviously related to the code; they are produced by a 
"hoisting process" whereby the postcondition is 
transformed backwards through the statements in order to 
arrive at the so-called weakest precondition; this is the 
condition that must hold at the start in order for the 
postcondition to hold. We then have to show that the 
weakest precondition follows from the given precondition. 
In the verification condition, the hypotheses correspond to 
the given precondition and the conclusions to be proved 
correspond to the weakest precondition. However, the 
details of the hoisting transformations need not concern us 
in this paper. 

Loops 
Significant computations usually have loops and these 
cause complexity in proving correctness. The problems 
arise because the code of a loop is usually traversed a 
number of times with different conditions. 

The approach taken is to cut a loop so that the various parts 
can be treated separately. The cut is made by inserting an 
assert statement which gives conditions that are to be true 
at that point. The conditions can be thought of as 
postconditions for the sequence of code arriving at the 

cutpoint and as preconditions for the sequence going on 
from the cutpoint. 

A simple example is provided by the following integer 
division algorithm which might be used on a processor 
without a hardware divide instruction.  

procedure Divide(M, N: in Integer; Q, R: out Integer) 
--# derives Q, R from M, N; 
--# pre (M >= 0) and (N > 0); 
--# post (M = Q * N + R) and (R < N) and (R >= 0); 
is 
begin 
   Q := 0; 
   R := M; 
   loop 
      --# assert (M = Q * N + R) and (R >= 0); 
      exit when R < N; 
      Q := Q + 1; 
      R := R - N; 
   end loop; 
end Divide; 

Each transversal of the loop adds one to the trial quotient 
and subtracts the divisor N from the corresponding trial 
remainder until the remainder first becomes less than the 
divisor. Clearly it only works if both M and N are not 
negative and also the divisor must not be 0; hence the 
precondition. 

The postcondition has two parts. First the output parameters 
must have the appropriate mathematical relation implied by 
the division process and secondly the remainder must be 
less than the divisor and not negative, so we have 

--# post (M = Q * N + R) and (R < N) and (R >= 0); 

The choice of assertion is fairly obvious. As noted above, 
the final postcondition has two parts, the division relation 
and the upper and lower bounds on the remainder. All the 
loop does is keep the division relation true and reduce the 
remainder until it satisfies the upper bound (as well as 
keeping the lower bound satisfied). The assertion is simply 
that the division relation is true and that the remainder 
satisfies the lower bound; the exit statement is taken when 
the upper bound is satisfied as well. The initial statements 
before the loop are designed to ensure that the assertion is 
true when the loop is first entered. 

There are therefore three sections of code to be verified. 
They are from the start to the beginning of the loop, around 
the loop, and from the loop to the end. The assert statement 
acts as the postcondition for the first section and as the 
precondition for the last section. It also acts as both 
precondition and postcondition for the loop itself; since it is 
unchanged by the loop it is often referred to as a loop 
invariant. 

When the Examiner is applied to this subprogram, it 
produces verification conditions corresponding to the three 
sections. From the start to the assertion the verification 
condition is 



 61  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

J. Barnes, “The SPARK way to Correctness is Via Abstraction” 
Originally printed in Ada User Journal, Vol. 22, N. 4, December 2001 

H1:    m >= 0 . 
H2:    n > 0 . 
        -> 
C1:    m = 0 * n + m . 
C2:    m >= 0 . 

Conclusion C2 is trivially obvious since it is just the 
hypothesis H1. Conclusion C1 is pretty obvious as well. 

The verification condition for going around the loop from 
assertion to assertion is 

H1:    m = q * n + r . 
H2:    r >= 0 . 
H3:    not (r < n) . 
        -> 
C1:    m = (q + 1) * n + (r - n) . 
C2:    r - n >= 0 . 

and that from the assertion to the final end is 

H1:    m = q * n + r . 
H2:    r >= 0 . 
H3:    r < n . 
        -> 
C1:    m = q * n + r . 
C2:    r < n . 
C3:    r >= 0 . 

In all cases the Simplifier reduces all the conclusions to 
true. It is also quite straightforward to show that they are 
true by hand – although perhaps a little tedious in the case 
of the loop itself which requires some manipulation. 
However, such trivial manipulation is prone to error if done 
by hand and the great advantage of the Simplifier is that it 
does not make careless mistakes. 

Having shown that the verification conditions for the three 
separate sections of code are true it then follows that the 
procedure is correct. (To be honest we have only proved 
that it is partially correct; this means that it is correct 
provided that it terminates.) 

In practice one does not bother to look at the unsimplified 
conditions and so the process is quite straightforward. 

Proof functions 
Annotations such as postconditions can be very expressive. 
Not only can we use the variables of the program but 
various other notations are also available. We have already 
noted the use of the tilde character to distinguish initial and 
final values of in out parameters. The following examples 
illustrate other possibilities. 

type Atype is array (Index) of T; 

procedure Swap_Elements(I, J: in Index; 
           A: in out Atype); 
--# derives A from A, I, J; 
--# post A = A~[I => A~(J); J => A~(I)]; 

The postcondition means that the final value of A is the 
initial value with elements I and J interchanged. Note 
carefully that it is the initial value of A that is referred to on 
the right hand side and so there are three uses of the tilde 
character. 

function Max(X, Y: Integer) return Integer; 
--# return M => (X >= Y -> M = X) and 
--#             (Y >= X -> M = Y); 

This illustrates that functions have return annotations rather 
than postconditions. The annotation should be read as 
return M such that if X >= Y then M is X and if Y >= X then 
M is Y. 

function Value_Present(A: Atype; X: T) return Boolean; 
--# return for some M in Index => (A(M) = X); 

This function returns true if at least one component of the 
array has the value X. Remember that Index is the index 
type of the array type Atype. 

function Find(A: Atype; X: T) return Index; 
--# pre Value_Present(A, X); 
--# return Z => (A(Z)) = X) and 
--#        (for all M in Index range Index'First .. Z-1 => 
--#             (A(M) /= X)); 

This function returns the index of the first component of the 
array with the value X. Note the precondition which uses 
the previous function to ensure that such a value does exist. 
All Ada functions can be used in annotations in this way 
with any global variables being added as explicit additional 
parameters (remember the earlier remark that global 
variables can be looked upon as parameters that are always 
the same). 

Sometimes, however, the functional nature of the 
annotation language is not rich enough in which case we 
can add our own so-called proof functions which do not 
exist as Ada functions at all. 

As an elementary example consider the following 
implementation of the factorial function 

   --# function Fact(N: Natural) return Natural; 

   function Factorial(N: Natural) return Natural 
   --# pre N >= 0; 
   --# return Fact(N); 
   is 
      Result: Natural := 1; 
   begin 
      for Term in Integer range 1 .. N loop 
         Result := Result * Term; 
         --# assert Term > 0 and Result = Fact(Term); 
      end loop; 
      return Result; 
   end Factorial; 

The approach we take is to introduce a proof function Fact 
which we can use in the annotations even though it is not 
defined in the Ada program text. An interesting observation 
is that although recursion is not permitted in SPARK 
because dynamic storage is forbidden, nevertheless proof 
rules can use recursion in their definition because proof is 
done offline independently of program execution. 

The Examiner is now able to produce verification 
conditions; it does this without needing to know what the 
proof function Fact actually means because the process of 



62   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

J. Barnes, “The SPARK way to Correctness is Via Abstraction”
Originally printed in Ada User Journal, Vol. 22, N. 4, December 2001

producing verification conditions simply involves formal 
substitution. 

There are four paths including one from start to finish 
which bypasses the loop in the case of N being zero. We 
will look at the verification conditions for just two of them. 
That from the assertion to the finish is 

H1:    term > 0 . 
H2:    result = fact(term) . 
H3:    term = n . 
        -> 
C1:    result = fact(n) . 

This is clearly correct by simply substituting from H3 into 
H2 irrespective of what Fact actually means. That from 
assertion to assertion is more interesting 

H1:    term > 0 . 
H2:    result = fact(term) . 
H3:    not (term = n) . 
        -> 
C1:    term + 1 > 0 . 
C2:    result * (term + 1) = fact(term + 1) . 

In order to prove this we need a mathematical theorem for 
the Fact function namely 

   fact(n) = n × fact(n-1)     n > 0 

The other two paths need the other obvious mathematical 
theorem 

   fact(0) = 1 

In order to prove the verification conditions using the Proof 
Checker, it is necessary to give the Checker the rules 
corresponding to the above theorems. These can be 
expressed in the following form  

rule_family fact: 
   fact(X) requires [X : i] . 

fact(1): fact(N) may_be_replaced_by 
     N * fact(N-1) if [N > 0] . 
fact(2): fact(0) may_be_replaced_by 1 . 

