

258 Forthcoming Events

Volume 31, Number 4, December 2010 Ada User Journal

Invited Speakers
Eminent keynote speakers have been selected to open each of the three days of the core conference
programme. Confirmed speakers are:
• Peter Bernard Ladkin (University of Bielefeld CITEC and Causalis Limited), a recognised specialist in system

safety. Peter will address concerns about the international standard IEC 61508 and its perceived lack of
criteria for critical assessment of objective properties of software developed for safety-critical systems. He
will also recount progress on guidelines for German applications which go some way towards redressing this
perceived lack, in his talk entitled Future of Software Safety Standards.

• Jeff O’Leary (US Federal Aviation Administration (FAA)), has more than 18 years of experience in software
development, systems acquisition and deployment of large mission critical command and control systems. In
his talk Assuring Software Reliability While Using Web Services and Commercial Products he will present a
government software procurement official’s perspective on systems development and quality, and discuss
the implications, approach and unique issues of building reliable, trusted web services using commercial
products.

STOP PRESS: Pippa Moore (UK Civil Aviation Authority) is confirmed as the third keynote speaker

Tutorials
Attendees will have a varied choice of half-day and full-day tutorials that will be offered on Monday and Friday,
either side of the central days of the conference. Tutorials consist of courses given by recognised experts in their
respective fields, which deal with up-to-date technologies for the development of reliable software.

Social Programme
The social programme offers a congenial Reception on Tuesday evening and a Conference Banquet on
Wednesday evening. The reception will include a “whisky tasting”, providing the opportunity to sample a range
of specially selected single malt Scotch whiskies. The banquet will be held at the historic and scholarly Signet
Library on the Royal Mile in Edinburgh city centre.

Further Information
The conference website at http://www.ada-europe.org/conference2011 will provide full and up-
to-date details of the program, venue and social programme, accommodation and travel advice. For exhibiting
and sponsoring details please contact the Exhibition Chair, Joan Atkinson, at Joan.Atkinson@ncl.ac.uk.

Forthcoming Events 259

Ada User Journal Volume 31, Number 4, December 2010

15TH INTERNATIONAL REAL-TIME ADA WORKSHOP
(IRTAW-15)

September 14-16, 2011 – Liébana (Cantabria), Spain

http://www.artist-embedded.org/artist/IRTAW-15.html

CALL FOR PAPERS

Since the late Eighties the International Real-Time Ada

Workshop series has provide d a forum for identifying issues with
real-time system support in Ada and for exploring possible
approaches and solutions, and has attracted participation from key
members of the research, user, and implementer communities
worldwide. Recent IRTAW meetings have significantly
contributed to the Ada 2005 standard and to the proposals for Ada
2012, especially with respect to the tasking features, the real-time
and high-integrity systems annexes, and the standardization of the
Ravenscar profile.

In keeping with this tradition, and in light of the current
revision process that will lead to the new Ada 2012 standard, the
goals of IRTAW-15 will be to:

• review the current status of the Ada 2012 Issues that are related with the support of real-time systems;
• examine experiences in using Ada for the development of real-time systems and applications, especially – but not

exclusively – those using concrete implementation of the new Ada 2005 real-time features;
• report on or illustrate implementation approaches for the real-time features of Ada 2012;
• consider the added value of developing other real-time Ada profiles in addition to the Ravenscar profile;
• examine the implications to Ada of the growing use of multiprocessors in the development of real-time systems,

particularly with regard to predictability, robustness, and other extra-functional concerns;
• examine and develop paradigms for using Ada for real-time distributed systems, with special emphasis on

robustness as well as hard, flexible and application-defined scheduling;
• consider the definition of specific patterns and libraries for real-time systems development in Ada;
• identify how Ada relates to the certification of safety-critical and/or security-critical real-time systems;
• examine the status of the Real-Time Specification for Java and other languages for real-time systems development,

and consider user experience with current implementations and with issues of interoperability with Ada in embedded
real-time systems;

• consider the lessons learned from industrial experience with Ada and the Ravenscar Profile in actual real-time
projects;

• consider the language vulnerabilities of the Ravenscar and full language definitions.

Participation at IRTAW-15 is by invitation following the submission of a position paper addressing one or more of the
above topics or related real-time Ada issues. Alternatively, anyone wishing to receive an invitation, but for one reason or
another is unable to produce a position paper, may send in a one-page position statement indicating their interests. Priority
will, however, be given to those submitting papers.

Format
Position papers should not exceed ten pages in typical IEEE conference layout, excluding code inserts. All accepted

papers will appear, in their final form, in the Workshop Proceedings, which will be published as a special issue of Ada
Letters (ACM Press) (to be confirmed). Selected papers will also appear in the Ada User Journal.

Submission
Please submit position papers, in PDF format, to the Program Chair by e-mail: aldeam@unican.es

Important Dates

Receipt of Position Paper: 15 May 2011
Notification of Acceptance: 15 June 2011

Final Copy of Paper: 31 July 2011
Workshop Date: 14-16 September 2011

260

Volume 31, Number 4, December 2010 Ada User Journal

Introduction
"The Ada Way" is an annual student programming contest
organized by Ada-Europe, the international organization
that promotes the knowledge and use of Ada in European
academia, research and industry. A Steering Committee
formed by representatives of promoting institutions
oversees the organization of the contest. The Steering
Committee is currently comprised of: Dirk Craeynest and
Ahlan Marriott (Ada-Europe), Ricky Sward (ACM
SIGAda), Jamie Ayre and Matteo Bordin (AdaCore), Jean-
Pierre Fauche (Atego), Ian Broster (Rapita), Rod White
(MBDA).

This initiative aims to attract students and educators to Ada
in a form that is both fun and instructive. For this reason
the contest is a yearly programming competition among
student teams, whereby each team must have a university
affiliation and be endorsed by an educator. The ideal, but
not exclusive, context for participation is as part of an
organized teaching/course activity in which the theme and
requirements of the contest are endorsed and supported by
the educator. See the "Participation Requirements" section
for details.

The contest opens in September with the announcement of
the theme, and allows submissions until the end of April
the following year. See below for the 2010-11 edition
theme and the Submissions section for the submission
requirements.

Students and educators who may consider participating and
want more information on "The Ada Way" in general and
its 2010-11 edition in particular are invited to make contact
with the Steering Committee at board@ada-europe.org.

Project Theme for Academic Year
2010-11: Software simulator of a football
(soccer) match
The following specification intentionally leaves some room
for interpretation and extension: participants are
encouraged to use their intelligent creativity to firm up the
derivative specification they want to work against.

The software system shall support at least the
following features:
• Users must be able to play a single game; support for

playing a series of matches, with fixtures and
associated rules, is optional and can be omitted

• The chosen variant of the game shall be configurable
in all relevant parameters, allowing for any of 5-a-side,
7-a-side, and the canonical 11-a-side formats

• The members of the squads will feature individually
configurable characteristics for, at least, technical and
tactical skills, speed, physical parameters including
fatigue; some of those parameters shall be dynamic
and evolve with the match according to some
programmed logic

• Each squad shall have a (software) manager able to
configure the initial players line up, the initial tactic
and to issue commands for tactic changes and
substitutions, all subject to the rules of the game as in
the corresponding standard

• Each squad shall play according to the tactic
commanded by the manager; deviations shall be
permitted in so far as they result from programmable
characteristics of the players

• Each match shall have one independent (software)
referee and two to three subordinate (software)
assistants who control the game and ensure that the
applicable rules are followed; the behavior and the
performance of the referee and assistants need not
exhibit the physical limitations of actual humans.

The software system shall include at least:
• A software core, whether centralized or distributed,

implementing all of the logic of the simulation

• One read-only graphical panel (window) for the
display of the football field, the players, the ball, the
referee and assistants; as for the (simulated) human
figures on the pitch it shall be sufficient to represent
them as moving numbered dots on the display without
resorting to sophisticated graphical rendering, as in a
view of a subbuteo table seen from the top

• Two distinct read-write graphical panels (windows) for
the user to influence the otherwise independent action
of the team managers; the panel shall display the
current parameters for each player; the refresh rate of
such display shall be user-configurable

• One read-only graphical panel (window) for the
display of a user-configurable selection of statistics;
the refresh rate of such display shall be user-
configurable.

Student Programming Contest “The Ada Way” 261

Ada User Journal Volume 31, Number 4, December 2010

The software core shall be programmed in Ada. The
software design shall permit the principal algoritms to be
modified and replaced at will: in other words, the software
system shall be as modular, configurable and scalable as
possible. These qualities will contribute to the evaluation.

The graphical panels can be programmed in any language
that the participating teams will consider fit for purpose.
The graphical beauty of such panels will however be only a
minor factor in the evaluation. What shall matter instead is
that the interaction and the flow of data and control
between the software core and the graphical panels is
governed by good architectural principles and shows
sufficient accuracy and performance.

To be considered for evaluation, the system shall run out of
the box. The target platform may be freely chosen between
Linux, Windows and MacOS. Portability across them will
however be a competitive advantage.

Participation requirements
Participating teams shall be composed by a minimum of 2
and a maximum of 7 members. Each team shall have a
codename and a logo. Team work may be performed as
part of an organized teaching/course activity or as a
volunteer project. Either way, each team must be
recognised and endorsed by an academic educator.

Team members must be full-time students: they must
provide evidence of their status when submitting their
project. The contest is open to undergraduate and Master
students. Teams may but need not include a mix of
undergraduate and graduate students. Team members may
belong to distinct institutions.

Submission
The software system shall be delivered in source (as a
single compressed archive), accompanied by:

1. A software specification document (in PDF),
which describes the principal design decisions and
argues their quality, and presents the points of
extension and modification in the system; the
specification shall clearly single out all places at
which the team made arbitrary interpretation of
the specification or added or extended
requirements

2. A user manual describing the compilation and
installation procedures, the configuration options
and the allowable use of the system (in PDF)

3. The team codename, logo and composition: name,
email contact, evidence of enrollment as full-time
students (in a single PDF)

4. The written endorsement to the submission by an
academic or otherwise senior instructor in whose
class the project was launched (in PDF).

The submission shall be made as a single compressed
archive of all items listed above at the URL that will appear
on this page in due time.

All sources shall be released for the good of the general
public, to become reference material for educational and
promotional purposes. To this end the use of GPL (GNU
General Public License) is recommended, though we are
not prescriptive of a specific scheme, so long as the general
intent of free dissemination is preserved.

Submissions shall be accepted during the whole month of
April 2011, at the Ada Way website, http://www.ada-
europe.org/AdaWay.

Evaluation and Prize
The evaluation criteria will include:

• Coverage of requirements

• Syntatic, semantic, programmatic and design
correctness

• Clarity and readability of the code

• Quality of design

• Ingenuity and cuteness of the solution

• Time and space efficiency of the solution.

The evaluation will be performed by a team of
distinguished Ada experts comprised of: John Barnes (UK),
Tucker Taft (US), Joyce Tokar (US), Pascal Leroy (F), Ed
Schonberg (US).

The winning submission shall be announced on 31 May
2011 by a post on the site and by an email communication
to all participating teams.

The prize will consist of: a framed award; one free
registration and up to 3 reduced student fees for
representatives of the winning team to attend to the Ada-
Europe 2011 Conference; accommodation and airfare for
the team representatives (with ceiling at EUR 3,000); an
exhibition slot in the conference program; visibility in
electronic and printed media including:

• Ada User Journal: http://www.ada-europe.org/
journal.html

• Ada Letters: http://www.sigada.org/ada_letters/

For up-to-date information on Ada-Europe's student
programming contest, please go to the official web site of
“The Ada Way”, http://www.ada-europe.org/AdaWay,

Sponsors
This year's competition is sponsored by Ada-Europe,
AdaCore, and Atego.

262

Volume 31, Number 4, December 2010 Ada User Journal

Overview of the 14th International Real-Time Ada Workshop

7-9 October 2009
Portovenere, Italy

Contents *

Workshop Session Summaries

- “Multiprocessor Systems Session Summary”, A. Burns, and A. J. Wellings
- “Session Summary: Language and Distribution Issues”, T. Vardanega,

M. González-Harbour and L. M. Pinho
- “Conclusions of the 14th International Real-Time Ada Workshop”, S. Michell and

J. Real

“Progress Report from the 14th International Real-Time Ada Workshop”, A. Burns

Program Committee

Neil Audsley (Program Chair), Ben Brosgol, Alan Burns, Michael González Harbour, Stephen Michell,
Javier Miranda, Luís Miguel Pinho, Juan Antonio de la Puente, Jorge Real, José Ruiz, Tullio Vardanega
(Local Chair) and Andy Wellings.

Workshop Participants

José Ruiz, AdaCore, France
Edmond Schonberg, AdaCore, USA
Stephen Michell, Maurya Software, Canada
Rod White, MBDA, UK
Kristoffer Nyborg Gregertsen, Norwegian Institute of Science And Technology, Norway
Bjorn Andersson, Polytechnic Institute of Porto, Portugal
António Barros, Polytechnic Institute of Porto, Portugal
Luis Miguel Pinho, Polytechnic Institute of Porto, Portugal
Joyce Tokar, Pyrrhus Software, USA
Juan Antonio de la Puente, Technical University of Madrid, Spain
Juan Zamorano, Technical University of Madrid, Spain
Jorge Real, Technical University of Valencia, Spain
Sergio Saez, Technical University of Valencia, Spain
Mario Aldea Rivas, University of Cantabria, Spain
Michael González Harbour, University of Cantabria, Spain
Javier Gutierrez, University of Cantabria, Spain
Enrico Mezzetti, University of Padua, Italy
Marco Panunzio, University of Padua, Italy
Tullio Vardanega, University of Padua, Italy
Alan Burns, University of York, UK
Abdul Haseeb Malik, University of York, UK
Andy Wellings, University of York, UK
Carl Brandon, Vermont Technical College, USA

Sponsors

 * The Proceedings of the 14th International Real-Time Ada Workshop appeared in ACM Ada Letters, Volume XXX, Number 1, April 2010;

 session summaries reprinted with permission.

 263

Ada User Journal Volume 31, Number 4, December 2010

Multiprocessor Systems Session Summary
Chairs/ Rapporteurs: Alan Burns and Andy J. Wellings

Abstract
This report summarizes the discussion held at
Fourteenth InternationalWorkshop on Real-Time Ada
Issues (IRTAW 14) on how to provide better support
for multiprocessor systems in Ada.

1 Introduction
The whole first day of the workshop was dedicated to a
discussion of multiprocessor issues. The discussions were
partitioned into two sub sessions. The first was chaired by
Alan Burns and covered the following topics:

• scope of the issues to be addressed;

• current state of real-time multiprocessing scheduling;

• the development of a proposed model for Ada,
including both task allocation, protected object access
protocols and interrupt handling.

The second session was chaired by Andy Wellings and
addressed the following issues:

• Execution-Time Clocks and Timers

• Group Budgets

• Ravenscar Issues

• Non SMP Architectures

Ada 2005 is about to undergo further updates and any
proposals for changes have to be raised by the end of
October 2009. Consequently, although the overall goal of
the sessions was to consider a wide range of issues, it was
agreed that the focus should be on developing better
support for real-time scheduling on multiprocessor systems.

2 Scope of Issues
Early on in the discussions it was reaffirmed that
traditionally the unit of concurrency in Ada had always
been coarse grained and expressed via the task construct.
Although for high-performance computing there may be
some need to be able to express data-level parallelism, the
workshop focus was real-time and it was agreed that we
should only consider tasks.

It was further agreed that Ada 2005 currently does already
support multiprocessor systems and that nothing we
proposed should undermine the current specification,
unless it was inherently broken. In the absence of any
directives in the program, the behaviour of the program
should be that currently defined in the Ada Language
Reference Manual. The workshop took the Ada model to be
essentially the following:

• all tasks executing in a partition must be able to access
shared memory; and

• scheduling between tasks in a partition is global, hence
when a processor becomes available it must be given to
the highest priority runnable task.

