

Ada User Journal Volume 31, Number 3, September 2010

ADA
USER
JOURNAL

Volume 31
Number 3

September 2010

Contents
Page

Editorial Policy for Ada User Journal 150

Editorial 151

Quarterly News Digest 153

Conference Calendar 179

Forthcoming Events 185

Student Programming Contest “The Ada Way” 189

Special Contribution

 A. Burns, J. L. Tokar (Eds.)
“Ada and the Software Vulnerabilities Project” 191

Ada Gems 217

Ada-Europe Associate Members (National Ada Organizations) 220

Ada-Europe 2010 Sponsors Inside Back Cover

150

Volume 31, Number 3, September 2010 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 151

Ada User Journal Volume 31, Number 3, September 2010

Editorial

Exactly one year ago, the September 2009 issue (Volume 30, Number 3) of the Ada User Journal published the Proceedings
of the “Workshop on Vulnerabilities”, an event co-located with the Ada-Europe 2009 conference. This workshop was the
beginning of a process intending to produce an Ada annex to the ISO Technical Report on Avoiding Programming Language
Vulnerabilities through Language Selection and Use (ISO/IEC PDTR 24772.2); this process was concluded in a meeting at
the Ada-Europe 2010 conference, this June in Valencia.

This issue of the Journal publishes the resulting document, co-edited by Alan Burns of the University of York, UK, and Joyce
Tokar of Pyrrhus Software, USA, which was submitted to ISO/IEC JTC 1/SC 22/WG23, the working group responsible for
the technical report. This document identifies the vulnerabilities that are applicable to Ada, and describes how these can be
avoided or mitigated. In the scope of this process an annex for SPARK was also developed, which will be published in the
next issue of the Journal.

Also in this issue, the reader will find the specification for the first student programming contest organized by Ada-Europe.
This annual contest, under the name "The Ada Way", is an effort to promote the use of Ada by students and educators “in a
form that is both fun and instructive”. This first edition opened this September, being the theme a software simulator for a
football match; submissions will be accepted during April 2011.

As usual, the issue presents the news digest and calendar sections, providing the readers with a quick look to the world of
Ada. The forthcoming events section provides the call for papers for “The Ada Connection”, next year in Edinburgh,
Scotland, an event that Ada practitioners must attend, and that combines the Ada-Europe 2011 conference and the Ada-
Conference UK 2011. The section also provides information about SIGAda 2010, which will take place this year in Fairfax,
Virginia, USA, in the week of October 24 to 28. Finally, the Ada Gems section provides two gems on type-based security, by
Yannick Moy of AdaCore.

 Luís Miguel Pinho
Porto

September 2010
 Email: lmp@isep.ipp.pt

 153

Ada User Journal Volume 31, Number 3, September 2010

Quarterly News Digest
Marco Panunzio
University of Padua. Email: panunzio@math.unipd.it

Contents

Ada-related Organizations 153
Ada-related Events 153
Ada-related Resources 155
Ada-related Tools 156
Ada-related Products 162
Ada Inside 164
Ada in Context 166

Ada-related
Organizations
18th Award Ada-Spain
From: Ada-Spain website
Date: Wed, 1 Sep 2010 [retrieved —mp]
Subject: XVIII award Ada-Spain for the best

academic project related to the Ada
programming language

URL: http://adaspain.unican.es/
Premio_XVIII.pdf

The goal of this award is to foster the
adoption of the Ada programming
language in University teaching programs
as well as in professional training
programs, both as study subject and as
language for the realization of work
projects and investigations.
The details of the award and the criteria
for the eligibility of works follow:
1. It is hereby established an award

granted with a price of 750 Euro for the
winner and a price of 450 Euro for the
runner-up.

2. The work can be realised by a group of
persons, not exceeding the number of
three persons.

3. The submitted projects shall be part of
the academic work of their authors, who
should be studying in an officially
recognised teaching center (academic or
for professional training) during the
realisation of the project. In particular,
those works can be either projects
assigned at the end of the study period
or projects assigned during a course.

4. The deadline for the submission of the
projects is February 15, 2011.

5. The submitted projects shall be sent via
post courier to the following address:
Ada-Spain
Apartado Postal 50.403
28080 Madrid
An electronic copy of the requested
documentation shall be sent via email to

the Ada-Spain Secretary (Javier
Gutiérrez, gutierjj@unican.es)

6. The accompanying documentation shall
include:
a) Personal data of the participants.
b) A presentation letter of the professor

or senior instructor that is supervising
the submitted project.

c) All the documentation that is
considered necessary, relative to the
submitted project.

d) An executive summary of the project,
in electronic format, not exceeding 10
pages.

7. Ada-Spain is not obliged to return the
documentation submitted for the
projects.

8. The evaluation committee will be
composed by the members of the Board
of Ada-Spain, and will notify its
decision to the winning participants
within three months from the
submission deadline. The result of the
contest will also be published in the web
page of Ada-Spain. A summary of the
winning projects will be published as
well.

9. The evaluation committee reserves the
right of not to award the price if no
submitted project is deemed of
sufficient quality.

[Translated from Spanish. For the original
announcement (in Spanish), please refer
to http://adaspain.unican.es/
Premio_XVIII.pdf —mp]

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—mp]

Ada-Europe Programming
Contest
From: Dirk Craeynest

<dirk@asgard.cs.kuleuven.be>
Date: Thu, 17 Jun 2010 00:56:49 +0200

CEST
Subject: Press Release - Ada-Europe

launches Programming Contest
Newsgroups:

comp.lang.ada,fr.comp.lang.ada,
comp.lang.misc

FOR IMMEDIATE RELEASE
Ada-Europe Launches
Annual Student Programming Contest
"The Ada Way"
VALENCIA, Spain (June 16, 2010) On
the occasion of Ada-Europe 2010, the
15th annual Conference on Reliable
Software Technologies, Ada-Europe, the
international organization that promotes
the knowledge and use of Ada in
European academia, research and
industry, launched an annual Student
Programming Contest under the
provisional title of "The Ada Way".
The contest will be a yearly competition
among student teams, whereby each team
must have a codename and a logo, a
university affiliation, and the endorsement
by an educator. The theme of this year's
contest will be announced by September
1, and submissions will be accepted until
April 30 of the following year. A Steering
Committee composed of representatives
of promoting institutions will oversee the
organization of this contest.
Submissions will be marked by an
Evaluation Committee composed of
leading Ada experts, such as John Barnes
(author of the famous Programming in
Ada books), S. Tucker Taft (leader of the
Ada 95 language revision), Ed Schonberg
(co-author of the open-source GNAT Ada
compiler and toolset), Joyce Tokar
(convenor of the ISO working group on
the Ada language standards), etc.
The winning team will be notified by May
31. The Steering Committee will offer the
winners one free registration,
accommodation, and airfare to the Ada-
Europe conference, a slot in the
conference program, publication space in
the Ada User Journal, and visibility in
other media. Additional prizes might be
offered.
Ada-Europe wants the competition to be
fun and educational. The theme of the
contest will be determined by the Steering
Committee, and shall be intellectually
challenging and elating. Evaluation
criteria shall include correctness, clarity
and readability of the code, ingenuity,
cuteness, and time and space efficiency.
Submissions shall include the source code
and the User Manual. The code must run
out-of-the-box when following the User
Manual's instructions. The mplementation
does not need to be 100% Ada, but of
course the essence must be in Ada, and
only the Ada code will be part of the

154 Ada-related Events

Volume 31, Number 3, September 2010 Ada User Journal

evaluation. Tullio Vardanega, president of
Ada-Europe, stated: "The winning
submission must be a reference for good
Ada programming, software design, and
innovation."
About Ada-Europe
Ada-Europe is the international non-profit
organization that promotes the knowledge
and use of Ada into academia, research
and industry in Europe. Current member
organizations of Ada-Europe are: Ada-
Belgium, Ada in Denmark, Ada-
Deutschland, Ada-France, Ada-Spain,
Ada in Sweden and Ada-Switzerland.
Ada-Europe also includes and welcomes
individual members from other European
countries with no national organization,
and has a total membership in the region
of 300.
A PDF version of this press release is
available at www.ada-europe.org.
Press contact
Dirk Craeynest, Ada-Europe Vice-
President,
Dirk.Craeynest@cs.kuleuven.be
(V9.1)

Call for Papers
Ada Connection –
Ada-Europe 2011
From: Steve Riddle

<riddsteve@gmail.com>
Date: Wed, 21 Jul 2010 07:21:27 -0700

PDT
Subject: The Ada Connection -

20-24 June 2011, Edinburgh, UK
Newsgroups: comp.lang.ada
The Ada Connection = Ada Europe 2011
+ Ada Conference UK 2011
Call for papers, tutorials and workshops is
now available at
http://conferences.ncl.ac.uk/
adaconnection2011/
The Ada Connection combines the 16th
International Conference on Reliable
Software Technologies – Ada-Europe
2011 – with Ada Conference UK 2011. It
will take place in Edinburgh, Scotland's
capital city and the UK's most popular
conference destination.
In traditional Ada-Europe style, the
conference will span a full week,
including a three-day technical program
and vendor exhibition from Tuesday to
Thursday, along with parallel tutorials and
workshops on Monday and Friday. The
Ada Connection will also encompass
technical and vendor tracks under the
banner of Ada Conference UK, which
exists to promote awareness of Ada and to
highlight the increased relevance of Ada
in safety- and security-critical
programming.
From: Dirk Craeynest

<dirk@cs.kuleuven.ac.be>
Date: Sun, 29 Aug 2010 20:30:14

Subject: CfP 16th Conf. Reliable Software
Technologies, Ada-Europe 2011

Newsgroups:
comp.lang.ada,fr.comp.lang.ada,
comp.lang.misc

CALL FOR PAPERS

The Ada Connection

16th International Conference on

Reliable Software Technologies - Ada-
Europe 2011

+
Ada Conference UK 2011

20 - 24 June 2011, Edinburgh, UK

http://www.ada-europe.org/
conference2011

Organized by Ada-Europe,
in cooperation with ACM SIGAda

(approval pending)

*** CfP in HTML/PDF on web site ***

[…]
Schedule

21 November 2010: Submission deadline
for regular papers, tutorial and workshop
proposals
08 January 2011: Submission of
industrial presentation proposals
08 February 2011: Notification of
acceptance to authors
08 March 2011: Camera-ready version
of regular papers required
16 May 2011: Industrial presentations,
tutorial and workshop material required
20-24 June 2011: Conference
[…]
[see also the Forthcoming Events section
in this AUJ issue —mp]

Call for Papers SIGAda
2010
From: Michael Feldman

<mfeldman@seas.gwu.edu>
Date: Fri, 11 Jun 2010 14:57:41 -0500
Subject: REMINDER: approaching deadline

(June 25, 2010) for SIGAda 2010
submissions

Newsgroups: comp.lang.ada,comp.edu,
comp.software-eng,comp.realtime

Hello,
This is a brief and gentle reminder of the
approaching submission deadline -- June
25, 2010 -- for technical contributions to

SIGAda 2010
ACM Annual International Conference on
Ada and Related Technologies:
Engineering Safe, Secure, and Reliable
Software
This conference will take place October
24-28, 2010 in Fairfax, Virginia
(Washington, DC area), at the Hyatt Hotel
Fair Lakes.
We're soliciting Technical Articles,
Extended Abstracts, Experience Reports,
Panel Sessions, Workshops, and Tutorials
on the Ada programming language and
related technologies for developing,
analyzing, and certifying reliable, safe,
secure software.
We are especially interested in experience
in integrating these concepts into the
instructional process at all levels.
Please visit the conference website at
http://sigada.org/conf/sigada2010
for further details.
Please forgive us if you receive several
copies of this message because you are on
several mailing lists. Thank you very
much for your time, and thank you in
advance for your contribution!
Yours truly,
Michael Feldman
Professor Emeritus, Dept. of Computer
Science
The George Washington University,
Washington, DC
Registration and Publicity Chair, SIGAda
2010

Nominations for 2010
SIGAda awards
From: John McCormick

<mccormick@cs.uni.edu>
Date: Tue, 13 Jul 2010 08:23:43 -0700 PDT
Subject: Nominations for 2010 SIGAda

awards
Newsgroups: comp.lang.ada
Dear Members of the Ada Community:
On Thursday, 28 October 2010, the 2010
SIGAda Awards will be presented in a
special morning plenary session at the
SIGAda 2010 conference in Fairfax,
Virginia. (See http://www.sigada.org/
conf/sigada2010/ if you have somehow
missed announcements of this year's
annual SIGAda international conference.)
We welcome your nominations of
deserving recipients.
The ACM SIGAda Awards recognize
individuals and organizations who have
made outstanding contributions to the
Ada community and to SIGAda.
The two categories of awards are:
(1) Outstanding Ada Community

Contribution Award

Ada-related Resources 155

Ada User Journal Volume 31, Number 3, September 2010

 -- For broad, lasting contributions to
Ada technology & usage.

(2) ACM SIGAda Distinguished Service
Award

 -- For exceptional contributions to
SIGAda activities & products.

Please consider who should be nominated
this year. You may nominate a person for
either or both awards, and as many people
as you think worthy. One or more awards
will be made in both categories.
Please visit http://www.sigada.org/
exec/awards/awards.html#Previous and
peruse the names of past winners. This
may help you think about the measure of
accomplishment that is appropriate. You
may be aware of people who have made
substantial contributions that have not yet
been acknowledged. Nominate them.
Consider what you believe to be the best
developments in the Ada community or
SIGAda in the last year; the last 5 years;
since Ada's inception. Who was
responsible? Nominate them.
Please note that anyone who has received
either of the two awards remains eligible
for the other. Perhaps there is an
outstanding SIGAda volunteer who has
won our Distinguished Service Award
and who has also made important
contributions to the advance of Ada
technology, or visa versa. Nominate him
or her!
The nomination form is available on the
SIGAda website at
http://www.sigada.org/exec/awards/
awards.html#Form.
Submit your nomination as an e-mail or e-
mail attachment to
SIGAda-Award@acm.org.
The ACM SIGAda Awards Committee,
comprised of volunteers who have
previously won an award, will determine
this year's recipients from your
nominations.
Call our attention to the people who are
most deserving, by nominating them. And
please nominate by Monday September
13!
Your participation in the nominations
process will help maintain the prestige
and honor of these awards.
Thank you,
John McCormick
Past Chair ACM SIGAda

Ada-related Resources
Dhryston benchmark
From: Bill Findlay

<findlaybill@blueyonder.co.uk>
Date: Sat, 24 Jul 2010 00:20:42 +0100
Subject: Dhrystone
Newsgroups: comp.lang.ada

Does anyone know where the original
Ada source of the Dhrystone benchmark
can be downloaded? So far I've only
identified the ACM portal, to which I
have no access.
From: BrianG <briang000@gmail.com>
Date: Fri, 23 Jul 2010 22:11:02 -0400
Subject: Re: Dhrystone
Newsgroups: comp.lang.ada
[…]
Did it exist in the PAL or ASE archives?
I found this, but didn't see it there.
http://archive.adaic.com/ase/support/
cardcatx/ad_index.htm
From: Georg Bauhaus <rm-

host.bauhaus@maps.futureapps.de>
Date: Sat, 24 Jul 2010 09:09:47 +0200
Subject: Re: Dhrystone
Newsgroups: comp.lang.ada
[…]
The FTP archive at Ada Belgium
(ftp.cs.kuleuven.ac.be) lists a zip in
/pub/Ada-Belgium/ase/ase02_02/
benchmrk/piwg/piwg_11/piwg
File A000091.Ada from the zip archive
starts with these lines:
--A000091

[…]
-- As published in Communications of
ACM, October 1984 Vol 27 No 10

(This time Google groups search has
worked for me. One of the two messages
in the result was written by someone with
username stt and points to "the PIWG
benchmarks" :)
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Sat, 24 Jul 2010 08:24:52 -0700 PDT
Subject: Re: Dhrystone
Newsgroups: comp.lang.ada
[…]
This most probably was Simon Tucker
Taft

AdaLog's tools
documentation in CHM
format
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 17 Aug 2010 18:47:22 +0200
Subject: CHM version of AdaLog's tools

documentation (for Windows users)
Newsgroups: comp.lang.ada
Hi all,
For Windows users: I've finished to set up
a Windows version of the AdaLog's tools
documentation, which you can get here:
http://www.les-ziboux.rasama.org/
download/AdaLog.chm

The search facility is actually a bit limited
for the reason given in the file. However,
you will still enjoy the common tree-view
facility (especially useful with
AdaControl rules which are numerous)
and the local favorites capability for quick
access along with better integration with
the look-and-feel of typical Windows
applications.
Note: I did not setup topic IDs (which the
Windows Help API requires) as this
would be long and I do not know if this
will really be used. If someone feel this is
needed, just send me a mail, I will find
the time to do it.
If you do not already know about
AdaLog's tools, just visit:
http://adalog.pagesperso-orange.fr/
compo1.htm
From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 17 Aug 2010 21:15:56 +0200
Subject: Re: CHM version of AdaLog's tools

documentation (for Windows users)
Newsgroups: comp.lang.ada
[…]
Many thanks for doing that!
If you don't mind, I'd prefer to have three
different help files for the three utilities,
since the distributions are separate. I
could then integrate them with the
Windows distributions.
> If you do not already know about

AdaLog's tools, just visit:
> http://adalog.pagesperso-

orange.fr/compo1.htm
Please don't use this address (and remove
it from any link you may have). This is
the physical address that may change at
any time. Use: http://www.adalog.fr/
compo1.htm (in French) or
http://www.adalog.fr/compo2.thm (in
English)

Update of proof resources at
SparkSure
From: Phil Thornley

<phil.jpthornley@gmail.com>
Date: Mon, 23 Aug 2010 06:34:53 -0700

PDT
Subject: ANN: SparkSure proof resources

now up-to-date
Newsgroups: comp.lang.ada
All the material on
http://www.sparksure.com is up-to-date
with the latest release of SPARK GPL
2010, GNAT GPL 2010, and GtkAda gpl-
2.14.1.
- The tutorials for proof annotations and

the Proof Checker
- The VC_View and PCHIF** tools
- The high integrity data structure

examples.
Cheers,
Phil

156 Ada-related Tools

Volume 31, Number 3, September 2010 Ada User Journal

** The version of the Proof Checker in
the GPL 2010 release has an (apparently
unintended) change in the way that it
handles I/O - consequently is will not
work with PCHIF. (The Proof Checker in
the previous release - 8.1.1 - works
correctly with PCHIF.)

New website ada.cx
From: Thomas Løcke
Date: Tue, 31 Aug 2010
Subject: ada.cx - A new Ada website!
URL: http://ada-dk.org/

?page=news&news_id=176
Today, while chatting a bit on the #ada
IRC channel, I stumbled on a new Ada
website: ada.cx.
The website is still very new and under
heavy development. Already though it
sports some nice tools:
- An URL shortener
- A pastebin
- Planet Ada
- Get code
- Git hosting for Ada projects
The Planet Ada link is, in my humble
opinion, very interesting. It is an
aggregate to various Ada related blogs.
Current writers include Dmitry Kazakov,
Gustaf Thorslund and Tero Koskinen.
ada.cx is the brainchild of J. Kimball. You
can get in touch with him on the #ada IRC
channel, where he goes by the nick
jkimball4.
Personally I wish ada.cx all the best. The
more Ada websites, the better!

Ada-related Tools
Tables v1.10
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 27 Jun 2010 19:12:51 +0200
Subject: ANN: Tables 1.10
Newsgroups: comp.lang.ada
Tables are specialized maps with string
keys. Additionally to normal map
operations they support matching the
longest key.
This version adds experimental Fedora
and Debian packages.
[see also "Fuzzy sets for Ada" in
AUJ 29-2 (Jun 2008), p.81 —mp]

Simple Components for Ada
v3.9
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 11 Jul 2010 22:52:52 +0200
Subject: ANN: Simple components for Ada

v3.9
Newsgroups: comp.lang.ada

The library provides implementations of
smart pointers, directed graphs, sets,
maps, stacks, tables, string editing,
unbounded arrays, expression analyzers,
lock-free data structures, synchronization
primitives (events, race condition free
pulse events, arrays of events, reentrant
mutexes, deadlock-free arrays of
mutexes), pseudo-random non-repeating
numbers, symmetric encoding and
decoding, IEEE 754 representations
support. It grew out of needs and does not
pretend to be universal. Tables
management and strings editing are
described in separate documents see
Tables and Strings edit. The library is
kept conform to both Ada 95 and Ada
2005 language standards.
http://www.dmitry-kazakov.de/
ada/components.htm
The version 3.9 has experimental
packages for Debian and Fedora linux.
Note that due to gcc 4.4 bugs not all
features are available. See release notes:
http://www.dmitry-kazakov.de/
distributions/components_fedora.htm
http://www.dmitry-kazakov.de/
distributions/components_debian.htm
From: Dirk Heinrichs

<dirk.heinrichs@online.de>
Subject: Re: ANN: Simple components for

Ada v3.9
Date: Mon, 12 Jul 2010 22:36:09 +0200
Newsgroups: comp.lang.ada
[…]
For which debian version are those
packages? I assume "testing", because of
gcc 4.4. OTOH you state that "APQ
persistence layer is not supported because
APQ is not yet packaged.", but APQ
packages are available for "testing". So
I'm a bit confused.
[…]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 13 Jul 2010 09:55:43 +0200
Subject: Re: ANN: Simple components for

Ada v3.9
Newsgroups: comp.lang.ada
> […]
> For which debian version are those

packages? I assume "testing", because
of gcc 4.4.

Yes it is the "squeeze".
> OTOH you state that "APQ persistence

layer is not supported because APQ is
not yet packaged.", but APQ packages
are available for "testing". So I'm a bit
confused.

It wasn't there last time I looked for it. Do
you have the package names (bin and
dev)? I will take a look.
P.S. In any case in order to use the
persistent layer of Simple Components,
the gcc 4.4 must be fixed first. The
current version has controlled types

broken and some other severe issues.
Unfortunately it is too early to switch
from GNAT GPL 2009/10.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 13 Jul 2010 05:45:11 -0700 PDT
Subject: Re: ANN: Simple components for

Ada v3.9
Newsgroups: comp.lang.ada
[…]
libapq1-dev (database-independent part)
libapq-postgresql1-dev (PostgreSQL-
specific part)
Thanks to Adrian-Ken Rueegsegger for
these packages. Unfortunately no other
database-specific bindings are in Debian
yet.
> P.S. In any case in order to use the

persistent layer of Simple Components,
the gcc 4.4 must be fixed first. The
current version has controlled types
broken and some other severe issues.

Wow, that's a pretty grave problem; if
what you say is true, a fix in the stable
GCC 4.4 branch is justified. What is the
bugzilla number for this bug?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 13 Jul 2010 18:35:38 +0200
Subject: Re: ANN: Simple components for

Ada v3.9
Newsgroups: comp.lang.ada
[…]
There are several. For example this one:
[…]
Some others can be found in the Simple
Components tests.
I am not sure if I posted any of them
there. I did report to AdaCore. Most of
them were fixed before GNAT GPL 2009
was published.
Is a merge with GPL 2009/10 planned? I
am asking because I still don't understand
that complex mechanics governing FSF
releases. In particular merits of posting
two-three years old bugs all fixed in
GNAT GPL, like the above bug.
I do have a base of bug reports I sent to
AdaCore, but unfortunately I cannot post
most of them, because they contain
proprietary code. Then, of course, there
are lots of bugs reported by other
AdaCore customers. So my uneducated
guess would rather be: let them do the
merge first, and then we'll see.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 14 Jul 2010 07:54:10 -0700

PDT
Subject: Re: ANN: Simple components for

Ada v3.9
Newsgroups: comp.lang.ada
[…]
Looks like this might be the patch that
corrects this bug:

Ada-related Tools 157

Ada User Journal Volume 31, Number 3, September 2010

2009-04-17 Thomas Quinot
<quinot@adacore.com>
- exp_ch7.adb (Expand_Ctrl_Function_

Call): Remove incorrect special case for
the case of an aggregate component, the
attach call for the result is actually
needed.

- exp_aggr.adb (Backend_Processing_
Possible): Backend processing for an
array aggregate must be disabled if the
component type requires controlled
actions.

- exp_ch3.adb: Minor reformatting
I'll add a backport of this patch to my long
TODO list.
From: tonyg

<tonythegair@googlemail.com>
Date: Mon, 12 Jul 2010 15:09:26 -0700

PDT
Subject: Re: ANN: Simple components for

Ada v3.9
Newsgroups: comp.lang.ada
> For which debian version are those

packages? I assume "testing", because
of gcc 4.4. OTOH you state that "APQ
persistence layer is not supported
because APQ is not yet packaged.", but
APQ packages are available for
"testing". So I'm a bit confused. […]

I think this is because of the status of
APQ rather than Dimitry’s code. I have
used these components recently to
implement a database in ODBC and I
have to say it is very good and does the
job. As to which version, just use the gpr
file as part of your gnat-gps project and it
works very very nice.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 13 Jul 2010 10:06:52 +0200
Subject: Re: ANN: Simple components for

Ada v3.9
Newsgroups: comp.lang.ada
[…]
Thanks, but regarding APQ it might
indeed be broken. Actually I ceased to
support APQ since GNAT 3.14, because
APQ was not maintained. I happy to see
that Debian guys want to revive it.
Though I am very disappointed with the
present status of DB support in Ada.
There are too many projects, bindings are
too low level. None of them attempt to
make it platform independent. On the
contrary, authors tend to be as much
DBMS dependent as possible. There was
a discussion on this in comp.lang.ada,
people agreed to disagree.
From: tonyg

<tonythegair@googlemail.com>
Date: Tue, 13 Jul 2010 01:37:21 -0700 PDT
Subject: Re: ANN: Simple components for

Ada v3.9
Newsgroups: comp.lang.ada
[…]

Totally - I found it very hard to find
something useful, the ODBC API
packages you wrote to use with your
persistent objects proved very useful
though and I think they are probably the
safest, most usable and thickest binding
Ada programmers have available at the
moment even though it was originally
written for your persistent objects. It
allows not so talented Ada programmers
like myself to use the GNADE ODBC
binding which lets face it is a pretty
intimidating if not complicated beast.
[…]
From: Warren W. Gay

<ve3wwg@gmail.com>
Date: Tue, 13 Jul 2010 16:59:13 +0000

UTC
Subject: Re: ANN: Simple components for

Ada v3.9
Newsgroups: comp.lang.ada
[…]
> Thanks, but regarding APQ it might

indeed be broken. Actually I ceased to
support APQ since GNAT 3.14,
because APQ was not maintained. I
happy to see that Debian guys want to
revive it.

I believe that Marcelo Coraça de Freitas is
still maintaining APQ. I passed the reins
over him some time ago and he has since
moved his support to the following site
AFAIK:
http://framework.kow.com.br/
projects/show/apq
The original (now unmaintained) site
was/is here:
https://sourceforge.net/projects/apq
I just ran out of time to keep it up myself.
In fact, <cough>, I even gave up on Ada
for a few years.. but I'm back now. ;-)
[see also "Simple Components for Ada
v3.8" in AUJ 31-2 (Jun 2010), p.85 and
"APQ 3.0 Beta1" in AUJ 30-2 (Jun 2009),
p.75 —mp]

Generic Image Decoder v.01
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Sat, 26 Jun 2010 02:49:20 -0700 PDT
Subject: Ann: Generic Image Decoder v.01
Newsgroups: comp.lang.ada
[…]
I have the pleasure to announce the first
release of the Generic Image Decoder.
The Generic Image Decoder (GID) is an
Ada package for decoding a broad variety
of image formats, from any data stream,
to any kind of medium, be it an in-
memory bitmap, a GUI object, some other
stream, arrays of floating-point initial data
for scientific calculations, a browser
element, a device,...
Animations are supported.

Currently supported formats are: BMP,
GIF, JPEG, PNG, TGA.
URL: http://gen-img-dec.sf.net/
[…]
From: deadlyhead

<deadlyhead@gmail.com>
Date: Sat, 26 Jun 2010 09:56:53 -0700 PDT
Subject: Re: Ann: Generic Image Decoder

v.01
Newsgroups: comp.lang.ada
[…]
Quite excellent.
No bindings, eh? I'm impressed. Is it
mostly translations? For instance, did you
translate the libpng for the PNG
encoding?
I'll try it out soon.
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Sat, 26 Jun 2010 13:47:01 -0700 PDT
Subject: Re: Ann: Generic Image Decoder

v.01
Newsgroups: comp.lang.ada
> Quite excellent.
Thanks - but try it first ;-)
[…]
JPEG is mostly translated from
NanoJPEG; the rest has been written from
scratch, with a good part of re-use from
other Ada sources.
> I'll try it out soon.
I'd be glad to have some feedbacks.
[…]

New release of GLOBE_3D
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Mon, 16 Aug 2010 10:05:26 -0700

PDT
Subject: Ann: GLOBE_3D Aug-2010

release
Newsgroups: comp.lang.ada
[…]
A new release (with minor changes) is
available @
http://globe3d.sf.net/
- A compose_rotations boolean field has

been added to the type Camera; now
camera rotations can meaningfully be
used in an environment with gravity
(fixed axes) or in a 0-gravity one (free
axes).

- A bug in the video capture has been
fixed: frames of any width are now
captured correctly.

- The demo now includes a nice Airbus
A319 model

NB: updates are tracked @
http://freshmeat.net/projects/globe_3d
[see also "GLOBE 3D" in AUJ 30-3 (Sep
2009), p.142 —mp]

158 Ada-related Tools

Volume 31, Number 3, September 2010 Ada User Journal

Visual Ada Developer 7.4
From: Leonid Dulman

<leonid.dulman@gmail.com>
Date: Wed, 4 Aug 2010 08:34:00
Subject: Ann: Visual Ada Developer VAD

7.4
Newsgroups: comp.lang.ada
Visual Ada Developer (VAD) 7.4 is now
available at
http://users1.jabry.com/adastudio/
index.html
VAD is free software; you can
redistribute it and/or modify it under the
terms of the GNU General Public License
as published by the Free Software
Foundation; either version 2 of the
License, or (at your option) any later
version.
VAD is distributed in the hope, that it will
be useful, but without any warranty;
without even the implied warranty of
merchantability or fitness for a particular
purpose.
VAD 7.3 [sic —mp] Common
description.
1. VAD (Visual Ada Developer) is a
Tcl/Tk oriented Ada-95(TCL) GUI
builder portable to different platforms,
such as Windows NT/Vista/7,Unix
(Linux), and Mac. You may use it as IDE
for any Ada-95(C,C++,TCL) project.
VAD generated Ada sources, you may
compile and build executable or generate
TCL script to interpret with Tcl/Tk
VAD 7.4 was tested in Windows 32bit
and 64bit and Linux x86-64 Kubuntu 9.10
2. Used software
GNAT GPL 2009 Ada-05 compiler (or
any others)
TCL/TK 8.5.x
http://tcl.activestate.com/software/tcltk/
TCL/TK 8.6.x
http://tcl.activestate.com/software/tcltk/
Warning! VAD 7.4 has two realization for
Tcl/Tk 8.5.x and Tcl/Tk 8.6.x , you need
to install and test Tcl/Tk first.
From version tcl/tk 8.5.0.1 ActiveState
distribution includes many of VAD used
packages (Itcl,Img,Tktable,BWidgets,
Tkhtml and so on).
You may choose your preferred version at
link time. (I recommend to work with 8.5)
[complete list of used software removed
—mp]
Warning! Many of Tcl/Tk packages were
tested for TCL/TK 8.5 and 8.6 in
Windows and x86-64 Linux, you may
download them from my website
http://users1.jabry.com/adastudio/
index.html
[see also "Visual Ada Developer 7.3" in
AUJ 31-1 (Mar 2010), p.12 —mp]

From: Simon Wright
<simon@pushface.com>

Date: Wed, 4 Aug 2010 21:32:09 -0800 PST
Subject: Ann: Visual Ada Developer VAD

7.4
Newsgroups: comp.lang.ada
> TASH 8.02 by Terry J. Westley

http://tash.calspan.com/
This site is no longer existent, nor is Terry
maintaining TASH. See
http://sourceforge.net/projects/tcladashell/

GtkAda Contributions v2.7
and v2.8
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 1 Jul 2010 19:12:22 +0200
Subject: ANN: GtkAda contributions v2.7
Newsgroups: comp.lang.ada
The described here packages are proposed
as a contribution to GtkAda, an Ada
bindings to GTK+. It deals with the
following issues:
- Tasking support;
- Custom models for tree view widget;
- Custom cell renderers for tree view

widget;
- Multi-columned derived model;
- Extension derived model (to add

columns to an existing model);
- Abstract caching model for directory-

like data;
- Tree view and list view widgets for

navigational browsing of abstract
caching models;

- File system navigation widgets with
wildcard filtering;

- Resource styles;
- Capturing resources of a widget;
- Embeddable images;
- Some missing subprograms and bug

fixes;
- Measurement unit selection widget and

dialogs;
- Improved hue-luminance-saturation

color model;
- Simplified image buttons and buttons

customizable by style properties;
- Controlled Ada types for GTK+ strong

and weak references;
- Simplified means to create lists of

strings;
- Spawning processes synchronously and

asynchronously with pipes;
- Capturing asynchronous process

standard I/O by Ada tasks and by text
buffers;

- Source view widget support.
http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm

Changes to the version 2.6:
- Quit_Error exception is propagated from

operation in Gtk.Main.Router when the
main loop was quitted. This change
should ease proper application
completion, e.g. when the main loop is
quitted before the tasks making requests
to GTK;

- Added GtkAda installation notes;
- Internal package

Gdk.Pixbuf.Conversions was added to
fix backward incompatibility introduced
by GtkAda 2.14.2;

- xpm2gtkada is modified to support
GtkAda 2.14.2;

- Experimental packages for Debian and
Fedora.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 28 Jul 2010 21:40:50 +0200
Subject: ANN: GtkAda contributions v2.8
Newsgroups: comp.lang.ada
[…]
Changes to the version 2.7:
- Dir_Open, Dir_Close, Dir_Rewind,

Dir_Read_Name were added to
Gtk.Missed enumerate items of a
directory;

- Remove, Rename were added to
Gtk.Missed;

- File_Test was added to Gtk.Missed;
- GType_Icon was added to Gtk.Missed;
- GIO.Content_Type package provides

bindings to platform-specific content
typing (GContentType);

- Directory browser supports content
icons;

- Gtk.Missed declares a controlled type
provided to ease showing a wait cursor;

- Themed_Icon_New_With_Default_
Fallbacks and Themed_Icon_New were
added to Gtk.Missed;

- Packages GIO.Drive, GIO.Mount,
GIO.Volume, GIO.Volume_Monitor
were added to support GIO.

