

Ada User Journal Volume 31, Number 2, June 2010

ADA
USER
JOURNAL

Volume 31
Number 2
June 2010

Contents
Page

Editorial Policy for Ada User Journal 78

Editorial 79

Quarterly News Digest 81

Conference Calendar 109

Forthcoming Events 116

Annual Student Programming Contest “The Ada Way” 121

WG9 Letter to the Community: Maintenance and Revision of the Ada Programming Language 122

Articles

 J. López, Á. Esquinas, J. Zamorano, J. A. de la Puente
“Experience in programming device drivers with the Ravenscar profile” 123

 C. Baillon, S. Bouchez-Mongardé
“Executable Requirements in a Safety-Critical Context with Ada” 131

Articles from the Industrial Track of Ada-Europe 2010

 M. Sobczak
“Polymorphic Callbacks for Ada/C++ Bindings” 136

Ada Gems 140

Ada-Europe Associate Members (National Ada Organizations) 148

Ada-Europe 2010 Sponsors Inside Back Cover

78

Volume 31, Number 2, June 2010 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 79

Ada User Journal Volume 31, Number 2, June 2010

Editorial
With this issue the Ada User Journal returns to the usual publication model, after a very successful 30th anniversary issue put
forward by a prominent group of Guest Editors.

As usual, the June issue of the Journal is finalised shortly after the Ada-Europe conference, which took place this year in
Valencia, Spain, in the week of June 14 to 18. The organizers must be congratulated for a very successful conference, with a
very rich program, and, also important, a pleasant social program. As announced during the conference, next year the Ada-
Europe conference will take place in Edinburgh, Scotland, combined with the Ada-Conference UK 2011, in an event under
the name of The Ada Connection. It will be undoubtedly a very important event for Ada practitioners and enthusiasts and, I
am certain, a great opportunity for the community to connect. You can find the preliminary call for papers in the Forthcoming
Events section of this issue, together with the announcement and highlights of SIGAda 2010, which will take place this year
in the Washington DC Area, USA, in the week of October 24 to 28.

This issue also includes two other announcements. The first relates to the annual Student Programming Contest being
launched by Ada-Europe. This contest, with the title of The Ada Way, a yearly competition among teams of students, will be
overseen by a steering committee composed of representatives of promoting institutions and evaluated by a panel composed
of leading Ada experts. If you are an educator, please consider promoting the participation of a team from your school.

The second is a letter to the community concerning the current process of maintenance and revision of Ada, from WG9, the
group responsible for the language. WG9, together with the ARG, the Rapporteur Group supervising the evolution of Ada,
draws the attention of the community to the activities that are being carried out, and encourages all of us to actively
participate in the current (and future) evolution of the language.

As for the technical contents of the issue, the first article, by authors from the Technical University of Madrid, Spain,
provides the experience of developing device drivers with the Ravenscar profile, in the context of the Open Ravenscar real-
time Kernel (ORK). The second article, from authors coming from SOGILIS, France, describes an agile-based development
process to address requirements traceability.

The last paper of the issue is the first coming from the Industrial Track of the Ada-Europe 2010 conference. In it, Maciej
Sobczak, from CERN, Switzerland, presents an approach to program callbacks in Ada bindings to C++ libraries.

To finalise, the Ada Gems section provides the gems with the Tokeneer Discovery Lessons, six lessons to explore the
capabilities of the SPARK toolset. The News and Calendar sections complete the issue.

 Luís Miguel Pinho
Porto

June 2010
 Email: lmp@isep.ipp.pt

 81

Ada User Journal Volume 31, Number 2, June 2010

Quarterly News Digest
Marco Panunzio
University of Padua. Email: panunzio@math.unipd.it

Contents

Ada-related Events 81
Ada and Education 84
Ada-related Resources 84
Ada-related Tools 85
Ada-related Products 88
Ada and GNU/Linux 92
References to Publications 92
Ada Inside 92
Ada in Context 94

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—mp]

Ada-Belgium Spring 2010
Event
From: Dirk Craeynest

<dirk@asgard.cs.kuleuven.be>
Date: Tue, 11 May 2010 22:20:02 +0200
Subject: Ada-Belgium Spring 2010 Event,

incl. Debian packaging workshop
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

A d a - B e l g i u m S p r i n g 2 0 1 0

E v e n t

Saturday, June 5, 2010, 12:00-19:00
Leuven, Belgium

including at 14:00

2010 Ada-Belgium General Assembly
and at 15:00

Workshop on Creating Debian Packages
of Ada Software

<http://www.cs.kuleuven.ac.be/~dirk/

ada-belgium/events/local.html>

Announcement

The next Ada-Belgium event will take
place on Saturday, June 5, 2010 in
Leuven.

For the third year in a row, Ada-Belgium
decided to organize their "Spring Event",
which starts at noon, runs until 7pm, and
includes a barbecue, a key signing party,
the 17th General Assembly of the
organization, and a workshop on
packaging Ada software for Debian
hosted by Ludovic Brenta, principal
maintainer of Ada in Debian.
Schedule

⁃ 12:00 welcome and getting started

(setting up computers and preparing
food - please be there!)

⁃ 13:00 barbecue
⁃ 14:00 Ada-Belgium General Assembly
⁃ 14:45 key signing party
⁃ 15:00 workshop on creating Debian

packages of Ada software
⁃ 19:00 end
Participation

Everyone interested (members and non-
members alike) is welcome at any or all
parts of this event.
For practical reasons registration is
required. If you would like to attend,
please send an email before Tuesday,
May 25, to Dirk Craeynest
<Dirk.Craeynest@cs.kuleuven.be> with
the subject "Ada-Belgium Spring 2010
Event", so you can get precise directions
to the place of the meeting.
If you are a member but have not renewed
your affiliation yet, please do so by
paying the appropriate fee before the
General Assembly (you have also
received a printed request via normal
mail). If you are interested to become a
new member, please register by filling out
the 2010 membership application form[1]
and by paying the appropriate fee before
the General Assembly.
After payment you will receive a receipt
from our treasurer and you are considered
a member of the organization for the year
2010 with all member benefits[2]. Early
renewal ensures you receive the full Ada-
Belgium membership benefits (including
the Ada-Europe indirect membership
benefits package).
As mentioned at earlier occasions, we
have a limited stock of documentation
sets and Ada related CD-ROMs that were
distributed at previous events. Most
important are back issues of the Ada User
Journal[3]. These will be available on a

first-come first-serve basis at the General
Assembly for current and new members.
[1] http://www.cs.kuleuven.be/~dirk/

ada-belgium/forms/member-
form10.html

[2] http://www.cs.kuleuven.be/~dirk/
ada-belgium/member-benefit.html

[3] http://www.ada-europe.org/
journal.html

Barbecue

The organization will provide food and
beverage to all Ada-Belgium members.
Non-members who want to participate at
the barbecue are also welcome: they can
choose to join the organization or pay the
sum of 10 Euros per person to the
Treasurer of the organization.
General Assembly

All Ada-Belgium members have a vote at
the General Assembly, can add items to
the agenda, and can be a candidate for a
position on the Board[4]. See the separate
official convocation[5] for all details.
[4] http://www.cs.kuleuven.be/~dirk/

ada-belgium/board/
[5] http://www.cs.kuleuven.be/~dirk/

ada-belgium/events/10/100605-abga-
conv.html

Key Signing Party

Wouldn't it be nice if a majority of people
used GPG to sign their email every day so
that you could send all non-signed email
into the spam bin? To make that dream
come true, please join and expand the
global Web of Trust[6]!
What you should bring with you:
⁃ an official ID card issued by your

national government;
⁃ your GPG key fingerprint (i.e. the

output of gpg --fingerprint) on small
paper slips; a dozen copies or so should
be enough.

What you will go home with:
⁃ signatures from all other participants;
⁃ automatic inclusion in the global Web

of Trust;
⁃ the ability to digitally sign or encrypt

anything you like.
[6] http://en.wikipedia.org/wiki/

Web_of_Trust

82 Ada-related Events

Volume 31, Number 2, June 2010 Ada User Journal

Workshop: Packaging Ada Software for
Debian

Debian[7], "The Universal Operating
System", is simply the best platform for
the enthusiast Ada developer. The
features that distinguish Debian from the
rest are:
⁃ a binary distribution that avoids the

need to recompile Florist, ASIS, GtkAda
and all other Ada packages;

⁃ a large number of packages intended for
Ada developers;

⁃ a clear and consistent policy[8] making
all packages integrate seamlessly and
interoperate;

⁃ outstanding support for the Ada part of
the GNU Compiler Collection (GCC)
with unique innovations like libgnatvsn
and libgnatprj not found anywhere else;

⁃ backports of bug fixes from the
bleeding edge of GCC development into
the safe and stable compiler used for all
Debian packages;

⁃ support for more hardware architectures
than any other Ada distribution: alpha,
amd64, hppa, i386, ia64, kfreebsd-i386,
powerpc, s3980 and sparc (with mips,
mipsel and ppc64 added recently).

⁃ a choice between "stable", "testing" and
"unstable" versions of Debian to suit
personal preferences;

⁃ Debian is the mother of Ubuntu,
Knoppix and dozens of other
distributions which sometimes
incorporate the Ada packages.

The goal of the workshop is to help
people participate in this effort to bring
even more Ada software to Debian, or to
help maintain the existing packages.
What you should bring with you:
⁃ your computer, already installed with

Debian unstable or with an unstable
chroot already created (see below);

⁃ network cables (or WiFi already
configured);

⁃ monitor and keyboard, if your computer
is not a laptop;

⁃ power cables;
⁃ some Ada software you would like to

see in Debian but is not there (not
necessarily software that you wrote; any
software with a license permitting
redistribution in source and binary form
will do).

Note 1: if your computer does not run
Debian as its main operating system, you
can install Debian in a virtual machine
(VMWare or other), in a jail on a
FreeBSD system (Debian kfreebsd-i386),
or in a chroot on any other distribution.
Danny Beullens will offer help and
assistance to those who would like to
install Debian in a VMWare virtual
machine.

Note 2: if you would like to install Debian
as your main operating system but are
uncomfortable doing so by yourself,
please get in touch with your nearest
Linux User Group (e.g.
http://www.bxlug.be in Brussels).
What Ludovic Brenta will do for you:
⁃ set up a local Debian mirror, so you can

install or upgrade packages necessary
for Ada package development;

⁃ explain how to package Ada software
for Debian;

⁃ help you package your own program or
library;

⁃ answer questions about GNAT, GCC,
Debian, etc.;

⁃ if your package is suitable for inclusion
in Debian, sponsor it for you.

What you will go home with:
⁃ your own .deb packages installed on

your computer;
⁃ better understanding of how packaging

works;
⁃ better understanding of the Debian

Policy for Ada;
⁃ if your package is suitable, your name

on the Debian Package Tracking System
and your package on the next Debian
DVD or CDROM distribution.

[7] http://www.debian.org/
[8] http://people.debian.org/~lbrenta/

debian-ada-policy.html
Directions

To permit this more interactive and social
format, the event takes place at private
premises in Leuven. As instructed above,
please inform us by e-mail if you would
like to attend, and we'll provide you
precise directions to the place of the
meeting. Obviously, the number of
participants we can accommodate is not
unlimited, so don't delay...
Looking forward to meet many of you in
Leuven!
Dirk Craeynest, President Ada-Belgium
Dirk.Craeynest@cs.kuleuven.be

Acknowledgments
We would like to thank our sponsors for
their continued support of our activities:
AdaCore, Katholieke Universiteit Leuven
(K.U.Leuven), Offis nv/sa - Aubay
Group, and Université Libre de Bruxelles
(U.L.B.).

Ada-Europe 2010 — Final
Call for Participation
From: Dirk Craeynest

<dirk@asgard.cs.kuleuven.be>

Date: Sun, 6 Jun 2010 23:12:42 +0200
CEST

Subject: Press Release - Reliable Software
Technologies, Ada-Europe 2010

Newsgroups: comp.lang.ada,
fr.comp.lang.ada, comp.lang.misc

--

FINAL Call for Participation

*** UPDATED Program Summary ***

15th International Conference on
Reliable Software Technologies - Ada-

Europe 2010

14 - 18 June 2010, Valencia, Spain

http://www.ada-europe.org/
conference2010

*** Final Program available on

conference web site. ***
*** Check out the tutorial program! ***
*** Printed proceedings available. ***

*** Register now! ***

Press release:
Ada-Europe Conference on Reliable
Software Technologies
International experts meet in Valencia
Valencia (6 June 2010 23:00) - Ada-
Europe, in cooperation with ACM's
Special Interest Group on Ada, organizes
the "15th International Conference on
Reliable Software Technologies - Ada-
Europe 2010" from 14 to 18 June in
Valencia, Spain.
The conference offers two days of
tutorials, three invited speakers, a full
technical program of refereed papers, a
collection of industrial presentations, a
special session on Software
Vulnerabilities and Security, an industrial
exhibition, and a social program.
The 8 excellent tutorials on Monday and
Friday cover a broad range of topics:
Developing High-Integrity Systems with
GNATforLEON/ORK+; Software Design
Concepts and Pitfalls; Using Object-
Oriented Technologies in Secure Systems;
Hypervisor Technology for Building
Safety-Critical Systems: XtratuM; How to
Optimize Reliable Software; Developing
Web-Aware Applications in Ada with
AWS; SPARK: The Libre Language and
Toolset for High-Assurance Software; C#,
.NET and Ada: Keeping the Faith in a
Language-Agnostic Environment.

Ada-related Events 83

Ada User Journal Volume 31, Number 2, June 2010

Three eminent keynote speakers have
been selected to open each day of the core
conference program. Theodore Baker
(Florida State University, USA), a leading
researcher in Ada and Real-Time systems,
will examine the state of the art in
multiprocessor real-time scheduling in his
talk "What to Make of Multicore
Processors for Reliable Real-Time
Systems?". Pedro Albertos (Universidad
Politécnica de Valencia, Spain), a most
authoritative member of the Automatic
Control community will explore the
relationship between implementation and
performance of control algorithms in a
talk entitled "Control Co-Design:
Algorithms and their Implementation".
James Sutton (Lockheed Martin, USA), a
renowned expert software architect, in his
talk entitled "Ada: Made for the 3.0
World" will explore how Ada is prepared
for a world that makes peace with
complexity and chaos, and learns to use
them to its advantage.
The technical program presents 17
refereed and carefully selected papers on
the latest research, new tools, applications
and industrial practice and experience, a
collection of 11 industrial presentations
reflecting current practice and challenges,
and an invited session on the hot topic of
software vulnerabilities and security.
Springer Verlag publishes the proceedings
of the conference, as LNCS Vol. 6106.
The exhibition opens in the mid-morning
break on Tuesday and runs continuously
until the end of the afternoon break on
Thursday. The exhibitors include the
following vendors: AdaCore, Altran
Praxis, Atego (formerly Aonix), and
Ellidiss Software (formerly TNI Europe).
The social program includes on Tuesday
evening a welcome reception at the Jardí
Botànic, the botanical garden within
walking distance from the conference
venue, and on Wednesday evening a bus
trip to and conference banquet in the
Masía Xamandreu, a beautiful Valencian
country house built in the 19th century.
The venue for the Ada-Europe 2010
conference is the Fundación Universidad-
Empresa - ADEIT. It is a modern building
located behind Santa Catalina Church, in
the historical city centre of Valencia and
very close to most historic buildings and
monuments. The full program is available
on the conference web site. Registration is
still open.

Latest updates:
- The 12-page "Final Program" is

available on the conference web site
<http://www.ada-europe.org/
conference2010>, and directly at
<http://www.grupodicom.com/ae2010/
AE-2010%20Final%20Program.pdf>.

- Check out the 8 tutorials in the final
program (PDF) or via the hyperlinks in

the tutorial schedule on
<http://www.grupodicom.com/ae2010/
conferenceprogram.html>.

- The proceedings, published by Springer
Verlag as Lecture Notes in Computer
Science Vol. 6106, are ready and will be
distributed at the conference. More info
is available at
<http://www.springeronline.com/
978-3-642-13549-1>.

- Registration fees are very reasonable
and the registration can be done on-line
(preferred) or by faxing a filled-out form
to the conference secretariat. For all
details, see
<http://www.grupodicom.com/ae2010/
registration.html>. Don't delay!

- For the latest information consult the
conference web site.

Please circulate widely.
[…]

Review of Ada Issues
From: Dirk Craeynest

<Dirk.Craeynest@cs.kuleuven.be>
Date: Tue, 4 May 2010, 07:53 GMT
Subject: Review of Ada Issues for June 2010

SC22/WG9 meeting (fwd)
Mailing list: ada-belgium-info@

cs.kuleuven.ac.be
Dear Ada-Belgium friend,
The following message was just posted to
the Ada-Belgium members' mailing list
and is reposted here for your information.
[…]

Dear Ada-Belgium member,
As you may know, there is an upcoming
meeting of ISO's Ada language working
group (ISO/IEC JTC1/SC22/WG9)
scheduled at the end of the Ada-Europe
2010 conference next June in Valencia,
Spain.
The Ada Rapporteur Group (ARG) of
WG9 informed the Heads of Delegation
that the Ada Issues (AIs) listed below
have entered Editorial Review, and are
intended to be submitted to WG9 for
approval at the above mentioned meeting.
The AIs can be found at <http://www.ada-
auth.org/AI05-SUMMARY.HTML>.
AI05-0031-1/03 2010-04-05 - Add a
From parameter to Find_Token
AI05-0049-1/03 2010-04-06 - Extend file
name processing in Ada.Directories
AI05-0113-1/05 2010-04-02 -
Conflicting external tags and other tag
issues
AI05-0124-1/02 2010-04-02 - Where is
the elaboration check suppressed?
AI05-0136-1/06 2010-01-15 - Multiway
tree container

AI05-0143-1/03 2009-06-27 - In Out
parameters for functions
AI05-0144-2/06 2010-05-03 - Detecting
dangerous order dependences
AI05-0149-1/06 2009-12-17 - Access
types conversion and membership
AI05-0150-1/03 2010-02-04 - Use all
type clause
AI05-0157-1/03 2009-12-10 - Calling
Unchecked_Deallocation is illegal for
zero-sized pools
AI05-0160-1/02 2009-12-17 - Additional
ways to invalidate cursors
AI05-0162-1/03 2010-04-02 - Allow
incomplete types to be completed by
partial views
AI05-0164-1/02 2009-11-30 - Parameters
of access-to-subprogram parameters and
derivation
AI05-0166-1/06 2010-04-22 - Yield for
non-preemptive dispatching
AI05-0168-1/04 2010-04-05 - Extended
suspension objects
AI05-0176-1/06 2010-04-12 - Quantified
expressions
AI05-0178-1/02 2009-12-11 - Incomplete
views are limited
AI05-0179-1/04 2010-04-05 - Labels at
end of a sequence_of_statements
AI05-0181-1/02 2009-12-12 - Soft
hyphen is a nongraphic character
AI05-0193-1/02 2009-11-30 - Alignment
of allocators
AI05-0196-1/02 2010-02-04 - Null
exclusion checks for 'out' parameters
AI05-0203-1/02 2010-04-02 - A
return_subtype_indication cannot denote
an abstract subtype
AI05-0205-1/02 2010-04-02 - An
extended return statement declares a name
usable inside the statement
AI05-0207-1/02 2010-04-02 - Access
constant is considered for mode
conformance
AI05-0208-1/04 2010-04-16 -
Characteristics of incomplete views
Those AIs are now being circulated
within the Ada community for review,
with the intention to return comments to
the ARG in time to properly answer them
before the WG9 meeting.
Comments for the Belgian delegation
should be sent to me at
<Dirk.Craeynest@cs.kuleuven.be>. The
deadline is 18:00 GMT+2, Saturday, May
29th, 2010. Early comments are
encouraged.
Dirk Craeynest
ISO/IEC JTC1/SC22/WG9, Head of
Delegation, Belgium
Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/-Europe/SIGAda/WG9 mail)

84 Ada-related Resources

Volume 31, Number 2, June 2010 Ada User Journal

[…]
[see also "Review of Ada Issues" in AUJ
30-4 (Dec 2009), p.207 —mp]

Ada and Education
Webinar on SPARK Pro 9
From: AdaCore Press Center
Date: Wed, 24 Mar 2010
Subject: SPARK Pro 9 now available
URL: http://www.adacore.com/2010/03/24/

spark-pro-9/
[…]
A webinar providing an introduction and
demonstration of SPARK Pro 9 will be
held on April 27, 2010. It will begin at
5pm European Daylight Time/4pm GMT
Daylight Time/11am Eastern Daylight
Time/8am Pacific Daylight Time. To
register please visit:
http://www.adacore.com/home/products/g
natpro/webinars/
[…]

Ada-related Resources
Tutorials for AUnit
From: Jamie Ayre
Date: Tue, 11 May 2010
Subject: Daniel Bigelow's AUnit tutorials
Source: LinkedIn - Ada Programming

Language
Daniel has kindly produced a number of
tutorials for the Ada unit testing
framework:
Part 1: Framework Overview
Part 2: Simple Test-Case Class Tutorial
Part 3: Standard Test-Case Tutorial
Part 4: Fixture Test-Case Tutorial
Part 5: Liskov Substitution Principle: 1 of 2
Part 5: Liskov Substitution Principle: 2 of 2
Part 6: Testing a class hierarchy using the
Standard Test-Case: 1 of 2
Part 6: Testing a class hierarchy using the
Standard Test-Case: 2 of 2
Part 7: Testing Generic Units: 1 of 2
Part 7: Testing Generic Units: 2 of 2
To view these, please visit:
http://www.adacore.com/2010/05/11/
aunit-tutorials

Ada Reference Manuals in
info format
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Fri, 21 May 2010 07:33:34 -0400
Subject: info version of Ada reference

manuals
Newsgroups: comp.lang.ada

I've published an updated version of the
Ada reference manuals in info format.
No change in the content; just fixed some
info bugs.
http://www.stephe-leake.org/ada/arm.html
I'm working on packaging this for Debian.

Books on data structures
From: aprogrammer@nospam.org
Date: Fri, 14 May 2010 08:23:27 +0000
Subject: Good book(s) on data structures?
Newsgroups: comp.lang.ada
Hi,
Can anyone recommend a good book or
books on data structures? I couldn't find
an obvious newsgroup to post in, but
given Ada and Ada people have a
software-engineering approach lacking in
many other communities I figured to ask
here.
I understand and have implemented things
like stacks, queues, and linked-lists in
various projects. I never learned about
data structures such as trees, and I'm sure
there are many more I don't know about.
I'm not interested in theory for the sake of
theory, since I'm a practising software
designer. What I am interested in is
having the right kit of tools so I can apply
the correct solution to the job. So I need
good, practical sources rather than
mathematical. I'm concerned about things
such as clarity and performance in the
code I write.
I prefer to stay away from books choosing
this or that programming language as the
lexicon, although books in Ada would be
acceptable because of Ada's clarity.
Thanks for any and all suggestions. […]
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Mon, 17 May 2010 03:09:35 -0700

PDT
Subject: Re: Good book(s) on data

structures?
Newsgroups: comp.lang.ada
I think you've come to the right place. I
read several articles on data structures on
Wikipedia and liked them a lot. They
include just enough theory to help you
choose which data structure to use and
sample implementations in various
languages. You can start browsing here:
http://en.wikipedia.org/wiki
/Data_structure
the List of Data structures is particularly
useful.
From: Phil Thornley

<phil.jpthornley@googlemail.com>
Date: Fri, 14 May 2010 04:22:23 -0700

PDT
Subject: Re: Good book(s) on data

structures?
Newsgroups: comp.lang.ada
[…]

The most obvious one referencing Ada is
Mike Feldman's "Software Construction
and Data Structures with Ada95".
ISBN 0-201-88795-9. It still seems to be
in print.
[…]
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Fri, 14 May 2010 05:22:40 -0700

PDT
Subject: Re: Good book(s) on data

structures?
Newsgroups: comp.lang.ada
[…]
Although neither is specific to Ada,
Introduction to Algorithms by Cormen,
Leiserson, Rivest and Stein
and
Algorithms + Data Structures = Programs
by Wirth
are both excellent. CLRS's is positively
encyclopedic, while Wirth's is an all time
classic.
Both available via Amazon, eBay or even
book shops!!
From: Colin Paul Gloster

<Colin_Paul_Gloster@acm.org>
Date: Mon, 17 May 2010 10:47:33 +0000
Subject: Re: Good book(s) on data

structures?
Newsgroups: comp.lang.ada
[…]
A newer version was available for free on
Wirth's website. I have not read any
version thereof.
Though it had a fake language based on
Java without exceptions, the third edition
of "Computer Algorithms: Introduction to
Design & Analysis" by Sara Baase and
Allen Van Gelder, published by Addison
Wesley, was very good.
From: Mark Lorenzen

<mark.lorenzen@gmail.com>
Date: Mon, 17 May 2010 07:35:11 -0700

PDT
Subject: Re: Good book(s) on data

structures?
Newsgroups: comp.lang.ada
[…]
I recommend the following two books:
"Introduction to Algorithms" by Thomas
H. Cormen, Charles E. Leiserson, Ronald
L. Rivest and Clifford Stein
http://mitpress.mit.edu/catalog/item/
default.asp?ttype=2&tid=11866
"Purely Functional Data Structures" by
Chris Okasaki
http://www.cambridge.org/uk/catalogue/
catalogue.asp?isbn=9780521631242
From: Tom Moran <tmoran@acm.org>
Date: Mon, 17 May 2010 16:21:22 +0000

UTC

Ada-related Tools 85

Ada User Journal Volume 31, Number 2, June 2010

Subject: Re: Good book(s) on data
structures?

Newsgroups: comp.lang.ada
[…]
"Software Components with Ada" by
Grady Booch has a nice set of chapters on
various data structures. The first section
of each one has "The Abstraction;
Constructors; Selectors; Iterators;
Imports; Exceptions; Forms" and each
ends with "Analysis of Time and Space
Complexity".

Ada-related Tools
Simple components for Ada
v3.8
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 9 Apr 2010 18:14:07 +0200
Subject: ANN: Simple components for Ada

v3.8
Newsgroups: comp.lang.ada
The current version provides
implementations of smart pointers, sets,
maps, directed graphs, directed weighted
graphs, stacks, tables, string editing,
unbounded arrays, expression analyzers,
lock-free data structures, synchronization
primitives (events, race condition free
pulse events, arrays of events, reentrant
mutexes, deadlock-free arrays of
mutexes), pseudo-random non-repeating
numbers, symmetric encoding and
decoding, IEEE 754 representations
support; strings editing and tables
management.
http://www.dmitry-kazakov.de/ada/
components.htm
This release provides a persistence layer
backed by SQLite. As a by-product it
includes SQLite bindings. Differently to
renown GNADE the bindings link the DB
engine statically, which is probably the
only case when one might wish to use
SQLite.
Another enhancement is that the parser
tools now support sources based on Ada
streams. The stream is read using
Character'Read. User-defined delimiters
(like line ends) are supported.
From: Michael Rohan

<michael@zanyblue.com>
Date: Fri, 9 Apr 2010 11:58:30 -0700 PDT
Subject: Re: ANN: Simple components for

Ada v3.8
Newsgroups: comp.lang.ada
[…]
In another thread, it was pointed out that
the standard Ada.Containers types are not
safe in a multi-tasking environment. Since
you mention locking wrt your structures, I
assume they are safe in a multi-tasking
environment?
[…]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 9 Apr 2010 21:20:54 +0200
Subject: Re: ANN: Simple components for

Ada v3.8
Newsgroups: comp.lang.ada
[…]
Lock-free structures are safe when used as
described on the page.
General case containers are not safe for
the reasons same as for Ada.Containers.
[see also "Simple components for Ada
v3.7" in AUJ 31-1 (Mar 2010), p.8; read
also the thread mentioned above: "On the
status of AdaCL and synchronization of
containers in Ada" in AUJ 31-1 (Mar
2010), p.8 —mp]

GtkAda Contributions v2.6
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 10 Apr 2010 16:54:47 +0200
Subject: ANN: GtkAda Contributions v2.6
Newsgroups: comp.lang.ada
The software is a contribution to GtkAda,
an Ada bindings to GTK+.
It deals with the following issues:
1. Tasking support;
2. Custom models for tree view widget;
3. Custom cell renderers for tree view

widget;
4. Multi-columned derived model;
5. Extension derived model (to add

columns to an existing model);
6. Abstract caching model for directory-

like data;
7. Tree view and list view widgets for

navigational browsing of abstract
caching models;

8. File system navigation widgets with
wildcard filtering;

9. Resource styles;
10. Capturing resources of a widget;
11. Embeddable images;
12. Some missing subprograms and bug

fixes;
13. Measurement unit selection widget

and dialogs;
14. Improved hue-luminance-saturation

color model;
15. Simplified image buttons and buttons

customizable by style properties;
16. Controlled Ada types for GTK+

strong and weak references;
17. Simplified means to create lists of

strings;
18. Spawning processes synchronously

and asynchronously with pipes;
19. Capturing asynchronous process

standard I/O by Ada tasks and by text
buffers;

20. Source view widget support.
The present version provides minor bug
fixes and some extensions to debugging
support (GNAT based).
[see also "GtkAda Contributions v2.5" in
AUJ 30‑4 (Dec 2009), p.207 —mp]

Units of measurement for
Ada v3.0
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 12 Apr 2010 13:45:09 +0200
Subject: ANN: Units of measurement for

Ada v3.0
Newsgroups: comp.lang.ada
The library provides tools for handling
dimensioned values in Ada. Checks are
run-time when not removed by the
compiler. String I/O and GTK+ widgets
based on GtkAda included.
http://www.dmitry-kazakov.de/ada/
units.htm
Changes to the version 2.9:
1. Output of exact zero values uses power

1 with any small. E.g. 0W is output as
0•W rather than 0•yW.

[see also "Units of measurement for Ada"
in AUJ 29‑3 (Sep 2008), p.152 —mp]

Interval Arithmetic for Ada
v1.8
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 16 Apr 2010 12:16:21 +0200
Subject: ANN: Interval Arithmetic for Ada

v1.8
Newsgroups: comp.lang.ada
The software provides an implementation
of integer, float and dimensioned
intervals.
http://www.dmitry-kazakov.de/ada/
intervals.htm
In this version rounding behavior was
changed in the case when a boundary is
exact zero. It is left as is, even if the
machine rounds. Because rounding cannot
change the sign.
[see also "Interval arithmetic" in AUJ
29‑3 (Sep 2008), p.152 —mp]

RAPID 3.3
From: Oliver Kellogg

<okellogg@users.sourceforge.net>
Date: Wed, 12 May 2010 06:54:12 +0200
Subject: RAPID 3.3 is released
Newsgroups: comp.lang.ada
A new version of the Rapid Ada Portable
Interface Designer is available at
https://savannah.nongnu.org/files/?group=
rapid (rapid-3.3.tar.gz)
The main features are:

86 Ada-related Tools

Volume 31, Number 2, June 2010 Ada User Journal

⁃ Added support for giving multiple GUI
file names on the command line when in
non-interactive mode (-ni)

⁃ In non-interactive mode, new command
line switch -od lets user choose different
output directory for code generation

⁃ New window feature "Snap to Grid"
facilitates aligning widgets

⁃ MinGW/MSYS rapid.exe contributed
by Stefano Lagrasta

For more information, see the ChangeLog
file or:
http://www.nongnu.org/rapid/docs/
rapid_users_guide.html#features3
[see also "RAPID 3.2" in AUJ 30-2 (June
2009), p.74 —mp]

Ada-Python binding
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Fri, 7 May 2010 14:43:04 -0700 PDT
Subject: Ada-Python binding
Newsgroups: comp.lang.ada
[…]
The following article might be of interest
to programmers practicing mixed-
language development:
http://www.inspirel.com/articles/
Ada_Python_Binding.html
This article builds on the various bits and
pieces of knowledge that I needed to
collect in order to proceed with one of my
projects.
Hopefully it will be useful for others as
well.
All comments are welcome.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org
Date: Sat, 08 May 2010 00:24:11 +0200
Subject: Re: Ada-Python binding
Newsgroups: comp.lang.ada
[…]
The GNAT Programming Studio uses this
technique extensively. Indeed, Python is
not only the scripting language for GPS
but also the language in which parts of
GPS are written. GPS exposes a rich API
to the Python scripts and plug-ins.
You can have a look at the relevant part
of the GPS sources here:
[1] http://libre2.adacore.com/viewvc/

trunk/gps/gnatlib/src/python
[2] http://libre2.adacore.com/viewvc/

trunk/gps/python
[3] http://libre2.adacore.com/viewvc/

trunk/gps/share/library
[4] http://libre2.adacore.com/viewvc/

trunk/gps/share/plug-ins
[1] is part of what AdaCore want to turn

into a reusable library; currently the
sources are still "hidden" inside the GPS
source tree. This is, essentially, an Ada-

Python binding that allows not only to
call Ada subprograms from Python but
also to launch a Python interpreter and
execute scripts from within an Ada
program.

[2] loads the Python interpreter into GPS
for to execute plug-ins and user-defined
initialization scripts written in Python.

[3] contains a library of reusable
components written in Python, for use in
plug-ins or user-defined scripts.

[4] contains the plug-ins written in
Python.

Most of the modules of GPS export an
API to these plug-ins; the code that does
that is scattered in the rest of the source
tree.
From: Cyrille Comar

<comar@eu.adacore.com>
Date: Mon, 10 May 2010 02:09:17 -0700

PDT
Subject: Re: Ada-Python binding
Newsgroups: comp.lang.ada
[…]
you also have on-line documentation at
http://libre.adacore.com/wp-content/
files/auto_update/gnatcoll-docs/
gnatcoll.html

Ada binding for ØMQ
From: Thomas Løcke
Date: Sun, 23 May 2010
Subject: ØMQ Ada binding for the masses
URL: http://ada-dk.org/?page=news&

news_id=149
Posting this news item is actually a bit of
a blast from the past.
Way back when I started doing web
development, I used the excellent
webserver Xitami, created by iMatix.
It served me well for several years, and as
far as I know, it's once again in active
development.
From the same company comes ØMQ, a
messaging system that is fast, scalable
and simple to use:
This little library is really fast, and you
can learn to use it in about one hour.
ØMQ does the hard work of messaging
behind the scenes. It's portable, runs on
lots of operating systems and has loads of
language interfaces. And your apps
stretch to many cores, and many boxes,
like magic. Connect your application
threads and processes together using
message patterns like request-reply and
publisher/subscriber. Patterns are building
blocks you can use individually, or
connect in many ways. You access ØMQ
using a simple socket API. From any
language and on any OS (almost).
Ada programmers will be glad to know
that ØMQ comes with a complete Ada
binding, which appears to be very easy to
use.