For the above reason, the workshop decided to focus on
multiprocessor systems that have access to shared memory
and are symmetric, i.e. SMP architectures. There was some
discussion on whether the IO space of an SMP architecture
could be accessed from all processors. It was assumed that
in general all memory locations/device registers could be
assessed from all CPUs and that only interrupt may be
constrained to certain CPUs.

No assumptions were made about the speed of the
individual CPUs. Hence, hyperthreading architectures were
in scope.

3 State of the Art in Multiprocessor
Scheduling
Alan summarized the possibilities for real-time
multiprocessor scheduling. The focus was on where tasks
can run.

• Fully global partitioning – Any task can run on any of
the available CPUs. The scheduler decides order and
placement. Typically these require a global ready queue
and there are some concerns about whether this can be
implemented efficiently and whether it is scalable to
large systems.

• Task partitioned – Each task can only run on one CPU,
this being specified by the programmer. However, the
specified CPU could be changed at run-time.

• Job partitioned – When a task is released it can run on
any CPU, however preempted tasks return to the CPU
on which they were initially allocated. Hence, the tasks
can migrate only at release time.

It was agreed that the state of the art in multiprocessor
scheduling was not mature enough to focus on supporting
any particular approach. However, it was agreed that some
form of both global and partition scheduling is needed. The
reason for this is that better schedulability can be obtained
by fixing CPU intensive tasks to a single processor and
allowing the others to migrate. Also a task may need to be
on a particular processor to service a device’s interrupts.

4 The Proposed Model
During the next few hours, discussions were held on what
was an appropriate model for Ada. The model that emerged
can be summarized by the following points:

This paper previously appeared in ACM Ada Letters, Volume XXX,
Number 1, April 2010; reprinted with permission.

264 Mult iprocessors Systems Session Summary

Volume 31, Number 4, December 2010 Ada User Journal

• The introduction of the notion of an allocation
domain 1 . In the multiprocessor literature, allocation
domains are sometimes called clusters. The key point
about an allocation domain is that it defines a set of
CPUs on which tasks are globally scheduled.

• There is a default allocation domain (the System
domain) that is the set of all processors allocated to a
program. The assumption is that this is a fixed set of
processors that does not change during the execution of
the program. The default behaviour of an Ada program
if it does not specify anything is therefore global
scheduling of all tasks across all processors. Depending
on the run-time infrastructure, tasks may migrate
between processors only at release time (called job-
level allocation in Section 3) or within a release (called
fully global allocation in Section 3) 2.

• Allocation domains cannot overlap; that is no CPU can
be in more than one allocation domain. The reason for
this constraint is to ease schedulability analysis and to
support efficient global run queues and scaling of the
system to hundreds of processors.

• The model allows the programmer to constrain a task to
execute on only one CPU in an allocation domain. This
was seen as more useful than allowing a task to be fixed
to a subset of the CPUs in the allocation domain. Also
some current real-time scheduling practices require this.

The following issues were also discussed

• Failure semantics: Currently Ada has an implicit
semantics of crash failures. It was decided that although
the workshop would ideally like to support programs
executing on platforms with partial failures, this was too
big an issue to address within the current time
constraints and the absence of any position papers on
the topic.

• Migration of tasks across allocation domain: Should
a task be able to automatically migrate across allocation
domains? The main reasons for allowing this might be
load shedding during a transient overload, or
reconfiguration following a partial failure.The current
Ada mechanism for accessing protected objects from
multiple CPUs is not fully defined by the language.
Instead implementation advice is given. In this, the
assumption is that tasks will busy-wait (spin) at their
active priorities for the lock (although other
implementations will be allowed). This was not
changed by the Workshop. It was decided (mainly for
simplicity of feasibility analysis) that migration
between allocation domains should not be supported but

1 We use this term as being short for scheduling or dispatching allocation
domain.
2 During the workshop Björn Anderson considered the job partitioning
approach and showed, from a scheduling point of view, that the approach
could lead to very poor performance. The workshop therefore restricted its
consideration to the task and global partitioning approaches.

that the domain of a task could be changed by the
programmer at run time.

4.1 Protected Objects
There was some discussion on whether protected objects
should be given allocation domains and potentially fixed to
specific processors in those domains. The main requirement
for this was device access. However, it was agreed that in
the model under consideration all device registers were
accessible for all CPUs and that interrupts, had “affinities”
not protected objects.

The rules for setting the ceiling priorities were deemed by
the workshop not to be part of the language. However, for
completeness they were given.

• For fully global scheduling – setting the ceiling priority
of a protected object that is only accessed within a
single allocation domain can use the usual approach of
setting ceilings to max priority of the accessing tasks
plus 1 (note it must be plus 1 for the global scheduling
to work).

• Fixed tasks – Where tasks are fixed to a processor in the
same allocation domain, care must be taken and the
interaction between tasks and protected object must be
understood when setting the ceilings. It is probably
safest to force non-pre-emptive execution of protected
subprograms.

• If the underlying platform only supports job-level
scheduling then all protected objects shared across
processors should be accessed non-preemptively.

• For protected objects shared between allocation
domains, the protected objects must run non pre-
emptively. This is because there is no relationship
between the priorities in one allocation domain and
those in another.

• A lock is always required; using the priority model for
locking is not sustainable with multiprocessors (unless
it is possible to show that a protected object is only
accessed from one processor).

It was also noted that on multiprocessor systems:

• Nested protected object locks can cause deadlock (there
are some schemes in the literature to avoid this – for
example for each chain another lock must be acquired
first)

• Chain blocking is possible.

• In the absence of deadlock, blocking can be bounded.

4.2 Interrupt Handling
In the Ada model, interrupts are mapped to protected
procedure calls. Typically these have ceiling set to the
hardware priority of the interrupt. The workshop discussed
at length how best to ensure mutual exclusive access to
interrupt handling protected objects. Various models were
considered, including migrating a task to the site where the
interrupt is delivered and using the priority model, or
disabling/masking the interrupt. In the end it was agreed

A. Burns, A. J . Wel l ings 265

Ada User Journal Volume 31, Number 4, December 2010

that it is the run-time responsibility to ensure mutual
exclusion of the protected object in the presence of user
tasks calling the procedures.

The workshop did agree however that the ‘affinity’ of an
interrupt should be available to the program so that a
‘released’ task can be co-located on the same CPU.

5 Execution-Time Clocks and Timers
The workshop discussed whether there were any
multiprocessor issues with execution-time clocks and
timers.

It was agreed that:

• Measuring execution times presented no additional
problems on a multiprocessor as tasks can only be
active on one CPU at a time.

• Timers similarly should be no problem. The interrupt
from a timer may be constrained to be handled on one
processor, but this simply required that the associated
PO’s subprograms execute non-preemptively.

• Deciding what the values should be for the WCET on a
multiprocessor system is problematic, particularly if
processors run at different speeds. However, this is not
a language or a run-time issue. If was suggested that if
the programmer was enforcing execution times of a task
then its allocation domain should perhaps be set so that
the task runs at a uniform speed.

6 Group Budgets
Supporting group budgets in a multiprocessor system is
fraught with difficulties. Andy in his overview of the topic
gave three approaches:

1. Group budgets can be active on many processors and
processors may have variable speed.

2. Group budgets can be active on many processors but
processors must have the same speed.

3. Group budgets can only be active on one processor at a
time.

The first approach, the workshop felt, would be very
difficult to implement accurately without hardware support.

The second approach had two possible implementation
models. The first was that at every preemption and release
point: the run-time had to look at all running tasks and the
group budget for all these tasks. For each group budget, the
run-time divides the remaining budget by the number of
running tasks and sets timers for this time. When timers go
off, the budget has expired.

The second implementation model tries to reduce the run-
time cost of the above approach by considering only task
release points. When a timer expires in this case, the budget

needs to be checked and the timers reset if the remaining
budget is greater than 0.

Given the complexity of a multiprocessor group budget, the
workshop supported the single-processor group budget
approach. It was felt that the use cases for the
multiprocessor cases were not clear from a scheduling point
of view.

It was noted by the workshop, that the current Ada
Reference Manual supported implicitly multiprocessor
budgets and that this had to be changed.

7 Non SMP Architectures
Ada was designed to support multiprocessor applications
where there is memory shared between each processor.
Although the workshop had hoped to discuss non-SMP
architectures, it was decided that this was a big issue and
left to another day.

8 Ravenscar Issues
For the Ada Ravenscar Profile, the workshop believed that
the most restrictive model is probably the best:

• No creation of allocation domains.

• Each tasks fixed to a single processor (either by the
programmer, or by the system).

• Interrupts are fixed by the run-time to one of the
processors in the system allocation domain.

However, the workshop did feel that having multiple
allocation domains was not out of the question.

8.1 Non-multiprocessor Ravenscar issues
Three other non-multiprocessor Ravenscar issues were
discussed during the first day of the workshop. One
concerned the programming of ‘recovery’ after an
executing-time overrun or a deadline miss. It was felt that a
new profile, Ravenscar+, that was still significantly smaller
than the full language, was desirable. The definition of such
a profile will be discussed at the next workshop.

The second, minor, issue concerned the fact that although
relative delays are not permitted in Ravenscar, a relative
delay via a timing event was possible. The workshop felt
that this bug in the language definition should be fixed.

The final issue concerned timers which are currently
excluded from Ravenscar. A number of people felt that as
library-level timing events were permitted then timers
(restricted to one per task) should also be allowed. There
was some concern voiced as to the asynchronous nature of
timer events – Ravenscar has eliminated most such events.
A vote showed a majority in favour of a change to the
definition of Ravenscar to include timers.

266

Volume 31, Number 4, December 2010 Ada User Journal

Session Summary: Language and Distribution
Issues
Chairs: Tullio Vardanega and Michael González-Harbour
Rapporteur: Luís Miguel Pinho

1 Introduction
The goal of the session was to consider a set of additions
and changes to the language arising from the accepted
position papers, but still not consensual. The session lasted
a full day, with Tullio Vardanega and Michael González-
Harbour in charge, respectively, of the Morning and
Afternoon periods.

At the beginning of the day, Tullio started by presenting the
outline of the session, with an initial list of issues to discuss
but also noting that the agenda was to be regarded as fairly
open and that new or returning issues could easily be
integrated.

The anticipated topics (and proponents) for the session
were:

• Non-preemptive scheduling and the use of Ravenscar
and sporadic tasks with EDF, proposed by Rod White;

• Named memory (storage) pools, non-blocking delays
for hardware interfacing and parallel release of barriers,
proposed by Luke Wong, Stephen Michell and Brad
Moore;

• Generalising EDF support and user-defined clocks, by
Andy Wellings and Alan Burns;

• Execution-time accounting of interrupts handlers, a
topic with two position papers, one by Mario Aldea
Rivas and Michael González-Harbour, and another by
Kristoffer Nyborg Gregertsen and Amund Skavhaug;

• The Real-Time Transaction model, by Héctor Pérez
Tijero, J. Javier Gutiérrez and Michael González-
Harbour.

Other issues were also discussed during the session, either
because they were continued from the previous day, or
because they were considered to be related:

• Non-Uniform Memory Access architectures, by Andy
Wellings, Abdul H. Malik, Neil Audsley and Alan
Burns;

• The Ravenscar profile and Multiprocessors, by José
Ruiz;

• The Real-Time Framework, by Jorge Real and Alfons
Crespo.

The session was highly dynamic, with several rounds of
discussion. In order to increase the readability of this

report, the successive rounds of discussion on individual
topics are collated in a single presentation, instead of
actually following the chronological flow of the session.

2 Discussion
2.1 Non-preemptive scheduling
This topic started with a presentation by Rod White,
proposing extensions to the Ada real-time features, mainly
motivated by experience on practical industrial use of
(some of the) new capabilities of Ada 2005 [1]. Rod’s
objectives were also to make the new features easy to use,
without disrupting the current ones, introducing more
transparency, as complexity or obscurity would impair
industrial adoption.

In particular, Rod introduced three topics for discussion
[1]:

1. A more complete and transparent model for the control
of dispatching points in non-preemptive scheduling;

2. The use of the Ravenscar profile in conjunction with
EDF dispatching;

3. The treatment of sporadic tasks under EDF dispatching.

In the first topic, Rod noted that the current mechanism for
tasks to yield the processor in the non-preemptive model is
to perform a non-blocking delay, such as a delay into the
past (delay until Clock_First), which, although giving a
correct execution, does not provide a clear understanding.

Furthermore, when a task relinquishes the processor, it is
placed at the tail of the ready queue for its priority.
Therefore, this command cannot be executed inside a
protected subprogram. Rod then proposed a new package
for handling non-preemptive scheduling:

package Ada.Dispatching.Non_Preemptive is
procedure Yield_To_Higher;
procedure Yield; -- Bounded error if executed within a
 protected operation
end Ada.Dispatching.Non_Preemptive;

Yield would replace the non-blocking delay as the
mechanism for relinquishing the processor.
Yield_To_Higher would put the task at the head of its
priority queue, therefore only allowing higher priority tasks
to execute. This would allow it to be performed inside
protected subprograms.

Alan Burns then noted that Yield could have a different
behaviour inside a protected subprogram, deferring the

This paper previously appeared in ACM Ada Letters, Volume XXX,
Number 1, April 2010; reprinted with permission.

T. Vardanega, M. González-Harbour, L. M. Pinho 267

Ada User Journal Volume 31, Number 4, December 2010

Yield operation to when the task left the protected object,
instead of giving a bounded error.

In addition to the new package, Rod also proposed a new
pragma (Cooperate_On_Priority_Change), that would allow
the runtime to implicitly perform Yield_To_Higher
operations anytime a task’s priority was changed (such
when entering or leaving a protected object). This would
permit a more precise control on the responsiveness of the
system.

In a second round of discussion, the workshop came back
to this issue, and a proposal was made to include Yield and
Yield_To_Higher in the language. The actual wording
would be worked offline, but the general model was
considered OK. A straw vote was taken, and the proposal
was accepted with 19 votes in favour and 3 abstentions.

As for the Cooperate_On_Priority_Change pragma, there
was a consensus that this was a new scheduling model and
that as such it needed further thoughts. The proposal was
thus withdrawn.

2.2 Ravenscar and EDF
On a different topic, Rod noted that EDF allows higher
levels of processor utilisation, thus proposed its use within
the Ravenscar profile, by introducing a second parameter to
the pragma Profile:

pragma Profile (Ravenscar, EDF_Across_Priorities);

that would default to current behaviour
(FIFO_Within_Priorities), if not specified. This would also
allow for other scheduling strategies (such as non-
preemptive) to be used together with Ravenscar.

It was not clear to Rod if this would be a variant of
Ravenscar, or a new profile. Creating a new profile could
be heavy for a simple change in the dispatching policy.
Furthermore, Ravenscar is well established in industry – a
new name would not be regarded as highly. Therefore,
Rod’s proposal was to maintain the Ravenscar brand,
although probably with some “EDF tag”.

At this point Tullio Vardanega asked whether the proposal
also considered priority bands or only a model where all
priorities had the same dispatching policy. Rod confirmed
that his idea was the latter. Michael González-Harbour then
noted that by allowing the use of priority bands would
permit to mix critical and non critical tasks in the same
system, thus with higher levels of flexibility. Nevertheless,
Rod answered that for simplicity they would not implement
priority bands in their Ravenscar kernel. Rod put forward
that the Ravenscar kernel is used in non-critical parts of the
system, for efficiency reasons, where EDF could be
usefully employed.

In a second round of discussion, Joyce Tokar presented a
model of “overriding” the dispatching policy in Ravenscar.
Nevertheless, it was noted that all of the mechanisms which
are used for EDF control would need to be analysed
considering the Ravenscar restrictions (e.g. changing
deadlines). The group considered that further work was

required to think this proposal through and recommended
this to be a subject for the next workshop.