[see also "GtkAda Contributions v2.6" in
AUJ 31-2 (Jun 2010), p.85 —mp]

VTKAda 5
From: Leonid Dulman

<leonid.dulman@gmail.com>
Date: Tue, 3 Aug 2010 23:41:12 -0700 PDT
Subject: Announce : VTKAda version 5
Newsgroups: comp.lang.ada
VTKAda is an Ada-95(05) interface to
VTK(Visualization Toolkit) and Qt4
graphics library VTK version 5.6.0, Qt
version 4.7.0 open source,
vtkc.dll(libvtkc.so) and
qt4c.dll(libqt4c.so) built with Microsoft
Visual Studio 2010 in Windows and GCC
in Linux x86-64.

Ada-related Tools 159

Ada User Journal Volume 31, Number 3, September 2010

Package tested with the GNAT GPL 2009
Ada compiler in Windows 32bit and 64bit
and Linux x86-64 Kubuntu 9.10 VTKAda
is a powerful 2D-3D renderer system and
works inside Qt4 applications.
You can get more information from my
paper "Modern application development
with Ada" from my website.
VTKAda and QtAda for Windows and
Linux (Unix) are available from
http://users1.jabry.com/adastudio/
index.html
[…]

QtAda 2.7.0
From: Leonid Dulman

<leonid.dulman@gmail.com>
Date: Tue, 3 Aug 2010 23:37:25 -0700 PDT
Subject: Announce : QtAda version 2.7.0
Newsgroups: comp.lang.ada
QtAda is an Ada-95(05) interface to Qt4
graphics library Qt version 4.7.0 open
source and qt4c.dll(libqt4c.so) built with
Microsoft Visual Studio 2010 in
Windows MINGW GCC Windows
compiler and GCC in Linux.
Package tested with the GNAT GPL 2009
Ada compiler in Windows 32bit and 64bit
and Linux x86-64 Kubuntu 9.10.
It supports GUI, SQL, Multimedia, Web,
Net and many others thinks.
QtAda for Windows and Linux (Unix) is
available from
http://users1.jabry.com/adastudio/
index.html
[see also "QtAda 2.4 and relation with
QtAda by Godunko et al." in AUJ 31-1
(Mar 2010), p.11 —mp]

Extensions to SPARK POGS
From: Phil Thornley

<phil.jpthornley@gmail.com>
Date: Fri, 13 Aug 2010 10:21:16 -0700

PDT
Subject: SPARK POGS: List the rules used

by the Simplifier
Newsgroups: comp.lang.ada
The POGS tool in the SPARK GPL
toolset summarises the state of the proofs
for a program. But it is not easy to
determine which user rules have/have not
been used by the Simplifier.
I have made a modified POGS that lists
the rules used by the Simplifier as part of
the summary output so, instead of just the
list of rule files, it prints the following:

D:\SPARK\ordered_list2\ordered_lists\
ordered_lists.rlu
ordered_user(1) ordered_user(6)
ordered_user(10)

 ordered_user(2) ordered_user(7)
 ordered_user(11)
ordered_user(3) ordered_user(8)

ordered_user(12)
ordered_user(4) ordered_user(9)
ordered_user(13)

 ordered_user(5)

D:\SPARK\ordered_list2\ordered_lists\
delete.rlu
 delete_user(1)
 delete_user(2)

D:\SPARK\ordered_list2\ordered_lists\
initialize.rlu
 init_user(1) init_user(4) init_user(7)
 init_user(2) init_user(5) init_user(8)
 init_user(3) init_user(6) init_user(9)

http://www.sparksure.com/resources/
POGSRuleList.zip is an archive with the
new and modified files as well as a
Windows executable.
http://www.sparksure.com/resources/
pogsrulelist.patch is a patch file (created
by git).

Ahven 1.8
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Wed, 2 Jun 2010 19:24:13 +0300
Subject: ANN: Ahven 1.8
Newsgroups: comp.lang.ada
[…]
I released Ahven 1.8 today. It can be
downloaded from
http://sourceforge.net/projects/ahven/files/
Ahven is a unit testing library for the Ada
95 programming language.
Version 1.8 is a bugfix release with
following changes:
- Fix for double free when mixing

dynamically allocated test cases with
statically allocated test suites.

- Support for dynamic libraries was
dropped. It was too complex (for me) to
maintain Makefile/GPR-file logic which
would work in the same way on Fedora,
Debian, OpenBSD, and Windows.

If some packagers (like Debian people)
want to enable support they can apply
Makefiles and GNAT project files from
Ahven 1.7 on top of 1.8.
- Support for Janus/Ada 3.1.1d was

dropped.
Janus/Ada 3.1.2beta or newer is
required.
Janus/Ada 3.1.1d support required too
many work-arounds, so to make my life
easier I decided to drop the support.
If someone needs this, I welcome
patches. :)

- TAP 1.3 test result format was dropped.
Version 1.2 is supported.

The release has been tested with
following compilers:

- FSF GCC/GNAT 4.3.5 and 4.4.4
- GNAT GPL 2009
- Janus/Ada 3.1.2beta
- Irvine ICCAda
The code can be compiled either as plain
Ada 95 or as Ada 2005 code.
From: Jérôme Haguet

<j.haguet@cadwin.com>
Date: Tue, 8 Jun 2010 08:24:50 -0700 PDT
Subject: Re: ANN: Ahven 1.8
Newsgroups: comp.lang.ada
[…]
Hello Tero.
FYI, Ahven 1.8 works also fine with
Atego/ObjectAda 8.4 + U5 on Windows
XP.
[…]
From: Dan Eilers <dan@irvine.com>
Date: Fri, 4 Jun 2010 10:12:37 -0700 PDT
Subject: Re: ANN: Ahven 1.8
Newsgroups: comp.lang.ada
[…]
There is a significant difference in
registering tests between Ahven and
Aunit, which Tero mentions, but I will
expand on.
Ahven accepts parameterless procedures
as test routines […]
AUnit, in contrast, requires test routines
to have a parameter of type
AUnit.Test_Cases.Test_Case'Class. I
have thousands of procedures that I would
like to test using a test driver, but
unfortunately not a single one of those
comes in the form AUnit requires.
If you start with an array of parameterless
test procedures, AUnit requires that you
traverse the array, creating a new test
procedure (containing the required
parameter) for each parameterless test
procedure in the array. Then you can
register the newly created test procedures.
The problem is that Ada doesn't have a
good way for one procedure to create
other procedures, that can then be
registered (using 'access).
I tried using generics to instantiate the
new test procedures, but ran into
accessibility-level problems. I also tried
using an allocator of a protected type that
contains a procedure, but that results in a
protected procedure, and AUnit only
knows how to register normal
(unprotected) procedures.
I presume that it may be possible to
modify AUnit to support registering
parameterless test procedures (or even
better, an array of them), which would be
convenient for my purposes. It would
also be possible to write some sort of
offline test-generator that creates the kind
of test procedures that AUnit expects.
From: Stephen Leake

<stephen_leake@stephe-leake.org>

160 Ada-related Tools

Volume 31, Number 3, September 2010 Ada User Journal

Date: Sat, 05 Jun 2010 00:08:03 -0400
Subject: Re: ANN: Ahven 1.8
Newsgroups: comp.lang.ada
[…]
> AUnit, in contrast, requires test routines

to have a parameter of type AUnit.
Test_Cases.Test_Case'Class. I have
thousands of procedures that I would
like to test using a test driver, but
unfortunately not a single one of those
comes in the form AUnit requires.

Ah. Adapting an existing test suite to use
the framework is an issue.
You could write one AUnit test that calls
all the thousands of tests, but that would
be silly.
You could probably write a tool to
convert those tests to match AUnit, but
that would still be a lot of work.
> The problem is that Ada doesn't have a

good way for one procedure to create
other procedures, that can then be
registered (using 'access).

> I tried using generics to instantiate the
new test procedures, but ran into
accessibility-level problems. I also tried
using an allocator of a protected type
that contains a procedure, but that
results in a protected procedure, and
AUnit only knows how to register
normal (unprotected) procedures.

You need to write new source code. Real
software writes itself :) (a new slogan I
just made up :).
> I presume that it may be possible to

modify AUnit to support registering
parameterless test procedures (or even
better, an array of them), which would
be convenient for my purposes.

Not easy; the tests are called by the
standard Ada dispatching call methods.
> It would also be possible to write some

sort of offline test-generator that creates
the kind of test procedures that AUnit
expects.

Yes.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Thu, 03 Jun 2010 08:08:12 -0400
Subject: Re: ANN: Ahven 1.8
Newsgroups: comp.lang.ada
[…]
Is this actually restricted to Ada 95? What
prevents it from being used with Ada
2005? How does it compare to AUnit?
> The code can be compiled either as

plain Ada 95 or as Ada 2005 code.
Ah; much better. Perhaps you should fix
the intro statement to just say "Ada"; no
one will be surprised if it doesn't work
with an Ada 83 compiler.
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Fri, 4 Jun 2010 18:37:08 +0300
Subject: Re: ANN: Ahven 1.8

Newsgroups: comp.lang.ada
[…]
Here a little summary:
- The basic API is similar in Ahven and

AUnit 1 (and 3).
- In Ahven, I have the public API stuffed

into two packages: Ahven and
Ahven.Framework while AUnit spreads
it API into larger amount of packages.

- AUnit is Ada 2005 code only and I think
it can be compiled only with GNAT (not
100% sure since I haven't tried it with
other Ada 2005 compilers)

- Ahven is Ada 95 code, but can be
compiled as Ada 2005 code also.

I have seen some effort to make Ahven
build out of the box with several Ada 95
or Ada 2005 compilers. So far, GNAT,
Janus/Ada, ObjectAda, and ICCAda have
been tested.
(Unix and Windows environments)
I don't know about IBM/Rational Apex,
GHS AdaMulti, or PowerAda, but I
suspect that they should be okay also.
- Both are free or open-source software.

AUnit is distributed under GPL and
Ahven under ISC license (similar to
BSD).

- Both libraries support XML results, but
AUnit uses CppUnit's XML format
while Ahven uses JUnit's format. In
addition, Ahven can output test results in
Test-Anything-Protocol (TAP) format,
which is my favorite at the moment.

- AUnit's documentation is probably
better. So far I have concentrated on the
code.

> In AUnit, tests are 'registered' in a
test_case:

Same works for Ahven.
[…]
> AUnit also has setup and teardown

functions for initializing and finalizing
each test and/or each Test_Case; those
are very helpful.

Ahven supports setup and teardown
procedures for each test.
For each Test_Case you need to rely on
Initialize and Finalize procedures
provided by Ada.Finalization.Controlled.
[…]
From: Simon Wright

<simon@pushface.org>
Date: Sat, 05 Jun 2010 13:41:15 +0100
Subject: Re: ANN: Ahven 1.8
Newsgroups: comp.lang.ada
> * AUnit is Ada 2005 code only and I

think it can be compiled only with
GNAT (not 100% sure since I haven't
tried it with other Ada 2005 compilers)

The 2005-ness occurs because AUnit uses
a private copy of Ada.Containers.Lists
with some 05 constructs removed so that

it can be compiled with "an" Ada 95
compiler.
Unfortunately, what they mean is "with an
Ada 95 compiler that recognises pragma
Ada_2005 to mean that some Ada 2005
constructs are permitted even when
compiling in Ada 95 mode".
This doesn't include older GNATs, and
certainly won't include compilers from
other vendors.
These patches update the current SVN
source of AUnit to work with older
GNATs. Ask me if you need a copy and
the news system has mangled them or I've
failed to drive Emacs correctly …
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Sun, 06 Jun 2010 08:31:39 -0400
Subject: Re: ANN: Ahven 1.8
Newsgroups: comp.lang.ada
[…]
> Stephe, how about applying this patch

to Debian's version of AUnit?
I don't see why. Debian supports the
current version of GNAT, which supports
the current Debian version (and newer
AdaCore versions) of AUnit.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Sun, 06 Jun 2010 18:20:46 +0200
Subject: Re: ANN: Ahven 1.8
Newsgroups: comp.lang.ada
[…]
The current version of GNAT (in Debian)
allows compiling Ada 83, Ada 95 and
Ada 2005 programs. I think that allowing
Ada 95 programs to use AUnit is better
than forbidding this. So the main
objection is that this patch requires
changing the aliversion; I would
understand that you wouldn't want to do
that.
From: Simon Wright

<simon@pushface.org>
Date: Sun, 06 Jun 2010 17:45:14 +0100
Subject: Re: ANN: Ahven 1.8
Newsgroups: comp.lang.ada
[…]
I think it's very likely that the current
Debian GNAT supports AUnit 3's use of
this pragma, even in -gnat95 mode …
[…]
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Mon, 07 Jun 2010 04:26:51 -0400
Subject: Re: ANN: Ahven 1.8
Newsgroups: comp.lang.ada
[…]
> The current version of GNAT (in

Debian) allows compiling Ada 83, Ada
95 and Ada 2005 programs.

True. I have no idea how many people use
the old language. I should think the only
reason to do that is for compatibility with
a different compiler. And even then, the

Ada-related Tools 161

Ada User Journal Volume 31, Number 3, September 2010

language version is not likely to be an
issue.
For example, I used to program in DDC
Ada for an embedded computer, but
GNAT for development and unit test. I
used GNAT in Ada 95 mode, while DDC
was Ada 83. No problems.
> I think that allowing Ada 95 programs

to use AUnit is better than forbidding
this. So the main objection is that this
patch requires changing the aliversion;

No, the main objection is that it is
different than upstream. I don't have
access to the AUnit test suite. I don't want
to fork.
From: Simon Wright

<simon@pushface.org>
Date: Mon, 07 Jun 2010 20:21:50 +0100
Subject: Re: ANN: Ahven 1.8
Newsgroups: comp.lang.ada
[…]
I've reported the issue, it's been accepted
but as ever may take some time to trickle
through!
[see also "Ahven 1.7" in AUJ 30-4 (Dec
2009), p.208 —mp]

Strings Edit for Ada v2.5
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 28 Jun 2010 20:56:25 +0200
Subject: ANN: Strings Edit v2.5
Newsgroups: comp.lang.ada
The package Strings_Edit provides I/O
facilities. The following I/O items are
supported by the package:
- Generic axis scales support;
- Integer numbers (generic, package

Integer_Edit);
- Integer sub- and superscript numbers;
- Floating-point numbers (generic,

package Float_Edit);
- Roman numbers (the type Roman);
- Strings;
- Ada-style quoted strings;
- UTF-8 encoded strings;
- Unicode maps and sets;
- Wildcard pattern matching.
The major differences to the standard
Image/Value attributes and Text_IO
procedures are:
- For numeric types, the base is neither

written nor read. For instance, output of
23 as hexadecimal gives 17, not 16#17#.

- Get procedures do not skip blank
characters around input tokens, except
the cases when the blank characters are
required by the syntax.

- Get procedures use the current string
position pointer, so that they can be
consequently called advancing the
pointer as the tokes are recognized.

- Numeric get procedures allow to specify
the expected value range. When the
actual value is out of the range then
depending on procedure parameters,
either Constraint_Error is propagated or
the value is forced to the nearest range
boundary.

- Put procedures also use the current
string position pointer, which allows to
call them consequently.

- The format used for floating-number
output is based on the number precision,
instead of rather typographic approach
of Text_IO. The precision can be
specified either as the number of valid
digits of the current base (i.e. relative) or
as the position of the last valid digit (i.e.
absolute).

 For instance, 12.345678 with relative
precision 3 gives 12.3. With absolute
precision -3, it gives 12.346.

The version 2.5 provides experimental
Debian and Fedora packages.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Thu, 1 Jul 2010 03:34:57 -0700 PDT
Subject: Re: ANN: Strings Edit v2.5
Newsgroups: comp.lang.ada
[…]
Nice. I'll try to find the time to review the
Debian packaging and provide feedback.
Would you be willing to maintain the
package in Debian in the future, i.e. deal
with bug reports, reply to enquiries from
users, etc.?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 2 Jul 2010 15:58:33 +0200
Subject: Re: ANN: Strings Edit v2.5
Newsgroups: comp.lang.ada
[…]
Sure, and I have other packages in the
pipe line. But I didn't manage to
understand the necessary procedure. It
looked awfully complicated…
[see also "Strings Edit for Ada v2.4" in
AUJ 31-1 (Mar 2010), p.12 —mp]

GNATGPR 0.32
From: David Sauvage

<sauvage.david@gmail.com>
Date: Wed, 30 Jun 2010 14:33:43 -0700

PDT
Subject: Announce : Release of gnatgpr

0.32, access to GPR project information.
Newsgroups: comp.lang.ada
GNATGPR is an Ada 2005 GPL
software, it allows the user to do simple
information request on GNAT GPR
project files, like for example :
- Give all included projects.
- Give all included sources (transitive or

not).
- Give all included source directories

(transitive or not).

- Give all main files.
- Give all main directories.
- Give all included object paths.
- Give project zombies (duplicated .o or

.ali when a source file are moved from
one project to another).

There are 2 ways of accessing those
services:
- In a shell using the gnatgpr binary.
- In Ada using the GNAT_GPR package

specification interface.
GNATGPR is based on :
- A modified version of the GNAT GPL

2008 (GPL) compiler front-end.
 o It gets his own Namet and so on.
 o It can extracts some especially craft

 comments in the gpr project file.
- AdaControl (GMGPL), for option

analyzis.
 o Only the Options_Analyzer package

 have been re-used (without any
 change).

- AUnit 2.03 (GPL), for unit testing.
Thanks to all the people behind those
projects.
GNATGPR roadmap:
- Selection of the next gnatgpr engine

(GCC FSF 4.4/GPRBuild/GNAT GPL
2010/GNATColl).

- Shift to GPL v3.
- Documentation.
- GNATGPR production for non-GNAT

Ada compilers.
- GNAT_GPR package interface clean-

up.
- Use of Debian AUnit version.
- Non transitive analysis for main files,

binary directories and object paths.
- Multi languages processing.
- Multi root-projects processing.
- Comply to Debian packaging guidelines

(removal of debian directory at upstream
level, ...).

Debian & derived distributions repository
(for package libgnatgpr0 libgnatgpr0-bin
libgnatgpr0-dev):
deb http://ppa.launchpad.net/
pariakanet/ppa/ubuntu lucid main
deb-src http://ppa.launchpad.net/
pariakanet/ppa/ubuntu lucid main
See the project home page [1] to add the
PPA repository key.
[1] https://gna.org/projects/gnatgpr

Matreshka v0.0.4 and v0.0.5
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Thu, 1 Jul 2010 11:30:05 -0700 PDT
Subject: Announce: Matreshka 0.0.4
Newsgroups: comp.lang.ada

162 Ada-related Products

Volume 31, Number 3, September 2010 Ada User Journal

Hello,
I am pleased to announce a new version
of Matreshka. The goal of this project is
to provide set of simple to use but
powerful Ada libraries to construct
information systems. Most important
addition in the new version is non-
validating XML processor with SAX2
interface. This version is compatible with
both GNAT GPL 2009 and GNAT GPL
2010. Users of GNAT GPL 2010 can use
all power of x86_64 processors, SSE2
instructions set is used to speedup several
operations on strings.
Others important features are: support for
unbounded form of strings of Unicode
characters, including most useful
operations (case conversion, folding,
collation, normalization and iteration)
implemented as specified by Unicode
standard and non-backtracking Unicode
compatible regular expressions engine.
Someone can found interesting modified
version of aflex (lexical scanner
generator) which is extended to support
full Unicode character set and by ability
to specify set of characters by value of
character's boolean properties.
Cross platform source code package can
be downloaded from project's site:
From: coopht <coopht@gmail.com>
Date: Wed, 18 Aug 2010 13:19:24 -0700

PDT
Subject: ANN: Matreshka 0.0.5
Newsgroups: comp.lang.ada
Hello, I'm happy to announce new version
of Matreshka toolkit version 0.0.5
This version includes following features:
- Text decoder (New) : various text

encodings are supported
- Message translator (New) : for

localization of application's messages
- New extensions of string manipulation

package (New)
- XML reader (New) : socket as input

source supported
- XML reader (New) : incremental

parsing of input XML stream supported
- A lot of bug fixes and performance

improvements.
The new version can be downloaded here:
http://adaforge.qtada.com/cgi-bin/
tracker.fcgi/matreshka/downloader
[see also "Matreshka v. 0.0.3" in AUJ 31-
2 (Jun 2010), p.87 —mp]

Units of Measurement for
Ada v3.1
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 3 Jul 2010 20:28:13 +0200
Subject: ANN: Units of Measurement for

Ada v3.1
Newsgroups: comp.lang.ada

The library provides an implementation of
dimensioned values for Ada. Unit checks
are made at run-time, if not optimized out
by the compiler. SI and irregular
measurement units are supported. Shifted
units like degrees Celsius are supported
too. Conversions from and back to strings
are provided for all various irregular
units. An extensive set of GTK widgets
for dealing with dimensioned values is
included, though use of GTK is not
mandatory for the rest of the library.
http://www.dmitry-kazakov.de/
ada/units.htm
This version adds experimental Debian
and Fedora packages.
[see also "Units of Measurement for Ada
v3.0" in AUJ 31-2 (Jun 2010), p.85
—mp]

Adasubst and Adadep for
GNAT GPL 2010
From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 19 Aug 2010 14:28:12 +0200
Subject: [Ann] Adasubst and Adadep for

Gnat GPL2010 released
Newsgroups: comp.lang.ada
Adalog is happy to announce new releases
of AdaSubst and AdaDep. Apart from
minor bug fixes, the main difference of
these releases is that the precompiled
versions are now for GNAT GPL 2010.
AdaSubst is a tool for semantic
substitution of identifiers. It allows to
change identifiers or reorganize package
structures project-wide.
AdaSubst is fully aware of all Ada
visibility rules, and does the right thing
even in presence of overloading, use
clauses, name hiding, etc.
AdaDep is a tool for analyzing
dependencies. It tells which elements
from a package are used by units that
"with" the package.
Both tools are free software, released
under the GMGPL license. Download
from Adalog's component page:
http://www.adalog.fr/compo2.htm
[…]
[see also "AdaSubst & AdaDep" in AUJ
29-1 (Mar 2008), p.8 —mp]

Ada-related Products
AdaCore — GNAT GPL
Edition 2010
From: AdaCore Libre Website
Date: Mon, 28 Jun 2010
Subject: GNAT GPL Edition
URL: http://libre.adacore.com/libre/tools/

gnat-gpl-edition/
GNAT GPL Edition - 2010 Edition Now
Available!

We are pleased to announce the release of
GNAT GPL 2010, the integrated Ada,C,
C++ toolset for for Academic users and
FLOSS developers.
This new edition provides many new
features and enhancements in all areas of
the technology. The most notable ones
are:
- First taste of Ada 2012 with features

such as conditional or case expressions
- Enhanced IDE (tips, new views, better

doc generator
- GNAT Project API available in

GNATColl
- Support for Windows 7
- Support for MacOS X Snow Leopard

(64 bit)
- Support for Visual Studio 2008 for the

.NET Framework
- Support for AVR (embedded 8 bit)
- Ravenscar support for the Lego

Mindstorm NXT port (future
availability)

In the context of the GAP program, we
hope the last 2 points above will provide
new and interesting options for real-time
and/or robotics classes.
GNAT GPL 2010 comes with version
4.4.1 of the GNAT Programming Studio
IDE and GNATbench 2.4.0, the GNAT
plug-in for Eclipse.
AdaCore is dedicated to developing the
finest tools available for software
development with Ada. The GNAT GPL
Edition is the Ada 2005 development
environment for Free Software
development and the GNAT Academic
Program for use in Academia. GNAT Pro
for commercial/industrial development.
The GNAT GPL Edition consists of the
following technologies:
- The GNAT Ada 2005 compilation

system
- Various tools such as heap monitoring,

unit testing, program browsing, etc.
- Ada 2005 and GNAT libraries

(Containers, pattern matching, sorting,
etc.)

- The GNAT Programming Studio (GPS)
visual IDE

Related technologies are also available for
download alongside the GNAT GPL
Edition:
- AWS: to web-enable Ada applications

(Ada Web Server)
- XML/Ada: to process XML streams in

Ada applications
- ASIS: to develop tools for Ada software
- GtkAda: to develop modern native GUIs

in Ada
- PolyORB: to build distributed systems

using CORBA and the Ada distributed
systems annex

Ada-related Products 163

Ada User Journal Volume 31, Number 3, September 2010

AdaCore — AWS for
WxWorks
From: AdaCore Press Center
Date: Wed, 25 Aug 2010
Subject: AWS available for Wind River’s

VxWorks
URL: http://www.adacore.com/2010/08/25/

aws-vxworks/
AWS available for Wind River’s
VxWorks
Ada Web Server brings web-based
connectivity and control to embedded
applications
NEW YORK and PARIS, August 24,
2010 – AdaCore, a leading supplier of
Ada development tools and support
services, today announced the launch of
Ada Web Server (AWS) for Wind River’s
VxWorks Real-Time Operating System
(RTOS).
When used in conjunction with the GNAT
Pro development environment, AWS
enables developers to embed an Ada-
based web server within any application,
accessible through web browsers. With
AWS for VxWorks, users can connect
through a direct TCP/IP link to board-
level applications for a variety of
purposes, such as system control,
configuration, and/or maintenance. The
two-way interface is both lightweight and
flexible.
In the past, AWS has been available on
native operating systems, including
Windows and Linux. VxWorks is the first
RTOS supported by AWS, providing
developers with a target-independent
solution for creating user interfaces for
embedded applications. Ports to
additional embedded RTOS platforms are
currently under development.
“Embedded applications used to be fairly
self-contained and autonomous. This
picture is changing rapidly, and a growing
number now have a connection to the
Internet or at least to a company’s
intranet,” said Cyrille Comar, Managing
Director, AdaCore. “AWS for VxWorks
provides GNAT Pro customers with a
very simple and integrated way to
implement a user interface to their
embedded devices through regular web
browsers, bringing the power of modern
web technology to the traditional
embedded world.”
“Wind River is pleased to see AWS
support made available for the VxWorks
platform,” said Chip Downing, senior
director of aerospace and defense at Wind
River. “AdaCore continues to add
advanced capabilities for VxWorks that
expand the use cases for both products.”
Key features of AWS:
- Web Parameters Module for retrieving

forms or URL parameters and building
an associative table for easy access

- Session Server that keeps client data
from page to page

- SOAP support for developing web
services and generating stubs/skeletons
from a WSDL document

- Template parser, allowing the complete
separation of web design from code

- HTTPS/SSL, for Secure Sockets based
on the OpenSSL library

- Support for large servers and virtual
hosting using dispatchers based on URI
request methods or host names

- Server Push support
- Log Module to keep log file of all

resources requested by servers
- Support for SOAP, SMTP, POP and

LDAP protocols and the AJAX standard
- Client-side support using client API to

retrieve any web page from a web page
- High-level services, including directory

browser, status page for information,
and web page service to build simple
static page servers

About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, the state-of-the-art programming
language designed for large, long-lived
applications where safety, security, and
reliability are critical. AdaCore’s flagship
product is the GNAT Pro development
environment, which comes with expert
on-line support and is available on more
platforms than any other Ada technology.
AdaCore has an extensive world-wide
customer base; see
www.adacore.com/home/
company/customers/ for further
information.
Ada and GNAT Pro see a growing usage
in high-integrity and safety-certified
applications, including commercial
aircraft avionics, military systems, air
traffic management/control, railway
systems and medical devices, and in
security-sensitive domains such as
financial services.
AdaCore has North American
headquarters in New York and European
headquarters in Paris.
www.adacore.com

Adalog — AdaControl
1.12r4
From: J-P. Rosen <rosen@adalog.fr>
Date: Wed, 04 Aug 2010 09:36:58 +0200
Subject: Ann: AdaControl 1.12r4

(GPL2010) released
Newsgroups: comp.lang.ada
Adalog is happy to announce the release
of AdaControl 1.12r4.
This is a minor release to 1.12r3 that just
fixes a few bugs in unlikely corner cases,

but the main improvement is that the
executable versions are now provided for
GNAT GPL2010.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 04 Aug 2010 14:51:12 +0200
Subject: Re: Ann: AdaControl 1.12r4

(GPL2010) released
Newsgroups: comp.lang.ada
[…]
This new version reached Debian unstable
yesterday :)
[see also "AdaLog — AdaControl 1.12r3"
in AUJ 31-2 (Jun 2010), p.89 —mp]

Midoan — Mika 1.2
From: Midoan Webpage
Date: Wed, 1 Sep 2010 [retrieved —mp]
Subject: Mika by MIDOAN Version 1.2

Release Notes
URL: http://www.midoan.com/download/

current/ ReleaseNotes.rtf
[…]
Mika is an automatic test data generation
tool for code written in a large subset of
Ada 83, Ada 95 or Ada 2005. Mika uses
genetic algorithms to generate inter-
subprograms tests that will, by
construction, exercise, during execution,
the maximum possible number of
branches, or decisions, in the code under
test.
[…] What is new in this release
Version 1.2 (29 June 2010)
- Mika now allows MC/DC test data

generation from Ada source code.
[…]
Releases History
Version 1.2 (29 June 2010)
- Improvements include:
- Tests to achieve MC/DC coverage of the

code under test can now be generated
automatically;

- The user can now specify the level of
deepness of coverage desired;

- The handling of input dependent types,
slices, loops etc is more clever : it is
much less likely to lead to un-tractable
tests data generation;

- The test data generation process has
been improved for floating point
entities.

Subset enlargements include:
- Input dependent types are accurately

handled;
- Dynamic record default field

expressions are accurately handled;
- Input dependent loop ranges are

accurately handled;
- Conditional expressions are fully

supported;

164 Ada Inside

Volume 31, Number 3, September 2010 Ada User Journal

- Large integers handling has been
improved;

- The valid attribute is supported.
Bug fixes include:
- Tests generation for rem and mod

expressions is more powerful;
- Subprograms calls that returns

unhandled expressions were not handled
properly;

- View conversions with complex
expressions were not handled properly;

- View conversions with long prefixes
were not handled properly.

[…]
[see also "Midoan — Mika 1.1" in AUJ
30-2 (Jun 2009), p.79 —mp]

Ada Inside
Lunar lander CubeSat
adopts SPARK
From: melampus <henssel@gmail.com>
Date: Thu, 10 Jun 2010 05:16:51 -0700

PDT
Subject: FYI -- Lunar lander project relies

on SPARK programming language
Newsgroups: comp.lang.ada
Altran Praxis announced that its SPARK
language has been selected by a new,
NASA-funded US lunar mission. SPARK
will be used to develop the software
behind a CubeSat project being developed
by a consortium comprising Vermont
Technical College, Norwich University,
St. Michael's College, and the University
of Vermont.
EE Times EU =>
http://www.electronics-eetimes.com/en/
lunar-lander-project-relies-on-spark-
programming-language.html?
cmp_id=7&news_id=222902326&
vID=296
From: Pascal Obry <pascal@obry.net>
Date: Thu, 10 Jun 2010 18:19:54 +0200
Subject: Re: FYI -- Lunar lander project

relies on SPARK programming language
Newsgroups: comp.lang.ada
[…] would be nice to know which Ada
compiler will be used to generate the code
for the target.
[…]
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Thu, 10 Jun 2010 21:01:17 +0300
Subject: Re: FYI -- Lunar lander project

relies on SPARK programming language
Newsgroups: comp.lang.ada
[…]
An earlier article on CubeSat (Ada User
Journal, September 2008, page 213) says
that they use(d) SofCheck's AdaMagic
Ada-to-C compiler, followed by Rowley
Associates' CrossWorks C compiler.

From: Peter C. Chapin
<chapinp@acm.org>

Date: Fri, 11 Jun 2010 10:22:31 -0400
Subject: Re: FYI -- Lunar lander project

relies on SPARK programming language
Newsgroups: comp.lang.ada
[…]
I can speak on this issue as I am directly
involved with this project. And yes, our
intention is to compile the Ada to C using
SofCheck's AdaMagic and then compile
the C with CrossWorks. We have
experience doing this with an earlier
project and it works well. At the moment
we are programming to the bare metal
without the assistance of an operating
system (although that might have to
change at some point). SPARK is helpful
here because the run-time support
required for SPARK programs is
extremely minimal due to SPARK's
restrictions.
From: Bill Findlay

<findlaybill@blueyonder.co.uk>
Date: Fri, 11 Jun 2010 15:34:03 +0100
Subject: Re: FYI -- Lunar lander project

relies on SPARK programming language
Newsgroups: comp.lang.ada
[…]
Can you say why? Is there no Ada
compiler that directly targets your CPU?
From: Peter C. Chapin

<chapinp@acm.org>
Date: Sat, 12 Jun 2010 08:12:39 -0400
Subject: Re: FYI -- Lunar lander project

relies on SPARK programming language
Newsgroups: comp.lang.ada
[…]
There is a GCC based tool chain
supporting the MSP430. See:
http://mspgcc.sourceforge.net/
Presumably we could compile GNAT on
top of this tool chain. However, Rowley's
product gives excellent and "direct"
support for the chips we are using: GUI
debugging tools, simulation tools, IDE
support, etc. Also Rowley's compiler is
supported by third parties who have
simple OS kernels for this platform. Our
tool chain works "out of the box" after
just making a few configuration
adjustments to AdaMagic. We felt that
there would be more problems trying to
get GNAT to work.
I do not know of any Ada compiler that
generates code directly for the MSP430.