Given such rules the proofs can be entirely mechanized. 

The reader might feel that this is all a bit of a cheat. 
However, the approach is typical of many safety-related 
mechanisms. Two routes to the solution are provided using 
entirely different technologies; one uses the Ada program 
and the other uses the annotations and proof rules. Since 
they agree we have a high degree of confidence in their 
correctness. 

Proof and refinement 
We are now in a position to return to the theme of 
abstraction and consider how we might add annotations for 
proof to the stack example. 

We saw how we could have two views of the state of the 
package The_Stack – an external abstract view provided by 
the abstract variable State and an internal concrete view 
provided by the two variables S and Pointer. In order to 
develop proofs we need to map abstract conditions for the 

external view onto concrete conditions for the internal 
view. The package might become  

package The_Stack 
--# own State: Stack_Type; -- abstract variable 
--# initializes State; 
is 
   --# type Stack_Type is abstract; -- proof type 

   --# function Not_Full(S: Stack_Type) return Boolean; 
   --# function Not_Empty(S: Stack_Type)  
               return Boolean; 
   --# function Append(S: Stack_Type; X: Integer) 
          return Stack_Type; 

   procedure Push(X: in Integer); 
   --# global in out State; 
   --# pre Not_Full(State); 
   --# post State = Append(State~, X); 

   ...   -- similarly Pop 

end The_Stack; 

package body The_Stack 
--# own State is S, Pointer; -- refinement definition 
is 
   ... -- etc as before 

   procedure Push(X: in Integer) 
   --# global in out S, Pointer; 
   --# pre Pointer < Stack_Size; 
   --# post Pointer = Pointer~ + 1 and 
   --# post S = S~[Pointer => X]; 
   is 
   begin 
      Pointer := Pointer + 1; 
      S(Pointer) := X; 
   end Push; 

   ...   -- similarly Pop plus initialization 

end The_Stack; 

The above omits the derives annotation partly for simplicity 
but also to emphasize that derives annotations are not 
necessary in order to develop proofs although we have 
shown them in earlier examples for completeness. 

The abstract own variable State now includes a type 
announcement for the proof type Stack_Type. In 
developing the verification conditions, the Examiner 
converts this proof type into an FDL record type having 
two components corresponding to the variables S and 
Pointer. (Note again the strong analogy between refinement 
and record composition.) 

There are also proof functions Not_Full and Append (with 
parameters of the proof type) which are used to give the 
pre- and postconditions for Push. The proof function 
Not_Empty is required for Pop. 

Three verification conditions are generated for Push – one 
shows that the refined precondition follows from the 
abstract precondition, one shows that the abstract 
postcondition follows from the refined postcondition and 



 63  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

J. Barnes, “The SPARK way to Correctness is Via Abstraction” 
Originally printed in Ada User Journal, Vol. 22, N. 4, December 2001 

the other (the usual one) shows that the refined 
postcondition follows from the refined precondition. The 
first is 

H1:    not_full(state) . 
H2:    s = fld_s(state) . 
H3:    pointer = fld_pointer(state) . 
        -> 
C1:    pointer < stack_size . 

The notation should be self-evident, H2 means that the 
refined variable S corresponds to the field s of the abstract 
State. 

To complete the proofs we need proof rules for the proof 
functions in terms of the concrete variables such as 

not_full(S) may_be_replaced_by 
    fld_pointer(S) < stack_size . 

Given such rules the verification conditions can all be 
proved. 

The stack package might be used by external procedures 
which themselves have proof annotations in terms of the 
proof functions. Of course they can only see the external 
view of the stack and so rules need to be developed in 
terms of that view. But the rules can themselves be proved 
using the concrete view.  

Design and implementation 
One of the goals of this paper is to show that SPARK uses 
abstraction as a key ingredient in showing correctness. The 
important thing about abstraction is controlling the level of 
visibility. We are familiar in Ada with the idea of having 
more than one view of a type, for example the full view and 
the partial view of a private type. SPARK allows private 
types of course but as we have seen extends this idea of 
views to the representation of state through refinement. We 
have also seen how proofs may be developed around the 
two representations. 

But it must not be thought that proof is the major goal of 
SPARK. The real goal is developing correct programs more 
cheaply and also of course convincing the customer that 
they are correct within a given budget. Sometimes formal 
proof is the appropriate tool to being convinced that the 
program is correct – but for most purposes it would be 
overkill. 

But perhaps the real strength of SPARK is that it encourages 
good design by revealing the flow of information. For 
example, suppose we have a package Stuff which contains a 
procedure Do_It which in turn calls the procedures Push 
and Pop and thereby manipulates The_Stack. The Ada 
structure might be 

package Stuff is 
   procedure Do_It; 
end Stuff; 

with The_Stack; 
package body Stuff is 
   procedure Do_It is 
   begin 

      ... 
      The_Stack.Push( ... ); 
      ... 
      The_Stack.Pop( ... ); 
      ... 
   end Do_It; 
end Stuff; 

with Stuff; 
procedure Main is 
begin 
   Stuff.Do_It; 
end Main; 

By just looking at the procedure Main we have absolutely 
no idea what it does. Even if we look at the specification of 
Stuff we are none the wiser. We have to look at the body of 
Stuff to see that it has access to The_Stack. Clearly this is 
against the spirit of separation of specification and body. 
The specification ought to tell us what something does 
whereas the body should simply tell us how it does it. Of 
course the very fine detail is not always relevant but at least 
we ought to be clear about what is affected by looking at 
the specification. 

Now consider the same example with the minimal SPARK 
annotations. 

--# inherit The_Stack; 
package Stuff is 
   procedure Do_It; 
   --# global in out The_Stack.State; 
end Stuff; 

with The_Stack; 
package body Stuff is 
   procedure Do_It is 
   begin 
      ... 
      The_Stack.Push( ... ); 
      ... 
      The_Stack.Pop( ... ); 
      ... 
   end Do_It; 
end Stuff; 

with Stuff; 
--# inherit The_Stack, Stuff; 
--# main_program; 
procedure Main 
--# global in out The_Stack.State; 
is 
begin 
   Stuff.Do_It; 
end Main; 

This introduces two more annotations. One is the inherit 
clause which is required on the specification of a package 
in order to give access to other packages. The other is the 
main program annotation. The global annotations now 
reveal that the state of the package The_Stack is being 
manipulated by the procedure Do_It and (transitively) by 
the main subprogram. The fine details of just what is being 



64   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

J. Barnes, “The SPARK way to Correctness is Via Abstraction”
Originally printed in Ada User Journal, Vol. 22, N. 4, December 2001

done to The_Stack are not revealed and indeed it is 
probably not necessary to know at this structural level. 

But the key point is that the side effect of manipulating the 
state of the stack is revealed. The annotations encourage 
good design because a bad design will often have a lot of 
curious unexpected side effects which are embarrassingly 
revealed by the annotations. Changing the structure in order 
to reduce the complexity of annotations will simplify the 
design by increasing coherence and reducing unnecessary 
cross-coupling.  

Design relates to the specifications of components and their 
interrelationships whereas implementation relates to their 
bodies. It is interesting to note that most SPARK annotations 
apply to specifications and this emphasizes that SPARK is 
primarily about encouraging good design which then in 
turn leads to correctness of implementation. 

An important issue is scalability, that is the ability to cope 
with large programs as well as small ones. In this context it 
is important that refinement can be cascaded. Thus if a 
component C uses a subcomponent S such as the stack as 
implementation detail then this fact need not be revealed at 
the top level. The subcomponent S can be embedded in C 
or (equivalently) be a private child of C. The state of C can 
then be refined to include the state of S so that S becomes 
just an implementation detail. 

Note carefully that the most benefit will be obtained from 
SPARK if it is used as early as possible in the design 
process. It can weed out poor design before energy is spent 
on implementation. Of course, SPARK is valuable at the 
implementation stage as well because it will statically 
detect many errors that the compiler cannot detect. Indeed, 
SPARK reaches parts of the program that other tools do not 
reach. 