2.3 Sporadic tasks under EDF
In another topic, also presented by Rod, Ada’s
implementation of EDF dispatching assumes that tasks are
periodic, and are scheduled using the clock. However, in
embedded systems there are cases where periodic events in
nature are released by an external event, and not by the
language clock. And, for this case, there is no equivalent to
the procedure Delay_Until_And_Set_Deadline, thus it is not
possible to set the deadline of sporadic tasks when they are
suspended.

Solutions to this problem are possible with the current
features of the language, based on protected objects
(examples of this are presented in [1]). However, a more
efficient solution, and equivalent to the periodic
Delay_Until_And_Set_Deadline mechanism, would be an
extension to the Suspension_Object, through a child
package:

 package Ada.Synchronous_Task_Control.EDF is
 procedure Suspend_Until_True_And_Set_Deadline (
 S : in out Suspension_Object;
 D : in Ada.Real_Time.Time_Span);
 end Ada.Synchronous_Task_Control.EDF;

At this point, Andy Wellings raised the issue that user
defined clocks (which would be discussed later on) could
be a potential solution to this problem. However, it was not
clear how that would be accomplished.

A vote was taken later in the session, and the proposal
received 8 votes in favor and 12 abstentions. In the
Workshop’s tradition, abstentions are taken as "informed
non-opposition", thus this result was a sufficient basis to
promote an AI on the topic. Alan then accepted to prepare
an AI to support the proposal.

Another issue was raised with the recurrent use of the
“Suspend/Delay until true and set something”, since in the
previous day the same model was proposed for setting
processor affinities. This was regarded as not scalable, as
the number of attributes to set when suspending is
increased. Although no conclusion was reached on the
issue, it was considered something that should be further
analyzed.

2.4 Non-blocking delays for hardware interfacing
After Rod’s presentation, the session moved on to Stephen
Michell, who presented for consideration in the session
[2,3]:

• Non-blocking delays for hardware interfacing

• Named memory (storage) pools

• Parallel release of barriers

In the first item, Steve presented the problem when a task
needs to access hardware, but requires it to be ready after
some “settle” time. The solution for the task to suspend
itself is not possible inside a protected object (potentially

268 Session Summary: Language and Distr ibut ion Issues

Volume 31, Number 4, December 2010 Ada User Journal

suspending operations are not permitted), but if the task
spin-waits it consumes CPU time undesirably.

The proposal was then to allow for some kind of delay,
inside a protected subprogram. A consequence would be
that objects would have to implement actual locks, which is
not a problem in multiprocessor systems, where priority-
based locks are no longer effective.

Alan Burns then put forward that the same effect could be
currently obtained by setting a timer, and requeuing to a
private entry. Upon expiration of the timer, the task would
be released and could access the hardware. After some
consideration, this was accepted as an already existent
solution, and the proposal was withdrawn.

2.5 Named memory (storage) pools
Steve also presented a proposal to give the programmer
more control on the specification of storage pools. In order
to be able to specify and interface with different types of
memory, a new API was proposed, where the memory
model became similar to direct file I/O [3].

The proposed API would allow to create, read and write
memory, but with a more precise control of the
characteristics of the underlying memory type (for instance
read only). The dynamic addition of memory to the pool
was also analysed but considered more complicated to
implement.

Andy Wellings also presented his view that many times it is
necessary to be able to specify the actual address of storage
pools. An attribute ‘Address could simply solve the
problem. Steve noted that it would not be enough, as
special memory may require explicit reads or writes to be
performed.

Andy also added that in Non Uniform Memory Access
(NUMA) architectures the same problem exists, since it is
necessary to separate and identify the heap of each
processor. There was some discussion on this issue, but no
conclusion was drawn.

2.6 Parallel release of barriers
Another proposal by Steve was to allow the parallel release
of several tasks in the same event, which would be useful in
a multiprocessor environment. Currently, Ada defines that
only the task at the head of an entry queue is released,
which means that the release of multiple tasks must be
sequential. Also, suspension objects only allow one
suspended task.

Steve then proposed to add parallel release capabilities to
protected entries and suspension objects. The first would be
provided by a pragma Barrier_Entry which would identify
an entry as a barrier. Furthermore, to allow for parallel
execution inside the entry, it would not be allowed to
change the protected state.

The latter would be supported by adding a new type
Group_Suspension_Object to Ada.Synchronous_Control,
which would allow one to specify a maximum count of
suspended tasks. This solution would be simpler, but less
flexible. Protected objects are general programming

constructs, therefore a solution for protected entries must
be much more generic, thus complex.

A note was then made that whatever the solution, it should
not break if implemented in a sequential environment (e.g.
uniprocessor systems). The resulting behaviour would need
to be the same.

Ed Schonberg presented his view that, in order to avoid
confusion with regular entries, this mechanism would need
its own syntax. This was generally agreed upon by
participants, but two different perspectives were put
forward: either to add a barrier condition to functions, or to
create “entry functions”. The advantage of the last is that
the specification of the protected object would clearly
indicate the parallel release. The existence of a barrier
condition in the function would only be known within the
protected body.

Later in the session, and after some work during the break,
Steve proposed an API for the suspension barrier and a
model for “entry functions”.

For the suspension barrier, the new proposal was not to mix
barriers with suspension objects, and thus implement a
child package instead:

package Ada.Synchronous_Control.Suspension_Group is
 type Group_Suspension_Object_Status is record
 Last_Released : Boolean;
 Count : Positive);
 type Group_Suspension_Object(Count : Positive) is
limited private;
 -- count of 1 => unlimited blocking count
 -- and explicit release
 -- suspended tasks can always be released by
 -- call to Set_True
 procedure Set_True (
 S : in out Group_Suspension_Object);
 procedure Set_False (
 S : in out Group_Suspension_Object);
 procedure Current_Status(
 S : Group_Suspension_Object)
 return Group_Suspension_Object_Status;
 procedure Suspend_Until_True(
 S : in out Group_Suspension_Object;
 Unique : out Boolean);
end Ada.Synchronous_Control.Suspension_Group;

It was generally agreed that this could be accepted, but it
was anyhow decided to defer the issue to the next day for
further iteration.

Concerning the protected object model, the proposal was to
support special “entry functions”, where the last released
task would need to set the barrier back to false. This means
that this special task would need to change the state of the
protected object, which could impact the other tasks
executing in parallel inside the entry. The solution was to
define a pragma Modifiable_State, which permits to specify
what state of the object could be changed by the last
released task. All other tasks would not be able to read it.

T. Vardanega, M. González-Harbour, L. M. Pinho 269

Ada User Journal Volume 31, Number 4, December 2010

protected type PT is
 ...
 entry function Barrier(A, B, C : Integer) return Integer;
 pragma Barrier_Entry(Entry_Name => Barrier,
 Count => N);
 procedure Release;
private
 State : Local_State;
 Go_Now : Boolean;
 Total_Count : Integer;
 pragma Modifiable_State(Total_Count);
end PT;
protected body PT is
 entry function Barrier(A, B, C : Integer) return Integer
 increments Total_Count when Go_Now is
 begin
 . . .
 if PT'Last_Released then
 Total_Count := 0;
 end if;
 end Barrier;
 procedure Release is
 begin
 if Total_Count = N then
 Go_Now := True;
 or else Now then
 Go_Now := True;
 end if;
 end release;
end PT;

Ed Schonberg noted the drawback of the model where one
particular task (the last released one) has a special role, as it
must be explicitly handled by the programmer inside the
entry code. Some proposals were then made to include this
special code inside the when clause of the entry, or it to be
handled by the releasing task (by requeuing and waiting for
the last task to leave the entry function).

A question was asked whether the ARG would accept a
change of syntax, as this was the first proposal within the
workshop with that requirement. It was considered possible
by the members of the ARG present in the meeting, as this
was a localized change.

The general feeling was that, although interesting, the
model of how to control the resetting of the barrier after all
task were released was still not yet mature enough.

The workshop came back to this issue in a third round of
discussion, with a set of different proposals made by Andy
Wellings. In the first proposal, and considering that the
guard is not re-evaluated after each task release (tasks are
all released simultaneously), it was up to the releaser to
wait to clean the object state:

entry Go is
begin
 Data_Available := True;
 if Parallel’Count > 0 then requeue Clean_Up2;
 else requeue Clean_Up1;
 end if;

end;
entry function Parallel when Data_Available and
 Parallel’Count = 10 is
begin
 return Data;
end;
entry Clean_Up1 when Parallel’Count > 0 is
begin
 requeue Clean_Up2;
end;
entry Clean_Up2 when Parallel’Count = 0 is
begin
end;

A problem existed however, if a new task calls function
parallel while the other task is executing inside. That
needed further consideration.

The second approach was to add a special entry’completion
procedure to be executed after all tasks are released:

entry Go is
begin
 Data_Available := True;
end;
entry function Parallel when Data_Available and
 Parallel’Count = 10 is
begin
 return Data;
end;
when Parallel’Completion procedure Clean_Up is
begin
end;

The third proposal was to create a special finalize block
that could be executed only once and that could modify the
state of the object:

entry Go is
begin
 Data_Available := True;
end;
entry function Parallel when Data_Available and
 Parallel’Count = 10 is
begin
 return Data;
finally
 -- can update state
 -- only executed once
end;

No decision was eventually made, and the issue was
deferred.

2.7 User-defined clocks
The workshop then addressed a proposal [4] from Andy
Wellings and Alan Burns to revisit user-defined clocks,
something that was considered for Ada 95 but that was not
included in the language. Examples exist of a variety of
different clocks in embedded systems (for example, a GPS
clock), and Ada currently allows for implementations to
define other clocks and make them available to

270 Session Summary: Language and Distr ibut ion Issues

Volume 31, Number 4, December 2010 Ada User Journal

applications. Nevertheless, the proposal was to define a
root type for time, where all time types derive.

The proposal was updated to reflect not only the advances
in the Ada language (particularly in the Object-Oriented
model), but also to simplify the model, where applications
do not manage the delay queues, which are left to the
runtime. There were still some open issues, such as the
necessity for user-defined clocks to call back the runtime,
for example to handle time discontinuities (jumping
forward or back to the past), or the relationship between
user-defined and calendar time.

There was some discussion in this issue, but no decision
was taken at the workshop.

2.8 Generalising EDF support
The next proposal, also by Andy Wellings and Alan Burns
[5], was to integrate into Ada the support to user-defined
scheduling, leveraging on the fact that the Preemption
Level Control Protocol introduced in Ada 2005 to support
EDF can be used with several scheduling algorithms.

For this, a new mechanism would be required that permits
to specify a task attribute on which to base dispatching
decisions and to also control dispatching within a priority
level. It would also be necessary to define new dispatching
points, which would include the point where the value of a
task’s dispatching attribute was changed. Andy also
presented some open issues, namely if other scheduling
schemes other than EDF are useful, and if there are other
resource sharing protocols that could be supported by Ada
to allow for a wide range of scheduling schemes. There was
some discussion on this issue, but no decision was taken in
the workshop.

2.9 Non-Uniform Memory Access architectures
Andy Wellings presented the issue of supporting in Ada the
NUMA (Non-Uniform Memory Access) multi-processor
architectures. The accompanying paper [6] argues that the
programming model should allow for a more visible
mapping of the architecture at the programming level. Ada
abstracts programmers away from the low-level
architecture of the hardware, which although appropriate
for SMP, does not permit to use NUMA architectures
predictably and efficiently. There were a few comments on
this issue, but it was not discussed further in the Workshop.

2.10 Execution-time accounting of interrupts
handlers
Two independent proposals were submitted to the
workshop on the issue of execution-time accounting of
interrupts handlers. Both proposals noted that the current
model is implementation defined but the usual approach is
to charge the execution time of interrupts into the currently
running task, which does not provide for accurate
accounting. This is even more important as the introduction
of timing events causes programmers to shift code from
tasks to this low overhead mechanism, which is accounted
as an interrupt.

However, the two approaches differed in the way the actual
accounting was done.

In the proposal by Mario Aldea Rivas and Michael
González-Harbour [7], the interrupts execution-time is
accounted in a global “conceptual” task. An API is also
provided for applications to monitor the time executed in
interrupts. Therefore, applications not only have a more
accurate measure of tasks’ execution time but can also
measure the time spent in interrupts.

The proposal by Kristoffer Gregertsen and Amund
Skavhaug [8] defines a “pseudo” task for each interrupt
priority, with execution time accounting done per priority.

After some discussion, consensus was formed that the
separation of execution-time accounting was necessary,
although that it would be more appropriate that accounting
was performed per Interrupt_ID.

In a later round of discussion, an issue was raised that a
simple solution would be to introduce an implementation
advice that tasks should not be charged for the execution
time of interrupts. Then, this would become a runtime
quality issue. The proposal to introduce such
implementation advice was approved with 16 votes in
favour and 3 abstentions.

A second vote was made to decide if the workshop would
propose a model, in case the implementation supported
execution-time monitoring of interrupts. There were 9 votes
in favour, 1 opposed and 11 abstentions. It was then
decided that both Mario Aldea and Kristoffer Gregertsen
would work on an API to be analyzed on the following day.

2.11 Ravenscar and multiprocessor issues
One of the issues which had been closed in the previous
day was the integration of multiprocessor in the Ravenscar
profile, and whether the profile should specify one
particular multiprocessor scheduling model. There was a
proposal by José Ruiz [9] for Ravenscar to determine that
tasks would be statically allocated to processors, with a
Ravenscar partition being a single scheduling domain as
sanctioned in the previous session.

Doubts were raised however, particularly regarding
whether task migration would be allowed, and whether the
scheduling would be local to each processor or global to the
domain. In particular, task migration under user control
would allow more flexibility and efficiency. However,
concerns were voiced that task migration could impact the
certification of Ravenscar-based systems.

As for local versus global scheduling, it was argued that
Ravenscar would need a local scheduling approach, with
one ready queue per processor. This would impact the
definition of scheduling domains agreed earlier, since in
that definition, scheduling was global within the same
domain.

Another issue with global scheduling and task migration
was the impact on the locks of protected objects. In this
model, all locks would have to be actual, and no longer
priority based locks. The static allocation and local

T. Vardanega, M. González-Harbour, L. M. Pinho 271

Ada User Journal Volume 31, Number 4, December 2010

scheduling approach would allow for more efficient
implementations.

From the discussion, a list of possible models was
introduced:

1. Tasks’ fixed allocation, affinities specified by the user

2. Tasks’ fixed allocation, affinities specified by the user,
and allowing task migration

3. Tasks’ fixed allocation, affinities specified by the
runtime

4. Global scheduling, no fixed allocation

It was also considered that the model could be a mix, with
some tasks fixed, while other were scheduled globally.

During the discussion, there were doubts as to whether all
models were feasible, and whether the Ravenscar profile
should specify a model at all. Multiprocessor scheduling is
still fairly open area, with new models and algorithms
every day, so maybe Ravenscar should be silent and afford
implementations and programmers more flexibility.
However, by doing that, different implementations could
choose different models, something that the Ada standard
tries to avoid.

Considering all of this, consensus was reached that the
profile should not specify a model, but the workshop would
recommend that Ravenscar is implemented together with
option 1 above (tasks’ fixed allocation, affinities specified
by the user). This could be done through an implementation
advice in the standard.

2.12 The Real-Time Framework
The Real-Time Framework had been proposed in the
previous workshop, in 2008, and intended to provide a
library of real-time utilities which could be used by
application developers. In this workshop, Jorge Real
proposed the integration of support for mode changes into
the framework [10].

The proposal was based on the original implementation
made available by Andy Wellings in 2008, which was also
updated to work with a new version of the Ada compiler (at
the time of the original framework, some Ada 2005 features
were still not available in compilers). During the workshop
Jorge also made available the updated framework code.

In the proposal, mode management is based on a
synchronized interface, thus integrating the model with the
object-oriented model of Ada. During the presentation of
the mode manager, it was noted that in the implemented
model, the mode manager depends on a user defined type
(List_Of_Modes) and hence it is not independent from the
application. It was then considered that a different model
should be analysed.