SPARK implementation of
the Skein algorithm
From: AdaCore Press Center
Date: Mon, 16 Aug 2010
Subject: Open Source SPARK

Implementation of Skein Algorithm
URL: http://www.adacore.com/2010/08/16/

spark-skein/

SPARKSkein reference implementation
achieves success ahead of Crypto 2010
conference
NEW YORK, PARIS, and BATH,
England, August 16, 2010 – Crypto 2010
Conference
Altran Praxis and AdaCore today
announced a new reference
implementation of the Skein algorithm,
written and verified using the GPL 2010
Edition of the SPARK language and
toolset. Skein is a cryptographic hash
function and an entrant in the National
Institute of Standards and Technology
(NIST) hash function competition to
design what will become the new Secure
Hash Algorithm (SHA-3) standard. Such
hash functions are used to compute short
“digests” of long messages, and are one of
the key building blocks of digital
communication and cryptographic
systems. Altran Praxis and AdaCore have
open sourced the SPARKSkein reference
implementation and made it available to
the developer community via the Skein
website. This is in time for the second
SHA-3 candidate conference taking place
at the Crypto 2010 conference, Santa
Barbara, California, USA, from 23-24
August 2010.
The joint Altran Praxis and AdaCore
project began as an informal experiment
to demonstrate whether a hash algorithm
like Skein could be realistically
implemented in SPARK. The goals of the
implementation were:
- Readability – to strike a reasonable

balance of readability and performance.
- Portability – the team aimed for a single

code-base that was portable and correct
on all target machines of any word size
and endian-ness, with no macros,
‘ifdefs’, or pre-processing of any kind.

- Performance – to ensure that the
performance of the SPARK code would
be close to or better than the existing C
reference implementation.

- Formality – to prove at least type-safety
(i.e., no exceptions) on the SPARKSkein
code.

The team wanted to use the experiment to
refute the claim that ‘formal is slow’ in
programming languages.
The project concluded with notable
success, proving that an algorithm like
Skein can be written in a ‘formal’
language like SPARK without sacrificing
readability or performance. Furthermore,
portability was achieved. A single set of
sources yielded identical results on more
than fifteen platforms, covering a wide
range of microprocessors and operating
systems. In addition, SPARK’s type-safe
nature allowed the project team to
maximize compiler optimization with
confidence.
Professor Stefan Lucks, a member of the
Skein design team, said, “Speaking for the

Ada Inside 165

Ada User Journal Volume 31, Number 3, September 2010

Skein design team, we’re very impressed
by this work. SPARKSkein isn’t just
another implementation of Skein –
essential properties of this implementation
have been formally verified. It is stunning
how the formal verification of the SPARK
source code actually made us discover a
flaw in our own reference C
implementation.
Personally, I also find the SPARK code to
be more readable than the equivalent C.”
Rod Chapman, a Principal Engineer at
Altran Praxis, led the SPARKSkein
project.
He said, “This is an incredibly exciting
project for us to be involved in. By open
sourcing the code and donating our work,
we hope to make a valuable contribution
to the scientific community, as well as to
showcase the capability of SPARK and its
verification tools.”
“ Eric Botcazou, GCC expert and
consultant at AdaCore provided the
optimization and performance analysis for
the project. He added, “The results clearly
demonstrate that the SPARKSkein code is
easy to understand and read, while the
performance is at a comparable speed to
the C code. This is solid evidence that any
‘formal’ code developed in this way
doesn’t have to be slow and impractical.”
About Altran Praxis
Altran Praxis is a specialist systems and
software house, focused on the
engineering of systems with demanding
safety, security or innovation
requirements. Altran Praxis leads the
world in specific areas of advanced
systems engineering and innovation such
as: ultra low defect software engineering,
Human Machine Interface (HMI), safety
engineering for complex or novel systems
and tools/methods (such as SPARK) for
systems engineering.
It offers clients a range of services
including turnkey systems development,
consultancy, training and R&D. Key
market sectors are aerospace and defence,
rail, nuclear, air traffic management,
automotive, medical and security.
The company operates globally with
active projects in the US, Asia and
Europe. The headquarters of Altran Praxis
are in Bath (UK) with offices in Sophia
Antipolis, London, Paris, Loughborough
and Bangalore. Altran Praxis is an
expertise centre within, and wholly owned
by, Altran which is a global leader in
innovation engineering and employs
17,000 staff across the world.
www.altran-praxis.com
[…]

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —mp]
Job offer [Belgium]: Software Developer
in Ada
[…]
Development (& designer tests) of basic
software, signalling application software
and monitor software (interface Basic
Software / Application Software).
Integration. Functional tests in lab.
Context/Tasks
Responsible of software development
(design, integration and designer tests).
Functional reporting to project leader and
Product leader.
Profile
- Degree: Master (4 or 5 years

curriculum)
- Experience: 4 or 5 years of experience in

SW design and programming -
Experienced in real time embedded SW
and basic SW.

Technical Skills
- Ada programming language.
- Functional SW specification (Teamwork

tool).
- Configuration and Modification

management (Clearcase and Clearquest
tools).

- Notions in communication, safety
protocols.

[…]
Job offer [United Kingdom]: Permanent
Software Engineer
[…]
A permanent staff opportunity for a
proven ADA / ADA95 Software Engineer
[sic —mp].
The MCSP programme is a £750m update
to the Royal Navy's Merlin anti-
submarine and anti-surface helicopter
system. The programme includes
technology enhancements to the aircraft,
ground preparation/analysis systems,
training systems and support
infrastructure.
This role is integral to the successful
performance of our client's flagship
programme in the UK; the candidate will
be expected to adhere to challenging
schedules.
Specific Job Description:
The position requires strong
understanding and sound application of
the Software Engineering principles and
practises and a general knowledge of
systems engineering and Test &
Integration and Validation disciplines.

The position requires a software
developer who designs, develops,
documents, tests, and debugs applications
software that contains logical and
mathematical solutions to
business/mission problems or questions in
computer language for solutions by means
of data processing equipment. Applies the
appropriate standards, processes,
procedures, and tools throughout the
development life cycle.
Corrects program errors, prepares
operating instructions, compiles
documentation of program development,
and analyses system capabilities to
resolve questions of program intent,
output requirements, input data
acquisition, programming techniques, and
controls.
[…]
The Software Developer will be
responsible for design, development and
unit test of elements of software on the
MCSP programme. This will include:
- Plan own work within defined

constraints with the assistance of
engineering and technical mentors

- Provide overall technical support and
assistance to engineers

- Design using object-oriented
methodologies and a UML toolset
(Artisan Studio)

- Code development in ADA 95 (using
Greenhill's AdaMulti)

- Documentation of developed software
- Unit testing (using ADATest)
[…]
Required Skills:
ADA Programming Experience
Development with C/C++/Java
Ability to adhere to a process within a
Software development environment
SC Clearance will be necessary to start in
this role
Job offer [United Kingdom]: Aerospace -
Software Engineer
1. The consultants must have the

Aerospace/Aerospace domain
experience.

2. Incumbent should be a qualified
Graduate/ post graduate (Mechanical,
marine) engineering.

3. The candidates should be technically
good at

- Software Engineering,
- DO178B,
- DAL A,
- combination of C, C++, C#, Ada, UML,
- Requirements Management and Design

Management Skills
Experience in Years: 11+

166 Ada in Context

Volume 31, Number 3, September 2010 Ada User Journal

Job offer [Spain]: Analyst Programmer
[…] We are searching for an analyst
programmer with the following profile:
Education: graduated in Computer
Science, Telecommunication or
Electronic Engineering
Professional experience: minimum 3
years
[…]
Programming languages:
-ADA 95 [sic —mp]
-Assembler for Power PC processors
Software development:
- Development of object-oriented

software
- Techniques for software testing
- Development of real-time systems
- Development of drivers for hardware

devices
Productivity suites: Word, Excel, Power
Point, etc.
Tools:
- Tools for version control
- Tools for requirement management
- Tools for software testing and

documentation
Desirable knowledge:
- Development standards:

DOD/STD/2167, RTCA/DO-178B
- Knowledge of the architecture of Power

PC microprocessors
- Real-Time operating systems (Integrity,

VxWorks, etc.)
Experience in the following development
environments:
- ADAMULTI (GreenHills)
- RHAPSODY (IBM/Telelogic)
- ACCUREV (Accurev Inc.)
- DOORS (IBM/Telelogic)
Experience: 3-5 years
[translated from Spanish —mp]
Job offer [United States]: Real-Time
Embedded Software Engineer
Currently we are looking for multiple
Real-Time Embedded Software Engineers
for our client […]
These opportunities are long term
contracting positions […]
The Real-time Embedded Software
Engineers should be experienced and
skilled in the following:
- 5+ years of real-time embedded software

development experience
- Knowledge of DO-178B Level A

software development standards
- Ability to develop software

requirements from customer inputs

- Understanding and translation of
software requirements into a software
design.

- Experience in high-level language such
as C, C++ or Ada

- Reviewing/evaluating software products
produced by peers.

- Skills in performing low level and high
level tests on the software and
integrating the software with the end
item hardware.

- Experience with one or more of the
avionics communication buses including
AFDX, ARINC-429, CAN, MIL-STD-
1553.

- Use MS Office products (Word, Excel
and Access) and Telelogic DOORS to
assist in the development of software
product and documentation.

Job Requirements
- Real-Time Development
- C, C++, or Ada
- Avionics communication buses

including AFDX, ARINC-429, CAN,
MIL-ST-1553

- Telelogic DOORS
- DO-178B Level A software

development standard

Ada in Context
Ada, UML and code
generation
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 31 Aug 2010 12:12:43 +0200
Subject: Ada and UML
Newsgroups: comp.lang.ada
Hi all,
A few days ago I get to have a look back
at UML after a topic linking to an
assessment stating graphical
representations may help in
design/application validation.
Someone argued there is a lack of
semantic with UML which dismiss its
usage; one topic I agree on, and after
some reading to be sure, it seems indeed,
there does not have a clearly defined
semantics […]
Another topic I often read/heard about
Ada and UML, is that it is too much
oriented toward Java/C++, lacking as an
example, handling of class and package
orthogonality which is typical of Ada.
I've just discovered today it seems there is
a kind of package visibility with UML
expression of classes, which could match
Ada concept of package: the visibility
modifier ~ (the Tilde sign) which seems
to mean "private at package level".
This should be sufficient for Ada.
Nevertheless, there is nothing like

"friend" or "protected" in Ada, as
visibility is only handled by packages, so
this visibility modifiers could just be
disallowed. Do you think "~" is OK to
express visibility handled by packages ?
For you who tried Ada and UML, did you
noticed some others unsolvable matters to
express Ada package in UML?
[…]
P.S. As the purpose of UML is clearly
underspecification, may be the question of
this thread does not really matters, as Ada
is acting at implementation level.
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 31 Aug 2010 13:05:43 +0200
Subject: Re: Ada and UML
Newsgroups: comp.lang.ada
[…]
Also, the Extend relationship, could be
used to express the Ada's child package
relationship. But I am not sure this is
valid UML to use the extend relation
between two UML packages.
And what about the Composition
relationship to express Ada's nested
package relationship ?
From: Matteo Bordin

<matteo.bordin@gmail.com>
Date: Tue, 31 Aug 2010 09:34:11 -0700

PDT
Subject: Re: Ada and UML
Newsgroups: comp.lang.ada
> […]
 To be more exact, UML Name Space

should be used instead of UML
Package, as Ada's package are both
package and name-space at a time. […]

Hello Yannick,
UML semantics can be found in the UML
metamodel superstructure at
http://www.omg.org/spec/UML/2.3/
Superstructure/PDF/. As you said, UML
has no formally specified semantics - but
this is also true for most languages we use
everyday (including Ada): I think it is
really unfair to keep bashing UML for not
having a "formal semantics" while
basically all languages we use suffers of
the same problem. The only exceptions I
am aware of are SPARK and some
languages of the synchronous family
(Lustre, Esterel, …).
Mapping Ada on UML means treating
UML as graphical coding: in my personal
opinion this defeats the main purpose of
UML - i.e. being a platform-independent
language. Ada profiles for UML surely
exists, but they make UML models
implicitly not implementable on any other
programming language. I personally find
language-specific UML profiles a total
non-sense. Having said that, it is
unfortunate that an incestuous relationship
between UML and Java/C++ exists.

Ada in Context 167

Ada User Journal Volume 31, Number 3, September 2010

Anyway, one reasonable approach to
represent Ada packages in "standard"
UML is to use a non extensible
(isLeaf=true) UML singleton class.
Package-level variables, constants and
non-primitive operations can be mapped
as static features (isStatic=True) of the
singleton class. Types declared within the
Ada package can be represented as nested
non-singleton classes contained in the
singleton class above (a UML nested
classifier is equivalent to Java/C++ nested
classes). Ada child packages can be
mapped as nested, non-extensible
singletons. As you can see, this
representation does not sound very natural
from a UML point-of-view, but covers the
Ada semantics.
The extend relationships relates to UML
types only: in UML, a Package is not a
type, so it cannot be extended in the UML
sense. You also cannot directly use UML
Namespace because it is an abstract
semantic element (an abstract metaclass).
[…]
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Wed, 01 Sep 2010 01:14:21 +0200
Subject: Re: Ada and UML
Newsgroups: comp.lang.ada
[…]
> I personally find language-specific

UML profiles a total non-sense. Having
said that, it is unfortunate that an
incestuous relationship between UML
and Java/C++ exists.

I have never talked about UML profile ;) I
talked about meaning of notational
elements and attempted to express them in
terms of Ada construct meaning.
There is no worry about stating UML
Namespace better match Ada's package
than UML Package does.
This is not an UML profile. Except may
be for restriction like "only use the ~
visibility modifier".
But this could be as well a required UML
subset to match some design criteria, just
like there are Ada subsets (Ravenscar,
SPARK, and may be others).
Also note that an Ada profile and UML
profile does not stand for the same thing:
UML profile means possibly adding
notational components to UML via
prototypes [stereotypes —mp], while an
Ada profile means strict subset of Ada,
don't even think about adding anything.
These are two opposite!
I was talking about UML subset. This
should match both expectations, yours
and mine. Subset may enforce clearer
meaning (as an example, avoiding to have
multiple notation to express the same
thing), while not extended the notation, so
that it is not tied to a particular language
(I love your comment about it).

I agree with the criteria (UML should not
be tied to any design language).
> Anyway, one reasonable approach to

represent Ada packages in "standard"
UML is to use a non extendible
(isLeaf=true) UML singleton class.

An UML class to represent a package ?
Can you tell more ? What is the difference
with the name-space choice ?
[…]
I was a bit long with this reply, let go for
a summary: give UML the semantics of
the target language (implies this choice is
made a-priori), use notation restrictions as
much as needed […]
From: Matteo Bordin

<matteo.bordin@gmail.com>
Date: Wed, 1 Sep 2010 01:20:30 -0700 PDT
Subject: Re: Ada and UML
Newsgroups: comp.lang.ada
[…]
One of the goals of UML is to permit
UML models to be implemented on
several run-time platforms: for this to be
possible, either you create a language
which is the union of all possible
computational models, or you leave
semantic variation points to permit model
transformation (code generators) to inject
platform-specific semantics following a
precise pattern. UML chose the second
option. The core idea is that, by modeling
your execution platform, you can
"instruct" your code generator to generate
code with a fully specified semantics for a
precise target platform starting from an
abstract model. This permits to re-use the
same model for different target platforms
by just changing code generator and
platform model and to perform high-level
verifications without including "pollution"
from the underlying run time.
> […]
 Also note that an Ada profile and UML

profile does not stands for the same
thing: UML profile means possibly
adding notational components to UML
via prototypes, while Ada profile means
strict subset of Ada, don't even think
about adding anything. These are two
opposite!

A UML profile can be purely constrictive.
For example, a UML profile may state
that you cannot use Interfaces. This is
expressed in OCL as
Interface.allInstances()->size() = 0. No
need for stereotypes. From this point of
view, a UML Profile provides the same
service as an Ada profile. A UML profile
can also be used to define modeling
standards (mirroring the notion of coding
standard).
> […]
 An UML class to represent a package?

Can you tell more? What is the
difference with the name-space choice?

The problem is that Ada Packages can
have non-primitive operations and
variables, but UML Packages can't. The
only place where you can put an operation
in UML is inside some behavioural
classifiers (Class, Interface, DataType,
…). So, if you want to represent Ada
packages with non-primitive operations,
the only option is to map the Ada Package
on a UML class. On the other side, if your
Ada program is fully object-oriented
(only primitive operations), you can use
UML packages to map Ada packages and
UML classes to map Ada tagged/record
types.
In UML a Namespace is an abstract
metaclass (a sort of abstract grammar
rule), which is extended by concrete
metaclasses. BTW, UML Class inherits
from NameSpace: in UML a Class is a
Namespace.
> I was a bit long with this reply, let go

for a summary: give UML the semantic
of the target language […], use notation
restrictions as much as needed […]

I disagree ;-) This approach means using
UML at the same abstraction level of a
traditional programming language. A
desirable modeling approach based on
languages of the UML family is to
separate what is platform-independent
from what is platform-specific to permit
the reuse of platform-independent
models. Let's make an example about
tasking.
You can have a platform-independent
UML model where you identify "unit of
concurrency".
And another, platform-specific UML
model where you describe the low-level
implementation in terms of (Ada, C,
ARINC-653, ...) tasks.
Then you allocate the platform-
independent UML model on the platform-
specific one by binding elements of the
first model on elements of the second one.
This way you can reuse the platform-
independent model on several different
run-time architectures by simply
providing new platform-specific models
and new bindings.
You may get more information on this
approach by reading tutorials on MARTE
(omgmarte.org).
From: Simon Wright

<simon@pushface.org>
Date: Wed, 01 Sep 2010 19:44:09 +0100
Subject: Re: Ada and UML
Newsgroups: comp.lang.ada
[…]
I was going to draft a reply but Matteo
has said almost all that I would have
done.
I'd add that:
1 I wouldn't expect every possible UML

construct to be translatable using this
model. A given vendor/toolset might

168 Ada in Context

Volume 31, Number 3, September 2010 Ada User Journal

well specify limitations, presumably as a
profile.

2 I wouldn't expect to be able to tweak the
UML so as to generate any arbitrary
target language (Ada) construct.

3 The converse of 2: I wouldn't expect to
be able to represent any arbitrary target
language (Ada) program in UML so as
to be able to regenerate it.

From: Matteo Bordin
<matteo.bordin@gmail.com>

Date: Thu, 2 Sep 2010 23:54:59 -0700 PDT
Subject: Re: Ada and UML
Newsgroups: comp.lang.ada
[…]
Papyrus 1.11 includes an UML2-to-
Ada2005 code generator. Very primitive,
written just as a counter example for some
FUD about Ada (Ada can't do OO, Java is
more expressive than Ada and other
idiocies). BTW, it is written in Acceleo,
see
http://www.papyrusuml.org/scripts/home/
publigen/content/templates/show.asp?P=1
31&L=EN&ITEMID=15
[…]
From: Anonymous
Date: Tue, 31 Aug 2010 23:20:41 +0200
Subject: Re: Ada and UML
Newsgroups: comp.lang.ada
> Ada profiles for UML surely exists, but

they make UML models implicitly not
implementable on any other
programming language.

There are also platform-independent
profiles with semantics. I use one every
day called xtUML. And translate the same
models to both C++ and Ada-95. SPARK
is under development.
The xtUML profile is used for
ANALYSIS models. We do NOT code
C++ or Ada in UML. We do analysis.
Then the translation into code is just
something mechanical.
From: Anonymous
Date: Thu, 02 Sep 2010 22:33:48 +0200
Subject: Re: Ada and UML
Newsgroups: comp.lang.ada
[…]
The thing we use is Executeable UML
(xtUML).
I use Bridgepoint. For C++ generation we
use a model compiler from Mentor for
Ada we have built one from scratch.
[…]
The model compiler is in many cases
quite as capable as I to analyze the model
and decide if instances of one class should
be allocated dynamically or created once
and for all in an array. If traditional
pointers or some other mechanism should
be used for relations and so on.
> Just think that in Ada, you may have for

example at least, where polymorphism
is required, two ways to do (when

feasible, sometime only one will
applies) : static (via generics) and
dynamic (via tagged or interface)
polymorphism. How can a system
know it should use this or that ? This
requires a human analysis, to say "well,
this can be statically known, so let's use
static polymorphism" or else the
opposite (just an example).

There are of course such examples. But
remember that when doing the translation
from model into code you have the whole
model of your system available in a
database and can can look at things from a
much better perspective than when you
are coding a single file.
An easy to understand example is
relations. If you draw a simple line in the
class model you state that there is a
relation. But the model compiler can look
at every single line of code in your system
to see if you use it (navigate) or not. If it
sees that you never use it, it won't have to
generate the code to maintain it and if it
finds you only navigate one direction it
can add the code needed for it to be one
way only. (Now many hardcore coders
will feel lost, what does he mean one-way
only, aren't they all? No in xtUML they
are always bidirectional, composite,
aggregate and navigability as in UML
does not exist).
> Your point makes me think about the so

called "Executable UML".
 Unfortunately, I do not know anything

about it. I am just pretty sure this
cannot be automated.

I think it can. We are in the process of
completing a pretty large system. It
consists of ~650 classes of which
probably around 200 have state machines.
Generated system is > 3000 Ada
packages.
> If you wan to tell more... just do :)
Sorry, not allowed to give details. Call
Mentor, ask for when John Wolfe or
Cortland Starret can be in your area, you
want to have a look at their system
modelling products.
Simon mentioned distribution. We use
that. In our system we can mark classes
and services as distributed. Then the
model compiler generates definition files
for the broker and in the classes it
generates all the interface code needed to
distribute things when it is updated.
So, do I have anything to complain about?
Yes
- Price of the tool.
- Your first project will fail. Try to

combine this knowledge with the prices
when you seek financing.

- Availability of model compilers
- Constantly having to defend the method
- Performance of the model compiler.

Coming from a world where a recompile

takes perhaps as long as 15 seconds
entering a world where
regeneration/recompilation takes three
hours is sometimes (read always) hard.
The generated code is probably faster
than anything I could have written
myself.

Regarding SPARK I know just about
nothing. I know there has been work on
modifying the Ada compiler to produce
SPARK code. Do not know how far that
has gone or what efforts need to be done.
There has also been work on generating
VHDL. Just think about it. Model a
system and end up with hardware specific
for your problem.
One strange thing the non-believers tend
to bring up is that software development
needs to be fun. My comment is that I
have now done this for six years. It has
been the most interesting years of my
twenty as a professional software
developer. The productivity you can reach
is beyond anything I had imagined before.
From: Simon Wright

<simon@pushface.org>
Newsgroups: comp.lang.ada
Subject: Re: Ada and UML
Date: Thu, 02 Sep 2010 07:14:42 +0100
[…]
> Your point makes me think about the so

called "Executable UML". […]
Bridgepoint presently from Mentor
Graphics,
http://www.mentor.com/products/sm/
model_development/
iUML from Kennedy-Carter,
http://www.kc.com/ (see 'Products')
In both cases the actions (the part that
does things) are written in a tool-specific
programming language, and one of the
jobs of the translation engine is to turn
this into compilable code.
Of particular interest to you, maybe, see
http://www.kc.com/PRODUCTS/iccg/
adacode.php where you are offered two
Ada code generators, one for Ada 83 and
one for SPARK (I don't know how the
SPARK generator gets 'interesting'
pre/post/invariant conditions in there;
obviously the analyst is going to have to
provide them).

Sharing the body of a
generic
From: Peter C. Chapin

<chapinp@acm.org>
Date: Mon, 26 Jul 2010 20:51:25 -0400
Subject: Sharing generic bodies across

instantiations.
Newsgroups: comp.lang.ada
It has been my understanding that Ada's
generics are designed in such a way as to
allow implementations to share the code
of a generic body across all the

Ada in Context 169

Ada User Journal Volume 31, Number 3, September 2010

instantiations. I understand that doing this
might involve a performance penalty
relative to creating independent code for
each instantiation. However, I can see that
there are cases where such sharing would
be desirable.
Is my understanding still accurate (was it
ever accurate), for example even with
Ada 2005?
[…]
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Tue, 27 Jul 2010 03:51:59 -0700 PDT
Subject: Re: Sharing generic bodies across

instantiations.
Newsgroups: comp.lang.ada
[…]
Allowed yes, required no.
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Mon, 26 Jul 2010 23:55:40 -0700

PDT
Subject: Re: Sharing generic bodies across

instantiations.
Newsgroups: comp.lang.ada
As far as I understand, GNAT replicates,
RR shares generic code.
(Don't know about IBM (former
Rational).)
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 27 Jul 2010 13:29:26 +0200
Subject: Re: Sharing generic bodies across

instantiations.
Newsgroups: comp.lang.ada
[…]
> As far as I understand, GNAT

replicates, RR shares generic code.
> (Don't know about IBM (former

Rational).)
My understanding is similar; indeed,
Janus/Ada is the only compiler that shares
generics. Unfortunately, no compiler
offers the option to choose; this is an
implementation decision.
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Tue, 27 Jul 2010 17:10:16 +0300
Subject: Re: Sharing generic bodies across

instantiations.
Newsgroups: comp.lang.ada
[…]
If I have understood correctly, Irvine's
Ada compiler supports shared generics
and provides a compile time option for
this.
On the other hand, Janus/Ada doesn't
provide an option. With it, shared
generics are always used.
From: Anonymous
Date: Tue, 27 Jul 2010 20:06:44 +0000

UTC
Subject: Re: Sharing generic bodies across

instantiations.
Newsgroups: comp.lang.ada

The Replication versus the Sharing of
Generic code was initially based on the
Ada Optimize pragma statement. That is,
when the users define the option of
"Time" the Generic code would be
replicated, but the "Space" option would
cause the compiler to share the code body.
Not using the pragma statement or the
Ada 95 "off" option allowed the designer
to set an implementation default.
Now as for GNAT it uses the
optimization based on the GCC back end
(-OX where X in 0 .. 4). GNAT still
preforms a syntactical check of the
Optimize pragma statement, then treat's
the statement as a comment like a number
of other built-in Ada pragma statement.
Which allows GNAT to replicate code
and let the GCC handle rather its switches
to shared or not. And at this time GCC
does not understand the Ada's concept
replication versus the sharing code for
optimization.
From: Keith Thompson <kst-u@mib.org>
Date: Tue, 27 Jul 2010 17:55:18 -0700
Subject: Re: Sharing generic bodies across

instantiations.
Newsgroups: comp.lang.ada
[…]
I don't believe the definition of pragma
Optimize was ever that specific; as far as I
know, it was always intended merely as a
vague hint.
Here's the description from the Ada 83
reference manual:
> OPTIMIZE takes one of the identifiers

TIME or SPACE as the single
argument. This pragma is only allowed
within a declarative part and it applies
to the block or body enclosing the
declarative part. It specifies whether
time or space is the primary
optimization criterion.

Using it to control generic code sharing
would certainly be reasonable, but it's not
required.
From: Anonymous
Date: Wed, 28 Jul 2010 11:16:24 +0000

UTC
Subject: Re: Sharing generic bodies across

instantiations.
Newsgroups: comp.lang.ada
[…]
Besides Ada 83 chapter B on pragmas, a
little more detail can be found in 10.3,
10.6, 11.6.
There are many forms of Optimizations.
Sharing vs replicated and removing dead
or unused code are some of the easiest to
implement. Altering algorithms and
expressions can be costly.
If the optimization criterion is set to
"Space" then using shared generic code
reduces the memory but may increase
time for the program to execute those
routines. As well as when the criterion is
set to "Time" replicated code may be

faster at the cost of using more memory.
So, the Ada Optimize pragma statement
does not limited it self to only expressions
it also includes the way generic codes are
generated and used.
For Ada 95 RM 2.8 Pragmas
 27 A pragma Optimize takes one of the

identifiers Time, Space, or Off as the
single argument. This pragma is allowed
anywhere a pragma is allowed, and it
applies until the end of the immediately
enclosing declarative region, or for a
pragma at the place of a
compilation_unit, to the end of the
compilation. It gives advice to the
implementation as to whether time or
space is the primary optimization
criterion, or that optional optimizations
should be turned off. It is
implementation defined how this advice
is followed.

also check out D.12 Other Optimizations
and Determinism Rules
From: Markus Schoepflin
Date: Wed, 28 Jul 2010 10:42:32 +0200
Subject: Re: Sharing generic bodies across

instantiations.
Newsgroups: comp.lang.ada
[…]
And Ada compiler is certainly not
required to do anything but syntax
checking for pragma optimize, but at least
they had code sharing in mind when
specifying the pragma.
From the 2005 AARM:
 27.a Implementation defined: Effect of

pragma Optimize.
 27.b Discussion: For example, a

compiler might use Time vs. Space to
control whether generic instantiations
are implemented with a macro-
expansion model, versus a shared-
generic-body model.

From: Peter C. Chapin
<chapinp@acm.org>

Date: Tue, 27 Jul 2010 18:23:03 -0400
Subject: Re: Sharing generic bodies across

instantiations.
Newsgroups: comp.lang.ada
[…]
Thanks for all the replies to my question.
I want to emphasize that my interest is not
so much in what is done by current
compilers but rather what is allowed by
the standard. Is the standard (even the
latest standard) written in such a way as to
make a shared implementation of generic
bodies possible? It sounds like the answer
is yes.
[…]
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 2 Aug 2010 21:38:57 -0500
Subject: Re: Sharing generic bodies across

instantiations.
Newsgroups: comp.lang.ada

170 Ada in Context

Volume 31, Number 3, September 2010 Ada User Journal

[…]
I have been very vigilant to preserve the
ability for generic sharing in the Ada
Standard. (It's something that would be
very easy to lose because of some obscure
combination of features.) I can't say for
sure that I have kept every such case out
of the Standard, but there is agreement
that at least limited sharing (when the
parameters are "similar enough") ought to
be a permitted implementation.
"Universal sharing" (where there only one
body for each generic), as used in
Janus/Ada, is more controversial (but is
still allowed by Ada 2005).
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Tue, 03 Aug 2010 10:31:43 -0400
Subject: Re: Sharing generic bodies across

instantiations.
Newsgroups: comp.lang.ada
[…]
Like Randy, I am in favor of retaining the
ability to share generic body code
(universal or otherwise) in Ada. I am not
in favor of trying to make universal
sharing efficient at run time -- that's not
possible. It's a trade-off -- it may make
compile time faster, at the expense of run
time.
It is not feasible to share generic spec
code.

On fixed-point types
From: Peter C. Chapin

<chapinp@acm.org>
Date: Sun, 15 Aug 2010 17:43:43 -0400
Subject: Question about ordinary fixed point

types.
Newsgroups: comp.lang.ada
I have a need to work with ordinary fixed
point types. I've read in the reference
manual about them (section 3.5.9, for
example), and some other things. I still
have a few questions. I thought I'd start
with one here.
Consider this example:

type Angle_Type is delta 0.0005
 range -3.1416 .. 3.1416;
Angle : Angle_Type;
...
Angle := Angle_Type'First;
while Angle < Angle_Type'Last loop
 -- Work with Angle here.
 Angle := Angle + Angle_Type'Small;
end loop;

Aside from Angle_Type'Last does the
loop above reliably visit every possible
value of Angle_Type? By "reliably" I
mean "has the desired effect on all
possible correct Ada implementations." I
guess my question is: does Angle +
Angle_Type'Small always advance Angle
to the next machine number in the type?

I'm using GNAT GPL 2010 and in the
example above GNAT appears to be using
2**(-11) for Angle_Type'Small. It thus
uses something over 12,000 values for the
type. The code above is for a test
program; it is my intention to exercise
every possible value.
As an aside it appears as if
Angle_Type'First is actually slightly less
than the -3.1416 mentioned in the type
definition. My reading of the Ada
standard is that this is okay. Specifically I
should be getting a multiple of
Angle_Type'Small that is closest to the
mathematical value of -3.1416.
Apparently the closest multiple is just "to
the left" of the number I specified. This
actually works out to be slightly awkward
in my case, but that's a problem I can
probably figure out.
[…]
From: Peter C. Chapin

<chapinp@acm.org>
Date: Sun, 15 Aug 2010 20:46:03 -0400
Subject: Re: Question about ordinary fixed

point types.
Newsgroups: comp.lang.ada
[…]
> The first thing I see here is that 0.0005

doesn't evenly divide 2*3.1416; is that
going to be a problem?

In theory it is not a problem. My reading
of the Ada Reference Manual tells me that
the implementation chooses a value of
Small (the actual difference between
represented numbers) that is no more than
the specified delta. Note that Small must
be a power of 2, but can be controlled
with a representation clause. In my case
GNAT appears to be using 2**(-11)
which is 0.0004883. Implementations can
choose a smaller Small if they want.
The values in the type then become all the
multiples of Small "between" the
endpoints of the specified range.
However, those endpoints are converted
to the nearest multiple of Small (unless
they fall exactly between two multiples in
which case the value closer to zero wins).
You can probably tell I've been reading
the manual. :)
I'm not sure which multiple of 2**(-11)
are involved here exactly but it appears
that the mathematical value of -3.1416 is
rounding down... meaning more negative.
I'm not too worried about that right now. I
just wondered how I could visit all the
values of the type in a loop.
Probably I should use extra digits in the
definition of the range to communicate
my intentions to the compiler more
precisely. Thus

type Angle_Type is delta 0.0005
 range -3.1415926535 ..
 3.1415926535;

That way when the compiler decides how
to round the end points of the range, it
will definitely do the right thing.
From: Simon Wright

<simon@pushface.org>
Date: Mon, 16 Aug 2010 09:57:57 +0100
Subject: Re: Question about ordinary fixed

point types.
Newsgroups: comp.lang.ada
[…]
> Why not use Ada.Numerics.Pi?
We had a problem where a subcontractor
had defined pi to be 3.14159.. not quite
good enough for a 32-bit Float.
From: Peter C. Chapin <chapinp@acm.org
Date: Mon, 16 Aug 2010 07:29:13 -0400
Subject: Re: Question about ordinary fixed

point types.
Newsgroups: comp.lang.ada
> […]
 Why you do not specify:
 for Angle_Type'small use 0.0005;
I don't think I'm too concerned about the
actual value of Small used. In fact, I'd like
to let the compiler choose so that it can
optimize the code better. Isn't it the case
that using a power of two allows for more
efficient code generation for certain
mathematical operations? I'm not sure, but
I seem to recall reading that somewhere.
If that is true, then I want that. My
machine isn't very fast.
My original question wasn't about how to
force the type to use a Small that I want,
rather it was about how can I be sure to
visit every value of the type in a loop for
test purposes.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Mon, 16 Aug 2010 22:03:08 -0400
Subject: Re: Question about ordinary fixed

point types.
Newsgroups: comp.lang.ada
> […] Isn't it the case that using a power

of two allows for more efficient code
generation for certain mathematical
operations?