My experience with iMatix software is
that it is performant and stable, so if you
need a messaging system, this just might
be it.
[find the ØMQ website at
http://www.zeromq.org —mp]

Ada binding for AMQP
From: Grupo de Tecnología Informática-

Inteligencia Artificial - Universidad
Politécnica de Valencia

Date: May 2010 [fetched]
Subject: Ada Binding to AMQP
URL: http://users.dsic.upv.es/grupos/ia/sma/

tools/AdaBinding/index.php
The Advanced Message Queuing Protocol
(AMQP) is an open standard for an
interoperable asynchronous messaging
protocol. The Ada Binding to AMQP
allows applications built on top of it to be
distributed over heterogeneous
environments. In this sense, it increases
the interoperability, portability, and
flexibility of such applications. In this
paper, we propose an Ada binding to
AMQP. This binding has been
implemented using Apache Qpid, an
open-source implementation of the
AMQP standard.
[Verbatim from the webpage of the
project (end of May 2010). The Ada
binding is available for download at:
http://users.dsic.upv.es/grupos/ia/sma/tool
s/AdaBinding/downloads.php —mp]

On database interface
libraries for Ada
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Thu, 29 Apr 2010 06:41:32 -0700

PDT
Subject: On database interface libraries for

Ada
Newsgroups: comp.lang.ada
A recent discussion on the AWS users'
mailing list made me realize that there
exist many, many different libraries for
interfacing Ada programs to various
database engines. I even learned about a
couple that I was not yet aware of.
I think it would be very nice to
consolidate all the information available
on all these libraries in one place, so that
programmers know about them and can
choose wisely. It seems to me that the
best place for such a discussion is the
existing page on the "Ada Programming"
wikibook:
http://en.wikibooks.org/wiki/Ada_Progra
mming/Libraries/Database
This page was very incomplete, listing
only GNADE, APQ and GWindows with
links to their home pages but no other
information. I have edited this page to
provide more information in a table. The
information there is still incomplete;
please add your favourite database

Ada-related Tools 87

Ada User Journal Volume 31, Number 2, June 2010

interface library to the page for better
visibility and correct the information as
you deem necessary. Also feel free to add
notes and details outside the table.
Thanks for your help.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 30 Apr 2010 12:08:01 +0200
Subject: Re: On database interface libraries

for Ada
Newsgroups: comp.lang.ada
[…]
What about a separate section for
embedded / single file data bases e.g.
SQLite, Berkeley etc? From my point of
view it is a quite different topic from the
bindings to/as DBMS clients.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 30 Apr 2010 03:31:33 -0700 PDT
Subject: Re: On database interface libraries

for Ada
Newsgroups: comp.lang.ada
[…]
On the one hand I think that's a valid
distinction. On the other, such a split
would lead to duplicate information since,
for example, GNADE, QtAda and
gnatcoll support both embedded and
client-server databases. Also, this is a
property of the target database engine, not
necessarily of the Ada binding. Maybe
adding a note that SQLite is in-process
(linked either statically or dynamically)
would be sufficient. (I do not know of a
Berkeley DB binding, yet...)
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 30 Apr 2010 14:47:55 +0200
Subject: Re: On database interface libraries

for Ada
Newsgroups: comp.lang.ada
[…]
> (I do not know of a Berkeley DB

binding, yet…)
I remember that somebody announced it.
(Before I did SQLite, I tried to find any
information about these bindings, but
failed. Then I considered to do it by
myself, but was horrified by its interface.
So in the end I decided in favor of
SQLite.)
From: Xavier Grave

<xavier.grave@ipno.in2p3.fr>
Date: Fri, 30 Apr 2010 08:48:10 +0200
Subject: Re: On database interface libraries

for Ada
Newsgroups: comp.lang.ada
[…]
Thanks Ludovic for this URL and the
information it contains. I'm working with
sqlite3 now, I'll be glad to have a more
complete binding to it using SQLite3-Ada
than the very poor one I have developed
for my needs (it only uses blob).
[…]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 30 Apr 2010 09:27:41 +0200
Subject: Re: On database interface libraries

for Ada
Newsgroups: comp.lang.ada
[…]
I have SQLite3 bindings (middle
thickness) in the Simple Components:
http://www.dmitry-kazakov.de/ada/
components.htm#SQLite
It is more than blobs, but not all SQLite.
P.S. GNADE has SQLite bindings as
well. I didn't use them because I wanted
to be able to put the amalgamation
directly into the project, the only sensible
use of SQLite, IMO.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 30 Apr 2010 02:28:44 -0700 PDT
Subject: Re: On database interface libraries

for Ada
Newsgroups: comp.lang.ada
[…]
It would be nice if you would add the
relevant information to the wiki page for
future reference. This should not take you
more time than writing your post did.
Also explaining the differences between
the 4 different bindings to SQLite (5 with
yours) would help.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Thu, 29 Apr 2010 06:51:58 -0700

PDT
Subject: Re: On database interface libraries

for Ada
Newsgroups: comp.lang.ada
[…]
Side note: since my changes have not yet
been "sighted" (whatever that means), you
must click on "View draft" on the top-
right corner of the page to see the most
recent version.
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Thu, 29 Apr 2010 17:22:01 +0300
Subject: Re: On database interface libraries

for Ada
Newsgroups: comp.lang.ada
[…]
Another place which lists various
database bindings/libraries is
AdaCommons wiki:
http://www.adacommons.org/
Category:Database
[…]

VC_View 2.1.1
From: Phil Thornley

<phil.jpthornley@googlemail.com>
Date: Tue, 1 Jun 2010 09:59:56 -0700 PDT
Subject: ANN: VC_View 2.1.1 is Linux

compatible

Newsgroups: comp.lang.ada
VC_View presents verification
conditions, generated by the SPARK
tools, in a way that makes them easier to
interpret:
1. Only immediately relevant hypotheses

are initially displayed.
2. User identifiers are replaced by upper-

case letters.
Version 2.1.1 of VC_View is now
available and is compatible with both
Windows and Linux.
The source distribution (GPL) and a
Windows executable are available on the
Download page at www.sparksure.com.
(The program functionality is the same as
the previous Windows only version, 2.0).
Many thanks to Alexander Senier for
sorting out the compatibility problems.
[see also "SPARK Proof" in AUJ 30‑2
(Jun 2009), p.73 —mp]

Matreshka v. 0.0.3
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Sun, 11 Apr 2010 13:18:00 -0700

PDT
Subject: Announce: Matreshka 0.0.3
Newsgroups: comp.lang.ada
New version of Matreshka was released.
Previous version can't be used on 32-bit
platforms, this one fixes this. Also, new
version includes:
⁃ automatic configuration facility; it

detects host architecture and compiler's
capabilities to select most suitable of
supported configurations;

⁃ upgrade of Unicode Character Database
to version 5.2.0;

⁃ upgrade of Unicode Collation
Algorithm to version 5.2.0;

⁃ upgrade of regular expression engine to
support character's properties from new
version of Unicode;

⁃ bug fixes.
Source code and documentation can be
found on project's website
http://adaforge.qtada.com/cgi-bin/
tracker.fcgi/matreshka/
[see also "L10n and i18n support in Ada"
in AUJ 30‑3 (Sep 2009), p.147 —mp]

TXL Grammar for Ada
2005
From: Bruno Le Hyaric

<bruno.lehyaric@gmail.com>
Date: Mon, 17 May 2010 15:18:37 -0700

PDT
Subject: TXL Grammar for Ada 2005
Newsgroups: comp.lang.ada
[…]

88 Ada-related Products

Volume 31, Number 2, June 2010 Ada User Journal

I've recently made up a new grammar for
Ada based on the great language
manipulation tool: TXL
(http://www.txl.ca)
http://github.com/bu2/
ada-2005-txl-grammar
The grammar is currently at an early
stage. It permits to parse full Ada 2005
following LRM standard but still only
provides parsing trees.
AST coming soon and even more...
Comments are welcome!

Ada-related Products
AdaCore / Altran Praxis —
SPARK Pro 9
From: AdaCore Press Center
Date: Wed, 24 Mar 2010
Subject: SPARK Pro 9 now available
URL: http://www.adacore.com/2010/03/24/

spark-pro-9/
New SPARK Pro 9 Development
Environment Delivers Increased Security
Assurance for Critical Projects
AMSTERDAM, NEW YORK and
PARIS, March 24, 2010 – Avionics
Europe 2010 – SPARK Pro 9, announced
today by AdaCore and Altran Praxis,
provides a major step forward for
developers creating safety critical and
high assurance systems. The advanced
open source development environment
now features increased security
functionality, including the ability to
verify and assure Multiple Independent
Levels of Security (MILS) within the
same application as well as support for
the latest SPARK2005 language profile.
SPARK Pro was created one year ago by
Altran Praxis, international specialist in
embedded and critical systems
engineering, and AdaCore, the leading
provider of commercial software solutions
for the Ada language. SPARK Pro
provides the foremost language, toolset
and design discipline for engineering
high-assurance software. It combines
Altran Praxis’ renowned SPARK
language and verification tools, with the
GNAT Programming Studio (GPS) and
GNATbench development environments
from AdaCore.
The new release of SPARK Pro 9
demonstrates the forward momentum of
the toolset and introduces significant new
features to benefit developers. Chief
amongst these is the ability to mix
software of different security levels (such
as classified and unclassified) within the
same system. This MILS functionality
meets the increasing trend in the
aerospace and defence industries to
combine multiple secure and non-secure
elements into a single system to deliver
smaller, more integrated solutions.

“We’ve seen significant growth in the use
of SPARK Pro since its launch last year
across the safety critical and high
assurance markets,” said Keith Williams,
Altran Praxis Managing Director.
“SPARK Pro 9 continues this market
momentum and introduces important new
features, particularly in the growing high
security sector. It demonstrates the
continuing benefits of our close
partnership with AdaCore to our
customers across the globe.”
Over half of new features in SPARK Pro
9 are the result of customer feedback. As
well as support for the advanced features
of SPARK2005, the latest version of the
SPARK language, closer integration
between SPARK and GPS results in
improved usability and faster
development times.
“In MILS-oriented Operating Systems,
mixing safely different levels of security
assurance requires a complex multi-
partition organization. SPARK Pro 9 now
provides the means to verify accurately
such a mix in the context of a single
application through sound information
flow analysis,” said Cyrille Comar,
Managing Director, AdaCore. “This
capability offers an unprecedented level
of flexibility for those writing rich
applications with stringent security
requirements.”
Developed by Praxis, SPARK is a
language specifically designed to support
the development of software used in
applications where correct operation is
vital for reasons of safety, security, or
both. The SPARK toolset offers static
verification that is unrivalled in terms of
its soundness, low false-alarm rate, depth
and efficiency. The toolset also generates
evidence for correctness that can be used
to build a constructive assurance case in
line with the requirements of industry
regulators and certification schemes.
There are versions of SPARK based on
Ada 83, Ada 95, and Ada 2005, so all
standard Ada compilers and tools work
out-of-the-box with SPARK.
SPARK Pro 9 new functions include:
⁃ New information-flow verification for

safety and security policies, such as
Bell-LaPadula, based on integrity
labelling of variables, inputs and
outputs. This facility allows users to
confirm intended separation properties,
and to prevent violations of the chosen
information flow policy.

⁃ SPARK2005. The new SPARK2005
language profile is now available. At
present, Ada2005 features supported
include ‘Mod, ‘Machine_Rounding, new
reserved words, and the static semantics
of “overriding.”

⁃ New ZombieScope tool, which detects
dead statements, branches and paths in
SPARK code, complementing the

capabilities of the Simplifier and proof
status summarizer POGS.

⁃ Cross Referencing annotations in GPS.
The Examiner now generates cross-
reference information that can be
consumed by GPS to drive navigation
within annotations.

⁃ Function return annotations are now
treated more like procedure post-
conditions, being substituted into the VC
hypotheses of the caller. This can
dramatically improve the effectiveness
of the theorem prover for those calling
units, as well as reducing the manual
work required by the user to provide
rewrite rules.

⁃ New output format for POGS. This
format is designed to be both easier to
read and easier to search automatically.
It also reflects the results of the new
ZombieScope tool.

⁃ Simpler documentation structure. All
proof material is now in one manual,
and a new global index (in both
clickable PDF and HTML forms)
simplifies finding topics in the entire
manual set.

⁃ Case checking. New Examiner switch
that insists on consistent casing within
annotations.

[…]
About Altran Praxis
Altran Praxis is a specialist systems and
software house, focused on the
engineering of systems with demanding
safety, security or innovation
requirements. Altran Praxis leads the
world in specific areas of advanced
systems engineering and innovation such
as: ultra low defect software engineering,
Human Machine Interface (HMI), safety
engineering for complex or novel systems
and tools (such as SPARK) /methods for
systems engineering. It offers clients a
range of services including turnkey
systems development, consultancy,
training and R&D.
Key market sectors are aerospace and
defence, rail, nuclear, air traffic
management, automotive, medical and
security. The company operates globally
with active projects in the US, Asia and
Europe. The headquarters of Altran Praxis
are in Bath (UK) with offices in Sophia
Antipolis, London, Paris, Loughborough
and Bangalore. Altran Praxis is an
expertise centre within, and wholly owned
by, Altran which is a global leader in
innovation engineering and employs
17,000 staff across the world.
www.altran-praxis.com
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, the state-of-the-art programming
language designed for large, long-lived

Ada-related Products 89

Ada User Journal Volume 31, Number 2, June 2010

applications where safety, security, and
reliability are critical. AdaCore’s flagship
product is the GNAT Pro development
environment, which comes with expert
on-line support and is available on more
platforms than any other Ada technology.
AdaCore has an extensive world-wide
customer base; see
www.adacore.com/home/company/
customers/ for further information.
Ada and GNAT Pro see a growing usage
in high-integrity and safety-certified
applications, including commercial
aircraft avionics, military systems, air
traffic management/control, railway
systems and medical devices, and in
security-sensitive domains such as
financial services.
AdaCore has North American
headquarters in New York and European
headquarters in Paris.

AdaCore — GNAT Pro
High-Integrity Edition for
VxWorks MILS Platform
From: AdaCore Press Center
Date: Tue, 27 Apr 2010
Subject: GNAT Pro High-Integrity Edition

For VxWorks MILS Platform now
available

URL: http://www.adacore.com/2010/04/27/
mils/

GNAT Pro High-Integrity Edition For
VxWorks MILS Platform now available
A complete security application
development environment for EALs 1
through 7
NEW YORK, PARIS and SAN JOSE,
Calif., April 27, 2010 – Embedded
Systems Conference – AdaCore, a leading
supplier of Ada development tools and
support services, today announced the
first major release of its GNAT Pro High-
Integrity Edition for MILS. The High-
Integrity Edition for MILS (Multiple
Independent Levels of Security) product
is a specialized security application
development environment supporting the
creation and security certification of
applications at the high end for EALs
(Evaluation Assurance Levels) 5 through
7, as well as applications at the lower
bounds for EALs 1 through 4. This
product contains several specialized run-
time libraries that support different levels
of certification, specialized tools to
support security certification, and, as an
option, the SPARK language tool set to
facilitate both development and
certification of applications to top security
levels.
GNAT Pro High-Integrity Edition for
MILS contains the GNAT Pro
development environment with compile
system, testing tools, and graphical user
interface components, to support high-
productivity software development. It

provides specialized run-time libraries,
corresponding to Ada language subsets
for those features that can be certified to
different EALs. For EALs 1-3, the High-
Integrity Edition for MILS provides a full
Ada run-time library and development
environment for the creation and testing
required for these lower-level security
certification requirements. For EAL 4, it
provides a Ravenscar-compliant run-time
library originally created to be certifiable
to the DO-178B airborne avionics safety
standard. This safety standard has been
shown to meet the security assurance
requirements for EAL 4. Finally, the Zero
Foot Print (ZFP) run-time library is
provided, which supports security
certification to EALs 5 through 7.
Security certification at EALs 5-7
requires semi-formal or formal
approaches. General software application
languages are typically not appropriate at
these levels. As an option, GNAT Pro
High-Integrity Edition for MILS provides
the SPARK Pro tool set to support these
top levels. The SPARK language is a fully
deterministic and verifiable subset of the
Ada programming language augmented
by pre- and post-condition constructs that
more fully specify the application’s logic
and information flow. SPARK and the
SPARK Pro tool set have been
demonstrated in practice to meet the
requirements for top security application
development. The High-Integrity Edition
for MILS thus provides a complete
environment for applications that need to
be certified at EALs 5-7.
“AdaCore has a long history in providing
solutions for developers of high-integrity
applications,” said Robert Dewar,
President and CEO of AdaCore. “GNAT
Pro has been used for avionics systems on
aircraft, such as the new Boeing 787,
which need to meet the highest level of
safety requirements in DO-178B.
Developers of high-security applications
require the more stringent security
objectives be met. To satisfy this need, we
have introduced the GNAT Pro High-
Integrity Edition for MILS. This product,
integrated with the SPARK Pro language
and tool set, offers a unique security
solution, allowing developers using a
MILS architecture to create and certify
applications that can meet all EALs from
lowest to highest.”
“Wind River VxWorks MILS platform
provides a robust MILS architecture,
enabling the creation of MLS (Multi-
Level Secure) systems in which multiple
applications from different domains
execute securely on a single instance of
silicon,” said Chip Downing, Director of
Aerospace and Defense at Wind River.
“GNAT Pro High-Integrity Edition for
MILS adds the capability to accelerate the
certification of Ada applications at high
assurance levels on the VxWorks MILS
foundation for a very powerful

combination for developing secure
applications.”
Availability
GNAT Pro High-Integrity Edition for
MILS is available today for the VxWorks
MILS Platform.
[…]

Adalog — AdaControl
1.12r3
From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 13 Apr 2010 10:50:01 +0200
Subject: AdaControl 1.12r3 released
Newsgroups: comp.lang.ada
Adalog is pleased to announce a new
release of AdaControl.
This release includes various
improvements, bug fixes, etc. and raises
the number of possible checks to 388.
As usual, it is available in source
(GMGPL) and executable for GNAT-
GPL2009 forms from
http://www.adalog.fr/adacontrol2.htm
[…]
[see also "AdaLog — AdaControl 1.11r4"
in AUJ 30-3 (Sep 2009), p.148 —mp]

Atego — ObjectAda Real-
Time for VxWorks 653
From: Atego Press Center
Date: Tue, 2 Mar 2010
Subject: Aonix ObjectAda Real-Time

released on VxWorks 653
URL: http://www.aonix.com/

pr_03_02_10a.html
Atego’s real-time Ada development
system now available to military and
aerospace developers
Embedded World 2010, Nürnberg,
Germany – 2nd - 4th March 2010 – Hall
11, Stand 119 — Atego, the leading
independent supplier of industrial-grade,
modeling and development tools for
complex, mission and safety-critical
embedded systems and software, has
announced the release of Aonix
ObjectAda Real-Time for Windows
targeting the Wind River VxWorks 653
multi-partition RTOS for PowerPC. This
is the first release of the Aonix ObjectAda
product with full Ada runtime support for
the Wind River safety-critical platform.
“Aonix ObjectAda Real-Time for
VxWorks 653 was developed to meet
customer demand,” said James B.
Gambrell, Executive Chairman at Atego.
“Although Atego, formerly Aonix, has for
years been providing a full safety-critical
Ada product for ARINC-653 systems, to
realize the full potential of multi-partition
RTOSs, both full Ada runtime, and
safety-certifiable Ada runtimes needed to
be available. We are happy to now have
satisfied this need.”

90 Ada-related Products

Volume 31, Number 2, June 2010 Ada User Journal

VxWorks 653 is Wind River's robust
operating system for controlling complex
ARINC 653 Integrated Modular Avionics
(IMA) systems. VxWorks 653 fully
implements the latest ARINC 653
application executive (APEX)
specification with a robust time and space
partition scheduler. Aonix ObjectAda
Real-Time runs within a VxWorks 653
partition where execution of a non-
certifiable Ada application can work in
cooperation with safety-critical
functionality resident in other partitions.
This is a significant cost advantage via
reduction in the amount of Ada code that
needs to endure the high cost and time
associated with the rigor of certification
testing and acceptance cycles.
Atego’s Aonix ObjectAda Real-Time
joins with Aonix ObjectAda RAVEN as
one of two products now supporting the
VxWorks 653 platform.
“Support for multiple levels of safety
criticality is an important aspect of IMA
systems,” said Adrian Larkham, Head of
Critical Systems at Atego.
“Aonix ObjectAda provides facilities
needed for the development of Ada
applications at varying levels of safety
criticality within an IMA system.
Aonix ObjectAda Real-Time for
VxWorks 653 provides full Ada language
coverage for development projects with
low levels of application safety criticality.
Application development at the highest
level of safety criticality is covered by
ObjectAda RAVEN for VxWorks 653
and its certifiable subset of Ada.”
Aonix ObjectAda Real-Time for
Windows x PowerPC/VxWorks 653
consists of a fully compliant ACATS 2.5
Ada 95 compiler plus supporting tools. It
is compatible with Wind River’s
VxWorks 653 environment, which
comprises the VxWorks 653 operating
system and the VxWorks 653 cross
development toolset.
Aonix ObjectAda for VxWorks 653
leverages Wind River Workbench, an
Eclipse-based development environment
providing developers access to the broad
range of tools available through the
Eclipse framework. Users also have the
option to utilize Aonix ObjectAda’s
standard graphical or command-line
interface. The Aonix ObjectAda
compilation system is comprised of an
integrated language-sensitive editor,
source-code browser, compiler with
industry-leading compilation speed,
debugger and full library manager.
About the Aonix ObjectAda Family
Aonix ObjectAda is an extensive family
of native and cross development tools and
runtime environments. Aonix ObjectAda
native products provide host development
and execution support for the most
popular environments including

Windows, Linux and various UNIX
operating systems. Aonix ObjectAda
Real-Time products provide cross
development tools on Windows, Linux or
UNIX systems which target PowerPC and
Intel target processors in support of
“bare” hardware execution or in
conjunction with popular RTOSs. Aonix
ObjectAda RAVEN products provide a
hard real-time Ada runtime to address
those systems requiring certification to
the highest levels of safety standards such
as DO-178B Level A for flight safety.
About Atego
AtegoTM is the leading independent
supplier of industrial-grade, collaborative
development tools for engineering
complex, mission- and safety-critical
architectures, systems, software and
hardware. Atego delivers a stable, robust
working environment to thousands of
users across an extensive range of
complex applications in demanding
engineering sectors such as aerospace,
defense, automotive, transportation,
telecommunications, electronics, and
medical. Atego’s Aonix PERC® is the
leading, highly reliable, real-time
embedded virtual machine solution for
running JavaTM programs deployed
today. Atego also has the largest number
of certified Ada applications (Aonix
ObjectAda®) at the highest level of
criticality. Atego’s standards-based
modeling tool suite, Artisan Studio®,
provides comprehensive support for the
leading industry standards, including
OMG SysML, UML and Architectural
Frameworks. Atego WorkbenchTM
provides a fully integrated, collaborative
engineering framework for the trouble-
free deployment and maintenance of best-
in-class tools for mission and safety-
critical systems and software
development. Atego’s tools deliver on the
promise of an integrated collaborative
development environment - allowing
architecture, systems, software and
hardware engineering teams to Work as
OneSM - from concept through to
delivery, maintenance and support.
Founded in 2010 in a merger between
Artisan Software Tools and Aonix, Atego
is headquartered in San Diego, CA, USA
and Cheltenham, UK with offices in
France, Germany and Italy, and is
supported by a global distributor network.
For more information visit:
www.atego.com.
[…]

Atego — Artisan Studio 7.2
From: Atego Press Center
Date: Thu, 3 Jun 2010
Subject: Atego launches Artisan Studio 7.2
URL: http://www.aonix.com/

pr_06_03_10.html

Major release of Artisan Studio
introduces role-based Editions; completed
DoDAF support for UPDM; Artisan
Studio Reviewer enhanced to deliver 80
new metric reports, usability
improvements to Artisan Publisher and a
new model comparison tool.
San Diego, USA and Cheltenham, UK —
3rd June 2010.
Atego, the leading independent supplier
of industrial-grade, collaborative
development tools for engineering
complex, mission- and safety-critical
architectures, systems, software and
hardware, has launched Artisan Studio
7.2, a major new version of its flagship
model-driven development tool suite.
Artisan Studio 7.2 delivers a variety of
significant new modeling capabilities and
functions. Artisan Studio has been re-
architected to provide role-based Editions
which have been specifically designed to
make the working environment more
relevant and efficient for the specialist
needs of Enterprise Architects, Systems
Engineers and Software Engineers.
Artisan Studio also adds DoDAF
capabilities to complete its support for the
OMG’s UPDM 1.0 standard for defense
architectural frameworks. Artisan Studio
7.2 also extends Artisan Studio Reviewer
with metric reporting and simplifies the
user interface to Artisan Publisher as well
as continuing to improve core
technologies with a new model
comparison tool, the Artisan Model
Differencer, and adds more functionality
for the Automatic Code Synchronizer and
Activity Modeling.
“The launch of Version 7.2 continues to
extend the market-leading position of
Artisan Studio with the introduction of
significant new concepts, features and
functions to improve the development of
mission and safety-critical embedded
systems and software development,” said
Hedley Apperly, Vice-President of
Product Marketing at Atego. “The
introduction of role-based Editions is
particularly innovative, aligning Artisan
Studio with the specific roles and needs of
Enterprise Architects, Systems Engineers
and Software Engineers, while allowing
them all to continue to Work-as-One.”
Artisan Studio Architect Enterprise
Edition focuses on the capabilities
required by an Enterprise Architect. It
provides comprehensive support for
UPDM including both DoDAF and
MODAF, which addresses the visual
modeling needs of the global defense
community by providing support for all
seven UPDM viewpoints and a
standardized means to describe both
DoDAF and MODAF architectures which
delivers enormous benefits for developers
of military systems in terms of design
consistency, quality and efficiency,
improved tool interoperability and cost
savings.

Ada-related Products 91

Ada User Journal Volume 31, Number 2, June 2010

Artisan Studio Designer Enterprise
Edition will be the tool of choice for
Systems Engineers. They can take
advantage of Artisan Studio’s SysML
profile to build systems and systems of
systems using the industry standard
SysML concepts and modeling language.
Artisan Studio allows users to focus on
systems engineering by providing the
capability to document requirements,
analysis diagrams, traceability and
manage change all within one tool using
Artisan Studio’s integration with leading
3rd party tools like DOORS and
Mathworks Simulink.
Artisan Studio Developer Enterprise
Edition is for Software Engineers. It
enables the generation of code from the
design and is fully equipped with Artisan
Studio’s Automatic Code Synchronizer
and Transformation Development Kit to
allow them to automatically generate code
from a design that matches the company’s
best practices and coding standards. This
edition is available for the C/C++, C#,
VB, Java and Ada programming
languages.
The highly successful Artisan Studio
Reviewer now has a whole new model
metrics facility with 80 new metric
reports, 13 user-defined reviews and new
customer-requested reviews. The metrics
provide powerful statistics for managers
on the maturity of the models,
complementing the correctness,
completeness and consistency checks that
were already available.
With the launch of Artisan Studio 7.2,
Artisan Publisher now has facilities to
copy elements directly from an open
Artisan Studio model and clearly view the
content of the document. Additionally,
many new templates have been
introduced, specifically for the quick
creation of repeatable and configurable
output in UPDM, SysML and UML
designs.
Finally, Artisan Studio Version 7.2
includes code generators for POSIX
compliant operating systems and many
other lower level improvements to its
modeling environment.
“The launch of Artisan Studio 7.2
continues to deliver on our Work-as-One
strategy,” said James B. Gambrell,
Executive Chairman of Atego. “Not only
does Artisan Studio provide a single,
purpose-built tool suite that joins up
embedded engineering disciplines, teams
and organizations but, by introducing the
concept of role-based Editions and
metrics reporting, it also now specifically
caters for the requirements of the diverse
and disparate specialists needs in the
design chain - Enterprise Architects,
Systems,
Software Engineers and Managers - in
ways that match their explicit job
functions and needs.”

Inspirel — YAMI4
From: Inspirel website
Date: May 2010 [fetched]
Subject: YAMI4 - Messaging Solution for

Distributed Systems
URL: http://www.inspirel.com/yami4/
YAMI4 is a set of messaging libraries
designed for distributed systems with
particular focus on control and monitoring
systems.
The major features of the YAMI4 library
are:
⁃ peer-to-peer messaging without

dependency on external message brokers
⁃ support for message priorities
⁃ built-in support for load balancing and

automatic fail-over
⁃ support for simple publish-subscribe

messaging
⁃ support for isolated memory partitions

(intended for embedded and critical
systems)

⁃ support for real-time development with
comprehensive range of timeout features

⁃ high performance and scalability with
non-blocking I/O

⁃ small memory and resource footprint
⁃ no dependencies on other libraries
The YAMI4 libraries are available for
Ada, C++ and Java and are supported on
POSIX-compliant systems, Microsoft
Windows and Java-based platforms.
[Verbatim from the webpage of the
project (End of May 2010) —mp]
From: Inspirel News center
Date: Mon, 1 Mar 2010
Subject: YAMI4-1.0.0
URL: http://www.inspirel.com/news.html
The Inspirel website gets a new look.
YAMI4-1.0.0, a messaging solution for
distributed systems, is released.
This release marks a beginning of a new
development line for the YAMI project
and is meant to address the needs of
demanding users working with mission-
critical distributed systems.
From: Inspirel News center
Date: Fri, 12 Mar 2010
Subject: YAMI4-1.0.1 is released
URL: http://www.inspirel.com/news.html
YAMI4-1.0.1 is released.
This release introduces corrections for 64-
bit systems.
From: Inspirel News center
Date: Fri, 9 Apr 2010
Subject: YAMI4-1.0.2 is released
URL: http://www.inspirel.com/news.html
YAMI4-1.0.2 is released. This release
introduces several bugfixes for timeout
handling in Java and system limits
correction for Mac OS X Snow Leopard
systems.

Rapita Systems —
RapiTime v2.3
From: Rapita Systems News center
Date: Thu, 20 May 2010
Subject: Step back in time with RapiTime
URL: http://www.rapitasystems.com/news/

v2.3+launched
York, UK, 20th May 2010
Rapita Systems Ltd has unveiled the latest
version of its RapiTime measurement and
analysis of real-time embedded software
tool.
Combining the proven data collection,
measurement and analysis techniques of
previous versions with new features
means RapiTime v2.3 takes timing
analysis of real-time embedded systems
“to a higher level”.
New features to support execution time
measurement, code coverage and worst-
case execution time analysis include:
⁃ A specialised debugging facility which

gives users the ability to move
backwards and forwards - “Rewind” -
through source code

⁃ The opportunity to run coverage without
timing analysis

⁃ Improvements in how RapiTime
handles the analysis of function pointers
and RTOS tasks

These new features mean RapiTime v2.3
quickly highlights opportunities for
debugging and code optimization, rapidly
leading the way to improved systems
performance.
“With RapiTime v2.3 we’ve added
features that improve the user experience
and significantly enhance systems
performance,” said Product Development
Director, Dr Antoine Colin.
“We wanted to take analysis to a higher
level,” continued Dr Colin, “and we’re
confident RapiTime v2.3 meets that
ambitious aim.”
The Rewind facility at the heart of v2.3
gives users a tool they can use at their
own pace to identify and debug problem
code.
Too often embedded developers face the
situation where the target just stops
working. Stepping backwards from the
point where the application stopped to see
the sequence of events leading up to the
problem helps developers to identify the
cause.
Combined with the other key features of
v2.3, Rewind offers an advanced route to
performance optimisation.
RapiTime v2.3 is officially launched on
24th May 2010.
[For more details, see
http://www.rapitasystems.com/system/
files/ProductBrief_RapiTimev2.3.pdf
—mp]

92 Ada Inside

Volume 31, Number 2, June 2010 Ada User Journal

Ada and GNU/Linux
qtada, gprbuild and xmlada
for Debian, Ubuntu and
Gentoo Linux
From: Alexander <coopht@gmail.com>
Date: Wed, 28 Apr 2010 06:24:33 -0700

PDT
Subject: Announce: qtada,gprbuil and

xmlada for Debian, Ubuntu and Gentoo
Linux

Newsgroups: comp.lang.ada
[…]
I prepared QtAda (www.qtada.com)
packages for Debian/Ubuntu and Gentoo
Linux.
For Gentoo Linux I created a special Ada-
overlay. In this overlay there are ebuild
files for gnat-gcc-4.4.3, gprbuild, xmlada
and qtada.
The packed overlay can be downloaded
from here:
https://sourceforge.net/projects/qtada/files/
Gentoo/ada-overlay.tar.bz2/download
For Debian and Ubuntu Linux I created
.deb packages for gprbuild, xmlada and
qtada.
gprbuild package:
https://sourceforge.net/projects/qtada/files/
Debian/gprbuild_1.3.0-1_i386.deb/
download
xmlada package:
https://sourceforge.net/projects/qtada/files/
Debian/libxmlada-dev_4.3.1-1_i386.deb/
download
qtada package:
https://sourceforge.net/projects/qtada/files/
Debian/qtada-dev_3.0.0-1_i386.deb/
download
P.S. Please, don't be confused with project
name

References to
Publications
Embedded.com —
“Expressive vs. permissive
languages: Is that the
question?”
From: AdaCore Press Center
Date: Thu, 8 Apr 2010
Subject: Expressive vs. permissive

languages: Is that the question?
URL: http://www.adacore.com/home/

company/press-center/
[Yannick Moy at Embedded.com
discusses how the expressiveness and
permissiveness of programming
languages influence the static
analyzability of the code.

He contends that the chosen language
does matter when static analyzability
enters the picture. Read the article at:
http://www.embedded.com/design/
224200704 —mp]

Ada Inside
Use of Ada in the Bound-T
timing analysis tool
From: Ada Information Clearinghouse
Date: Sat, 20 Mar 2010
Subject: Ada drives Bound-T
URL: http://www.adaic.com/atwork/

bound-t.html
[…]
Bound-T is a novel program analysis tool
that takes the object code representation
of an embedded program and analyzes it
to produce bounds on worst-case
execution time and worst-case stack
usage. It supports a wide variety of
embedded target processors, and (since it
processes object code), it supports
virtually any programming language and
development methodology.
Bound-T was developed completely in
Ada other than a couple external
mathematics packages.
Niklas Holsti, Lead Engineer at Tidorum
Ltd. says "The Bound-T tool is meant to
help the verification of high-reliability
software. Thus it is both important and
natural that Bound-T itself should use a
programming language that emphasises
reliability."
Holsti has found that many features of
Ada help improve the reliability of a tool.
He notes "Ada makes a clear separation
between the interface of a module, and the
implementation of the module. For
Bound-T, in particular, this helps to
separate the general, target-independent
modules from the target-specific
modules."
With some 480 packages, reduced
coupling is critical to managing the
complexity of Bound-T.
Ada's checks that both uses and
implementations of a module match the
interface of the module prevent many
errors and reduce debugging time.
Bound-T also makes use of object-
oriented programming as embodied by
Ada's tagged types to reduce
dependencies between modules while not
hampering further development and
refinement of the modules.
Holsti summarizes "Ada is the
outstanding choice for reliability, through
its strong support for clear, problem-
oriented design and its thorough
consistency checks at compile-time and at
run-time."