Afterwards the discussion went on to consider whether the
real-time utilities framework should be pursued for
standardisation (for instance through a secondary standard)
to make it more visible. A proposal was put forward to
make it available in some form of collaborative platform,

and announcing it to the Ada community as a work in
progress.

It was decided to continue the work in an informal
collaboration, and anyone interested in working on it to
contact Jorge Real.

2.13 The Real-Time Transaction Model
The presentation of the real-time transaction model [11]
was made by J. Javier Gutiérrez. The goal is to integrate
distributed real-time transactions within the Distributed
Systems Annex of Ada, allowing for a separation of
concerns between the scheduling of both processing nodes
and network, and the application code.

There was some discussion on whether an attempt should
be made to standardize a real-time distributed model (or
make it available as a technical report), such that all
implementations would follow the same guidelines. The
question was raised whether the integration of distribution
and real-time would be useful and worth the effort. The
issue has been around for several workshops, and it was
generally agreed that this should be further pursued.

The discussion then went into a specific model for the
Ravenscar profile. This particular model is not compatible
with the profile, but it would be possible to make a
compatible version. It was thus decided that a Ravenscar
version should be proposed, with the intention to put
forward a technical report. If the model was then accepted,
it would be built also for full Ada.

3 Conclusions
The Language and Distribution session was mainly devoted
to the discussion of the changes and additions to the
language. An action list was permanently being built and
updated reflecting the outcomes of the discussion, but for
most of the issues actual decisions were deferred to the last,
concluding, session of the workshop [12], where the final
definition of the AIs to produce was completed.

References
[1] Rod White. Providing Additional Real-Time

Capability and Flexibility for Ada 2005. ACM Ada
Letters, Volume XXX, Number 1, April 2010.

[2] Stephen Michell, Luke Wong, Brad Moore. Realtime
Paradigms Needed Post Ada 2005. ACM Ada Letters,
Volume XXX, Number 1, April 2010.

[3] Luke Wong, Stephen Michell, Brad Moore. Named
Memory Pool for Ada. ACM Ada Letters, Volume
XXX, Number 1, April 2010.

[4] Andy Wellings, Alan Burns. User-Defined Clocks. Is
it the right time now? ACM Ada Letters, Volume
XXX, Number 1, April 2010.

[5] Andy Wellings, Alan Burns. Generalizing the EDF
Scheduling Support in Ada 2005. ACM Ada Letters,
Volume XXX, Number 1, April 2010.

[6] Andy Wellings, Abdul H. Malik, Neil Audsley, Alan
Burns. Ada and cc-NUMA Architectures. What can

272 Session Summary: Language and Distr ibut ion Issues

Volume 31, Number 4, December 2010 Ada User Journal

be achieved with Ada 2005? ACM Ada Letters,
Volume XXX, Number 1, April 2010.

[7] Mario Aldea Rivas, Michael González Harbour.
Execution time monitoring and interrupt handlers.
ACM Ada Letters, Volume XXX, Number 1, April
2010.

[8] Kristoffer Nyborg Gregertsen, Amund Skavhaug.
Execution-time control for interrupt handling. ACM
Ada Letters, Volume XXX, Number 1, April 2010.

[9] José Ruiz. Towards a Ravenscar Extension for
Multiprocessor Systems. ACM Ada Letters, Volume
XXX, Number 1, April 2010.

[10] Jorge Real and Alfons Crespo. Incorporating
Operating Modes to an Ada Real-Time Framework.
ACM Ada Letters, Volume XXX, Number 1, April
2010.

[11] Héctor Pérez Tijero, J. Javier Gutiérrez, Michael
González Harbour. Support for a real-time
transactional model in distributed Ada. ACM Ada
Letters, Volume XXX, Number 1, April 2010.

[12] Stephen Michell, Jorge Real. Conclusions of the 14th
International Real-Time Ada Workshop. ACM Ada
Letters, Volume XXX, Number 1, April 2010.

 273

Ada User Journal Volume 31, Number 4, December 2010

Conclusions of the 14th International
Real-Time Ada Workshop
Chair: Stephen Michell
Rapporteur: Jorge Real

1 Introduction
The last session of IRTAW-14 was devoted to concluding
on the results of the workshop, with the goal of prioritizing
and selecting Ada Issues (AIs) to be produced and sent to
the ISO/IEC JTC1/SC22/WG9 Ada Rapporteur Group
(ARG). It allowed time for closing some open issues.

In this report, Sections 2 to 4 summarize the final
discussion around some open issues. Section 5 reflects the
list of AIs to be produced by the workshop. The plan for
next meeting is considered in Section 6. There is a final
consideration about concurrency vulnerabilities in Section
7. Finally, Section 8 concludes with the closing of IRTAW-
14.

2 Barrier suspension objects
Stephen Michell summarized the proposal for Ada to
include barrier suspension objects to allow parallel release
of multiple readers upon a certain condition, expressed by
means of a barrier [4]. This proposal is targeted to
multiprocessor architectures and the goal is to allow true
parallelism when multiple readers wait for data produced
by a single writer task. In such cases, the maximum
efficiency is achieved by broadcasting the data in parallel
to all the interested reader tasks. This behaviour cannot be
accomplished by means of an entry, as presently specified
in Ada, due to the fact that only the first waiting task would
be released upon barrier opening and then the barrier
condition would need to be reevaluated every time a single
task is served. The proposal can be supported in POSIX
and in most present hardware implementations of a barrier.

It was noted that the definition of barrier suspension objects
should be accompanied by pragma Preelaborate. The
workshop did not see any need for requiring barrier
suspension objects to be declared at library level. No
implications were identified with respect to pragmas
Intrinsic and Inline. There was unanimous support for the
proposal.

3 Named storage pools
Named storage pools were proposed in [5]. They are
motivated by the convenience to use storage pools
specifically tied to one of the different kinds of memory
available, since memory maps include different memory
technologies in many systems (RAM, ROM, FLASH, etc.).

The workshop however did not find enough motivation for
pushing for this change to the language: the proposal is not

mature enough and there were opinions in the sense that
there may be ways to achieve a similar functionality in
current Ada. The proposal was therefore withdrawn. It was
agreed, however, that there should be syntax added to Ada
to permit the specification of an address for a declared
storage pool.

4 Execution time control for interrupt
handling
Kristoffer Gregertsen gave a summary of the proposal to
introduce mechanisms for monitoring the execution time
spent in servicing interrupts. This proposal was based on
[3] and [1]. The proposed API (i) defines one execution-
time clock per Interrupt ID, (ii) allows the mechanism to
obtain the time spent in the handling of each interrupt, and
(iii) also allows association of timers to those clocks.

Use of Ada.Interrupts.Interrupt_ID was preferred to using
Task ID to identify execution time of the different interrupt
handlers. A new package Ada.Execution Time.Interrupts
contains the following subprogram:

function Clock (I: Ada.Interrupts.Interrupt_ID)
 return CPU_Time;

The function returns the execution time spent in handling
the identified interrupt, or returns CPU Time First if the
facility is not supported by the implementation.

The proposal was supported by 17 votes for, no vote
against, and 3 abstentions. Hence an AI will be produced
on this topic. Note that being a child package of
Ada.Execution_Time, its implementation would be optional.

The workshop then considered a natural extension to this
facility: timers for CPU time spent in interrupt handling.
This feature would need the inclusion of interrupt clocks
first, since timers rely on clocks. Although there was no
objection to the interface described in [3], there was no
general support for pushing this feature forward to
standardization (4 votes for, 2 against and 13 abstentions).
The workshop however agreed to suggest to ARG the
inclusion of an implementation advice stating that this
service, if implemented, should stick to the proposed
interface:

with Ada.Interrupts;
package Ada.Execution_Time.Timers.Interrupts is
 type Timer (I: Ada.Interrupts.Interrupt_ID)
 is new Ada.Execution_Time.Timers.Timer(
 Ada.Task_Identification.Null_Task_Id’Access)
 with private;

This paper previously appeared in ACM Ada Letters, Volume XXX,
Number 1, April 2010; reprinted with permission

274 Conclusions of the 14t h Internat ional Real-Time Ada Workshop

Volume 31, Number 4, December 2010 Ada User Journal

private
. . .
end Ada.Execution_Time.Timers.Interrupts;

5 Wrapping up
Alan Burns prepared the list of topics about which the
workshop agreed to produce new AIs. The list was
reviewed and the different items were assigned to those in
charge of writing them. The final list considers:

1. Addition of affinity support packages, interrupt
affinities and considerations about spin locking — A.
Burns and A. Wellings.

2. Change definition of group budgets to include
processor, with default to processor 1 — A. Burns and
A. Wellings.

3. Addition of an implementation advice to allow for
multiprocessor execution of Ravenscar programs — J.
Ruiz.

4. Addition of timers to the Ravenscar profile (a
maximum of one timer per task) — T. Vardanega. 1

5. Add the definition of barrier suspension objects — S.
Michell.

6. Implementation advice on interrupt monitoring — M.
Gonz´alez and M. Aldea.

7. Addition of operations yield and yield to higher
priority in non-preemptive scheduling — A. Burns.

8. Deadlines in synchronous task control — A. Burns.

9. Addition of interrupt execution-time accounting clocks
— M. González.

6 Conclusion and next IRTAW
Deadlines were set for finalization of session reports,
production of final versions of the position papers, and
writing of the AIs to be sent to ARG. Alan Burns will
centralize the AIs and propose them in the next ARG
meeting.

There was general agreement about the need of future
editions of IRTAW. The next edition will be organized by
Michael González in the Santander area, in Spain. The
workshop is scheduled for April or May 2011, hence we
leave some 18 months between editions 14 and 15. Mario
Aldea will head the role of Program Committee Chair.

1 Tullio will check that the Ravenscar model is not broken with this
addition and get feedback from implementors — perhaps add a restriction
(e.g. Max_Nr_Of_Timers_Per_Task and set it to 1 for Ravenscar).

7 Consideration of concurrency
vulnerabilities
The ISO/IEC JTC 1/SC 22/WG 23 (WG23, for short) is
preparing a technical report about Programming Language
Vulnerabilities. One of the items in the workshop agenda
was to note the absence of concurrency-related
vulnerabilities in the technical report being prepared, as
reflected in the position paper [2].

The workshop decided to submit this position paper to
WG23, after receiving comments and suggestions for
improvement from participants at the workshop. Miguel
Pinho noted that multiprocessor execution may be yet
another source of vulnerabilities worth considering.

8 Closing
There being no other pending issues, Stephen Michell
closed the session and the workshop. The workshop
thanked specially the presence of first-time participants and
encouraged them to continue to do so. All thanked Tullio
Vardanega for the splendid local arrangement.

References
[1] M. Aldea and Michael González-Harbour. Execution

time monitoring and interrupt handlers. Ada Letters,
ACM Ada Letters, Volume XXX, Number 1, April
2010.

[2] A. Burns and A. Wellings. Language vulnerabilities -
let’s not forget concurrency. Ada Letters, ACM Ada
Letters, Volume XXX, Number 1, April 2010.

[3] K. Gregertsen and A. Skavhaug. Execution-time control
for interrupt handling. Ada Letters, ACM Ada Letters,
Volume XXX, Number 1, April 2010.

[4] S. Michell, L. Wong, and B. Moore. Real-Time
paradigms needed post Ada 2005. Ada Letters, ACM
Ada Letters, Volume XXX, Number 1, April 2010.

[5] L. Wong, S. Michell, and B. Moore. Named memory
pool for Ada. Ada Letters, ACM Ada Letters, Volume
XXX, Number 1, April 2010.

 275

Ada User Journal Volume 31, Number 4, December 2010

Progress Report from the 14th International Real-
Time Ada Workshop – IRTAW14
Alan Burns
Department of Computer Science, University of York, UK

Abstract
This paper reviews the outcomes of the latest
workshop in the IRTAW series. Specifically it looks at
the impact the workshop is having on the current
effort to define the 2012 amendment to Ada.
Keywords: real-time, Ada.

1 Introduction
The 14th International Real-Time Ada workshop took place
in Portovenere, Italy during 7-9 October 2009. A total of
fourteen papers were accepted for the workshop. But in
keeping with the tradition of the IRTAW series these
papers were not formally presented but were made
available to the 24 delegates before the event – they formed
the background to the discussions that took place. The
papers themselves have been published by Ada Letters in
Volume XXX, Number 1 (April 2010); a list of the papers
is included in Appendix A.

The workshop was organised into a number of discussion
sessions:

• Multiprocessor Systems,

• Language and Distribution Issues, and

• Conclusions and Recommendations.

Each of these sessions produced a summary report that
were also published in the above referenced volume of Ada
Letters 4.

The objectives of the workshop include a wish to consider
all relevant language issues to do with the support of real-
time applications. This includes experiences in
implementing and using current language features, and the
exploration of possible new features. Some of these
features are ‘in the long term’, but others are relevant to the
current effort to define the 2012 amendment to Ada. In the
remainder of this paper, we focus on this latter objective,
and review the progress that is currently been made to
influence the development of Ada 2012.

2 Recommendations from IRTAW14
The discussions during the workshop produced the
following recommendations for consideration by the Ada
2012 revision process:

4 Editor’s note: the session summaries are also available in this issue of the
Ada User Journal.

1. To support multiprocessor-based systems the notion of
an allocation domain was developed. The key point
about an allocation domain is that it defines a set of
CPUs on which tasks are globally scheduled. There is a
default allocation domain (the System domain) that is
the set of all processors allocated to a program. The
assumption is that this is a fixed set of processors that
does not change during the execution of the program.
The default behaviour of an Ada program if it does not
specify anything is therefore global scheduling of all
tasks across all processors. But tasks with an allocation
domain can be assigned a specific CPU to support fully
partitioned allocations.

2. A static Ravenscar specific solution to the allocation
problem for multicore targets was defined for inclusion
in the profile’s definition.

3. Group Timers should be confined to just a single
processor – to manage parallel use of budgets was
deemed too problematic.

4. Where possible the time spent in interrupt handlers
should not be added to a task’s execution time clock.
Ideally the time spent handling interrupts should be
available via a ‘special’ interrupt clock.

5. For non-preemtpive scheduling it is useful to
distinguish between yielding to strictly higher priority
tasks, and yielding to equal or higher priority. The use
of an explicit yield procedure would also help the
readability of programs (the current alternative is to
make calls of delay 0.0, or delay until <some time in the
past>).

6. For EDF scheduled sporadic tasks, where a task’s
release is controlled by a synchronous task control
object, there is a need to be able to suspend with one
deadline but to have another deadline when next
released. This is equivalent to the delay until and set
deadline primitive for controlling EDF scheduled
periodic tasks. A ‘Suspend_Until_
True_And_Set_Deadline’ procedure was proposed.

7. For parallel hardware, where data-oriented parallelism
is being employed, a thread barrier is often supported.
This allows a set of threads to be blocked until the final
thread (of the set) arrives. All threads are then released
(with one of the threads being identified as having a
special status so that is can manipulate the barrier). A
task-based primitive for Ada is proposed.

276 Progress Report f rom the 14 t h Internat ional Real-Time Ada Workshop

Volume 31, Number 4, December 2010 Ada User Journal

8. Another addition to the Ravenscar profile was to allow
Timers (perhaps a maximum of one per task) to be
included in the profile.

Of course there were a number of other issues and topics
discussed that may lead to changes to Ada in the future.
Among this list are: Ravenscar and EDF scheduling, named
memory pools, barriers functions in protected objects, user-
defined clocks, support for NUMA architectures, the real-
time framework (set of utilities) and further support for
distributed applications. These, and other, topics will be
considered at the next IRTAW event (in September 2011).