Marginally. The representation is an
integer with a scale = 1 /
angle_type'small. The scale is only used
when converting to other numeric types.
> I'm not sure, but I seem to recall reading

that somewhere. If that is true, then I
want that. My machine isn't very fast.

Get it logical first, then optimize.
> My original question wasn't about how

to force the type to use a Small that I
want, rather it was about how can I be
sure to visit every value of the type in a
loop for test purposes.

Then you need to make the loop step by
'Small.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Mon, 16 Aug 2010 10:28:29 -0400

Ada in Context 171

Ada User Journal Volume 31, Number 3, September 2010

Subject: Re: Question about ordinary fixed
point types.

Newsgroups: comp.lang.ada
[…]
I'd expect "*" and "/" to be faster for
binary smalls, but I don't think it makes
any difference for "+" and "-".
Multiplying angles by angles doesn't
make much sense…
[…]
From: Peter C. Chapin

<chapinp@acm.org>
Date: Mon, 16 Aug 2010 16:31:07 -0400
Subject: Re: Question about ordinary fixed

point types.
Newsgroups: comp.lang.ada
[…]
Probably true. On the other hand I
anticipate needing other fixed point types
before I'm done so I think it would serve
me well to get used to using binary
smalls.
[…]
From: Robert A Duff

<bobduff@shell01.TheWorld.com
Date: Mon, 16 Aug 2010 19:01:51 -0400
Subject: Re: Question about ordinary fixed

point types.
Newsgroups: comp.lang.ada
[…]
Well, you can use binary smalls when that
makes sense -- it doesn't mean you have
to get used to using them when it doesn't.
For calculations involving money, for
example, you should look at decimal
fixed point types ("type ... is delta ...
digits ...").
[…]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 16 Aug 2010 15:01:20 +0200
Subject: Re: Question about ordinary fixed

point types.
Newsgroups: comp.lang.ada
[…] BTW, in your example you don't
visit the last value. […]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 16 Aug 2010 14:53:16 +0200
Subject: Re: Question about ordinary fixed

point types.
Newsgroups: comp.lang.ada
[…]

type Angle_Type is delta 0.0005
 range -3.1416 .. 3.1416;
 Angle : Angle_Type;
begin
 Angle := Angle_Type'First;
 while Angle < Angle_Type'Last loop
 ... -- Work with Angle here.
 Angle := Angle_Type'Succ (Angle);
end loop;

From: Peter C. Chapin <chapinp@acm.org

Date: Mon, 16 Aug 2010 16:28:27 -0400
Subject: Re: Question about ordinary fixed

point types.
Newsgroups: comp.lang.ada
[…]
That's cool. I didn't realize I could use
Succ with a fixed point type.
I thought that was only for discrete
types... or is a fixed point type a kind of
discrete type (it would make sense for it
to be). I guess I can look that one up. :)
From: Adam Beneschan

<adam@irvine.com>
Date: Mon, 16 Aug 2010 13:58:05 -0700

PDT
Subject: Re: Question about ordinary fixed

point types.
Newsgroups: comp.lang.ada
[…]
It's not a discrete type. However, starting
with Ada 95, 'Pred and 'Succ have been
defined for fixed-point and floating-point
types. For fixed-point types, 'Succ is
defined to have the same result as adding
the 'Small of the type. 3.5(22-24).
From: Peter C. Chapin

<chapinp@acm.org>
Date: Sun, 15 Aug 2010 21:03:07 -0400
Subject: Re: Question about ordinary fixed

point types.
Newsgroups: comp.lang.ada
[…]
I need to do real number computations on
a microcontroller without a floating point
unit. I believe the various numeric
quantities that I need can be normalized
into fairly narrow ranges so it seemed to
me that this is a perfect application of
fixed point types. The compiler stores the
numbers as integers representing the
appropriate multiple of Small.
I'm not using GNAT on the
microcontroller but if the Ada compiler I
am using does the same thing as GNAT it
will be able to fit Angle_Type as it is
currently defined into a 16 bit word and
compute with it using integer instructions.
In my environment that is essential.
At the moment I'm looking at
implementing some basic trig functions
such as Sine and Cosine taking
Angle_Type parameters. My test program
compares the computed results against the
much higher precision values from
GNAT's normal numeric library. I can
thus assess the overall accuracy of my
implementation. I want to check every
possible Angle_Type value to be sure
there are no surprises. For example right
now I get Constraint_Error when I
attempt to compute the Sine of
Angle_Type'First. This is apparently
because Angle_Type'First is actually
slightly less than -Pi and my simplistic
implementation can't cope with that.
[…]

BTW, I will probably need a smaller delta
than 0.0005 eventually (I think). But I
imagine changing that will be easy
enough once I understand what I'm doing.
Alas, using too small a delta will probably
force the compiler to use 32 bits to store
an Angle_Type value and that's an
undesirable thing on my machine.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Mon, 16 Aug 2010 03:03:59 -0700
Subject: Re: Question about ordinary fixed

point types.
Newsgroups: comp.lang.ada
[…]
More generally, Ada allows the
programmer to specify the 'Small with an
attribute definition clause, so theoretically
the exact solution to Peter's problem
would be:
Epsilon : constant :=
 Ada.Numerics.Pi / 2 ** 15;
type Angle is delta Epsilon
 range -Ada.Numerics.Pi ..
 Ada.Numerics.Pi;
 for Angle'Small use Epsilon;

This would, in theory, create the desired
mapping from the integer range [-2**15 ..
2**15] to the real range [-Pi .. Pi] without
wasting any machine numbers.
However and unfortunately, ARM
3.5.9(21) allows an implementation to
reject any 'Small that is not a power of
two (and, in particular, decimal fixed-
point types). I'm not sure whether GNAT
supports arbitrary Smalls; from the doc, it
seems that it actually rounds them down
to a power of two no smaller than 2**(-
63).
From: Simon J. Wright

<simon.j.wright@mac.com>
Date: Tue, 17 Aug 2010 07:35:04 -0700

PDT
Subject: Re: Question about ordinary fixed

point types.
Newsgroups: comp.lang.ada
[…]
2**(-63)! That should be OK in this
application, then.
The real question for Peter is, what does
his target compiler do? If it does as
GNAT does and allows a delta and
matching small of Ada.numerics.pi / 2 **
15 then it makes sense to work in your
scheme, since literal values in the code
and values for debug will be in radians. If
it only allows binary smalls, then (I
would) work with delta 2 ** (-15) range -
1.0 .. 1.0, ie signed fractions of pi, and
apply the scaling factor as required.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 17 Aug 2010 17:51:38 +0200
Subject: Re: Question about ordinary fixed

point types.
Newsgroups: comp.lang.ada

172 Ada in Context

Volume 31, Number 3, September 2010 Ada User Journal

> 2**(-63)! That should be OK in this
application, then.

Yes but I suspect it requires 64-bit
hardware. I don't think this would work
on a 16-bit microcontroller.

Bit numbers in packed
arrays of Boolean
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Tue, 31 Aug 2010 07:14:48 -0400
Subject: bit numbers in packed arrays of

Boolean
Newsgroups: comp.lang.ada
I was pleasantly surprised to discover that
given this code compiled with GNAT
6.2.1 for an Intel processor:

subtype Bit_Index_16_Type is
 Integer range 0 .. 15;
type Bit_Array_16_Type is array
 (Bit_Index_16_Type) of Boolean;
 pragma Pack (Bit_Array_16_Type);
 for Bit_Array_16_Type'Size use 16;
function To_Bit_Array is new
 Ada.Unchecked_Conversion
 (Source => Interfaces.Unsigned_16,
 Target => Bit_Array_16_Type);
Word : constant
 Interfaces.Unsigned_16 :=
 2#1000_0000_0000_0000#;
Bits : constant Bit_Array_16_Type :=
 To_Bit_Array (Word);

the index of Bit_Array_Type indexes the
bits of Unsigned_16 in little-endian order.
That is, Bits (15) = 1 (most significant
bit), Bits (0) = 0 (least significant bit).
LRM 13.9(5) says Bit_Array_16_Type
and Unsigned_16 have the same
representation, but it does not specifically
address the index order.
Is this bit order required by some other
clause? Do other compilers follow it?
I don't have access to GNAT for a big-
endian processor; can anyone confirm
what happens there?
Ideally, there would be a way to force the
other bit order, as 'Bit_Order does for
records.
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 31 Aug 2010 13:34:00 +0200
Subject: Re: bit numbers in packed arrays of

Boolean
Newsgroups: comp.lang.ada
> LRM 13.9(5) says Bit_Array_16_Type

and Unsigned_16 have the same
representation, but it does not
specifically address the index order.

At least ARM 3.6 Array Types does not
states anything. But as you used
Unchecked_Conversion, it is unlikely to
be portable or this result could be
enforced.

Let say this is the result of a compiler
with descent default behaviors.
ARM 13.9 Unchecked Type Conversions
says:
11.a/2 Implementation defined: The
effect of unchecked conversion for
instances with nonscalar result types
whose effect is not defined by the
language.
And do not believe the reference defines
anything for an array of 16 bit-layout
booleans.
Possibly depends on how the index is
interpreted: as an index in the polynomial
representation of the word value or as a
bit index ? Both would be legitimate for a
compiler.
[…]
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Tue, 31 Aug 2010 11:13:56 -0700
Subject: Re: bit numbers in packed arrays of

Boolean
Newsgroups: comp.lang.ada
[…]
Packed arrays of Boolean have been
around since Ada 80, and prior to Ada 95
were the only way to access individual
bits. Note that the Boolean operations
"and", "or", "xor", and "not" may be
applied to such arrays.
Unfortunately, the ARM does not specify
how indices are mapped to individual bit
positions, so this is entirely compiler
dependent. Typically compilers map the
lowest index onto the lowest bit number
supported by the H/W, so this depends on
the platform, but the ARM allows any
mapping from indices to bit positions. As
a result, any use of packed arrays of
Boolean to access specific bits is not
portable.
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Tue, 31 Aug 2010 15:34:35 +0300
Subject: Re: bit numbers in packed arrays of

Boolean
Newsgroups: comp.lang.ada
[…]
> I was pleasantly surprised to discover

that given this code compiled with
GNAT 6.2.1 for an Intel processor: […]

Well, not quite, as I understand that point
in the LRM. It says that (under several
conditions) the *value* of the object Bits
has the same representation as the *value*
of the object Word.
It makes no sense to say that (or even to
ask if) the two types Bit_Array_16_Type
and Unsigned_16 have the same
representation, because their value-sets
are disjoint, so we cannot ask if they
represent "the same value" in the same
way.
> but it does not specifically address the

index order.

Right. So we do not know at which index
in Bits a given bit from Word ends up. I
believe they could even be in some
scrambled order, not necessarily 0 .. 15 or
15 .. 0.
> Is this bit order required by some other

clause?
I believe not. This is one reason why,
when I need to access specific bits in a
word, I prefer to use Unsigned_xx types
and their masking and shifting operations,
not packed arrays. I use packed arrays
only when the index order does not matter
(or when portability does not matter,
which is basically never).
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Thu, 2 Sep 2010 15:09:27 -0500
Subject: Re: bit numbers in packed arrays of

Boolean
Newsgroups: comp.lang.ada
[…]
>> Is this bit order required by some other

clause?
[…]
I don't think so, either. I've generally used
a record type (with a record representation
clause) if I care where the bits are. This
would be a bit annoying in this case (16
distinct components), but often I've found
that you don't really need the conversion
in the first place if you have an
appropriately represented record. […]
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 31 Aug 2010 14:41:10 +0200
Subject: Re: bit numbers in packed arrays of

Boolean
Newsgroups: comp.lang.ada
[…]
> Well, not quite, as I understand that

point in the LRM. It says that (under
several conditions) the *value* of the
object Bits has the same representation
as the *value* of the object Word.

I suppose, for scalar types only, isn't it ?
An exact reference would be welcome
anyway.
Can you recall one please ?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 31 Aug 2010 15:08:02 +0200
Subject: Re: bit numbers in packed arrays of

Boolean
Newsgroups: comp.lang.ada
[…]
RM 13.1(//2):
"The representation of an object consists
of a certain number of bits (the size of the
object). For an object of an elementary
type, these are the bits that are normally
read or updated by the machine code
when loading, storing, or operating-on the
value of the object. For an object of a
composite type, these are the bits reserved

Ada in Context 173

Ada User Journal Volume 31, Number 3, September 2010

for this object, and include bits occupied
by subcomponents of the object. If the
size of an object is greater than that of its
subtype, the additional bits are padding
bits. For an elementary object, these
padding bits are normally read and
updated along with the others. For a
composite object, padding bits might not
be read or updated in any given composite
operation, depending on the
implementation."
The representation = memory pattern.
When RM says that S and T have same
representation that is merely same pattern.
It tells nothing about ordering of bits. Any
combination of 8-bits is same
representation of Unsigned_8 and
Boolean array (1..8).
So I think Niklas is right.
I don't even know if 2**n Unsigned_8
should produce a singleton array. E.g. it is
possible, but unlikely, that 2 could
become (True, False, True, True, True,
False, True, False).
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 31 Aug 2010 15:40:40 +0200
Subject: Re: bit numbers in packed arrays of

Boolean
Newsgroups: comp.lang.ada
[…]
If I understand correctly, this suggests bits
representation should be accessed
(read/write) all the same way, whatever
the type it implements.
If that is, may be this would be better to
word it more explicitly. But this would be
OK for elementary types only as this
could always be broken for composite
types with some representation clause
combinations.
Providing this is OK, this could not be
enforced for the example array type which
is the subject of this topic. Or else, this
would require some conditions about
paddings.
I still feel this is implementation defined
and I would not rely on it (or else I missed
something).
A tricky and imaginary example by the
way: imagine a clever compiler with
clever optimization, which would detect
the application mostly access the nth item
of the array and far less often access any
other items, now let us say the target CPU
has a special instruction to access bit
value at #0 (common practice on CISC
processor), then it could choose to map
this nth item on bit #0.
Do you feel the language would disallow
such an optimization ? if it does not, this
example shows this is implementation
defined.
Side note: a compiler could do something
similar for an unpacked array as well ; it
could move the nth item at offset 0, to
save processing of an offset while

accessing an element which was
determined as far more frequently
accessed than the others.
Seems possible?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 31 Aug 2010 16:07:56 +0200
Subject: Re: bit numbers in packed arrays of

Boolean
Newsgroups: comp.lang.ada
> If I understand correctly, this suggests

bits representation should be accessed
(read/write) all the same way, whatever
the type it implements.

The representation is accessed when
bytes, words etc are read and written.
[…]
> Do you feel the language would

disallow such an optimization ? if it
does not, this example shows this is
implementation defined.

AFAIK there is no requirement for
Unchecked_Conversion be meaningful.
The compiler is allowed do whatever it
wishes with the representation if the type
semantics is not violated.
After all, some objects can be optimized
away. What is the representation of a non-
resident object?
From: Niklas Holsti

<niklas.holsti@tidorum.invalid>
Date: Tue, 31 Aug 2010 17:30:28 +0300
Subject: Re: bit numbers in packed arrays of

Boolean
Newsgroups: comp.lang.ada
[…]
> If I understand correctly, this suggests

bits representation should be accessed
(read/write) all the same way, whatever
the type it implements.

I'm not sure what you mean, but for me
the *type* used to access a memory
location is the factor that determines what
the bits, and each bit, represents. The
correspondence between bits in
Unsigned_8 and a packed array of 8
Booleans is entirely implementation-
defined, but can be inspected by
Unchecked_Conversion between the
types.
I'm not sure if the standard even requires,
for a packed array of 8 Booleans of Size 8
bits, that each one of those bits should
represent exactly one of the Boolean
components. But even if one component
is represented in one bit, the encoding
(whether 0 is False and 1 is True, or vice
versa) is implementation-defined (and
could, I believe, be different depending on
the index of the component... although
that would be weird).
> I still feel this is implementation

defined and I would not rely on it (or
else I missed something).

I think Dmitry and I agree, with you, that
it is implementation-defined.

[…]
> Do you feel the language would

disallow such an optimization ?
No. I think that the basic RM does not say
anything about the order of components in
an array, whether Packed or not. (See
below for Annexes.)
> Side note: a compiler could do

something similar for an unpacked
array as well ; it could move the nth
item at offset 0, to save processing of
an offset while accessing an element
which was determined as far more
frequently accessed than the others.

> Seems possible ?
In principle, yes.
Pragma Convention C or Fortran should
impose some ordering rules, from the
C/Fortran rules, and perhaps something is
also implied by the Implementation
Advice on the Ada/C interface in RM
B.3(62.1/2 through 75). For example, the
rule RM B.3(70) says that an Ada "array
(..) of T" should be passed to C as "*t",
where t is the C type corresponding to the
Ada type T. For this to be a useful rule,
the components in the Ada array must be
laid out as in the C case, that is, with the
address increasing monotonically with the
index. Which is, of course, the natural
lay-out that one would expect, in any
case.

On representation clauses
From: Florian Weimer

<fw@deneb.enyo.de>
Date: Sun, 15 Aug 2010 13:33:32 +0200
Subject: Using representation clauses in

networking software
Newsgroups: comp.lang.ada
Have there been any efforts to fix
representation clauses so that they are
suitable for expressing elements
commonly found in networking
protocols?
My understanding is that representation
clauses are totally unsuitable for this
purpose because they do not allow the
programmer to express endianness. I
dimly recall a technical report which
argued that expressing endianness
portably was impossible. However,
Erlang's bit syntax seems to be a
counterexample, so I wonder if that issue
has been picked up in recent years.
From: Anonymous
Date: Mon, 16 Aug 2010 09:12:55 +0000

UTC
Subject: Re: Using representation clauses in

networking software
Newsgroups: comp.lang.ada
[…]
Representation clauses can be used for
endianness but it is a little tricky the first
time. After that it is easy to do. And it
does not matter if you are using little or

174 Ada in Context

Volume 31, Number 3, September 2010 Ada User Journal

big endian Ada, as representation clauses
can handle it as is. So, no modifications
are needed.
And one of the first uses of the
enumeration representation clause was to
aid in converting programs files written in
IBM EBCDIC character set into ASCII
set back in the mid 1980s using Ada 83.
> So why were representation clauses

added to Ada in the first place?
First, to be able to assign internal values
to enumeration value such as the character
set (see Standard package) or
 "type Boolean is (False, True) ;"
In most C compiler today False has an
internal value 0, but there were C
compilers like Microsoft's that were used
back in the 70s to the mid 90s that used
-1, and their compiled code is still in use
today, while others C compilers assigned
True to 0. The representation clause
allowed an Ada programmer to correct
this problem without having to deal with
the close source or binary code. Just
interface and use the representation clause
to match the Ada code to the external
world and the program is good to go.
Second, is to set size and location of
elements in a pack record. A simple
example is the status registers, like a
UART. It does not matter what the IO
port uses, the status word values and bit
pattern are standardized and using the
representation clause with a pack record
can allow a programmer to use simple
Boolean logic instead of dealing with
integer masking algorithms. In other
words, let the compiler do the hard work.
The Address representation clause has
100s of uses. Like setting up DOS and no-
OS type of interrupts. Also can be use to
calculate the physical memory size for an
Ada OS.
All of which allows Ada to translate the
outside environment into the Ada world.
Making the Ada program more portable
and universal which extents the life of the
program!
> Would it make sense to deprecate them?
The answer is NO!!! And they should not
be expanded! They have a special place to
aid the programmer in special areas. Such
as insuring the code is portable when
dealing with others areas that are not
standard or in a pre-standard design!
An example is writing a keyboard driver.
Is it easier to replace the keyboard layout
every time a different keyboard is used
and then re-booting or is it better to add
an additional translation package using
representation clause? Then allow the
program to ask which layout to use from
the hardware or in some cases the user.
From: Florian Weimer

<fw@deneb.enyo.de>
Date: Sun, 15 Aug 2010 18:03:21 +0200

Subject: Re: Using representation clauses in
networking software

Newsgroups: comp.lang.ada
> I haven't tried it but

http://www.adaic.com/standards/05rm/
html/RM-13-5-3.html

This only affects the interpretation of bit
positions. It does not change the memory
layout of components.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 16 Aug 2010 22:32:41 -0500
Subject: Re: Using representation clauses in

networking software
Newsgroups: comp.lang.ada
[…]
When we discussed this the last time, it
was concluded that supporting out of
order byte reads (especially those for
unusual numbers of bits) is just too
expensive for implementations for the
relatively small amount of use that they
would get. Moreover, such things could
not be volatile or atomic on most
hardware (because they would require
multiple reads/writes of the various pieces
- the pieces wouldn't necessarily be
contiguous in memory for the non-native
format), so they couldn't be used for
hardware interfaces. That would eliminate
half of the potential uses.
Remember that read/writes of memory are
probably the most fundamental thing that
a compiler does; supporting split reads
would require changes to virtually every
part of a compiler. (For Janus/Ada, we
would have to add intermediate code
instructions to support such reads, with
costs in everything that handles
intermediate code and target code
generation.)
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Sun, 15 Aug 2010 15:44:34 +0200
Subject: Re: Using representation clauses in

networking software
Newsgroups: comp.lang.ada
[…]
General case first and yours then.
For representation issue, the common
scheme is to use conversion when
receiving something from the outside of
the application and use conversion when
sending something outside. This is done
this way to be more efficient as this
preserve the best representation for all
internal uses.
This conversion may be implicitly defined
via a type conversion between a type and
a derived type if one has a representation
clause applying.
Ex. a type T1 is a type with its universal
definition, a second type T2 derived from
T1 is to be stored in file or retrieved from
a device using the size of X bits. Both are
the same in some sense, except T2 has a
representation clause. When you do "T1

(Object_Of_Type_T1)" there is an
implicit conversion. The other way
conversion is the same.
Your case now (without representation
attribute, as this one does not exist so far)
I do not know neither any representation
clause for Byte Ordering.
However, you probably have a set of
basic type like 16 bits words, 64 bits
words or anything else. The best is to
have a similar thing as the above, except
this would be implemented explicitly.
You would define a function
From_Local_To_Network and and
From_Network_To_Local (with two
different types for Local_Type and
Network_Type to avoid to erroneously
mixing it) Just to try to meet your request
(something else later) : I do not know a
way to have a method which would
automatically know the bit order of its
platform, except perhaps receiving a
standard data, like 16#1234# (0x1234),
and then check if it looks like 16#3412#
or like 16#1234#. Or this may be a link to
a tiny-tiny library which would only
contains a simple data word, which could
be checked the same way. Ex. a library
which would contains the same 6#1234#
which would be linked as an external C
stuff and could be tested for the same
way.
The other way (which does not meet you
requirement) : use the ability of Ada to
have multiple package body for the same
package specification and define two
package body for the same network
<->platform conversion package
specification. Then, use a simple
configuration option to build the
application using one or the other (you
will not face thousand of cases, as there
are not some much commonly used
platform in real life).
You may write it or reuse one (pretty sure
something like this already exist in
whatever license).
Or else you may suggest it for a future
Ada revision (via this newsgroup or else
ada-auth.org).
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 15 Aug 2010 16:32:47 +0200
Subject: Re: Using representation clauses in

networking software
Newsgroups: comp.lang.ada
[…]
(I agree with what you wrote. I am
programming a lot of communication
stuff, but never used representation
clauses to handle endianness.)
> I do not know neither any

representation clause for Byte
Ordering.

Byte ordering is what S'Bit_Ordering is,
when bytes are addressable.

Ada in Context 175

Ada User Journal Volume 31, Number 3, September 2010

IMO, Bit_Ordering was an unfortunate
choice. The attribute name suggests
ordering of bits in some machine storage
unit, which it is not.
> Just to try to meet your request

(something else later) : I do not know a
way to have a method which would
automatically know the bit order of its
platform,

Bit order is useless if bits are not directly
addressable.
> except perhaps receiving a standard

data, like 16#1234# (0x1234), and then
check if it looks like 16#3412# or like
16#1234#.

This would determine byte ordering. Bit
ordering is when you serialize a sequence
of bits {0, 0, 0, 0, 0, 0, 0, 1} and get
2#1000_0000# (little endian)
2#0000_0001# (big endian).
Most types of hardware have opaque
bytes compatible with the machine, e.g.
UARTs. If the hardware is not, then
representation clause would not be my
choice anyway. I would recode bytes or
whatever units immediately as obtained
from the device:

 type Strange_Octet is mod 2**8;
 Decode_Strange_Octet : array
 (Strange_Octet) of Unsigned_8 :=
 (2#0000_0001# => 2#0000_1000#,
 2#0000_0010# => 2#0000_0100#,
 2#0000_0011# => 2#0000_1100#,
 ...
);
[…]
One could introduce enumeration
representation clauses for modular types,
e.g.

 type Strange_Octet is mod 2**8;
 for Strange_Octet use
 (2#0000_0001# =>
 2#0000_1000#, ...);

Better would be to allow user-defined
integer literals, so that the programmer
could define its own type.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Mon, 16 Aug 2010 06:57:46 -0400
Subject: Re: Using representation clauses in

networking software
Newsgroups: comp.lang.ada
> Byte ordering is what S'Bit_Ordering is,

when bytes are addressable.
Not exactly.
> IMO, Bit_Ordering was an unfortunate

choice. The attribute name suggests
ordering of bits in some machine
storage unit, which it is not.

Bit_ordering specifies how to interpret the
bit numbers in Ada record representation
clauses.

The restriction of 'Bit_Order only being
valid for the target endianness was
removed in Ada 2005.
It is useful for representing record layouts
that may be used in systems with different
byte orders.
See http://www.ada-auth.org/cgi-bin/
cvsweb.cgi/ais/ai-00133.txt?rev=1.17 for
a good discussion. The concept of
'machine scalars' is important.
Only part of this discussion made it into
the ARM or AARM, so they are hard to
understand.
Still, S'Bit_ordering does _not_ solve the
inter-machine byte endianness problem. It
could be part of a solution.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 15 Aug 2010 18:10:31 +0200
Subject: Re: Using representation clauses in

networking software
Newsgroups: comp.lang.ada
>> Byte ordering is what S'Bit_Ordering

is, when bytes are addressable.
[…]
The attribute is semantically defined for
Word_Size > Storage_Unit.
Therefore it is actually "unit ordering", or
"byte ordering" when Storage_Unit is
byte.
From: Florian Weimer

<fw@deneb.enyo.de>
Date: Sun, 15 Aug 2010 16:44:33 +0200
Subject: Re: Using representation clauses in

networking software
Newsgroups: comp.lang.ada
> (I agree with what you wrote. I am

programming a lot of communication
stuff, but never used representation
clauses to handle endianness.)

This is not surprising because the current
representation clauses cannot handle it.
[…]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 15 Aug 2010 17:04:15 +0200
Subject: Re: Using representation clauses in

networking software
Newsgroups: comp.lang.ada
[…]
What for, if there are better ways to
handle it? Representation layout clause
was invented for handling something in
place. It is no more actual, because
reading out/writing in with an appropriate
recoding is cleaner and possibly cheaper
on modern hardware.
[…]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 15 Aug 2010 18:10:08 +0200
Subject: Re: Using representation clauses in

networking software
Newsgroups: comp.lang.ada

[…]
> There are some pretty common CPUs

that handle unaligned loads quite well,
so it's unclear that the load-a-byte-at-a-
time-and-shift approach is a win.

> Same for serialization.
Usually there are next 2-4 protocol levels,
so anything you might gain at this level
will be lost anyway if you tried to keep
things encoded. Worse than that, some of
the layers may explicitly state endiannes
at run time.
(I know at least two examples of such
protocols) Dynamic representation
clauses, shudder?
> So why were representation clauses

added to Ada in the first place?
I think they were due to dominance of
dual-ported memory and non-
standardized hardware that time.
> Would it make sense to deprecate them?
Maybe, especially because they do not
allow writing portable programs anyway.
Under portability I understand that the
hardware is fixed and the target machine
varies.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 16 Aug 2010 08:40:54 +0200
Subject: Re: Using representation clauses in

networking software
Newsgroups: comp.lang.ada
>> Stick to network-byte-order on the

wire,
> Just when ~99% of hardware in use is

little-endian?
This does not change anything.
The fact is that the *relevant* endianness
is the one on the wire. Believe it or not,
but it is normal practice that two little-
endian machines exchange big-endian
encoded numbers if the protocol mandates
it.

On the instantiation of
generic packages
From: Trogdor
Date: Mon, 30 Aug 2010 08:12:19 -0500
Subject: Global scope for instantiated

generic package?
Newsgroups: comp.lang.ada
I wish to manipulate very large integers
with values in the trillions. This would
require a 64 bit integer type, so to
maintain portability I specify a new type
using range and let the compiler do the
right thing.

type BigInt is range
 1 ..10_000_000_000_000;

I then wish to get and put these values, so
I instantiate Integer_IO.

package BigInt_IO is new
 integer_IO(BigInt);

176 Ada in Context

Volume 31, Number 3, September 2010 Ada User Journal

My program consists of three parts: the
main body, a package spec and a package
body (the package containing all the
subprograms and functions).
1) Is this the way to do it, or is there a

preferred way?
2) Where, specifically, do I place the

above two lines (and the associated
"with" line) so that I can BigInt_io.get
from the main body and the package
subprograms as well?

So far, every place I have tried has
offended the compiler. And my text books
have been of little help (I have more on
order).
Thanks for the help!
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Mon, 30 Aug 2010 11:49:49 -0700
Subject: Re: Global scope for instantiated

generic package?
Newsgroups: comp.lang.ada
> 1) Is this the way to do it, or is there a

preffered way?
This sounds reasonable, though I'd need
to have more detail to decide if it's the
way I'd do it.
> 2) Where, specifically, do I place the

above two lines (and the associated
"with" line) so that I can BigInt_io.get
from the main body and the package
subprograms as well?

These would go in the (visible part of) the
package specification.
[…]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 30 Aug 2010 15:47:05 +0200
Subject: Re: Global scope for instantiated

generic package?
Newsgroups: comp.lang.ada
> […]
> 1) Is this the way to do it, or is there a

preferred way?
I usually do it this way:

package Big_Integers is
 type Big_Integer is range
 1 ..10_000_000_000_000;
end Big_Integers;

Further instantiations based on it go into
children packages:

with Ada.Text_IO; use Ada.Text_IO;
package Big_Integers.IO is new
 Integer_IO (Big_Integer);

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Mon, 30 Aug 2010 06:30:17 -0700
PDT

Subject: Re: Global scope for instantiated
generic package?

Newsgroups: comp.lang.ada
[…]

Without at least a skeleton of your
sources I'm not sure I understand your
question, so for clarity I'll assume you
currently have:

with Ada.Text_IO;
package P is
 type BigInt is range
 1..10_000_000_000_000;
 package BigInt_IO is new
 Ada.Text_IO.Integer_IO (BigInt);
 procedure Proc (X : out BigInt);
end P;
package body P is
 procedure Proc (X : out BigInt) is
 begin
 BigInt_IO.Get (X); -- OK
 end Proc;
end P;
with P;
procedure Main is
 X : BigInt;
begin
 P.Proc (X); -- OK
 BigInt_IO.Get (X); -- error, BigInt_IO
 not directly visible
 P.BigInt_IO.Get (X); -- OK
end Main;

You can resolve the error in two ways:
1) add a "use P;" clause in procedure

Main
2) Declare BigInt_IO at library level, like

so:

-- bigint_io.ads
with Ada.Text_IO;
with P;
package BigInt_IO is new
 Ada.Text_IO.Integer_IO (P.BigInt);

and then add "with BigInt_IO" clauses in
both the body of P and the body of Main.
[…]
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Mon, 30 Aug 2010 15:28:42 +0200
Subject: Re: Global scope for instantiated

generic package?
Newsgroups: comp.lang.ada
[…]
> 2) Where, specifically, do I place the

above two lines (and the associated
"with" line) so that I can BigInt_io.get
from the main body and the package
subprograms as well?

One way to place the declarations is in a
common package.

with Ada.Text_IO; use Ada.Text_IO;
package Big_Stuff is
 type BigInt is range
 1..10_000_000_000_000;
 -- ... BigInt subprograms

 package BigInt_IO is new
 integer_IO(BigInt);
end Big_Stuff;

A main unit can then with package
Big_Stuff (and "use" it); the procedure
bodies in Big_Stuff's body will see
BigInt_IO, too.
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: Mon, 30 Aug 2010 15:25:00 +0200
Subject: Re: Global scope for instantiated

generic package?
Newsgroups: comp.lang.ada
[…]
> type BigInt is range

1..10_000_000_000_000;
This has to be done in a declarative region
(i.e. inside a package or subprogram).
This could be in a completely independent
package:

 -- trogdor.ads (for GNAT)
 package Trogdor is
 type Integer is range
 1..10_000_000_000_000;
 end Trogdor;

> I then wish to get and put these values,
so I instantiate Integer_IO.