Hi-Lite Project
From: AdaCore Press Center
Date: Tue, 4 May 2010
Subject: AdaCore Announces Hi-Lite

Project
URL: http://www.adacore.com/2010/05/04/

hi-lite-project/
New consortium aims to promote formal
methods for high integrity software
PARIS and NEW YORK, May 4, 2010 –
AdaCore, together with Altran Praxis,
CEA LIST, Astrium Space
Transportation, INRIA ProVal and Thales
Communications today announced the
start of the Hi-Lite project. Financially
supported by French national and local
government agencies, Hi-Lite is an Open
Source project designed to increase the
use of formal methods in developing high
integrity software, particularly to meet the
forthcoming DO-178C avionics standard.
It will achieve this by building tools that
are simpler, more powerful and easier to
use.
Hi-Lite will bring together the strengths
of the project partners to create formal
verification tools for both the Ada and C
languages. These will enable code
verification at a deeper level than current
solutions and reduce the need for time-
consuming and costly physical testing of
high integrity software solutions. The
€3.9 million ($5.3 million) project is
scheduled to last three years.
The project builds on the existing ten year
experience of Airbus in using formal
verification methods to create high
integrity systems, and is strongly driven
by the criteria that Airbus’s work has
generated: soundness, applicability to the
code, usability by “normal” engineers on
“normal” computers, improvement on
classical methods, and certifiability.
The project is structured as two different
tool chains for Ada and C.
AdaCore will lead the project and
contribute its expertise in the Ada
language, including the GNAT compiler
and CodePeer static analyser, with Altran
Praxis providing its Ada-based SPARK
verification toolset. The C toolchain will
use the GCC compiler and CEA’s Frama-
C platform. Both toolchains will be
integrated within AdaCore’s IDEs.
Astrium Space Transportation will
demonstrate the method and tools by
deploying them on a major project to
redevelop the software systems of its
Automated Transfer Vehicle, aiming to
prove the advantages of formal
verification. Thales Communications will
also use the project tools across its
component-based middleware solution,
adding the ability to automate the
verification of generated code by using
Hi-Lite annotation language.

Ada Inside 93

Ada User Journal Volume 31, Number 2, June 2010

By defining a common language of
annotation for testing, static analysis and
formal proofs, Hi-Lite will allow
industries to switch gradually from an all
testing policy to a faster and more cost-
effective use of verification methods.
It loosely integrates formal proofs with
testing and static analysis, thus allowing
projects to combine different techniques
around a common expression of
properties and constraints.
The Hi-Lite project is primarily driven by
the planned Formal Methods Technology
Supplement of the DO-178C avionics
standard. For the first time, this allows
formal verification tools to replace
physical testing when applying for system
certification. As well as aerospace and
defense, the products created through Hi-
Lite aim to make formal verification
available and easier to use across more
industries, such as medical and
automotive.
For more information and regular updates
on the Hi-Lite project visit
http://www.open-do.org/projects/hi-lite
Quotes from the Hi-Lite project partners
“As high integrity systems get larger and
more complex, formal methods provide a
cost-effective solution that decreases the
need for testing and speeds up project
completion,” said Arnaud Charlet, Hi-Lite
Project Leader of AdaCore.
“Working with the Hi-Lite project
partners, we aim to make formal
verification faster and easier to use across
large, multi-language projects that need to
meet certification criteria, such as the
forthcoming DO-178C standard.”
“Altran Praxis are delighted to be
involved in Hi-Lite. We look forward to
the project bringing the advantages of
formal verification and the SPARK
approach to a wider audience in the
software development community,” said
Keith Williams, Altran Praxis Managing
Director.
“CEA-LIST will provide its expertise on
the Frama-C platform for the formal proof
of C-based software. We will work on
connecting the Ada and C parts of the
specifications and proofs,” said Loïc
Correnson, leader of the Frama-C team at
CEA-LIST. “Indeed, as a co-author of the
ACSL specification language, we will
participate in the elaboration of the
specification language(s) in the project.”
“The ProVal Team at the INRIA Saclay
research center is pleased to be a member
of the Hi-Lite project,” said Claude
Marché, Senior Research Scientist at
INRIA.
“We will provide expertise in automated
reasoning and needed improvements in
the Why/Alt-Ergo deductive verification
tool-chain.”
[…]

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —mp]
Job offer [United Kingdom]: Embedded
Software Engineer
Embedded software development
Engineer to perform integration and
debugging of auto-coded C functional
blocks into a hand-written Ada
infrastructure, with particular emphasis on
the optimisation of run-time performance
on PowerPC-based and/or Intel Atom-
based targets.
[…]
Analysis of the shortcomings in the
current software architecture and design
of improvements.
Identification of potential improvements
at the Simulink level and liaison with the
algorithm designers to get these
implemented.
The successful candidate must be able to
demonstrate a high degree of competence
in at least one of the following areas:
⁃Matlab/Simulink
⁃Ada
⁃C
⁃VxWorks 6.4
⁃Virtex 5 FPGA technology
⁃PowerPC
⁃Intel Atom
[…]
Job offer [United Kingdom]: Software
Verification and Validation Engineer
An exceptional opportunity for a talented
Software Test Professional with
experience of Verification and Validation
processes within safety-critical
engineering.
[…]
Software Verification and Validation
Engineer key responsibilities:
⁃Prepare /update product tests

specifications and product integration
test specifications.

⁃Run and record product tests and
integration tests using the factory test
facilities.

⁃Prepare and run software module tests
involving the use of software test tools.

⁃Carry out verification tasks on the
product software development, and
document the results in verification
reports. Assist in the production of
product validation reports.

⁃Assist with the reviews of software
designs and other software
documentation.

Software Verification and Validation
Engineer Skills and Experience Required:
⁃Experience of software verification /

testing, ideally within a safety-critical
environment (aerospace, rail, defence,
nuclear, medical devices etc….)

⁃Experience of software verification.
⁃Knowledge of programming languages

C, C++, C#, Ada.
Job offer [United Kingdom]: Simulation
and Modelling Engineer
Simulation and Modelling Engineers are
required to fulfil existing and future
contracts in the development of some of
the worlds most advanced future defence
systems. Our Simulation & Modelling
Engineers have a proven track record in
understanding and designing complex
weapon systems to meet demanding
customer needs. […]
Typical duties would include:
⁃Prepare a full range of specifications,

develop designs in line with demanding
customer specifications.

⁃Carry out a full range of technical
analyses and investigations, including
evaluation and selection of technical
options.

⁃Carry out investigations into a full range
of problems, issues or developments and
develop and prepare solutions,
individually or as a member of a project
team.

Academic Qualifications
An appropriate Engineering Degree or
Masters e.g. Systems or Aerospace
Engineering, Electrical Engineering,
Physics, or equivalent.
Experience Requirements
Proven track record in the following
⁃Requirements capture including

interface definitions
⁃Simulation & Modelling
⁃Matlab and preferably also Simulink
Ideally will have knowledge and
experience of the following:
⁃Doors or UML
⁃Ada and/or C
[…]
Job offer [United Kingdom]: ISVV Test
Engineer
[…] a Test Engineer who will perform
verification and validation testing on
safety-critical components of a system to
internationally recognised standards.
This task involves:
⁃Static analysis verification;
⁃Design and code scrutiny/verification;
⁃Using synthetic and simulation

environments to design and test design
models;

94 Ada in Context

Volume 31, Number 2, June 2010 Ada User Journal

⁃Writing module test specifications,
executing tests and analysing results;

⁃Performing independent assessment of
other unit test results;

⁃Communicating results with a high
degree of accuracy and attention to
detail.

Outside this project, the company has a
number of further challenging V&V
activities as well as analysis, architecture,
design and development projects that the
successful candidate would also be
expected to participate in.
You may be expected to contribute to bid
work and internal research and
development activities.
Essential Skills & Experience […]
⁃A proven track record in ISVV activities

for safety-critical systems preferably for
avionics components;

⁃A BSc or higher in a numerate degree
(e.g. Computer Science);

⁃Experience in C, C++ or Ada;
⁃Model, design, code and static analysis

verification;
⁃Unit test, strategy definition, test case

definition and test execution;;
⁃Experience in using LDRA;
⁃Experience in using configuration

management tools;
⁃Safety-critical related standards (e.g.

DO-178B, EN 50128);
⁃System/software risk and issue

identification and documentation;
⁃Familiarity with modelling languages

and tools such as UML, SysML and
Enterprise Architect;

[…]
Desirable Skills & Experience […]
⁃Experience in defence or avionics

sectors;
⁃Definition of verification and validation

strategies and plans;
⁃Experience writing macros and VBA

process rationalisation formulas;
⁃Requirement capture (DOORS);
⁃Awareness of software Quality

Management practices;
⁃Systems Engineering.
Job offer [United Kingdom]: Senior
Software Engineer
[…] looking for a Senior SWE with
expertise in VHDL, Embedded C, Ada,
strong knowledge of hardware designs &
principles, machine level programming,
Assembler, this will be working on safety
critical software, it is essential that you
have a good degree. […]
Job offer [Spain]: Embedded software
engineer

Looking for software engineers with
experience in the development of real-
time software (design, software
architecture, coding, unit testing,
integration testing, validation), with
working knowledge of one or more
programming languages (C, C++, Ada
etc.).
[…]
Requirements: At least two years'
experience as Embedded Software
Engineer
Skills and experience:
Microcontrollers (Hitachi, ST, Intel,
Motorola…), real-time operating systems
(VxWorks, Nucleus, pSOS, MCarlo etc.),
programming languages(C, C++, Ada,
TCL, Visual Basic), communication buses
(CAN, Most, I2C…), configuration
management tools (Clearcase,
Continuus…).
[translated from Spanish —mp]
Job offer [Spain]: Embedded software
engineer
[…]
You will work in a project for the
avionics domain as system integrator.
Required knowledge: Ada, Assembler,
Perl, C, C++
[translated from Spanish —mp]
Job offer [United States]: Systems
Engineer
This position is responsible for a variety
of engineering assignments.
Employee understands and applies good
system engineering concepts and
practices, has a thorough understanding of
software engineering development and
verification concepts throughout the
complete software lifecycle, and follows
established policies and procedures to
complete work assignments.
The successful candidate must meet the
following basic requirements:
⁃ BS in Software Engineering, Computer

Science or related field.
⁃ 5+ years of software engineering

experience in real-time embedded
systems using C, C++, or Ada

⁃ 1 - 3 years of systems engineering
experience in the avionics or aerospace
industry.

The successful candidate will possess:
⁃ Knowledge of C/C++, Ada, and Python

or Perl
⁃ Experience with Model-Based

Development tools
⁃ Strong inter-personal and

communication skills
⁃ Experience on software systems

developed to DO-178B Level C or
higher

⁃ Understanding of software verification
under DO-178B

⁃ Experience with the development and
formal verification of avionics software
systems

⁃ Ability to define and develop system
requirements

⁃ Experience with embedded real-time
software development and verification

⁃ Ability to perform analysis of
requirements, design, development,
verification, and documentation of
software applications.

⁃ Broad knowledge of avionic systems.
⁃ Knowledge of aircraft data protocols

such as ARINC 429, RS-485, RS-232
[…]
⁃ Knowledge of the SEI CMMI processes

and procedures
⁃ Windows CE development experience

is a plus
⁃ OpenGL or GEODE experience is a

plus

Ada in Context
GNU Go Ada Initiative
From: David Sauvage

<contact@gnugoada.info>
Date: Tue, 9 Mar 2010
Subject: Preparing the GNU Go Ada

Initiative
URL: http://blog.gnugoada.info/post/

2010/03/09/first
Hello world,
we are a bunch of millions of developers
and users.
We want our libre software we create,
develop, maintain & use to exist as long
as human beings exist, to preserve our
citizen freedom and such other things …
We need the corresponding technologies
to make it as efficient as it could be,
because we often don't have infinite
energy to get all of those done…
That's also why Ada has something to
bring to the GNU Community.
Goals :
⁃ Communicate & Promote to the GNU

community about the amazing open Ada
technology that is available.

⁃ Present and promote all Ada Open
Source Projects & Initiatives that can
interest the GNU Community.

⁃ Promote software engineering to the
GNU Community

Get prepared :
⁃ Brainstorm about the GGA Initiative,

complete the goals
⁃ What tools do we need ? (Wiki, …)
⁃ How to communicate nicely ?

Ada in Context 95

Ada User Journal Volume 31, Number 2, June 2010

⁃ Brainstorm about how to launch the
GGA initiative (Contents, Events,
Comic Strips, Tutorials …)

Act :
⁃ Create categories for all kinds of

subjects (Software Engineering, Process,
Technology, Education, …)

⁃ For each category create the key ideas
we want to share

⁃ For each category create the contents,
events, comics, tutorials, …

⁃ For each category add the links to other
Ada websites, projects & initiatives

⁃ …
To get redactor permission on the GGA
Initiative, please subscribe at
http://www.gandi.net/login/new and send
your login name at [1], I will add it to the
redactor list.
Do not hesitate to discuss about it on your
preferred newsgroups, may be a redactor
would input the discussion synthesis on
the blog.
[...]
[1] contact@ this host name (without
blog.)

On the TIOBE index and the
ranking of Ada
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Mon, 8 Mar 2010 03:53:34 -0800

PST
Subject: TIOBE index
Newsgroups: comp.lang.ada
Hello,
From time to time I'm looking at the
TIOBE Programming Community Index
http://www.tiobe.com/index.php/content/
paperinfo/tpci/index.html
The results, for long, are not very glorious
for Ada, but I told myself if was like it
was.
For instance the latest ranking for Pascal,
Fortran and Ada are:
Tiobe ranking

Pascal 0.603%
Fortran 0.563%
Ada 0.376%
Now, I spent a few minutes to look at the
figures myself, following the famous
citation "The only statistics you can trust
are those you falsified yourself".
So I made the search engine queries as
described there:
http://www.tiobe.com/index.php/content/
paperinfo/tpci/tpci_definition.htm
including 1-year time windowing when
available.

Here are the results (the simple queries
without time windowing give similar
results):
 Google Google Blogs MSN

Pascal 2'020'000 25'027 3'170'000
Fortran 1'510'000 11'768 1'640'000
Ada 2'140'000 110'310 2'670'000

 Yahoo! Wikipedia YouTube

Pascal 25'200'000 1'664 232
Fortran 7'900'000 949 113
Ada 49'300'000 1'764 70
With the weights being 23% for each
engine, except YouTube with 7%, it is
obviously impossible to have Ada's
ranking that is lower than Fortran's and
even than Pascal's.
Funny thing: the weights sum up to more
than 100%, so don't forget to divide by
the sum of weights!
If you take for instance Pascal's ranking
as a reference, the rankings would be
actually the following:
Pascal 0.603%
Fortran 0.294%
Ada 0.668% <- uh-oh, almost the "A"
category...
Of course the reference (here Pascal)
would need as well a re-ranking, up or
down, which would influence Fortran's
and Ada's - this would mean to gather the
full index data!
Did I miss something ? Some "soft
factors" ?
I have an Excel sheet for those interested.
Or should we bug TIOBE about their
statistics' quality ?
Or publish a fair, transparent index based
on the TIOBE idea, but with the
publication of the figures ?
From: jonathan

<johnscpg@googlemail.com>
Date: Mon, 8 Mar 2010 14:04:46 -0800

PST
Subject: Re: TIOBE index
Newsgroups: comp.lang.ada
[…]
Thanks Gautier … I hadn't realized how
silly the TIOBE index is until you
explained how it works.
Another data point:
http://www.blackducksoftware.com/oss/
projects#languageos
Still can't draw any real conclusions about
the software industry from this data point,
but at least it is not meaningless.
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Mon, 8 Mar 2010 21:39:04 +0200

Subject: Re: TIOBE index
Newsgroups: comp.lang.ada
[…]
There is also http://langpop.com/ which I
find slightly more realistic based on my
own experiences, although that doesn't
show Ada in very popular light either.
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Mon, 8 Mar 2010 12:22:32 -0800

PST
Subject: Re: TIOBE index
Newsgroups: comp.lang.ada
[…]
That would not be a big issue for me -
provided the conclusions can be
reproduced.
I only have something against dubious
statistics…
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Mon, 08 Mar 2010 16:41:22 +0100
Subject: Re: TIOBE index
Newsgroups: comp.lang.ada
> Did I miss something ? Some "soft

factors" ?
 I have an Excel sheet for those

interested.
 Or should we bug TIOBE about their

statistics' quality ?
 Or publish a fair, transparent index

based on the TIOBE idea, but with the
publication of the figures ?

Well, ask them - they usually answer.
Apart from that they lost my personal
credibility whey they dropped usenet if
favour of hipper stuff like YouTube. And
when all first 20 languages where in
"danger" to be "A" rank they changed
something else. I wrote a blog entry about
that:
http://ada-programming.blogspot.com/
2008/01/tiobe-january-2008.html.
Also I noticed: "The first 100 pages per
search engine are checked for possible
false positives and this is used to define
the confidence factor" - the confidence
factor for Ada is not publicised.
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Mon, 8 Mar 2010 08:26:31 -0800

PST
Subject: Re: TIOBE index
Newsgroups: comp.lang.ada
Well, newsgroups contents are visible,
copied several times, on various search
engines…
YouTube has a normalized weight of only
5.73%.
> Also I noticed: "The first 100 pages per

search engine are checked for possible
false positives and this is used to define
the confidence factor" - the confidence
factor for Ada is not publicised.

96 Ada in Context

Volume 31, Number 2, June 2010 Ada User Journal

That could be the explanation…
Anyway, the idea of a "transparent"
index, with the same rules, but with
publication of all figures, could be a nice
project.
Of course automatized…
[…]
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Tue, 9 Mar 2010 12:48:31 -0800 PST
Subject: Re: TIOBE index
Newsgroups: comp.lang.ada
OK, first embryo here:
http://sf.net/projects/lang-index/
Already working for some engines :-)
[…]

Update on the AuroraUX
project
From: AuroraUX Website
Date: Sun, 4 April 2010 [last update]
Subject: AuroraUX Project Goals
URL: http://confluence.auroraux.org/

confluence/display/AUXREQ/
AuroraUX+Project+Goals

[…]
The AuroraUX Operating System is
uniquely designed to provide a high-
integrity computing environment for high-
end desktop and workstation users which
require a rock solid, fast computing
platform with no compromises.
AuroraUX shall endeavor to provide a
secure high integrity operating platform to
build mission-critical computing
environments for desktop workstations
that simply cannot waste time. Our
approach to this is by carefully thought
out designs for our system libraries and
accompanying applications that target key
areas of modern desktop computing that
seem to fail frequently.
By use of the Ada language, a proven and
tested high integrity software
development model normally used in the
aviation industry as well as certain code
standard […] and peer review, we aim to
provide the most stable desktop operating
system available on the market today.
Summary:
⁃ A Unix Shell Interpreter that conforms

to the POSIX spec much like ksh93
written in Ada.

⁃ Simple, clean boot loader.
⁃ Port the GNAT Ada compiler direct on

top of LLVM.
⁃ Entire tool-chain based around LLVM

and not GCC !
⁃ Support for Ada, C, C++, D as well as

Fortran.
⁃ A graphical session manager written in

Ada to replace convoluted solutions
such as GDM, KDM etc…

⁃ A modern window management
framework written for the twenty first
century where highly interactive,
asynchronous, fault tolerant, predictable
behavior is paramount.

⁃ Provide a modern OpenGL type library
toolkit for Ada programmers, such like
the Clutter toolkit as part of the system
core libraries.

⁃ Long term goal of replacing the 'X
server backend' and mesa userland
driver, kernel drivers and all that mess
with a in-kernel, fault tolerant, modern
asynchronous, object-oriented graphics
subsystem.

⁃ A core system with a highly advanced,
flexible and stable packaging system
with built-in system level package
integrity checking to ensure reliable
system updates and the ability to roll
back automatically.

⁃ Enable the user to run popular programs
as found in other *nix's, such as
GNU/Linux 2.6 via ABI system call
emulation.

⁃ Excellent and Accessible
documentation.

[…]
[To check how project goals have evolved
in the last 12 months, see "AuroraUX
project" in AUJ 30-2 (Jun 2009), p.84
—mp]

GNAT AUX (DRACO) for
AuroraUX
From: AuroraUX Website
Date: Fri, 16 April 2010 [last update]
Subject: GNAT AUX (Later DRACO)

Milestones And Goals
URL: http://confluence.auroraux.org/

confluence/display/AUXBP/
GNAT+AUX+(Later+DRACO)+Milesto
nes+And+Goals

Several people, including myself, have
direct experience with AdaCore
admittedly ignoring any platform in
which they have no current paying
customer.
This definitely includes Dragonfly as they
refused my patches, and FreeBSD.
They would prefer patches get sent to the
FSF, but they won't accept them without
copyright assignment which apparently
takes months to achieve, if you achieve at
all. And that might be per-submission.
The whole situation is just wrong.
On top of that, AdaCore won't provide a
compiler that produces GPL-free
executables. GCC does, but that only gets
updated once per year, and it's still to be
determined if the FSF version has all the
features the GPL version has at the point
of release. It's time to fork. At the very
least, we get a version that anybody can
easily contribute to, with all the current

patches, and we can produce current
versions on a much more frequent basis.
Milestones
Stage 1: Fork
At a strategic points, probably when GPL
2010 is released, we dump a subset of the
GCC codebase into a Git repository (head
revision). This would be gcc/ada +
subdirs, /gnattools, gcc/testsuite/ada, and
selected files from /gcc, /gcc/config +
subdirs. Unlike the GCC, we don't
maintain separate branches of Ada.
Theoretically we just take a copy of GCC
core and overlay the current version of
our repository over it, and we should be
able to build the latest possible Ada
compiler. We add in all the patches that
we want, and particularly cater for the
BSDs (Open, Net, Dragonfly, and Free).
From this point on, we monitor commits
in the GCC head that affect Ada and make
sure to mirror them in our own repository.
The forks may diverge in time, but for a
while they will be parallel and more or
less compatible. It will be known as
"GNAT AUX" until Stage 3.
Stage 2: DragonEgg
This will be a quick stage. We compile
DragonEgg and add it as a plugin to our
forked compiler. This will replace the
GCC optimizers with the LLVM
optimizers. We verify that it can build
itself, and pass all the ACATS and GNAT
testsuite, at least to same level as the GCC
did.
Update: In its current state, DragonEgg
can build GNAT, but then GNAT can't
build it's gnatlib due to missing error
handling / exception functionality. We are
waiting for this functionality to be
incorporated by Duncan Sands (baldrick)
before continuing. [13 April 2010]
Stage 3: Streamlining
We'll branch the repository. The GNAT
AUX branch will continue to be
maintained and to use DragonEgg. The
master trunk will take on the name
DRACO.
[…] Upon further study, I'm rescinding
the last proposal to incorporate
DragonEgg into DRACO. While Edward
in his comments treats the replacement of
GiGi as trivial, ultimately it is the right
approach and dealing with the complexity
of building DragonEgg into DRACO is
going to be a lot of wasted effort.
Stage 3 is still streamlining, here are the
tasks as I see them now:
1. Create a new directory along side

GNAT AUX trunk rather than a true git
branch. This is because I'm going to
organize the directory structure and
remove all extraneous gcc code.

2. The new top-level directories of the
branch will be: /driver, /frontend, /gcc-
interface, /gcc-remnants, /llvm-interface

Ada in Context 97

Ada User Journal Volume 31, Number 2, June 2010

3. Objective 1: Replace the GCC driver
with a brand-new one written in Ada.
Basically this just accepts the switches
and passes them to the front end. The
GCC driver is designed to handle many
different language plugins and DRACO
will by design only know Ada. By
replacing the C-based driver, we can
eliminate a lot of C-code which becomes
cruft when the compiler only needs to
know one language. The code goes in
the /driver directory. The Driver will be
BSD licensed.

4. Objective 2: Replace the horrid GNU
autotools configure and makefile stuff
with a much more sensible CMAKE
version. For starters, I want to
reintroduce the explicit build stages (e.g.
build dracolib, build dracotools, build
cross-lib, build cross-tools, build cross-
all, etc) rather than badly guess what the
builder really wants. Secondly, the
makefile will be monolithic rather than
spread out over a dozen places.
Obviously it will build what is exactly
needed by DRACO at the specific
development stage and nothing extra, so
builds will be much faster. This code
stays in the branch directory. By default,
the CMAKE script will create a
subdirectory called "build" so avoid
polluting the source code during
bootstrapping stages. GCC requires this,
but forces you to set it up manually.
CMAKE will use Clang to compile the
C parts of Draco.

5. Objective 3: Eliminate as much GCC
code as possible while maintaining a
functional GiGi interface and GCC
optimizers and code generators. This
includes eliminating the C language, and
as many libraries as possible. I definitely
hope to eliminate mpfr, mpc, and gmp
libraries as build requirements to
DRACO at this stage. If some libraries
need to stay a while longer (e.g. libgcc)
then we limit the included functions to
the ones needed by DRACO to function,
nothing extra. All these "GCC
remnants" go in the gcc-remnants folder
with the goal to reduce this over time.

6. Objective 4: To complete the
reorganization of the location of the
code, the files of trunk/gcc/ada will
move to draco/frontend and the files of
trunk/gcc/ada/gcc-interface will move to
draco/gcc-interface. For now, the llvm-
interface folder remains a placeholder.
Obviously the goal will be to delete the
/gcc-interface over time.

Upon completion, Draco will not have
any functional advantage over the latest
GCC, and in fact has lost the ability to
compile C and therefore will not have the
ability to fully host itself as GCC can.
This configuration doesn't require
DragonEgg, so this stage can occur in
parallel with Stage 2. The main benefits
are a more sane build process, much less
code to build (and therefore less

opportunity to break during build),
smaller executables, and a more clearly
modular layout to replacement of GiGi
and the GCC middle- and back ends.
Stage 4: Native Intermediate
Representation (IR)
Even though we ripped out the GCC
backend, we still need this 23MB
compressed tarball worth of source files,
just for GCC "Core".
We want to get rid of GCC completely.
One way may be to use common parts of
Clang like the parser and lexicon pattern
recognition. Basically you would take
clang, rip out the c-language parts and
replace it with the Ada parts. I also think
that the Ada compiler should not build
any other language beside Ada, so at this
point we would need Clang + an Ada
compiler to build our new compiler.
Alternatively we could just add Ada to
Clang and possibly rip out C++ and
Objective C. If we took this approach, the
resultant could build itself. This might be
the most prudent way to go, but it
wouldn't be the minimalist approach.
DragonEgg is basically a stopgap
measure. At the completion of Stage 3,
DRACO is converting the Ada Abstract
System Tree into the GIMPLE language
which DragonEgg intercepts and
painstaking converts into LLVM's IR
language. This is inefficient in terms of
time and optimization. We need to replace
the Ada-to-GIMPLE translation (Ada-to-
C) with Ada-to-IR (Ada to Ada with Ada
Bindings to LLVM). The goal should be
to eliminate all C files between the AST
tree and the LLVM library. Once this is
complete, DragonEgg's purpose is
complete and it is no longer required.
Clang and LLVM are the only
components required to build a new
DRACO, besides an existing DRACO.
The objectives of this stage are:
1. Primary Objective: create the "DLC"

(Draco AST /LLVM Intermediate
Representation Converter), which is the
interface between Draco and LLVM.

It converts the native "expanded and
decorated abstract syntax tree" into
LLVM's language-independent
Intermediate Representation.
The DLC will be written in Ada, unlike
the 21K+ lines of C code that GiGi is
written in. The DLC will be BSD
licensed.
2. Objective 2: Replace GiGi with DLC.

Delete all GiGi related code from /gcc-
interface directory, and the directory
itself if possible.

3. Objective 3: Delete all GiGi related
code from the /gcc-remnants directory

Stage 5: Hardcore and Unnecessary
If we complete Stage 4, we pretty much
should be popping champagne. We
managed to completely separate the Ada

compiler from GCC, something that it
was built on. It would be like separating
conjoined twins! To be purist though,
there shouldn't be an "C" files in the
compiler, it should be 100% Ada. If we
wanted extra credit, we would port any
non-Ada source files into Ada and
bootstrap. If we take a significant port of
Clang, this could be a large amount of
work. It would fall under the "Because we
can" category.
By now we've eliminated tens of
thousands of lines of C since the
streamlining purge. There is still some left
though, like POSIX interfaces to
threading and errno, and other bindings.
Some of the C is in the /front-end folder
and the the rest of it will be in /gcc-
remnants assuming the /gcc-interface
directory has already been purged from
the DRACO branch. The ultimate goal
should be to produce an Ada compiler
than can fully build itself without another
compiler (i.o.w. without Clang).
[…]

On Min/Max attributes and
the type/subtype relationship
From: Alex Mentis <asmentis@gmail.com>
Date: Tue, 27 Apr 2010 12:34:18 -0700

PDT
Subject: Min/Max attribute makes promises

it can't keep
Newsgroups: comp.lang.ada
I'm disappointed with some allowed
syntax that seems a little error-prone.
Consider the following code:

with Ada.Integer_Text_Io;
use Ada.Integer_Text_Io;
procedure Main is
 Nat : constant Natural := 0;
 Pos : Positive;
begin
 Get (Pos);
 Put (Positive'Min(Nat, Pos)); -- Ada
 -- does not require the Min
 -- attribute to enforce a Positive result
end Main;

This program happily outputs that the
minimum of (0 and whatever positive
value you enter) is 0. Now, I concede that
the program is working exactly as the
ARM specifies. The Min (and Max)
attribute functions accept and return types
of S'Base, in this case Positive'Base. But
doesn't it seem like a bit of a tease to
allow a programmer to specify S'Min if
the compiler is allowed to ignore the type
of S in the function's parameter list and
the program does not raise a
Constraint_Error at run-time if it returns a
value outside the range of type S?
If it's too hard to enforce strictly then
maybe the functions should be named
Unchecked_Min/Unchecked_Max. Or

98 Ada in Context

Volume 31, Number 2, June 2010 Ada User Journal

maybe the programmer should be
constrained to using the attributes with
only a base type. Or, at the very least,
can't the compiler generate a warning
about this? I turned on all warnings in
GPS and got nothing.
Things that make you go hmmm…
[…]
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Tue, 27 Apr 2010 13:20:41 -0700

PDT
Subject: Re: Min/Max attribute makes

promises it can't keep
Newsgroups: comp.lang.ada
[…]
If you want the check, this should do:
begin
 Get (Pos);
 Put (Positive (Positive'Min(Nat, Pos)));

end;

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Tue, 27 Apr 2010 17:16:08 -0400
Subject: Re: Min/Max attribute makes

promises it can't keep
Newsgroups: comp.lang.ada
[…]
> Put (Positive (Positive'Min(Nat, Pos)));
That works, but I think a qualified
expression is better:

 Put (Positive'(Positive'Min(Nat, Pos)));

By the way, there are lots of attributes
that work like this (use the base subtype).
It's not just Min and Max.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Tue, 27 Apr 2010 17:46:29 -0500
Subject: Re: Min/Max attribute makes

promises it can't keep
Newsgroups: comp.lang.ada
[…]
Right. Attributes are mostly type-related,
not subtype-related. The name in the
prefix serves to identify the type, not the
subtype (there are no named types in Ada,
only named subtypes).
All of 'Succ, 'Pred, 'Val, and 'Value work
this way, and there are probably many,
many more. Even 'First and 'Last
technically work this way (although it
doesn't matter in that case).
From: Alex Mentis <asmentis@gmail.com>
Date: Wed, 28 Apr 2010 03:36:40 -0700

PDT
Subject: Re: Min/Max attribute makes

promises it can't keep
Newsgroups: comp.lang.ada
[…]
I think you all missed my point: allowing
the programmer to specify a constraint in
situations where the constraint will not be

enforced could cause confusion/error for
someone who doesn't have the entire
ARM memorized…
Yes, I know there are ways to force Ada
to do the check, like explicit type
conversion and qualified expressions.
That's pretty ugly, though. If I already
have to put the type in front of the
attribute, why should I have to put the
type in front of that again? As long as
we're posting work-arounds, though, I
suppose I would use the following:

with Ada.Integer_Text_Io;
use Ada.Integer_Text_Io;
procedure Main is
 function Min(Value_1,
 Value_2: Integer)
 return Integer
 renames Integer'Min;
 Nat : constant Natural := 0;
 Pos : Positive;
begin
 Get (Pos);
 Put (Positive'(Min(Nat, Pos))); -- return
 -- a Positive result from renamed Min
 -- else raise a Constraint_Error
end Main;

From: Christoph Grein
<christoph.grein@eurocopter.com>

Date: Wed, 28 Apr 2010 03:58:47 -0700
PDT

Subject: Re: Min/Max attribute makes
promises it can't keep

Newsgroups: comp.lang.ada
> I think you all missed my point:

allowing the programmer to specify a
constraint in situations where the
constraint will not be enforced

But the prefix of an attribute reference
does not specify a constraint.
Integer'Min, Positive'Min, Natural'Min
are all the same.
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Wed, 28 Apr 2010 04:37:35 -0700

PDT
Subject: Re: Min/Max attribute makes

promises it can't keep
Newsgroups: comp.lang.ada
[…]
But it should, at least in the case of
Min/Max.
Integer'Min, Positive'Min, Natural'Min
being all the same breaches the spirit of
the Ada language (what you see is what it
means).
A topic for Ada 201z…
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Wed, 28 Apr 2010 04:47:42 -0700

PDT
Subject: Re: Min/Max attribute makes

promises it can't keep
Newsgroups: comp.lang.ada

[…]
We could have had is thus and
unconstrained Min as Positive'Base'Min
when Min was introduced…
But it is as it is, and your proposal would
be a severe incompatibility, so it won't
fly.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 28 Apr 2010 15:41:16 +0200
Subject: Re: Min/Max attribute makes

promises it can't keep
Newsgroups: comp.lang.ada
[…]
Well, the proposal might be to fix rather
the issue of the superfluous subtype
specification. Obviously Max (and many
other attributes) are primitive operations
and need no subtype to specify. So:

 X'Succ, X'Pred, X'Image

Specifically max and min should be a
dyadic operations:

 function "max" (Left, Right : T)
 return T'Base;

(and, please, no new reserved keywords!)
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Wed, 28 Apr 2010 16:10:46 +0200
Subject: Re: Min/Max attribute makes

promises it can't keep
Newsgroups: comp.lang.ada
That'll be fun:

C'Succ'Succ
'C'&'&''Succ
''''Succ
(M + N)'Succ

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 28 Apr 2010 16:53:25 +0200
Subject: Re: Min/Max attribute makes

promises it can't keep
Newsgroups: comp.lang.ada
[…]
This is a slightly different design flaw.
Things like "abc"'Length, "abc"'First are
illegal in Ada.
No fun! BTW, if you prefer dotted
notation it could be

X.Succ

as well.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 28 Apr 2010 16:07:24 -0500
Newsgroups: comp.lang.ada
Subject: Re: Min/Max attribute makes

promises it can't keep
[…]
That's not a real problem. Ada 2012 will
allow

String'("abc")'Length

Ada in Context 99

Ada User Journal Volume 31, Number 2, June 2010

As a qualified expression can be used as a
name (it's considered constant).
If you think this is weird, Tucker points
out that you can already write:
String(String'("abc"))'Length
in Ada 95, as a type conversion is a name.
We did wonder if any compilers could
actually handle it, but given that this long-
winded locution is already legal, the
shorter one might be legal as well.
As for the initial concern about giving a
subtype name, in the case of literals you
have to give one somewhere (since a
literal can be of many different types, and
the results can vary depending on the type
used -- not for 'Length, but for 'Last and
most other properties).
We did talk a bit about object attributes
like suggested back a few messages for
Ada 2012. We didn't get much consensus,
mainly because I think people were
looking at the wrong questions.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 29 Apr 2010 00:17:05 +0200
Subject: Re: Min/Max attribute makes

promises it can't keep
Newsgroups: comp.lang.ada
[…]
No problem, Ada supports overloading in
the result type. E.g. abs (-1) is OK.
(I have an impression that many weird
Ada rules rooted in an attempt to express
them at the grammar level.)
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Sat, 1 May 2010 00:42:53 -0500
Subject: Re: Min/Max attribute makes

promises it can't keep
Newsgroups: comp.lang.ada
[…]
That doesn't help. Consider:

type My_String is
 array (Natural range <>) of Character;

Now, if you wrote:

"ABC"'First

The answer depends on whether the type
of the prefix is String or My_String, but
the type is Integer'Base in both cases. No
amount of overloading will help.
The language does not want the compiler
to have to list out all of the possible types
for a string literal, figure out the
appropriate bounds for all of them, take
all of the ones with the appropriate index
type, and then allow the attribute if the
answer is the same. (Recall that *every*
Ada program has at least three string
types available.)
Similar rules are used for aggregates, the
operand of a type conversion, and other
places. No context can be used as figuring
out an answer if it could is just too
difficult. (There are a couple of

exceptions for attribute prefixes,
particularly 'Access, as we found that the
typical rule is too limiting, but those are
tightly bounded.)
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 1 May 2010 08:28:10 +0200
Subject: Re: Min/Max attribute makes

promises it can't keep
Newsgroups: comp.lang.ada
[…]
How is that different to:

 package P is
 function ABC return String;
 end P;
 package Q is
 type My_String is array
 (Natural range <>) of Character;
 function ABC return My_String;
 end Q;
 use P,Q;
 …
 ABC'First; -- Ambiguous

> The language does not want the
compiler to have to list out all of the
possible types for a string literal, figure
out the appropriate bounds for all of
them, take all of the ones with the
appropriate index type, and then allow
the attribute if the answer is the same.