3 AIs in the Ada 2012 process
The definition and maintenance of the Ada language is the
responsibility of the ARG, a working committee of WG9,
itself an ISO/IEC committee. The ARG manages its work
by placing all possible language changes into an AI (Ada
Issue). For Ada 2012 there are over 200 such AIs. From
the above list of topics that the workshop defined as being
of relevance to Ada 2012 the following AIs were developed
(the number in brackets refers to the above numbered list):

AI-166: Yield for non-preemptive dispatching (5).

AI-167: Managing affinities for programs executing on
multiprocessors (1).

AI-168: Extended suspension objects (6).

AI-169: Defining group budgets for multiprocessor
platforms (3).

AI-170: Monitoring the time spent in Interrupt Handlers,
and providing a clock to read these values (4).

AI-171: Pragma CPU and Ravenscar Profile (1,2).

AI-172: Extension to Ravenscar Profile (8).

AI-174: Implement Task barriers in Ada (7).

AI-210: Correct Timing_Events metric.

AI-211: No_Relative_Delay should not allow relative
timing events.

The latter two very minor issues were clear errors in the
2005 definition of Ada and must therefore be corrected.

Other AIs that have relevance to the real-time community,
though not arising from this workshop are:

AI-30: Requeue on synchronized interfaces (came from
last IRTAW, allows for more general patterns to be
developed),

AI-94: Timing_Events should not require deadlock (a
common programming idiom is to set a handler while
executing a handler – obviously this should not lead to
deadlock!),

AI-117: Memory barriers and Volatile objects (a class of
non-locking algorithm for parallel hardware require that
assignments to shared variables are not reordered – Ada’s
definition of Volatile needs to ensure this),

AI-119: Package Calendar, Daylight Savings Time, and
UTC_Offset,

AI-202: Task_Termination and Exceptions raised during
finalization.

All of these AI can be obtained from the Ada Conformity
Assessment Authority home page: www.ada-auth.org/.

4 Progress of the real-time AIs
All but one of the ‘workshop’ AIs is currently making
progress through the ARG procedures. The one that has
been dropped is AI-172. It was felt that the Ravenscar
profile was a significant ‘brand’ for Ada, and that changes
to it should not be made likely. Further consideration of the
increase in run-time complexity was needed. This is likely
to be taken up at the next IRTAW.

Of the other AIs, many have already been ‘concluded’ and
have either been progressed through the pipeline to WG9,
or are awaiting the final word-smiting. The ones currently
been worked on are those concerned with multiprocessor
scheduling (AI-167 and AI-171). These represent the more
significant changes and hence it is not surprising that they
still require further work. However, it is still the view of
ARG that these should make it through to Ada 2012.

The process by which the ARG transforms ideas presented
to it by the IRTAW inevitable leads to many necessary
changes. Often the final language feature is quite different
from what was discussed at the workshop. Nevertheless,
the essential need always remains at the heart of the
discussions and the final amendment does indeed address
the issue raised.

To give an example of this process, consider AI-166. The
initial recommendation from the workshop is that the
following package be added to the Standard:

package Ada.Dispatching.Non_Preemptive is
 procedure Yield_To_Higher;

 procedure Yield; - - Bounded error if
 - - executed within a protected operation
end Ada.Dispatching.Non_Preemptive;

After seven iteration of this definition the final language
change recommendation is to add to package Ada.
Dispatching the following procedure:

procedure Yield; -- Bounded error if
- - executed within a protected operation

and to include the following new package:

package Ada.Dispatching.Non_Preemptive is
 pragma Preelaborate(Non_Preemptive);
 procedure Yield_To_Higher;
 procedure Yield_To_Same_Or_Higher
 renames Yield;
end Ada.Dispatching.Non_Preemptive;

Hence the functionality is split between two packages and
the Yield procedure becomes available even if preemptive
dispatching is being used.

A. Burns 277

Ada User Journal Volume 31, Number 4, December 2010

To give an example of a complete set of language changes
concerned with just a single well-focused issue, consider
AI-168. The required wording change from this AI is:

Add after D.10(5):

The following language-defined library package exists:

with Ada.Real_Time;
package Ada.Synchronous_Task_Control.EDF is

 procedure
 Suspend_Until_True_And_Set_Deadline
 (S : in out Suspension_Object;
 TS : in Ada.Real_Time.Time_Span);

end Ada.Synchronous_Task_Control.EDF;
Add after D.10(10):

The procedure Suspend_Until_True_And_Set_Deadline
blocks the calling task until the state of the object S is True;
at that point the task becomes ready with a deadline of
Ada.Real_Time.Clock + TS, and the state of the object
becomes False. Suspend_Until_True_And_Set_Deadline is
a potentially blocking operation.

Add after D.10(11):

NOTE: More complex schemes, such as setting the
deadline relative to when Set_True is called, can be
programmed using a protected object.

The other major changes to the workshop’s proposals
concern the support for affinities for programs running on
multicore or multiprocessor platforms. Here the
terminology has changed (from allocation domains to
dispatching domains) and the functionality has been
reduced (no longer will each domain be able to specify
different scheduling rules). But again the essential
requirements identified by the workshop are being met.

5 Conclusions
Just as the previous thirteen workshops in the IRTAW
series have influenced the continuing development of Ada,
the 14th event proved to again generate ideas that keep Ada
at the forefront of languages in terms of its support for real-
time programming. Many aspects of embedded and real-
time systems are having to face up to the challenges that
new parallel hardware is generating. There is much to be
done in this area, but Ada has made a start by introducing
the notion of affinity into the set of abstractions that it
makes available to programmers.

It is most likely that future workshops will continue to
focus on this crucial area. But it is also important that
implementations become available that allow these new
features to be used. Only though experience will the new

abstractions be tested and evaluated as to whether they are
fit for purpose. If they are, we can continue to progress the
Ada language, if they are not then alternatives must be
developed. In both of these endeavours the IRTAW series
will have a role.

The 15th IRTAW will take place in Spain in mid September
2011. A call for papers will be available shortly; readers of
the Ada User Journal are encouraged to consider
participating.

Appendix A
The following papers were accepted for the Workshop and
are now available via Volume XXX, Number 1 (April
2010) of Ada Letters:

[1] Supporting Execution on Multiprocessor Platforms -
A. Burns and A.J. Wellings.

[2] Language Vulnerabilities - Let's not forget
Concurrency - A. Burns and A.J. Wellings.

[3] Execution-time control for interrupt handling -
Kristoffer Nyborg Gregertsen and Amund Skavhaug.

[4] Temporal Isolation with the Ravenscar Profile and Ada
2005 - Enrico Mezzetti, Marco Panunzio and Tullio
Vardanega

[5] Named Memory Pool for Ada - Luke Wong, Stephen
Michell and Brad Moore.

[6] Realtime Paradigms Needed Post Ada 2005 – Stephen
Michell, Luke Wong and Brad Moore.

[7] Execution time monitoring and interrupt handlers,
Position Statement – Mario Aldea Rivas and Michael
Gonzales Harbour.

[8] Incorporating Operating Modes to an Ada Real-Time
Framework - Jorge Real and Alfons Crespo.

[9] Towards a Ravenscar Extension for Multi-Processor
Systems - Jose F. Ruiz.

[10] Support for a real-time transactional model in
distributed Ada - Hector Perez Tijero, Javier Gutierrez
and Michael G. Harbour.

[11] User-Defined Clocks. Is it the right time now? - A.J.
Wellings and A. Burns.

[12] Generalizing the EDF Scheduling Support in Ada 2005
- A.J. Wellings and A. Burns.

[13] Ada and CC-NUMA Architectures: What can be
achieved with Ada 2005? - A.J. Wellings, A.H. Malik,
N.C. Audsley and A. Burns.

[14] Providing Additional Real-Time Capability and
Flexibility for Ada 2005 – Rod White.

278

Volume 31, Number 4, December 2010 Ada User Journal

Ada and the Software Vulnerabilities Project:
the SPARK Annex
Alan Burns, FREng (ed.)
Department of Computer Science, University of York, York YO1 5DD UK; Tel: +44 (0)1904 432779;
email: burns@cs.york.ac.uk

Joyce L. Tokar, PhD (ed.)
Pyrrhus Software, PO Box 1352, Phoenix, AZ, 85001-1352, USA.; Tel: +1 602373 0713;
email: tokar@pyrrhusoft.com

Stephen Baird, John Barnes, Rod Chapman, Gary Dismukes, Michael González-Harbour, Stephen Michell,
Brad Moore, Luís Miguel Pinho, Erhard Ploedereder, Jorge Real, J.P. Rosen, Ed Schonberg, S. Tucker Taft,
T. Vardanega

Abstract
In a previous article [1] we published the Ada [2]
Annex to the Technical Report (TR) on software
vulnerabilities [3], developed by ISO/IEC JTC 1/SC
22/WG 23. This article completes this work, with the
annex concerning SPARK [4] *.
Keywords: software vulnerabilities, software
vulnerability, Ada, SPARK.

1 Introduction
Software vulnerabilities are defined as a property of a
system security, requirements, design, implementation, or
operation that could be accidentally triggered or
intentionally exploited and result in a security failure [5].
Work on software vulnerabilities and how they enable
software applications to be infiltrated and corrupted
continues to be of interest world. Working Group 23 (WG
23) of the Programming Languages Subcommittee (SC 22)
of the International Organization of Standards (ISO) has
recently completed a Technical Report that identifies and
enumerates a collection of software vulnerabilities in
existing programming languages [3]. Annexes to this
document are being developed to identify if the
vulnerabilities defined in the TR exist in various
programming languages.

A workshop was conducted in parallel with the 14th
International Conference on Reliable Software
Technologies – Ada-Europe 2009 to initiate the
development of content of an Annex to the Technical
Report that documents its applicability to the Ada and
SPARK programming languages. The results of this
workshop were published in [6]. Another workshop was
conducted in parallel with the 2009 SIGAda conference.

* For completeness, the article republishes and adapts the Introduction
section of [1].

Work continued on this document over the course of 2009
and was completed in a short workshop at the 15th
International Conference on Reliable Software
Technologies – Ada-Europe 2010. A previous article [1]
published the final draft copy of the Ada Annex to the WG
23 TR submitted to WG 23 for inclusion in the TR. This
article completes the work, providing the SPARK annex
developed by Altran-Praxis.

Note, within the WG 23 TR each vulnerability is assigned a
unique identifier such as RIP for the Inheritance
vulnerability. Since the WG 23 TR was under development
during the work on this Annex and there is an expectation
that more vulnerabilities will be added to the TR, the
sections in the Ada and SPARK annexes include their
corresponding unique identifier in the section heading.

References
[1] Burns, A., Tokar, J. L. (Eds.), Ada and the Software

Vulnerabilities Project, in Ada User Journal, Vol. 31,
number 3, September 2010, pp. 191-215.

[2] Taft, S. Tucker, Duff, R. A., Brukardt, R. L.,
Ploedereder, E., Leroy, P, Ada Reference Manual,
LNCS 4348, Springer, Heidelberg, 2006.

[3] ISO/IEC JTC 1/SC 22 N 4522, ISO/IEC TR 24772,
Information Technology — Programming Languages
— Guidance to Avoiding Vulnerabilities in
Programming Languages through Language Selection
and Use, 7 November 2009.

[4] SPARK Language Definition: “SPARK95: The
SPADE Ada Kernel (Including RavenSPARK)”
Available at www.altran-praxis.com.

[5] NIST Special Publication 268, “Source Code Security
Analysis Tool Functional Specification Version 1.0,”
May 2007.

[6] Proceedings of the Software Vulnerabilities
Workshop of Ada-Europe 2009, in Ada User Journal,
Volume 30, Number 3, September 2009, pp. 174-192.

A. Burns, J. L. Tokar (Eds.) 279

Ada User Journal Volume 31, Number 4, December 2010

Annex SPARK – Final Draft

SPARK.Specific information for
vulnerabilities

SPARK.1 Identification of standards
and associated documentation
See Ada.1 *, plus the references below. In the body of this
annex, the following documents are referenced using the
short abbreviation that introduces each document,
optionally followed by a specific section number. For
example “[SLRM 5.2]” refers to section 5.2 of the SPARK
Language Definition.

[SLRM] SPARK Language Definition: “SPARK95: The
SPADE Ada Kernel (Including RavenSPARK)” Latest
version always available from www.altran-praxis.com.

[SB] “High Integrity Software: The SPARK Approach to
Safety and Security.” John Barnes. Addison-Wesley, 2003.
ISBN 0-321-13616-0.

[IFA] “Information-Flow and Data-Flow Analysis of while-
Programs.” Bernard Carré and Jean-Francois Bergeretti,
ACM Transactions on Programming Languages and
Systems (TOPLAS) Vol. 7 No. 1, January 1985. pp 37-61.

[LSP] “A behavioral notion of subtyping.” Barbara Liskov
and Jeannette Wing. ACM Transactions on Programming
Languages and Systems (TOPLAS), Volume 16, Issue 6
(November 1994), pp. 1811 - 1841.

SPARK.2 General terminology and
concepts
The SPARK language is a contractualized subset of Ada,
specifically designed for high-assurance systems. SPARK
is designed to be amenable to various forms of static
analysis that prevent or mitigate the vulnerabilities
described in this TR.

This section introduces concepts and terminology which
are specific to SPARK and/or relate to the use of static
analysis tools.

Soundness
This concept relates to the absence of false-negative results
from a static analysis tool. A false negative is when a tool
is posed the question “Does this program exhibit
vulnerability X?” but incorrectly responds “no.” Such a
tool is said to be unsound for vulnerability X. A sound tool
effectively finds all the vulnerabilities of a particular class,
whereas an unsound tool only finds some of them.

* Editor’s note: The Ada Annex is published in the September 2010 issue
of the Ada User Journal (Vol. 31, n. 3).

The provision of soundness in static analysis is
problematic, mainly owing to the presence of unspecified
and undefined features in programming languages. Claims
of soundness made by tool vendors should be carefully
evaluated to verify that they are reasonable for a particular
language, compilers and target machines. Soundness claims
are always underpinned by assumptions (for example,
regarding the reliability of memory, the correctness of
compiled code and so on) that should also be validated by
users for their appropriateness.

Static analysis techniques can also be sound in theory –
where the mathematical model for the language semantics
and analysis techniques have been formally stated, proved,
and reviewed – but unsound in practice owing to defects
in the implementation of analysis tools. Again, users should
seek evidence to support any soundness claim made by
language designers and tool vendors. A language which is
unsound in theory can never be sound in practice.

The single overriding design goal of SPARK is the
provision of a static analysis framework which is sound in
theory, and as sound in practice as is reasonably possible.

In the subsections below, we say that SPARK prevents a
vulnerability if supported by a form of static analysis which
is sound in theory. Otherwise, we say that SPARK
mitigates a particular vulnerability.

SPARK Processor
We define a “SPARK Processor” to be a tool that
implements the various forms of static analysis required by
the SPARK language definition. Without a SPARK
Processor, a program cannot reasonably be claimed to be
SPARK at all, much in the same way as a compiler checks
the static semantic rules of a standard programming
language.

In SPARK, certain forms of analysis are said to be
mandatory – they are required to be implemented and
programs must pass these checks to be valid SPARK.
Examples of mandatory analyses are the enforcement of the
SPARK language subset, static semantic analysis (e.g.
enhanced type checking) and information flow analysis
[IFA].

Some analyses are said to be optional – a user may choose
to enable these additional analyses at their discretion. The
most notable example of an optional analysis in SPARK is
the generation of verification conditions and their proof
using a theorem proving tool. Optional analyses may
provide greater depth of analysis, protection from
additional vulnerabilities, and so on, at the cost of greater
analysis time and effort.

Failure modes for static analysis
Unlike a language compiler, a user can always choose not
to, or might just forget to run a static analysis tool.
Therefore, there are two modes of failure that apply to all
vulnerabilities:

280 Ada and the Software Vulnerabi l i t ies Project : the SPARK Annex

Volume 31, Number 4, December 2010 Ada User Journal

1. The user fails to apply the appropriate static
analysis tool to their code.

2. The user fails to review or mis-interprets the
output of static analysis.

SPARK.3.BRS Obscure Language
Features [BRS]
SPARK mitigates this vulnerability.