> package BigInt_IO is new
integer_IO(BigInt);

This can be a compilation unit of its own:

 -- trogdor_io.ads (for GNAT)
 with Trogdor;
 package Trogdor_IO is new
 Ada.Text_IO.Integer_IO
 (Trogdor.Integer);

Or you can put it inside the same package
as the number type:

 -- trogdor.ads (for GNAT)
 package Trogdor is
 type Integer is range
 1..10_000_000_000_000;
 package IO is new
 Ada.Text_IO.Integer_IO (Integer);
 end Trogdor;

> My program consists of three parts: the
main body, a package spec and a
package body (the package containing
all the subprograms and functions).

> 1) Is this the way to do it, or is there a
preferred way?

If the subprograms are specific to the
program, you may want to declare them in
the declarative part of the program rather
than in a separate package.

SPARK and Rosetta Code
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 11 Aug 2010 10:44:58 +0200
Subject: SPARK code samples
Newsgroups: comp.lang.ada

Ada in Context 177

Ada User Journal Volume 31, Number 3, September 2010

Since there is evident growing interest in
SPARK Ada and the availability of a
public SPARK compiler, I welcome those
who are interested in learning and testing
SPARK to contribute their solutions to the
Rosetta Code:
http://rosettacode.org/wiki/Main_Page
The Rosetta Code has a half of thousand
programming tasks defined. The tasks are
solved for almost programming language
ever existed. Ada is well represented in
Rosetta, but SPARK is not. (Clearly, not
all tasks could be implemented in
SPARK)
Rosetta is pretty liberal, everyone can
register and contribute. The SPARK's
page is:
http://rosettacode.org/wiki/SPARK
Thanks.

SPARK and "shadow
specifications"
From: Ada novice

<ycalleecharan@gmx.com>
Date: Tue, 10 Aug 2010 01:48:30 -0700

PDT
Subject: Spark and the Ada numerics annex
Newsgroups: comp.lang.ada
Hi, I became interested in taking a look at
SPARK. I've browsed through the freely
available first chapter of Barnes's SPARK
book and I saw that SPARK doesn't seem
to cover the Ada specialized annexes (see
Figure 1.1. Relationship between SPARK
and Ada on pp. 11).
My interests are purely in Scientific
numerical programming with Ada and the
Ada numerics annex is important to me.
[…]
If I understand correctly, then simple
mathematical functions like SQRT are
elementary functions that are part of the
language Ada itself and SPARK will

recognize these elementary functions. But
the extensive vector and matrix
manipulations as added in Ada 05 won't
be recognized by SPARK. Am I right?
The good things about SPARK is that it
helps to make checks and hence get the
programming right. Is it recommended to
use SPARK even for very simple
programs?
[…]
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 10 Aug 2010 14:09:24 +0200
Subject: Re: Spark and the Ada numerics

annex
Newsgroups: comp.lang.ada
SPARK will applies, it does not target a
specific application area. While you may
feel it is less handy in some than in some
others. If you ever feel SPARK looks too
much stupid for some package or method,
then may just hide it from SPARK and try
to comment the best way ever possible
too give a proof that although not checked
by SPARK, argues that this "should be
good".
> The good things about SPARK is that it

helps to make checks and hence get the
programming right. Is it recommended
to use SPARK even for very simple
programs?

Not only this is possible, this is also
recommended in some way. The smaller
an application is, the less pain you will
have to prove its correctness.
SPARK does not take part in a reification
process (like things would go with the B-
method), so there is a lot of things which
will seem obvious to you; SPARK may
not know right away about you
application.
For this reason, this may be better to keep
it simple. Don't forget you can Hide if
ever required.

procedure Your_Method is
 --# hide Your_Method
 ... Your proses comes here ...
 ... Your informal comments proving
 you designed it right comes here …
end Your_Method;

Just don't abuse it.
From: Rod Chapman

<roderick.chapman@googlemail.com>
Date: Tue, 10 Aug 2010 03:18:53 -0700

PDT
Subject: Re: Spark and the Ada numerics

annex
Newsgroups: comp.lang.ada
You can create a "shadow" specification
of the various Numerics packages to get
at their facilities. See section 13.1 of the
book on Shadows.
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Tue, 10 Aug 2010 13:40:18 +0200
Subject: Re: Spark and the Ada numerics

annex
Newsgroups: comp.lang.ada
[…]
You can already get an idea right know
(although the Barnes is still a must have
recommended reading), if you have a look
at this AdaGem :
http://www.adacore.com/2010/02/25/
gem-80/
Basically, this is re-interfacing things so
that SPARK does not get angry with what
it sees.
By the way, this is a natural strategy, …
sure you would have thought about it
yourself. I've discovered this is named
"shadow specification" just at the
moment, reading Rod. I did not knew
before this had this name.

Conference Calendar 179

Ada User Journal Volume 31, Number 3, September 2010

Conference Calendar
Dirk Craeynest
K.U.Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2010

October 03-08 ACM/IEEE 13th International Conference on Model Driven Engineering Languages and Systems

(MoDELS'2010), Oslo, Norway. Topics include: Development of domain-specific modeling languages;
Design of general-purpose modeling languages and related standards; Tools and meta-tools for
modeling languages and model-based development; Evolution of modeling languages and models;
Experience stories in general (successful and unsuccessful); Issues related to limitations, gaps and
mismatches in current modeling standards; Experience with model-based engineering tools and
traceability to/from models; etc.

☺ Oct 04 MoDELS2010 – 3rd International Workshop on Model Based Architecting and
Construction of Embedded Systems (ACES-MB'2010). Topics include: model-
oriented counterparts, together with the related analysis and development methods, of
languages with particularly well-behaved semantics, such as synchronous languages and
models (Lustre/SCADE, Signal/Polychrony, Esterel), super-synchronous models (TTA,
Giotto), scheduling-friendly models (HRT-UML, Ada Ravenscar), etc.

October 06-07 5th International Workshop on Systems Software Verification (SSV'2010), Vancouver, Canada.
Theme: "Real Software, Real Problems, Real Solutions". Topics include: static analysis, model-driven
development, embedded systems development, programming languages, verifying compilers, software
certification, software tools, experience reports, etc.

October 10-13 9th International Conference on Generative Programming and Component Engineering
(GPCE'2010), Eindhoven, The Netherlands. Topics include: Generative techniques for Product-line
architectures, Distributed, real-time and embedded systems, Model-driven development and
architecture, Safety critical systems; Component-based software engineering (Reuse, distributed
platforms and middleware, distributed systems, evolution, patterns, development methods, formal
methods, etc.); Integration of generative and component-based approaches; Industrial applications; etc.

Oct 12-13 3rd International Conference on Software Language Engineering (SLE'2010). Topics
include: Formalisms used in designing and specifying languages and tools that analyze
such language descriptions; Language implementation techniques; Program and model
transformation tools; Language evolution; Approaches to elicitation, specification, or
verification of requirements for software languages; Design challenges in SLE;
Applications of languages including innovative domain-specific languages or "little"
languages; etc.

October 11-14 8th International Conference on Integrated Formal Methods (iFM'2010), Nancy, France. Topics
include: the combination of (formal and semi-formal) methods for system development, covering all
aspects from language design through verification and analysis techniques to tools and their integration
into software engineering practice.

October 13-16 17th Working Conference on Reverse Engineering (WCRE'2010), Boston's North Shore, Beverly,
Massachusetts, USA. Topics include: all areas of software maintenance, evolution, reengineering, and
migration, such as Program comprehension, Mining software repositories, Empirical studies in reverse
engineering, Redocumenting legacy systems, Reverse engineering tool support, Reengineering to

180 Conference Calendar

Volume 31, Number 3, September 2010 Ada User Journal

distributed architectures, Software architecture recovery, Program analysis and slicing, Reengineering
patterns, Program transformation and refactoring, etc.

☺ Oct 16-20 Systems, Programming, Languages, and Applications: Software for Humanity (SPLASH'2010),
Reno, Nevada, USA. Formerly known as OOPSLA. Topics include: defining the future of software
development.

☺ Oct 17 International Workshop on Programming Support Innovations for Emerging
Distributed Applications (PSIEtA'2010). Topics include: programming support
innovations that can address the incongruence between the advanced programming
requirements of emerging distributed applications and the current state of the art of their
programming support.

☺ Oct 17-20 25th Annual Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA'2010). Topics include: all aspects of programming
languages and software engineering, broadly construed; any aspect of software
development, including requirements, modeling, prototyping, design, implementation,
generation, analysis, verification, testing, evaluation, project cancellation, maintenance,
reuse, regeneration, replacement, and retirement of software systems; tools (such as new
programming languages, dynamic or static program analyses, compilers, and garbage
collectors) or techniques (such as new programming methodologies, type systems,
design processes, code organization approaches, and management techniques) designed
to reduce the time, effort, and/or cost of software systems.

Oct 17-21 Onward! 2010. Topics include: the multidisciplinarity of software development;
anything to do with programming and software, such as processes, methods, languages,
economics, applications, etc.

☺ Oct 18 Workshop on Concurrency for the Application Programmer (CAP'2010).

☺ Oct 18 2nd Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU'2010). Topics include: methods, metrics and techniques for evaluating the
usability of languages and language tools, such as empirical studies of programming
languages; methodologies and philosophies behind language and tool evaluation;
software design metrics and their relations to the underlying language; user studies of
language features and software engineering tools; critical comparisons of programming
paradigms, such as object-oriented vs. functional; tools to support evaluating
programming languages; etc.

☺ Oct 18 9th Workshop on Parallel/High-Performance Object-Oriented Scientific Computing
(POOSC'2010). Topics include: how object-oriented programming can benefit scientific
computing; new or novel frameworks, approaches, techniques, or idioms that use object-
orientation. Specific areas of interest include: alternatives or extensions, including multi-
paradigmatic approaches, to mainstream object-oriented languages (e.g. C++, Java,
Python); performance issues and their realized or proposed resolution; issues specific to
handling or abstracting parallelism, including the handling or abstraction of
heterogeneous/multicore/accelerated microarchitectures; higher level languages (e.g.
domain specific languages) or their embedding into OO languages to support parallelism
or specific tasks in scientific computing; proposed or realized solutions to problems
hindering acceptance of object-oriented scientific computing; grand visions (of
relevance); etc.

♦ Oct 24-28 ACM SIGAda Annual International Conference on Ada and Related
Technologies (SIGAda'2010), Fairfax, Virginia, USA (a suburb of Washington, DC).
Sponsored by ACM SIGAda, in cooperation with SIGBED, SIGCAS, SIGCSE, SIGPLAN,
Ada-Europe, and the Ada Resource Association. Includes: workshop on OO and Ada in
High Integrity Systems. Deadline for early registration: October 16, 2010.

October 25-29 Grid2010 – Workshop on Component-Based High Performance Computing (CBHPC'2010),
Brussels, Belgium. Topics include: Programming environments and paradigms, Analysis and

Conference Calendar 181

Ada User Journal Volume 31, Number 3, September 2010

comparison of existing programming approaches, Tools and Environments for Coupling of Parallel
Application codes, etc.

October 25-29 14th IEEE International Enterprise Computing Conference (EDOC'2010), Vitória, ES, Brazil. Topics
include: Organization and principles of software factories; State of the art in distributed enterprise
applications; Industry specific solutions, e.g. for aerospace, automotive, finance, etc.

☺ Nov 01-03 29th IEEE International Symposium on Reliable Distributed Systems (SRDS'2010), Delhi, India.
Topics include: security, safety-critical systems and critical infrastructures, fault-tolerance in embedded
systems, analytical or experimental evaluations of dependable distributed systems, formal methods and
foundations for dependable distributed computing, etc.

November 08-12 13th Brazilian Symposium on Formal Methods (SBMF'2010), Natal, Rio Grande do Norte, Brazil.
Topics include: Formal aspects of popular languages and methodologies; Logics and semantics of
programming and specification languages; Type systems in computer science; Formal methods
integration; Code generation; Formal design methods; Abstraction, modularization and refinement
techniques; Techniques for correctness by construction; Formal methods and models for real-time,
hybrid and critical systems; Models of concurrency, security and mobility; Theorem proving; Static
analysis; Software certification; Teaching of, for and with formal methods; Experience reports on the
use of formal methods; Industrial case studies; Tools supporting the formal development of
computational systems; Development methodologies with formal foundations; etc.

☺ Dec 07-11 16th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2010), Shanghai,
China. Topics include: Parallel and Distributed Algorithms and Applications, Multi-core and
Multithreaded Architectures, Resource Management and Scheduling, Security, Dependable and
Trustworthy Systems, Real-Time Systems, Embedded systems, etc.

☺ Dec 08-11 11th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2010), Wuhan, China. Topics include: all areas of parallel and distributed
computing.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2011

☺ Jan 26-28 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2011),

Austin, Texas. Topics include: all aspects of programming languages and systems, with emphasis on
how principles underpin practice.

Jan 24-25 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM'2011). Deadline for submissions: October 10, 2010 (abstracts), October 15, 2010
(papers).

☺ Jan 29 5th ACM SIGPLAN Workshop on Programming Languages meets Program
Verification (PLPV'2011). Topics include: research at the intersection of programming
languages and program verification; attempts to reduce the burden of program
verification by taking advantage of particular semantic or structural properties of the
programming language; all aspects, both theoretical and practical, of the integration of
programming language and program verification technology. Deadline for submissions:
October 11, 2010.

☺ Feb 09-10 3rd International Symposium on Engineering Secure Software and Systems (ESSoS'2011), Madrid,
Spain. Topics include: security architecture and design for software and systems; verification techniques
for security properties; systematic support for security best practices; programming paradigms for
security; processes for the development of secure software and systems; etc.

☺ Feb 21-25 Software Engineering 2011 (SE'2011), Karlsruhe, Germany. Theme (in German): Ingenieurmäßige
Software-Entwicklung für kritische Anwendungen. Deadline for submissions: October 3, 2010
(abstracts), October 8, 2010 (all submissions).

☺ March 09-12 42nd ACM Technical Symposium on Computer Science Education (SIGCSE'2011), Dallas, Texas,
USA.

182 Conference Calendar

Volume 31, Number 3, September 2010 Ada User Journal

March 21-25 26th ACM Symposium on Applied Computing (SAC'2011), TaiChung, Taiwan.

☺ Mar 21-25 Track on Object-Oriented Programming Languages and Systems (OOPS'2011).
Topics include: Language design and implementation; Type systems, static analysis,
formal methods; Integration with other paradigms; Aspects, components, and
modularity; Distributed, concurrent or parallel systems; Interoperability, versioning and
software adaptation; etc.

☺ Mar 21-25 Track on Programming Languages (PL'2011). Topics include: Compiling
Techniques, Formal Semantics and Syntax, Garbage Collection, Language Design and
Implementation, Languages for Modeling, Model-Driven Development and Model
Transformation, New Programming Language Ideas and Concepts, Practical
Experiences with Programming Languages, Program Analysis and Verification,
Programming Languages from All Paradigms, etc.

☺ Mar 21-25 Track on Real-Time Systems (RTS'2011). Topics include: all aspects of real-time
systems design, analysis, implementation, evaluation, and case-studies; including
scheduling and schedulability analysis; worst-case execution time analysis; modeling
and formal methods; validation techniques; reliability; compiler support; component-
based approaches; middleware and distribution technologies; programming languages
and operating systems; embedded systems; etc.

Mar 21-25 4th IEEE International Conference on Software Testing, Verification and Validation (ICST'2011),
Berlin, Germany. Topics include: Domain specific testing including, but not limited to, security testing,
embedded software testing, OO software testing, ...; Verification & validation; Quality assurance;
Empirical studies; Inspections; Tools; Novel approaches to software reliability assessment; etc.

☺ Mar 28-31 14th IEEE International Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC'2011), Newport Beach, California, USA. Topics include: Programming and system
engineering (ORC paradigms, languages, RT Corba, UML, model-driven development of high integrity
applications, specification, design, verification, validation, testing, maintenance, system of systems,
etc.); System software (real-time kernels, middleware support for ORC, extensibility, synchronization,
scheduling, fault tolerance, security, etc.); Applications (embedded systems (automotive, avionics,
consumer electronics, etc), real-time object-oriented simulations, etc.); System evaluation (timeliness,
worst-case execution time, dependability, fault detection and recovery time, etc.); ... Deadline for
submissions: November 8, 2010 (papers).

☺ April 10-13 6th European Conference on Computer Systems (EuroSys'2011), Salzburg, Austria. Topics include:
all areas of operating systems and distributed systems, including systems aspects of Dependable
computing and storage, Distributed computing, Parallel and concurrent computing, Programming-
language support, Real-time and embedded computing, Security, etc. Deadline for submissions: October
3, 2010 (abstracts), October 10, 2010 (full papers), October 22, 2010 (workshops, tutorials).

April 12-15 2nd International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering
(PARENG'2011), Ajaccio, Corsica, France.

April 20-24 17th International Symposium on Formal Methods (FM'2011), Limerick, Ireland. Theme: "Formal
Methods Come of Age". Topics include: advances and maturity in formal methods research, education,
and deployment via tool support and industrial best practice, and their role in a variety of industries,
domains, and in certification and assurance; in particular experience with practical applications of
formal methods in industrial and research settings, experimental validation of tools and methods as well
as construction and evolution of formal methods tools. Deadline for submissions: January 10, 2011
(papers), January 24, 2011 (tutorials, workshops).

☺ April 25-29 5th Latin-American Symposium on Dependable Computing (LADC'2010), São José dos Campos,
São Paulo, Brazil. Topics include: Dependability of software (frameworks and software architectures for
dependability, model driven dependability engineering, testing, verification, software certification, ...);
Dependability of maintenance; Dependability and human issues; Security; Safety (safety-critical
applications and systems, ...); etc. Deadline for submissions: October 14, 2010 (tutorials), February 4,
2011 (industry track, fast abstracts, student forum).

☺ May 16-20 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2011), Anchorage,
Alaska, USA. Topics include: all areas of parallel and distributed processing, such as: Parallel and

Conference Calendar 183

Ada User Journal Volume 31, Number 3, September 2010

distributed algorithms; Applications of parallel and distributed computing; Parallel and distributed
software, including parallel and multicore programming languages and compilers, runtime systems,
middleware, libraries, parallel programming paradigms, programming environments and tools, etc.

☺ May 21-28 33rd International Conference on Software Engineering (ICSE'2011), Waikiki, Honolulu, Hawaii,
USA. Theme: "Software by Design". Topics include: Engineering of distributed/parallel software
systems; Engineering of embedded and real-time software; Engineering secure software; Patterns and
frameworks; Programming languages; Reverse engineering and maintenance; Software architecture and
design; Software components and reuse; Software dependability, safety and reliability; Software
economics and metrics; Software tools and development environments; Theory and formal methods; etc.
Deadline for submissions: October 15, 2010 (software engineering in practice), November 30, 2010
(SCORE project registration), December 10, 2010 (doctoral symposium, new ideas and emerging
results, demonstrations), January 30, 2011 (student volunteers).

May 21-28 2nd Student COntest on softwaRe Engineering (SCORE'2011). Deadline for
submissions: November 30, 2010 (registration for participation), January 15, 2011
(summary reports), February 28, 2011 (final deliverable), ICSE 2011 (finals).

June 20-23 2011 International Conference for Computational Science and its Applications (ICCSA'2011),
Santander, Spain. Deadline for submissions: December 31, 2010 (abstracts, full papers). Deadline for
early registration: April 4, 2011.

♦ June 20-24 16th International Conference on Reliable Software Technologies - Ada-
Europe'2011, Edinburgh, UK. Co-located with the Ada Conference UK 2011,
organized under the common name of "The Ada Connection". Sponsored by Ada-
Europe, in cooperation with ACM SIGAda. Deadline for submissions: November 21,
2010 (papers, tutorials, workshops), January 8, 2011 (industrial presentations).

June 27-29 16th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2011), Darmstadt, Germany.

☺ June 28-30 49th International Conference Objects, Models, Components, Patterns (TOOLS Europe'2011),
Zurich, Switzerland. Topics include: Applications to safety- and security-related software; Distributed
and concurrent object systems; Domain specific languages and language design; Experience reports,
including efforts at standardisation; Language implementation techniques, compilers, run-time systems;
Multicore programming, models and patterns; Object technology, including programming techniques,
languages, tools; Practical applications of program verification and analysis; Real-time object-oriented
programming and design; Tools and frameworks for supporting model-driven development; Trusted and
reliable components; etc. Deadline for submissions: January 28, 2011 (papers).

July 14-20 23rd International Conference on Computer Aided Verification (CAV'2011), Snowbird, Utah, USA.
Topics include: Algorithms and tools for verifying models and implementations, Program analysis and
software verification, Verification methods for parallel and concurrent hardware/software systems,
Applications and case studies, Verification in industrial practice, etc. Deadline for submissions: January
14, 2011 (abstracts), January 21, 2011 (papers).

☺ July 25-29 25th European Conference on Object-Oriented Programming (ECOOP'2011), Lancaster, UK. Topics
include: all areas of object technology and related software development technologies, such as Analysis
and design methods and patterns; Distributed, concurrent, real-time systems; Language design and
implementation; Modularity, components, services; Software development environments and tools;
Type systems, formal methods; Compatibility, software evolution; etc. Deadline for submissions:
December 15, 2010.

☺ Aug 30 – Sep 09 International Conference on Parallel Computing 2011 (ParCo'2011), Gent, Belgium. Topics include:
all aspects of parallel computing, including applications, hardware and software technologies as well as
languages and development environments, in particular Applications of multicores, GPU-based
applications, Parallel programming languages, compilers and environments, Best practices of parallel
computing, etc. Deadline for submissions: March 20, 2011 (extended abstracts of papers), March 31,
2011 (proposals for mini-symposia).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Forthcoming Events 185

Ada User Journal Volume 31, Number 3, September 2010

ACM Annual International Conference
on Ada and Related Technologies:

Engineering Safe, Secure, and Reliable Software
Hyatt Fair Lakes Hotel, Fairfax, Virginia (Washington DC Area), USA

October 24-28, 2010

MITRE Robot Tractor System powered by Ada

Conference Highlights

Keynote: Transforming Software and System Development and Analysis

William B. Martin, National Security Agency
This address will put forward an evidence-based approach to assurance in the hopes of approaching these questions:

• How can software and systems be made dependable and secure in a more cost-effective manner?
• How can one obtain assurance that dependability and security have been achieved?
• Given the issues inherent in the development and assessment of today’s systems, what hope do we have of building

and assessing the systems of the future, systems that are likely to have billions of lines of code?
In short, the approach will require evidence allowing improvements to be objectively assessed. As well, with this dependence
on evidence, the construction and analysis of the same will need to be pursued.

Keynote: Systems Software Integrity Assurance
to FAA’s Next Generation (NextGen) Constituents

Chris Lane, Lockheed Martin Corporation
Data Comm is a program that will enhance existing communications between the air traffic controller and the pilot by
essentially sending digital messages to supplement the existing voice communications. With more reliance on Data Comm as
the FAA’s Next Generation systems become fielded, ensuring the communications is reliable, accurate, and most importantly
safe becomes increasingly critical. RTCA DO-278 provides the guidelines for communications, navigation, surveillance, and
air traffic management systems software integrity assurance. It doesn’t guarantee that the software developed in accordance
with these guidelines is safe but if followed it ensures that the processes are in place to properly plan, develop and verify the
software. Lockheed Martin is in the process of integrating Data Comm with the En Route Automation and Modernization
(ERAM) program and is developing the program in compliance with DO-278. This brings challenges as well as opportunities
with the increasing reliance on commercial off the shelf (COTS) software. These challenges and some insight into developing
systems to the standards of DO-278 will be discussed.

See complete conference and registration details at
http://www.sigada.org/conf/sigada2010/

186 Forthcoming Events

Volume 31, Number 3, September 2010 Ada User Journal

More Conference Highlights

Tutorial: Developing Unmanned Systems in Ada over RTEMS
Cindy Cicalese et al, The MITRE Corporation

This hands-on tutorial provides an introduction to the development of software in Ada for unmanned systems. The authors
will demonstrate how they are using Ada over RTEMS in developing the real time control software for a large unmanned
ground vehicle. RTEMS is an open source, real-time operating system that provides a high performance environment for
embedded applications on a range of processors and embedded hardware.

Workshop on Software Security

Stephen Michell, Maurya Software, Inc., Ottawa, Ontario, Canada
This hands-on workshop will involve a "find the vulnerability" exercise in sample code, using examples from C, C++,
scripting languages and Ada.

Panel: Mitigating Risks to the Enterprise via Software Assurance
Joe Jarzombek (Department of Homeland Security)

Developers and cyber security specialists can make the mistake of focusing on the technical aspects of software security
when management is more concerned about risk to the business or mission. Panel presentations and discussions will provide
a focus to enhance efforts to:

• Understand the industry-wide implications of standards-based security architectures for measurement and
management of enterprise IT security risks.

• Recognize the importance of security standards for enabling interoperability in security assessment, remediation,
threat identification, incident management, system certification, and secure development.

• Realize how standards can make ground-truth reporting of compliance efforts economical, real-time, and accurate.
• Understand and gain access to free software assurance resources for those in acquisition, development, sustainment

and support of operations.

Panel: Wouldn't It Be Nice to Have Software Labels?
Paul Black and Elizabeth Fong (National Institute of Standards and Technology)

Companies in most industries realize that efficient operation of their computer systems depends on trusted software in order
to satisfy their business functions. Would it be helpful if a buyer of a software product could look at a simple label and get
information on which of 2 or more products is safer to use? This would help the buyer to decide which product was best for
their business. The goal of this project is to present relevant information to empower consumers to make the right decisions.
Some of the possible criteria are that the software labeling and reporting are voluntary (not legislated), absolutely simple to
produce, and content should be normalized across different scopes. Some of the possible criteria for contents are that the facts
should be verifiable, objective, repeatable, and unambiguous.

Update on the Forthcoming Ada 2012 Standard
Ed Schonberg, Adacore, Inc.

The Ada Rapporteur Group (ARG) is nearing completion of its work on the forthcoming standard for Ada 2012. This update
will present the state of the ARG work and an informal discussion of the language enhancements in the new standard.

See complete conference and registration details at
http://www.sigada.org/conf/sigada2010/

Forthcoming Events 187

Ada User Journal Volume 31, Number 3, September 2010

Honorary Chair
John Barnes
John Barnes Informatics, UK
jgpb@jbinfo.demon.co.uk

Conference Co-Chairs
Rod Chapman
Altran Praxis Ltd, UK
rod.chapman@altran-praxis.com

Steve Riddle
Newcastle University, UK
steve.riddle@ncl.ac.uk

Program Co-Chairs
Alexander Romanovsky
Newcastle University, UK
alexander.romanovsky@ncl.ac.uk

Tullio Vardanega
University of Padua, Italy
tullio.vardanega@math.unipd.it

Tutorial Chair
Albert Llemosí
Universitat de les Illes Balears, Spain
albert.llemosi@uib.cat

Exhibition Chair
Joan Atkinson
CSR, UK
joan.atkinson@ncl.ac.uk

Industrial Chair
Jamie Ayre
AdaCore, France
ayre@adacore.com

Publicity Chair
Dirk Craeynest
Aubay Belgium & K.U.Leuven,
Belgium
Dirk.Craeynest@cs. kuleuven.be

Finance Chair
Neil Speirs
Newcastle University, UK
neil.speirs@ncl.ac.uk

Local Chairs
Joan Atkinson
CSR, UK
joan.atkinson@ncl.ac.uk

Claire Smith
CSR, UK
claire.smith@ncl.ac.uk

General Information
The Ada Connection combines the 16th International Conference on Reliable Software Technologies –
Ada-Europe 2011 – with Ada Conference UK 2011. It will take place in Edinburgh, Scotland’s capital city
and the UK’s most popular conference destination.
In traditional Ada-Europe style, the conference will span a full week, including a three-day technical
program and vendor exhibition from Tuesday to Thursday, along with parallel tutorials and workshops on
Monday and Friday. The Ada Connection will also encompass technical and vendor tracks under the
banner of Ada Conference UK, which exists to promote awareness of Ada and to highlight the increased
relevance of Ada in safety- and security-critical programming.
The Ada Connection will thus provide a unique opportunity for interaction and collaboration between
academics and industrial practitioners.

Schedule

Topics

Over the years Ada-Europe has established itself as an international forum for providers, practitioners and
researchers into reliable software technologies. The conference presentations will illustrate current work
in the theory and practice of the development and maintenance of long-lived, high-quality software
systems for a variety of established and novel application domains. The program will allow ample time for
keynotes, Q&A sessions, panel discussions and social events. Participants will include practitioners and
researchers representing industry, academia and government organizations active in the promotion and
development of reliable software technologies.

All contributions, whether regular papers, industrial presentations, tutorials or workshops, should address
the topics of interest to the conference, which for this edition include but are not limited to:

• Methods and Techniques for Software Development and Maintenance: Requirements
Engineering, Object-Oriented Technologies, Model-driven Engineering, Formal Methods and
Supporting Toolsets, Re-engineering and Reverse Engineering, Reuse, Software Management.

• Software Architectures: Architectural Styles, Service-Oriented Architectures, Cloud Service
Model, Design Patterns, Frameworks, Architecture-Centered Development, Component and Class
Libraries, Component-based Design and Development.

• Enabling Technologies: Software Development Environments, Compilers, Debuggers, Run-time
Systems, Middleware Components, Concurrent and Distributed Programming, Ada Language and
Technologies.

• Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis,
Verification, Validation, Testing of Software Systems.

• Theory and Practice of High-Integrity Systems: Real-Time, Distribution, Fault Tolerance,
Security, Reliability, Availability, Trust and Safety, Language Vulnerabilities.

• Embedded Systems: Multicore Architectures, HW/SW Co-Design, Reliability and Performance
Analysis.

• Mainstream and Emerging Applications: Manufacturing, Robotics, Avionics, Space, Health Care,
Transportation, Energy, Fun and Business Games, Telecommunication, etc.

• Experience Reports: Case Studies and Comparative Assessments, Management Approaches,
Qualitative and Quantitative Metrics.

• The Future of Ada: New language features, implementation and use issues; positioning in the
market and in education; where should Ada stand in the software engineering curriculum; lessons
learned on Ada Education and Training Activities with bearing on any of the conference topics.

Call for Papers

The Ada Connection
16th International Conference on
Reliable Software Technologies –

 Ada-Europe 2011

Ada Conference UK
2011

20 – 24 June 2011, Edinburgh, UK
http://www.ada-europe.org/conference2011

21 November 2010 Submission deadline for regular papers, tutorial and workshop proposals
8 January 2011 Submission of industrial presentation proposals

8 February 2011 Notification of acceptance to authors
8 March 2011 Camera-ready version of regular papers required
16 May 2011 Industrial presentations, tutorial and workshop material required

20-24 June 2011 Conference

In cooperation with

ACM SIGAda

188 Forthcoming Events

Volume 31, Number 3, September 2010 Ada User Journal

Program Committee

Alejandro Alonso, Universidad Politécnica

de Madrid, Spain
Ted Baker, Florida State University, USA
John Barnes, John Barnes Informatics, UK
Johann Blieberger, Technische Universität

Wien, Austria
Jørgen Bundgaard, Rovsing A/S, Denmark
Bernd Burgstaller, Yonsei University,

Korea
Alan Burns, University of York, UK
Jon Burton, Altran Praxis Limited, UK
Rod Chapman, Altran Praxis Limited, UK
Dirk Craeynest, Aubay Belgium &

K.U.Leuven, Belgium
Alfons Crespo, Universidad Politécnica de

Valencia, Spain
Juan A. de la Puente, Universidad

Politécnica de Madrid, Spain
Franco Gasperoni, AdaCore, France
Michael González Harbour, Universidad de

Cantabria, Spain
José Javier Gutiérrez, Universidad de

Cantabria, Spain
Andrew Hately, Eurocontrol Experimental

Centre, France
Peter Hermann, Universität Stuttgart,

Germany
Jérôme Hugues, ISAE Toulouse, France
Albert Llemosí, Universitat de les Illes

Balears, Spain
Franco Mazzanti, ISTI-CNR Pisa, Italy
John McCormick, University of Northern

Iowa, USA
Julio Medina, Universidad de Cantabria,

Spain
Stephen Michell, Maurya Software, Canada
Javier Miranda, Universidad Las Palmas de

Gran Canaria, Spain
Daniel Moldt, University of Hamburg,

Germany
Jürgen Mottok, Regensburg University of

Applied Sciences, Germany
Laurent Pautet, Telecom Paris, France
Luís Miguel Pinho, Polytechnic Institute of

Porto, Portugal
Erhard Plödereder, Universität Stuttgart,

Germany
Jorge Real, Universidad Politécnica de

Valencia, Spain
Alexander Romanovsky, Newcastle

University, UK
Bo I. Sandén, Colorado Technical

University, USA
Sergio Sáez, Universidad Politécnica de

Valencia, Spain
Ed Schonberg, AdaCore, USA
Theodor Tempelmeier, Univ. of Applied

Sciences Rosenheim, Germany
Jean-Loup Terraillon, European Space

Agency, The Netherlands
Elena Troubitsyna, Äbo Akademi, Finland
Santiago Urueña, GMV, Spain
Tullio Vardanega, Università di Padova,

Italy
Andy Wellings, University of York, UK
Jürgen Winkler, Friedrich-Schiller

Universität, Germany

Industrial Committee

Guillem Bernat, Rapita Systems, UK
Dirk Craeynest, Aubay Belgium &

K.U.Leuven, Belgium
Hubert Keller, Forschungszentrum

Karlsruhe GmbH, Germany
Ismael Lafoz, Airbus Military, Spain
Ahlan Marriott, White-Elephant GmbH,

Switzerland
Paul Parkinson, Wind River, UK
Jean-Pierre Rosen, Adalog, France
Alok Srivastava, TASC Inc, USA
Rei Stråhle, Sweden
Rod White, MBDA, UKt GmbH,
Switzerland

Call for Regular Papers

Authors of regular papers which are to undergo peer review for acceptance are invited to
submit original contributions. Paper submissions shall be in English, complete and not
exceeding 14 LNCS-style pages in length. Authors should submit their work via the Web
submission system accessible from the Conference Home page. The format for submission is
solely PDF. Should you have problems to comply with format and submission requirements,
please contact the Program Chairs.