Levels of use 
One of the beauties of SPARK is that it can be used at 
different levels according to the requirements of the project. 
The simplest level just requires visibility annotations such 
as global and own annotations. These alone enable the 
Examiner to detect a great many errors that cannot be found 
by the compiler and thus have to be found by the tedious 
process known as testing often at a later stage in the 
development process and thus both more expensive to find 
and to fix.  

We know that a key strength of Ada is its strong typing 
which reveals errors that in a pathetic language such as C 
have to be found by testing. SPARK extends this capability 
of Ada by finding even more errors without testing. 

At the lowest level of annotation, flow analysis detects 
many typical errors such as uninitialized variables (those 
read before being given a value), ineffective parameters 
(whose value has no effect on the outcome), overwritten 
values (values that are overwritten before being used), 
nonterminating loops, aliasing, and so on. In addition many 
of the errors that can be made in Ada (such as inadvertently 

using the wrong variable because a later declaration hides 
it) cannot occur in SPARK because of stricter naming rules. 

The introduction of the derives annotation will give more 
detail of the interactions between components and analysis 
will then often reveal surprising cross-coupling indicative 
of poor design or coding errors. 

Proof may be appropriate for algorithmic applications. 
Proof can be applied at several levels as well. This paper 
has described proof whereby the user is required to add 
proof annotations. Another option is to check for the 
absence of runtime errors such as those that arise from 
violating a bound of an array. Since the Examiner knows 
about the type model it can generate verification conditions 
which show the absence of such runtime errors without the 
user having to supply any annotations at all. Proof can be 
performed with or without the derives annotations so in fact 
there are really many levels at which SPARK can be used.  

These different levels can be mixed up within a single 
program. The computational leaves of a system might be 
subject to proof, the derives annotation might be useful for 
intermediate subcomponents whereas the outermost part of 
the system might well have the lowest level of annotation. 
This is a big strength of SPARK; it can be seen as several 
tools rolled into one each appropriate to a different part of a 
project. 

Conclusion 
Abstraction has been the main theme of this paper. Good 
abstraction is about revealing relevant detail and hiding 
irrelevant detail. Plain Ada programs typically do not reveal 
all the relevant detail. But SPARK with its refinement 
capability can be used to reveal the detail that matters while 
keeping the irrelevant detail hidden. 

The reader should be aware that this paper has only 
surveyed some of the capabilities of SPARK. Much has been 
omitted such as how to interface to external parts of a 
system. Further details will be found in [1] from which 
many of the examples given here have been taken and 
which includes a CD containing demonstration versions of 
the SPARK tools plus full documentation. 

Finally it should be noted that SPARK is well-established 
and has been successfully used on many projects in a 
variety of application areas; see for example [2, 3]. 

References 
[1] J. G. P. Barnes (1997), High Integrity Ada - The SPARK 

Approach, Addison-Wesley. 

[2] R. C. Chapman (2000), Industrial Experience with 
SPARK, Proceedings of SIGAda 2000. 

[3] M. Croxford and J. Sutton (1996), Breaking Through 
the V and V Bottleneck, Proceedings of Ada in Europe 
Conference 1995, Lecture Notes in Computer Science 
1031, Springer-Verlag. 

 

 



 65  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

S. T. Taft, “Object-Oriented Programming Enhancements in Ada 200Y” 
Originally printed in Ada User Journal, Vol. 24, N. 2, June 2003

Object-Oriented Programming 
Enhancements in Ada 200Y 
S Tucker Taft * 
SofCheck, Inc. 11 Cypress Drive, Burlington, MA 01803; USA.; tel:+1 781 750 8068; email: stt@sofcheck.com 
 

Abstract 
This article provides an overview of four proposed 
amendments to the Ada standard for possible 
inclusion in the revision planned for late 2005 or 
early 2006.  Together, these four amendments can be 
seen as “finishing” the job of integrating object-
oriented programming features into Ada. 
Keywords. Ada, Object-Oriented Programming, 
Amendment 

1   Introduction 
A new revision of the Ada programming language standard 
is being prepared, with a scheduled completion date of late 
2005 or early 2006.  As part of this revision, the Ada 
Rapporteur Group (ARG), a part of the ISO Working 
Group 9 (WG9), is developing proposed amendments to the 
standard.  Several of these amendments relate to object-
oriented programming (OOP).  This paper will describe 
some of these amendments, and the background and 
rationale for their development. 

When Ada 95 was being designed, there was still a fair 
amount of controversy whether object-oriented 
programming features should be included in the language at 
all, because of their generally dynamic nature, and because 
of concern about whether some of their perceived negative 
aspects (difficult to test and verify, "weaker" typing model, 
etc.) might outweigh their claimed positive aspects. 

Over the past decade, object-oriented programming has 
become the dominant programming paradigm, so much so 
that it is now simply assumed, and debates have moved on 
to other language and methodology issues (e.g. aspect-
oriented programming, extreme programming, highly 
scalable programming, etc.). Two major new object-
oriented programming languages have appeared on the 
scene, Java and C#.  And most colleges and high schools 
are now teaching an object-oriented programming language 
in their introductory programming courses. 

Hence, there is no longer any significant debate whether 
adding object-oriented programming to Ada 95 was a good 
idea.  The question that remains is whether the object-
oriented programming features of Ada 95 are as usable, 
effective, and understandable as they should be.   

2   Differences Between Ada 95 and Other 
OOP Languages 
Before attempting to answer this question, it is useful to 
first identify what makes Ada 95's object-oriented 
programming features different from those of most other 
OOP languages, both in a positive and a negative sense.  
There are several important differences: 

a) Ada 95 makes a significant and explicit distinction 
between class-wide types and specific types.  This 
distinction implicitly exists in essentially all OOP 
languages, but there is rarely a way to talk about it in the 
source language itself.  Instead, depending on context, a 
type or class name in such a language might represent a 
single type in the hierarchy (what Ada 95 calls a "specific" 
type), or it might represent a type and all types derived 
directly or indirectly from it (what Ada 95 calls a 
"derivation class of types").   

Only when dealing with class-wide types in Ada 95 is there 
any possibility of dynamic binding.  In most other OOP 
languages, dynamic binding is the default, and static 
binding requires additional effort, or is simply not 
available.  This makes it more likely in such languages that 
dynamic binding will be used in places where static binding 
would have been preferred, and would have produced a 
faster, more verifiable, and more maintainable system. 

In Ada 95, because static binding is the default, there will 
generally be significantly reduced coupling between a 
derived type and its parent type, allowing the parent 
operations to be treated more like black boxes. In most 
other OOP languages, you really need to see the source 
code for all parent operations to know whether it is safe to 
inherit any one of them rather than override it in a derived 
type. 

b) Ada 95 has no direct linguistic support for type 
hierarchies involving multiple inheritance.  Although there 
are several other language features (such as "with" and 
"use" clauses, generic packages, private extensions, and 
access discriminants), that allow programmers to solve 
problems in Ada 95 for which other languages might rely 
on their linguistic multiple inheritance capabilities, there 
are still some situations where the lack of linguistic support 
does restrict the ease of solving an important problem. 

c) Except for synchronizing operations (such as a task entry 
call or a protected operation), all operands to an operation 
in Ada 95 are treated symmetrically in the syntax.  That is, 

* Affiliation and contacts as in the original publication  



66   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

S. T. Taft, “Object-Oriented Programming Enhancements in Ada 200Y”
Originally printed in Ada User Journal, Vol. 24, N. 2, June 2003

they are all passed as parameters "inside" the parentheses, 
independent of whether the operand might control dynamic 
binding.   

This symmetry makes object-oriented abstract data types be 
a natural generalization of "normal" abstract data types, and 
makes user-defined binary operators work in a natural way 
with such types, without any special treatment.  The 
controlling operand of a binary operator could be the right 
operand or the left operand, depending on what is 
appropriate.  The controlling "operand" can even be 
provided by context, in the case of a call on a parameterless 
function like "Empty_Set" which will result in the 
invocation of the "appropriate" overriding of Empty_Set, 
depending on the underlying run-time "tag" of the 
"receiver" of the result of the call. 

Unfortunately, this symmetric approach can result in extra 
verbiage and possible confusion when used with a multi-
package type hierarchy. Some "operations" in such a 
hierarchy might be so-called "class-wide" operations, 
which are generally declared in the package where the root 
type of the hierarchy is declared, while others will be 
"dispatching" operations which are inherited down the 
hierarchy, and are implicitly declared within each package 
where a derived type is declared.  To call an operation, one 
has to either have "use" clauses for all packages where it 
might have been declared, or determine the correct package 
and put a prefix on the operation name that identifies the 
relevant package.  Although this does not at first glance 
seem onerous, when working with relatively large type 
hierarchies, always identifying the package or "use"ing all 
the relevant packages can make the code less rather than 
more readable. 