That would be silly, of course. But it is
not what I meant. Attribute should be an
overloaded operation as any other. If the
expression happens to be ambiguous there
are language means to specify what it is.
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Wed, 28 Apr 2010 21:41:57 -0700

PDT
Subject: Re: Min/Max attribute makes

promises it can't keep
Newsgroups: comp.lang.ada
> That's not a real problem. Ada 2012 will

allow
 String'("abc")'Length
 As a qualified expression can be used

as a name (it's considered constant)
This whole discussion begs the question
"What is an attribute?". I think the Ada 83
design idea was that the basic scalar types
only have operators as functions. (See
package Standard, there you find only
operators (except for the fact that
enumeration literals are also functions)).
Everything else (like 'Image) was defined
as an attribute.
Thus Min, if it had existed in Ada 83 as
an operator (it hadn't even as an attribute),
would have had to be a reserved word like
abs, not, rem, mod.
I think Ada 95 kept this design issue and
thus had to define it as an attribute.

On Stream_Access and
Ada.Streams
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Fri, 07 May 2010 03:02:16 +0200
Subject: Why is not Stream_Access defined

Ada.Streams ?
Newsgroups: comp.lang.ada
[…]
My dirty stuff of the day : why is
Stream_Access not defined once a time in
Ada.Streams and is instead defined
elsewhere multiple times, like in
Ada.Streams.Stream_IO,
Ada.Text_IO.Text_Streams,
Ada.Wide_Text_IO.Text_Streams and
Ada.Wide_Wide_Text_IO.Text_Streams?
Isn't it funny design ?
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Thu, 6 May 2010 21:24:49 -0500
Subject: Re: Why is not Stream_Access

defined Ada.Streams ?
Newsgroups: comp.lang.ada
[…]
Ada 95 didn't have anonymous access
returns, so a named type had to be
defined. I suspect that there was no intent
that it be used for anything other than
defining the result of these functions --
and there was no intent that that result be
stored: just directly dereferenced and
passed to a stream attribute.
If we were writing it today, I'm pretty sure
that no named type would be used at all.
But making a change like that now would
be incompatible.

On the efficiency of child
and nested packages
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Sat, 29 May 2010 14:56:53 +0200
Subject: Child vs nested package : efficiency

matter
Newsgroups: comp.lang.ada
[…]
For some reasons, I've turned some nested
package -- packages nested in the body of
package -- into a set of child packages
instead.
I've noticed the application's execution
time is now an average of 125% of that of
the old implementation.
The implementation did not changed
otherwise and is still the same.
What can make invocation of
subprograms slower when the
subprograms are in a child package rather
than in a nested package?
Note: this is with optimization enabled --
with -O -- and both old and new
implementation was compiled with the
same options.

100 Ada in Context

Volume 31, Number 2, June 2010 Ada User Journal

I can't explain that and can't imagine a
reason why. That's a mystery to me.
From: Adam Beneschan

<adam@irvine.com>
Date: Tue, 1 Jun 2010 11:35:02 -0700 PDT
Subject: Re: Child vs nested package :

efficiency matter
Newsgroups: comp.lang.ada
[…]
Something else that occurred to me: In the
process of turning the nested packages
into child packages, were there any global
variables declared in the body of the
parent package that you had to move to
the spec (probably the private part) so that
they would be visible to the child
packages?
From: BrianG <briang000@gmail.com>
Date: Sat, 29 May 2010 21:17:51 -0400
Subject: Re: Child vs nested package :

efficiency matter
Newsgroups: comp.lang.ada
[…]
Presuming you're using GNAT (a guess
based on your previous posts), could
using -gnatN (as opposed to -gnatn) help?
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 01 Jun 2010 21:09:37 +0200
Subject: Re: Child vs nested package :

efficiency matter
Newsgroups: comp.lang.ada
[…]
No Adam, there was not. There were
global variables, but just globals in child
packages, not in parent package.
I've just found : pragma Inline is not
automatically applied, it requires the
-gnatn option Brian talked about. I though
this was automatically done when the -O
option is present (I rarely use inline, so I
was not aware of that).
Anyway, I'm interested in your
experience: what did occurred to you with
global variables ?
From: Adam Beneschan

<adam@irvine.com>
Date: Tue, 1 Jun 2010 12:44:46 -0700 PDT
Subject: Re: Child vs nested package :

efficiency matter
Newsgroups: comp.lang.ada
[…]
It was just a theory. My thinking was that
if you have a global variable in a package
body (and no subunits), a compiler can,
in theory, draw some conclusions about
how the variable is used, since there can
be no uses of the variable except by
subprograms in the package body, and
perhaps perform some optimizations
based on that.
This doesn't work if the variable is in the
spec (even in the private part), since the
compiler won't know what child packages
might be added later that have access to

the variable. Anyway, this was just a
theory, not really based on any
experience.
From: Adam Beneschan

<adam@irvine.com>
Date: Tue, 1 Jun 2010 08:03:44 -0700 PDT
Subject: Re: Child vs nested package :

efficiency matter
Newsgroups: comp.lang.ada
I can't say anything about any particular
compiler. One possibility: if procedure A
calls procedure B, and A and B are in the
same source, a compiler may be able to
put the code of B inline in procedure A's
code---i.e. the code for A will include B's
code, rather than including a "call"
instruction. If it does this, then in the
process, it may also to be able to
eliminate instructions in B's code that
have no effect on A. It's a lot harder to do
this if A and B are in different sources,
which I'm assuming is happening if you
are pulling code out of a nested package
and putting it in a child package.
Again, this is just a wild guess; without
knowing anything about your source, and
with my limited knowledge of GNAT, I
can't say anything for certain.
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 01 Jun 2010 17:34:22 +0200
Subject: Re: Child vs nested package :

efficiency matter
Newsgroups: comp.lang.ada
Adam, I've thought about it at that
moment, so I've added some pragma
Inline for the relevant subprograms in the
packages specs. This did not change
anything.
Do you think there are some reasons to
believe pragma Inline is not properly
applied with inter-package subprograms
invocations ?
From: Adam Beneschan

<adam@irvine.com>
Date: Tue, 1 Jun 2010 08:38:54 -0700 PDT
Subject: Re: Child vs nested package :

efficiency matter
Newsgroups: comp.lang.ada
[…]
> Adam, I've thought about it at that

moment, so I've added some pragma
Inline for the relevant subprograms in
the packages specs. This did not change
anything.

 Do you think there are some reasons to
believe pragma Inline is not properly
applied with inter-package
subprograms invocations ?

I can't say. Different compilers will
handle this differently. The language
standard says that Inline pragmas don't
have to be obeyed---they are just
suggestions.
The only real way to tell what's going on
is to disassemble the code.

From: Simon Wright
<simon@pushface.org>

Date: Tue, 01 Jun 2010 20:04:44 +0100
Subject: Re: Child vs nested package :

efficiency matter
Newsgroups: comp.lang.ada
[…]
> Do you think there are some reasons to

believe pragma Inline is not properly
applied with inter-package
subprograms invocations ?

First, you may need to use -gnatn or -
gnatN and at least -O2 (have to look up
the manual for this).
You could also try the GNAT special
pragma Inline_Always.
I've found (powerpc-wrs-vxworks) that
inlining can in fact slow things down.
Cache effects, I suppose.
From: Alex R. Mosteo

<alejandro@mosteo.com>
Date: Wed, 02 Jun 2010 13:11:16 +0200
Subject: -gnatN breakage was: Child vs

nested package : efficiency matter
Newsgroups: comp.lang.ada
[…]
I've played with -gnatn and -gnatN in the
past, and found that the latter tends to
bomb the compiler quite a lot. (GPL2008
and 2009 experiences).
Anyone seeing the same?
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Wed, 2 Jun 2010 07:39:49 -0700 PDT
Subject: Re: -gnatN breakage was: Child vs

nested package : efficiency matter
Newsgroups: comp.lang.ada
[…]
-gnatN is obsolete, you must use pragma
Inline/Inline_Always with -gnatn instead.
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Wed, 02 Jun 2010 18:45:09 +0200
Subject: Re: -gnatN breakage was: Child vs

nested package : efficiency matter
Newsgroups: comp.lang.ada
[…]
Does this mean that 3rd party source
cannot be inlined across units unless
GNAT specific pragma Inline_Always is
added to these 3rd party sources?
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Wed, 2 Jun 2010 13:35:29 -0700 PDT
Subject: Re: -gnatN breakage was: Child vs

nested package : efficiency matter
Newsgroups: comp.lang.ada
[…]
No. Use of -gnatn and -O is sufficient to
enable inlining of subprograms marked by
pragma Inline. But not all subprograms
will be inlined but only those definitely
simple.
[…]

Ada in Context 101

Ada User Journal Volume 31, Number 2, June 2010

Parallel processing and
latency in multi-core
processors
From: Anatoly Chernyshev

<achernyshev@gmail.com>
Date: Tue, 9 Mar 2010 09:48:37 -0800 PST
Subject: Multicore problem
Newsgroups: comp.lang.ada
[…]
Here is the following problem: large 3D
array, which can be processed in parallel.
Naturally, I was trying to make use of 2
cores on my processor by splitting the
whole calculation into several parallel
tasks. Strangely, I could actually see that
the program utilizes both cores now (even
not by 100% as I wished), but the
computation time increases more than 2
times when there are 2 tasks running on 2
cores. During calculation any 2 or more
tasks can occasionally modify the same
array member, for which a protected type
is introduced.
Here are results of benchmarking for my
2 core system (Intel P4 Dual Core, Win
XP SP3):
1 task (50% total proc. load): 680 sec.
2 tasks (70-93% load): 1520 sec.
4 tasks (70-93% load): 1195 sec.
Any ideas on why it might happen and
how to get around it?
Thank you.
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Tue, 09 Mar 2010 20:10:02 +0200
Subject: Re: Multicore problem
Newsgroups: comp.lang.ada
[…]
Perhaps the two tasks/cores are competing
for data-cache space, and causing more
cache misses than if a single task/core is
active?
How large is your 3D array, compared to
the cache?
If this is the problem, you could try to
divide the whole problem into slices so
that each slice processes a part of the 3D
array that *can* fit in the cache, but can
also be processed in parallel by two
tasks/cores. Not knowing what your
processing actually does I can't say more
about how to slice the problem.
From: Anatoly Chernyshev

<achernyshev@gmail.com>
Date: Tue, 9 Mar 2010 10:48:34 -0800 PST
Subject: Re: Multicore problem
Newsgroups: comp.lang.ada
> Perhaps the two tasks/cores are

competing for data-cache space, and
causing more cache misses than if a
single task/core is active?

 How large is your 3D array, compared
to the cache?

Right now it is small, 23 MB, for the
purposes of algorithm honing.
2MB L2 cache. In perspective the array
could be 4-8 GB (not for my current
machine, of course).
> If this is the problem, you could try to

divide the whole problem into slices so
that each slice processes a part of the
3D array that *can* fit in the cache, but
can also be processed in parallel by two
tasks/cores. Not knowing what your
processing actually does I can't say
more about how to slice the problem.

Each task begins in the cell of its
designated area of array, and then does a
Markov walk all around the place using
the cell pointers.
From: jonathan

<johnscpg@googlemail.com>
Date: Tue, 9 Mar 2010 16:08:26 -0800 PST
Subject: Re: Multicore problem
Newsgroups: comp.lang.ada
[…]
Of course I can't say much about your
specific problem. I can tell you (the little)
I learned battling something similar
(using linux and GNAT). The problem I
was up against was latency: minimum
time to send data, no matter how small the
data, between 2 cores on the same
processor. I measured this time as about
40 microseconds, (exchange of data
between cores). Might have been 20 or
60, but think 10's of microseconds. If
message passing (or sharing data in an
array) is more frequent than this, you'll
never see a speed up on the several cores.
(Some expensive networks advertise
latencies of a few microseconds, and
some experimental operating systems
advertise sub-microsecond latencies.) So
you should not think of passing data more
frequently than say every 200 or 400
microseconds if you want to see speedup.
Which is a long time .. you can do 10's of
thousands of floating point operations in
that time!
From: Karl Nyberg <karl@grebyn.com>
Date: Tue, 9 Mar 2010 14:37:02 -0800 PST
Subject: Re: Multicore problem
Newsgroups: comp.lang.ada
[…]
We recently had a thread on this kind of
stuff on LinkedIn.Things like cache size
and communications overhead (tip of the
hat to Fred Brooks and the Mythical Man-
Month here) all come into play.
LinkedIn Groups
Group: Multicore & Parallel Computing
Subject: New comment (7) on "Why does
speedup decrease with the number of
threads?"
In a system such as an Intel X86, you can
execute several instructions per clock
cycle. However, it takes several cycles to
read or write data to L1 cache, more
cycles to read/write to L2 cache, and even

more cycles to read/write to L3 cache. If
you have to read from memory, you might
have to wait hundreds if not thousands of
cycles for the read to occur. While the
CPU is waiting for the read to complete
from L1/L2/L3/ main memory, the CPU
cannot execute. Also, each memory
reference must have a valid TLB
(translation lookaside buffer) to translate
the virtual address to a physical address. I
don't know what Windows 7 uses for a
page size, but most operating systems
since the 1970's use a 4k page size, and
you might have 64 TLBs per core. You
need to execute a system routine every
time you get a TLB miss, and there are
100's of instructions in the TLB miss
handler, as well as the supervisor context
switch.
Think of memory like a disk drive. With
DRAM, first you have to seek to the page
in the memory device, then you need to
access the block that you want, then you
transfer that block into the CPU cache.
There is a memory controller that
serializes requests to memory between the
CPU and external devices such as the
GPU, disk, etc.
Now what happens when you go from 1
to 2 to 4 to 8 cores? Well, instead of 1
CPU making requests on memory, you
have 2 or 4 or 8 CPUs making requests on
memory. The memory controller needs to
queue these requests and operate on them
one at a time. So when you go from 2
cores to 4 cores, you can double the size
of the queue waiting for a memory read to
occur. If 1 read takes 1000 cycles, and
you now have a queue 4 deep, that 1 read
can now wait for 4000 cycles worst case,
or 2000 on average. With 8 cores, you can
now have a queue 8 deep when each core
issues a memory read request. Don't
forget that your graphics card will be
DMAing to and from DRAM as well, so
this can cause memory delays, and you
may have other I/O devices, and other
processes running in your system such as
virus scanner, email, …
You can also have issues if you do not
align the data between cores on cache line
boundaries. If 2 cores try and access data
in the same cache line, their respective
caches can fight over the data when there
is a write request, as only 1 core can 'own'
a cache line, and it is expensive to transfer
a cache line between cores.
Also, when you use 1 core, it has full
access to the shared L2 and shared L3
cache. I have seen in Intel architecture
where cores 0 and 1 share an L2 cache,
and cores 2 and 3 share another L2 cache.
So in fact, you may get better results
using cores 0 and 2 when running 2 cores,
instead of using cores 0 and 1. When you
just use core 0, it has use of the full
shared L2 cache. When you start using
core 1, this core will also start using the
L2 cache that is shared with core 0.

102 Ada in Context

Volume 31, Number 2, June 2010 Ada User Journal

This means that data that core 0 needs
will be evicted by core 1 and vice versa,
thus causing both cores to slow down as
the cores stall waiting for the cache to be
refilled (thrashing).
Note that every time the operating system
does a task switch, the contents of the
TLBs must be flushed from the old task
context, and regenerated for the new task.
This is an expensive operation if you are
not doing much computation in your task.
Also, the cache may need to be refilled
based on the new task address space.
When you go to use multiple cores, you
should lock a specific task to a specific
core, as it is expensive for a process to
move between cores.
Also, when doing this sort of
computation, you should be making use
of the SIMD instruction set, where you
can operate on 4 or 8 or more data items
in 1 instruction per core.
Hyperthreading just means you have
virtual cores. It is a mechanism to keep
the physical core busy executing
instructions while a L1/L2/L3/ memory
transfer occurs. If you program correctly,
you should be able to fully utilize the
power of the virtual cores.
Posted by Paul Burega

On default discriminants
and mutable objects
From: Peter C. Chapin

<pcc482719@gmail.com>
Date: Wed, 05 May 2010 20:41:57 -0400
Subject: Question about default

discriminants and mutable objects.
Newsgroups: comp.lang.ada
Hopefully I can ask this question
clearly…
I understand that an instance of a type
with default discriminants can be mutated
(here I mean have its discriminant
changed) via assignment. It seems like the
most effective way for a compiler to
support that ability is to always allocate
enough memory for the object to account
for all possible discriminant values.
Mordechai Ben-Ari pretty much says this
explicitly in his book "Ada for Software
Engineers."
I also understand that an instance of a
type without default discriminants can't be
mutated in this way (that is, by
assignment). If a new value is assigned to
the object with the wrong discriminant the
result is Constraint_Error. This would
allow the compiler to allocate just the
memory necessary for that particular
discriminant value used to initialize the
object since there would never be a
(successful) attempt to stuff a larger
object into that space.
It seems like conceptually the issue of
default discriminants and mutability (in
the sense I mean here) are independent.

One could imagine some currently non-
existent syntax that would allow the
programmer to mark a type declaration so
that the compiler allowed discriminant
values to be changed via assignment
without leaning on the mechanism of
default discriminants.
Furthermore one could imagine treating
default discriminants as 100% syntactic
sugar and not endowing them with any
special semantics regarding mutability.
Okay, so my question is: what was the
rationale behind combining the notion of
default discriminants with the notion of
mutability? Is there some subtle technical
reason why they must go together? I don't
have pressing need to know… I'm curious
and I'm trying to deepen my
understanding of this topic.
[…]
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 5 May 2010 20:26:48 -0500
Subject: Re: Question about default

discriminants and mutable objects.
Newsgroups: comp.lang.ada
[…]
> Okay, so my question is: what was the

rationale behind combining the notion
of default discriminants with the notion
of mutability? […]

I don't know; I know the idea come from
Ada 83, but I have no idea why they
chose that.
It's been a long-time annoyance in Ada
that these two concepts are intertwined.
(It's very much like the annoying
requirement that a protected function do
only read-only things to the protected
object, while a protected procedure has to
be assumed to modify the protected object
(neither are true in general, of course).)
> I understand that an instance of a type

with default discriminants can be
mutated (here I mean have its
discriminant changed) via assignment.
It seems like the most effective way for
a compiler to support that ability is to
always allocate enough memory for the
object to account for all possible
discriminant values. Mordechai Ben-
Ari pretty much says this explicitly in
his book "Ada for Software Engineers."

I personally think it was a mistake that
this implementation was allowed, since it
makes many useful discriminated types
impossible or excessively expensive in
space. Janus/Ada allocates discriminant-
dependent components to size, and thus
reallocates the components if a
discriminant is changed. That of course
has other problems (mostly in overhead if
the objects are assigned often).
Most everyone disagrees with my position
on this, the reasoning being that the extra
memory allocation overhead isn't justified
on real-time systems.

Probably there is some happy medium
using a combination of both
implementations (clearly some real-time
systems couldn't allow a reallocating
implementation, but that is what we have
pragma Restrictions for; for other uses, a
more flexible implementation is better,
IMHO).
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 6 May 2010 17:15:24 +0200
Subject: Re: Question about default

discriminants and mutable objects.
Newsgroups: comp.lang.ada
[…]
> I also understand that an instance of a

type without default discriminants can't
be mutated in this way (that is, by
assignment).

You can assign it as a whole as well as its
components individually. The object is
mutable, but you cannot change its
constraint. Compare it with similar cases::

 S : String := "abc";

Here the constraint is the array bounds.
They cannot be changed, yet S is mutable.

 T : Foo'Class := ...;

Here the constraint is the type tag. It
cannot be changed, but T is mutable.
> One could imagine some currently non-

existent syntax that would allow the
programmer to mark a type declaration
so that the compiler allowed
discriminant values to be changed via
assignment without leaning on the
mechanism of default discriminants.

That is not a property of the type. It is of a
type constraint. Type + constraint =
subtype. Ada is a bit sloppy in the object's
subtype specification. When you declare
S as String you write a type, but the
compiler reads it as a constrained subtype
of String. That is not good, but it is
difficult to propose a cure. Probably:

S : String (<>); -- Any subtype of String
T : Foo'Class (<>); -- Any type from
 -- the class

etc.
> Furthermore one could imagine treating

default discriminants as 100% syntactic
sugar and not endowing them with any
special semantics regarding mutability.

IMO, discriminant's defaults should imply
nothing like what they do now.
From: Gene <gene.ressler@gmail.com>
Date: Wed, 5 May 2010 21:07:30 -0700

PDT
Subject: Re: Question about default

discriminants and mutable objects.
Newsgroups: comp.lang.ada
[…]

Ada in Context 103

Ada User Journal Volume 31, Number 2, June 2010

I don't have any special knowledge, and I
also believe there is no really good reason
for the connection.
But I've always satisfied my own
curiosity about this with the rationale that
it's all about declarations that look like

x : Foo;

where Foo is a discriminated type.
For Foo to be well-defined, it must have a
default discriminant value. Otherwise it is
no type at all.
Yet the syntax here connotes that any
value of type Foo ought to be assignable
to x in the future. It would be an opaque
gotcha if a future assignment to x with a
value having other than the default
discriminant caused a run-time exception.
The conclusion is that x ought to be
mutable. Voila! Discriminated types with
default discriminant values are mutable.
And if you're going to admit non-mutable
discriminant types at all, then it's
something like logical for all the rest to be
these.
Tortured, I agree… One can almost hear
the design-by-committee in progress.
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Wed, 5 May 2010 21:56:42 -0700

PDT
Subject: Re: Question about default

discriminants and mutable objects.
Newsgroups: comp.lang.ada
Gene, you guessed quite well. See Ada 83
Rationale
http://archive.adaic.com/standards/83rat/
html/ratl-04-07.html#4.7
and especially 4.7.4.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Fri, 07 May 2010 08:35:54 -0400
Subject: Re: Question about default

discriminants and mutable objects.
Newsgroups: comp.lang.ada
[…]
As to default discriminants causing
mutable discriminants, despite the
rationale, it's a bad design. It's confusing.
And it means you can't use defaults just as
defaults when you want immutable
discriminants. Except you CAN do that
for limited types (more confusion). And
for '[in] out' parameters, you don't know
at compile time whether the thing is
mutable, which is just a tripping hazard.
Also, some compilers chose the
deallocate/reallocate strategy, and others
chose the allocate-the-max strategy.
That's bad; it means you can't use the
feature portably. Standards are supposed
to promote uniformity.
From: Adam Beneschan

<adam@irvine.com>

Date: Thu, 6 May 2010 07:59:26 -0700
PDT

Subject: Re: Question about default
discriminants and mutable objects.

Newsgroups: comp.lang.ada
[…]
> See Ada 83 Rationale
 http://archive.adaic.com/standards/

83rat/html/ratl-04-07.html#4.7
 and especially 4.7.4.
I don't think that's a complete explanation,
though. It doesn't explain why you
couldn't have (1) a discriminant type
without a default, in which the initial
value of the discriminant must be
specified for each object but the
discriminant could still be changed by
assigning the whole object; or (2) a
discriminant type with a default
discriminant but where all objects of the
type are still constrained [thus making an
object declaration X : T; equivalent to X :
T(default);]. It's probably the inability to
do one or both of those two things that
causes the "annoyance" Randy mentioned.
As for why those possibilities couldn't be
provided, it's probably just because they
would have had to come up with some
funky syntax for it. That's not a trivial
consideration. Designing syntax is not
always easy.

On building a GNAT cross
compiler for PowerPC
From: Tom Hawkins

<tomahawkins@gmail.com>
Date: Mon, 3 May 2010 08:04:28 -0700

PDT
Subject: Building GNAT
Newsgroups: comp.lang.ada
Is this an appropriate forum for discussing
GNAT build problems? I am attempting
to build a GNAT cross compiler targeting
bare metal PowerPC platforms. After
successfully getting past binutils, the first
pass of GCC, and Newlib, I'm getting
stuck on the final pass of GCC and
GNAT. When linking gnatmake, the
linker is throwing a bunch of undefined
references from osint.adb (such as
__gnat_is_writable_file_attr).
[…]
Many of the challenges I've had to this
point have been around this use of
<derint.h> and sockets, neither of which
are needed on my target platform. Is there
any way to configure GNAT not to build
all this OS related stuff?
Recent discussions I've have with some of
the issues encountered so far:
http://comments.gmane.org/
gmane.comp.lib.newlib/6132
http://comments.gmane.org/
gmane.comp.gcc.help/32672
[…]

From: Simon Wright
<simon@pushface.org>

Date: Mon, 03 May 2010 18:03:29 +0100
Subject: Re: Building GNAT
Newsgroups: comp.lang.ada
I think your problem may be that your
host compiler is an older version (4.4.3)
than the source tree you're using to build
the cross compiler (4.5.0). The
recommendation is to build the host
compiler first, then use that to build the
cross.
The symbols you're missing are (in 4.5.0
but not in 4.3.4, the only handy version I
have for comparison) defined in adaint.c,
and it looks as though adaint.o is being
picked up from the pre-built host libraries
(not surprising, the cross-compiler has to
run on the host so needs to use host file
attributes etc).
From: Tom Hawkins

<tomahawkins@gmail.com>
Date: Mon, 3 May 2010 22:03:52 -0700

PDT
Subject: Using GNAT in a C and assembly

toolchain
Newsgroups: comp.lang.ada
[…]
Thanks Simon. That did the trick. I now
have a functioning Ada cross compiler; I
just need to learn how to use it. I could
use a few pointers to get me started…
On our particular application -- an
automotive ECU -- we're locked into a
proprietary C-based flow. The operating
system and hardware abstraction layer
come precompiled and the application
code must be compiled and linked with
the established tool chain (GHS C, not
Ada).
The application programmer defines a
procedure, which is invoked by the OS at
a periodic rate. This procedure references
global C variables to access the hardware
abstraction layer.
The question is how can I best use Ada
and GNAT in such an environment? One
method that comes to mind is to compile
Ada to assembly code, which is then
passed to GHS for assembling and linking
with the closed source OS and HAL. I
don't see an assembly switch, like GCC's -
S. Would this mean I would need the
compile Ada modules individually with
GCC instead of using gnatmake? Are
there any options to compile Ada down to
C by chance?
And how does gnatbind fit into this
picture? It appears to create initialization
code. Would I just need to insert this code
such that it is invoked at power up?
From: Simon Wright

<simon@pushface.org>
Date: Tue, 04 May 2010 20:50:27 +0100
Subject: Re: Using GNAT in a C and

assembly toolchain
Newsgroups: comp.lang.ada

104 Ada in Context

Volume 31, Number 2, June 2010 Ada User Journal

[…]
> On our particular application -- an

automotive ECU -- we're locked into a
proprietary C-based flow. The
operating system and hardware
abstraction layer come precompiled and
the application code must be compiled
and linked with the established tool
chain (GHS C, not Ada).

 The application programmer defines a
procedure, which is invoked by the OS
as a periodic rate. This procedure
references global C variables to access
the hardware abstraction layer.

I would have expected engine control
software to require a pretty high degree of
certification, if not for safety-related
reasons then because fixing problems in
deployed firmware is going to be
expensive and possibly embarrassing, see
Toyota, and part of that involves the tool
chain. OK, I work on military systems,
but my Software Design Authority would
need A Whole Lot Of Convincing to
change the tool chain in a way not
supported by the tool vendor.
> The question is how can I best use Ada

and GNAT in such an environment?
[…]

"gnatmake -c -S foo.adb" compiles the
closure of foo to assembler (.s) files. Of
course these are going to be in GNU
assembler, which may or may not be that
used by GHS.
There is a tool created by Sofcheck called
AdaMagic which generates C. GCC does
not.
> And how does gnatbind fit into this

picture? It appears to create
initialization code. Would I just need to
insert this code such that it is invoked at
power up?

I think you'd call gnatbind with -C (to
generate C binder code rather than Ada)
and -n (no Ada main program).
The generated code includes an adainit()
to be called to initialize the Ada runtime
and an adafinal() to finalize it (not that
I've ever had to call adafinal()).
From: Tom Hawkins

<tomahawkins@gmail.com>
Date: Tue, 4 May 2010 22:52:20 -0700 PDT
Subject: Re: Using GNAT in a C and

assembly toolchain
Newsgroups: comp.lang.ada
[…]
> OK, I work on military systems, but my

Software Design Authority would need
A Whole Lot Of Convincing to change
the tool chain in a way not supported by
the tool vendor.

This is strictly prototyping.
[…]
> "gnatmake -c -S foo.adb" compiles the

closure of foo to assembler (.s) files. Of
course these are going to be in GNU

assembler, which may or may not be
that used by GHS.

This will work. And GHS does indeed
read GNU assembly, with minor post
processing.
BTW, I've moved the scripts and patch
files used to build the powerpc-eabi cross
compiler to github if anyone's interested:
http://github.com/tomahawkins/
powerpc-eabi

On unit recompilation with
GNAT
From: Lambertus Dries

<ldries46@planet.nl>
Date: Fri, 9 Apr 2010 15:13:46 +020
Subject: GPS Compiler options
Newsgroups: comp.lang.ada
I'm relatively new to GPS. I'm trying to
compile a program but every time I
compile the program I observe that all
units are compiled when I had expected
that only the unit I had altered would be
compiled again. What do I have to do to
make this work. I have tried already all
types of building of the program.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 9 Apr 2010 07:15:07 -0700 PDT
Subject: Re: GPS Compiler options
Newsgroups: comp.lang.ada
[…]
The bug may be either in gnatmake or in
your expectations; this depends on which
unit you change.
If you change a spec, then all specs and
all bodies that depend on the changed
spec need to be recompiled.
If you change a generic body, then all
specs and bodies that contain an
instantiation of the generic body need to
be recompiled (this is specific to GNAT,
which does not share the object code
between instantiations of a generic).
If you change a file containing a
"separate" unit, then the enclosing unit
needs to be recompiled too, because
GNAT emits only one object file
containing the enclosing units and all
"separate" bodies in it.
We could help you more if you would be
more specific about the units in your
program and on which units you changed.
PS. Maybe consider using the gnatmake -
m switch ("minimal recompilation"); you
do that by changing the project properties
in GPS. With this option, gnatmake
expends more effort trying to determine
which units are still up to date.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 9 Apr 2010 16:26:05 +0200
Subject: Re: GPS Compiler options
Newsgroups: comp.lang.ada
[…]

Also, when the object and ali-files are on
a remote server, usually together with the
sources (this is the case at my work),
accessed over a network file system
(samba, NFS etc), then if the compiling
computer has the clock unsynchronized
with the server, you may get the described
effect (or worse, non-compiled files).
From: Simon J. Wright

<simon.j.wright@mac.com>
Date: Fri, 9 Apr 2010 08:10:34 -0700 PDT
Subject: Re: GPS Compiler options
Newsgroups: comp.lang.ada
And (experience on a previous project
with Solaris NFS) much longer
compilation times.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 9 Apr 2010 09:40:48 -0700 PDT
Subject: Re: GPS Compiler options
Newsgroups: comp.lang.ada
> Also, when the object and ali-files are

on a remote server, […] you may get
the described effect (or worse, non-
compiled files).

I think gnatmake -m corrects this
problem. With this option, gnatmake no
longer relies on the timestamps but only
on the CRC32 values in the .ali files.
From: Simon J. Wright

<simon.j.wright@mac.com>
Date: Fri, 09 Apr 2010 18:20:57 +0100
Subject: Re: GPS Compiler options
Newsgroups: comp.lang.ada
[…]
I believe that it first compares the
timestamps: if the same, no change, but if
different, does the ali check.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 9 Apr 2010 10:46:11 -0700 PDT
Subject: Re: GPS Compiler options
Newsgroups: comp.lang.ada
[…]
Exactly. And gnatmake will then do the
right thing (i.e. not recompile) if the
timestamps are different only because the
clocks of various machines are out of
sync.
From: Simon J. Wright

<simon.j.wright@mac.com>
Date: Fri, 09 Apr 2010 22:00:58 +0100
Subject: Re: GPS Compiler options
Newsgroups: comp.lang.ada
Indeed. But it takes much longer, because
it has to open each file; and this is even
worse over a network.
GNAT 3.16a1 on Windows had a
wonderful feature where the RTS
timestamps were out by an hour unless
you installed in daylight savings time!
This led to opening all the relevant RTS
files, every time, every compilation -- and
to an interesting work instruction.

Ada in Context 105

Ada User Journal Volume 31, Number 2, June 2010

SPARK: what does it prove?
From: Peter C. Chapin

<pcc482719@gmail.com>
Date: Fri, 28 May 2010 09:25:50 -0400
Subject: SPARK: What does it prove?
Newsgroups: comp.lang.ada
There has been a lot of discussion about
SPARK on this group recently. That's
great, but I hope those who are more
interested in full Ada aren't getting
annoyed! :)
It is common to talk about SPARK proofs
but of course what the Simplifier is
actually proving are the verification
conditions generated by the Examiner.
Formally this leaves open the question of
if those verification conditions have
anything to do with reality or not.
Ultimately, it seems to me, before one can
formally prove anything about the
behavior of a program one needs a formal
semantics for the programming language
in question. It is my understanding that
SPARK95 does not have a formal
semantics. Thus the Examiner is
producing VCs based on the informal
description of Ada in the reference
manual. What if that information
description is, as many such descriptions
are, logically inconsistent or ambiguous? I
realize that SPARK is intended to restrict
the Ada language to remove ambiguity
and implementation specific behavior, but
is there a proof that it actually does?
Without a formal semantics of SPARK,
then it seems like the "proofs" produced
by the tools are not really proving
anything… in a mathematically rigorous
sense at least. I guess this is why Praxis
calls SPARK a semi-formal method.
I understand that the real goals of SPARK
are to help practitioners produce reliable
software… not generate rigorous proofs
just for the sake of doing so. To that end,
following the informal specification of
Ada in the reference manual seems
perfectly reasonable. The features of Ada
that SPARK retains are simple with
(mostly) "obvious" semantics, so why
quibble over every mathematical detail?
I'm fine with that. The tools *do* help me
write more reliable programs and that's
great!
Still it would be more satisfying if there
was a formal semantics for SPARK to
"back up" what the tools are doing. I
actually read an article recently about
programming language semantics that
mentioned (is this true?) that one of the
original requirements in the development
of Ada was the production of a formal
semantics for Ada. I even understand that
there were two attempts to produce such a
semantics. Here are those references:
1. V. Donezeau-Gouge, G. Kahn, and B.
Lang. On the formal definition of Ada.