Proceedings
The conference proceedings will be published in the Lecture Notes in Computer Science
(LNCS) series by Springer, and will be available at the start of the conference. The authors of
accepted regular papers shall prepare camera-ready submissions in full conformance with the
LNCS style, not exceeding 14 pages and strictly by 8 March 2011. For format and style
guidelines authors should refer to http://www.springer.de/comp/lncs/authors.html. Failure to
comply and to register for the conference by that date will prevent the paper from appearing in
the proceedings.
The conference is ranked class A in the CORE ranking and is listed among the top quarter of
CiteSeerX Venue Impact Factor.

Awards
Ada-Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Industrial Presentations
The conference also seeks industrial presentations which deliver value and insight, but may not
fit the selection process for regular papers. Authors of industrial presentations are invited to
submit a short overview (at least one page) of the proposed presentation by 8 January 2011.
Please follow the submission instructions on the conference website. The Industrial Committee
will review the proposals and make the selection. The authors of selected presentations shall
prepare a final short abstract and submit it by 16 May 2011, aiming at a 20-minute talk.
Accepted authors will also be invited to submit corresponding articles for publication in the
Ada User Journal, which will host the proceedings of the Industrial Program of the Conference.
For any further information please contact the Industrial Chair directly.

Call for Tutorials
Tutorials should address subjects that fall within the scope of the conference and may be
proposed as either half- or full-day events, to be scheduled at either end of the conference
week. Proposals should include a title, an abstract, a description of the topic, a detailed outline
of the presentation, a description of the presenter's lecturing expertise in general and with the
proposed topic in particular, the proposed duration (half day or full day), the intended level of
the tutorial (introductory, intermediate, or advanced), the recommended audience experience
and background, and a statement of the reasons for attending. Proposals should be submitted by
e-mail to the Tutorial Chair. The authors of accepted full-day tutorials will receive a
complimentary conference registration as well as a fee for every paying participant in excess of
five; for half-day tutorials, these benefits will be accordingly halved. The Ada User Journal will
offer space for the publication of summaries of the accepted tutorials.

Call for Workshops
Workshops on themes that fall within the conference scope may be proposed. Proposals may be
submitted for half- or full-day events, to be scheduled at either end of the conference week.
Workshop proposals should be submitted to the Conference Chair. The workshop organizer
shall also commit to preparing proceedings for timely publication in the Ada User Journal.

Call for Exhibitors
The commercial exhibition will span two days (Tuesday and Wednesday) of the main
conference. Vendors and providers of software products and services should contact the
Exhibition Chair for information and for allowing suitable planning of the exhibition space and
time.

Grants for Reduced Student Fees
A limited number of sponsored grants for reduced fees is expected to be available for students
who would like to attend the conference or tutorials. Contact the Conference Chair for details.

 189

Ada User Journal Volume 31, Number 3, September 2010

Student Programming Contest “The Ada Way”

Introduction
"The Ada Way" is an annual student programming contest
organized by Ada-Europe, the international organization
that promotes the knowledge and use of Ada in European
academia, research and industry. A Steering Committee
formed by representatives of promoting institutions
oversees the organization of the contest. The Steering
Committee is currently comprised of: Dirk Craeynest and
Ahlan Marriott (Ada-Europe), Ricky Sward (ACM
SIGAda), Jamie Ayre and Matteo Bordin (AdaCore), Jean-
Pierre Fauche (Atego), Ian Broster (Rapita), Rod White
(MBDA).

This initiative aims to attract students and educators to Ada
in a form that is both fun and instructive. For this reason
the contest is a yearly programming competition among
student teams, whereby each team must have a university
affiliation and be endorsed by an educator. The ideal, but
not exclusive, context for participation is as part of an
organized teaching/course activity in which the theme and
requirements of the contest are endorsed and supported by
the educator. See the "Participation Requirements" section
for details.

The contest opens in September with the announcement of
the theme, and allows submissions until the end of April
the following year. See below for the 2010-11 edition
theme and the Submissions section for the submission
requirements.

Students and educators who may consider participating and
want more information on "The Ada Way" in general and
its 2010-11 edition in particular are invited to make contact
with the Steering Committee at board@ada-europe.org.

Project Theme for Academic Year
2010-11: Software simulator of a football
(soccer) match
The following specification intentionally leaves some room
for interpretation and extension: participants are
encouraged to use their intelligent creativity to firm up the
derivative specification they want to work against.

The software system shall support at least the
following features:
• Users must be able to play a single game; support for

playing a series of matches, with fixtures and
associated rules, is optional and can be omitted

• The chosen variant of the game shall be configurable
in all relevant parameters, allowing for any of 5-a-side,
7-a-side, and the canonical 11-a-side formats

• The members of the squads will feature individually
configurable characteristics for, at least, technical and

tactical skills, speed, physical parameters including
fatigue; some of those parameters shall be dynamic
and evolve with the match according to some
programmed logic

• Each squad shall have a (software) manager able to
configure the initial players line up, the initial tactic
and to issue commands for tactic changes and
substitutions, all subject to the rules of the game as in
the corresponding standard

• Each squad shall play according to the tactic
commanded by the manager; deviations shall be
permitted in so far as they result from programmable
characteristics of the players

• Each match shall have one independent (software)
referee and two to three subordinate (software)
assistants who control the game and ensure that the
applicable rules are followed; the behavior and the
performance of the referee and assistants need not
exhibit the physical limitations of actual humans.

The software system shall include at least:
• A software core, whether centralized or distributed,

implementing all of the logic of the simulation

• One read-only graphical panel (window) for the
display of the football field, the players, the ball, the
referee and assistants; as for the (simulated) human
figures on the pitch it shall be sufficient to represent
them as moving numbered dots on the display without
resorting to sophisticated graphical rendering, as in a
view of a subbuteo table seen from the top

• Two distinct read-write graphical panels (windows) for
the user to influence the otherwise independent action
of the team managers; the panel shall display the
current parameters for each player; the refresh rate of
such display shall be user-configurable

• One read-only graphical panel (window) for the
display of a user-configurable selection of statistics;
the refresh rate of such display shall be user-
configurable.

The software core shall be programmed in Ada. The
software design shall permit the principal algoritms to be
modified and replaced at will: in other words, the software
system shall be as modular, configurable and scalable as
possible. These qualities will contribute to the evaluation.

The graphical panels can be programmed in any language
that the participating teams will consider fit for purpose.
The graphical beauty of such panels will however be only a
minor factor in the evaluation. What shall matter instead is
that the interaction and the flow of data and control
between the software core and the graphical panels is

190 Student Programming Contest , the Ada Way

Volume 31, Number 3, September 2010 Ada User Journal

governed by good architectural principles and shows
sufficient accuracy and performance.

To be considered for evaluation, the system shall run out of
the box. The target platform may be freely chosen between
Linux, Windows and MacOS. Portability across them will
however be a competitive advantage.

Participation requirements
Participating teams shall be composed by a minimum of 2
and a maximum of 7 members. Each team shall have a
codename and a logo. Team work may be performed as
part of an organized teaching/course activity or as a
volunteer project. Either way, each team must be
recognised and endorsed by an academic educator.

Team members must be full-time students: they must
provide evidence of their status when submitting their
project. The contest is open to undergraduate and Master
students. Teams may but need not include a mix of
undergraduate and graduate students. Team members may
belong to distinct institutions.

Submission
The software system shall be delivered in source (as a
single compressed archive), accompanied by:

1. A software specification document (in PDF),
which describes the principal design decisions and
argues their quality, and presents the points of
extension and modification in the system; the
specification shall clearly single out all places at
which the team made arbitrary interpretation of
the specification or added or extended
requirements

2. A user manual describing the compilation and
installation procedures, the configuration options
and the allowable use of the system (in PDF)

3. The team codename, logo and composition: name,
email contact, evidence of enrollment as full-time
students (in a single PDF)

4. The written endorsement to the submission by an
academic or otherwise senior instructor in whose
class the project was launched (in PDF).

The submission shall be made as a single compressed
archive of all items listed above at the URL that will appear
on this page in due time.

All sources shall be released for the good of the general
public, to become reference material for educational and

promotional purposes. To this end the use of GPL (GNU
General Public License) is recommended, though we are
not prescriptive of a specific scheme, so long as the general
intent of free dissemination is preserved.

Submissions shall be accepted during the whole month of
April 2011, at the Ada Way website, http://www.ada-
europe.org/AdaWay.

Evaluation and Prize
The evaluation criteria will include:

• Coverage of requirements

• Syntatic, semantic, programmatic and design
correctness

• Clarity and readability of the code

• Quality of design

• Ingenuity and cuteness of the solution

• Time and space efficiency of the solution.

The evaluation will be performed by a team of
distinguished Ada experts comprised of: John Barnes (UK),
Tucker Taft (US), Joyce Tokar (US), Pascal Leroy (F), Ed
Schonberg (US).

The winning submission shall be announced on 31 May
2011 by a post on the site and by an email communication
to all participating teams.

The prize will consist of: a framed award; one free
registration and up to 3 reduced student fees for
representatives of the winning team to attend to the Ada-
Europe 2011 Conference; accommodation and airfare for
the team representatives (with ceiling at EUR 3,000); an
exhibition slot in the conference program; visibility in
electronic and printed media including:

• Ada User Journal: http://www.ada-europe.org/
journal.html

• Ada Letters: http://www.sigada.org/ada_letters/

For up-to-date information on Ada-Europe's student
programming contest, please go to the official web site of
“The Ada Way”, http://www.ada-europe.org/AdaWay,

Sponsors
This year's competition is sponsored by Ada-Europe,
AdaCore, and Atego.

 191

Ada User Journal Volume 31, Number 3, September 2010

Ada and the Software Vulnerabilities Project
Alan Burns, FREng (ed.)
Department of Computer Science, University of York, York YO1 5DD UK; Tel: +44 (0)1904 432779;
email: burns@cs.york.ac.uk

Joyce L. Tokar, PhD (ed.)
Pyrrhus Software, PO Box 1352, Phoenix, AZ, 85001-1352, USA.; Tel: +1 602373 0713;
email: tokar@pyrrhusoft.com

Stephen Baird, John Barnes, Rod Chapman, Gary Dismukes, Michael González-Harbour, Stephen Michell,
Brad Moore, Luís Miguel Pinho, Erhard Ploedereder, Jorge Real, J.P. Rosen, Ed Schonberg, S. Tucker Taft,
T. Vardanega

Abstract
Given the large focus on software vulnerabilities in
the current market place, ISO/IEC JTC 1/SC 22/WG
23 has developed a Technical Report (TR) on
Vulnerabilities [1]. This TR contains vulnerabilities
that may be applicable to a programming language or
application. This article provides a synopsis of these
vulnerabilities with respect to the Ada programming
language [2].
Keywords: software vulnerabilities, software
vulnerability, Ada, SPARK.

1 Introduction
Software vulnerabilities are defined as a property of a
system security, requirements, design, implementation, or
operation that could be accidentally triggered or
intentionally exploited and result in a security failure [3].
Work on software vulnerabilities and how they enable
software applications to be infiltrated and corrupted
continues to be of interest world. Working Group 23 (WG
23) of the Programming Languages Subcommittee (SC 22)
of the International Organization of Standards (ISO) has
recently completed a Technical Report that identifies and
enumerates a collection of software vulnerabilities in
existing programming languages [1]. Annexes to this
document are being developed to identify if the
vulnerabilities defined in the TR exist in various
programming languages.

A workshop was conducted in parallel with the 14th
International Conference on Reliable Software
Technologies – Ada-Europe 2009 to initiate the
development of content of an Annex to the Technical
Report that documents its applicability to the Ada and
SPARK programming languages.

The results of this workshop were published in [4].
Another workshop was conducted in parallel with the 2009
SIGAda conference. Work continued on this document
over the course of 2009 and was completed in a short
workshop at the 15th International Conference on Reliable
Software Technologies – Ada-Europe 2010.

This content of this article is the final draft copy of the Ada
Annex to the WG 23 TR that will be submitted to WG 23
for inclusion in the TR. An annex was also developed by
Altran-Praxis for SPARK *.

Note, within the WG 23 TR each vulnerability is assigned a
unique identifier such as RIP for the Inheritance
vulnerability. Since the WG 23 TR was under development
during the work on this Annex and there is an expectation
that more vulnerabilities will be added to the TR, the
sections in the Ada Annex include their corresponding
unique identifier in the section heading.

References
[1] ISO/IEC JTC 1/SC 22 N 4522, ISO/IEC TR 24772,

Information Technology — Programming Languages
— Guidance to Avoiding Vulnerabilities in
Programming Languages through Language Selection
and Use, 7 November 2009.

[2] Taft, S. Tucker, Duff, R. A., Brukardt, R. L.,
Ploedereder, E., Leroy, P, Ada Reference Manual,
LNCS 4348, Springer, Heidelberg, 2006.

[3] NIST Special Publication 268, “Source Code Security
Analysis Tool Functional Specification Version 1.0,”
May 2007.

[4] Proceedings of the Software Vulnerabilities
Workshop of Ada-Europe 2009, in Ada User Journal,
Volume 30, Number 3, September 2009, pp. 174-192.

* Editor’s note: The SPARK Annex is scheduled for publication in the

December issue of the Ada User Journal.

192 Ada and the Software Vulnerabi l i t ies Project

Volume 31, Number 3, September 2010 Ada User Journal

Annex Ada – Final Draft

Ada.Specific information for
vulnerabilities

Every vulnerability description of Clause 6 of the main
document is addressed in the annex in the same
order even if there is simply a note that it is not
relevant to Ada.

This Annex specifies the characteristics of the Ada
programming language that are related to the
vulnerabilities defined in this Technical Report. When
applicable, the techniques to mitigate the vulnerability
in Ada applications are described in the associated
section on the vulnerability.

Ada.1 Identification of standards
and associated documentation
ISO/IEC 8652:1995, Information Technology –
Programming Languages—Ada.

ISO/IEC 8652:1995/COR.1:2001, Technical
Corrigendum to Information Technology –
Programming Languages—Ada.

ISO/IEC 8652:1995/AMD.1:2007, Amendment to
Information Technology – Programming Languages—
Ada.

ISO/IEC TR 15942:2000, Guidance for the Use of
Ada in High Integrity Systems.

ISO/IEC TR 24718:2005, Guide for the use of the Ada
Ravenscar Profile in high integrity systems.

Lecture Notes on Computer Science 5020, “Ada 2005
Rationale: The Language, the Standard Libraries,”
John Barnes, Springer, 2008.

Ada 95 Quality and Style Guide, SPC-91061-CMC,
version 02.01.01. Herndon, Virginia: Software
Productivity Consortium, 1992.

Ada Language Reference Manual, The consolidated
Ada Reference Manual, consisting of the international
standard (ISO/IEC 8652:1995): Information
Technology -- Programming Languages -- Ada, as
updated by changes from Technical Corrigendum 1
(ISO/IEC 8652:1995:TC1:2000), and Amendment 1
(ISO/IEC 8526:AMD1:2007).

IEEE 754-2008, IEEE Standard for Binary Floating
Point Arithmetic, IEEE, 2008.

IEEE 854-1987, IEEE Standard for Radix-
Independent Floating-Point Arithmetic, IEEE, 1987.

Ada.2 General terminology and
concepts
Access object: An object of an access type.

Access-to-Subprogram: A pointer to a subprogram
(function or procedure).

Access type: The type for objects that designate
(point to) other objects.

Access value: The value of an access type; a value
that is either null or designates (points at) another
object.

Attributes: Predefined characteristics of types and
objects; attributes may be queried using syntax of the
form <entity>'<attribute_name>.

Bounded Error: An error that need not be detected
either prior to or during run time, but if not detected,
then the range of possible effects shall be bounded.

Case statement: A case statement provides multiple
paths of execution dependent upon the value of the
case expression. Only one of alternative sequences
of statements will be selected.

Case expression: The case expression of a case
statement is a discrete type.

Case choices: The choices of a case statement must
be of the same type as the type of the expression in
the case statement. All possible values of the case
expression must be covered by the case choices.

Compilation unit: The smallest Ada syntactic
construct that may be submitted to the compiler. For
typical file-based implementations, the content of a
single Ada source file is usually a single compilation
unit.

Configuration pragma: A directive to the compiler that
is used to select partition-wide or system-wide
options. The pragma applies to all compilation units
appearing in the compilation, unless there are none,
in which case it applies to all future compilation units
compiled into the same environment.

Controlled type: A type descended from the
language-defined type Controlled or
Limited_Controlled. A controlled type is a specialized
type in Ada where an implementer can tightly control
the initialization, assignment, and finalization of
objects of the type. This supports techniques such as
reference counting, hidden levels of indirection,
reliable resource allocation, etc.

Discrete type: An integer type or an enumeration
type.

Discriminant: A parameter for a composite type. It
can control, for example, the bounds of a component
of the type if the component is an array. A
discriminant for a task type can be used to pass data
to a task of the type upon creation.

Erroneous execution: The unpredictable result arising
from an error that is not bounded by the language, but

A. Burns, J. L. Tokar (Eds.) 193

Ada User Journal Volume 31, Number 3, September 2010

that, like a bounded error, need not be detected by
the implementation either prior to or during run time.

Exception: Represents a kind of exceptional
situation. There are set of predefined exceptions in
Ada in package Standard: Constraint_Error,
Program_Error, Storage_Error, and Tasking_Error; one of
them is raised when a language-defined check fails.

Expanded name: A variable V inside subprogram S
in package P can be named V, or P.S.V. The name V
is called the direct name while the name P.S.V is
called the expanded name.

Idempotent behaviour: The property of an operations
that has the same effect whether applied just once or
multiple times. An example would be an operation
that rounded a number up to the nearest even integer
greater than or equal to its starting value.

Implementation defined: Aspects of semantics of the
language specify a set of possible effects; the
implementation may choose to implement any effect
in the set. Implementations are required to document
their behaviour in implementation-defined situations.

Modular type: A modular type is an integer type with
values in the range 0 .. modulus - 1. The modulus of a
modular type can be up to 2**N for N-bit word
architectures. A modular type has wrap-around
semantics for arithmetic operations, bit-wise "and"
and "or" operations, and arithmetic and logical shift
operations.

Partition: A partition is a program or part of a program
that can be invoked from outside the Ada
implementation.

Pointer: Synonym for “access object.”

Pragma: A directive to the compiler.

Pragma Atomic: Specifies that all reads and updates
of an object are indivisible.

Pragma Atomic_Components: Specifies that all reads
and updates of an element of an array are indivisible.

Pragma Convention: Specifies that an Ada entity
should use the conventions of another language.

Pragma Detect_Blocking: A configuration pragma
that specifies that all potentially blocking operations
within a protected operation shall be detected,
resulting in the Program_Error exception being raised.

Pragma Discard_Names: Specifies that storage used
at run-time for the names of certain entities may be
reduced.

Pragma Export: Specifies an Ada entity to be
accessed by a foreign language, thus allowing an Ada
subprogram to be called from a foreign language, or
an Ada object to be accessed from a foreign
language.

Pragma Import: Specifies an entity defined in a
foreign language that may be accessed from an Ada
program, thus allowing a foreign-language

subprogram to be called from Ada, or a foreign-
language variable to be accessed from Ada.

Pragma Normalize_Scalars: A configuration pragma
that specifies that an otherwise uninitialized scalar
object is set to a predictable value, but out of range if
possible.

Pragma Pack: Specifies that storage minimization
should be the main criterion when selecting the
representation of a composite type.

Pragma Restrictions: Specifies that certain language
features are not to be used in a given application. For
example, the pragma Restrictions
(No_Obsolescent_Features) prohibits the use of any
deprecated features. This pragma is a configuration
pragma which means that all program units compiled
into the library must obey the restriction.

Pragma Suppress: Specifies that a run-time check
need not be performed because the programmer
asserts it will always succeed.

Pragma Unchecked_Union: Specifies an interface
correspondence between a given discriminated type
and some C union. The pragma specifies that the
associated type shall be given a representation that
leaves no space for its discriminant(s).

Pragma Volatile: Specifies that all reads and updates
on a volatile object are performed directly to memory.

Pragma Volatile_Components: Specifies that all
reads and updates of an element of an array are
performed directly to memory.

Scalar type: A discrete or a real type.

Subtype declaration: A construct that allows
programmers to declare a named entity that defines a
possibly restricted subset of values of an existing type
or subtype, typically by imposing a constraint, such as
specifying a smaller range of values.

Task: A task represents a separate thread of control
that proceeds independently and concurrently
between the points where it interacts with other tasks.
An Ada program may be comprised of a collection of
tasks.

Unsafe Programming: In recognition of the
occasional need to step outside the type system or to
perform “risky” operations, Ada provides clearly
identified language features to do so. Examples
include the generic Unchecked_Conversion for unsafe
type conversions or Unchecked_Deallocation for the
deallocation of heap objects regardless of the
existence of surviving references to the object. If
unsafe programming is employed in a unit, then the
unit needs to specify the respective generic unit in its
context clause, thus identifying potentially unsafe
units. Similarly, there are ways to create a potentially
unsafe global pointer to a local object, using the
Unchecked_Access attribute. A restriction pragma may
be used to disallow uses of Unchecked_Access.

194 Ada and the Software Vulnerabi l i t ies Project

Volume 31, Number 3, September 2010 Ada User Journal

Ada.3.BRS Obscure Language
Features [BRS]

Ada.3.BRS.1 Terminology and features

Ada.3.BRS.2 Description of vulnerability
Ada is a rich language and provides facilities for a
wide range of application areas. Because some areas
are specialized, it is likely that a programmer not
versed in a special area might misuse features for
that area. For example, the use of tasking features for
concurrent programming requires knowledge of this
domain. Similarly, the use of exceptions and
exception propagation and handling requires a deeper
understanding of control flow issues than some
programmers may possess.

Ada.3.BRS.3 Avoiding the vulnerability or
mitigating its effects
The pragma Restrictions can be used to prevent the
use of certain features of the language. Thus, if a
program should not use feature X, then writing
pragma Restrictions (No_X); ensures that any attempt
to use feature X prevents the program from compiling.
Similarly, features in a Specialized Needs Annex
should not be used unless the application area
concerned is well-understood by the programmer.

Ada.3.BRS.4 Implications for
standardization
None

Ada.3.BRS.5 Bibliography
None

Ada.3.BQF Unspecified Behaviour
[BQF]

Ada.3.BQF.1 Terminology and features
Generic formal subprogram: A parameter to a generic
package used to specify a subprogram or operator.

Ada.3.BQF.2 Description of vulnerability
In Ada, there are two main categories of unspecified
behaviour, one having to do with unspecified aspects
of normal run-time behaviour, and one having to do
with bounded errors, errors that need not be detected
at run-time but for which there is a limited number of
possible run-time effects (though always including the
possibility of raising Program_Error).

For the normal behaviour category, there are several
distinct aspects of run-time behaviour that might be
unspecified, including:

• Order in which certain actions are performed
at run-time;

• Number of times a given element operation
is performed within an operation invoked on
a composite or container object;

• Results of certain operations within a
language-defined generic package if the
actual associated with a particular formal
subprogram does not meet stated
expectations (such as “<” providing a strict
weak ordering relationship);

• Whether distinct instantiations of a generic
or distinct invocations of an operation
produce distinct values for tags or access-
to-subprogram values.

The index entry in the Ada Standard for unspecified
provides the full list. Similarly, the index entry for
bounded error provides the full list of references to
places in the Ada Standard where a bounded error is
described.

Failure can occur due to unspecified behaviour when
the programmer did not fully account for the possible
outcomes, and the program is executed in a context
where the actual outcome was not one of those
handled, resulting in the program producing an
unintended result.

Ada.3.BQF.3 Avoiding the vulnerability or
mitigating its effects
As in any language, the vulnerability can be reduced
in Ada by avoiding situations that have unspecified
behaviour, or by fully accounting for the possible
outcomes.

Particular instances of this vulnerability can be
avoided or mitigated in Ada in the following ways:

• For situations where order of evaluation or
number of evaluations is unspecified, using
only operations with no side-effects, or
idempotent behaviour, will avoid the
vulnerability;

• For situations involving generic formal
subprograms, care should be taken that the
actual subprogram satisfies all of the stated
expectations;

• For situations involving unspecified values,
care should be taken not to depend on
equality between potentially distinct values;

• For situations involving bounded errors, care
should be taken to avoid the situation
completely, by ensuring in other ways that all
requirements for correct operation are
satisfied before invoking an operation that
might result in a bounded error. See the Ada
Annex section Ada.3.28 on Initialization of
Variables [LAV] for a discussion of

A. Burns, J. L. Tokar (Eds.) 195

Ada User Journal Volume 31, Number 3, September 2010

uninitialized variables in Ada, a common
cause of a bounded error.

Ada.3.BQF.4 Implications for
standardization
When appropriate, language-defined checks should
be added to reduce the possibility of multiple
outcomes from a single construct, such as by
disallowing side-effects in cases where the order of
evaluation could affect the result.

Ada.3.BQF.5 Bibliography
None

Ada.3.EWF Undefined Behaviour
[EWF]

Ada.3.EWF.1 Terminology and features
Abnormal Representation: The representation of an
object is incomplete or does not represent any valid
value of the object’s subtype.

Ada.3.EWF.2 Description of vulnerability
In Ada, undefined behaviour is called erroneous
execution, and can arise from certain errors that are
not required to be detected by the implementation,
and whose effects are not in general predictable.

There are various kinds of errors that can lead to
erroneous execution, including:

• Changing a discriminant of a record (by
assigning to the record as a whole) while
there remain active references to
subcomponents of the record that depend on
the discriminant;

• Referring via an access value, task id, or tag,
to an object, task, or type that no longer exists
at the time of the reference;

• Referring to an object whose assignment was
disrupted by an abort statement, prior to
invoking a new assignment to the object;

• Sharing an object between multiple tasks
without adequate synchronization;

• Suppressing a language-defined check that is
in fact violated at run-time;

• Specifying the address or alignment of an
object in an inappropriate way;

• Using Unchecked_Conversion,
Address_To_Access_Conversions, or calling an
imported subprogram to create a value, or
reference to a value, that has an abnormal
representation.

The full list is given in the index of the Ada Standard
under erroneous execution.

Any occurrence of erroneous execution represents a
failure situation, as the results are unpredictable, and
may involve overwriting of memory, jumping to
unintended locations within memory, etc.

Ada.3.EWF.3 Avoiding the vulnerability or
mitigating its effects
The common errors that result in erroneous execution
can be avoided in the following ways:

• All data shared between tasks should be
within a protected object or marked Atomic,
whenever practical;

• Any use of Unchecked_Deallocation should be
carefully checked to be sure that there are no
remaining references to the object;

• pragma Suppress should be used sparingly,
and only after the code has undergone
extensive verification.

The other errors that can lead to erroneous execution
are less common, but clearly in any given Ada
application, care must be taken when using features
such as:

• abort;

• Unchecked_Conversion;

• Address_To_Access_Conversions;

• The results of imported subprograms;

• Discriminant-changing assignments to global
variables.

The mitigations described in Section 6.EWF.5 are
applicable here.

Ada.3.EWF.4 Implications for
standardization
When appropriate, language-defined checks should
be added to reduce the possibility of erroneous
execution, such as by disallowing unsynchronized
access to shared variables.

Ada.3.EWF.5 Bibliography
None

Ada.3.FAB Implementation-Defined
Behaviour [FAB]

Ada.3.FAB.1 Terminology and features
None

196 Ada and the Software Vulnerabi l i t ies Project

Volume 31, Number 3, September 2010 Ada User Journal

Ada.3.FAB.2 Description of vulnerability
There are a number of situations in Ada where the
language semantics are implementation defined, to
allow the implementation to choose an efficient
mechanism, or to match the capabilities of the target
environment. Each of these situations is identified in
Annex M of the Ada Standard, and implementations
are required to provide documentation associated
with each item in Annex M to provide the programmer
with guidance on the implementation choices.

A failure can occur in an Ada application due to
implementation-defined behaviour if the programmer
presumed the implementation made one choice,
when in fact it made a different choice that affected
the results of the execution. In many cases, a
compile-time message or a run-time exception will
indicate the presence of such a problem. For
example, the range of integers supported by a given
compiler is implementation defined. However, if the
programmer specifies a range for an integer type that
exceeds that supported by the implementation, then a
compile-time error will be indicated, and if at run time
a computation exceeds the base range of an integer
type, then a Constraint_Error is raised.

Failure due to implementation-defined behaviour is
generally due to the programmer presuming a
particular effect that is not matched by the choice
made by the implementation. As indicated above,
many such failures are indicated by compile-time
error messages or run-time exceptions. However,
there are cases where the implementation-defined
behaviour might be silently misconstrued, such as if
the implementation presumes
Ada.Exceptions.Exception_Information returns a string
with a particular format, when in fact the
implementation does not use the expected format. If a
program is attempting to extract information from
Exception_Information for the purposes of logging
propagated exceptions, then the log might end up
with misleading or useless information if there is a
mismatch between the programmer’s expectation and
the actual implementation-defined format.

Ada.3.FAB.3 Avoiding the vulnerability or
mitigating its effects
Many implementation-defined limits have associated
constants declared in language-defined packages,
generally package System. In particular, the maximum
range of integers is given by System.Min_Int ..
System.Max_Int, and other limits are indicated by
constants such as System.Max_Binary_Modulus,
System.Memory_Size, System.Max_Mantissa, etc. Other
implementation-defined limits are implicit in normal
‘First and ‘Last attributes of language-defined (sub)
types, such as System.Priority’First and
System.Priority’Last. Furthermore, the implementation-
defined representation aspects of types and subtypes
can be queried by language-defined attributes. Thus,
code can be parameterized to adjust to

implementation-defined properties without modifying
the code.

• Programmers should be aware of the
contents of Annex M of the Ada Standard and
avoid implementation-defined behaviour
whenever possible.

• Programmers should make use of the
constants and subtype attributes provided in
package System and elsewhere to avoid
exceeding implementation-defined limits.

• Programmers should minimize use of any
predefined numeric types, as the ranges and
precisions of these are all implementation
defined. Instead, they should declare their
own numeric types to match their particular
application needs.

• When there are implementation-defined
formats for strings, such as Exception_
Information, any necessary processing should
be localized in packages with implementation-
specific variants.

Ada.3.FAB.4 Implications for
standardization
Language standards should specify relatively tight
boundaries on implementation-defined behaviour
whenever possible, and the standard should highlight
what levels represent a portable minimum capability
on which programmers may rely. For languages like
Ada that allow user declaration of numeric types, the
number of predefined numeric types should be
minimized (for example, strongly discourage or
disallow declarations of Byte_Integer,
Very_Long_Integer, etc., in package Standard).

Ada.3.FAB.5 Bibliography
None

Ada.3.MEM Deprecated Language
Features [MEM]

Ada.3.MEM.1 Terminology and features
Obsolescent Features: Ada has a number of features
that have been declared to be obsolescent; this is
equivalent to the term deprecated. These are
documented in Annex J of the Ada Reference
Manual.

Ada.3.MEM.2 Description of vulnerability
If obsolescent language features are used, then the
mechanism of failure for the vulnerability is as
described in Section 6.MEM.3.

A. Burns, J. L. Tokar (Eds.) 197

Ada User Journal Volume 31, Number 3, September 2010

Ada.3.MEM.3 Avoiding the vulnerability or
mitigating its effects

• Use pragma Restrictions
(No_Obsolescent_Features) to prevent the use
of any obsolescent features.

• Refer to Annex J of the Ada reference manual
to determine if a feature is obsolescent.

Ada.3.MEM.4 Implications for
standardization
None.

Ada.3.MEM.5 Bibliography
None

Ada.3.NMP Pre-Processor
Directives [NMP]
This vulnerability is not applicable to Ada as Ada does
not have a pre-processor.

Ada.3.NAI Choice of Clear Names
[NAI]

Ada.3.NAI.1 Terminology and features
Identifier: Identifier is the Ada term that corresponds
to the term name.

Ada is not a case-sensitive language. Names may
use an underscore character to improve clarity.

Ada.3.NAI.2 Description of vulnerability
There are two possible issues: the use of the identical
name for different purposes (overloading) and the use
of similar names for different purposes.
This vulnerability does not address overloading, which
is covered in Section Ada.3.YOW.
The risk of confusion by the use of similar names
might occur through:

• Mixed casing. Ada treats upper and lower
case letters in names as identical. Thus no
confusion can arise through an attempt to use
Item and ITEM as distinct identifiers with
different meanings.

• Underscores and periods. Ada permits single
underscores in identifiers and they are
significant. Thus BigDog and Big_Dog are
different identifiers. But multiple underscores
(which might be confused with a single
underscore) are forbidden, thus Big__Dog is
forbidden. Leading and trailing underscores
are also forbidden. Periods are not permitted
in identifiers at all.

• Singular/plural forms. Ada does permit the

use of identifiers which differ solely in this
manner such as Item and Items. However, the
user might use the identifier Item for a single
object of a type T and the identifier Items for
an object denoting an array of items that is of
a type array (…) of T. The use of Item where
Items was intended or vice versa will be
detected by the compiler because of the type
violation and the program rejected so no
vulnerability would arise.

• International character sets. Ada compilers
strictly conform to the appropriate
international standard for character sets.

• Identifier length. All characters in an identifier
in Ada are significant. Thus Long_IdentifierA
and Long_IdentifierB are always different. An
identifier cannot be split over the end of a line.
The only restriction on the length of an
identifier is that enforced by the line length
and this is guaranteed by the language
standard to be no less than 200.

Ada permits the use of names such as X, XX, and
XXX (which might all be declared as integers) and a
programmer could easily, by mistake, write XX where
X (or XXX) was intended. Ada does not attempt to
catch such errors.
The use of the wrong name will typically result in a
failure to compile so no vulnerability will arise. But, if
the wrong name has the same type as the intended
name, then an incorrect executable program will be
generated.

Ada.3.NAI.3 Avoiding the vulnerability or
mitigating its effects
This vulnerability can be avoided or mitigated in Ada
in the following ways: avoid the use of similar names
to denote different objects of the same type. See the
Ada Quality and Style Guide.