With OOP languages that use the "asymmetric" approach, 
where the (one and only) controlling operand precedes the 
name of the operation, and the other operands appear inside 
the parentheses, there is rarely a need to identify the 
module where an operation is declared, since it is 
determined by the type of the controlling operand.  In C++, 
the module name is used generally only when overriding 
the default dynamic binding, and requesting static binding 
to an operation in a particular class/namespace. 

There are some languages, in particular Modula-3, which 
allow either notation to be used, with the asymmetric 
"prefix" notation being a short-hand (syntactic "sugaring") 
for the symmetric notation. 

d) Ada separates declaration from implementation, and 
requires that all types and operations be declared before 
they are referenced. In some OOP languages, in particular 
Eiffel and Java, declaration and implementation are not 
separated in the definition of a class. Furthermore, in these 
languages, in part because all objects are referenced via 
pointers and hence are of known "size," there is no need to 
declare a class before it is referenced. 

Because Ada requires declaration before reference, extra 
work is required to create collections of types that are 
mutually dependent. In general, an incomplete type 
declaration is required to allow for such cyclic type 

structures.  However, an incomplete type must be 
completed within the same package in which it is declared. 
This precludes such cyclic type structures from crossing 
multiple packages, and tends to lead to larger-than-ideal 
packages simply to accommodate such a cycle. The child 
library unit feature was added to Ada 95 in part to allow 
packages to remain smaller, with hierarchies (subsystems) 
of packages being used to represent large multi-type 
abstractions. 

C++ retains the separation between declaration and 
implementation, while allowing cyclic type structures to 
cross multiple "namespaces." This is possible because 
namespaces may be defined in several separate textual 
pieces, and an incomplete type declaration in C++ may be 
in one piece of the namespace, while a separate piece 
contains the full type declaration.  In Ada, packages have 
only two textually separable pieces, namely the package 
declaration ("spec") and the package implementation 
("body").  But putting a full type declaration in the package 
body is not a solution to the multi-package cyclic type 
structure problem, because the declarations within the 
package body are not visible outside the package.  By 
contrast, all the "pieces" of a C++ namespace can contain 
"visible" declarations. 

e) Ada 95 supports 3 levels of visibility for operations and 
components of a type: fully public, visible to child units, 
and visible only within the defining package.  Most other 
OOP languages provide special visibility of operations to 
derived types (subclasses).  In C++ and Java this is called 
"protected" visibility. 

An important advantage of the Ada 95 approach to "partial" 
visibility is that it is provided only to modules whose 
position within the naming hierarchy implies their special 
visibility.  This creates a strong boundary around the set of 
units that might be affected by changes to partially visible 
operations or components. In most other OOP languages, 
this special visibility is unrelated to the module structure, 
and a derived type/subclass which might be affected by 
changes to partially visible operations or components could 
be in any module, anywhere in the system. 

The net effect is that encapsulation and information hiding 
in Ada 95 is linked more closely to the naming hierarchy, 
making maintenance of Ada object-oriented systems easier 
to perform, even when the systems grow large and involve 
large hierarchies of types. 

f) Ada 95 supports both object-oriented programming and 
multi-threaded programming, but does not directly 
integrate these two.  Tasks and protected objects can be 
components of an object-oriented "type," or vice-versa, but 
neither tasks or protected objects can themselves be directly 
extended.  By contrast, in Java, which is one of the very 
few other languages that have linguistic support for both 
object-oriented programming and multi-threading, 
synchronizing operations can be added in subclasses, and 
the types used to represent threads can also similarly be 
extended using the normal inheritance mechanisms. 



 67  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

S. T. Taft, “Object-Oriented Programming Enhancements in Ada 200Y” 
Originally printed in Ada User Journal, Vol. 24, N. 2, June 2003 

An important advantage of Ada's tasking model is that all 
operations of a protected type or a task synchronize 
properly with one another, while in Java, it is possible to 
have both synchronizing and non-synchronizing operations 
on the same type, which is an obvious avenue for subtle 
race conditions to enter a system. Furthermore, because 
Ada's protected and task types do not allow piecemeal 
inheritance, all operations that synchronize with one 
another are defined in the same module, preserving the 
original advantages of the "monitor" concept introduced 
many years ago -- analysis and verification of proper 
synchronization conditions can be performed without 
having to chase down all critical sections that might be 
scattered about the system. 

Given the above important differences between Ada 95 and 
most OOP languages, it is appropriate to evaluate these 
differences, and see whether they represent strengths or 
weaknesses in Ada's support for object-oriented 
programming.  In some cases, the differences have both 
positive and negative aspects.  Arguably one overall 
negative aspect of such differences is that they may put 
Ada 95 out of the mainstream of object-oriented 
programming, given that more and more programmers are 
being introduced to OOP, or even programming as a whole, 
through languages like Java and C#. On the other hand, 
Ada 95 has an important role in the development of 
complex, critical systems, and some of the differences are 
specifically designed to assist in the development of safe, 
robust, and verifiable systems, while still providing the 
flexibility and extensibility of object-oriented 
programming. 

3   Areas of Strength, Areas for 
Enhancement 
The challenge for this upcoming revision of Ada is then to 
preserve Ada's great strengths in its support for the 
construction of safe, verifiable systems, while enhancing its 
object-oriented features to take advantage of what has been 
learned about object-oriented programming features over 
the past ten years.  Areas that have been identified for 
possible enhancement are support for multi-package cyclic 
type structures, support for multiple-inheritance type 
hierarchies, support for the "asymmetric" notation for 
invoking operations, and support for some kind of 
extension for protected and task types. 

On the other hand, Ada's clear distinction between specific 
and class-wide types, its default of static binding with 
dynamic binding only where necessary, and its strong 
boundary around modules that have visibility on "partially" 
visible operations and components, are seen as clear 
advantages to Ada's approach to object-oriented 
programming, with no need for significant alteration. 
Furthermore, any changes that are proposed must not 
compromise Ada's strengths, and if anything, should extend 
Ada's unique position as the safe and verifiable, real-time 
object-oriented programming language. 

4   Cyclic Type Structures 
One item identified as very important for enhancement has 
to do with allowing cyclic type structures to cross package 
boundaries. In Ada 95, it is possible to use a combination 
of class-wide types, type extension, and "downward" type 
conversion, to overcome the basic Ada limitation to single-
package cyclic type structures. However, this approach 
introduces additional complexity and some degree of run-
time overhead and possible sources of run-time errors. 
Hence, there has been a concerted effort to provide a 
natural way for cyclic type structures to be safely and 
securely extended across packages. 

Several alternative proposals have been developed and 
evaluated. Unfortunately, no one proposal has emerged as 
clearly the best solution in every dimension.  The original 
proposal introduced a new kind of "with" clause called the 
"with type" clause.  This allowed a package to refer to a 
type that would eventually be declared in some other 
package, but without requiring that that other package be 
compiled first.  A version of this proposal was actually 
implemented in the GNAT Ada Compiler from AdaCore 
Technologies, but was ultimately dropped from 
consideration by the ARG because of difficulties 
discovered while working out the lower level details. 

Three proposals remain under consideration: one involving 
type "stubs" (analogous to program unit "stubs", identified 
by the "is separate" syntax), a second involving a 
generalization of incomplete type declarations to allow a 
parent package to declare an incomplete type that will be 
completed in a child or nested package, and a third 
proposal involving a new kind of "limited" with clause, 
allowing one package to gain visibility on the types and 
nested packages of another package, without requiring 
"full" compilation of the other package. 

Here are examples of the three proposals.   They all are 
based on the Employee/Department problem, where there is 
a type that represents employees, and a type that represents 
departments, and employees are members of a department, 
while a department has a manager who is an employee.  
The challenge is to define the employee type in one 
package, and the department type in a separate package, but 
accommodate the desire to have references to both 
employees and departments in both packages. 