In Semantics-Directed Compiler
Generation, Lecture Notes in Computer
Science, vol 94, pp 475-489, Springer,
Berlin, 1980
2. D. Bjorner and O.N. Oest. Towards a
Formal Description of Ada, Lecture Notes
in Computer Science, vol 98, Springer,
Berlin 1980.
The article I'm reading is "Programming
Language Description Languages" by
Peter D. Moses in the book "Formal
Methods: State of the Art and New
Directions" edited by Paul P. Boca,
Janathan P. Bowen, and Jawed I. Siddiqi,
published by Springer, (C) 2010.
I understand that the efforts above were
incomplete and even then only apply to
Ada 83. I also understand that few full
scale languages have a formal semantics
(do any?). It seems a shame, though, that
Ada does not have one considering
especially the way Ada is used.
[…]
From: Rod Chapman

<roderick.chapman@googlemail.com>
Date: Fri, 28 May 2010 06:55:18 -0700

PDT
Subject: Re: SPARK: What does it prove?
Newsgroups: comp.lang.ada
[…]
> It is common to talk about SPARK

proofs but of course what the Simplifier
is actually proving are the verification
conditions generated by the Examiner.

 Formally this leaves open the question
of if those verification conditions have
anything to do with reality or not.
Ultimately, it seems to me, before one
can formally prove anything about the
behavior of a program one needs a
formal semantics for the programming
language in question. It is my
understanding that SPARK95 does not
have a formal semantics.

Well..not quite. The VC generator was
constructed and very much based on the
formal semantics for SPARK83 that was
constructed in the mid-1990s. We have
lots of confidence that this semantics is
completely upwards-compatible and
consistent with the canonical semantics of
Ada95 and thus SPARK95 -
SPARK2005.
Unfortunately, we did not have the
funding to keep that SPARK83 semantics
up to date with new features that were
added later like modular types from
Ada95, but these are a fairly modest
extension to the language.
There are also lots of assumptions that
underlie any "proof" of anything - in our
case the integrity of the compiler, linker
and the rest of the build environment, the
implementation of the target processor
itself and many other things. While these
are valid concerns, these assumptions
really do seem to hold up in the "real

world" - i.e. with our customers using real
commercial compilers, microprocessors
and so on.
In short: it seems to work.
[…]
From: Peter C. Chapin

<pcc482719@gmail.com>
Date: Fri, 28 May 2010 11:58:18 -0400
Subject: Re: SPARK: What does it prove?
Newsgroups: comp.lang.ada
> Well..not quite. The VC generator was

constructed and very much based on the
formal semantics for SPARK83 that
was constructed in the mid-1990s. We
have _lots_ of confidence that this
semantics is completely upwards-
compatible and consistent with the
canonical semantics of Ada95 and thus
SPARK95 - SPARK2005.

That's interesting to know. Thanks.
> There are also lots of assumptions that

underlie any "proof" of anything - in
our case the integrity of the compiler,
linker and the rest of the build
environment...

Yes, definitely. This was a point I tried to
make in a different thread related to
testing SPARK programs (and the value
of doing so). SPARK helps show that the
source code is in some sense correct,
which is great, but that's not the whole
story.
> In short: it seems to work.
Absolutely. I hope you didn't take my
post as a criticism of SPARK. If the goal
is to reduce errors in actual deployed
programs, which at the end of the day is
the important thing it seems, then I agree
that SPARK works!
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Mon, 31 May 2010 16:36:53 -0700

PDT
Subject: Re: SPARK: What does it prove?
Newsgroups: comp.lang.ada
[…]
> 1. V. Donezeau-Gouge, G. Kahn, and

B. Lang. On the formal definition of
Ada.

 In Semantics-Directed Compiler
Generation, Lecture Notes in Computer
Science, vol 94, pp 475-489, Springer,
Berlin, 1980

> 2. D. Bjorner and O.N. Oest. Towards a
Formal Description of Ada, Lecture
Notes in Computer Science, vol 98,
Springer, Berlin 1980.

 I understand that the efforts above were
incomplete and even then only apply to
Ada 83. […]

I think you're mistaken: these applied only
to Ada 80 (MIL-STD-1815).
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Mon, 31 May 2010 03:17:32 +0200

106 Ada in Context

Volume 31, Number 2, June 2010 Ada User Journal

Subject: Re: SPARK: What does it prove?
Newsgroups: comp.lang.ada
The question, “what does it prove ?”,
raise another corollary question, which is
“what can it say ?” or “what can it talk
about ?”.
I'm currently trying to make proofs on
some binary stuffs, which has always
seems obvious to me, and at the time of
trying to prove it, I see I can't even prove
the third of the initial post-condition I
wanted my functions to have, because
there are some I can't prove at all (I'm not
talking about RTC, rather about post-
condition expressing properties, and it is
far less easy than proving RTC
conditions).
If is funny to note that these difficulty are
a consequence of SPARK tied to Ada.
An example : Ada has modular type, but
can't see modular types has polynomials,
and the relevant modal, which could help,
would be this one : polynomial. Ada does
not have this, SPARK too doesn't.
Another things also : sometime, it is better
to make a proof on an abstract algorithm,
which is not efficient, as it is too much
difficult to apply the same proof (prove
post-conditions from preconditions and
the algorithm) with the efficient version.
However, it would be more easy to
demonstrate that the efficient algorithm is
an equivalent transformation of the more
abstract non-efficient one.
I mean, prove something on function F,
demonstrate function G is equivalent to
function F, so as legally assert the post-
conditions of F are also prove on G,
because there was on F and G is
equivalent to F.
This is another kind of thing SPARK
cannot express or talk/say about.
This may be the start of some answers to
the question “what can it prove ?” or
“what can't it prove ?”, which are similar
questions.
From: Phil Thornley

<phil.jpthornley@googlemail.com>
Date: Mon, 31 May 2010 06:05:04 -0700

PDT
Subject: Re: SPARK: What does it prove?
Newsgroups: comp.lang.ada
[…]
> I mean, prove something on function F,

demonstrate function G is equivalent to
function F, so as legally assert the
postconditions of F are also prove on G,
because there was on F and G is
equivalent to F.

 This is another kind of thing SPARK
cannot express or talk/say about.

How about using proof abstraction? Put
one set of post-conditions (for the
inefficient version) on the spec and the
other set (for the efficient version) on the
body.

Then the post-conditions on the body are
proved from the code and the post-
conditions on the spec are proved by a
user rule that is justified by the 'offline'
proof of equivalence of the two
algorithms.
*** BUT *** the current GPL version
(8.1.1) sometimes gets that post-condition
refinement VC wrong. This only seems to
happen when there is a refined pre and
post-condition on the body but no refined
state data, eg for private types, which is
where I came across the problem.
(Notified to report@gnat.com on 9th
February).

On loop assertions in
SPARK
From: Peter C. Chapin

<pcc482719@gmail.com>
Date: Sat, 06 Mar 2010 15:33:12 -0500
Subject: Trouble cutting loops with SPARK.

Advice?
Newsgroups: comp.lang.ada
I'm attempting to use SPARK to prove a
simple function is free of run time errors.
Here is the (simplified) package
specification:

package Strings is
 Max_Line_Length: constant := 225;
 subtype Line_Index is Positive
 range 1 .. Max_Line_Length;
 subtype Line_Size_Type is Natural
 range 0 .. Max_Line_Length;
 subtype Line_Type is
 String(Line_Index);
 type Line_Record is
 record
 Text : Line_Type;
 Size : Line_Size_Type;
 end record;
 function Prepare_Line(Line : String)
 return Line_Record;
end Strings;

This package provides a type
Line_Record that holds a variable length
string in a fixed size buffer. As you can
see the lines are limited to 225 characters.
The function Prepare_Line copies the
given string into a Line_Record and
returns it. If the string is too long it is
truncated.
Okay… here is the implementation:

package body Strings is
 function Prepare_Line(Line : String)
 return Line_Record is
 Result : Line_Record;
 Characters_To_Copy:
 Line_Size_Type;
 begin
 Result.Text :=
 Line_Type'(others => ' ');

 if Line'Length > Max_Line_Length
 then
 Characters_To_Copy :=
 Max_Line_Length;
 else
 Characters_To_Copy :=
 Line'Length;
 end if;
 for I in Line_Size_Type range
 1 .. Characters_To_Copy loop
 Result.Text(I) :=
 Line(Line'First + (I - 1));
 end loop;
 Result.Size := Characters_To_Copy;
 return Result;
 end Prepare_Line;
end Strings;

The problem is with the loop that actually
copies the characters from the provided
String into the Line_Record. SPARK
generates a verification condition that it
can't prove related to the "run time check"
on the line in the body of the loop. The
SPARK Examiner warns about using a
default assertion to cut the loop. I
understand that I should probably provide
my own assertion. My problem is that I
can't quite figure out what I need to say.
If I write an assertion in the loop that
involves the loop index variable, I, the
generated verification conditions appear
to try to prove that the assertion holds
even for one extra iteration. That is, there
is a VC that tries to prove that if the
assertion is true, then it must be true for
the next iteration. However that does not
need to be so on the last iteration (since
there is no next iteration in that case) so
the condition can't be proved.
Specifically I get conclusions like "I <=
224." That can't be proved because, in
fact, sometimes I = 225 (the last time
through the loop in the case where the
source String is being truncated).
Okay… but if I stay away from talking
about I in the assertion, what can I assert
that will help convince SPARK that the
array access operations are fine? I've tried
a few things… I can be more specific if
necessary. So far, no joy.
I get the feeling there is a trick here that
I'm overlooking. Is my code wrong? It
looks okay to me. :)
From: Phil Thornley

<phil.jpthornley@googlemail.com>
Date: Sun, 7 Mar 2010 02:22:43 -0800 PST
Subject: Re: Trouble cutting loops with

SPARK. Advice?
Newsgroups: comp.lang.ada
[…]
Your code is OK and yes there is
something that you are probably
overlooking.
It's not really a 'trick' - more an oddity of
the language for proving code in 'for'

Ada in Context 107

Ada User Journal Volume 31, Number 2, June 2010

loops that have range constraints. (Loops
like that are the one exception to the
SPARK rule that there are no anonymous
subtypes.)
The problem is that the value of the
variables that provide the loop bounds (in
your code the variable
Characters_To_Copy) can be changed
within the loop, so any reference to
Characters_To_Copy within an assertion
in the loop means the *current* value, not
the value that defined the loop bound. The
Examiner doesn't check to see whether
Characters_To_Copy is changed within
the loop (it just assumes that it might be
changed), so in this case you have to state
that it is unchanged in the loop assertion.
SPARK therefore supplies a notation for
the value of any variable on entry to a
loop - append % to the name - so
Characters_To_Copy% within a proof
context in the loop means the value of
Characters_To_Copy on entry to the loop.
The loop assertion that works for the code
in your message is:

--# assert I >= 1
--# and Characters_To_Copy
 <= Line'Length
--# and Characters_To_Copy
 = Characters_To_Copy%;

placed at the beginning of the loop.
[…]

SPARK_IO in SPARK 9 &
Ada 2005
From: Alexandre Konieczny

<alexandre.konieczny@gmail.com>
Date: Thu, 8 Apr 2010 05:46:48 -0700 PDT
Subject: Spark 9 & Ada 2005
Newsgroups: comp.lang.ada
[…]
This problem is intended to people who
know SPARK.
I'm trying to compile the Spark_IO.adb
file using -gnat05 option, but there is an
error.
The error is:

spark_io.adb:196:42: (Ada 2005) cannot
copy object of a limited type (RM-2005
6.5(5.5/2))

This is a restriction of Ada 2005, and I
saw in a message of last year saying that
Spark_IO is not compatible with Ada
2005.
Is it still the case? However, the Spark
Pro version 9 considers Ada 2005
features.
Does anyone know about this problem ?
From: Rod Chapman

<roderick.chapman@googlemail.com>
Date: Thu, 8 Apr 2010 08:41:53 -0700 PDT

Subject: Re: Spark 9 & Ada 2005
Newsgroups: comp.lang.ada
[…]
Good question. The specification of
SPARK_IO that ships with SPARK Pro 9
is compatible with both SPARK95 and
SPARK2005.
The body is Ada95 (not SPARK at all),
but - as you point out - is not compatible
with GNAT in Ada2005 mode. We will
raise an internal ticket here to produce an
Ada2005-friendly body for SPARK_IO
for a future release.
Thanks for bringing this to our attention.

On the accessibility level of
access discriminants
From: Adam Beneschan

<adam@irvine.com>
Date: Tue, 6 Apr 2010 14:17:04 -0700 PDT
Subject: Language lawyer question: access

discriminants
Newsgroups: comp.lang.ada
I'm hoping someone who understands the
rules about access discriminant
accessibility level can answer this
definitively. This is a reduced example of
something I found in someone else's code:

package Pack1 is
 type Rec is record
 F1 : Integer;
 end record;
 type Rec2 (D : access Rec)
 is limited record
 F2 : Integer;
 end record;

function Func (Param : Integer)
 return Rec2;

end Pack1;

with Pack1; use Pack1;
procedure Proc2 is
 A : access Rec;
begin
 A := Func(1).D; -- LEGAL?
end Proc2;

I think the statement marked LEGAL? is
illegal, because of rules saying that the
result of Func is an object inside a nested
master that consists of just the one
assignment statement, and the
accessibility level of the access
discriminant (Func(1).D) is the
accessibility level of the enclosing object
(the temporary object containing the
result of Func), and therefore the
accessibility level of Func(1).D is deeper
than that of A. But the rules are pretty
complex and I'm hoping someone in the
know can straighten me out if I'm wrong.
(And I'm not interested in any replies that
say "XYZ compiler says it's legal". I need
to know what the standard says.)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 7 Apr 2010 15:04:31 -0500
Subject: Re: Language lawyer question:

access discriminants
Newsgroups: comp.lang.ada
[…]
This program is depending on the
accessibility of access discriminants of an
object returned from a function. Those are
not currently defined. We know that the
rules as defined in Ada 2005 don't work
(have various nasty holes). The rules
corrections proposed by AI05-0051-1
have never been approved, and so far as I
know, are only understood by the author
(Tucker Taft).
My (lousy) understanding of the rules
proposed in AI05-0051-1 is that the
accessibility of the access discriminants
of the returned object are that of the call
site. The rules Tucker proposed would
generally cause the accessibility of the
LHS of the assignment to propagate into
the function, and a (dynamic) check
would be made at the return statement
that the accessibility is sufficient.
The net effect is that this call is always
legal, but it is very likely that it would fail
an accessibility check at the return
statement -- thus it would usually raise
Program_Error.
> I think the statement marked LEGAL?

is illegal, because of rules saying that
the result of Func is an object inside a
nested master that consists of just the
one assignment statement, and the
accessibility level of the access
discriminant (Func(1).D) is the
accessibility level of the enclosing
object (the temporary object containing
the result of Func), and therefore the
accessibility level of Func(1).D is
deeper than that of A. […]

What I can't say for sure is whether the
accessibility of the LHS would be used or
whether that of a assignment statement
would be used. I'd have to go and read the
AI again several times and even then I
wouldn't really know for sure. I do know
that type conversions get the right
accessibility (so using a named type here
and a type conversion would surely be
legal).
But remember this is all based on the
unapproved binding interpretation AI05-
0051-1. What the standard says currently
is garbage, and it isn't worth figuring out
what those rules are (no one will ever try
to enforce those - that is, no ACATS test
will ever exist for the rules as currently
written).
So my best advice is do whatever you
want now, and plan to adjust to AI05-
0051-1 rules when (if?) that gets finished.

Conference Calendar 109

Ada User Journal Volume 31, Number 2, June 2010

Conference Calendar
Dirk Craeynest
K.U.Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2010

July 01-02 4th International Workshop on Verification and Evaluation of Computer and Communication

Systems (VECoS'2010), Paris, France. Topics include: Model-checking; Abstraction techniques;
Performance and robustness evaluation; Dependability assessment techniques; QoS evaluation, planning
and deployment; etc.

July 01-04 20th International Workshop on Algebraic Development Techniques (WADT'2010), Etelsen,
Germany. Topics include: Other approaches to formal specification; Specification languages, methods,
and environments; Model-driven development; Integration of formal specification techniques; Formal
testing and quality assurance, validation, and verification; etc.

July 05-09 7th International Summer School on Software Engineering (ISSSE'2010), Salerno, Italy. Topics
include: Model Driven Software Engineering, Empirical Software Engineeering, Software Evolution,
Program Comprehension, etc.

July 05-12 37th International Colloquium on Automata, Languages and Programming (ICALP'2010),
Bordeaux, France. Topics include: Parallel and Distributed Computing; Principles of Programming
Languages; Formal Methods and Model Checking; Models of Concurrent and Distributed Systems;
Models of Reactive Systems; Program Analysis and Transformation; Specification, Refinement and
Verification; Type Systems and Theory; etc.

☺ July 07-09 9th International Symposium on Parallel and Distributed Computing (ISPDC'2010), Istanbul,
Turkey. Topics include: Parallel Computing; Distributed Systems Methodology and Networking;
Parallel Programming Paradigms and APIs; Tools and Environments for Parallel Program Analysis;
Task Scheduling and Load Balancing; Performance Management in Parallel and Distributed Systems;
Distributed Software Components; Real-time Distributed and Parallel Systems; Security in Parallel and
Distributed Systems; Fault Tolerance in Parallel and Distributed Systems; Parallel Scientific Computing
and Large Scale Simulations; Parallel and Distributed Applications; etc.

July 12-14 2010 International Conference on Software Engineering Theory and Practice (SETP'2010),
Orlando, Florida, USA. Topics include: Software development, maintenance, and other areas of
software engineering and related topics, such as Component-based software engineering, Critical
software engineering, Distributed and parallel software architectures, Education aspects of software
engineering, Embedded software engineering, Empirical software engineering, Model Driven
Architecture (MDA), Model-oriented software engineering, Object-oriented methodologies,
Performance critical systems, Program understanding, Programming languages, Quality issues, Real-
time software engineering, Real-time software systems, Reliability, Reverse engineering, Software
architectures and design, Software design patterns, Software maintenance, Software reuse, Software
safety and reliability, Software security, Software specification, Software tools, Verification and
validation of software, etc.

July 13-14 2nd Software Engineering Method and Theory Workshop (SEMAT'2010), Washington DC, USA.
Topics include: the prevalence of fads more typical of fashion industry than of an engineering
discipline; the lack of a sound, widely accepted theoretical basis; the huge number of methods and
method variants, with differences little understood and artificially magnified; the lack of credible
experimental evaluation and validation; the split between industry practice and academic research; etc.

110 Conference Calendar

Volume 31, Number 2, June 2010 Ada User Journal

July 14-15 10th International Conference on Quality Software (QSIC'2010), Zhangjiajie, China. Topics include:
Software quality (review, inspection and walkthrough, reliability, safety and security, ...); Evaluation of
software products and components (static and dynamic analysis, validation and verification);
Information and knowledge management (economics of software quality, ...); Formal methods (program
analysis, ...); Applications (component-based systems, distributed systems, embedded systems,
enterprise applications, information systems, safety critical systems, ...); etc.

July 15-19 22nd International Conference on Computer Aided Verification (CAV'2010), Edinburgh, UK. Topics
include: Algorithms and tools for verifying models and implementations, Program analysis and software
verification, Applications and case studies, Verification in industrial practice, etc.

☺ July 20-21 Workshop on Exploiting Concurrency Efficiently and Correctly ((EC)^2). Topics
include: deficiencies in current languages and tools; multi-core software design,
correctness issues, and correctness approaches; programming languages and paradigms
that facilitate concurrency exploitation; novel approaches for teaching concurrency;
significant case studies; etc.

July 19-23 COMPSAC2010 - 4th IEEE International Workshop on Quality Oriented Reuse of Software
(QUORS'2010), Seoul, South Korea. Topics include: High quality software reuse methods; Dependable
Component-Based Systems; Software product lines; Quality aspects of design patterns; Software
evolution; Model-driven software engineering; Component and service repository; Reuse in Embedded
Software Systems; Case studies and experience reports.

July 22-24 5th International Conference on Software and Data Technologies (ICSOFT'2010), Athens, Greece.
Topics include: Software Engineering, Programming Languages, Distributed and Parallel Systems, etc.

July 25-28 29th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distibuted Computing
(PODC'2010), Zurich, Switzerland. Topics include: multiprocessor and multi-core architectures and
algorithms; synchronization protocols, concurrent programming; fault-tolerance, reliability, availability;
middleware platforms; distributed data management; security in distributed computing; specification,
semantics, verification, and testing of distributed systems; etc.

☺ August 23-25 16th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA'2010), Macau SAR, P.R.China. Topics include: Software design for
heterogeneous multi-core embedded platform, Multi-thread programming for multi-core embedded
platform, Embedded system design practices, Real-time scheduling, Timing analysis, Programming
languages and run-time systems, Middleware systems, Design and analysis tools, Case studies and
applications, etc.

August 23-26 5th IEEE International Conference on Global Software Engineering (ICGSE'2010), Princeton, NJ,
USA. Topics include: Strategic issues in distributed development: cost-benefit-risk analysis, ...; Methods
and tools for distributed software development: requirements engineering, design, coding, verification,
testing and maintenance, development governance; Empirical studies and lessons learnt on distributed
development; etc.

☺ Aug 31 – Sep 09 16th International European Conference on Parallel and Distributed Computing (Euro-Par'2010),
Ischia, Italy. Topics include: all aspects of parallel and distributed computing, such as Support tools and
environments, Scheduling, High performance compilers, Distributed systems and algorithms, Parallel
and distributed programming, Multicore and manycore programming, Theory and algorithms for
parallel computation, etc.

September 01-03 7th International Colloquium on Theoretical Aspects of Computing (ICTAC'2010), Natal, Rio
Grande do Norte, Brazil. Topics include: principles and semantics of programming languages; software
specification, refinement, verification; integration of theories, formal methods and tools for engineering
computing systems; models of concurrency and security; theory of parallel, distributed, and grid
computing; real-time and embedded systems; case studies, theories, tools and experiments of verified
systems; domain-specific modeling and technology; etc.

☺ Sep 11-15 19th International Conference on Parallel Architectures and Compilation Techniques
(PACT'2010), Vienna, Austria. Topics include: ground-breaking research related to parallel systems
ranging across instruction-level parallelism, thread-level parallelism, multiprocessor parallelism and
large scale systems, such as Parallel computational models; Compilers and tools for parallel computer
systems; Support for concurrency correctness in hardware and software; Parallel programming

Conference Calendar 111

Ada User Journal Volume 31, Number 2, June 2010

languages, algorithms and applications; Middleware and run-time system support for parallel
computing; Reliability and fault tolerance for parallel systems; Modeling and simulation of parallel
systems and applications; Parallel applications and experimental systems studies; Case studies of
parallel systems and applications; etc.

September 12-18 26th IEEE International Conference on Software Maintenance (ICSM'2010), Timisoara, Romania.

Sep 12-13 6th International Conference on Predictive Models in Software Engineering
(PROMISE'2010). Topics include: Industrial experience reports detailing the application
of software technologies - processes, methods, or tools - and their effectiveness in
industrial settings; Tools for software researchers that effectively gather and analyze
data to support reproducible and verifiable research; etc.

☺ Sep 13-16 39th International Conference on Parallel Processing (ICPP'2010), San Diego, California, USA.
Topics include: compilers and languages, etc.

September 17 SEFM2010 - 2nd Workshop on Formal Methods and Agile Methods (FM+AM'2010), Pisa, Italy.
Topics include: novel contributions that can be used for making rapid development techniques more
formally sound, as well as for accelerating the speed of formally sound development techniques.
Deadline for early registration: July 30, 2010.

September 20-24 25th IEEE/ACM International Conference on Automated Software Engineering (ASE'2010),
Antwerp, Belgium. Topics include: Component-based systems; Maintenance and evolution; Model-
based software development; Model-driven engineering and model transformation; Modeling language
semantics; Open systems development; Product line architectures; Program understanding; Program
transformation; Re-engineering; Specification languages; Software architecture and design; Testing,
verification, and validation; etc.

☺ Sep 20 3rd International Workshop on Academic Software Development Tools
(WASDeTT'2010). Topics include: How to integrate and combine independently
developed tools? What are the positive lessons learned and pitfalls in building tools?
What are effective techniques to improve the quality of academic tools? What particular
languages and paradigms are suited to build tools?

Sep 20 7th International Workshop on Model-based Methodologies for Pervasive and
Embedded Software (MOMPES'2010).

Sep 20-21 Joint ERCIM Workshop on Software Evolution and International Workshop on
Principles of Software Evolution (IWPSE-EVOL'2010). Topics include: Application
areas: distributed, embedded, real-time, ultra large scale, information systems, ...;
Technical aspects: co-evolution and inconsistency management, impact analysis and
change propagation, languages and notations for supporting evolution, ...; Managerial
aspects: risk analysis, software quality, productivity, training, ...; Empirical studies
related to software evolution; Industrial experience on successes and failures related to
software evolution;

☺ Sep 20-21 15th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2010),
Antwerp, Belgium. Topics include: Design, specification, code generation and testing based on formal
methods; Verification and validation methods that address shortcomings of existing methods with
respect to their industrial applicability; Tools for the development of formal design descriptions; Case
studies and experience reports on industrial applications of formal methods, focusing on lessons learned
or identification of new research directions; Impact of the adoption of formal methods on the
development process and associated costs; Application of formal methods in standardization and
industrial forums; etc.

September 20-22 15th European Symposium on Research in Computer Security (ESORICS'2010), Vouliagmeni,
Athens, Greece. Topics include: Accountability, Information Flow Control, Formal Security Methods,
Language-based Security, Security Verification, etc.

☺ Sep 27-29 CBSoft'2010 - 14th Brazilian Symposium on Programming Languages (SBLP'2010), Salvador,
Bahia, Brazil. Topics include: Programming language design and implementation, Design and
implementation of programming language environments, Object-oriented programming languages,
Program transformations, Program analysis and verification, Compilation techniques, etc.

112 Conference Calendar

Volume 31, Number 2, June 2010 Ada User Journal

Sep 29 – Oct 01 5th International Conference on Graph Transformation (ICGT'2010), Enschede, The Netherlands.
Topics include: languages, tool support and applications in: Software architecture; Software quality,
testing and evolution; Model-driven development, especially model transformations; Implementation of
programming languages; Massively parallel computing; etc.

Sep 30–Oct 1 9th International Workshop on Parallel and Distributed Methods in verifiCation
(PDMC'2010). Topics include: all aspects related to the verification and analysis of very
large and complex systems using methods and techniques that exploit state-of-the-art
hardware architectures, such as multi-core model checking, distributed model checking,
parallel/distributed theorem proving, tools and case studies, industrial applications, etc.

Sep 29 – Oct 01 9th International Conference on Software Methodologies, Tools and Techniques (SoMeT'2010),
Yokohama, Japan. Topics include: Software methodologies, and tools for robust, reliable, non fragile
software design; Software developments techniques and legacy systems; Automatic software generation
versus reuse, and legacy systems; Intelligent software systems design, and software evolution
techniques; Agile Software and Lean Methods; Software optimization and formal methods for software
design; Software maintenance; Software security tools and techniques, and related Software Engineering
models; Formal techniques for software representation, software testing and validation; Software
reliability, and software diagnosis systems; Model Driven Development (DVD), code centric to model
centric software engineering; etc.

☺ October 03-05 MoDELS2010 - 3rd International Workshop on Model Based Architecting and Construction of
Embedded Systems (ACES-MB'2010), Oslo, Norway. Topics include: model-oriented counterparts,
together with the related analysis and development methods, of languages with particularly well-
behaved semantics, such as synchronous languages and models (Lustre/SCADE, Signal/Polychrony,
Esterel), super-synchronous models (TTA, Giotto), scheduling-friendly models (HRT-UML, Ada
Ravenscar), etc.

October 06-07 5th International Workshop on Systems Software Verification (SSV'2010), Vancouver, Canada.
Theme: "Real Software, Real Problems, Real Solutions". Topics include: static analysis, model-driven
development, embedded systems development, programming languages, verifying compilers, software
certification, software tools, experience reports, etc.

October 10-13 9th International Conference on Generative Programming and Component Engineering
(GPCE'2010), Eindhoven, The Netherlands. Topics include: Generative techniques for Product-line
architectures, Distributed, real-time and embedded systems, Model-driven development and
architecture, Safety critical systems; Component-based software engineering (Reuse, distributed
platforms and middleware, distributed systems, evolution, patterns, development methods, formal
methods, etc.); Integration of generative and component-based approaches; Industrial applications; etc.

October 12-13 3rd International Conference on Software Language Engineering (SLE'2010). Topics
include: Formalisms used in designing and specifying languages and tools that analyze
such language descriptions; Language implementation techniques; Program and model
transformation tools; Language evolution; Approaches to elicitation, specification, or
verification of requirements for software languages; Design challenges in SLE;
Applications of languages including innovative domain-specific languages or "little"
languages; etc.

☺ October 17-20 25th Annual Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA'2010), Reno/Tahoe, Nevada, USA. Topics include: all aspects of programming languages
and software engineering, broadly construed; any aspect of software development, including
requirements, modeling, prototyping, design, implementation, generation, analysis, verification, testing,
evaluation, project cancellation, maintenance, reuse, regeneration, replacement, and retirement of
software systems; tools (such as new programming languages, dynamic or static program analyses,
compilers, and garbage collectors) or techniques (such as new programming methodologies, type
systems, design processes, code organization approaches, and management techniques) designed to
reduce the time, effort, and/or cost of software systems.

♦ Oct 24-28 ACM SIGAda Annual International Conference on Ada and Related
Technologies (SIGAda'2010), Fairfax, Virginia, USA (a suburb of Washington, DC).
Sponsored by ACM SIGAda, in cooperation with SIGBED, SIGCAS, SIGCSE, SIGPLAN,
Ada-Europe, and the Ada Resource Association.

Conference Calendar 113

Ada User Journal Volume 31, Number 2, June 2010

October 25-29 Grid2010 - Workshop on Component-Based High Performance Computing (CBHPC'2010),
Brussels, Belgium. Topics include: Programming environments and paradigms, Analysis and
comparison of existing programming approaches, Tools and Environments for Coupling of Parallel
Application codes, etc.

October 25-29 14th IEEE International Enterprise Computing Conference (EDOC'2010), Vitória, ES, Brazil. Topics
include: Organization and principles of software factories; State of the art in distributed enterprise
applications; Industry specific solutions, e.g. for aerospace, automotive, finance, etc.

☺ November 01-03 29th IEEE International Symposium on Reliable Distributed Systems (SRDS'2010), Delhi, India.
Topics include: security, safety-critical systems and critical infrastructures, fault-tolerance in embedded
systems, analytical or experimental evaluations of dependable distributed systems, formal methods and
foundations for dependable distributed computing, etc.

November 08-12 13th Brazilian Symposium on Formal Methods (SBMF'2010), Natal, Rio Grande do Norte, Brazil.
Topics include: Formal aspects of popular languages and methodologies; Logics and semantics of
programming and specification languages; Type systems in computer science; Formal methods
integration; Code generation; Formal design methods; Abstraction, modularization and refinement
techniques; Techniques for correctness by construction; Formal methods and models for real-time,
hybrid and critical systems; Models of concurrency, security and mobility; Theorem proving; Static
analysis; Software certification; Teaching of, for and with formal methods; Experience reports on the
use of formal methods; Industrial case studies; Tools supporting the formal development of
computational systems; Development methodologies with formal foundations; etc.

☺ December 07-11 16th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2010), Shanghai,
China. Topics include: Parallel and Distributed Algorithms and Applications, Multi-core and
Multithreaded Architectures, Resource Management and Scheduling, Security, Dependable and
Trustworthy Systems, Real-Time Systems, Embedded systems, etc.

☺ December 08-11 11th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2010), Wuhan, China. Topics include: all areas of parallel and distributed
computing.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2011

☺ February 09-10 3rd International Symposium on Engineering Secure Software and Systems (ESSoS'2011), Madrid,

Spain. Topics include: security architecture and design for software and systems; verification techniques
for security properties; systematic support for security best practices; programming paradigms for
security; processes for the development of secure software and systems; etc. Deadline for submissions:
September 13, 2010 (abstracts), September 20, 2010 (papers, tutorials).

☺ March 21-25 SAC2011 - Track on Object-Oriented Programming Languages and Systems (OOPS'2011),
TaiChung, Taiwan. Topics include: Language design and implementation; Type systems, static analysis,
formal methods; Integration with other paradigms; Aspects, components, and modularity; Distributed,
concurrent or parallel systems; Interoperability, versioning and software adaptation; etc. Deadline for
submissions: August 24, 2010 (full papers).

☺ April 10-13 6th European Conference on Computer Systems (EuroSys'2011), Salzburg, Austria. Topics include:
all areas of operating systems and distributed systems, including systems aspects of Dependable
computing and storage, Distributed computing, Parallel and concurrent computing, Programming-
language support, Real-time and embedded computing, Security, etc. Deadline for submissions: October
3, 2010 (abstracts), October 10, 2010 (full papers).

April 12-15 2nd International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering
(PARENG'2011), Ajaccio, Corsica, France.

April 20-24 17th International Symposium on Formal Methods (FM'2011), Limerick, Ireland.

☺ May 16-20 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2011), Anchorage,
Alaska, USA. Topics include: all areas of parallel and distributed processing, such as: Parallel and
distributed algorithms; Applications of parallel and distributed computing; Parallel and distributed

114 Conference Calendar

Volume 31, Number 2, June 2010 Ada User Journal

software, including parallel and multicore programming languages and compilers, runtime systems,
middleware, libraries, parallel programming paradigms, programming environments and tools, etc.
Deadline for submissions: September 24, 2010 (abstracts), October 1, 2010 (papers).

☺ May 21-28 33rd International Conference on Software Engineering (ICSE'2011), Waikiki, Honolulu, Hawaii,
USA. Theme: "Software by Design".

June 20-23 2011 International Conference for Computational Science and its Applications (ICCSA'2011),
Santander, Spain. Deadline for submissions: July 31, 2010 (workshops, technical sessions), December
31, 2010 (abstracts, full papers).