Ada.3.NAI.4 Implications for
standardization
None

Ada.3.NAI.5 Bibliography
None

Ada.3.AJN Choice of Filenames and
other External Identifiers [AJN]

Ada.3.AJN.1 Terminology and features
Ada enables programs to interface to external
identifiers in various ways. Filenames can be
specified when files are opened by the use of the
packages for input and output such as Text_IO. In
addition the packages Ada.Directories,
Ada.Command_Line, and Ada.Environment_Variables

198 Ada and the Software Vulnerabi l i t ies Project

Volume 31, Number 3, September 2010 Ada User Journal

give access to various external features. However, in
all cases, the form and meaning of the external
identifiers is stated to be implementation-defined.

Ada.3.AJN.2 Description of vulnerability
As described in Section 6.AJN.

Ada.3.AJN.3 Avoiding the vulnerability or
mitigating its effects
As described in Section 6.AJN.

Ada.3.AJN.4 Implications for
standardization
None

Ada.3.AJN.5 Bibliography
None

Ada.3.XYR Unused Variable [XYR]

Ada.3.XYR.1 Terminology and features
Dead store: An assignment to a variable that is not
used in subsequent instructions. A variable that is
declared but neither read nor written to in the program
is an unused variable.

Ada requires all variables to be explicitly declared.

Ada.3.XYR.2 Description of vulnerability
Variables might be unused for various reasons:

• Declared for future use. The programmer
might have declared the variable knowing that
it will be used when the program is complete
or extended. Thus, in a farming application, a
variable Pig might be declared for later use if
the farm decides to expand out of dairy
farming.

• The declaration is wrong. The programmer
might have mistyped the identifier of the
variable in its declaration, thus Peg instead of
Pig.

• The intended use is wrong. The programmer
might have mistyped the identifier of the
variable in its use, thus Pug instead of Pig.

An unused variable declared for later use does not of
itself introduce any vulnerability. The compiler will
warn of its absence of use if such warnings are
switched on.

If the declaration is wrong, then the program will not
compile assuming that the uses are correct. Again
there is no vulnerability.

If the use is wrong, then there is a vulnerability if a
variable of the same type with the same name is also

declared. Thus, if the program correctly declares Pig
and Pug (of the same type) but inadvertently uses Pug
instead of Pig, then the program will be incorrect but
will compile.

Ada.3.XYR.3 Avoiding the vulnerability or
mitigating its effects

• Do not declare variables of the same type
with similar names. Use distinctive identifiers
and the strong typing of Ada (for example
through declaring specific types such as
Pig_Counter is range 0 .. 1000; rather than just
Pig: Integer;) to reduce the number of
variables of the same type.

• Unused variables can be easily detected by

the compiler, whereas dead stores can be
detected by static analysis tools.

Ada.3.XYR.4 Implications for
standardization
None

Ada.3.XYR.5 Bibliography
None

Ada.3.YOW Identifier Name Reuse
[YOW]

Ada.3.YOW.1 Terminology and features
Hiding: A declaration can be hidden, either from direct
visibility, or from all visibility, within certain parts of its
scope. Where hidden from all visibility, it is not visible
at all (neither using a direct_name nor a selector_name).
Where hidden from direct visibility, only direct visibility
is lost; visibility using a selector_name is still possible.

Homograph: Two declarations are homographs if they
have the same name, and do not overload each other
according to the rules of the language.

Ada.3.YOW.2 Description of vulnerability
Ada is a language that permits local scope, and
names within nested scopes can hide identical names
declared in an outer scope. As such it is susceptible
to the vulnerability of 6.YOW. For subprograms and
other overloaded entities the problem is reduced by
the fact that hiding also takes the signatures of the
entities into account. Entities with different signatures,
therefore, do not hide each other.

The failure associated with common substrings of
identifiers cannot happen in Ada because all
characters in a name are significant (see section
Ada.3.NAI).

A. Burns, J. L. Tokar (Eds.) 199

Ada User Journal Volume 31, Number 3, September 2010

Name collisions with keywords cannot happen in Ada
because keywords are reserved. Library names Ada,
System, Interfaces, and Standard can be hidden by the
creation of subpackages. For all except package
Standard, the expanded name Standard.Ada,
Standard.System and Standard.Interfaces provide the
necessary qualification to disambiguate the names.

Ada.3.YOW.3 Avoiding the vulnerability or
mitigating its effects
Use expanded names whenever confusion may arise.

Ada.3.YOW.4 Implications for
standardization
Ada could define a pragma Restrictions identifier
No_Hiding that forbids the use of a declaration that
results in a local homograph.

Ada.3.YOW.5 Bibliography
None

Ada.3.BJL Namespace Issues [BJL]
With the exception of unsafe programming, this
vulnerability is not applicable to Ada as Ada provides
packages to control namespaces and enforces block
structure semantics.

Ada.3.IHN Type System [IHN]

Ada.3.IHN.1 Terminology and features
Explicit Conversion: The Ada term explicit conversion
is equivalent to the term cast in Section 6.IHN.3.

Implicit Conversion: The Ada term implicit conversion
is equivalent to the term coercion.

Ada uses a strong type system based on name
equivalence rules. It distinguishes types, which
embody statically checkable equivalence rules, and
subtypes, which associate dynamic properties with
types, e.g., index ranges for array subtypes or value
ranges for numeric subtypes. Subtypes are not types
and their values are implicitly convertible to all other
subtypes of the same type. All subtype and type
conversions ensure by static or dynamic checks that
the converted value is within the value range of the
target type or subtype. If a static check fails, then the
program is rejected by the compiler. If a dynamic
check fails, then an exception Constraint_Error is
raised.

To effect a transition of a value from one type to
another, three kinds of conversions can be applied in
Ada:

a) Implicit conversions: there are few
situations in Ada that allow for implicit
conversions. An example is the assignment of

a value of a type to a polymorphic variable of
an encompassing class. In all cases where
implicit conversions are permitted, neither
static nor dynamic type safety or application
type semantics (see below) are endangered
by the conversion.

b) Explicit conversions: various explicit
conversions between related types are
allowed in Ada. All such conversions ensure
by static or dynamic rules that the converted
value is a valid value of the target type.
Violations of subtype properties cause an
exception to be raised by the conversion.

c) Unchecked conversions: Conversions that
are obtained by instantiating the generic
subprogram Unchecked_Conversion are unsafe
and enable all vulnerabilities mentioned in
Section 6.IHN as the result of a breach in a
strong type system. Unchecked_Conversion is
occasionally needed to interface with type-
less data structures, e.g., hardware registers.

A guiding principle in Ada is that, with the exception of
using instances of Unchecked_Conversion, no
undefined semantics can arise from conversions and
the converted value is a valid value of the target type.

Ada.3.IHN.2 Description of vulnerability
Implicit conversions cause no application vulnerability,
as long as resulting exceptions are properly handled.

Explicit conversions can violate the application type
semantics. e.g., conversion from feet to meter, or, in
general, between types that denote value of different
units, without the appropriate conversion factors can
cause application vulnerabilities. However, no
undefined semantics can result and no values can
arise that are outside the range of legal values of the
target type.

Failure to apply correct conversion factors when
explicitly converting among types for different units
will result in application failures due to incorrect
values.

Failure to handle the exceptions raised by failed
checks of dynamic subtype properties cause systems,
threads or components to halt unexpectedly.

Unchecked conversions circumvent the type system
and therefore can cause unspecified behaviour (see
Section Ada.3.AMV).

Ada.3.IHN.3 Avoiding the vulnerability or
mitigating its effects

• The predefined ‘Valid attribute for a given
subtype may be applied to any value to
ascertain if the value is a legal value of the
subtype. This is especially useful when

200 Ada and the Software Vulnerabi l i t ies Project

Volume 31, Number 3, September 2010 Ada User Journal

interfacing with type-less systems or after
Unchecked_Conversion.

• A conceivable measure to prevent incorrect
unit conversions is to restrict explicit
conversions to the bodies of user-provided
conversion functions that are then used as
the only means to effect the transition
between unit systems. These bodies are to be
critically reviewed for proper conversion
factors.

• Exceptions raised by type and subtype
conversions shall be handled.

Ada.3.IHN.4 Implications for
standardization
None

Ada.3.IHN.5 Bibliography
None

Ada.3.STR Bit Representation [STR]

Ada.3.STR.1 Terminology and features
Operational and Representation Attributes: The
values of certain implementation-dependent
characteristics can be obtained by querying the
applicable attributes. Some attributes can be specified
by the user; for example:

• X'Alignment: allows the alignment of objects
on a storage unit boundary at an integral
multiple of a specified value.

• X'Size: denotes the size in bits of the
representation of the object.

• X'Component_Size: denotes the size in bits of
components of the array type X.

Record Representation Clauses: provide a way to
specify the layout of components within records, that
is, their order, position, and size.

Storage Place Attributes: for a component of a record,
the attributes (integer) Position, First_Bit and Last_Bit
are used to specify the component position and size
within the record.

Bit Ordering: Ada allows use of the attribute Bit_Order
of a type to query or specify its bit ordering
representation (High_Order_First and Low_Order_First).
The default value is implementation defined and
available at System.Bit_Order.

Atomic and Volatile: Ada can force every access to an
object to be an indivisible access to the entity in
memory instead of possibly partial, repeated
manipulation of a local or register copy. In Ada, these
properties are specified by pragmas.

Endianness: the programmer may specify the
endianness of the representation through the use of a
pragma.

Ada.3.STR.2 Description of vulnerability
In general, the type system of Ada protects against
the vulnerabilities outlined in Section 6.STR.
However, the use of Unchecked_Conversion, calling
foreign language routines, and unsafe manipulation of
address representations voids these guarantees.

The vulnerabilities caused by the inherent conceptual
complexity of bit level programming are as described
in Section 6.STR.

Ada.3.STR.3 Avoiding the vulnerability or
mitigating its effects
The vulnerabilities associated with the complexity of
bit-level programming can be mitigated by:

• The use of record and array types with the
appropriate representation specifications
added so that the objects are accessed by
their logical structure rather than their
physical representation. These representation
specifications may address: order, position,
and size of data components and fields.

• The use of pragma Atomic and pragma
Atomic_Components to ensure that all updates
to objects and components happen
atomically.

• The use of pragma Volatile and pragma
Volatile_Components to notify the compiler that
objects and components must be read
immediately before use as other devices or
systems may be updating them between
accesses of the program.

• The default object layout chosen by the
compiler may be queried by the programmer
to determine the expected behaviour of the
final representation.

For the traditional approach to bit-level programming,
Ada provides modular types and literal
representations in arbitrary base from 2 to 16 to deal
with numeric entities and correct handling of the sign
bit. The use of pragma Pack on arrays of Booleans
provides a type-safe way of manipulating bit strings
and eliminates the use of error prone arithmetic
operations.

Ada.3.STR.4 Implications for
standardization
None

Ada.3.STR.5 Bibliography
None

A. Burns, J. L. Tokar (Eds.) 201

Ada User Journal Volume 31, Number 3, September 2010

Ada.3.PLF Floating-point Arithmetic
[PLF]

Ada.3.PLF.1 Terminology and features
User-defined floating-point types: Types declared by
the programmer that allow specification of digits of
precision and optionally a range of values.

Static expressions: Expressions with statically known
operands that are computed with exact precision by
the compiler.

Fixed-point types: Real-valued types with a specified
error bound (called the 'delta' of the type) that provide
arithmetic operations carried out with fixed precision
(rather than the relative precision of floating-point
types).

Ada specifies adherence to the IEEE Floating Point
Standards (IEEE-754-2008, IEEE-854-1987).

Ada.3.PLF.2 Description of vulnerability
The vulnerability in Ada is as described in Section
6.PLF.2.

Ada.3.PLF.3 Avoiding the vulnerability or
mitigating its effects

• Rather than using predefined types, such as
Float and Long_Float, whose precision may
vary according to the target system, declare
floating-point types that specify the required
precision (e.g., digits 10). Additionally,
specifying ranges of a floating point type
enables constraint checks which prevents the
propagation of infinities and NaNs.

• Avoid comparing floating-point values for
equality. Instead, use comparisons that
account for the approximate results of
computations. Consult a numeric analyst
when appropriate.

• Make use of static arithmetic expressions and
static constant declarations when possible,
since static expressions in Ada are computed
at compile time with exact precision.

• Use Ada's standardized numeric libraries
(e.g., Generic_Elementary_Functions) for
common mathematical operations
(trigonometric operations, logarithms, etc.).

• Use an Ada implementation that supports
Annex G (Numerics) of the Ada standard, and
employ the "strict mode" of that Annex in
cases where additional accuracy
requirements must be met by floating-point
arithmetic and the operations of predefined
numerics packages, as defined and
guaranteed by the Annex.

• Avoid direct manipulation of bit fields of
floating-point values, since such operations

are generally target-specific and error-prone.
Instead, make use of Ada's predefined
floating-point attributes (e.g., 'Exponent).

• In cases where absolute precision is needed,
consider replacement of floating-point types
and operations with fixed-point types and
operations.

Ada.3.PLF.4 Implications for
standardization
None

Ada.3.PLF.5 Bibliography

IEEE 754-2008, IEEE Standard for Binary Floating
Point Arithmetic, IEEE, 2008.

IEEE 854-1987, IEEE Standard for Radix-
Independent Floating-Point Arithmetic, IEEE, 1987.

Ada.3.CCB Enumerator Issues
[CCB]

Ada.3.CCB.1 Terminology and features

Enumeration Type: An enumeration type is a discrete
type defined by an enumeration of its values, which
may be named by identifiers or character literals. In
Ada, the types Character and Boolean are enumeration
types. The defining identifiers and defining character
literals of an enumeration type must be distinct. The
predefined order relations between values of the
enumeration type follow the order of corresponding
position numbers.

Enumeration Representation Clause: An enumeration
representation clause may be used to specify the
internal codes for enumeration literals.

Ada.3.CCB.2 Description of vulnerability

Enumeration representation specification may be used to
specify non-default representations of an enumeration
type, for example when interfacing with external
systems. All of the values in the enumeration type must
be defined in the enumeration representation
specification. The numeric values of the representation
must preserve the original order. For example:

type IO_Types is (Null_Op, Open, Close, Read,
 Write, Sync);
for IO_Types use (Null_Op => 0, Open => 1,
 Close => 2, Read => 4,
 Write => 8, Sync => 16);

An array may be indexed by such a type. Ada does
not prescribe the implementation model for arrays
indexed by an enumeration type with non-contiguous

202 Ada and the Software Vulnerabi l i t ies Project

Volume 31, Number 3, September 2010 Ada User Journal

values. Two options exist: Either the array is
represented “with holes” and indexed by the values of
the enumeration type, or the array is represented
contiguously and indexed by the position of the
enumeration value rather than the value itself. In the
former case, the vulnerability described in 6.CCB
exists only if unsafe programming is applied to access
the array or its components outside the protection of
the type system. Within the type system, the
semantics are well defined and safe. In the latter
case, the vulnerability described in 6.CCB does not
exist.

The full range of possible values of the expression in
a case statement must be covered by the case
choices. Two distinct choices of a case statement
can not cover the same value. Choices can be
expressed by single values or subranges of values.
The others clause may be used as the last choice of a
case statement to capture any remaining values of
the case expression type that are not covered by the
case choices. These restrictions are enforced at
compile time. Identical rules apply to aggregates of
arrays.

The remaining vulnerability is that unexpected values
are captured by the others clause or a subrange as
case choice after an additional enumeration literal has
been added to the enumeration type definition. For
example, when the range of the type Character was
extended from 128 characters to the 256 characters
in the Latin-1 character type, an others clause for a
case statement with a Character type case expression
originally written to capture cases associated with the
128 characters type now captures the 128 additional
cases introduced by the extension of the type
Character. Some of the new characters may have
needed to be covered by the existing case choices or
new case choices.

Ada.3.CCB.3 Avoiding the vulnerability or
mitigating its effects

• For case statements and aggregates, do not
use the others choice.

• For case statements and aggregates, mistrust
subranges as choices after enumeration
literals have been added anywhere but the
beginning or the end of the enumeration type
definition.

Ada.3.CCB.4 Implications for
standardization
None

Ada.3.CCB.5 Bibliography
None

Ada.3.FLC Numeric Conversion
Errors [FLC]

Ada.3.FLC.1 Terminology and features
User-defined scalar types: Types declared by the
programmer for defining ordered sets of values of
various kinds, namely integer, enumeration, floating-
point, and fixed-point types. The typing rules of the
language prevent intermixing of objects and values of
distinct types.

Range check: A run-time check that ensures the
result of an operation is contained within the range of
allowable values for a given type or subtype, such as
the check done on the operand of a type conversion.

Ada.3.FLC.2 Description of vulnerability
Ada does not permit implicit conversions between
different numeric types, hence cases of implicit loss of
data due to truncation cannot occur as they can in
languages that allow type coercion between types of
different sizes.

In the case of explicit conversions, range bound
checks are applied, so no truncation can occur, and
an exception will be generated if the operand of the
conversion exceeds the bounds of the target type or
subtype.

The occurrence of an exception on a conversion can
disrupt a computation, which could potentially cause a
failure mode or denial-of-service problems.

Ada permits the definition of subtypes of existing
types that can impose a restricted range of values,
and implicit conversions can occur for values of
different subtypes belonging to the same type, but
such conversions still involve range checks that
prevent any loss of data or violation of the bounds of
the target subtype.

Loss of precision can occur on explicit conversions
from a floating-point type to an integer type, but in that
case the loss of precision is being explicitly
requested. Truncation cannot occur, and will lead to
Constraint_Error if attempted.

There exist operations in Ada for performing shifts
and rotations on values of unsigned types, but such
operations are also explicit (function calls), so must
be applied deliberately by the programmer, and can
still only result in values that fit within the range of the
result type of the operation.

Ada.3.FLC.3 Avoiding the vulnerability or
mitigating its effects

• Use Ada's capabilities for user-defined scalar
types and subtypes to avoid accidental mixing
of logically incompatible value sets.

A. Burns, J. L. Tokar (Eds.) 203

Ada User Journal Volume 31, Number 3, September 2010

• Use range checks on conversions involving
scalar types and subtypes to prevent
generation of invalid data.

• Use static analysis tools during program
development to verify that conversions cannot
violate the range of their target.

Ada.3.FLC.4 Implications for
standardization
None

Ada.3.FLC.5 Bibliography
None

Ada.3.CJM String Termination
[CJM]

With the exception of unsafe programming, this
vulnerability is not applicable to Ada as strings in Ada
are not delimited by a termination character. Ada
programs that interface to languages that use null-
terminated strings and manipulate such strings
directly should apply the vulnerability mitigations
recommended for that language.

Ada.3.XYX Boundary Beginning
Violation [XYX]

Ada.3.XYX.1 Terminology and features
None

Ada.3.XYX.2 Description of vulnerability
With the exception of unsafe programming, this
vulnerability is absent from Ada programs: all array
indexing operations are checked automatically in Ada.
The exception Constraint_Error is raised when an
index value is outside the bounds of the array, and all
array objects are created with explicit bounds. Pointer
arithmetic cannot be used to index arrays, except
through the use of unchecked conversions (see
Section Ada.3.AMV). The language distinguishes
arrays whose components are arrays, from
multidimensional arrays, and the syntax reflects this
distinction, Each index must respect the bounds of the
corresponding dimension.

These bounds checks can be suppressed by means
of the pragma Suppress, in which case the vulnerability
applies; however, the presence of such pragmas is
easily detected, and generally reserved for tight time-
critical loops, even in production code.

Ada.3.XYX.3 Avoiding the vulnerability or
mitigating its effects

• Do not suppress the checks provided by the
language (see Section 5.9.5 of the Ada 95
Quality and Style Guide).

• Do not use unchecked conversion to
manufacture index values.

• Use the attribute 'Range to describe iteration
over arrays.

• Use subtypes to declare both array types and
the index variables that will be used to access
them.

Ada.3.XYX.4 Implications for
standardization
None

Ada.3.XYX.5 Bibliography
None

Ada.3.XYZ Unchecked Array
Indexing [XYZ]

Ada.3.XYZ.1 Terminology and features
None

Ada.3.XYZ.2 Description of vulnerability
All array indexing is checked automatically in Ada,
and raises an exception when indexes are out of
bounds. This is checked in all cases of indexing,
including when arrays are passed to subprograms.

Programmers can write explicit bounds tests to
prevent an exception when indexing out of bounds,
but failure to do so does not result in accessing
storage outside of arrays.

An explicit suppression of the checks can be
requested by use of pragma Suppress, in which case
the vulnerability would apply; however, such
suppression is easily detected, and generally
reserved for tight time-critical loops, even in
production code.

Ada.3.XYZ.3 Avoiding the vulnerability or
mitigating its effects

• Do not suppress the checks provided by the
language.

• Use Ada's support for whole-array operations,
such as for assignment and comparison, plus
aggregates for whole-array initialization, to
reduce the use of indexing.

204 Ada and the Software Vulnerabi l i t ies Project

Volume 31, Number 3, September 2010 Ada User Journal

Ada.3.XYZ.4 Implications for
standardization
None

Ada.3.XYZ.5 Bibliography
None

Ada.3.XYW Unchecked Array
Copying [XYW]
With the exception of unsafe programming, this
vulnerability is not applicable to Ada as Ada allows
arrays to be copied by simple assignment (":="). The
rules of the language ensure that no overflow can
happen; instead, the exception Constraint_Error is
raised if the target of the assignment is not able to
contain the value assigned to it. Since array copy is
provided by the language, Ada does not provide
unsafe functions to copy structures by address and
length.

Ada.3.XZB Buffer Overflow [XZB]

With the exception of unsafe programming, this
vulnerability is not applicable to Ada as this
vulnerability can only happen as a consequence of
unchecked array indexing or unchecked array
copying, which do not occur in Ada (see Ada.3.XYZ
and Ada.3.XYW).

Ada.3.HFC Pointer Casting and
Pointer Type Changes [HFC]

Ada.3.HFC.1 Terminology and features
The mechanisms available in Ada to alter the type of
a pointer value are unchecked type conversions and
type conversions involving pointer types derived from
a common root type. In addition, uses of the
unchecked address taking capabilities can create
pointer types that misrepresent the true type of the
designated entity (see Section 13.10 of the Ada
Language Reference Manual).

Ada.3.HFC.2 Description of vulnerability
The vulnerabilities described in Section 6.HFC exist in
Ada only if unchecked type conversions or unsafe
taking of addresses are applied (see Section Ada.2).
Other permitted type conversions can never
misrepresent the type of the designated entity.

Checked type conversions that affect the application
semantics adversely are possible.

Ada.3.HFC.3 Avoiding the vulnerability or
mitigating its effects

• This vulnerability can be avoided in Ada by

not using the features explicitly identified as
unsafe.

• Use ‘Access which is always type safe.

Ada.3.HFC.4 Implications for
standardization
None

Ada.3.HFC.5 Bibliography
None

Ada.3.RVG Pointer Arithmetic [RVG]
With the exception of unsafe programming, this
vulnerability is not applicable to Ada as Ada does not
allow pointer arithmetic.

Ada.3.XYH Null Pointer Dereference
[XYH]
In Ada, this vulnerability does not exist, since compile-
time or run-time checks ensure that no null value can
be dereferenced.

Ada provides an optional qualification on access
types that specifies and enforces that objects of such
types cannot have a null value. Non-nullness is
enforced by rules that statically prohibit the
assignment of either null or values from sources not
guaranteed to be non-null.

Ada.3.XYK Dangling Reference to
Heap [XYK]

Ada.3.XYK.1 Terminology and features
Ada provides a model in which whole collections of
heap-allocated objects can be deallocated safely,
automatically and collectively when the scope of the
root access type ends.

For global access types, allocated objects can only be
deallocated through an instantiation of the generic
procedure Unchecked_Deallocation.

Ada.3.XYK.2 Description of vulnerability
Use of Unchecked_Deallocation can cause dangling
references to the heap. The vulnerabilities described
in 6.XYK exist in Ada, when this feature is used, since
Unchecked_Deallocation may be applied even though
there are outstanding references to the deallocated
object.

Ada.3.XYK.3 Avoiding the vulnerability or
mitigating its effects

• Use local access types where possible.

A. Burns, J. L. Tokar (Eds.) 205

Ada User Journal Volume 31, Number 3, September 2010

• Do not use Unchecked_Deallocation.

• Use Controlled types and reference counting.

Ada.3.XYK.4 Implications for
standardization
None

Ada.3.XYK.5 Bibliography
None

Ada.3.SYM Templates and Generics
[SYM]
With the exception of unsafe programming, this
vulnerability is not applicable to Ada as the Ada
generics model is based on imposing a contract on
the structure and operations of the types that can be
used for instantiation. Also, explicit instantiation of the
generic is required for each particular type.

Therefore, the compiler is able to check the generic
body for programming errors, independently of actual
instantiations. At each actual instantiation, the
compiler will also check that the instantiated type
meets all the requirements of the generic contract.

Ada also does not allow for ‘special case’ generics for
a particular type, therefore behaviour is consistent for
all instantiations.

Ada.3.RIP Inheritance [RIP]

Ada.3.RIP.1 Terminology and features
Overriding Indicators: If an operation is marked as
“overriding”, then the compiler will flag an error if the
operation is incorrectly named or the parameters are
not as defined in the parent. Likewise, if an operation
is marked as “not overriding”, then the compiler will
verify that there is no operation being overridden in
parent types.

Ada.3.RIP.2 Description of vulnerability
The vulnerability documented in Section 6.RIP applies
to Ada.

Ada only allows a restricted form of multiple
inheritance, where only one of the multiple ancestors
(the parent) may define operations. All other
ancestors (interfaces) can only specify the operations’
signature. Therefore, Ada does not suffer from
multiple inheritance derived vulnerabilities.

Ada.3.RIP.3 Avoiding the vulnerability or
mitigating its effects

• Use the overriding indicators on potentially
inherited subprograms to ensure that the

intended contract is obeyed, thus preventing
the accidental redefinition or failure to
redefine an operation of the parent.

• Use the mechanisms of mitigation described
in the main body of the document.

Ada.3.RIP.4 Implications for
standardization
Provide mechanisms to prevent further extensions of
a type hierarchy.

Ada.3.RIP.5 Bibliography
None

Ada.3.LAV Initialization of Variables
[LAV]

Ada.3.LAV.1 Terminology and features
None

Ada.3.LAV.2 Description of vulnerability
In Ada, referencing an uninitialized scalar (numeric or
enumeration-type) variable is considered a bounded
error, with the possible outcomes being the raising of
a Program_Error or Constraint_Error exception, or
continuing execution with some value of the variable’s
type, or some other implementation-defined
behaviour. The implementation is required to prevent
an uninitialized variable used as an array index
resulting in updating memory outside the array.
Similarly, using an uninitialized variable in a case
statement cannot result in a jump to something other
than one of the case alternatives. Typically Ada
implementations keep track of which variables might
be uninitialized, and presume they contain any value
possible for the given size of the variable, rather than
presuming they are within whatever value range that
might be associated with their declared type or
subtype. The vulnerability associated with use of an
uninitialized scalar variable is therefore that some
result will be calculated incorrectly or an exception will
be raised unexpectedly, rather than a completely
undefined behaviour.

Pointer variables are initialized to null by default, and
every dereference of a pointer is checked for a null
value. Therefore the only vulnerability associated with
pointers is that a Constraint_Error might be raised if a
pointer is dereferenced that was not correctly
initialized.

In general in Ada it is possible to suppress run-time
checking, using pragma Suppress. In the presence of
such a pragma, if a condition arises that would have
resulted in a check failing and an exception being
raised, then the behaviour is completely undefined
(“erroneous” in Ada terms), and could include

206 Ada and the Software Vulnerabi l i t ies Project

Volume 31, Number 3, September 2010 Ada User Journal

updating random memory or execution of unintended
machine instructions.

Ada provides a generic function for unchecked
conversion between (sub)types. If an uninitialized
variable is passed to an instance of this generic
function and the value is not within the declared range
of the target subtype, then the subsequent execution
is erroneous.

Failure can occur when a scalar variable (including a
scalar component of a composite variable) is not
initialized at its point of declaration, and there is a
reference to the value of the variable on a path that
never assigned to the variable. The effects are
bounded as described above, with the possible effect
being an incorrect result or an unexpected exception.

Ada.3.LAV.3 Avoiding the vulnerability or
mitigating its effects
Scalar variables are not initialized by default in Ada.
Pointer types are default-initialized to null. Default
initialization for record types may be specified by the
user. For controlled types (those descended from the
language-defined type Controlled or
Limited_Controlled), the user may also specify an
Initialize procedure which is invoked on all default-
initialized objects of the type.

This vulnerability can be avoided or mitigated in Ada
in the following ways:

• Whenever possible, a variable should be
replaced by an initialized constant, if in fact
there is only one assignment to the variable,
and the assignment can be performed at the
point of initialization. Moving the object
declaration closer to its point of use by
creating a local declare block can increase
the frequency at which such a replacement is
possible. Note that initializing a variable with
an inappropriate default value such as zero
can result in hiding underlying problems,
because static analysis tools or the compiler
itself will then be unable to identify use before
correct initialization.

• If the compiler has a mode that detects use
before initialization, then this mode should be
enabled and any such warnings should be
treated as errors.

• The pragma Normalize_Scalars can be used to
ensure that scalar variables are always
initialized by the compiler in a repeatable
fashion. This pragma is designed to initialize
variables to an out-of-range value if there is
one, to avoid hiding errors.

Ada.3.LAV.4 Implications for
standardization
Some languages (e.g., Java) require that all local
variables either be initialized at the point of
declaration or on all paths to a reference. Such a rule
could be considered for Ada.

Ada.3.LAV.5 Bibliography
None

Ada.3.XYY Wrap-around Error
[XYY]
With the exception of unsafe programming, this
vulnerability is not applicable to Ada as wrap-around
arithmetic in Ada is limited to modular types
Arithmetic operations on such types use modulo
arithmetic, and thus no such operation can create an
invalid value of the type.

Ada raises the predefined exception Constraint_Error
whenever an attempt is made to increment an integer
above its maximum positive value or to decrement an
integer below its maximum negative value.
Operations to shift and rotate numeric values apply
only to modular integer types, and always produce
values that belong to the type. In Ada there is no
confusion between logical and arithmetic shifts.

Ada.3.XZI Sign Extension Error
[XZI]
With the exception of unsafe programming, this
vulnerability is not applicable to Ada as Ada does not,
explicitly or implicitly, allow unsigned extension
operations to apply to signed entities or vice-versa.

Ada.3.JCW Operator
Precedence/Order of Evaluation
[JCW]

Ada.3.JCW.1 Terminology and features
None

Ada.3.JCW.2 Description of vulnerability
Since this vulnerability is about "incorrect beliefs" of
programmers, there is no way to establish a limit to
how far incorrect beliefs can go. However, Ada is less
susceptible to that vulnerability than many other
languages, since

• Ada only has six levels of precedence and
associativity is closer to common
expectations. For example, an expression like
A = B or C = D will be parsed as expected, i.e.
(A = B) or (C = D).

A. Burns, J. L. Tokar (Eds.) 207

Ada User Journal Volume 31, Number 3, September 2010

• Mixed logical operators are not allowed
without parentheses, i.e., "A or B or C" is
legal, as well as "A and B and C", but "A and B
or C" is not (must write "(A and B) or C" or "A
and (B or C)".

• Assignment is not an operator in Ada.

Ada.3.JCW.3 Avoiding the vulnerability or
mitigating its effects
The general mitigation measures can be applied to
Ada like any other language.

Ada.3.JCW.4 Implications for
standardization
None

Ada.3.JCW.5 Bibliography
None

Ada.3.SAM Side-effects and Order
of Evaluation [SAM]

Ada.3.SAM.1 Terminology and features
None

Ada.3.SAM.2 Description of vulnerability
There are no operators in Ada with direct side effects
on their operands using the language-defined
operations, especially not the increment and
decrement operation. Ada does not permit multiple
assignments in a single expression or statement.

There is the possibility though to have side effects
through function calls in expressions where the
function modifies globally visible variables. Although
functions only have "in" parameters, meaning that
they are not allowed to modify the value of their
parameters, they may modify the value of global
variables. Operators in Ada are functions, so, when
defined by the user, although they cannot modify their
own operands, they may modify global state and
therefore have side effects.

Ada allows the implementation to choose the
association of the operators with operands of the
same precedence level (in the absence of
parentheses imposing a specific association). The
operands of a binary operation are also evaluated in
an arbitrary order, as happens for the parameters of
any function call. In the case of user-defined
operators with side effects, this implementation
dependency can cause unpredictability of the side
effects.

Ada.3.SAM.3 Avoiding the vulnerability or
mitigating its effects

• Make use of one or more programming
guidelines which prohibit functions that modify
global state, and can be enforced by static
analysis.

• Keep expressions simple. Complicated code
is prone to error and difficult to maintain.

• Always use brackets to indicate order of
evaluation of operators of the same
precedence level.

Ada.3.SAM.4 Implications for
standardization
Add the ability to declare in the specification of a
function that it is pure, i.e., it has no side effects.

Ada.3.SAM.5 Bibliography
None

Ada.3.KOA Likely Incorrect
Expression [KOA]

Ada.3.KOA.1 Terminology and features
None

Ada.3.KOA.2 Description of vulnerability
An instance of this vulnerability consists of two
syntactically similar constructs such that the
inadvertent substitution of one for the other may result
in a program which is accepted by the compiler but
does not reflect the intent of the author.

The examples given in 6.KOA are not problems in
Ada because of Ada's strong typing and because an
assignment is not an expression in Ada.

In Ada, a type conversion and a qualified expression
are syntactically similar, differing only in the presence
or absence of a single character:

Type_Name (Expression) -- a type conversion

vs.

Type_Name'(Expression) -- a qualified expression

Typically, the inadvertent substitution of one for the
other results in either a semantically incorrect
program which is rejected by the compiler or in a
program which behaves in the same way as if the
intended construct had been written. In the case of a
constrained array subtype, the two constructs differ in
their treatment of sliding (conversion of an array value
with bounds 100 .. 103 to a subtype with bounds 200
.. 203 will succeed; qualification will fail a run-time
check.