The first example is the "type stub" proposal: 

limited with Employees;   
-- Allow type stubs to refer to this package 
package Departments is 
   type Employee is separate Employees.Employee;   
   -- Type stub 
   type Employee_Ref is access Employee; 
   type Department is private; 

 
   procedure Set_Manager(Dept: in out Department; Mgr: 
Employee_Ref); 



68   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

S. T. Taft, “Object-Oriented Programming Enhancements in Ada 200Y”
Originally printed in Ada User Journal, Vol. 24, N. 2, June 2003

   function Manager(Dep: Department) return 
Employee_Ref; 
   ... 
private 
   type Department is record 
      Mgr: Employee_Ref; 
      ... 
   end record; 
end Departments; 
 
limited with Departments;   
-- Allow type stubs to refer to this package 
package Employees is 
   type Department is separate Departments.Department; 
   -- Type stub 
   type Department_Ref is access Department; 
        type Employee is private; 
        procedure Set_Department(Emp: in out Employee; 
 Dept: Department_Ref); 
    function Department(Emp: Employee) return 
Department_Ref; 
    ... 
private 
   type Employee is record  
      Dept: Department_Ref; 
      ... 
   end record; 
end Employees; 

 
The second example uses the generalized incomplete type 
declaration: 

 
package Office is 
   type Employees.Employee;       
   -- Incomplete type completed in child 
   type Employee_Ref is access Employees.Employee; 
   type Departments.Department;   
   -- Incomplete type completed in child 
   type Department_Ref is  
access Departments.Department; 
end Office; 
   package Office.Departments is 
   type Department is private; 
   procedure Set_Manager(Dept: in out Department;  
Mgr: Employee_Ref); 
   function Manager(Dep: Department)  
return Employee_Ref; 
   ... 
private 
   type Department is record 
      Mgr: Employee_Ref; 

      ... 
   end record; 
end Office.Departments; 
 
package Office.Employees is 
   type Employee is private; 
   procedure Set_Department(Emp: in out Employee;  
Dept: Department_Ref); 
   function Department(Emp: Employee) return 
Department_Ref; 
   ... 
private 
   type Employee is record 
      Dept: Department_Ref; 
      ... 
   end record; 
end Office.Employees; 

 
The third example uses the "limited with" clause: 

 
limited with Employees;   
-- Gives visibility on types as incomplete types 
package Departments is 
   type Employee_Ref is access Employees.Employee; 
   type Department is private; 
   procedure Set_Manager(Dept: in out Department;  
Mgr: Employee_Ref); 
   function Manager(Dep: Department)  
return Employee_Ref; 
   ... 
private 
      type Department is record 
         Mgr: Employee_Ref; 
         ... 
      end record; 
end Departments; 
 
limited with Departments;   
-- Gives visibility on types as incomplete types 
package Employees is 
   type Department_Ref  is  
access Departments.Department; 
   type Employee is private; 
   procedure Set_Department(Emp: in out Employee;  
Dept: Department_Ref); 
   function Department(Emp: Employee)  
return Department_Ref; 
   ... 
private 
   type Employee is record 



 69  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

S. T. Taft, “Object-Oriented Programming Enhancements in Ada 200Y” 
Originally printed in Ada User Journal, Vol. 24, N. 2, June 2003 

      Dept: Department_Ref; 
      ... 
   end record; 
end Employees; 

 
All three proposals allow a type defined in one package to 
be treated as an incomplete type in some other package, 
without the second package "depending" semantically on 
the first package. This is the critical capability, because it 
allows a cyclic type structure to be established without 
contradicting the partial ordering implied by "normal" 
semantic dependence relationships. All of the solutions 
involve a "weaker" kind of dependence, where one package 
knows that another package "exists" without having full 
semantic dependence on it.  The "limited" with clause 
proposal approaches this problem by introducing a 
"limited" dependence on another package.  Limited 
dependences are allowed to be cyclic.  They imply some 
kind of pre-scan of a package to determine the names of the 
types (and the subpackages) of the package, without doing 
a full semantic analysis of the package. 

The type stub proposal also requires a similar kind of 
limited dependence, but limits it even further to specific 
types identified by type stubs.  Further, it does not require 
any kind of pre-scan of the package, because post-
compilation checks can be performed to verify that type 
stubs refer only to types that actually exist in the package. 

The incomplete-type-completed-in-a-child proposal 
introduces a "weak" dependence between a parent package 
and one of its child packages, requiring that a child package 
exist and that it declare a type that matches one identified 
in a generalized form of incomplete type declaration 
present in the parent's specification. 

At this point there is consensus that a solution to this 
problem will exist in the Ada 200Y standard, and that the 
form of the solution will be based on one of these three 
proposals, but the particular approach has not yet been 
chosen.  It is anticipated that the final choice will be made 
at the ARG meeting immediately following the 
Ada-Europe 2003 conference. 

5   Multiple-Inheritance Type Hierarchies 
When Ada 95 was designed, a significant amount of energy 
was expended in evaluating the possibility of including 
direct syntactic support for multiple inheritance.  At the 
time, some OOP languages included full multiple 
inheritance (C++, Eiffel), while others chose single 
inheritance (Modula-3, Smalltalk). Full multiple 
inheritance introduces a number of language complexities 
as well as a somewhat more complicated and/or less 
efficient run-time model for dispatching calls. Ultimately, 
we decided to stick with the simplicity of single inheritance 
for Ada 95, but provide various "building blocks" that 
could be used to solve problems that in other languages 
might require multiple inheritance. 

Since the Ada 95 design was finalized, a middle ground in 
the spectrum of inheritance models has become popular 

that provides multiple inheritance of interfaces (i.e. 
contracts), but with actual implementation "code" and data 
components inherited from only a single "primary" parent 
type.  This approach, as exemplified in Java, C#, and to 
some extent CORBA IDL, eliminates much of the 
complexity of "full" multiple inheritance, because data 
components can continue to use the straightforward linear 
extension approach of single inheritance, and because 
conflicts due to inheriting code from multiple parent types 
cannot occur. 

The current proposal for adding multiple inheritance of 
interfaces adds a new kind of type to Ada called an 
"interface". An interface type is in most respects equivalent 
to a type declared as "type T is abstract tagged null record;" 
though the syntax is shortened to be simply "type T is 
interface;". However, in addition to being usable in all 
contexts where such an abstract type may be used, the type 
may also be used as a "secondary" parent type in the 
declaration of a type extension. Secondary parents 
("interface parents") are identified by appearing second or 
later in a list of the parent types in a record extension.  The 
parent type names are separated from one another by "and", 
as in: 

 
type NT is new Primary and Secondary_1 and   
   Secondary_2 and ... with ...; 

 
Note that the Primary parent may also be an interface type, 
since an interface type may be used anywhere an abstract 
tagged type make be used. 

Interfaces may also be used as "parents" of other interfaces, 
using the following form: 

type NI is interface with Int_Parent1 and Int_Parent2;  

As implied above, no code or components are inherited 
from interfaces, only the specification of operations that 
must be implemented by the type that has the interface as a 
parent. If an interfaces has other interfaces as parents, then 
the union of all the operations of the parents combined with 
the operations defined on the new interface must be 
implemented by all (non-abstract) types derived from the 
new interface. 

Here is a larger example which uses interfaces: 

package MVC is 

   -- Set of interfaces that define a model-view-controller  

   -- structure. 

   type Observer is interface; 

   -- "interface" is roughly equivalent to  

   -- "abstract tagged null record" 

   type Observer_Ref is access all Observer'Class; 

   -- An observer waits for changes to a model 

   type Model is interface; 

   type Model_Ref is access all Model'Access; 

   -- A model represents some data structure  



70   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

S. T. Taft, “Object-Oriented Programming Enhancements in Ada 200Y”
Originally printed in Ada User Journal, Vol. 24, N. 2, June 2003

   -- that is being viewed and/or manipulated     

   procedure Notify( 
      Obs: access Observer;  
      M: Model_Ref) is abstract; 

   -- Notify observer that model it was observing 

   --  has changed 

   type View is interface with Observer; 

   type View_Ref is access all View'Class; 

   -- A view is a visual display of some model 

   procedure Display_View( 
      V: access View;  
      M: Model_Ref) is abstract; 

   -- Display view of associated model  

   type Controller is interface with Observer; 

   type Controller_Ref is access all Controller'Class; 

   -- A controller supports input device(s) for  

   --  manipulating/updating an underlying model 

   procedure Start_Controller( 
      Ctlr: access Controller;  
      M: Model_Ref) is abstract; 

   -- Initiate controller for associated model 

   procedure Register_View( 
      M: access Model;  
      V: View_Ref) is abstract; 

   -- Register view for given model.     

   procedure Register_Controller( 
      M: access Model;  
      Ctlr: Controller_Ref) is abstract; 

   -- Register controller on given model. 