♦ June 20-24 16th International Conference on Reliable Software Technologies - Ada-
Europe'2011, Edinburgh, UK. Co-located with the Ada Conference UK 2011,
organized under the common name of "The Ada Connection". Sponsored by Ada-
Europe, in cooperation with ACM SIGAda (approval pending). Deadline for
submissions: November 21, 2010 (papers, tutorials, workshops), January 8, 2011
(industrial presentations).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

116 Forthcoming Events

Volume 31, Number 2, June 2010 Ada User Journal

ACM Annual International Conference

on Ada and Related Technologies:
Engineering Safe, Secure, and Reliable Software

Fairfax, Virginia (Washington DC Area), USA
October 24-28, 2010

Udvar-Hazy Space Museum

(close to Dulles Airport and the conference hotel)

Conference Hotel, Hyatt Fair Lakes, Fairfax, VA 22033 (USA)

Advance Program coming in July 2010. For details, visit
http://www.sigada.org/conf/sigada2010/

Forthcoming Events 117

Ada User Journal Volume 31, Number 2, June 2010

Conference Highlights

Keynote Address: Systems Software Integrity Assurance
to FAA’s Next Generation (NextGen) Constituents

Chris Lane, Lockheed Martin Corporation

Data Comm is a program that will enhance existing communications between the air traffic controller and the pilot by
essentially sending digital messages to supplement the existing voice communications. With more reliance on Data Comm as
the FAA’s Next Generation systems become fielded, ensuring the communications is reliable, accurate, and most importantly
safe becomes increasingly critical. RTCA DO-278 provides the guidelines for communications, navigation, surveillance, and
air traffic management systems software integrity assurance. It doesn’t guarantee that the software developed in accordance
with these guidelines is safe but if followed it ensures that the processes are in place to properly plan, develop and verify the
software. Lockheed Martin is in the process of integrating Data Comm with the En Route Automation and Modernization
(ERAM) program and is developing the program in compliance with DO-278. This brings challenges as well as opportunities
with the increasing reliance on commercial off the shelf (COTS) software. These challenges and some insight into developing
systems to the standards of DO-278 will be discussed.

Tutorial: Developing Unmanned Systems in Ada over RTEMS
Cindy Cicalese et al, The MITRE Corporation

This hands-on tutorial provides an introduction to the development of software in Ada for unmanned systems. The authors
will demonstrate how they are using Ada over RTEMS in developing the real time control software for a large unmanned
ground vehicle. RTEMS is an open source, real-time operating system that provides a high performance environment for
embedded applications on a range of processors and embedded hardware.

Workshop on Software Security

Stephen Michell, Maurya Software, Inc., Ottawa, Ontario, Canada

This hands-on workshop will involve a "find the vulnerability" exercise in sample code, using examples from C, C++,
scripting languages and Ada.

Update on the Forthcoming Ada 2012 Standard
Ed Schonberg, AdaCore, Inc.

The Ada Rapporteur Group (ARG) is nearing completion of its work on the forthcoming standard for Ada 2012. This update
will present the state of the ARG work and an informal discussion of the language enhancements in the new standard.

Advance Program coming in July 2010. For details, visit
http://www.sigada.org/conf/sigada2010/

118 Forthcoming Events

Volume 31, Number 2, June 2010 Ada User Journal

Honorary Chair
John Barnes
John Barnes Informatics, UK
jgpb@jbinfo.demon.co.uk

Conference Co-Chairs
Rod Chapman
Altran Praxis Ltd, UK
rod.chapman@altran-praxis.com
Steve Riddle
Newcastle University, UK
steve.riddle@ncl.ac.uk

Program Co-Chairs
Alexander Romanovsky
Newcastle University, UK
alexander.romanovsky@ncl.ac.uk
Tullio Vardanega
University of Padua, Italy
tullio.vardanega@math.unipd.it

Tutorial Chair
Albert Llemosí
Universitat de les Illes Balears, Spain
albert.llemosi@uib.cat

Exhibition Chair
Joan Atkinson
CSR, UK
joan.atkinson@ncl.ac.uk

Industrial Chair
Jamie Ayre
AdaCore, France
ayre@adacore.com

Publicity Chair
Dirk Craeynest
Aubay Belgium & K.U.Leuven,
Belgium
Dirk.Craeynest@cs. kuleuven.be

Finance Chair
Neil Speirs
Newcastle University, UK
neil.speirs@ncl.ac.uk

Local Chairs
Joan Atkinson
CSR, UK
joan.atkinson@ncl.ac.uk
Claire Smith
CSR, UK
claire.smith@ncl.ac.uk

General Information
The Ada Connection combines the 16th International Conference on Reliable Software Technologies –
Ada-Europe 2011 – with Ada Conference UK 2011. It will take place in Edinburgh, Scotland’s capital city
and the UK’s most popular conference destination.
In traditional Ada-Europe style, the conference will span a full week, including a three-day technical
program and vendor exhibition from Tuesday to Thursday, along with parallel tutorials and workshops on
Monday and Friday. The Ada Connection will also encompass technical and vendor tracks under the
banner of Ada Conference UK, which exists to promote awareness of Ada and to highlight the increased
relevance of Ada in safety- and security-critical programming.
The Ada Connection will thus provide a unique opportunity for interaction and collaboration between
academics and industrial practitioners.

Schedule

Topics
Over the years Ada-Europe has established itself as an international forum for providers, practitioners and
researchers into reliable software technologies. The conference presentations will illustrate current work
in the theory and practice of the development and maintenance of long-lived, high-quality software
systems for a variety of established and novel application domains. The program will allow ample time for
keynotes, Q&A sessions, panel discussions and social events. Participants will include practitioners and
researchers representing industry, academia and government organizations active in the promotion and
development of reliable software technologies.
All contributions, whether regular papers, industrial presentations, tutorials or workshops, should address
the topics of interest to the conference, which for this edition include but are not limited to:
• Methods and Techniques for Software Development and Maintenance: Requirements

Engineering, Object-Oriented Technologies, Model-driven Engineering, Formal Methods and
Supporting Toolsets, Re-engineering and Reverse Engineering, Reuse, Software Management.

• Software Architectures: Architectural Styles, Service-Oriented Architectures, Cloud Service Model,
Design Patterns, Frameworks, Architecture-Centered Development, Component and Class Libraries,
Component-based Design and Development.

• Enabling Technologies: Software Development Environments, Compilers, Debuggers, Run-time
Systems, Middleware Components, Concurrent and Distributed Programming, Ada Language and
Technologies.

• Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis,
Verification, Validation, Testing of Software Systems.

• Theory and Practice of High-Integrity Systems: Real-Time, Distribution, Fault Tolerance,
Security, Reliability, Availability, Trust and Safety, Language Vulnerabilities.

• Embedded Systems: Multicore Architectures, HW/SW Co-Design, Reliability and Performance
Analysis.

• Mainstream and Emerging Applications: Manufacturing, Robotics, Avionics, Space, Health Care,
Transportation, Energy, Fun and Business Games, Telecommunication, etc.

• Experience Reports: Case Studies and Comparative Assessments, Management Approaches,
Qualitative and Quantitative Metrics.

• The Future of Ada: Glimpses on the ongoing language revision as it reaches standardization;
positioning in the market and in education; where should Ada stand in the software engineering
curriculum; lessons learned on Ada Education and Training Activities with bearing on any of the
conference topics.

Preliminary Call for Papers

The Ada Connection
16th International Conference on
Reliable Software Technologies –

 Ada-Europe 2011

Ada Conference UK
2011

20 – 24 June 2011, Edinburgh, UK
http://www.ada-europe.org/conference2011

21 November 2010 Submission deadline for regular papers, tutorial and workshop proposals
8 January 2011 Submission of industrial presentation proposals

8 February 2011 Notification of acceptance to authors
8 March 2011 Camera-ready version of regular papers required
16 May 2011 Industrial presentations, tutorial and workshop material required

20-24 June 2011 Conference

In cooperation with

ACM SIGAda
(approval pending)

Forthcoming Events 119

Ada User Journal Volume 31, Number 2, June 2010

Program Committee

Alejandro Alonso, Universidad Politécnica

de Madrid, Spain
Ted Baker, Florida State University, USA
John Barnes, John Barnes Informatics, UK
Johann Blieberger, Technische Universität

Wien, Austria
Jørgen Bundgaard, Rovsing A/S, Denmark
Bernd Burgstaller, Yonsei University,

Korea
Alan Burns, University of York, UK
Jon Burton, Altran Praxis Limited, UK
Rod Chapman, Altran Praxis Limited, UK
Dirk Craeynest, Aubay Belgium &

K.U.Leuven, Belgium
Alfons Crespo, Universidad Politécnica de

Valencia, Spain
Juan A. de la Puente, Universidad

Politécnica de Madrid, Spain
Franco Gasperoni, AdaCore, France
Michael González Harbour, Universidad de

Cantabria, Spain
José Javier Gutiérrez, Universidad de

Cantabria, Spain
Andrew Hately, Eurocontrol Experimental

Centre, France
Peter Hermann, Universität Stuttgart,

Germany
Jérôme Hugues, ISAE Toulouse, France
Albert Llemosí, Universitat de les Illes

Balears, Spain
Franco Mazzanti, ISTI-CNR Pisa, Italy
John McCormick, University of Northern

Iowa, USA
Julio Medina, Universidad de Cantabria,

Spain
Stephen Michell, Maurya Software, Canada
Javier Miranda, Universidad Las Palmas de

Gran Canaria, Spain
Daniel Moldt, University of Hamburg,

Germany
Laurent Pautet, Telecom Paris, France
Luís Miguel Pinho, Polytechnic Institute of

Porto, Portugal
Erhard Plödereder, Universität Stuttgart,

Germany
Jorge Real, Universidad Politécnica de

Valencia, Spain
Alexander Romanovsky, Newcastle

University, UK
Bo I. Sandén, Colorado Technical

University, USA
Sergio Sáez, Universidad Politécnica de

Valencia, Spain
Ed Schonberg, AdaCore, USA
Theodor Tempelmeier, Univ. of Applied

Sciences Rosenheim, Germany
Jean-Loup Terraillon, European Space

Agency, The Netherlands
Elena Troubitsyna, Äbo Akademi, Finland
Santiago Urueña, GMV, Spain
Tullio Vardanega, Università di Padova,

Italy
Andy Wellings, University of York, UK
Jürgen Winkler, Friedrich-Schiller

Universität, Germany

Industrial Committee

Guillem Bernat, Rapita Systems, UK
Dirk Craeynest, Aubay Belgium &

K.U.Leuven, Belgium
Hubert Keller, Forschungszentrum

Karlsruhe GmbH, Germany
 Ismael Lafoz, Airbus Military, Spain
Ahlan Marriott, White-Elephant GmbH,

Switzerland
Paul Parkinson, Wind River, UK
Jean-Pierre Rosen, Adalog, France
Rei Stråhle, Sweden
Rod White, MBDA, UK Elephant GmbH,
Switzerland

Call for Regular Papers

Authors of regular papers which are to undergo peer review for acceptance are invited to
submit original contributions. Paper submissions shall be in English, complete and not
exceeding 14 LNCS-style pages in length. Authors should submit their work via the Web
submission system accessible from the Conference Home page. The format for submission is
solely PDF. Should you have problems to comply with format and submission requirements,
please contact the Program Chairs.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science
(LNCS) series by Springer, and will be available at the start of the conference. The authors of
accepted regular papers shall prepare camera-ready submissions in full conformance with the
LNCS style, not exceeding 14 pages and strictly by 8 March 2011. For format and style
guidelines authors should refer to http://www.springer.de/comp/lncs/authors.html. Failure to
comply and to register for the conference by that date will prevent the paper from appearing in
the proceedings.
The conference is ranked class A in the CORE ranking and is listed among the top quarter of
CiteSeerX Venue Impact Factor.

Awards

Ada-Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Industrial Presentations

The conference also seeks industrial presentations which deliver value and insight, but may not
fit the selection process for regular papers. Authors of industrial presentations are invited to
submit a short overview (at least one page) of the proposed presentation by 8 January 2011.
Please follow the submission instructions on the conference website. The Industrial Committee
will review the proposals and make the selection. The authors of selected presentations shall
prepare a final short abstract and submit it by 16 May 2011, aiming at a 20-minute talk.
Accepted authors will also be invited to submit corresponding articles for publication in the
Ada User Journal, which will host the proceedings of the Industrial Program of the Conference.
For any further information please contact the Industrial Chair directly.

Call for Tutorials

Tutorials should address subjects that fall within the scope of the conference and may be
proposed as either half- or full-day events, to be scheduled at either end of the conference
week. Proposals should include a title, an abstract, a description of the topic, a detailed outline
of the presentation, a description of the presenter's lecturing expertise in general and with the
proposed topic in particular, the proposed duration (half day or full day), the intended level of
the tutorial (introductory, intermediate, or advanced), the recommended audience experience
and background, and a statement of the reasons for attending. Proposals should be submitted by
e-mail to the Tutorial Chair. The authors of accepted full-day tutorials will receive a
complimentary conference registration as well as a fee for every paying participant in excess of
five; for half-day tutorials, these benefits will be accordingly halved. The Ada User Journal will
offer space for the publication of summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be
submitted for half- or full-day events, to be scheduled at either end of the conference week.
Workshop proposals should be submitted to the Conference Chair. The workshop organizer
shall also commit to preparing proceedings for timely publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the three days of the main conference. Vendors and
providers of software products and services should contact the Exhibition Chair for information
and for allowing suitable planning of the exhibition space and time.

Grants for Reduced Student Fees
A limited number of sponsored grants for reduced fees is expected to be available for students
who would like to attend the conference or tutorials. Contact the Conference Chair for details.

 121

Ada User Journal Volume 31, Number 2, June 2010

Ada-Europe Launches
Annual Student Programming Contest “The Ada Way”

VALENCIA, Spain (June 16, 2010) – On the occasion of Ada-Europe 2010, the 15th annual Conference on
Reliable Software Technologies, Ada-Europe, the international organization that promotes the knowledge and use
of Ada in European academia, research and industry, launched an annual Student Programming Contest under
the provisional title of “The Ada Way”.

The contest will be a yearly competition among student teams, whereby each team must have a codename and a
logo, a university affiliation, and the endorsement by an educator. The theme of this year's contest will be
announced by September 1, and submissions will be accepted until April 30 of the following year. A Steering
Committee composed of representatives of promoting institutions will oversee the organization of this contest.

Submissions will be marked by an Evaluation Committee composed of leading Ada experts, such as John Barnes
(author of the famous Programming in Ada books), S. Tucker Taft (leader of the Ada 95 language revision), Ed
Schonberg (co-author of the open-source GNAT Ada compiler and toolset), Joyce Tokar (convenor of the ISO
working group on the Ada language standards), etc.

The winning team will be notified by May 31. The Steering Committee will offer the winners one free registration,
accommodation, and airfare to the Ada-Europe conference, a slot in the conference program, publication space in
the Ada User Journal, and visibility in other media. Additional prizes might be offered.

Ada-Europe wants the competition to be fun and educational. The theme of the contest will be determined by the
Steering Committee, and shall be intellectually challenging and elating. Evaluation criteria shall include
correctness, clarity and readability of the code, ingenuity, cuteness, and time and space efficiency.

Submissions shall include the source code and the User Manual. The code must run out-of-the-box when
following the User Manual's instructions. The implementation does not need to be 100% Ada, but of course the
essence must be in Ada, and only the Ada code will be part of the evaluation. Tullio Vardanega, president of Ada-
Europe, stated: “The winning submission must be a reference for good Ada programming, software design, and
innovation.”

About Ada-Europe
Ada-Europe is the international non-profit organization that promotes the knowledge and use of Ada into
academia, research and industry in Europe. Current member organizations of Ada-Europe are: Ada-Belgium, Ada
in Denmark, Ada-Deutschland, Ada-France, Ada-Spain, Ada in Sweden and Ada-Switzerland. Ada-Europe also
includes and welcomes individual members from other European countries with no national organization, and has
a total membership in the region of 300.

A PDF version of this press release is available at www.ada-europe.org.

Press contact
Dirk Craeynest, Ada-Europe Vice-President, Dirk.Craeynest@cs.kuleuven.be

122

Volume 31, Number 2, June 2010 Ada User Journal

ISO/IEC JTC 1/SC 22/WG 9 N506

WG9 Letter to the Community: Maintenance and Revision of the Ada
Programming Language

With Ada 2012 coming to fruition, it is appropriate to remind the community that suggestions for future
enhancements to the language are always welcome. Remember that two critical organizations are involved,
namely WG 9 and the ARG, and both of them encourage participation in their activities by all who are interested
in Ada.

ISO/IEC JTC 1/SC 22/WG 9 is responsible for the maintenance and revision of the Ada Programming Language
and associated standards and technical report. The Ada Rapporteur Group (ARG) is charged by the WG 9
committee to maintain the Ada Reference Manual and to supervise the evolution of the language. The ARG is
composed of programming language experts, implementers, and users of the language. The ARG receives input
from the Ada community at large, in the form of Ada comments and Ada Issues, following a procedure
established two decades ago. ISO rules require that a standard be revised periodically, and the ARG is currently
engaged in the preparation of an Amendment to Ada 2005, that will define the next version of the language. WG 9
has given the next edition of the Ada language the working name Ada 2012, which sets narrow boundaries for the
revision work. The reasons for this choice and their impact on ARG work are outlined below.

The process of language evolution, from Ada 83 to Ada 95 to Ada 2005, and on to Ada 2012, has itself changed
over time. The resources that were invested in the Ada9X process, which led to the Ada 95 standard, were simply
not available for the next revision, and are not available today, The WG 9 committee, after discussions with the
ARG and with members of the Ada community, has instructed the ARG to complete the Amendment to Ada 2005
so that ISO standardization of the new version can be completed by 2012. This is a relatively short horizon, but it
matches the interval between previous releases, demonstrates that the language continues to evolve, and at the
same time guarantees that the changes to the language are evolutionary and do not present an undue
implementation burden on existing compilers.

The ARG welcomes suggestions for language enhancements at any time. These should be sent to
ada-comment@ada-auth.org. If the suggestion is for a correction to an error in the existing Reference Manual and
the error is significant, it will certainly be included in the Amendment. If it is a large-scale enhancement it may be
worth discussing for the next version of the language (circa 2017). If it is a suggestion for new libraries, the most
productive approach will be for interested members of the community to implement the libraries and put them in
circulation before eventual standardization, in order to receive feedback from users. The guidelines presented for
the Ada 2005 revision (see http://archive.adaic.com/news/pressrelease/call4apis.html) are still active.

The software industry has changed radically in the last decade, and software evolves much more rapidly than
language standards, through informal mechanisms that are a universe away from the staid ISO procedures. For
those interested in more ambitious extensions to the language, it is worth recalling that there is an open-source
Free Software implementation of Ada 2005 that anyone can use as a workbench for language design.

The ARG has focused its work on two areas of particular interest to the Ada community: improved facilities for
program correctness, and enhanced container libraries. There are numerous other proposed enhancements, and
the interested reader can find the current state of these at http://www.ada-auth.org/AI05-SUMMARY.HTML. Some
of these proposals originated with members of the ARG, and some others from members of the community at
large. We consider that the basic ingredients of the Amendment are already at hand, even though much work
remains to determine which of the Ada Issues already under discussion will in fact be incorporated in the
language.

We are confident that the ongoing work of the ARG, with the received input from all interested parties, will
converge to a design that satisfies the needs of Ada programmers, and remains faithful to the spirit and "feel" of
the language.

The ARG and WG 9 encourages members of the Ada community at large to use the guidelines outlined above to
provide input to WG 9 and ARG for needed revisions and upgrades to the Ada programming language.

 123

Ada User Journal Volume 31, Number 2, June 2010

Experience in programming device drivers with the
Ravenscar profile
Jorge López, Ángel Esquinas, Juan Zamorano, Juan Antonio de la Puente
Universidad Politécnica de Madrid, ETSIT UPM, E 28040 Madrid, Spain

Abstract
The Ravenscar profile defines a subset of Ada tasking
that can be statically analysable for real-time
properties. The implications of the Ravenscar profile
and other commonly used high-integrity restrictions
for developing device drivers are analysed in the
paper, and some guidelines are provided based on the
analysis. The technical content of the paper is based
on the authors' experience in developing
communication drivers for the Open Ravenscar real-
time Kernel (ORK) that are well suited for space on-
board applications. A reference architecture for
device drivers is proposed, and two instances of
drivers based on it are described.
Keywords: Ada 2005, real-time systems, Ravenscar
profile, device drivers, low-level programming.

1 Introduction
The Ravenscar profile [5] defines a subset of Ada tasking
that can be used to develop real-time systems with
predictable, analysable temporal behaviour. It is aimed at
high-integrity applications that can eventually undergo a
certification process with respect to some domain-specific
standard. The profile has been widely accepted in academy
and industry, and a number of industrial-grade
implementations are available which can be used to
develop highly critical systems. All of them include cross-
compilation chain and a runtime system supporting the
static tasking model defined by the profile.

A Ravenscar runtime system typically includes a tasking
kernel, as well as some basic device drivers, e.g. for one or
more system clocks and a serial line for debugging
purposes. However, embedded real-time systems usually
include specific hardware devices for which appropriate
drivers have to be developed, often as part of an application
development process. Driver programming requires
accessing device controller registers, even at the bit level,
and synchronizing the I/O operations with the CPU, usually
by means of interrupts [7]. The Ada language [12] includes
a number of low-level constructs for this purpose, among
which the main ones are:

• Representation clauses can be used to represent
hardware registers, including bit-wise structures and
the addresses where they are located, by means of data
types, data objects, and type and object attributes.

• Protected procedures can be used as interrupt
handlers. The enclosing protected objects may include

data objects and other protected operations that can be
used by the application tasks to interact with the
device.

Other useful low-level elements of the Ada language
include storage address handling, machine code insertions,
and shared variable control pragmas.

The Ravenscar profile explicitly allows most of the above
features, provided they are used in such a way that the
structure of the program remains static (e.g. dynamic
handler attachment is forbidden). However, the profile
excludes some useful elements that are part of common
programming patterns for drivers, such as multiple entries
in protected entries and requeue statements (see e.g. [5]).
Furthermore, since the profile only addresses the tasking
aspects of the language, additional restrictions are usually
set on sequential constructs in order to enforce temporal
predictability and support different kinds of static analysis
in high-integrity applications [14]. Such restrictions may
limit the use of some elements that are commonly used in
device drivers (e.g. access types). Therefore, developing
device drivers for high-integrity real-time systems may
require additional effort from the programmer in order to
overcome the restrictions in the expressive power of the
language that are imposed in order to comply with the
predictability and reliability properties required from such
systems.

In the next section the overall difficulties in developing
device drivers for high-integrity systems are analysed, and
some general guidelines are proposed. Section 3 describes
the authors' experience in developing drivers for a family of
on-board embedded computers in the space domain, and a
software architecture for device drivers is proposed. Two
instances of communication drivers derived from this
architecture are described in section 4. Finally, conclusions
of the work and future work plans are explained in
section 5.

2 Device drivers and high-integrity
 restrictions
2.1 Ravenscar restrictions
The Ravenscar profile is defined by three pragmas and a set
of restrictions [12]. The pragmas specify the dispatching
and locking policies to be FIFO_Within_Priorities and
Ceiling_Locking, respectively, and require potentially
blocking operations within protected operations to be
detected. The restrictions define a static, analysable tasking
model [13].

124 Experience in programming device dr ivers wi th the Ravenscar prof i le

Volume 31, Number 2, June 2010 Ada User Journal

The profile explicitly allows protected procedure interrupt
handlers to be declared using pragma Attach_Handler,
forbidding only the use of the dynamic attachment features
defined in the Ada.Interrupts package. Therefore, the basic
language elements for programming device drivers are
available in Ravenscar programs, and most of the
Ravenscar restrictions raise no problems in this respect.

However, some common programming patterns for drivers,
such as the simple two-step pattern shown in listing 1 are
not allowed by the profile. This pattern uses two features
forbidden by the profile, multiple protected entries and
requeue, to perform an input-output operation in two steps:
first Start_IO is called to setup the device registers as
needed. Then the call is requeued to End_IO, awaiting the
completion of the operation to be signalled by an interrupt.
When the interrupt arrives, the handler opens the End_IO
barrier and the operation completes. Notice that End_IO is
private as it is only invoked by the requeue statement in
Start_IO and thus cannot be called by other program units.

This pattern can easily be transformed into one that does
not make use of requeue, as shown in listing 2, provided
that the driver is only used by one application task. In this
case the task can call Start_IO as a procedure and
consequently exit the protected object. A second explicit
call to entry End_IO has to be made in order to await the
arrival of the interrupt, which is handled as before.

Notice that allowing only one application task to use a
device driver is quite natural in Ravenscar programs.
Otherwise, two tasks might be queuing on the protected
entry of the drive, which is forbidden by the profile.

2.2 Other high-integrity restrictions
In addition to the Ravenscar tasking restrictions,
restrictions on the sequential part of the language are often
enforced on high-integrity systems, in order to enhance
their robustness and predictability and enable advanced
verification techniques to be used [14]. Some common
restrictions are:

• No_Allocators

• No_Unchecked_Access

• No_Dispatch

• No_Recursion

• No_IO

• No_Exceptions

• No_Access_Subprograms

Most of the restrictions in the above list do not raise any
special problem for programming drivers. The last two
ones, however, deserve some further attention.
No_Exceptions prevents exceptions to be used to handle

protected Driver is
 entry Start_IO;
private
 entry End_IO;
 procedure Handler;
 pragma Attach_Handler(Int_ID, Handler);
 Ready : Boolean := True;
 Finished : Boolean := False;
end Driver;
protected body Driver is
 entry Start_IO when Ready is
 begin
 ...
 Ready := False; Finished := False;
 requeue Complete_IO;
 end Start_IO;
 entry End_IO when Finished is
 begin
 ...
 Ready := True;
 end End_IO;
 procedure Handler is
 begin
 ...
 Finished := True;
 end Handler;
end Driver;

protected Driver is
 procedure Start_IO;
 entry End_IO;
private
 procedure Handler;
 pragma Attach_Handler(Int_ID, Handler);
 Finished : Boolean := False;
end Driver;
protected body Driver is
 procedure Start_IO is
 begin
 ...
 Finished := False;
 end Start_IO;
 entry End_IO when Finished is
 begin
 ...
 end End_IO;
 procedure Handler is
 begin
 ...
 Finished := True;
 end Handler;
end Driver;

Listing 1 Two-step driver Listing 2 Ravenscar-compliant two-step driver

J. López, Á. Esquinas, J . Zamorano, J. A. de la Puente 125

Ada User Journal Volume 31, Number 2, June 2010

hardware errors in I/O operations. Since error detection and
signalling is a key element of most device drivers, lower-
level mechanisms such as error status variables or error
parameters in subprograms must be used. Some
implementations (see e.g. [1]) allow a fine-grain control of
exceptions by specifically restricting the use of exception
handlers or exception propagation, but the results are
roughly the same. As for No_Access_Subprograms, its
implications are not obvious for simple drivers, but this
restriction may cause problems for drivers with
initialization-time configuration, as discussed in section 4.

3 A generic driver architecture
Computers are built up with a set of modules of three basic
types: processors, memories and I/O devices, the latter
being in charge of communicating with the computer
environment through the so-called peripheral devices.
Nowadays, the common way to interconnect computer
components is by means of a computer bus or, more often,
a computer bus hierarchy. The usual arrangement is to
interconnect components on the same board with a local
bus, and communicate different boards by means of a
backplane bus.

The I/O device interface from the processor side usually
consists of several registers that can be classified as:

• Status registers, which are used to store the status of
the attached device. The processor can check the status
of a device by reading its status registers.

• Control registers, which accept commands from the
processor that are decoded by the I/O module in order
to issue the corresponding request to the peripheral
device.

• Data registers, which perform data buffering in order
to decouple the different transfer rates of the main
memory and the peripheral device.

A device driver is a software module that provides
application code with access to a peripheral device. The
application code invokes driver operations in order to
interact with the device by means of commands that are
sent to the device. When the device sends data or control
information back to the driver, it completes the operation at
the application level by returning from the call or by
invoking other routines in the application. Device drivers
also provide for interrupt handling and other
synchronization operations. Due to their strong interaction
with the device, device drivers are hardware-dependent and
operating systems-specific in nature.

In order to enable the driver to interact with the device, the
I/O registers must be allocated a unique address in an
address space that can be made accessible to the processor.
For port-based addressing architectures, the I/O registers
can be accessed by subprograms including assembly code
instead.

In a similar way, interrupt and DMA (Direct Memory
Access) request lines have to be properly set and identified.
Real-time modular computers are commonly based on

standard backplane buses, such as VME, EISA or PCI,
where processors, memory modules, and I/O boards are
plugged. Some backplane buses provide jumpers or micro-
switches for manual configuration of the addresses in each
board. Other modular buses do not provide such low-level
mechanisms, and the board configuration is done by
reading board parameters and writing the settings on board
registers, using a separate configuration address space. In
this case, an initialization routine has to be developed as
part of the device driver, which is commonly called a “plug
and play” routine. Such a routine typically includes
locating I/O devices by exploring boards that are connected
to the system, calculating proper settings for the device,
and writing them onto the configuration registers.

Once initialized, the main functions of a device driver are
translating higher-level commands into device-specific
commands, reading device states, synchronizing the
operation of the device with the processors, and
transferring data transfer to or from main memory.

The software architecture should ideally reflect this
organization, by providing separate components for
handling peripheral devices and buses. Figure 1 shows a
generic architecture for a device driver that uses an AMBA
bus [2] as a local bus, and a PCI bus [18] as a backplane
bus. It is modelled after other software architectures that
have been successfully implemented for other devices [4],
[15], [17].

4 Communications drivers for ORK+
and LEON computers

4.1 Introduction
Two communication drivers for a particular platform used
in space systems are described in this section to illustrate
some concepts that must be taken into account for
developing device drivers for high-integrity systems. The
hardware platform is based on a LEON2 computer [3], a
radiation-hardened implementation of the SPARC V8
architecture [19]. The software platform is based on the
GNATforLEON compiler1 and ORK+, the current version
of the Open Ravenscar real-time Kernel [8][20].

1 www.adacore.com

Figure 1 Generic driver architecture

126 Experience in programming device dr ivers wi th the Ravenscar prof i le

Volume 31, Number 2, June 2010 Ada User Journal

4.2 Hardware platform
GR-RASTA is a development and evaluation platform for
LEON2 and LEON3-based spacecraft avionics built on a
Compact PCI (cPCI) backplane bus. The computer has two
cPCI boards:

• GR-CPCI-AT697: this is the processor board. It
includes a LEON2 processor and memory. Its structure
is shown in figure 2. The board has a PCI bridge to
access the cPCI backplane bus.

• GR-CPCI-XC4V: this is an interface board based on a
FPGA which has several I/O modules, including three
SpaceWire links. Its design is based on an AMBA2 bus
to which the units are connected. It also has a PCI
bridge to access the cPCI backplane bus. The structure
of this board is shown in figure 3.

System software is usually unaware of the bus hierarchy,
aside from the startup configuration of the plug-and-play
feature. However, it is important to take into account the
“endianness'” of the different buses of the hierarchy as it

2 The Advanced Microcontroller Bus Architecture (AMBA) is a system
and peripheral bus widely used in System-on-a-chip (SoC) designs.

has a strong influence on the definition of device registers.
The SPARC v8 architecture, and therefore LEON, is big-
endian. This is also the byte ordering of the AMBA buses
in LEON processors. However, the PCI bus is little-endian,
as it was mainly developed for Intel x86 processors. In this
way, I/O device multibyte registers will suffer byte twisting
as shown in figure 4. This issue must be taken into account
for PCI I/O device multibyte registers as well as for DMA
transfers. Accordingly, PCI hosts and PCI DMA I/O
devices must be properly initialized.

4.2 The SpaceWire Device
The Gaisler SpaceWire (GRSPW) core handles the lower-
level layers of the SpaceWire protocol [9]. It is an
intelligent I/O device with Direct Memory Access (DMA)
and interrupt-based synchronization with the CPU. The
interrupt service routine (ISR) is expected to read the status
registers so as to check if the operation has been
successfully completed.

The GRSPW core has three main parts:

• The link interface, which handles the communication
on the SpaceWire network and consists of a
transmitter, receiver, and FIFO interfaces. FIFO
interfaces are provided to the DMA engines and are

Figure 2 GR-CPCI-AT697 CPU board block diagram (reproduced from [10]).

Figure 3 RASTA interface board block diagram (reproduced from [11]).

J. López, Á. Esquinas, J . Zamorano, J. A. de la Puente 127

Ada User Journal Volume 31, Number 2, June 2010

used to transfer a number of characters (N-Chars in the
following) between the AMBA and SpaceWire
domains during reception and transmission.

N-Chars are sent when they are available from the
transmitter FIFO and there are credits available. The
credit counter is automatically increased when flow
control tokens (FCT) are received and decreased when
N-Chars are transmitted. Received N-Chars are stored
to the receiver N-Char FIFO for further handling by
the DMA interface.

• The AMBA interface, which consists of the receiver
and transmitter DMA engines.

The receiver DMA engine reads N-Chars from the N-
Char FIFO and stores them on a DMA channel.
Reception is based on descriptors located in a
consecutive area in memory that hold pointers to
buffers where packets should be stored. When a packet
arrives it reads a descriptor from memory and stores
the packet to the memory area pointed by the
descriptor.

Before reception can take place, a few registers need to
be initialized, such as the node address register, which
needs to be set to hold the address of this SpaceWire
node. The link interface has to be put in the run state
before any data can be sent. Also, the descriptor table
and control register must be initialized.

The transmitter DMA engine reads data from the
AMBA bus and stores them in the transmitter FIFO for
transmission on the SpaceWire network.

• The RMAP handler is an optional part of the GRSPW
and handles incoming packets which are determined to
be RMAP (Remote Memory Access Protocol)
commands.

4.3 SpaceWire Driver Architecture
Figure 5 contains a diagram of the software organization of
the GRSPW driver, which is an instance of the generic

architecture described previously (see figure 1). The driver
has four main components:

• The PCI driver component, which provides data type
definitions and operations for reading and writing the
PCI configuration registers.

• The AMBA driver component, which provides data
type definitions and operations for scanning the
AMBA configuration records.

• The RastaBoard driver component, which provides
a common interface for drivers using the GR-
RASTA board, as well as hooks for interrupt handlers
to be called upon reception of the single hardware
interrupt issued by the board.

Figure 4 AMBA to PCI bus byte twisting.

Figure 5 SpaceWire driver architecture.

128 Experience in programming device dr ivers wi th the Ravenscar prof i le

Volume 31, Number 2, June 2010 Ada User Journal

• The SpaceWire driver component, which provides all
the software items required by application programs to
initialize and use the SpaceWire cores included in the
GR-RASTA computer platform.

The components of the SpaceWire driver are:

• HLInterface: contains the higher-level interface for
application programs, consisting of type definitions
and operations initializing the SpaceWire devices,
setting their node addresses, and sending and receiving
data packets.

• Parameters: contains the definitions of all the
parameters that can be configured by the application
programmer.

• Core: contains all the code that interacts with the
device registers in order to implement the I/O
operations.

This component exports a set of interface operations,
which are used to implement the HLInterface
operations. The component implements all the device
operations in terms of the device registers and other
hardware characteristics.

• Handler contains the device interrupt handler, which is
invoked on the completion of I/O operations. There is
a single interrupt for all the three SpaceWire
devices, and a synchronization object for each of the
transmit and receive sections of each SpaceWire
hardware device.3 Each occurrence of the interrupt is
signalled to the appropriate synchronization
object by identifying the device and function that has
caused the interrupt.

• Registers: contains register and bit field definitions, as
well as other data definitions that may be required to
interact with the device.