SPARK.3.BRS.1 Terminology and
features
As in Ada.3.BRS.1.

SPARK.3.BRS.2 Description of
vulnerability
As in Ada.3.BRS.2.

SPARK.3.BRS.3 Avoiding the
vulnerability or mitigating its effects
The design of the SPARK subset avoids many language
features that might be said to be “obscure” or “hard to
understand”, such as controlled types, unrestricted tasking,
anonymous access types and so on.

SPARK goes further, though, in aiming for a completely
unambiguous semantics, removing all erroneous and
implementation-dependent features from the language. This
means that a SPARK program should have a single
meaning to programmers, reviewers, maintainers and all
compilers.

SPARK also bans the aliasing, overloading, and
redeclaration of names, so that one entity only ever has one
name and one name can denote at most one entity, further
reducing the risk of mis-understanding or mis-interpretation
of a program by a person, compiler or other tools.

SPARK.3.BRS.4 Implications for
standardization
None.

SPARK.3.BRS.5 Bibliography
None.

SPARK.3.BQF Unspecified
Behaviour [BQF]
SPARK prevents this vulnerability.

SPARK.3.BQF.1 Terminology and
features
As in Ada.3.BQF.1.

SPARK.3.BQF.2 Description of
vulnerability
As in Ada.3.BQF.2.

SPARK.3.BQF.3 Avoiding the
vulnerability or mitigating its effects
SPARK is designed to eliminate all unspecified language
features and bounded errors, either by subsetting to make
the offending language feature illegal in SPARK, or by
ensuring that the language has neutral semantics with
regard to an unspecified behaviour.

“Neutral semantics” means that the program has identical
meaning regardless of the choice made by a compiler for a
particular unspecified language feature.

For example:

• Unspecified behaviour as a result of parameter-
passing mechanism is avoided through subsetting
(no access types) and analysis to make sure that
formal and global parameters do not overlap and
create a potential for aliasing [SLRM 6.4].

• Dependence on evaluation order is prevented

through analysis so that all expressions in SPARK
are free of side-effects and potential run-time
errors. Therefore, any evaluation order is allowed
and the result of the evaluation is the same in all
cases [SLRM 6.1].

• Bounded error as a result of uninitialized variables

is prevented by application of static information
flow analysis [IFA].

SPARK.3.BQF.4 Implications for
standardization
None.

SPARK.3.BQF.5 Bibliography
None.

SPARK.3.EWF Undefined
Behaviour [EWF]
SPARK prevents this vulnerability.

SPARK.3.EWF.1 Terminology and
features
As in Ada.3.EWF.1.

SPARK.3.EWF.2 Description of
vulnerability
As in Ada.3.EWF.2.

A. Burns, J. L. Tokar (Eds.) 281

Ada User Journal Volume 31, Number 4, December 2010

SPARK.3.EWF.3 Avoiding the
vulnerability or mitigating its effects
SPARK prevents all erroneous behaviour, either through
subsetting or static analysis [SB 1.3].

SPARK.3.EWF.4 Implications for
standardization
None.

SPARK.3.EWF.5 Bibliography
None.

SPARK.3.FAB Implementation-
Defined Behaviour [FAB]
SPARK mitigates this vulnerability.

SPARK.3.FAB.1 Terminology and features
As in Ada.3.FAB.1.

SPARK.3.FAB.2 Description of
vulnerability
As in Ada.3.FAB.2.

SPARK.3.FAB.3 Avoiding the vulnerability
or mitigating its effects
SPARK allows a number of implementation-defined
features as in Ada. These include:

• The range of predefined integer types.
• The range and precision of predefined floating-

point types.
• The range of System.Any_Priority and its

subtypes.
• The value of constants such as System.Max_Int,

System.Min_Int and so on.
• The selection of T’Base for a user-defined integer

or floating-point type T.
• The rounding mode of floating-point types.

In the first four cases, static analysis tools can be
configured to “know” the appropriate values [SB 9.6]. Care
must be taken to ensure that these values are correct for the
intended implementation. In the fifth case, SPARK defines
a contract to indicate the choice of base-type, which can be
checked by a pragma Assert. In the final case, additional
static analysis of numerical precision must be performed by
the user to ensure the correctness of floating-point
algorithms.

SPARK.3.FAB.4 Implications for
standardization
None.

SPARK.3.FAB.5 Bibliography
None.

SPARK.3.MEM Deprecated
Language Features [MEM]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.MEM.

SPARK.3.NMP Pre-Processor
Directives [NMP]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.NMP.

SPARK.3.NAI Choice of Clear
Names [NAI]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.NAI.

SPARK.3.AJN Choice of Filenames
and other External Identifiers [AJN]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.AJN.

SPARK.3.XYR Unused Variable
[XYR]
SPARK mitigates this vulnerability.

SPARK.3.XYR.1 Terminology and
features
As in Ada.3.XYR.1.

SPARK.3.XYR.2 Description of
vulnerability
As in Ada.3.XYR.2.

SPARK.3.XYR.3 Avoiding the vulnerability
or mitigating its effects
As in Ada.3.XYR.3. Also, SPARK is designed to permit
sound static analysis of the following cases [IFA]:

• Variables which are declared but not used at all.
• Variables which are assigned to, but the resulting

value is not used in any way that affects an output
of the enclosing subprogram. This is called an
“ineffective assignment” in SPARK.

SPARK.3.XYR.4 Implications for
standardization
None.

282 Ada and the Software Vulnerabi l i t ies Project : the SPARK Annex

Volume 31, Number 4, December 2010 Ada User Journal

SPARK.3.XYR.5 Bibliography
None.

SPARK.3.YOW Identifier Name
Reuse [YOW]
SPARK prevents this vulnerability.

SPARK.3.YOW.1 Terminology and
features
As in Ada.3.YOW.1.

SPARK.3.YOW.2 Description of
vulnerability
As in Ada.3.YOW.2.

SPARK.3.YOW.3 Avoiding the
vulnerability or mitigating its effects
This vulnerability is prevented through language rules
enforced by static analysis. SPARK does not permit names
in local scopes to redeclare and hide names that are already
visible in outer scopes [SLRM 6.1].

SPARK.3.YOW.4 Implications for
standardization
None.

SPARK.3.YOW.5 Bibliography
None.

SPARK.3.BKL Namespace Issues
[BJL]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.BJL.

SPARK.3.IHN Type System [IHN]
SPARK mitigates this vulnerability.

SPARK.3.IHN.1 Terminology and features
SPARK’s type system is a simplification of that of Ada.
Both Explicit and Implicit conversions are permitted in
SPARK, as is instantiation and use of
Unchecked_Conversion [SB 1.3].

A design goal of SPARK is the provision of static type
safety, meaning that programs can be shown to be free from
all run-time type failures using entirely static analysis. If
this optional analysis is achieved, a SPARK program
should never raise an exception at run-time.

SPARK.3.IHN.2 Description of
vulnerability
As in Ada.3.IHN.2 for Unchecked_Conversion.

SPARK.3.IHN.3 Avoiding the vulnerability
or mitigating its effects
Vulnerabilities relating to value conversions, exceptions,
and assignments are mitigated by static analysis.
Vulnerabilities relating to the use of
Unchecked_Conversion are as in Ada.

SPARK.3.IHN.4 Implications for
standardization
None.

SPARK.3.IHN.5 Bibliography
None.

SPARK.3.STR Bit Representation
[STR]
SPARK mitigates this vulnerability.

SPARK.3.STR.1 Terminology and features
As in Ada.3.STR.1.

SPARK.3.STR.2 Description of
vulnerability
SPARK is designed to offer a semantics which is
independent of the underlying representation chosen by a
compiler for a particular target machine. Representation
clauses are permitted, but these do not affect the semantics
as seen by a static analysis tool [SB 1.3].

SPARK.3.STR.3 Avoiding the vulnerability
or mitigating its effects
As in Ada.3.STR.4.

SPARK.3.STR.4 Implications for
standardization
None.

SPARK.3.STR.5 Bibliography
None.

SPARK.3.PLF Floating-point
Arithmetic [PLF]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.PLF.

SPARK.3.CCB Enumerator Issues
[CCB]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.CCB.

A. Burns, J. L. Tokar (Eds.) 283

Ada User Journal Volume 31, Number 4, December 2010

SPARK.3.FLC Numeric Conversion
Errors [FLC]
SPARK prevents this vulnerability.

SPARK.3.FLC.1 Terminology and features
As in Ada.3.FLC.1.

SPARK.3.FLC.2 Description of
vulnerability
As in Ada.3.FLC.2.

SPARK.3.FLC.3 Avoiding the vulnerability
or mitigating its effects
SPARK is designed to be amenable to static verification of
the absence of predefined exceptions, and in particular all
cases covered by this vulnerability [SB 11]. All numeric
conversions (both explicit and implicit) give rise to a
verification condition that must be discharged, typically
using an automated theorem-prover.

SPARK.3.FLC.4 Implications for
standardization
None.

SPARK.3.FLC.5 Bibliography
None.

SPARK.3.CJM String Termination
[CJM]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.CJM.

SPARK.3.XYX Boundary Beginning
Violation [XYX]
SPARK prevents this vulnerability.

SPARK.3.XYX.1 Terminology and features
As in Ada.3.XYX.1.

SPARK.3.XYX.2 Description of
vulnerability
As in Ada.3.XYX.2.

SPARK.3.XYX.3 Avoiding the vulnerability
or mitigating its effects
SPARK is designed to permit static analysis for all such
boundary violations, through techniques such as theorem
proving or abstract interpretation [SB 11].

SPARK programs that have been subject to this level of
analysis can be compiled with run-time checks suppressed,

supported by a body of evidence that such checks could
never fail, and thus removing the possibility of erroneous
execution.

SPARK.3.XYX.4 Implications for
standardization
None.

SPARK.3.XYX.5 Bibliography
None.

SPARK.3.XYZ Unchecked Array
Indexing [XYZ]
SPARK prevents this vulnerability.

SPARK.3.XYZ.1 Terminology and features
As in Ada.3.XYZ.1.

SPARK.3.XYZ.2 Description of
vulnerability
As in Ada.3.XYZ.2.

SPARK.3.XYZ.3 Avoiding the vulnerability
or mitigating its effects
As per SPARK.3.XYX.3 – this vulnerability is eliminated
in SPARK by static analysis using the same techniques.

SPARK.3.XYZ.4 Implications for
standardization
None.

SPARK.3.XYZ.5 Bibliography
None.

SPARK.3.XYW Unchecked Array
Copying [XYW]
SPARK prevents this vulnerability.

SPARK.3.XYW.1 Terminology and
features
As in Ada.3.XYW.1.

SPARK.3.XYW.2 Description of
vulnerability
As in Ada.3.XYW.2.

SPARK.3.XYW.3 Avoiding the
vulnerability or mitigating its effects
Array assignments in SPARK are only permitted between
objects that have statically matching bounds, so there is no

284 Ada and the Software Vulnerabi l i t ies Project : the SPARK Annex

Volume 31, Number 4, December 2010 Ada User Journal

possibility of an exception being raised [SB 5.5, SLRM
4.1.2]. Ada’s “slicing” and “sliding” of arrays is not
permitted in SPARK, so this vulnerability cannot occur.

SPARK.3.XYW.4 Implications for
standardization
None.

SPARK.3.XYW.5 Bibliography
None.

SPARK.3.XZB Buffer Overflow
[XZB]
SPARK prevents this vulnerability.

SPARK.3.XZB.1 Terminology and features
As in Ada.3.HCF.1.

SPARK.3.XZB.2 Description of
vulnerability
As in Ada.3.XZB.2.

SPARK.3.XZB.3 Avoiding the vulnerability
or mitigating its effects
As per SPARK.3.XYX.3 – this vulnerability is eliminated
in SPARK by static analysis using the same techniques.

SPARK.3.XZB.4 Implications for
standardization
None.

SPARK.3.XZB.5 Bibliography
None.

SPARK.3.HCF Pointer Casting and
Pointer Type Changes [HCF]
SPARK prevents this vulnerability.

SPARK.3.HCF.1 Terminology and features
As in Ada.3.HCF.1.

SPARK.3.HCF.2 Description of
vulnerability
As in Ada.3.HCF.2.

SPARK.3.HCF.3 Avoiding the vulnerability
or mitigating its effects
This vulnerability cannot occur in SPARK, since the
SPARK subset forbids the declaration or use of access
(pointer) types [SB 1.3, SLRM 3.10].

SPARK.3.HCF.4 Implications for
standardization
None.

SPARK.3.HCF.5 Bibliography
None.

SPARK.3.RVG Pointer Arithmetic
[RVG]
SPARK prevents this vulnerability.

SPARK.3.RVG.1 Terminology and
features
As in Ada.3.RVG.1.

SPARK.3.RVG.2 Description of
vulnerability
As in Ada.3.RVG.2.

SPARK.3.RVG.3 Avoiding the
vulnerability or mitigating its effects
This vulnerability cannot occur in SPARK, since the
SPARK subset forbids the declaration or use of access
(pointer) types [SLRM 3.10].

SPARK.3.RVG.4 Implications for
standardization
None.

SPARK.3.RVG.5 Bibliography
None.

SPARK.3.XYH Null Pointer
Dereference [XYH]
SPARK prevents this vulnerability.

SPARK.3.XYH.1 Terminology and
features
As in Ada.3.XYH.1.

SPARK.3.XYH.2 Description of
vulnerability
As in Ada.3.XYH.2.

SPARK.3.XYH.3 Avoiding the vulnerability
or mitigating its effects
This vulnerability cannot occur in SPARK, since the
SPARK subset forbids the declaration or use of access
(pointer) types [SLRM 3.10].

A. Burns, J. L. Tokar (Eds.) 285

Ada User Journal Volume 31, Number 4, December 2010

SPARK.3.XYH.4 Implications for
standardization
None.

SPARK.3.XYH.5 Bibliography
None.

SPARK.3.XYK Dangling Reference
to Heap [XYK]
SPARK prevents this vulnerability.

SPARK.3.XYK.1 Terminology and
features
As in Ada.3.XYK.1.

SPARK.3.XYK.2 Description of
vulnerability
As in Ada.3.XYK.2.

SPARK.3.XYK.3 Avoiding the vulnerability
or mitigating its effects
This vulnerability cannot occur in SPARK, since the
SPARK subset forbids the declaration or use of access
(pointer) types [SLRM 3.10].

SPARK.3.XYK.4 Implications for
standardization
None.

SPARK.3.XYK.5 Bibliography
None.

SPARK.3.SYM Templates and
Generics [SYM]
At the time of writing, SPARK does not permit the use of
generics units, so this vulnerability is currently prevented.
In future, the SPARK language may be extended to permit
generic units, in which case section Ada.3.SYM applies.

SPARK.3.RIP Inheritance [RIP]
SPARK mitigates this vulnerability.

SPARK.3.RIP.1 Terminology and features
As in Ada.3.RIP.1.

SPARK.3.RIP.2 Description of
vulnerability
As in Ada.3.RIP.1.

SPARK.3.RIP.3 Avoiding the vulnerability
or mitigating its effects
SPARK permits only a subset of Ada’s inheritance
facilities to be used. Multiple inheritance, class-wide
operations and dynamic dispatching are not permitted, so
all vulnerabilities relating to these language features do not
apply to SPARK [SLRM 3.8].

SPARK is also designed to be amenable to static
verification of the Liskov Substitution Principle [LSP].

SPARK.3.RIP.4 Implications for
standardization
None.

SPARK.3.RIP.5 Bibliography
None.

SPARK.3.LAV Initialization of
Variables [LAV]
SPARK prevents this vulnerability.

SPARK.3.LAV.1 Terminology and features
As in Ada.3.LAV.1.