end MVC; 

 

with MVC; 

with Devices; 

package Inputs is 

   type Mouse is new Devices.Device with private; 

   type Mouse_Controller is new  
      Devices.Device and MVC.Controller with private; 

   -- Primary parent type, if any, must be listed first 

   -- All other parent types must be interfaces. 

   procedure Handle_Input( 
      MC: in out Mouse_Controller); 

   -- Optionally override operations of parent type  

   -- (or may inherit those with appropriate defaults) 

   procedure Notify( 
      MC: access Mouse_Controller;  
      M: Model_Ref); 

   procedure Start_Controller( 
      MC: access Mouse_Controller;  
      M: Model_Ref); 

   -- Required to define all abstract operations declared  

   -- for Observer and Controller 

   type Two_Button_Mouse_Controller is new  
      Mouse_Controller with private; 

   procedure Start_Controller( 
      TMC: access Two_Button_Mouse_Controller;  
      M: Model_Ref); 

   -- May inherit or override operations inherited from 

   -- parent type including those that are needed for 

   -- interfaces Observer and Controller 

   procedure Register_And_Start( 
      MC: access Mouse_Controller'Class;  
      M: Model_Ref); 

   -- Class-wide operation to register the mouse  

   -- controller on given model, and then start the  

   -- controller going. 

private 

   ... 

end Inputs; 
 
Although not illustrated in the above example, the proposal 
for interface types includes a proposal for "declared-null" 
procedures.  A declared-null procedure is one whose 
specification ends with "is null;" rather than ";" or "is 
abstract;". No separate body is permitted for such a 
procedure.  The implicit null body has no effect when 
executed. 

Rather than requiring that all primitive operations of an 
interface type be abstract, this proposal also allows the 
primitive operations to be declared null.  Such a procedure 
need not be overridden in a type derived from this 
interface.  If not overridden, its implementation is null.  If 
at least one interface ancestor of a type declares a given 
operation as null, the type need not provide an explicit 
overriding of the operation.  If a non-interface ancestor type 
provides a non-null implementation of the operation, that is 
inherited rather than the null procedure. 

Declared-null procedures are useful in that they allow a 
number of optional capabilities to be supported in an 
interface, without every derived type having to explicitly 
define the capability.  In addition, if an abstract or interface 
type with one or more declared-null primitives is used as 
the ancestor in a generic formal type extension, the formal 
type is presumed to have non-abstract implementations of 
these operations.  This can be useful when overriding the 
operations, since it is often desirable to call the parent's 
operation from an overriding, particular in the case of 
initializing or finalizing operations. 

6   Using Object.Operation Notation 
When doing object-oriented programming in Ada 95, the 
programmer must identify the package in which an 
operation is declared, along with the various operands.  
Because dispatching operations are often implicitly 



 71  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

S. T. Taft, “Object-Oriented Programming Enhancements in Ada 200Y” 
Originally printed in Ada User Journal, Vol. 24, N. 2, June 2003 

declared, identifying the package where they are declared 
can sometimes be confusing.  In addition to dispatching 
operations, class-wide operations are important in many 
object-oriented systems.   However in Ada, class-wide 
operations, unlike their equivalent in many other OOP 
languages, are not inherited along with the dispatching 
operations.  Instead, they are only declared in the original 
package where they appear. 

This distinction in inheritance between dispatching 
operations and class-wide operations means that it can be a 
burden to identify the package where an operation of 
interest is declared, particularly when the choice between 
making an operation a dispatching operation versus a class-
wide operation might be more of an implementation detail 
than an essential part of the semantics of the operation from 
a user's point of view.   The distinction is generally 
important when deriving from a type, but may be irrelevant 
when using the type. 

Programmers familiar with other OOP languages that use 
an "object.operation(...)" syntax rather than Ada's 
"package.operation(object, ...)" syntax find this added 
burden an entry barrier to using Ada for OOP systems, 
which tends to make the language feel less object-oriented 
than it truly is. The alternative of inserting "use" clauses for 
every possible package where an operation might be 
declared has other negative ramifications. 

Given these considerations, a proposal has been developed 
to allow the use of an "object.operation(...)" syntax as a 
syntactic shorthand for "package.operation(object, ...)".  
Originally it was proposed that this syntactic shorthand be 
available to all kinds of types, whether or not the type is 
tagged.  However, supporting this for both access types and 
tagged types adds to the complexity of the proposal in 
certain ways due to the desire to allow implicit dereference 
(implicit ".all") of the "object" if it is designated by an 
access value.  Implicit dereference is provided in all other 
places where "." is allowed in the syntax, and it would be 
inconsistent not to allow it here.  Furthermore, this notation 
is specifically intended to simplify object-oriented 
programming where there may be multiple relevant 
packages.  When using non-tagged types, the 
object.operation syntax would not provide as much benefit. 

The basic idea of this restricted proposal is that any 
dispatching operation, or any class-wide operation declared 
in a package where the corresponding specific type is 
declared, is eligible for calling via this shorthand, so long 
as the first formal parameter is a controlling parameter, or 
is of the class-wide type.  When the object.operation syntax 
is used, the "operation" is looked up first as a component, 
and then as though the packages where the type and any of 
its ancestors are declared had been made use-visible.  If the 
object were of an access-to-tagged type, an interpretation 
using an implicit dereference would also be considered. If 
there are possible interpretations of "operation" among 
these packages, it is checked to see if any of them are 
subprograms where "object", "object.all", or "object'access" 
could be passed as the first parameter, and any actual 

parameters given in parentheses after "operation" 
correspond to the remaining formals. 

Here are some examples of use of this shorthand: 

Given the MVC and Inputs packages given above: 

 
   M : MVC.Model_Ref; 

   V : MVC.View_Ref; 

   C : MVC.Controller_Ref; 

   MC : aliased Inputs.Mouse_Controller; 

begin 

   V.Display_View(M);   

   -- equivalent to MVC.Display_View(V, M); 

   MC.Start_Controller(M);   

   -- equivalent to Inputs.Start_Controller(MC'Access, M); 

   MC.Handle_Input;     

   -- equivalent to Inputs.Handle_Input(MC); 

   MC.Register_And_Start(M); 

   -- equivalent to 

   -- Inputs.Register_And_Start(MC'Access, M); 

   -- (this is a call on a class-wide op) 

7   Inheritance of Interfaces for Protected 
and Task Types 
During the Ada 95 design process, it was recognized that 
type extension might be useful for protected types (and 
possibly task types) as well as for record types.  However, 
at the time, both type extension and protected types were 
somewhat controversial, and expending energy on a 
combination of these two controversial features was not 
practical. 

Since the design, however, this lack of extension of 
protected types has been identified as a possible target for 
future enhancements. In particular, a concrete proposal 
appeared in the May 2000 issue of ACM Transactions on 
Programming Languages in Systems (ACM TOPLAS[1]), 
and this has formed the basis for a language amendment 
(AI-00250). 

However, in ARG discussions, the complexity of this 
proposal has been of concern, and more recently a simpler 
suggestion was made that rather than supporting any kind 
of implementation inheritance, interfaces for tasks and 
protected types might be defined, and then concrete 
implementations of these interfaces could be provided. 
Class-wide types for these interfaces would be defined, and 
calls on the operations (protected subprograms and entries) 
defined for these interfaces could be performed given only 
a class-wide reference to the task or protected object. 

An important advantage of eliminating inheritance of any 
code or data for tasks and protected types is that the 
"monitor"-like benefits of these constructs are preserved.  
All of the synchronizing operations are implemented in a 
single module, simplifying analysis and avoiding any 



72   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

S. T. Taft, “Object-Oriented Programming Enhancements in Ada 200Y”
Originally printed in Ada User Journal, Vol. 24, N. 2, June 2003

inheritance "anomalies" that have been associated in the 
literature with combining inheritance with synchronization. 