4.4 Serial driver
There are two UARTs (Universal Asynchronous Receiver-
Transmitter) in the RASTA board that provide an interface
between an APB bus and a RS-232 serial line. Each UART
provides the functionality for asynchronous serial
communications, supporting data frames with 8 data bits,
one optional parity bit, and one stop bit. As usual, it is also
possible to configure the baud rate and the flow control.

UART devices are not message-oriented as SpaceWire
devices, but character-oriented devices, i.e. an UART I/O
operation involves just one character. Nevertheless, higher
level software usually needs to send or receive a set of
characters which builds up a message. In order to provide
this functionality, the driver includes two separate memory
buffers for storing messages:

• Transmit buffer: when higher level software sends a
message, the corresponding data are pushed into this
buffer and then the transmission starts until the buffer

3 The GR-RASTA interface board has three SpaceWire devices.

is empty. The interrupt service routine is in charge of
transferring data from the buffer to the transmitter
register.

• Receive buffer: when a data item is received, the
interrupt service routine transfers it from the receiver
register to this buffer. In this way, higher level
software can receive messages by getting the data from
this buffer.

These intermediate buffers are stored in main memory, and
their sizes can be specified with the Buffer_Size parameters
(declared in Uart.Parameters). If the value of these
parameters is changed, the driver needs to be recompiled.
Figure 6 shows the data flow between the UART registers
and the intermediate buffers.

It must be noticed that the two-step driver pattern would
have been useful when calling the driver's high level
operations HL.Write and HL.Read. Both operations deal
with messages and they try to read or write a set of
characters from or to intermediate buffers. A call to
HL.Read can be made with a message length greater than
the currently stored in the receive buffer and thus the
calling task may have to wait for the arrival of the rest of
the message. As shown in section 2, this can be done in full
Ada by using a requeue statement, but it has to be must be
transformed into the alternate pattern shown in listing 2 in
order to comply with the Ravenscar profile.

Figure 7 contains a diagram of the software architecture of
the GRUART driver, which is an instance of the generic
architecture described in section 3.

Figure 6 UART buffers arrangement.

J. López, Á. Esquinas, J . Zamorano, J. A. de la Puente 129

Ada User Journal Volume 31, Number 2, June 2010

5 Conclusions
The main issues related to writing device drives in
Ravenscar Ada have been examined in the paper. A first
conclusion is that the low-level mechanisms of the Ada
language make it comparatively simple to develop device
drivers in a high-level language. Features such as
representation clauses and protected interrupt handlers
allow the designer to build high-level abstractions of the
hardware and greatly simplify writing the functional code
of the drivers. Using record fields to name register bit
groups improves the code readability compared to the
lower-level bit mask approach used by other languages.

The good news is that these useful mechanisms are
compatible with the Ravenscar profile, and thus can be
used to build device drivers for high-integrity embedded
real-time systems. The only potential problem that has been
identified is the inability to use the requeue statement to
write interrupt drivers using the well-known two-step
synchronization pattern. However, a simple workaround
has been proposed that only requires the restriction that a
protected entry can only be called by one task.

A software architecture that can be used to develop device
drivers for LEON computers has been introduced in the
paper. Two driver instances for communication devices
have been built based on the architecture. The authors’
experience has been very positive, and is currently being
continued with the developing of additional device drivers
for the ORK+ real-time kernel and the GR-RASTA LEON

computer boards within ESTEC, the European Space
Research and Technology Centre of ESA.

Acknowledgments
This work has been funded in part by the Spanish Ministry
of Science, project TIN2008-06766-C03-01 (RT-MODEL),
and by the European Space Agency, ESTEC/Contract No.
21392/08/NL/JK.

References
[1] AdaCore (2009). GNAT Reference Manual.

[2] ARM (2003). AMBA 3.0 Specification.

[3] Atmel (2005). Rad-Hard 32 bit SPARC V8 Processor
—AT697E.

[4] D. Berjón (2005). Desarrollo de un subsistema fiable
de comunicación para sistemas de tiempo real.
Master’s thesis, ETSIT- UPM. In Spanish.

[5] A. Burns, B. Dobbing and G. Romanski (1998). The
Ravenscar tasking profile for high integrity real-time
programs. In L. Asplund (ed) Reliable Software
Technologies—Ada-Europe’98. LNCS 1411,
Springer-Verlag, pp 236-275.

[6] A. Burns and A. Wellings (2007). Concurrent and
Real-Time Programming in Ada. Cambridge
University Press.

[7] A. Burns and A. Wellings (2009). Real-Time Systems
and Programming Languages. 4th edn. Addison-
Wesley.

[8] J.A. de la Puente, J.F. Ruiz and J. Zamorano (2000).
An open Ravenscar real-time kernel for GNAT. In
H.B. Keller and E. Plödereder (eds), Reliable
Software Technologies—Ada-Europe 2000. LNCS
1845, Springer-Verlag, pp 5–15.

[9] ECSS (2008). ECSS-E-ST-50-12C: Space
engineering — SpaceWire — Links, nodes, routers
and networks.

[10] Gaisler Research (2005). LEON2 Processor User’s
Manual.

[11] Gaisler Research (2006). RASTA Interface Board
FPGA User’s Manual.

[12] ISO/IEC: Std. 8652:1995/Amd 1:2007. Ada 2005
Reference Manual. Language and Standard Libraries.
LNCS 4348, Springer-Verlag.

[13] ISO/IEC: TR 24718:2005. Guide for the use of the
Ada Ravenscar Profile in high integrity systems.
Based on the University of York Technical Report
YCS-2003-348 (2003).

[14] ISO/IEC: TR 15942:2000. Guide for the use of the
Ada programming language in high integrity systems.

[15] D.S. Morilla (1995). Programación en Ada del
LANCE Am7990. Master’s thesis, FI-UPM. In
Spanish.

[16] PRAXIS Ltd (2008) The SPARK Ravenscar Profile.

Figure 7 UART driver architecture.

130 Experience in programming device dr ivers wi th the Ravenscar prof i le

Volume 31, Number 2, June 2010 Ada User Journal

[17] J.E. Salazar, J.E.: Desarrollo de un driver para un
sistema espacial de alta integridad. Master’s thesis,
FI- UPM. In Spanish.

[18] T. Shanley and D. Anderson (1999). PCI System
Architecture. 4th edn. Mindshare Inc.

[19] SPARC International (1992). The SPARC architecture
manual: Version 8. Prentice-Hall.

[20] S. Urueña, J.A. Pulido, J. Redondo and J. Zamorano
(2007). Implementing the new Ada 2005 real-time
features on a bare board kernel. Ada Letters, vol
XXVII no 2, p 61–66.

 131

Ada User Journal Volume 31, Number 2, June 2010

Executable Requirements in a Safety-Critical
Context with Ada
Christophe Baillon, Shanti Bouchez-Mongardé
SOGILIS, 10 ter boulevard Gambetta, 38000 Grenoble, France, http://sogilis.com;
email: { cba , shanti }@ sogilis.com

Abstract
When people who need the software and people who
build the software do not understand each other, the
success of a project may be impacted. In the same
way, when it is difficult to know which test case
corresponds to a given requirement, or if each and
every requirement is fully covered by the test suite, we
have a traceability issue that may also impact the
success of the project.
During the last few years, the agile community has
suggested a new development paradigm in order to
address this traceability issue. This approach is
called Behaviour Driven Development (BDD). It is
based on a new way of expressing requirements using
a common language understandable by all parties at
stake.
After having described the Behaviour Driven
Development in details, we introduce the XReq tool,
an Open Source project developed by SOGILIS and
part of the Open-DO project. It is designed to bring
the Behaviour Driven Development to the Ada
language and other statically typed languages. It also
aims at facilitating the traceability of High and Low
Level Tests in the context of DO-178B projects.
Keywords: Behaviour Driven Development, Ada,
Requirements, Testing, Safety-Critical Projects, DO-
178B.

1 Introduction
The main agile principles have been formulated in the
Agile Manifesto . The core ideas behind these principles
are:

• Be able to deliver often;

• Never disregard quality;

• Reduce the cost of changes;

• Eliminate ambiguities between the customer and
the developers.

A very common problem in every software project is
keeping the documentation up-to-date at all time.

Recently, a trend has been emerging in software
development, originally from the Agile community: Prefer
executable requirements over static Documentation.
Instead of having well-known static documents that expose

requirements and specifications for which we never know if
the corresponding test cases are up-to-date, the idea is to tie
together requirements and test cases with the help of a well
defined language .

The expression of such a language is quite difficult though.
At the very beginning, some attempts have been made
using syntactic sugar with languages like Java, C# or
Python in order to express requirements in a way that
makes them understandable by the customer or functional
engineers who may not be fluent with programming
languages. As we can imagine, this choice was not very
satisfactory because a programming language is not well
suited to express a business need while hiding
implementation details.

Lately, the Ruby community has found an interesting
solution with the Cucumber project1. Cucumber
understands Gherkin2, a business readable Domain Specific
Language (DSL) that lets you describe your software's
behaviour without having to reveal any detail on the actual
behaviour's implementation.

By expressing the requirements in both a readable and
executable manner, they become both documentation and
automated tests. Every requirement is then directly mapped
to the code. When all the tests are run successfully, we are
therefore guaranteed that all our requirements have been
covered. Executable requirements are defined in such a
way that they become automated acceptance tests3
themselves. XReq is a project which allows requirements to
be written just like with Cucumber, but for safety-critical
projects using the Ada 2005 language .

This is especially well suited for DO-178B projects that
need good traceability between requirements and tests for
the High Level Requirements (HLR) and High Level Tests
(HLT). XReq can also be used with Low Level
Requirements (LLR) and Low Level Tests (LLT).

In the next sections, we explain the history of BDD, the
XReq mechanism, how we write requirements, and how
XReq maps these requirements to the Ada code. Here we
talk about XReq for DO, a version fitted to the DO-178B
world.

1 http://cukes.info
2 http://wiki.github.com/aslakhellesoy/cucumber/gherkin
3 http://en.wikipedia.org/wiki/Acceptance_testing

132 Executable Requirements in a Safety-Cr i t ical Context wi th Ada

Volume 31, Number 2, June 2010 Ada User Journal

1.1 Test Driven Development
Test Driven Development (TDD) is a software
development practice that involves writing tests before
writing the code being tested.

You start by writing a very small test for code that does not
yet exist. At this point, you run the test and check that it
fails. Only then you can start writing the code, actually just
enough code to make that test pass, and no more. But TDD
is not a testing practice at all. Instead, the goal of TDD is
specification and not validation. It is a way to think about
functionalities of your application before you write your
business code. Of course, it is also a programming
technique, but tests are here mainly for documentation
purpose: each test explains how to use a module by
providing examples. In doing so, we always have a good
coverage of the code, and regressions are detected very
early. The typical TDD cycle is:

• Write the test and imagine how you need to use
the module being tested;

• Run the test, it should fail;

• Write the code to make the test pass, as simple as
possible;

• When the test passes, refactor the code, and make
sure every test passes.

TDD is appropriate for implementing design specifications
but has showed some limitations for expressing high level
requirements because programming languages are not
appropriate to perform this task.

1.2 Behaviour Driven Development
Let's now go one step further. Behaviour Driven
Development was born because many developers were
having a hard time relating to TDD as a design technique.

In 2002 Ward Cunningham invented Fit4. It uses HTML
tables to present the business people's examples, which are
connected to test fixtures written by programmers.
FitNesse5 is based on Fit and adds a wiki approach to
automated acceptance testing.

Around the same time, Dan North grew dissatisfied with
TDD: “The deeper I got into TDD, the more I felt that my
own journey had been [...] a series of blind alleys”, he
said6. It started out as a reflection to get rid of the unit
testing vocabulary (tests, assertions), and use the
vocabulary of behaviour instead (e.g. a method should
behave like this) and focus on making sensible naming
schemes so that failing tests would be easier to fix, edit or
delete if needed.

In late 2003, he started working on JBehave7, which would
later focus more on expressing requirements and

4 Framework for Integrated Test, available at http://fit.c2.com
5 http://www.fitnesse.org
6 http://dannorth.net/introducing-bd
7 http://jbehave.org

acceptance criteria, mapping textual scenarios to executable
bits of code in order to check the software behaves the way
it should.

BDD is about writing context for our scenarios first: the
user's role, what he wants the system to do for him, and
what he would gain from this feature. Then you write a
textual scenario of what exactly the user will do. Finally,
you start a cycle that includes TDD itself: each line of the
scenario is mapped to test code. We start the acceptance
test and every time we have to use an object, a class, or a
method, we write a unit test for this tiny bit of feature, then
just enough code to make it pass, refactor, then go back to
the acceptance test's next line. That way every single line of
code in your project is there to fulfil the stakeholder's
needs.

Every developer who starts practising TDD encounters the
same issues:

1. What do I test first?

2. How far should I test?

3. What needs to be tested, what does not?

BDD answers these questions: a unit test is written only
when an acceptance feature calls an object or method that
did not exist already or did not behave the way it should.
When the unit test passes, we launch the acceptance test
again and move to the next failing step.

Examples will be provided in the following sections.

1.3 BDD Used With Legacy Software
Legacy software may be defined informally as software
that were developed years ago and we don't know what to
do with, but that is still performing a useful job. They are
often critical to the operation of companies. These
programs have been maintained for many years by
hundreds of programmers, and while many changes have
been made to the software, the supporting documentation
may not be up-to-date or even missing. These factors
contribute to the staggering cost of maintaining legacy
systems. Consequently, there is an urgent need to find ways
to make these programs more maintainable without
disrupting the operation of the company. Michael C.
Feathers even wrote: “To me, legacy code is simply code
without tests” .

Most of the time, legacy software are out of control, and
nobody is able to make them evolve while being sure that
no regression is introduced. Using BDD and executable
requirements with untested legacy software is a good way
to build a step-by-step understanding of its behaviour.

2 Presentation of XReq
XReq has been launched to bring to the Ada world and in
particular to the safety-critical area the missing tool for
writing executable requirements. Beyond Ada, XReq also
targets other compiled languages such as C and C++. In its
design, it is strongly related to Cucumber as it is currently
the most advanced tool for writing executable
specifications.

C. Bai l lon, S. Bouchez-Mongardé 133

Ada User Journal Volume 31, Number 2, June 2010

XReq and Cucumber can understand the same file format
for the specifications, but the behaviour of XReq had to be
adapted to fit strong and statically typed languages such as
Ada whereas Cucumber works with Ruby, a very dynamic
and flexible language.

XReq works by translating the requirement expressed in
natural language to Ada packages designed to test what is
expressed in the requirements. We have the following
pipeline:

1.Compile the requirements to test packages

2.Compile the test packages

3.Run the executable and see if the tests are successful.

The second step can be done automatically by XReq, but
the user might want to do it manually in order to include
specific libraries that might be needed for the test.

In order to compile the requirements, step definitions must
be provided. Step definitions are regular Ada packages
containing procedures that can be accessed in the
requirement file in natural language. The correspondence
between the sentences and the procedures is done using
regular expressions provided in the package comments.

2.1 Requirements
Every requirement is gathered in a .requirement file. This
file must begin with the keyword Requirement: followed
by free text specifying the requirement. This text is not
meaningful for XReq but serves to specify as clearly as
possible the requirement in itself. The file is generally
indented to clearly show the structure but it is optional.

2.2 Test Cases
The requirement includes several test cases intended to test
the specific feature specified in the requirement. A test case
must start with the keyword Test Case: followed by a
simple description of the test.

Each test case consists of many different steps starting with
one of the keywords Given, When, Then or And. The rest
of the line describes in natural language what must be done
at this stage of the test case.

If the test cases all share the same initialization steps, they
can be gathered in a special section introduced by the
keyword Background:.

The requirement can also contain test case templates that
are quite similar to test cases except that they are used to
create many test cases sharing the same structure.

2.3 Steps
The steps are phrases expressed in natural language that
compose a part of the test case. When the test case is
executed, the steps are executed in order.

The steps can begin with the following keywords:

Given The purpose of Given is to put the system in a
known state before the user or an external tool
starts interacting with it (in the When steps). We

should never talk about user interaction in Given
steps.

When The purpose of When steps is to describe the key
action the user or the system performs (state
transition).

Then The purpose of Then steps is to observe outcomes.
The observations should be related to the business
value/benefit in the feature description. The
observations should also be on some kind of
output.

And Can be used as a link-word to repeat the previous
Given, When or Then keyword.

2.4 Step Definitions
Step definitions are Ada packages located in a special
directory step_definitions next to the requirement files.
There is absolutely no restriction on what is possible in
those package except that it usually depends on the XReq
library:

with XReqLib.General;
use XReqLib.General;

In order to introduce a definition for a given step, a
comment including the special keyword @given, @when
or @then and followed by a regular expression matching
the step text is put in front of the procedure implementing
the step. The procedure must have the following signature:

-- @given ^this step works$
procedure Given_this_step_works
 (Args : in out Arg_Type);

The procedure argument Args is a complex data structure
defined in the XReq library containing matches for the
regular expression and other additional parameters that can
be included in the requirement files that we will introduce
later.

3 Calculator Example
The easiest way to describe the use of XReq is to give a
simple example. Let’s imagine your customer wants a very
simple calculator. We are going to specify the requirement
in the file calculator.requirement:

Requirement: Calculator
 In order to do simple calculations
 I want to be able to do simple operations
 (add, subtract, multiply and divide)

 Test Case: Add two numbers
 When I add “3” and “5”
 Then the result should be “8”

 Test Case: Subtract two numbers
 When I subtract “3” to “5”
 Then the result should be “2”

Now that this requirement is expressed in a very
understandable way to non technical people, the

134 Executable Requirements in a Safety-Cr i t ical Context wi th Ada

Volume 31, Number 2, June 2010 Ada User Journal

programmer has to implement the step definitions related to
these test cases in step_definitions/calculator_steps.ads:

with XReqLib.General;
use XReqLib.General;
package Calculator_Steps is
 -- @when ^I add “([0-9]+)” and “([0-9]+)”$
 procedure Make_add (Args : in out Arg_Type);
 -- @when ^I substract “([0-9]+)” to “([0-9]+)”$
 procedure Make_sub (Args : in out Arg_Type);
 -- @then ^the result should be “([0-9]+)”$
 procedure Test_result (Args : in out Arg_Type);
end Calculator_Steps;

Note that this file can be generated by XReq.

The implementation is very simply expressed in
step_definitions/calculator_steps.adb:

package body Calculator_Steps is
 Result : Integer;
 procedure Make_add (Args : in out Arg_Type) is
 begin
 Result := Integer'Value (Args.Match (1)) +
 Integer'Value (Args.Match (2));
 end Make_add;
 procedure Make_sub (Args : in out Arg_Type) is
 begin
 Result := Integer'Value (Args.Match (2)) -
 Integer'Value (Args.Match (1));
 end Make_sub;
 procedure Test_result (Args : in out Arg_Type) is
 begin
 Assert (Result = Integer'Value(Args.Match(1)));
 end Test_result;
end Calculator_Steps;

Note that due to the simplicity of our example, we actually
only test the built-in + and – operators in Ada, not our
actual calculator. In a more complex example, the step
definitions are going to depend on some parts of the
program you want to test.

Additionally, you may notice that we have to convert the
numbers from String to Integer. This is because XReq
captures parts of the step text, as a String. It has no
knowledge whatsoever of what it should represent to you.
If the requirement is not written properly and the string is
not an Integer, the test will fail during the conversion.

The simplest way to compile the requirement is to specify it
on the XReq command line, like:

xreq calculator.requirement

The step definition will be read, and the resulting package
will be created under the tests directory:

-tests/requirement_calculator.ads

-tests/requirement_calculator.adb

These test packages can be used stand alone but will
require you to know some of the internals of the XReq
library. A more convenient way to compile the requirement
is by specifying a test suite to generate:

xreq -x test_suite calculator.requirement

This will generate:

-tests/requirement_calculator.ads

-tests/requirement_calculator.adb

-tests/test_suite.adb

-tests/test_suite.gpr

The test suite can then be compiled using gnatmake on the
generated GPR project file. XReq can compile it directly if
the -m option is specified.

The test suite is an Ada program designed to run the test
packages and generate a report either on the command line
or in an HTML file. If invoked directly, the report will be:

$ tests/test_suite

Requirement: Calculator
 In order to do simple calculations
 I want to be able to do simple operations
 (add, subtract, multiply and divide)

 Test Case: Add two numbers
 When I add “3” and “5”
 Then the result should be “8”

 Test Case: Subtract two numbers
 When I subtract “3” to “5”
 Then the result should be “2”

2 test cases (2 passed)
4 steps (4 passed)
Finished in 0s

This shows that the tests pass, if an error happens, the
description of the exception that occurred would be
displayed below the failing step (shown in red) and the
following steps would be skipped (shown in blue). The
steps that pass are shown in green.

The HTML format provides additional features such as a
table of contents, line numbering and more convenient
display of errors and debug information.

4 Advanced features
Finding why the test fails can sometimes be difficult. For
this reason, XReq step definitions can advertise debug
information that will be displayed in debug mode. This
make it possible to trace the reason of an error that
happened few steps before the error is actually detected.

It is possible to specify more extensive information along
with a step in a requirement file. This extended information
can either take the form of unformatted text kept verbatim,
or the form of tabular data, intended to represent tables.

Test case templates can be used to create different test
cases using the same steps with slightly different values.
The values of the template are specified after the template
in a table introduced by the Examples: keyword. The

C. Bai l lon, S. Bouchez-Mongardé 135

Ada User Journal Volume 31, Number 2, June 2010

following example is strictly equivalent to our two test
cases in our previous example:

Test Case Template: Operations on two numbers
 When I <operation> “<op1>” <link> “<op2>”
 Then the result should be “<result>”
 Examples:
 | operation | op1 | link | op2 | result |
 | add | 3 | and | 5 | 8 |
 | subtract | 3 | to | 5 | 2 |

5 Conclusion
Executable requirements is a technique that allows
technical and non-technical people to understand each
other, and to keep perfect traceability between requirements
and test cases. This approach can be mixed smoothly with
well-known software engineering techniques, or with
formal approaches. Indeed, we often hear people who are
opposing formal proof and testing. But we must understand
that executable requirements are a way to capture the needs
of the customer, and to map them into the code, to ensure
we are developing the right software. Formal proof can just
ensure that the code is right according to the developers'
understanding. The two approaches are actually
complementary. We could for example imagine mixing the
SPARK language and XReq to express the requirements.

More information on the XReq project can be found on the
Open-DO forge8, and on the SOGILIS Website9.

8 http://www.open-do.org/projects/xreq/
9 http://sogilis.com/go/xreq

References
[1] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair

Cockburn, Ward Cunningham, Martin Fowler, James
Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C. Martin, Steve
Mellor, Ken Schwaber, Jeff Sutherland and Dave
Thomas, Manifesto for Agile Software Development,
2001, http: //agilemanifesto.org

[2] Jonathan S. Ostroff, David Makalsky and Richard F.
Paige, Agile Specification-Driven Development, in J.
Eckstein and H. Baumeister (Eds.): XP 2004, LNCS
3092, pp. 104–112, 2004

[3] Jonathan Kohl and Brian Marick, Agile Tests as
Documentation, in C. Zannier et al. (Eds.): XP/Agile
Universe 2004, LNCS 3134, pp. 198–199, 2004

[4] Pekka Klärck, Juha Rantanen, and Janne Härkönen,
Executable Requirements in Practice, in P.
Abrahamsson, M. Marchesi, and F. Maurer (Eds.): XP
2009, LNBIP 31, pp. 226–227, 2009

[5] John Barnes, Programming in Ada 2005. Addison-
Wesley, 2006.

[6] Michael C. Feathers, Working Effectively with Legacy
Code, Prentice Hall PTR, 2004

136

Volume 31, Number 2, June 2010 Ada User Journal

Polymorphic Callbacks for Ada/C++ Bindings
Maciej Sobczak
CERN, CH-1211 Geneve 23, Switzerland; email: Maciej.Sobczak@cern.ch

Abstract
This article presents the programming technique that
can be used to implement object-oriented callbacks in
Ada bindings to C++ libraries that provide some
form of notification mechanism. The content of this
article is related to the industrial presentation that
was given at the 15th International Conference on
Reliable Software Technologies.
Keywords: language binding, object-oriented, Ada,
C++.

1 The application context
The technique presented here was developed in the context
of the YAMI4 library [1], which is a multi-language
messaging solution for distributed systems. The multi-
language aspect of this library means that several
programming languages are supported by it, and also that
some parts of the library are reused in the layered
architecture, where a common (so-called “core”)
functionality is implemented in C++ and used as a
foundation for the implementation of high-level
communication services in Ada.

Figure 1. Architecture of YAMI4

The general architecture of the YAMI4 library is presented
on Figure 1.

The YAMI4 messaging library uses callbacks to user-
provided handlers in order to inform about important events
- message progress notifications, incoming messages or
connection status changes are possible events that are
reported this way. For design reasons it is beneficial to
expose such callback mechanisms in terms of interfaces
that are implemented by the user, which gives them their
object-oriented flavour - the polymorphic callback in this
context means that the callback invocation itself uses
dynamic dispatch in order to locate and execute the
appropriate event handler implementation.

2 This is a general problem
It is important to note that the problem of callbacks is not
particular to messaging systems. Similar interfacing
patterns can be found in other systems as well - whether
this is a web server passing requests to request handler, a
database server calling its stored procedures, a GUI library
invoking user actions or an alarm system passing event
notifications to reactive components, the polymorphic
callback can be a viable solution pattern. The problem has a
relatively general nature and that's why it is possible to
extract it in the form that is no longer related to the original
application context.

The code examples presented here are self-contained and
can be applied or extended in other application contexts.

To explain the problem in concrete terms, the following
code presents the base C++ component that contains a
simple notification mechanism with the callback interface:

//
// base.h
//
class Callback
{
public:
 virtual void call() = 0;
};

void registerCallback(Callback * c);
void fireAll();

//
// base.cpp
//
#include "base.h"
#include <cstdio>
#include <vector>

std::vector<Callback *> allCallbacks;

void registerCallback(Callback * c)
{
 std::puts("base: register callback");

M. Sobczak 137

Ada User Journal Volume 31, Number 2, June 2010

 allCallbacks.push_back(c);
}

void fireAll()
{
 std::puts("base: fire all!");
 std::vector<Callback *>::iterator it;
 for (it = allCallbacks.begin();
 it != allCallbacks.end(); ++it)
 {
 (*it)->call();
 }
}

The problem here is to implement the Ada binding for this
base component while preserving the object-oriented nature
of the notification mechanism.

3 Ada binding with polymorphic callback
In order to implement the inter-language binding with
callback interface it is worth to review the anatomy of the
callback itself.

Object-oriented invocations, even though considered to be
atomic or indivisible concepts, can be presented as pairs
that combine an object and an action - the object represents
the who, whereas the action represents the what of the
invocation.

Incidentally both of these constituents can be expressed in
terms of pointers or addresses - this makes them
sufficiently low-level so that they can exist within the
framework of the Ada/C++ binding, which in the Ada
language standard is defined at the level of C language
constructs. That is, since the C language is a common
denominator of Ada and C++ for the purpose of language
binding, expressing the callback as a pair of pointers is a
necessary translation step - and that translation has to be
performed on both Ada and C++ sides. Taking these
additional translation layers into account, the final
architecture for this solution consists of four layers:

• The Ada component that implements object-
oriented callback handlers.

• The Ada translation layer that decomposes the
Ada object-oriented callbacks into low-level who
and what components and passes them down to
the C++ layer.

• The C++ translation layer that exports its
functionality in terms of C interface.

• The base C++ component that contains the
notification mechanism.

Coming from the bottom up, the translation layer at the
C++ side can be implemented as follows:

//
// wrapper.cpp
//
#include "base.h"

extern "C" typedef
void (*CallbackFunctionType)(void *);

class WrappedCallback : public Callback
{
public:
 WrappedCallback(
 CallbackFunctionType function, void * object)
 : f_(function), obj_(object) {}

 virtual void call()
 {
 // call into the Ada translator procedure
 f_(obj_);
 }

private:
 CallbackFunctionType f_;
 void * obj_;
};

extern "C" void wrapped_registerCallback(
 void * function_addr, void * object)
{
 // brute-force conversion from raw procedure
 // address obtained from Ada
 // to function pointer that is useable
 // at the C++ level
 union
 {
 void * raw_pointer;
 CallbackFunctionType function_pointer;
 } converter;

 converter.raw_pointer = function_addr;
 CallbackFunctionType function =
 converter.function_pointer;

 registerCallback(
 new WrappedCallback(function, object));
}

extern "C" void wrapped_fireAll()
{
 fireAll();
}

The wrapper layer above consists of three definitions with
the "C" convention - the callback function pointer type,
which can carry the translated address of the action to be
executed on the Ada side, and two wrappers for the
notification mechanism.

The most important part here is the registration function,
which has to convert the procedure address passed by the
Ada layer to the genuine function pointer. Interestingly,
converting raw pointers to function pointers is not obvious
in C++ and above the union is used as the most low-level
way to achieve that goal. Together with the class wrapper
that implements the base interface, this translation layer can
pass callback invocations up to the higher layers, where
they are handled by Ada code.

The translation layer in Ada has the form of the following
package:

--
-- callbacks.ads
--

138 Polymorphic Cal lbacks for Ada/C++ Bindings

Volume 31, Number 2, June 2010 Ada User Journal

package Callbacks is

 type Callback is interface;
 type Callback_Access is access all Callback'Class;

 procedure Call (Self : in Callback) is abstract;

 procedure Register_Callback
 (C : in Callback_Access);
 procedure Fire_All;

end Callbacks;

--
-- callbacks.adb
--
with System.Address_To_Access_Conversions;

package body Callbacks is

 subtype Void_Ptr is System.Address;

 package Conversions is
 new System.Address_To_Access_Conversions
 (Object => Callback'Class);

 -- helper translator,
 -- will be directly called by the C++ wrapper:
 procedure Callback_Translator (Obj : in Void_Ptr);
 pragma Convention (C, Callback_Translator);

 procedure Callback_Translator (Obj : in Void_Ptr) is
 Callback_Handler : Callback_Access :=
 Callback_Access (Conversions.To_Pointer (Obj));
 begin
 -- actual dispatching call to the Ada implementation:
 Callback_Handler.all.Call;
 end Callback_Translator;

 procedure Register_Callback
 (C : in Callback_Access) is

 procedure Wrapped_Register_Callback
 (Fun : in Void_Ptr; Obj : in Void_Ptr);
 pragma Import (C, Wrapped_Register_Callback,
 "wrapped_registerCallback");
 begin
 Wrapped_Register_Callback
 (Callback_Translator'Address,
 Conversions.To_Address
 (Conversions.Object_Pointer (C)));
 end Register_Callback;

 procedure Fire_All is
 procedure Wrapped_Fire_All;
 pragma Import (C, Wrapped_Fire_All,
 "wrapped_fireAll");
 begin
 Wrapped_Fire_All;
 end Fire_All;

end Callbacks;

As can be seen above, the package specification is already
"digestible" as a high-level component that can be directly
used in the same way as the base component in C++. The
actual translation work is being done in the package body,
where the object-oriented callbacks are decomposed into

two access values - the who, which directly corresponds to
the handler object, and the what, or action component,
which is a trampoline subprogram that takes the object
address from the C++ layer and uses it for a final
dispatching call to the Ada callback handler.

The example Ada program that uses the whole mechanism
can look like this:

--
-- example.adb
--
with Ada.Text_IO; use Ada.Text_IO;
with Callbacks;

procedure Example is

 type Some_Callback is
 new Callbacks.Callback with null record;
 overriding procedure Call (Self : in Some_Callback);

 overriding procedure Call
 (Self : in Some_Callback) is
 begin
 Put_Line ("Ada: Some Callback called");
 end Call;

 type Other_Callback is
 new Callbacks.Callback with null record;
 overriding procedure Call (Self : in Other_Callback);

 overriding procedure Call
 (Self : in Other_Callback) is
 begin
 Put_Line ("Ada: Other Callback called");
 end Call;

 SC : aliased Some_Callback;
 OC : aliased Other_Callback;

begin
 Put_Line ("Ada: registering callbacks");
 Callbacks.Register_Callback
 (SC'Unchecked_Access);
 Callbacks.Register_Callback
 (OC'Unchecked_Access);

 Put_Line ("Ada: fire all!");
 Callbacks.Fire_All;
end Example;

For completeness, the following compiler invocations can
be used to build the final executable on Linux or Mac:

$ g++ -c base.cpp
$ g++ -c wrapper.cpp
$ gnatmake example -largs wrapper.o base.o -lstdc++

4 Maintenance impact

An important property of this solution is that it is not
intrusive with relation to the base component, which here
was written in C++. This reflects a typical scenario where a
C++ library is wrapped by a binding layer in Ada. The
technique presented here allows to implement an efficient
binding without introducing any reverse dependency
between C++ and Ada and without modifying the original

M. Sobczak 139

Ada User Journal Volume 31, Number 2, June 2010

base component in any way, at the same time preserving
the object-oriented nature of the notification mechanism.

Another advantage of this technique is that each layer can
be replaced with different implementation - in particular,
the low-level base component can be rewritten in Ada with
no impact on the user code, as the Ada specification
already has the appropriate high-level structure. Other
combinations of languages and their bindings are also
possible with little on no impact on the existing
components.

5 Inter-language issues

It can be interesting to note that in this implementation of
object-oriented (polymorphic) callbacks the two low-level
callback constituents - that is, the two pointers that are
passed between layers written in two languages - have
different usage paths.

The object pointer, which comes from the access value to
the Ada callback handler instance, is created at the Ada
level, passed down to C++ for storage only and then - when
the notification is performed - passed up to Ada again
where the pointer is converted back to access value. In
other words, the access value is obtained and used within
the context of the same programming language and the
other language is given that value only for temporary
storage.

Contrary to this, the action pointer, which for the binding
purpose is obtained from the trampoline procedure in the
Ada translation layer, has a somewhat different usage path:
it is obtained at the Ada level, passed down to C++,
reconstructed as a function pointer and used right there to
invoke the trampoline procedure in Ada. That is, the access
value is obtained in the context of one programming
language but actually used in the context of another. It
might be interesting to note that the Ada language standard
[2] precisely defines the mechanics of passing subprogram
access values to external components, whereas the meaning
of pointer value that is received at the C++ side [3] is a bit
less clear. The conversion that is employed for this value at
the lower level can be considered to be a weak point of this
solution and a potential portability issue - but the truth is
that in order to effectively bind two programming
languages it is not possible to rely on language standards in
isolation and a pair of "friendly" compilers is needed

anyway; such a pair can make up for missing standard
provisions and that is particularly true for GNAT and g++,
which happen to be part of the same compiler toolchain.

6 Performance considerations

The multi-layer architecture of this solution can raise
performance-related questions - what is the cost of such
dual translation?

Even though no strict measurements have been done to
answer such questions in the quantitative way, it is safe to
assume that the solution presented here is very efficient.
The reason for this is that both translation layers perform
only type conversions and are very cheap in terms of object
code. In relation to pure-C++ implementation the Ada/C++
binding solution adds an overhead of a single subprogram
call and a single dispatching operation call.

7 Conclusions
The technique presented in this article allows to efficiently
implement language bindings for C++ libraries that provide
notification functionality in the form of object-oriented
(that is, involving run-time dispatching invocations)
callbacks. This technique has been successfully used in a
real project in the domain of communication and
messaging.