SPARK.3.LAV.2 Description of
vulnerability
Ada in Ada.3.LAV.2.

SPARK.3.LAV.3 Avoiding the vulnerability
or mitigating its effects
This vulnerability is entirely prevented by use of static
information flow analysis [IFA].

SPARK.3.LAV.4 Implications for
standardization
None.

SPARK.3.LAV.5 Bibliography
None.

SPARK.3.XYY Wrap-around Error
[XYY]
See Ada.3.XYY. In addition, SPARK mitigates this
vulnerability through static analysis to show that a signed
integer expression can never overflow at run-time [SB 11].

SPARK.3.XZI Sign Extension Error
[XZI]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.XZI.

286 Ada and the Software Vulnerabi l i t ies Project : the SPARK Annex

Volume 31, Number 4, December 2010 Ada User Journal

SPARK.3.JCW Operator
Precedence/Order of Evaluation
[JCW]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.JCW.

SPARK.3.SAM Side-effect and
Order of Evaluation [SAM]
SPARK prevents this vulnerability.

SPARK.3.SAM.1 Terminology and
features
As in Ada.3.SAM.1.

SPARK.3.SAM.2 Description of
vulnerability
As in Ada.3.SAM.2.

SPARK.3.SAM.3 Avoiding the
vulnerability or mitigating its effects
SPARK does not permit functions to have side-effects, so
all expressions are side-effect free. Static analysis of run-
time errors also ensures that expressions evaluate without
raising exceptions. Therefore, expressions are neutral to
evaluation order and this vulnerability does not occur in
SPARK [SLRM 6.1].

SPARK.3.SAM.4 Implications for
standardization
None.

SPARK.3.SAM.5 Bibliography
None.

SPARK.3.KOA Likely Incorrect
Expression [KOA]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation (see Ada.3.KOA) although many cases of
“likely incorrect” expressions in Ada are forbidden in
SPARK.

SPARK.3.XYQ Dead and
Deactivated Code [XYQ]
SPARK mitigates this vulnerability.

SPARK.3.XYQ.1 Terminology and
features
As in Ada.3.XYQ.1.

SPARK.3.XYQ.2 Description of
vulnerability
As in Ada.3.XYQ.2.

SPARK.3.XYQ.3 Avoiding the
vulnerability or mitigating its effects
In addition to the advice of Ada.3.XYQ.3, SPARK is
amenable to optional static analysis of dead paths. A dead
path cannot be executed in that the combination of
conditions for its execution are logically equivalent to false.
Such cases can be statically detected by theorem proving in
SPARK.

SPARK.3.XYQ.4 Implications for
standardization
None.

SPARK.3.XYQ.5 Bibliography
None.

SPARK.3.CLL Switch Statements
and Static Analysis [CLL]
As in Ada.3.CLL, this vulnerability is prevented by
SPARK. The vulnerability relating to an uninitialized
variable and the “when others” clause in a case statement is
also prevented – see SPARK.3.LAV.

SPARK.3.EOJ Demarcation of
Control Flow [EOJ]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.EOJ.

SPARK.3.TEX Loop Control
Variables [TEX]
SPARK prevents this vulnerability in the same way as Ada.
See Ada.3.TEX.

SPARK.3.XZH Off-by-one Error
[XZH]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.XZH. Additionally, any off-
by-one error that gives rise to the potential for a buffer-
overflow, range violation, or any other construct that could
give rise to a predefined exception, will be detected by
static analysis in SPARK [SB 11].

SPARK.3.EWD Structured
Programming [EWD]
SPARK mitigates this vulnerability.

A. Burns, J. L. Tokar (Eds.) 287

Ada User Journal Volume 31, Number 4, December 2010

SPARK.3.EWD.1 Terminology and
features
As in Ada.3.EWD.1

SPARK.3.EWD.2 Description of
vulnerability
As in Ada.3.EWD.2

SPARK.3.EWD.3 Avoiding the
vulnerability or mitigating its effects
Several of the vulnerabilities in this category that affect
Ada are entirely eliminated by SPARK. In particular: the
use of the goto statement is prohibited in SPARK [SLRM
5.8], loop exit statements only apply to the most closely
enclosing loop (so “multi-level loop exits” are not
permitted) [SLRM 5.7], and all subprograms have a single
entry and a single exit point [SLRM 6]. Finally, functions
in SPARK must have exactly one return statement which
must the final statement in the function body [SLRM 6].

SPARK.3.EWD.4 Implications for
standardization
None.

SPARK.3.EWD.5 Bibliography
None.

SPARK.3.CSJ Passing Parameters
and Return Values [CSJ]
SPARK mitigates this vulnerability.

SPARK.3.CSJ.1 Terminology and features
As in Ada.CSJ.1.

SPARK.3.CSJ.2 Description of
vulnerability
As in Ada.CSJ.3.

SPARK.3.CSJ.3 Avoiding the vulnerability
or mitigating its effects
SPARK goes further than Ada with regard to this
vulnerability. Specifically:

• SPARK forbids all aliasing of parameters and
names [SLRM 6].

• SPARK is designed to offer consistent semantics

regardless of the parameter passing mechanism
employed by a particular compiler. Thus this
implementation-dependent behaviour of Ada is
eliminated from SPARK.

Both of these properties can be checked by static analysis.

SPARK.3.CSJ.4 Implications for
standardization
None.

SPARK.3.CSJ.5 Bibliography
None.

SPARK.3.DCM Dangling References
to Stack Frames [DCM]
SPARK prevents this vulnerability.

SPARK.3.DCM.1 Terminology and
features
As in Ada.3.DCM.1.

SPARK.3.DCM.2 Description of
vulnerability
As in Ada.3.DCM.2.

SPARK.3.DCM.3 Avoiding the
vulnerability or mitigating its effects
SPARK forbids the use of the ‘Address attribute to read the
address of an object [SLRM 4.1]. The ‘Access attribute and
all access types are also forbidden, so this vulnerability
cannot occur.

SPARK.3.DCM.4 Implications for
standardization
None.

SPARK.3.DCM.5 Bibliography
None.

SPARK.3.OTR Subprogram
Signature Mismatch [OTR]
SPARK mitigates this vulnerability.

SPARK.3.OTR.1 Terminology and
features
See Ada.3.OTR.1.

SPARK.3.OTR.2 Description of
vulnerability
See Ada.3.OTR.2.

SPARK.3.OTR.3 Avoiding the
vulnerability or mitigating its effects
Default values for subprogram are not permitted in SPARK
[SLRM 6], so this case cannot occur. SPARK does permit
calling modules written in other languages so, as in

288 Ada and the Software Vulnerabi l i t ies Project : the SPARK Annex

Volume 31, Number 4, December 2010 Ada User Journal

Ada.3.OTR.3, additional steps are required to verify the
number and type-correctness of such parameters.

SPARK also allows a subprogram body to be written in
full-blown Ada (not SPARK). In this case, the subprogram
body is said to be “hidden”, and no static analysis is
performed by a SPARK Processor. For such hidden bodies,
some alternative means of verification must be employed,
and the advice of Annex Ada should be applied.

SPARK.3.OTR.4 Implications for
standardization
None.

SPARK.3.OTR.5 Bibliography
None.

SPARK.3.GDL Recursion [GDL]
SPARK does not permit recursion, so this vulnerability is
prevented [SLRM 6].

SPARK.3.NZN Returning Error
Status [NZN]
SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.NZN.

SPARK.3.REU Termination Strategy
[REU]
SPARK mitigates this vulnerability.

SPARK.3.REU.1 Terminology and
features
As in Ada.3.REU.1.

SPARK.3.REU.2 Description of
vulnerability
As in Ada.3.REU.2.

SPARK.3.REU.3 Avoiding the
vulnerability or mitigating its effects
SPARK permits a limited subset of Ada’s tasking facilities
known as the “Ravenscar Profile” [SLRM 9]. There is no
nesting of tasks in SPARK, and all tasks are required to
have a top-level loop which has no exit statements, so this
vulnerability does not apply in SPARK.

SPARK is also amenable to static analysis for the absence
of predefined exceptions [SB 11], thus mitigating the case
where a task terminates prematurely (and silently) owing to
an unhandled predefined exception.

SPARK.3.REU.4 Implications for
standardization
None.

SPARK.3.REU.5 Bibliography
None.

SPARK.3.LRM Extra Intrinsics
[LRM]
SPARK prevents this vulnerability in the same way as Ada.
See Ada.3.LRM.

SPARK.3.AMV Type-breaking
Reinterpretation of Data [AMV]
SPARK mitigates this vulnerability.

SPARK.3.AMV.1 Terminology and
features
As in Ada.3.AMV.1.

SPARK.3.AMV.2 Description of
vulnerability
As in Ada.3.AMV.2.

SPARK.3.AMV.3 Avoiding the
vulnerability or mitigating its effects
SPARK permits the instantiation and use of
Unchecked_Conversion as in Ada. The result of a call to
Unchecked_Conversion is not assumed to be valid, so static
verification tools can then insist on re-validation of the
result before further analysis can succeed [SB 11].

At the time of writing, SPARK does not permit
discriminated records, so vulnerabilities relating to
discriminated records and unchecked unions are prevented.

SPARK.3.AMV.4 Implications for
standardization
None.

SPARK.3.AMV.5 Bibliography
None.

SPARK.3.XYL Memory Leak [XYL]
SPARK prevents this vulnerability.

SPARK.3.XYL.1 Terminology and features
As in Ada.3.XYL.1.

A. Burns, J. L. Tokar (Eds.) 289

Ada User Journal Volume 31, Number 4, December 2010

SPARK.3.XYL.2 Description of
vulnerability
As in Ada.3.XYL.2.

SPARK.3.XYL.3 Avoiding the vulnerability
or mitigating its effects
SPARK does not permit the use of access types, storage
pools, or allocators, so this vulnerability cannot occur
[SLRM 3]. In SPARK, all objects have a fixed size in
memory, so the language is also amenable to static analysis
of worst-case memory usage.

SPARK.3.XYL.4 Implications for
standardization
None.

SPARK.3.XYL.5 Bibliography
None.

SPARK.3.TRJ Argument Passing to
Library Functions [TRJ]
SPARK mitigates this vulnerability.

SPARK.3.TRJ.1 Terminology and features
See Ada.3.TRJ.1.

SPARK.3.TRJ.2 Description of
vulnerability
See Ada.3.TRJ.2.

SPARK.3.TRJ.3 Avoiding the vulnerability
or mitigating its effects
SPARK includes all of the mitigations of Ada with respect
to this vulnerability, but goes further, allowing
preconditions to be checked statically by a theorem-prover.
The language in which such preconditions are expressed is
also substantially more expressive than Ada’s type system.

SPARK.3.TRJ.4 Implications for
standardization
None.

SPARK.3.TRJ.5 Bibliography
None.

SPARK.3.NYY Dynamically-linked
Code and Self-modifying Code
[NYY]
SPARK prevents this vulnerability in the same way as Ada.
See Ada.3.NYY.

SPARK.3.NSQ Library Signature
[NSQ]
SPARK prevents this vulnerability in the same way as Ada.
See Ada.3.NSQ.

SPARK.3.HJW Unanticipated
Exceptions from Library Routines
[HJW]
SPARK prevents this vulnerability in the same way as Ada.
See Ada.3.HJW. SPARK does permit the use of exception
handlers, so these may be used to catch unexpected
exceptions from library routines.

 291

Ada User Journal Volume 31, Number 4, December 2010

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Gem #84: The Distributed Systems
Annex 1 – Simple client/server
Thomas Quinot, AdaCore
Date: 19 April 2010

Abstract: This is the first in a series of Gems introducing the
facilities defined by the optional annex for distributed systems
(Annex E) in the Ada Reference Manual. In this introduction,
we show how a simple client/server architecture can be
implemented easily with the Distributed Systems Annex
(DSA).

Let’s get started…
Many aspects of software engineering require, or can benefit
from, distributed technology:

• Load balancing

• Fault tolerance

• Interconnection between multiple agents
… among others.
In each of these instances, it is useful to enlist the contribution
of multiple computers to achieve a certain goal in a
coordinated fashion. In a distributed application design, parts
of the processing are thus assigned to distinct hosts which
communicate in order to provide a given service. In Ada
parlance, the fraction of the complete application that is
assigned to each host is called a partition.
A distributed design can be implemented using direct calls to
communication services provided by the environment,
allowing the exchange of data between partitions. However,
this is extremely cumbersome and error-prone. Distribution
models have therefore been defined, which are sets of high-
level abstractions allowing the programmer to express the
interactions between components of a distributed application
— possibly located on different partitions — in convenient
high-level terms.
Distribution models support various communication patterns.
The simplest ones support simple message passing. More
elaborate models also provide more structured patterns, such
as remote subprogram calls (based on the natural abstraction
boundaries represented by subprograms) and distributed
(remote) objects, extending remote subprogram calls to the
case of method calls in an object-oriented design.
The services afforded by distribution middleware (i.e., the
implementation of a distribution model) can be made available
to the programmer in different ways. Explicit distribution APIs
can be used. Alternatively, distribution may be included in the
facilities provided by a programming language. Ada 95 and
Ada 2005 include such features as part of the optional Annex
E of the Reference Manual.

In this first introductory example, we consider a simple
application managing a public bulletin board, which we want
to make available for posting from several partitions. The DSA
allows a service to be offered in a very simple way: you just
write a package declaration:

package Bulletin_Board is
 pragma Remote_Call_Interface;
 -- This makes the package a Remote Call Interface (RCI),
 -- so the subprograms below are remotely callable.
 -- This pragma enforces some restrictions on the unit to
 -- ensure that any visible subprogram can actually be
 -- called remotely, and in particular that the types
 -- of the parameters are suitable for transport over a
 -- communication link from one partition to another.
 subtype Length is Natural range 0 .. 100;
 type News_Item (
 Author_Length, Message_Length : Length := 0)
 is record
 Author : String (1 .. Author_Length);
 Message : String (1 .. Message_Length);
 end record;
 type News_Items is
 array (Positive range <>) of News_Item;
 procedure Post (Item : News_Item);
 function Whats_Up return News_Items;
end Bulletin_Board;

A simple client can then be written that will just make calls to
these subprograms. The fact that these calls may be executed
remotely is completely transparent in the code.

with Ada.Text_IO; use Ada.Text_IO;
with Bulletin_Board; use Bulletin_Board;
procedure Post_Message is
 Author, Message : String (1 .. 140);
 Author_Length, Message_Length : Natural;
begin
 Put ("Author name: ");
 Get_Line (Author, Author_Length);
 Put ("Message : ");
 Get_Line (Message, Message_Length);

 Post (News_Item'
 (Author_Length => Author_Length,
 Message_Length => Message_Length,
 Author => Author (1 .. Author_Length),
 Message => Message (1 .. Message_Length)));
 -- This subprogram call may be remote, but we write it
 -- exactly in the usual way.
end Post_Message;

Similarly, a procedure that displays all messages can be
written as follows:

with Ada.Text_IO; use Ada.Text_IO;

292 Ada Gems

Volume 31, Number 4, December 2010 Ada User Journal

with Bulletin_Board; use Bulletin_Board;
procedure Display_Messages is
begin
 loop
 Put_Line ("----- all messages -----");
 declare
 Contents : constant News_Items := Whats_Up;
 begin
 for J in Contents'Range loop
 Put_Line (Contents (J).Author & " says:");
 Put_Line (Contents (J).Message);
 New_Line;
 end loop;
 delay 2.0;
 end;
 end loop;
end Display_Messages;

This procedure can run on the same partition as the one where
Bulletin_Board is located (the language requires that each
Remote_Call_Interface unit is assigned to exactly one
partition). However, since it only uses a visible subprogram
declared in Bulletin_Board (Whats_Up), it could also very
well run in another partition.
The assignment of units to partitions need not be apparent in
sources. The same set of sources can even be used for different
partitioning configurations (or used without partitioning to
build a monolithic version of the application, in which case
there is no distribution overhead at all).
The process of partitioning a DSA application is
implementation defined. In GNAT, this is done using the
gnatdist tool, and a po_gnatdist configuration file. The syntax
for this file is documented in the PolyORB User’s Guide.
Here is an example configuration for the bulletin board
application:

configuration Dist_App is
 pragma Starter (None);
 -- User starts each partition manually
 ServerP : Partition := (Bulletin_Board);
 -- RCI package Bulletin_Board is on partition ServerP
 ClientP : Partition := ();
 -- Partition ClientP has no RCI packages
 for ClientP'Termination use Local_Termination;
 -- No global termination
 procedure Display_Messages is in ServerP;
 -- Main subprogram of master partition
 procedure Post_Message;
 for ClientP'Main use Post_Message;
 -- Main subprogram of slave partition
end Dist_App;

After running po_gnatdist on this configuration file, two
executables are produced: serverp and clientp. Serverp will
loop, displaying all posted messages, and clientp will allow
sending a message to the server. This example thus shows how
a simple client/server design can be implemented in Ada
without any network programming.
In the next Gem we will discuss remote object designs, which
allow flexible dynamic communication across partitions.