The detailed syntax for protected and task interfaces has 
not been proposed.  Here is one possibility: 

 
protected interface Queue is 

-- Interface for a protected queue 

   entry Enqueue(Elem : in Element_Type) is abstract; 
   entry Dequeue(Elem : out Element_Type) is abstract; 
   function Length return Natural is abstract; 
end Queue; 

type Queue_Ref is access all Queue'Class; 

 

protected type Bounded_Queue(Max: Natural) is new 
   Queue with 

-- Implementation of a bounded, protected queue 

   entry Enqueue(Elem : in Element_Type); 

   entry Dequeue(Elem : out Element_Type); 

   function Length return Natural; 

private 
   Data: Elem_Array(1..Max); 

   In_Index: Positive := 1; 

   Out_Index: Positive := 1; 

   Num_Elems: Natural := 0; 

end My_Queue; 

 

task interface Worker is 

    -- Interface for a worker task 

    entry Queue_To_Service(Q : Queue_Ref) 
       is abstract; 
end Worker; 

type Worker_Ref is access all Worker'Class; 

 

task type Cyclic_Worker is new Worker with 

   -- Implementation of a cyclic worker task 

   entry Queue_To_Service(Q : Queue_Ref); 

end Cyclic_Worker; 

 

task Worker_Manager is 

   -- Task that manages servers and queues. 

   entry Add_Worker_Task(W : Worker_Ref); 

   entry Add_Queue_To_Be_Serviced(Q : Queue_Ref); 

end Worker_Manager; 

 

task body Worker_Manager is 

   Worker_Array : array(1..100) of Worker_Ref; 

   Queue_Array : array(1..10) of Queue_Ref; 

   Num_Workers : Natural := 0; 

   Next_Worker : Integer := Worker_Array'First; 

   Num_Queues : Natural := 0; 

   Next_Queue : Integer := Queue_Array'First; 

begin 
   loop 
      select 
         accept Add_Worker_Task(W : Worker_Ref) do 

            Num_Workers := Num_Workers + 1; 

            Worker_Array(Num_Workers) :=   
               Worker_Ref(W); 

         end Add_Worker_Task; 

         -- Assign new task a queue to service 

         if Num_Queues > 0 then 

            -- Assign next queue to this worker 

            Worker_Array(Num_Workers). 
               Assign_Queue_To_Service( 
                  Queue_Array(Next_Queue); 

            -- Dynamically bound entry call 

            -- Advance to next queue 

            Next_Queue := Next_Queue mod  
               Num_Queues + 1; 

         end if; 
      or 
         accept Add_Queue_To_Be_Serviced( 
            Q : Queue_Ref); 

            Num_Queues := Num_Queues + 1; 

            Queue_Array(Num_Queues) := Queue_Ref(Q); 

         end Add_Queue_To_Be_Serviced; 

              -- Assign queue to worker if enough workers 

         if Num_Workers >= Num_Queues then 

            -- This queue should be given one 

            -- or more workers 

            declare 
               Offset : Natural := Num_Queues-1; 

            begin 
               while Offset < Num_Workers loop 

                  -- (re) assign queue to worker 

                  Worker_Array((Next_Worker + Offset - 
                     Num_Queues) mod Num_Workers + 1). 
                        Assign_Queue_To_Service( 
                           Queue_Array(Num_Queues)); 

                  -- Dynamically bound call 

                  Offset := Offset + Num_Queues; 

               end loop; 

               -- Advance to next worker 

               Next_Worker := Next_Worker  mod 
                  Num_Workers + 1; 

               end; 

            end if; 
         or 



 73  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

S. T. Taft, “Object-Oriented Programming Enhancements in Ada 200Y” 
Originally printed in Ada User Journal, Vol. 24, N. 2, June 2003 

            terminate; 

      end select; 
   end loop; 

end Worker_Manager; 

 

   My_Queue : aliased Bounded_Queue(Max => 10); 

   My_Server : aliased Cyclic_Server; 

begin 
   Worker_Manager.Add_Worker_Task( 
      My_Server'Access); 

   Worker_Manager.Add_Queue_To_Be_Serviced( 
      My_Queue'Access); 

   …  
end;      

 

8   Summary 
The four proposed amendments to the Ada standard 
discussed above are in some sense an attempt to "finish" 
the job of integrating object-oriented programming into 
Ada which was started during the Ada 95 revision process.  

Although the existing OOP features in Ada 95 are both 
powerful and flexible, eight years of use and ongoing 
developments in the object-oriented programming language 
community have suggested opportunities for enhancement. 

Although it is likely that some of these amendments will be 
approved for addition to the standard, it is quite possible 
that some will not, or that the proposals will be further 
refined in minor or major ways.  Hence it is essential to 
keep in mind that this is a snapshot of an ongoing revision 
process, and by no means the final story. For those 
interested in tracking the progress of these amendments, the 
website of the Ada Conformance Assessment Authority 
(ACAA) provides ready access to all of the amendments, as 
well as minutes of ARG meetings. The URL for this 
website is: 

   http://www.ada-auth.org/ 

References 
[1] Wellings, A.J.; Johnson, B.; Sanden, B.; Kienzle, J., 

Wolf, Th., and Michell, S.: "Integrating Object-
Oriented Programming and Protected Objects in Ada 
95", ACM TOPLAS 22 (3), May 2000; pp. 506-539. 



74   

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

P. Leroy, “Memories of a Language Designer”
Originally printed in Ada User Journal, Vol. 27, N. 3, September 2006

Memories of a Language Designer 
Pascal Leroy * 
IBM Rational software; Chairman, Ada Rapporteur Group; email: pascal.leroy@fr.ibm.com 
 

Introduction 
On September 27, 2006, ISO/IEC JTC 1/SC 22, the 
ISO subcommittee in charge of standardizing 
programming languages, approved the Amendment to 
the Ada standard (“Ada 2005” in the vernacular) by 
twelve votes in favour1, one abstention2 and two non-
voting countries supporting approval3. No comments 
were submitted as part of the vote, so the definition of 
Ada 2005 is now frozen as only administrative chores 
remain to be performed before the new standard is 
officially published by ISO. In parallel to this, the Ada 
standard will be published this fall in the prestigious 
Lecture Notes in Computer Science. After working on 
this Amendment for many years, it is now an 
interesting time to look back into the mirror. 

1   Inception 
Shortly after Ada 95 was standardized minor issues and 
questions concerning the language were addressed to the 
Ada Rapporteur Group (ARG). Though none of these were 
earth-shattering, there were anomalies and inaccuracies in 
the Reference Manual that needed fixing. In 1996 to 
address those issues the ARG started working on a 
Technical Corrigendum, which was completed in 2001. 

In the meanwhile it became clear that there would not be 
financial room for another massive revision effort like the 
Ada 9X project. Future evolutions of the language would 
thus have to happen as part of a volunteer effort from 
people and organizations having an interest in Ada. As the 
user community started to use Ada 95 on real-life projects, 
they encountered a number of annoyances that could not be 
fixed by incremental changes. These early annoyances 
included for instance the impossibility of creating cyclic 
dependencies among package specifications, and the lack 
of support for interfacing with C or C++ unions. 

Consensus quickly arose that it was necessary to put in 
place a framework for keeping Ada “alive” through a 
controlled revision process capable of preserving the 
benefits of standardization while also allowing room for 
improvements to the language. 

2   History 
As a consequence of those considerations, in 1998 the ARG 
was tasked by WG 9 (the ISO working group in charge of 
                                                           
1 Canada, China, Denmark, France, Germany, Japan, Romania, 

Russian Federation, Spain, Switzerland, United Kingdom, 
United States. 

2 The Netherlands. 
3 Belgium, Italy. 

maintaining the Ada standard) to start studying “language 
enhancements”. It is interesting to notice that by that time 
some of the most significant issues related to object-
oriented programming and program structure were already 
identified: in addition to solutions to the cyclic 
dependencies problem, the suggestions made in 1998 
included explicit control of overriding, upward-closure for 
subprogram parameters, and Java-style interfaces. 

In fact, actual work on the Amendment did not really start 
until late 2000, in part because the focus was first on 
completing the Technical Corrigendum, and in part because 
more return on experience was needed before deciding 
what areas of the language actually required improvement. 

In the summer of 2001 WG 9 asked for an Amendment to 
be developed with a target date of 2005 (this being 
software-related, it should not come as a surprise that we 
are now running some 9 months behind schedule on a 5-
year project). WG 9 later approved a more formal and 
detailed schedule, as well as directions regarding the kinds 
of enhancements that the ARG should consider. 

By that time it had become apparent that enhancements had 
to be developed to better support real-time and high-
integrity systems, with the Ravenscar profile being the first 
item on the list. In the following years, numerous proposals 
relevant to this specific application area were developed by 
the International Real-Time Ada Workshop (IRTAW) and 
forwarded to the ARG for inclusion in Ada 2005 (though 
not without extensive rework in some cases!). 