208 Ada and the Software Vulnerabi l i t ies Project

Volume 31, Number 3, September 2010 Ada User Journal

Similarly, a timed entry call and a conditional entry
call with an else-part that happens to begin with a
delay statement differ only in the use of "else" vs. "or"
(or even "then abort" in the case of a
asynchronous_select statement).

Probably the most common correctness problem
resulting from the use of one kind of expression
where a syntactically similar expression should have
been used has to do with the use of short-circuit vs.
non-short-circuit Boolean-valued operations (i.e., "and
then" and "or else" vs. "and" and "or"), as in

if (Ptr /= null) and (Ptr.all.Count > 0) then ... end if;
-- should have used "and then" to avoid
dereferencing null

Ada.3.KOA.3 Avoiding the vulnerability or
mitigating its effects

• Compilers and other static analysis tools can
detect some cases (such as the preceding
example) where short-circuited evaluation
could prevent the failure of a run-time check.

• Developers may also choose to use short-

circuit forms by default (errors resulting from
the incorrect use of short-circuit forms are
much less common), but this makes it more
difficult for the author to express the
distinction between the cases where short-
circuited evaluation is known to be needed
(either for correctness or for performance)
and those where it is not.

Ada.3.KOA.4 Implications for
standardization
None

Ada.3.KOA.5 Bibliography
None

Ada.3.XYQ Dead and Deactivated
Code [XYQ]

Ada.3.XYQ.1 Terminology and features
None

Ada.3.XYQ.2 Description of vulnerability
Ada allows the usual sources of dead code (described
in 6.XYQ.3) that are common to most conventional
programming languages.

Ada.3.XYQ.3 Avoiding the vulnerability or
mitigating its effects
Implementation specific mechanisms may be
provided to support the elimination of dead code. In
some cases, pragmas such as Restrictions, Suppress,
or Discard_Names may be used to inform the compiler
that some code whose generation would normally be

required for certain constructs would be dead
because of properties of the overall system, and that
therefore the code need not be generated.

Ada.3.XYQ.4 Implications for
standardization
None

Ada.3.XYQ.5 Bibliography
None

Ada.3.CLL Switch Statements and
Static Analysis [CLL]
With the exception of unsafe programming, this
vulnerability is not applicable to Ada as
Ada requires that a case statement provide exactly
one alternative for each value of the expression's
subtype. If the value of the expression is outside of
the range of this subtype (e.g., due to an uninitialized
variable), then the resulting behaviour is well-defined
(Constraint_Error is raised). Control does not flow from
one alternative to the next. Upon reaching the end of
an alternative, control is transferred to the end of the
case statement.

Ada.3.EOJ Demarcation of Control
Flow [EOJ]
With the exception of unsafe programming, this
vulnerability is not applicable to Ada as the Ada
syntax describes several types of compound
statements that are associated with control flow
including if statements, loop statements, case
statements, select statements, and extended return
statements. Each of these forms of compound
statements require unique syntax that marks the end
of the compound statement.

Ada.3.TEX Loop Control Variables
[TEX]
With the exception of unsafe programming, this
vulnerability is not applicable to Ada as Ada defines a
for loop where the number of iterations is controlled
by a loop control variable (called a loop parameter).
This value has a constant view and cannot be
updated within the sequence of statements of the
body of the loop.

Ada.3.XZH Off-by-one Error [XZH]

Ada.3.XZH.1 Terminology and features
Scalar Type: A Scalar type comprises enumeration
types, integer types, and real types.

A. Burns, J. L. Tokar (Eds.) 209

Ada User Journal Volume 31, Number 3, September 2010

Attribute: An Attribute is a characteristic of a
declaration that can be queried by special syntax to
return a value corresponding to the requested
attribute.

The language defined attributes applicable to scalar
types and array types that help address this
vulnerability are 'First, 'Last, 'Range, and 'Length.

Ada.3.XZH.2 Description of vulnerability

Confusion between the need for < and <= or >
and >= in a test.
A for loop in Ada does not involve the programmer
having to specify a conditional test for loop
termination. Instead, the starting and ending value of
the loop are specified which eliminates this source of
off by one errors. A while loop however, lets the
programmer specify the loop termination expression,
which could be susceptible to an off by one error.

Confusion as to the index range of an
algorithm.
Although there are language defined attributes to
symbolically reference the start and end values for a
loop iteration, the language does allow the use of
explicit values and loop termination tests. Off-by-one
errors can result in these circumstances.

Care should be taken when using the 'Length Attribute
in the loop termination expression. The expression
should generally be relative to the 'First value.

The strong typing of Ada eliminates the potential for
buffer overflow associated with this vulnerability. If the
error is not statically caught at compile time, then a
run time check generates an exception if an attempt is
made to access an element outside the bounds of an
array.

Failing to allow for storage of a sentinel
value.
Ada does not use sentinel values to terminate arrays.
There is no need to account for the storage of a
sentinel value, therefore this particular vulnerability
concern does not apply to Ada.

Ada.3.XZH.3 Avoiding the vulnerability or
mitigating its effects

• Whenever possible, a for loop should be used
instead of a while loop.

• Whenever possible, the 'First, 'Last, and
'Range attributes should be used for loop
termination. If the 'Length attribute must be
used, then extra care should be taken to
ensure that the length expression considers
the starting index value for the array.

Ada.3.XZH.4 Implications for
standardization
None

Ada.3.XZH.5 Bibliography
None

Ada.3.EWD Structured
Programming [EWD]

Ada.3.EWD.1 Terminology and features
None

Ada.3.EWD.2 Description of vulnerability
Ada programs can exhibit many of the vulnerabilities
noted in the parent report: leaving a loop at an
arbitrary point, local jumps (goto), and multiple exit
points from subprograms.

It does not suffer from non-local jumps and multiple
entries to subprograms.

Ada.3.EWD.3 Avoiding the vulnerability or
mitigating its effects
Avoid the use of goto, loop exit statements, return
statements in procedures and more than one return
statement in a function.

Ada.3.EWD.4 Implications for
standardization
Pragma Restrictions could be extended to allow the
use of these features to be statically checked.

Ada.3.EWD.5 Bibliography
None

Ada.3.CSJ Passing Parameters and
Return Values [CSJ]

Ada.3.CSJ.1 Terminology and features
None

Ada.3.CSJ.2 Description of vulnerability
Ada employs the mechanisms (e.g., modes in, out
and in out) that are recommended in Section 6.CSJ.
These mode definitions are not optional, mode in
being the default. The remaining vulnerability is
aliasing when a large object is passed by reference.

Ada.3.CSJ.3 Avoiding the vulnerability of
mitigating its effects

• Follow avoidance advice in Section 6.CSJ.

210 Ada and the Software Vulnerabi l i t ies Project

Volume 31, Number 3, September 2010 Ada User Journal

Ada.3.CSJ.4 Implications for
standardization
None

Ada.3.CSJ.5 Bibliography
None

Ada.3.DCM Dangling References to
Stack Frames [DCM]

Ada.3.DCM.1 Terminology and features
In Ada, the attribute 'Address yields a value of some
system-specific type that is not equivalent to a
pointer. The attribute 'Access provides an access
value (what other languages call a pointer).
Addresses and access values are not automatically
convertible, although a predefined set of generic
functions can be used to convert one into the other.
Access values are typed, that is to say can only
designate objects of a particular type or class of
types.

Ada.3.DCM.2 Description of vulnerability
As in other languages, it is possible to apply the
'Address attribute to a local variable, and to make use
of the resulting value outside of the lifetime of the
variable. However, 'Address is very rarely used in this
fashion in Ada. Most commonly, programs use 'Access
to provide pointers to static objects, and the language
enforces accessibility checks whenever code
attempts to use this attribute to provide access to a
local object outside of its scope. These accessibility
checks eliminate the possibility of dangling
references.

As for all other language-defined checks, accessibility
checks can be disabled over any portion of a program
by using the Suppress pragma. The attribute
Unchecked_Access produces values that are exempt
from accessibility checks.

Ada.3.DCM.3 Avoiding the vulnerability or
mitigating its effects

• Only use 'Address attribute on static objects
(e.g., a register address).

• Do not use 'Address to provide indirect
untyped access to an object.

• Do not use conversion between Address and
access types.

• Use access types in all circumstances when
indirect access is needed.

• Do not suppress accessibility checks.

• Avoid use of the attribute Unchecked_Access.

Ada.3.DCM.4 Implications for
standardization
Pragma Restrictions could be extended to restrict the
use of 'Address attribute to library level static objects.

Ada.3.DCM.5 Bibliography
None

Ada.3.OTR Subprogram Signature
Mismatch [OTR]

Ada.3.OTR.1 Terminology and features
Default expression: an expression of the formal object
type that may be used to initialize the formal object if
an actual object is not provided.

Ada.3.OTR.2 Description of vulnerability
There are two concerns identified with this
vulnerability. The first is the corruption of the
execution stack due to the incorrect number or type of
actual parameters. The second is the corruption of the
execution stack due to calls to externally compiled
modules.
In Ada, at compilation time, the parameter association
is checked to ensure that the type of each actual
parameter is the type of the corresponding formal
parameter. In addition, the formal parameter
specification may include default expressions for a
parameter. Hence, the procedure may be called with
some actual parameters missing. In this case, if there
is a default expression for the missing parameter,
then the call will be compiled without any errors. If
default expressions are not specified, then the
procedure call with insufficient actual parameters will
be flagged as an error at compilation time.

Caution must be used when specifying default
expressions for formal parameters, as their use may
result in successful compilation of subprogram calls
with an incorrect signature. The execution stack will
not be corrupted in this event but the program may be
executing with unexpected values.

When calling externally compiled modules that are
Ada program units, the type matching and
subprogram interface signatures are monitored and
checked as part of the compilation and linking of the
full application. When calling externally compiled
modules in other programming languages, additional
steps are needed to ensure that the number and
types of the parameters for these external modules
are correct.

Ada.3.OTR.3 Avoiding the vulnerability or
mitigating its effects

• Do not use default expressions for formal
parameters.

A. Burns, J. L. Tokar (Eds.) 211

Ada User Journal Volume 31, Number 3, September 2010

• Interfaces between Ada program units and
program units in other languages can be
managed using pragma Import to specify
subprograms that are defined externally and
pragma Export to specify subprograms that
are used externally. These pragmas specify
the imported and exported aspects of the
subprograms, this includes the calling
convention. Like subprogram calls, all
parameters need to be specified when using
pragma Import and pragma Export.

• The pragma Convention may be used to
identify when an Ada entity should use the
calling conventions of a different
programming language facilitating the correct
usage of the execution stack when interfacing
with other programming languages.

• In addition, the Valid attribute may be used to
check if an object that is part of an interface
with another language has a valid value and
type.

Ada.3.OTR.4 Implications for
standardization
None

Ada.3.OTR.5 Bibliography
None

Ada.3.GDL Recursion [GDL]

Ada.3.GDL.1 Terminology and features
None

Ada.3.GDL.2 Description of vulnerability
Ada permits recursion. The exception Storage_Error is
raised when the recurring execution results in
insufficient storage.

Ada.3.GDL.3 Avoiding the vulnerability or
mitigating its effects
If recursion is used, then a Storage_Error exception
handler may be used to handle insufficient storage
due to recurring execution.

Alternatively, the asynchronous control construct may
be used to time the execution of a recurring call and
to terminate the call if the time limit is exceeded.

In Ada, the pragma Restrictions may be invoked with
the parameter No_Recursion. In this case, the compiler
will ensure that as part of the execution of a
subprogram the same subprogram is not invoked.

Ada.3.GDL.4 Implications for
standardization
None

Ada.3.GDL.5 Bibliography
None

Ada.3.NZN Returning Error Status
[NZN]

Ada.3.NZN.1 Terminology and features
None

Ada.3.NZN.2 Description of vulnerability
Ada offers a set of predefined exceptions for error
conditions that may be detected by checks that are
compiled into a program. In addition, the programmer
may define exceptions that are appropriate for their
application. These exceptions are handled using an
exception handler. Exceptions may be handled in the
environment where the exception occurs or may be
propagated out to an enclosing scope.

As described in Section 6.NZN, there is some
complexity in understanding the exception handling
methodology especially with respect to object-
oriented programming and multi-threaded execution.

Ada.3.NZN.3 Avoiding the vulnerability or
mitigating its effects
In addition to the mitigations defined in the main text,
values delivered to an Ada program from an external
device may be checked for validity prior to being
used. This is achieved by testing the Valid attribute.

Ada.3.NZN.4 Implications for
standardization
None

Ada.3.NZN.5 Bibliography
None

Ada.3.REU Termination Strategy
[REU]

Ada.3.REU.1 Terminology and features

Ada.3.REU.2 Description of Vulnerability
An Ada system that consists of multiple tasks is
subject to the same hazards as multithreaded
systems in other languages. A task that fails, for
example, because its execution violates a language-
defined check, terminates quietly.

212 Ada and the Software Vulnerabi l i t ies Project

Volume 31, Number 3, September 2010 Ada User Journal

Any other task that attempts to communicate with a
terminated task will receive the exception
Tasking_Error. The undisciplined use of the abort
statement or the asynchronous transfer of control
feature may destroy the functionality of a multitasking
program.

Ada.3.REU.3 Avoiding the vulnerability or
mitigating its effects

• Include exception handlers for every task, so
that their unexpected termination can be
handled and possibly communicated to the
execution environment.

• Use objects of controlled types to ensure that
resources are properly released if a task
terminates unexpectedly.

• The abort statement should be used
sparingly, if at all.

• For high-integrity systems, exception handling
is usually forbidden. However, a top-level
exception handler can be used to restore the
overall system to a coherent state.

• Define interrupt handlers to handle signals
that come from the hardware or the operating
system. This mechanism can also be used to
add robustness to a concurrent program.

• Annex C of the Ada Reference Manual
(Systems Programming) defines the package
Ada.Task_Termination to be used to monitor
task termination and its causes.

• Annex H of the Ada Reference Manual (High
Integrity Systems) describes several pragma,
restrictions, and other language features to be
used when writing systems for high-reliability
applications. For example, the pragma
Detect_Blocking forces an implementation to
detect a potentially blocking operation within a
protected operation, and to raise an exception
in that case.

Ada.3.REU.4 Implications for
Standardization
None

Ada.3.REU.5 Bibliography
None

Ada 3.LRM Extra Intrinsics [LRM]

Ada 3.LRM.1 Terminology and features
The pragma Convention can specify that a given
subprogram is intrinsic. The implementation of an
intrinsic subprogram is known to the compiler, and the
user does not specify a body for it.

Ada 3.LRM.2 Description of Vulnerability
The vulnerability does not apply to Ada, because all
subprograms, whether intrinsic or not, belong to the
same name space. This means that all subprograms
must be explicitly declared, and the same name
resolution rules apply to all of them, whether they are
predefined or user-defined. If two subprograms with
the same name and signature are visible (that is to
say nameable) at the same place in a program, then a
call using that name will be rejected as ambiguous by
the compiler, and the programmer will have to specify
(for example by means of a qualified name) which
subprogram is meant.

Ada 3.AMV Type-breaking
Reinterpretation of Data [AMV]

Ada 3.AMV.1 Terminology and features
Ada provides a generic function
Unchecked_Conversion, whose purpose is to impose a
given target type on a value of a distinct source type.
This function must be instantiated for each pair of
types between which such a reinterpretation is
desired.

Ada also provides Address clauses that can be used to
overlay objects of different types.
Variant records in Ada are discriminated types; the
discriminant is part of the object and supports
consistency checks when accessing components of a
given variant. In addition, for inter-language
communication, Ada also provides the pragma
Unchecked_Union to indicate that objects of a given
variant type do not store their discriminants. Objects
of such types are in fact free unions.

Ada 3.AMV.2 Description of vulnerability
Unchecked_Conversion can be used to bypass the
type-checking rules, and its use is thus unsafe, as in
any other language. The same applies to the use of
Unchecked_Union, even though the language specifies
various inference rules that the compiler must use to
catch statically detectable constraint violations.

Type reinterpretation is a universal programming
need, and no usable programming language can exist
without some mechanism that bypasses the type
model. Ada provides these mechanisms with some
additional safeguards, and makes their use purposely
verbose, to alert the writer and the reader of a
program to the presence of an unchecked operation.

Ada 3.AMV.3 Avoiding the vulnerability or
mitigating its effects

• The fact that Unchecked_Conversion is a
generic function that must be instantiated
explicitly (and given a meaningful name)
hinders its undisciplined use, and places a

A. Burns, J. L. Tokar (Eds.) 213

Ada User Journal Volume 31, Number 3, September 2010

loud marker in the code wherever it is used.
Well-written Ada code will have a small set of
instantiations of Unchecked_Conversion.

• Most implementations require the source and
target types to have the same size in bits, to
prevent accidental truncation or sign
extension.

• Unchecked_Union should only be used in
multi-language programs that need to
communicate data between Ada and C or
C++. Otherwise the use of discriminated
types prevents "punning" between values of
two distinct types that happen to share
storage.

• Using address clauses to obtain overlays
should be avoided. If the types of the objects
are the same, then a renaming declaration is
preferable. Otherwise, the pragma Import
should be used to inhibit the initialization of
one of the entities so that it does not interfere
with the initialization of the other one.

Ada 3.AMV.4 Implications for
Standardization
None

Ada 3.AMV.5 Bibliography
None

Ada.3.XYL Memory Leak [XYL]

Ada.3.XYL.1 Terminology and features
Allocator: The Ada term for the construct that
allocates storage from the heap or from a storage
pool.

Storage Pool: A named location in an Ada program
where all of the objects of a single access type will be
allocated. A storage pool can be sized exactly to the
requirements of the application by allocating only
what is needed for all objects of a single type without
using the centrally managed heap. Exceptions raised
due to memory failures in a storage pool will not
adversely affect storage allocation from other storage
pools or from the heap and do not suffer from
fragmentation.

The following Ada restrictions prevent the application
from using any allocators:

pragma Restrictions(No_Allocators): prevents
the use of allocators.

pragma Restrictions(No_Local_Allocators):
prevents the use of allocators after the main
program has commenced.

pragma
Restrictions(No_Implicit_Heap_Allocations):
prevents the use of allocators that would use

the heap, but permits allocations from storage
pools.

pragma
Restrictions(No_Unchecked_Deallocations):
prevents allocated storage from being
returned and hence effectively enforces
storage pool memory approaches or a
completely static approach to access types.
Storage pools are not affected by this
restriction as explicit routines to free memory
for a storage pool can be created.

Ada.3.XYL.2 Description of vulnerability
For objects that are allocated from the heap without
the use of reference counting, the memory leak
vulnerability is possible in Ada. For objects that must
allocate from a storage pool, the vulnerability can be
present but is restricted to the single pool and which
makes it easier to detect by verification. For objects
that are objects of a controlled type that uses
referencing counting and that are not part of a cyclic
reference structure, the vulnerability does not exist.

Ada does not mandate the use of a garbage collector,
but Ada implementations are free to provide such
memory reclamation. For applications that use and
return memory on an implementation that provides
garbage collection, the issues associated with
garbage collection exist in Ada.

Ada.3.XYL.3 Avoiding the vulnerability or
mitigating its effects

• Use storage pools where possible.

• Use controlled types and reference counting
to implement explicit storage management
systems that cannot have storage leaks.

• Use a completely static model where all
storage is allocated from global memory and
explicitly managed under program control.

Ada.3.XYL.4 Implications for
standardization
Future Standardization of Ada should consider
implementing a language-provided reference counting
storage management mechanism for dynamic
objects.

Ada.3.XYL.5 Bibliography
None

Ada.3.TRJ Argument Passing to
Library Functions [TRJ]

Ada.3.TRJ.1 Terminology and features
Separate Compilation: Ada requires that calls on

214 Ada and the Software Vulnerabi l i t ies Project

Volume 31, Number 3, September 2010 Ada User Journal

libraries are checked for illegal situations as if the
called routine were declared locally.

Ada.3.TRJ.2 Description of vulnerability
The general vulnerability that parameters might have
values precluded by preconditions of the called
routine applies to Ada as well.

However, to the extent that the preclusion of values
can be expressed as part of the type system of Ada,
the preconditions are checked by the compiler
statically or dynamically and thus are no longer
vulnerabilities. For example, any range constraint on
values of a parameter can be expressed in Ada by
means of type or subtype declarations. Type
violations are detected at compile time, subtype
violations cause runtime exceptions.

Ada.3.TRJ.3 Avoiding the vulnerability or
mitigating its effects

• Exploit the type and subtype system of Ada to
express preconditions (and postconditions) on
the values of parameters.

• Document all other preconditions and ensure
by guidelines that either callers or callees are
responsible for checking the preconditions
(and postconditions). Wrapper subprograms
for that purpose are particularly advisable.

• Specify the response to invalid values.

Ada.3.TRJ.4 Implications for
standardization
Future standardization of Ada should consider
support for arbitrary pre- and postconditions.

Ada.3.TRJ.5 Bibliography
None

Ada.3.NYY Dynamically-linked
Code and Self-modifying Code
[NYY]
With the exception of unsafe programming, this
vulnerability is not applicable to Ada as Ada supports
neither dynamic linking nor self-modifying code. The
latter is possible only by exploiting other
vulnerabilities of the language in the most malicious
ways and even then it is still very difficult to achieve.

Ada.3.NSQ Library Signature [NSQ]

Ada.3.NSQ.1 Terminology and features
None

Ada.3.NSQ.2 Description of vulnerability
Ada provides mechanisms to explicitly interface to
modules written in other languages. Pragmas Import,
Export and Convention permit the name of the
external unit and the interfacing convention to be
specified.

Even with the use of pragma Import, pragma Export
and pragma Convention the vulnerabilities stated in
Section 6.NSQ are possible. Names and number of
parameters change under maintenance; calling
conventions change as compilers are updated or
replaced, and languages for which Ada does not
specify a calling convention may be used.

Ada.3.NSQ.3 Avoiding the vulnerability or
mitigating its effects
The mitigation mechanisms of Section 6.NSQ.5 are
applicable.

Ada.3.NSQ.4 Implications for
standardization
Ada standardization committees can work with other
programming language standardization committees to
define library interfaces that include more than a
program calling interface. In particular, mechanisms
to qualify and quantify ranges of behaviour, such as
pre-conditions, post-conditions and invariants, would
be helpful.

Ada.3.NSQ.5 Bibliography
None

Ada.3.HJW Unanticipated
Exceptions from Library Routines
[HJW]

Ada.3.HJW.1 Terminology and features
None

Ada.3.HJW.2 Description of vulnerability
Ada programs are capable of handling exceptions at
any level in the program, as long as any exception
naming and delivery mechanisms are compatible
between the Ada program and the library
components. In such cases the normal Ada exception
handling processes will apply, and either the calling
unit or some subprogram or task in its call chain will
catch the exception and take appropriate
programmed action, or the task or program will
terminate.

If the library components themselves are written in
Ada, then Ada's exception handling mechanisms let
all called units trap any exceptions that are generated
and return error conditions instead. If such exception
handling mechanisms are not put in place, then

A. Burns, J. L. Tokar (Eds.) 215

Ada User Journal Volume 31, Number 3, September 2010

exceptions can be unexpectedly delivered to an
caller.

If the interface between the Ada units and the library
routine being called does not adequately address the
issue of naming, generation and delivery of
exceptions across the interface, then the
vulnerabilities as expressed in Section 6.HJW apply.

Ada.3.HJW.3 Avoiding the vulnerability or
mitigating its effects

• Ensure that the interfaces with libraries
written in other languages are compatible in
the naming and generation of exceptions.

• Put appropriate exception handlers in all
routines that call library routines, including the
catch-all exception handler when others =>.

• Document any exceptions that may be raised
by any Ada units being used as library
routines.

Ada.3.HJW.4 Implications for
standardization
Ada standardization committees can work with other
programming language standardization committees to
define library interfaces that include more than a
program calling interface. In particular, mechanisms
to qualify and quantify ranges of behaviour, such as
pre-conditions, post-conditions and invariants, would
be helpful.

Ada.3.HJW.5 Bibliography
None

 217

Ada User Journal Volume 31, Number 3, September 2010

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Gem #82: Type-Based Security 1:
Handling Tainted Data
Yannick Moy, AdaCore
Date: 22 March 2010

Abstract: The strong type system in Ada makes it quite
convenient to check at compile time that certain security
properties are verified, for example that a tainted value is not
used where a trusted one is expected, or that data is properly
validated before being used in a sensitive context (think of
SQL injection attacks).
In this series of two Gems, we present short examples of how
this might be done. The first Gem discusses how to handle
tainted data.

Let’s get started…
The notions of tainted data and trusted data usually refer to
data coming from the user vs. data coming from the
application. Tainting is viral, in that any result of a
computation where one of the operands is tainted becomes
tainted too.
Various C/C++ static analyzers provide checkers for tainted
data that help find bugs where data from the user serves to
compute the size of an allocation, so that an attacker could use
this to trigger a buffer overflow leading to an Elevation of
Privilege (EoP) attack.
In Ada, the compiler can provide the guarantee that no such
bugs have been introduced by accident (although you can still
bypass the rule if you really want to, for example by using
Unchecked_Conversion or address clause overlays), provided
different types are used for tainted and trusted data, with no
run-time penalty. This can be done with many types of data,
including basic types like integers.
Let’s say tainted data is of an integer type. The basic idea is to
derive the trusted type from the tainted one, and to provide a
function Value to get to the raw data inside a trusted value,
like the following:

package Taint is
 type Trusted_Value is new Integer;
 function Value (V : Trusted_Value) return Integer;
 pragma Inline(Value);
end Taint;

Notice that the implementation of Value is just a type
conversion:

package body Taint is
 function Value (V : Trusted_Value) return Integer is
 begin
 return Integer (V);
 end Value;
end Taint;

Then, make sure the sensitive program uses trusted data:

with Taint; use Taint;
procedure Sensitive (X : Trusted_Value) is
begin
 null; -- Do something sensitive with value X
end Sensitive;

Let’s try to pass in data from the user to the sensitive program:

with Taint;
with Sensitive;
procedure Bad (Some_Value : Integer) is
begin
 Sensitive (Some_Value);
end Bad;

The compiler returns with a type error:

bad.adb:6:15: expected type "Trusted_Value" defined at
taint.ads:3
bad.adb:6:15: found type "Standard.Integer"

Now, this does not prevent us from doing useful computations
on trusted data as easily as on tainted data, including
initialization with literals, case statements, array indexing, etc.

with Taint; use Taint;
with Sensitive;
procedure Good is
 Max_Value : constant := 100;
 X : Trusted_Value := Max_Value;
begin
 X := X + 1; -- Perform any computations on X
 Sensitive (X);
end Good;

Because Trusted_Value is a type derived from the tainted type
(Integer), all operations allowed on tainted data are also
allowed on trusted data, but operations mixing them are not
allowed.
Be aware that nothing prevents the program itself from
converting between tainted data and trusted data freely, but
this requires inserting an explicit conversion, which can be
spotted during code reviews.
To completely prevent such unintended conversions (say, to
facilitate maintenance), the type used for trusted data must be
made private, so that only the package which defines it can
convert to and from it. With Trusted_Value being private, we
should also provide a corresponding function for each literal
which we used previously, as well as the operations that we’d
like to allow on trusted values (note that for efficiency all
operations could be inlined):

package Taint is
 type Trusted_Value is private;
 function Value (V : Trusted_Value) return Integer;
 function Trusted_1 return Trusted_Value;
 function Trusted_100 return Trusted_Value;

218 Ada Gems

Volume 31, Number 3, September 2010 Ada User Journal

 function "+" (V, W : Trusted_Value)
 return Trusted_Value;
private
 type Trusted_Value is new Integer;
end Taint;

The new implementation is as expected:

package body Taint is
 function Value (V : Trusted_Value) return Integer is
 begin
 return Integer (V);
 end Value;
 function Trusted_1 return Trusted_Value is
 begin
 return 1;
 end Trusted_1;
 function Trusted_100 return Trusted_Value is
 begin
 return 100;
 end Trusted_100;
 function "+" (V, W : Trusted_Value)
 return Trusted_Value is
 begin
 return Trusted_Value (Integer (V) + Integer (W));
 end "+";
end Taint;

Of course, the client now needs to be adapted to this new
interface:

with Taint; use Taint;
with Sensitive;
procedure Good is
 X : Trusted_Value := Trusted_100;
begin
 X := X + Trusted_1; -- Perform any computations on X
 Sensitive (X);
end Good;

That’s it! No errors can result in tainted data being
accidentally passed by the user where trusted data is expected,
and future maintainers of the code won’t be tempted to insert
conversions when the compiler complains.

Gem #83: Type-Based Security 2:
Validating the Input
Yannick Moy, AdaCore
Date: 5 April 2010

Abstract: Ada’s strong type system makes it quite convenient
to check at compilation time that certain security properties are
verified, for example that a tainted value is not used where a
trusted one is expected, or that data is properly validated
before being used in a sensitive context (think of SQL
injection attacks).
In the first Gem of this series of two, we discussed how to
handle tainted data. In this Gem, we explain how to validate
the input given to an SQL command.

Let’s get started…
Input validation consists of checking a set of properties on the
input which guarantee it is well-formed. This usually involves
excluding a set of ill-formed inputs (black-list) or matching the
input against an exhaustive set of well-formed patterns (white-
list).
Here, we consider the task of validating an input for inclusion
in an SQL command. This is a well-known defense against
SQL injection attacks, where an attacker passes in a specially
crafted string that is interpreted as a command rather than a
plain string when executing the initial SQL command.
The basic idea is to define a new type SQL_Input derived from
type String. Function Validate checks that the input is properly
validated and fails if not. Function Valid_String returns the
raw data inside a validated string, as follows:

package Inputs is
 type SQL_Input is new String;
 function Validate (Input : String) return SQL_Input;
 function Valid_String (Input : SQL_Input) return String;
end Inputs;

The implementation of Validate simply checks that the input
string does not contain a dangerous character before returning
it as an SQL_Input, while Valid_String is a simple type
conversion:

with Ada.Strings.Fixed; use Ada.Strings.Fixed;
with Ada.Strings.Maps; use Ada.Strings.Maps;
package body Inputs is
 Dangerous_Characters : constant Character_Set :=
 To_Set ("""*^';&><</");
 function Validate (Input : String) return SQL_Input is
 begin
 if Index (Input, Dangerous_Characters) /= 0 then
 raise Constraint_Error
 with "Invalid input " & Input & " for an SQL query ";
 else
 return SQL_Input (Input);
 end if;
 end Validate;
 function Valid_String (Input : SQL_Input) return String is
 begin
 return String (Input);
 end Valid_String;
end Inputs;

Now, this does not prevent future uses of such type
conversions in the program, whether malicious or unintended.
To guard against such possibilities, we must make type
SQL_Input private. To make sure we do not ourselves
inadvertently convert an input string into a valid one in the
implementation of package Inputs, we use this opportunity to
make SQL_Input a discriminated record parameterized by the
validation status.

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
package Inputs is
 type SQL_Input (<>) is private;
 function Validate (Input : String) return SQL_Input;
 function Valid_String (Input : SQL_Input) return String;
 function Is_Valid (Input : SQL_Input) return Boolean;
private
 type SQL_Input (Validated : Boolean) is

Ada Gems 219

Ada User Journal Volume 31, Number 3, September 2010

 record
 case Validated is
 when True =>
 Valid_Input : Unbounded_String;
 when False =>
 Raw_Input : Unbounded_String;
 end case;
 end record;
end Inputs;

Each time we access field Valid_Input, a discriminant check
will be performed to ensure that the operand of type
SQL_Input has been validated. Observe the use of
Unbounded_String for the type of the input component, which
is more convenient and flexible than using a constrained
string.
Note in the implementation of Validate, that instead of raising
an exception when the string cannot be validated, as in the first
implementation, here we create corresponding validated or
invalid input values based on the result of the check against
dangerous characters. Also, an Is_Valid function has been
added to allow clients to query validity of an SQL_Input
value.

with Ada.Strings.Fixed; use Ada.Strings.Fixed;
with Ada.Strings.Maps; use Ada.Strings.Maps;
package body Inputs is
 Dangerous_Characters : constant Character_Set :=
 To_Set ("""*^';&><</");
 function Validate (Input : String) return SQL_Input is
 Local_Input : constant Unbounded_String :=
To_Unbounded_String (Input);
 begin
 if Index (Input, Dangerous_Characters) /= 0 then
 return (Validated => False,
 Raw_Input => Local_Input);

 else
 return (Validated => True,
 Valid_Input => Local_Input);
 end if;
 end Validate;
 function Valid_String (Input : SQL_Input) return String is
 begin
 return To_String (Input.Valid_Input);
 end Valid_String;
 function Is_Valid (Input : SQL_Input) return Boolean is
 begin
 return Input.Validated;
 end Is_Valid;
end Inputs;

That’s it! As long as this interface is used, no errors can result
in improper input being interpreted as a command, while
ensuring that future maintainers of the code won’t
inadvertently be able to insert inappropriate conversions.
Of course, this minimal interface does not really provide
anything other than the validation of the input. Simply having
an Is_Valid function to tell whether a string is valid input data
would seem to give you much the same functionality.
However, you can now safely extend this package with
additional capabilities, such as transformations on valid SQL
inputs (for example, to optimize queries before sending them
to the database), or to resolve queries faster using a local
cache, and so forth. By using the private encapsulation, you
are guaranteed that no client package will tamper with the
validity of the SQL inputs you are manipulating.
Incidentally, the similar but distinct problem of input
sanitization, where possibly invalid data is transformed into
something that is known valid prior to use, can be handled in
the same way.

220

Volume 31, Number 3, September 2010 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Peter Dencker
Steinäckerstr. 25
D-76275 Ettlingen-Spessartt
Germany
Email: dencker@web.de
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Student Programming Contest “The Ada Way”
	Ada and the Software Vulnerabilities Project
	Ada Gems
	National Ada Organizations