Gem #85: The Distributed Systems
Annex 2 – Distributed Objects
Thomas Quinot, AdaCore
Date: 03 May 2010

Abstract: This is the second in a series of Gems introducing
the facilities defined by the optional annex for Distributed
Systems (Annex E) of the Ada Reference Manual. In the first
installment, we showed how a simple client/server architecture
can be implemented easily with the Distributed Systems
Annex (DSA). We now introduce distributed objects, which
allow dynamic relationships between components of a
distributed application.

Let’s get started…
In the previous DSA Gem, we showed how subprograms in a
package can be made remotely callable using a pragma
Remote_Call_Interface (RCI for short). Each RCI unit is
present in only one partition of a distributed application, and
any call to a subprogram in such a unit made from another
partition is transparently handled by the distribution run-time
library.
This is sufficient to implement simple client/server
communication, where a single partition is identified as the
provider of a service (defined by an RCI package) and accepts
requests from other partitions. Different services can be
provided by different partitions, and services can be clients of
one another. However this scheme is inflexible in that a given
service can only ever be provided by a single server.
Furthermore, the association between services and partitions is
static.
In some contexts, however, more flexible interactions between
application components are desired: multiple partitions may
want to provide the same service, for performance or fault-
tolerance reasons; servers may need to call back their clients;
finally, direct (peer-to-peer) interactions between partitions
may need to be established in a dynamic fashion, without
determining in advance (prior to execution) who will interact
with whom.
Such a flexible organization can be implemented using
distributed objects. In nondistributed object-oriented
programming, an object is an entity with an identity (you can
reference, or designate it), internal state, and a set of methods
that are common to all objects that belong to the same class,
and which represent the ways any object of the class can
interact with others. In a distributed world, this paradigm is
naturally extended by allowing object references to designate
objects that are located on another partition.
In the DSA, distributed objects are created using a specific
pragma: Remote_Types. When this pragma is applied to a
package, certain type declarations have additional semantics
specific to distribution. If you declare a tagged limited private
type in such a package, and a corresponding access-to-class-
wide type, then that access type is a Remote Access to Class-
Wide type (or RACW), and is allowed to designate objects
that are located on partitions other than the current one.
These remote object references can be passed around as
parameters in remote subprogram calls. For example, they can
be sent to an RCI package, or retrieved from it, by passing
them as parameters in remote subprogram calls.

Ada Gems 293

Ada User Journal Volume 31, Number 4, December 2010

Methods of remote objects can be called by just writing a
regular dispatching call on any primitive operation. All
underlying communication is handled transparently by the
distribution run-time library.
So let’s now assume that we want to allow users of our
bulletin board application to exchange direct messages with
one another. Each user will instantiate an object of a concrete
type derived from the User type:

package Chat_Users is
 pragma Remote_Types;
 -- This package declares a remote object type
 type User is abstract tagged limited private;
 -- Remote objects must be tagged, limited, and private
 type User_Ref is access all User'Class;
 -- This is a remote access-to-class-wide type
 function Name (Who : User) return String;
 procedure Say
 (From : User_Ref;
 To : User;
 What : String);
 -- The controlling formal 'To' determines the object that
 -- calls are sent to.
 -- The recipient object may be remote. Formal parameter
 -- 'From' is a reference to the originating user, and can be
 -- used to call the user back at a later time.
private
 ...
end Chat_Users;

Each message posted to the bulletin board can now include a
reference to the message author:

with Chat_Users;
package Bulletin_Board is
 ...
 type News_Item (Message_Length : Natural) is
 Author : Chat_Users.User_Ref;
 Message : String (1 .. Message_Length);
 end News_Item;
 ...
end Bulletin_Board;

Now each client can create an instance of a concrete type
derived from Chat_Users.User, and pass a ‘Access to that
object to the bulletin board as it posts messages.

with Chat_Users;
package Client is
 -- This is a regular package, no pragma needed
 type Myself_Type is new Chat_Users.User
 with null record;
 function Name (Self : Myself_Type) return String;
 procedure Say
 (From : Chat_Users.User_Ref;
 To : Myself_Type;
 What : String);
end Client;

with Ada.Text_IO; use Ada.Text_IO;
package body Client is
 function Name (Self : Myself_Type) return String is

 begin
 return "Jean-Pierre";
 end Name;
 procedure Say
 (From : Chat_Users.User_Ref;
 To : Myself_Type;
 What : String)
 is
 pragma Unreferenced (To);
 -- Parameter 'To' is unused within the body. Its purpose
 -- is just to cause dispatching to the appropriate
 -- object instance.
 begin
 Put_Line ("Got a message from " & From.Name);
 -- Dispatching call to Name to retrieve user name
 -- of the sender 'From'
 Put_Line (What);
 -- Display received message.
 end Say;

 Myself : aliased Myself_Type;
 ...
end Client;

Other clients can use the Author component retrieved from the
bulletin board to directly contact other clients using the Say
method:

 Say
 (From => Myself'Access,
 To => Some_Item.Author,
 Message => "I like it!");

Arbitrary partition-to-partition interactions can thus be
established using distributed objects. More precisely, these are
actually normal objects with the additional property that they
can be designated from other partitions using special access
types (RACWs). RCI units serve as switchboards to initially
propagate references to remote objects across partition
boundaries. Once these references are disseminated, partitions
can interact directly without the mediation of RCIs.
In the next Gem, we will discuss the implementation of
mailbox-based message passing using the Distributed Systems
Annex.

Gem #87: The Distributed Systems
Annex 3 – Mailboxes
Thomas Quinot, AdaCore
Date: 02 June 2010

Abstract: This is the third in a series of gems introducing the
facilities defined by the optional annex for Distributed systems
(Annex E) of the Ada Reference Manual. In the previous two
installments, we introduced the Distributed Systems Annex
(DSA). We showed how a client/server architecture can be
implemented, and we introduced distributed objects. The
present gem shows how asynchronous message passing can be
implemented on top of these facilities.

294 Ada Gems

Volume 31, Number 4, December 2010 Ada User Journal

Let’s get started…
In the previous two DSA gems, all communication between
partitions occurred as subprogram calls: the received message
is handled immediately by the receiving partition (the
subprogram body is executed), and the caller resumes
execution only after the call returns.
In some applications, a different communication pattern is
desired. One partition may want to send a message to another
and then forget about it; the receiving partition may not be
available to process the message at that time, and may want to
keep it queued for later processing.
Sending a message in a “fire-and-forget” fashion can be
implemented in the DSA using pragma Asynchronous. This
pragma, which applies to subprograms and to remote access
types, means that the called subprogram does not return any
information (it must be a procedure, and may not have any
OUT or IN OUT formal parameters), and that the caller is not
interested in any exception that might be raised. When this
pragma applies to a remote procedure, execution resumes in
the calling task immediately after sending the call (without
waiting for any confirmation from the receiver). When the
pragma applies to an RACW, this extends to all relevant
primitive operations (i.e. procedures with no OUT or IN OUT
formals).
The message sending capability is thus simply described by a
remote access type declaration:

package Mailboxes is
 pragma Remote_Types;
 subtype Message_Type is String;
 -- In this simple example, exchanged messages are
 -- just strings, but this could be changed to any other
 -- type, or made a generic type.
 type Mailbox is limited interface;
 -- This is Ada 2005!
 -- Using an interface as the base type allows the
 -- capability to receive a message to be subsequently
 -- imparted on arbitrary objects (they just need to
 -- implement that interface).
 procedure Send_Message (Recipient : access Mailbox;
 Message : Message_Type)
 is abstract;

 type Remote_Mailbox is access all Mailbox'Class;
 -- Remote access to mailbox
 pragma Asynchronous (Remote_Mailbox);
 -- Calls to Send_Message will return to the caller without
 -- waiting for any reply from the callee.
end Mailboxes;

A very simple implementation of a mailbox is the “active”
mailbox, where a dedicated task handles each incoming
message:

package Mailboxes.Active is
 task type Active_Mailbox is new Mailbox with
 entry Start (Id : Integer);
 entry Send_Message (Message : Message_Type);
 end Active_Mailbox;
 type Active_Mailbox_Acc is access all Active_Mailbox;
 -- Local access type
end Mailboxes.Active;

with Ada.Text_IO; use Ada.Text_IO;
package body Mailboxes.Active is
 task body Active_Mailbox is
 My_Id : Integer;
 begin
 accept Start (Id : Integer) do
 My_Id := Id;
 end Start;
 Put_Line ("Active_Mailbox #" & My_Id'Img & " starting");
 loop
 accept Send_Message (Message : Message_Type)
 do
 Put_Line ("... got message: " & Message);
 end Send_Message;
 end loop;
 end Active_Mailbox;
end Mailboxes.Active;

Note that this implementation could perfectly well be replaced
with any other type implementing the Mailbox interface, for
example a protected bounded buffer. Any partition can thus
create a mailbox on which it will receive messages from
others, just by creating an object of type Mailboxes.Active.
Active_Mailbox.
Now, another partition that needs to send it a message will
need to obtain an RACW designating that mailbox in order to
do so, just like you’d need an address to send a postcard. An
RCI package can be used as a central clearinghouse to
exchange these initial references: the RCI acts as a directory of
partitions that can receive messages.

with Mailboxes;
package Hub is
 pragma Remote_Call_Interface;
 procedure Register_Listener (
 Id : Integer;
 Ptr : Mailboxes.Remote_Mailbox);
 -- A partition that has created a mailbox registers it here,
 -- associating it with a unique identifier Id.
 function Get_Listener (Id : Integer)
 return Mailboxes.Remote_Mailbox;
 -- A partition that wants to send a message to the mailbox
 -- identified by Id retrieves the corresponding RACW
 -- (previously registered using the above procedure)
 -- by calling this function.
 -- The implementation of this unit can be as simple as an
 -- array of RACWs:
 -- All_Listeners : array (1 .. Max_Mailboxes) of
 -- Mailboxes.Remote_Mailbox;
end Hub;

It should be noted that the RCI is used only to initially
disseminate references to partitions. The messages themselves
are sent directly across partitions. There is no single point of
failure or communication bottleneck.
Complete source code for this application (message sender,
message receiver, and central hub) is available in subdirectory
examples/dsa/mailboxes of the PolyORB source package, or
can also be downloaded directly from the online Gem page.

Ada Gems 295

Ada User Journal Volume 31, Number 4, December 2010

Gem #90: The Distributed Systems
Annex 4 – DSA and C
Thomas Quinot, AdaCore
Date: 14 September 2010

Abstract: This is the fourth in a series of Gems introducing
the facilities defined by the optional annex for distributed
systems in the Ada Reference Manual (Annex E). In the
previous installments, we introduced the Distributed Systems
Annex (DSA), and we explained how it allows various
interaction paradigms to be implemented. In this Gem, we
show how these useful tools can be used from a C program.

Let’s get started…
The previous DSA Gems showed how components in a pure
Ada application can be spread across several partitions and use
static or dynamic remote calls to interact. Wouldn’t it be nice
if other languages such as C could also benefit from these
features?
Of course, you can embed C code in an Ada partition just as
you would in any nondistributed application. Your C code can
also call back to Ada code (as long as the Ada subprograms
have the C convention). Remote (RCI) subprograms can thus
be called from C. If the call occurs on the partition to which
the RCI is assigned, nothing special happens, this is just a
regular call. On other partitions, the compiler-generated
calling stubs are used, and this is a transparent remote call, just
as it would be if it occurred in Ada code: a remote subprogram
has nothing special at the call point; all the magic is done in
the generated stubs.
This is all well and good, but you still have to write your
complete application in Ada, and in particular have the main
subprogram of each partition declared in the GNATDIST
configuration file.
What if you would like to incorporate DSA client or server
code in an existing C application? This can be achieved by
combining the DSA with GNAT’s stand-alone libraries, a
feature allowing an Ada partition to generate a loadable
module rather than a full-fledged executable image. Here’s
how…
Rebuild PolyORB with -fPIC
The “-fPIC” switch instructs the compiler to generate so-called
Position Independent Code, that is, code that can be
dynamically loaded as a shared library.
In order to have a DSA partition in a stand-alone library, you
need to set CFLAGS=”-O2 -g -fPIC” in your environment
when calling the PolyORB configure script. (The resulting
PolyORB build can also be used for normal applications.)
Build your Ada partitions as usual, also with -fPIC
Let’s assume for example that your application has a server
partition that is fully written in Ada, and a client partition
meant for embedding in a C/C++ application as a shared
object. The server partition will be built using:

po_gnatdist -fPIC xxxx.cfg server_partition

Create a dummy main subprogram for the client side

You need to provide a dummy main subprogram for the client
partition. You should make this a null library subprogram that
has WITH clauses for any package (including RCIs) that you
want to reference from the C side.
Also, it may be convenient to include in this closure an
“Exports” package containing suitable subprogram
declarations for those routines that you want to call from C,
with C-compatible argument types, and using pragma Export
to give them friendly C names. (Note that this is not specific to
the Distributed Systems Annex: such an interface package is
typically created any time you need to call Ada code from C
code.)

with RCI_1;
...
with RCI_n;

with Exports;
procedure Client is
begin
 null;
end Client;

Build the client library
This is the crucial point. To build a partition as a stand-alone
library instead of a regular executable, special arguments are
passed to GNATDIST:

po_gnatdist -fPIC -g xxxx.cfg client_partition \
 -bargs rci_1.ali ... rci_n.ali polyorb-dsa_p-partitions.ali \
 -shared -LClientName \
 -largs -shared

In this command line, you need to list the ALI files for all RCI
packages referenced in your client partition (rci_1.ali ..
rci_n.ali), and also the one for the internal RCI polyorb-dsa_p-
partitions.ali.
You can replace the name “ClientName” with an arbitrary
prefix of your choosing (it is used for some automatically
generated symbols, see below).
This will generate a file client_partition, which you can
rename to client_partition.so.
Call client library from C code
Once you have your loadable object generated, you can load it
from C code using the standard dlopen(3) function.
Symbols from the library can then be obtained using the
dlsym(3) function. You first need to retrieve the symbols
ClientNameinit and ClientNamefinal from the library.
ClientNameinit corresponds to the elaboration of all Ada units
in the library, and should be called once upon module load.
This starts the Ada PCS and connects to the DSA name server
to retrieve the initial location of RCI units.
ClientNamefinal corresponds to the finalization, and should be
called once, just before unloading the module or terminating
the application (ClientName here is the prefix you passed on
the GNATDIST command line above).
Finally, you can retrieve and call the symbols for RCI
subprograms, or any subprogram exported by your Ada units,
and call them as though they were normal C routines.

296

Volume 31, Number 4, December 2010 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Peter Dencker
Steinäckerstr. 25
D-76275 Ettlingen-Spessartt
Germany
Email: dencker@web.de
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.ch