It had been clear from the beginning that expanding the 
predefined library was an essential goal of Ada 2005. Early 
on we worked on a package for accessing directories and 
file systems in a portable way, and we chose to include the 
matrix and vector facilities described in standard ISO/IEC 
13813. Still, the topic that everyone had in mind was a 
predefined library of containers, though that looked like a 
daunting effort. To make that happen we decided to harness 
the help of the user community, and asked for proposals on 
this subject. After careful study of the two proposals that 
we received, we felt that neither of them was ideal. We thus 
decided to craft a third alternative by picking the good 
ideas in both submissions. This third alternative was 
initially given a very restricted scope, for we didn’t want to 
miss the Amendment deadline. As it turned out, however 
once the core ideas had stabilized it was possible to add 
more packages, so that the final library may be deemed 
reasonably complete. 

Interestingly the work on containers proved to be a 
valuable usability test for the new language: as difficulties 
were encountered in the development of the library, new 
features had to be added to the core language. Nested type 

* Affiliation and contacts as in the original publication  



 75  

Ada User Journal ,  30 t h  Anniversary Issue Volume 31, Number 1, March 2010 

P. Leroy, “Memories of a Language Designer” 
Originally printed in Ada User Journal, Vol. 27, N. 3, September 2006 

extensions and partial parameter parts for formal packages 
originated in this manner. 

By the summer of 2004 the scope of the Amendment was 
pretty much stabilized, and it was clear which of the major 
proposals were in and which were out. What remained to 
be done was “mere” integration work. In fact, this proved 
much more time consuming than we anticipated. This had 
to do in part with the sheer size of the updated Reference 
Manual (nearly 1100 pages in its annotated version) and in 
part with the fact that upon reviewing all the changes “in 
place” we discovered inconsistencies that required rather 
extensive rework. For instance, some of the rules related to 
the inheritance of limited-ness, or to functions returning 
access results, came very late in the integration process and 
therefore required considerable attention. Overall, it took 
very intense work for everyone in the ARG over a period of 
18 elapsed months before we had a document that could be 
submitted to WG 9 for approval. 

3   Lessons Learned 
It should not be surprising that “real” things take longer  to 
finalize than one may initially expect. Some new features, 
like the limited_with_clause, proved extremely difficult to 
design: as many as seven proposals were considered over 
the course of five years before a satisfactory solution was 
arrived at: every time we tried a new idea, it seemed like it 
was breaking a fundamental invariant of the language. 
Interfaces have had a different story, but an equally 
complicated one at that: the basic ideas were essentially in 
place by the end of 2000, yet their entanglement with the 
rest of the language is so deep that we have been revising 
them literally until the last minute. Even apparently simple 
enhancements, like allowing aggregates for limited types, 
turned out to have unexpected consequences that required 
heart-wrenching decisions (for example, giving up on 
aggregates for private types). 

It is amusing to notice that the ARG started out fairly 
timorous in the changes it contemplated: an early proposal 
for explicit control of overriding entailed making use of 
pragmas because the notion of adding new syntax was 
considered heretic. As it became clear that pragmas would 
be terrible for readability, we slowly warmed to the notion 
of new syntax. Thus we became increasingly bolder: when 
nested type extensions were added in 2003, they were 
easily swallowed, even though we knew that they would 
have a considerable impact on compilers. 

While we were very much driven by the user community, a 
number of changes appeared out of our own work as we ran 
either into inconsistencies in Ada 95 or into unpleasant 
non-uniformities in Ada 2005. For instance, we initially 
added null_exclusions and improved support for 
anonymous access types so as to ease programming with 
access types (especially in the context of OOP). But for 
long we didn’t want to allow anonymous access types as 
function results because of the deep language design 
difficulties that go with them. It was only when we started 
to use the new language for predefined units and for 

realistic examples that we discovered that it was an 
unacceptable limitation and decided to bite the bullet. 

4   Regrets? 
There are a number of ideas that we discussed for a long 
time, and on which considerable effort was expended, but 
which were not included in the final Amendment because 
we could not find a satisfactory solution. Partial generic 
instantiations come to mind, as do support for the IEEE 559 
floating-point model, and pre- and post-conditions for types 
and packages. In all cases, integrating the new features into 
the language was hard and the solutions just didn’t “feel 
right”. Some of those ideas might in time mature to become 
valuable additions for a future version of Ada. 

I suppose that every member of the ARG has his or her set 
of favourite features that didn’t make it into the 
Amendment for one reason of another. Since I have the 
opportunity to do it here, I shall name my top three. I think 
it was unfortunate that we could not find a solution to the 
problem of partial generic instantiation, which hampers the 
usability of generics to compose abstractions; I guess that 
the discussion on this problem started too late and that we 
didn’t have enough time to find the “magic” idea that 
would solve it elegantly. I also regret that we didn’t have 
time to revise the exception mechanism: exceptions in Ada 
are frustratingly limited compared to other languages, but 
improving them without compromising performance and 
compatibility is a tough call. Finally, I wish we had had the 
guts to add out and in out parameters to functions, 
although I realize that this is a very controversial topic. 

5   With (More Than) a Little Help… 
It is often claimed that Ada was designed by a committee. 
Nothing could be further from the truth. The ARG is made 
of experts from the user community, the tools vendor 
community, and academia, who are among the best minds 
in our industry. It is important to stress that political 
bickering has no place in the ARG at all, and that although 
we have had a fair share of heated discussions, proposals 
were always judged on their technical merits. All the 
changes that were ultimately incorporated in the 
Amendment were elaborated by combining the best ideas, 
and were agreed upon quasi unanimously by the ARG. 

I want to conclude by profusely thanking my fellow ARG 
members4, who have devoted so much time and energy to 
bringing this effort to fruition, and the Convener of WG 95, 
who so deftly shepherded the Amendment through the 
Byzantine ISO administration. I have been lucky and 
honoured to work closely with all of them during all these 
years.

                                                           
4  Steve Baird, John Barnes, Randy Brukardt, Alan Burns, Robert 

Dewar, Gary Dismukes, Robert Duff, Kiyoshi Ishihata, Steve 
Michell, Erhard Ploedereder, Jean-Pierre Rosen, Ed Schonberg, 
Tucker Taft, Bill Thomas, Joyce Tokar, and Tullio Vardanega. 

5  James Moore. 



76 

Volume 31, Number 1, March 2010 Ada User Journal,  30 t h  Anniversary Issue 

National Ada Organizations 
 

Ada-Belgium 
attn. Dirk Craeynest 
c/o K.U. Leuven 
Dept. of Computer Science 
Celestijnenlaan 200-A 
B-3001 Leuven (Heverlee) 
Belgium 
Email: Dirk.Craeynest@cs.kuleuven.be 
URL: www.cs.kuleuven.be/~dirk/ada-belgium 

 

Ada in Denmark 
attn. Jørgen Bundgaard 
Email: Info@Ada-DK.org 
URL: Ada-DK.org 
 

Ada-Deutschland 
Dr. Peter Dencker 
Steinäckerstr. 25  
D-76275 Ettlingen-Spessartt 
Germany 
Email: dencker@web.de 
URL: ada-deutschland.de 
 

Ada-France 
Ada-France 
attn: J-P Rosen 
115, avenue du Maine 
75014 Paris 
France 
URL: www.ada-france.org 
 

Ada-Spain 
attn. José Javier Gutiérrez 
Ada-Spain  
P.O.Box 50.403  
28080-Madrid 
Spain  
Phone: +34-942-201-394 
Fax: +34-942-201-402 
Email: gutierjj@unican.es 
URL: www.adaspain.org 

 

Ada in Sweden 
Ada-Sweden 
attn. Rei Stråhle 
Rimbogatan 18 
SE-753 24 Uppsala 
Sweden 
Phone: +46 73 253 7998 
Email: rei@ada-sweden.org 
URL: www.ada-sweden.org 
 

Ada Switzerland 
attn. Ahlan Marriott 
White Elephant GmbH 
Postfach 327 
8450 Andelfingen 
Switzerland 
Phone: +41 52 624 2939 
e-mail: ada@white-elephant.ch 
URL: www.ada-switzerland.ch 
 

 


	Contents
	Editorial
	An Invitation to Join Ada-Europe
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Opinion: The Word 'Coding' Considered Harmful
	Origins and history of GNAT
	We don't know nothing
	The Ravenscar Tasking Profile for High Integrity Real-Time Programs
	The SPARK way to Correctness is Via Abstraction
	Object-Oriented Programming Enhancements in Ada 200Y
	Memories of a Language Designer