The examples presented here are of general nature and can
be deployed in other application domains. Obviously, some
code extensions will be necessary for callbacks involving
parameters or to properly handle error propagation – these
details were not within the focus of this article and
interested readers are invited to consult the source code of
the YAMI4 library [1], where such issues have been
resolved fully and in a realistic context. The author is also
open to any related questions.

References
[1] YAMI4 homepage: http://www.inspirel.com/yami4

[2] Ada Reference Manual, ISO/IEC 8652:2007(E) Ed. 3,
B.1 Interfacing Pragmas

[3] C++ Standard (ISO/IEC 14882:1998(E)), 4.10 Pointer
conversions

140

Ada User Journal Volume 31, Number 2, June 2010

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Gems #71-#76: Tokeneer Discovery
Lessons
Dean Kuo and Angela Wallenburg,
Altran Praxis
Dates: 5 October 2009-14 December 2009

Abstract: In previous Gems 1, we saw how to create a SPARK
project in GPS, and how to run the Examiner and Simplifier
tools to verify various properties of a simple linear search
function. In this series of Gems on SPARK, we will explore
SPARK capabilities in greater depth, using source code from
Tokeneer, an NSA-funded, highly secure biometric software
system.
Note: This series of Gems makes references to SPARK and
the Tokeneer project. More about both can be found visiting
http://www.adacore.com/home/products/sparkpro/tokeneer/.
Further, an introduction to SPARK and contracts in SPARK is
available at http://www.adacore.com/home/products/sparkpro/
tokeneer/discovery/ and at http://www.adacore.com/home/
products/sparkpro/tokeneer/discovery/lesson_contracts/.

Lesson 1 – Improper initialization
As stated in the SANS Common Weakness Enumeration
(http://cwe.mitre.org/top25/#CWE-665): “If you don’t
properly initialize your data and variables, an attacker might
be able to do the initialization for you, or extract sensitive
information that remains from previous sessions. When those
variables are used in security-critical operations, such as
making an authentication decision, then they could be
modified to bypass your security. Incorrect initialization can
occur anywhere, but it is probably most prevalent in rarely-
encountered conditions that cause your code to inadvertently
skip initialization, such as obscure errors.” Improper
initialization is listed as one of the top twenty-five most
dangerous programming errors by the SANS Institute. How
would you find those? How much would your compiler help?
The SPARK Toolset identifies all variables that have not been
initialized prior to being read. And if the SPARK automatic
source code analysis finds no uninitialized variables, then
there really are none!
In this Gem, we will first inject a couple of initialization errors
into some of the Tokeneer code and then show how you can
use the SPARK tools to find those errors.
Step-by-Step Instructions
Let us start by first running the Examiner, one of the SPARK
tools, on some of the Tokeneer code in the correct version.

1 Ada Gems #68 and #69, also published in the Ada User Journal Vol. 30,
n. 3, September 2009

Then we will inject an uninitialized variable error in the same
code and see how the Examiner’s data-flow analysis finds it
for us.
Step 1: Run the Examiner on the correct version of the code
The code below is from the procedure
GetStartAndEndTimeFromFile in auditlog.adb.

 264 procedure GetStartAndEndTimeFromFile
 265 (TheFile : in out File.T;
 266 Description : out AuditTypes.DescriptionT)
 267 --# global in out AuditSystemFault;
 268 --# derives AuditSystemFault,
 269 --# TheFile from *,
 270 --# TheFile &
 271 --# Description from TheFile;
 272 is
 273 OK : Boolean;
 274 FirstTime : Clock.TimeTextT;
 275 LastTime : Clock.TimeTextT;
 276 TimeCount : Natural; -- type Natural to match
 formal parameter
 277 -- in call to GetString
 278 TimeOK : Boolean := True;
 279
 ...
 311 ---
 312 -- begin GetStartAndEndTimeFromFile
 313 ---
 314 begin
 315
 316 FirstTime := Clock.PrintTime(Clock.ZeroTime);
 317 LastTime := Clock.PrintTime(Clock.ZeroTime);
 ...
 358 Description := ConvertTimesToText;
 359
 360 end GetStartAndEndTimeFromFile;

Run the Examiner on auditlog.adb and notice that it reports no
errors.
Step 2: Inject an initialization error and find it using the
Examiner
Let’s introduce two types of uninitialized variables into the
code – variables that are never initialized and variables that
may not be initialized.
Lines 316 and 317 initialize the variables FirstTime and
LastTime. Put these two lines of code inside an if statement so
that the variables are only initialized if the variable OK is true.
The modified code is shown below.
 316 if OK then
 317 FirstTime := Clock.PrintTime(Clock.ZeroTime);
 318 LastTime := Clock.PrintTime(Clock.ZeroTime);
 319 end if;

Ada Gems 141

Ada User Journal Volume 31, Number 2, June 2010

The changes introduce a number of improper initialization
errors:

• The variable OK is not initialized before it is read;

• The variables FirstTime and LastTime may not be
initialized;

• The uninitialized variables FirstTime, LastTime and OK
may then influence the expression that assigns a value to
the variable Description -- the variable OK is indirectly
used in the expression.

Rerun the Examiner and notice that the Examiner identifies all
uninitialized variables as errors, and it differentiates between
variables that are not initialized and variables that may not be
initialized:

auditlog.adb:316:10:
 Flow Error 20 - Expression contains reference(s) to
 variable OK which has an undefined value.
auditlog.adb:316:10:
 Flow Error 22 - Value of expression is invariant.
auditlog.adb:360:7:
 Flow Error 504 - Statement contains reference(s) to
 variable FirstTime, which may have an
 undefined value.
auditlog.adb:360:7:
 Flow Error 504 - Statement contains reference(s) to
 variable LastTime, which may have an
 undefined value.
auditlog.adb:362:8:
 Flow Error 602 - The undefined initial value of OK may be
 used in the derivation of Description.
auditlog.adb:362:8:
 Flow Error 602 - The undefined initial value of FirstTime
 may be used in the derivation of Description.
auditlog.adb:362:8:
 Flow Error 602 - The undefined initial value of LastTime
 may be used in the derivation of Description.

Notice also that the compiler already warns against the
simplest of these improper initialization errors:

auditlog.adb:316:04: warning: "OK" may be referenced
 before it has a value

Step 3: Find an array index initialization error
Another common error is accessing an array element with an
uninitialized variable as the index. In this example we will
inject such an error and demonstrate that the Examiner also
finds these errors.
The code below is from the procedure DeleteLogFile in
auditlog.adb.
 512 procedure DeleteLogFile (Index : LogFileIndexT)
 513 --# global in out AuditSystemFault;
 514 --# in out LogFiles;
 515 --# in out LogFilesStatus;
 516 --# in out LogFileEntries;
 517 --# derives AuditSystemFault,
 518 --# LogFiles from *,
 519 --# LogFiles,
 520 --# Index &
 521 --# LogFilesStatus,
 522 --# LogFileEntries from *,
 523 --# Index;
 524 is

 525 OK : Boolean;
 526 TheFile : File.T;
 527 begin
 528
 529 TheFile := LogFiles (Index);
 ...
 543 end DeleteLogFile;

Line 529 of the code accesses the Indexth element of the array
LogFiles.
Declare a new variable I of type LogFileIndexT and replace
Index, on line 529, with I. The modified code is shown below.

 512 procedure DeleteLogFile (Index: LogFileIndexT)
 ...
 524 is
 525 OK : Boolean;
 526 TheFile : File.T;
 527 I : LogFileIndexT;
 528 begin
 529
 530 TheFile := LogFiles (I);

Run the Examiner on the file auditlog.adb and notice that it
reports that the variable I has not been initialized:

auditlog.adb:530:18:
 Flow Error 20 - Expression contains reference(s) to
 variable I which has an undefined value.
auditlog.adb:544:8:
 Flow Error 32 - The variable I is neither imported nor
 defined.
auditlog.adb:544:8:
 Flow Error 50 - AuditSystemFault is not derived from the
 imported value(s) of Index.
auditlog.adb:544:8:
 Flow Error 602 - The undefined initial value of I may be
 used in the derivation of AuditSystemFault.
auditlog.adb:544:8:
 Flow Error 602 - The undefined initial value of I may be
 used in the derivation of LogFiles.

Again, in this very simple case, the compiler is able to spot the
error too:

auditlog.adb:530:07: warning: variable "I" is read but never
 assigned

Although warnings from the compiler and warnings from the
Examiner can sometimes overlap, one should keep in mind
that the compiler warnings are heuristic, while the Examiner
will warn against all possible improper initialization errors.
Summary
We have seen that the the SPARK tools can verify that a
SPARK program is free from improper input validation errors.
In the next Gem, we will study how SPARK handles a related
class of errors — identifying ineffective statements.

Lesson 2 – How to identify ineffective statements.
Every statement should have a purpose. An ineffective
statement has no effect on any output variable and therefore
has no effect on the behaviour of the code. The presence of
ineffective statements reduces the quality and the
maintainabiliy of the code. The SPARK Toolset identifies all
ineffective statements.

142 Ada Gems

Volume 31, Number 2, June 2010 Ada User Journal

In this Gem, we show how the SPARK Toolset finds
ineffective statements to ensure that SPARK programs are free
from them. We will inject an ineffective statement into the
Tokeneer code and use the Examiner to locate it.
Step 1: Inject an ineffective statement
We will inject an ineffective statement into the implementation
of the function NextListIndex in auditlog.adb.

 189 function NextListIndex(Value : LogFileIndexT)
 return LogFileIndexT
 190 is
 191 Result : LogFileIndexT;
 192 begin
 193 if Value = LogFileIndexT'Last then
 194 Result := LogFileIndexT'First;
 195 else
 196 Result := Value + 1;
 197 end if;
 198 return Result;
 199 end NextListIndex;

Let’s modify the above code by adding the new variable
Result_Tmp of type LogFileTypeT (line 191) and change line
196 so that Value + 1 is assigned to the variable Result_Tmp
instead of Result (see code below).

 189 function NextListIndex(Value : LogFileIndexT)
 return LogFileIndexT
 190 is
 191 Result, Result_Tmp: LogFileIndexT;
 192 begin
 193 if Value = LogFileIndexT'Last then
 194 Result := LogFileIndexT'First;
 195 else
 196 Result_Tmp := Value + 1;
 197 end if;
 198 return Result;
 199 end NextListIndex;

The statement on line 196 is ineffective because Result_Tmp
is never used. Furthermore, the value for Result may be
undefined when Value /= LogFileIndexT’Last.
Step 2: See how the Examiner finds the problem
Run the Examiner for auditlog.adb and, as expected, it finds
the ineffective statement as well as the possible undefined
value for Result.

auditlog.adb:196:10:
 Flow Error 10 - Ineffective statement.
auditlog.adb:198:14:
Flow Error 501 - Expression contains reference(s) to
 variable Result, which may have an undefined value.

auditlog.adb:199:8:
Flow Error 33 - The variable Result_Tmp is neither
 referenced nor exported.

auditlog.adb:199:8:
Flow Error 602 - The undefined initial value of Result may
 be used in the derivation of the function value.

Summary
In this Gem we have seen an example of the SPARK tools
finding an ineffective statement. The SPARK tools will find

all ineffective statements. In the next Gem we will study Input
Validation.

Lesson 3 – How to validate input.
Input validation ensures that your program’s input conforms to
expectations – for example, to ensure that the input has the
right type. But validation requirements can be much more
complicated than that. Incorrect input validation can lead to
security and safety problems since many applications live in a
“hostile” environment and the input might be constructed by
an attacker. “It’s the number one killer of healthy software…”
according to the CWE/SANS list of the top twenty-five most
dangerous programming errors.
For example, consider the following few lines of code from
the original release of the Tokeneer code:

 233 if Success and then
 234 (RawDuration * 10 <= Integer(DurationT'Last)
 and
 235 RawDuration * 10 >= Integer(DurationT'First))
 then
 236 Value := DurationT(RawDuration * 10);
 237 else

This code has a check that the input RawDuration is in the
right range before the value is updated – an example of so
called defensive coding, according to the advice from the
software experts who compiled the list of dangerous
programming errors. Can you see the problem with this code?
The SPARK tools will identify a serious defect in this code,
which could impact on security.
In this Gem, the above code will be investigated using the
SPARK tools. This Gem shows the challenges in ensuring the
absence of input validation errors, and the benefits of using
SPARK to do so.
Step-by-Step Instructions
First, we will familiarize ourselves with two more advanced
SPARK tools by running them on the correct version of the
code. Then we inject the defect shown above into the
Tokeneer code, rerun the SPARK tools, and interpret the
results.
Step 1: Analyse the Correct Version of the Code
The correct lines of code are the following:

 233 if Success and then
 234 (RawDuration <= Integer(DurationT'Last) / 10
 and
 235 RawDuration >= Integer(DurationT'First) / 10)
 then
 236 Value := DurationT(RawDuration * 10);
 237 else

Analyse Tokeneer using the following steps:

• Run the Examiner on the file configdata.adb.

• Run the Simplifier, a more advanced tool in the SPARK
tool suite, which tries to show the absence of certain run-
time errors by theorem proving.

• Run POGS, which gives a summary of the verification
just performed.

Ada Gems 143

Ada User Journal Volume 31, Number 2, June 2010

Now let us inspect the verification summary, where an overall
summary of the Tokeneer verification is given. It shows that
there are no errors which is expected as we ran the tools on the
correct version of the code. Furthermore, it shows a number of
tables describing details for the verification. For example, lines
2750 to 2766 of core.sum (Figure 1) are the results from the
analysis of the procedure ReadDuration.
Note that the columns False and TO DO are empty, which
means that the SPARK tools found no errors in the verification
of procedure ReadDuration.
Step 2: Inject Erroneous Input Validation Code
Now, replace lines 234 and 235 in the file configdata.adb with
the erroneous code:

 233 if Success and then
 234 (RawDuration * 10 <= Integer(DurationT'Last)
 and
 235 RawDuration * 10 >= Integer(DurationT'First))
 then
 236 Value := DurationT(RawDuration * 10);
 237 else

Essentially this code concerns the validation of an input – an
integer value RawDuration – that is read from a file, and is
expected to be in the range 0..200 seconds before it is
converted into a number of tenths of seconds in the range
0..2000.
Step 3: Re-Analyse the Faulty Code
Re-analyse Tokeneer. The results from the analysis of the
procedure ReadDuration is shown in Figure 2.

Notice that this time there is one YES in the TO DO column.
The SPARK Toolset has detected a potential problem with the
procedure ReadDuration.
Step 4: Investigate the Verification Output
Now, let us have look into what the error that the SPARK
tools have found really means.
The file readduration.siv contains the Simplifier’s analysis of
the procedure. Lines 38 to 55 (rigth column) of the file show
the potential problem the SPARK Toolset has identified. The
Simplifier, on line 54, is trying to check no arithmetic
overflow errors will occur when evaluating the expression
RawDuration * 10 – that is, when Success is True then
RawDuration * 10 >= -2147483648 (Integer’First) and
RawDuration * 10 <= 2147483648 (Integer'Last).

38 procedure_readduration_4.
39 H1: rawduration__1 >= - 2147483648 .
40 H2: rawduration__1 <= 2147483647 .
 ...
52 ->
53 C1: success__1 -> rawduration__1 * 10 >=
 - 2147483648 and rawduration__1 *
54 10 <= 2147483647 .
55

Here the SPARK theorem prover is trying to prove that
RawDuration times 10 is within the limits of Integer,
assuming only that it was within the limits before it was
multiplied by 10. This should not be possible to prove. Think
about a scenario where Tokeneer was given an input floppy

2750 VCs for procedure_readduration :
2751 --
2752 | | | -----Proved In----- | | |
2753 # | From | To | vcg | siv | plg | prv | False | TO DO |
2754 --
2755 1 | start | rtc check @ 220 | | YES | | | | |
2756 2 | start | rtc check @ 221 | | YES | | | | |
2757 3 | start | rtc check @ 221 | | YES | | | | |
2758 4 | start | rtc check @ 233 | | | | | | YES |
2759 5 | start | rtc check @ 237 | | YES | | | | |
2760 6 | start | rtc check @ 243 | | YES | | | | |
2761 7 | start | rtc check @ 243 | | YES | | | | |
2762 8 | start | assert @ finish | YES | | | | | |
2763 9 | start | assert @ finish | YES | | | | | |
2764 10 | start | assert @ finish | YES | | | | | |
2765 11 | start | assert @ finish | YES | | | | | |
2766 --

Figure 2 Results from the analysis of the faulty procedure ReadDuration

2750 VCs for procedure_readduration :
2751 --
2752 | | | -----Proved In----- | | |
2753 # | From | To | vcg | siv | plg | prv | False | TO DO |
2754 --
2755 1 | start | rtc check @ 220 | | YES | | | | |
2756 2 | start | rtc check @ 221 | | YES | | | | |
2757 3 | start | rtc check @ 221 | | YES | | | | |
2758 4 | start | rtc check @ 233 | | YES | | | | |
2759 5 | start | rtc check @ 237 | | YES | | | | |
2760 6 | start | rtc check @ 243 | | YES | | | | |
2761 7 | start | rtc check @ 243 | | YES | | | | |
2762 8 | start | assert @ finish | YES | | | | | |
2763 9 | start | assert @ finish | YES | | | | | |
2764 10 | start | assert @ finish | YES | | | | | |
2765 11 | start | assert @ finish | YES | | | | | |
2766 --

Figure 1 Results from the analysis of the correct procedure ReadDuration

144 Ada Gems

Volume 31, Number 2, June 2010 Ada User Journal

disk where RawDuration was set to 1000000000. Both the
assumptions H1 and H2 would be true, but C1 – the
conclusion – would be false!
This is a serious defect since a malicious user holding the
“security officer” role can deliberately attack the system by
supplying a file that contains a malformed configuration data
file – one that contains a value for RawDuration that is greater
than Integer’Last/10.
Summary
In SPARK, developers need to be explicit about the intended
input and output of program components. This has the benefit
of the SPARK tools being able to automatically find defects
that are hard to prevent, hard to detect, and with important
security consequences.

Lesson 4 – verify application-specific safety and security
properties.
In this Gem, we will see how the SPARK tools detect any
differences between a program’s intended behaviour, as
specified in its contract, and its actual behaviour, as
implemented in the code. Thus the SPARK tools can be used
either to find defects in the contract, to find defects in the
implementation, to find defects in both, or to show
conformance between intended and actual behaviour.
Step-by-Step Instructions
Step 1: Analyse the Correct Version of the Code
The precondition for procedure AddElementToCurrentFile in
auditlog.adb (lines 772 – 774 in the code below) specifies that
the array element LogFileEntries (CurrentLogFile) is less than
MaxLogFileEntries and the postcondition specifies that the
array element is incremented by 1.

 751 procedure AddElementToCurrentFile
 752 (ElementID : in AuditTypes.ElementT;
 753 Severity : in AuditTypes.SeverityT;
 754 User : in AuditTypes.UserTextT;
 755 Description : in AuditTypes.DescriptionT)
 756 --# global in Clock.Now;
 757 --# in CurrentLogFile;
 758 --# in out AuditSystemFault;
 759 --# in out LogFiles;
 760 --# in out LogFileEntries;
 761 --# derives AuditSystemFault,
 762 --# LogFiles from *,
 763 --# Description,
 764 --# LogFiles,
 765 --# Clock.Now,
 766 --# ElementID,
 767 --# Severity,
 768 --# User,
 769 --# CurrentLogFile &

 770 --# LogFileEntries from *,
 771 --# CurrentLogFile;
 772 --# pre LogFileEntries(CurrentLogFile) <
 MaxLogFileEntries;
 773 --# post LogFileEntries(CurrentLogFile) =
 774 --# LogFileEntries~(CurrentLogFile) + 1;
 775
 776 is
 777 TheFile : File.T ;
 778 begin
 779 TheFile := LogFiles (CurrentLogFile);
 780 AddElementToFile
 781 (TheFile => TheFile,
 782 ElementID => ElementID,
 783 Severity => Severity,
 784 User => User,
 785 Description => Description);
 786 LogFiles (CurrentLogFile) := TheFile;
 787
 788 LogFileEntries(CurrentLogFile) :=
 LogFileEntries(CurrentLogFile) + 1;
 789 end AddElementToCurrentFile;

Analyse Tokeneer with the SPARK Toolset. The result of the
analysis shows (Figure 3) that the SPARK Toolset has
identified no problems with the code in the procedure
AddElementToCurrentFile – the columns False and TO DO
are empty.
Step 2: Change the Contract – But not the Implementation
Let us change the postcondition so the procedure’s contract no
longer matches its implementation. The SPARK Toolset will
then detect the inconsistency. Change the postcondition to
specify that the array element LogFileEntries(CurrentLogFile)
should be incremented by 10. The modified code is shown
below.

 772 --# pre LogFileEntries(CurrentLogFile) <
 MaxLogFileEntries;
 773 --# post LogFileEntries(CurrentLogFile) =
 774 --# LogFileEntries~(CurrentLogFile) + 10;
 775

Step 3: Re-Analyse and Study the Results
Re-analyse Tokeneer. The results of the analysis for the
procedure AddElementToCurrentFile has changed – the
columns False and TO DO are no longer empty (see Figure 4).
The SPARK Toolset has identified a potential problem with
the code. The problem is that the procedure’s contract and
implementation don’t match.
Step 4: Revert the Contract – But Change the Implementation
Undo the changes to the postcondition and change line 788 so
that the input value is preserved.

 659 VCs for procedure_addelementtocurrentfile :
 660 --
 661 | | | -----Proved In----- | | |
 662 # | From | To | vcg | siv | plg | prv | False | TO DO |
 663 --
 664 1 | start | rtc check @ 781 | | YES | | | | |
 665 2 | start | rtc check @ 782 | | YES | | | | |
 666 3 | start | rtc check @ 788 | | YES | | | | |
 667 4 | start | rtc check @ 790 | | YES | | | | |
 668 5 | start | assert @ finish | | YES | | | | |
 669 --

Figure 3 Results from the analysis of the correct procedure AddElementToCurrentFile

Ada Gems 145

Ada User Journal Volume 31, Number 2, June 2010

 774 --# pre LogFileEntries(CurrentLogFile) <
 MaxLogFileEntries;
 775 --# post LogFileEntries(CurrentLogFile) =
 776 --# LogFileEntries~(CurrentLogFile) + 1
 ...
 791 LogFileEntries(CurrentLogFile) :=
 LogFileEntries(CurrentLogFile) + 0;
 792 end AddElementToCurrentFile;

Re-analyse Tokeneer. The analysis of the procedure is
unchanged, as the implementation, like previously, does not
match the procedure’s contract.
Step 5: Strengthen the Contract
Revert the code to its original state.
In SPARK, we can strengthen the procedure’s contract and say
more about the properties of the procedure. Let’s add extra
code assigning the value 10 to the first element of the array
LogFileEntries if CurrentLogFile is not LogFileIndexType’
First (lines 789 – 791 below).

 788 LogFileEntries(CurrentLogFile) :=
 LogFileEntries(CurrentLogFile) + 1;
 789 if CurrentLogFile /= LogFileIndexType'First then
 790 LogFileEntries(LogFileIndexType'First) := 10;
 791 end if;
 792 end AddElementToCurrentFile;

Re-analyse Tokeneer and notice that no errors are reported, as
the procedure’s implementation is not inconsistent with its
contract. The postcondition says nothing about the effects of
the procedure on any of the array elements except the one
indexed by CurrentLogEntry.
We can strengthen the postcondition (lines 775 and 776
below) to specify that only the entry indexed by
CurrentLogFile is incremented and all other elements remain
unchanged.

 772 --# pre LogFileEntries(CurrentLogFile) <
 MaxLogFileEntries;

 773 --# post LogFileEntries =
 LogFileEntries~[CurrentLogFile =>
 LogFileEntries~(CurrentLogFile)+1];

Re-analyse Tokeneer and notice, on lines 659 to 671, that the
mismatch between the implementation and contract has been
detected (Figure 5).
Summary
This Gem demonstrates that the more precise the specification,
the more bugs the SPARK Toolset can detect. The use of the
SPARK Toolset during development to verify code is, in our
experience, more effective than compiling and testing, since
the analysis is for all input data and not just a few specific test
cases.

Lesson 5 – Deal with overflow errors.
An overflow error occurs when the capacity of a device is
exceeded. Overflow errors are a source of quality and security
concerns. For instance, when an arithmetic overflow occurs, a
calculated value does not fit in its specified size, and the
calculation (and the program) just stops. Buffer overflow
happens when a process stores data in a buffer outside of the
memory that the programmer set aside for it. Buffer overflow
errors are widely known to present a vulnerability to malicious
hackers, who might exploit the error to sneak their own code
onto a victim’s disk, storing it outside of the intended buffer.
The SPARK tools detect all potential arithmetic and buffer
overflow errors. In the Gem about input validation, we saw an
example of an arithmetic overflow. In this Gem, we will study
how the SPARK tools find a buffer overflow error that we
have injected into the Tokeneer code.
Step-by-Step Instructions
We will introduce a buffer overflow error into auditlog.adb
and show how the SPARK Toolset detects it.
Step 1: Inject a Buffer Overflow Error
The procedure AddElementToCurrentFile increments the
element indexed by CurrentLogFile in the array

 657 VCs for procedure_addelementtocurrentfile :
 658 --
 659 | | | -----Proved In----- | | |
 660 # | From | To | vcg | siv | plg | prv | False | TO DO |
 661 --
 662 1 | start | rtc check @ 783 | | YES | | | | |
 663 2 | start | rtc check @ 784 | | YES | | | | |
 664 3 | start | rtc check @ 790 | | YES | | | | |
 665 4 | start | rtc check @ 792 | | YES | | | | |
 666 5 | start | rtc check @ 794 | | YES | | | | |
 667 6 | start | assert @ finish | | | | | | YES |
 668 7 | start | assert @ finish | | YES | | | | |
 669 --

Figure 5 Results from the analysis of the mismatch in AddElementToCurrentFile

 659 VCs for procedure_addelementtocurrentfile :
 660 --
 661 | | | -----Proved In----- | | |
 662 # | From | To | vcg | siv | plg | prv | False | TO DO |
 663 --
 664 1 | start | rtc check @ 781 | | YES | | | | |
 665 2 | start | rtc check @ 782 | | YES | | | | |
 666 3 | start | rtc check @ 788 | | YES | | | | |
 667 4 | start | rtc check @ 790 | | YES | | | | |
 668 5 | start | assert @ finish | | | | | YES | |
 669 --

Figure 4 Results from the analysis of the inconsitency in contract of AddElementToCurrentFile

146 Ada Gems

Volume 31, Number 2, June 2010 Ada User Journal

LogFileEntries – see below.

 775 --# post LogFileEntries(CurrentLogFile) =
 776 --# LogFileEntries~(CurrentLogFile) + 1;
 ...
 790 LogFileEntries(CurrentLogFile) :=
 LogFileEntries(CurrentLogFile) + 1;

Change the code on line 790 and the postcondition on 775 to
776 so the procedure copies the value in the
CurrentLogFile+1th element into the CurrentLogFileth
element of the array. The modified code is shown below.

 774 --# pre LogFileEntries(CurrentLogFile) <
 MaxLogFileEntries;
 775 --# post LogFileEntries(CurrentLogFile) =
 776 --# LogFileEntries~(CurrentLogFile+1);
 ...
 790 LogFileEntries(CurrentLogFile) :=
 LogFileEntries(CurrentLogFile+1) ;

Step 2: Analyse and Study the Verification Output
Analyse Tokeneer. The SPARK Toolset identifies (see Figure
6), that there is a potential problem with the procedure
AddElementToCurrentFile.
The Simplifier failed to show that CurrentLogFile+1 is always
within range of the index type, because it is not true – it goes
outside its range when CurrentLogFile = LogFileIndexType’
Last, which then causes a buffer overflow.
Summary
Buffer overflow errors are common and present a security
vulnerability. The SPARK Toolset can verify that a SPARK
program is free from arithmetic as well as buffer overflow
errors. In this Gem we have seen how the SPARK tools can be
used to detect a buffer overflow error. In the next Gem, we
will see how SPARK can be used in Ensuring Secure
Information Flow.

Lesson 6 – Ensure secure information flow.
Error message information leak occurs when secure data is
leaked, through error messages, to unauthorised users, and is
one of the top twenty-five most dangerous programming errors
according to SANS Institute. The general problem is ensuring
that information flow adheres to certain policies — for
example, certain data should never be written in an error
message to a log file that may be accessible by unauthorised
users.
The objective of this Gem is to demonstrate that the Examiner
detects information flow violations.
Step-by-Step Instructions
Step 1: Study a Contract from an Information Flow
Perspective

The code below is from the procedure Verify in bio.adb. The
out variable MatchResult returns the result of whether a
person’s fingerprint matched their template. The local variable
NumericReturn is set to the enumerated value BioApiOk if the
fingerprint successfully matched; otherwise it returns an error
code.
When a match is unsuccessful, a log record is written
including the variable NumericReturn, which is derived from
the person’s Template.

 221 procedure Verify(Template : in
 IandATypes.TemplateT;
 222 MaxFAR : in IandATypes.FarT;
 223 MatchResult : out
 IandATypes.MatchResultT;
 224 AchievedFAR : out
 IandATypes.FarT)
 ...
 230 --# derives AuditLog.State,
 231 --# AuditLog.FileState from AuditLog.State,
 232 --# AuditLog.FileState,
 233 --# Template,
 234 --# Clock.Now,
 235 --# ConfigData.State,
 236 --# Interface.Input &
 ...
 242 is
 243 NumericReturn : BasicTypes.Unsigned32T;
 244 begin
 245 Interface.Verify(Template => Template,
 246 MaxFAR => MaxFAR,
 247 MatchResult => MatchResult,
 248 AchievedFAR => AchievedFAR,
 249 BioReturn => NumericReturn);
 250
 251 if NumericReturn /= ValueOf(BioAPIOk) then
 252 -- An error occurred, overwrite match
 information.
 253 MatchResult := IandATypes.NoMatch;
 254 AuditLog.AddElementToLog
 255 (ElementID => AuditTypes.SystemFault,
 256 Severity => AuditTypes.Warning,
 257 User => AuditTypes.NoUser,
 258 Description => MakeDescription
 ("Biometric device failure ",
 259 NumericReturn));
 260 end if;
 261 end Verify;

If the log were accessible to potential hackers, which is not the
case for Tokeneer, then this would be an example of an error

 659 VCs for procedure_addelementtocurrentfile :
 660 --
 661 | | | -----Proved In----- | | |
 662 # | From | To | vcg | siv | plg | prv | False | TO DO |
 663 --
 664 1 | start | rtc check @ 781 | | YES | | | | |
 665 2 | start | rtc check @ 782 | | YES | | | | |
 666 3 | start | rtc check @ 788 | | YES | | | | |
 667 4 | start | rtc check @ 790 | | | | | | YES |
 668 5 | start | assert @ finish | | YES | | | | |
 669 --

Figure 6 Results from the analysis of the mismatch in AddElementToCurrentFile

Ada Gems 147

Ada User Journal Volume 31, Number 2, June 2010

message information leak. Fingerprint templates should never
be accessible by hackers.
Step 2: Change an Information Flow Aspect of the Contract
Change the contract for the procedure Verify to specify that no
information written to the log is derived from Template by
deleting line 233.

 230 --# derives AuditLog.State,
 231 --# AuditLog.FileState from AuditLog.State,
 232 --# AuditLog.FileState,
 233 --#
 234 --# Clock.Now,
 235 --# ConfigData.State,
 236 --# Interface.Input &

The corresponding line (line 73) of code needs to be removed
from the file bio.ads.

 60 procedure Verify(Template : in
 IandATypes.TemplateT;
 61 MaxFAR : in IandATypes.FarT;
 62 MatchResult : out
 IandATypes.MatchResultT;
 63 AchievedFAR : out
 IandATypes.FarT);
 ...
 69 --# derives AuditLog.State,
 70 --# AuditLog.FileState from Input,
 71 --# AuditLog.State,
 72 --# AuditLog.FileState,
 73 --#
 74 --# Clock.Now,
 75 --# ConfigData.State &

Step 3: Use the SPARK Tools to Detect the Information Leak
Examine the file bio.adb and notice the Examiner reports the
error that information derived from the variable Template is
written to the log. This means that data derived from the
template is being written to the log!

bio.adb:261:8:
Flow Error 601 - AuditLog.State may be derived from the
 imported value(s) of Template.

bio.adb:261:8:
Flow Error 601 - AuditLog.FileState may be derived from
 the imported value(s) of Template.

Step 4: Introduce a Malicious Hack
The Examiner also detects when data has been incorrectly
used. We now add back door code in the procedure Verify
(lines 248-251 below). It returns a positive match independent
of the user’s fingerprint when the clock is at midnight.

 223 procedure Verify(Template : in
 IandATypes.TemplateT;
 224 MaxFAR : in IandATypes.FarT;
 225 MatchResult : out
 IandATypes.MatchResultT;
 226 AchievedFAR : out
 IandATypes.FarT)
 ...

 232 --# derives AuditLog.State,
 233 --# AuditLog.FileState from AuditLog.State,
 234 --# AuditLog.FileState,
 235 --# Template,
 236 --# Clock.Now,
 237 --# ConfigData.State,
 238 --# Interface.Input &
 ...
 244 is
 245 NumericReturn : BasicTypes.Unsigned32T;
 246 T : Clock.TimeT;
 247 begin
 248 T := Clock.GetNow;
 249 if T = Clock.ZeroTime then
 250 MatchResult := IandATypes.Match;
 251 AchievedFAR := 0;
 252 else
 253
 254 Interface.Verify(Template => Template,
 255 MaxFAR => MaxFAR,
 256 MatchResult => MatchResult,
 257 AchievedFAR => AchievedFAR,
 258 BioReturn => NumericReturn);
 259
 ...
 272 end if;
 ...
 275 end Verify;

Step 5: Use the SPARK Tools to Detect the Weakness
Examine the file bio_bad.adb and notice that the Examiner
reports the error that MatchResult is dependent on the current
time (Clock.now), which is inconsistent with the procedure’s
contract. The Examiner has identified an information flow
inconsistency due to the presence of the back door.

bio_bad.adb:243:40:
Flow Error 4 - The dependency of the exported value of
 AuditLog.State on the imported value

 of Verify.Template has not been previously stated.
bio_bad.adb:243:40:

Flow Error 4 - The dependency of the exported value of
 AuditLog.FileState on the imported value

 of Verify.Template has not been previously stated.
bio_bad.adb:275:8:

Flow Error 601 - MatchResult may be derived from the
 imported value(s) of Clock.Now.

bio_bad.adb:275:8:
Flow Error 601 - AchievedFAR may be derived from the
 imported value(s) of Clock.Now.

Summary
In this Gem we have learnt about information flow contracts
and we have seen the SPARK tools detect a malicious hack.
SPARK programs are free from information leaks when the
contract accurately specifies the desired information flow
between variables.

148

Volume 31, Number 2, June 2010 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Peter Dencker
Steinäckerstr. 25
D-76275 Ettlingen-Spessartt
Germany
Email: dencker@web.de
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Annual Student Programming Contest “The Ada Way”
	WG9 Letter to the Community: Maintenance and Revision of the Ada Programming Language
	Experience in programming device drivers with the Ravenscar profile
	Executable Requirements in a Safety-Critical Context with Ada
	Polymorphic Callbacks for Ada/C++ Bindings
	Ada Gems
	National Ada Organizations

