
  

Ada User Journal Volume 32, Number 2, June 2011 

ADA 
USER 
JOURNAL 

Volume 32 
Number 2 
June 2011 

 

Contents 
Page 

Editorial Policy for Ada User Journal 66 

Editorial 67 

Quarterly News Digest 69 

Conference Calendar 97 

Forthcoming Events 103 

Articles from the Industrial Track of Ada-Europe 2011 

 R. Bridges, F. Dordowsky, H. Tschöpe 
“Implementing a Software Product Line for a complex Avionics System in Ada 83” 107 

Ada Gems 116 

Ada-Europe Associate Members (National Ada Organizations) 128 

Ada-Europe 2011 Sponsors  Inside Back Cover 
 



66  

Volume 32, Number 2, June 2011 Ada User Journal 

Editorial Policy for Ada User Journal 
Publication 
Ada User Journal — The Journal for 
the international Ada Community — is 
published by Ada-Europe. It appears 
four times a year, on the last days of 
March, June, September and 
December. Copy date is the last day of 
the month of publication. 

Aims 
Ada User Journal aims to inform 
readers of developments in the Ada 
programming language and its use, 
general Ada-related software 
engineering issues and Ada-related 
activities in Europe and other parts of 
the world. The language of the journal 
is English. 

Although the title of the Journal refers 
to the Ada language, any related topics 
are welcome. In particular papers in 
any of the areas related to reliable 
software technologies. 

The Journal publishes the following 
types of material: 

• Refereed original articles on 
technical matters concerning Ada 
and related topics. 

• News and miscellany of interest to 
the Ada community. 

• Reprints of articles published 
elsewhere that deserve a wider 
audience. 

• Commentaries on matters relating 
to Ada and software engineering. 

• Announcements and reports of 
conferences and workshops. 

• Reviews of publications in the 
field of software engineering. 

• Announcements regarding 
standards concerning Ada. 

Further details on our approach to 
these are given below. 

Original Papers 
Manuscripts should be submitted in 
accordance with the submission 
guidelines (below). 

All original technical contributions are 
submitted to refereeing by at least two 
people. Names of referees will be kept 
confidential, but their comments will 
be relayed to the authors at the 
discretion of the Editor. 

The first named author will receive a 
complimentary copy of the issue of the 
Journal in which their paper appears. 

By submitting a manuscript, authors 
grant Ada-Europe an unlimited license 
to publish (and, if appropriate, 
republish) it, if and when the article is 
accepted for publication. We do not 
require that authors assign copyright to 
the Journal. 
Unless the authors state explicitly 
otherwise, submission of an article is 
taken to imply that it represents 
original, unpublished work, not under 
consideration for publication else-
where. 

News and Product Announcements 
Ada User Journal is one of the ways in 
which people find out what is going on 
in the Ada community. Since not all of 
our readers have access to resources 
such as the World Wide Web and 
Usenet, or have enough time to search 
through the information that can be 
found in those resources, we reprint or 
report on items that may be of interest 
to them. 

Reprinted Articles 
While original material is our first 
priority, we are willing to reprint (with 
the permission of the copyright holder) 
material previously submitted 
elsewhere if it is appropriate to give it 
a wider audience. This includes papers 
published in North America that are 
not easily available in Europe. 
We have a reciprocal approach in 
granting permission for other 
publications to reprint papers originally 
published in Ada User Journal. 

Commentaries 
We publish commentaries on Ada and 
software engineering topics. These 
may represent the views either of 
individuals or of organisations. Such 
articles can be of any length – 
inclusion is at the discretion of the 
Editor. 
Opinions expressed within the Ada 
User Journal do not necessarily 
represent the views of the Editor, Ada-
Europe or its directors. 

Announcements and Reports 
We are happy to publicise and report 
on events that may be of interest to our 
readers. 

Reviews 
Inclusion of any review in the Journal 
is at the discretion of the Editor. 
A reviewer will be selected by the 
Editor to review any book or other 
publication sent to us. We are also 
prepared to print reviews submitted 
from elsewhere at the discretion of the 
Editor. 

Submission Guidelines 
All material for publication should be 
sent to the Editor, preferably in 
electronic format. The Editor will only 
accept typed manuscripts by prior 
arrangement.  
Prospective authors are encouraged to 
contact the Editor by email to 
determine the best format for 
submission. Contact details can be 
found near the front of each edition. 
Example papers conforming to 
formatting requirements as well as 
some word processor templates are 
available from the editor. There is no 
limitation on the length of papers, 
though a paper longer than 10,000 
words would be regarded as 
exceptional. 
 
 



 67  

Ada User Journal Volume 32, Number 2, June 2011 

Editorial 
 

The second issue of Volume 32 of the Ada User Journal is being finalized in the exceptional environment of the Ada 
Connection event, which brings together the 16th International Conference on Reliable Software Technologies – Ada-Europe 
2011 and the Ada Conference UK 2011, in the beautiful city of Edinburgh, UK. I hope the Journal readers had the 
opportunity to experience and enjoy this environment; if not I urge you to consider attending next year’s Ada-Europe 2012, 
which will take place in Stockholm. The Ada-Europe conference is returning to Sweden 14 years after being in Uppsala, in 
1998.     

As for the highlights of this year’s event, I would like to point out not only the scientific program of the conference, as usual 
with a set of high-quality papers, but also the impressive industrial track of the conference, with a set of high quality 
presentations (of which we start to present derived papers in this issue). The conference also featured two very interesting 
panels on Programming Languages Meet Multi-Core and DO178C and Object-Orientation for Critical Systems, and three 
keynote talks: Peter Bernard Ladkin (Causalis Ltd) on the Future of Software Safety Standards, Pippa Moore (UK CAA) on 
the topic of Hippocrates and DO-178B, and Jeff O’Leary (USA FAA) on Assuring Software Reliability While Using Web 
Services and Commercial Products. A special note also to the pre-dinner presentation by Professor Les Hatton, providing 
(with a humorous view) a few important remarks on the development of safe software. Undoubtedly a major networking and 
promotion event for the world-wide Ada community.  

As for the contents of this issue, it starts with the information of the News and Calendar sections, by Marco Panunzio and 
Dirk Craeynest, their respective editors. The Forthcoming Events section provides an announcement of the 2011 SIGAda 
conference, which will take place next November in Denver, Colorado, USA, and the preliminary call for papers for the 17th 
International Conference on Reliable Software Technologies – Ada-Europe 2012 that, as noted, will take place June 2012 in 
Stockholm, Sweden. 

The technical part of the issue provides a paper from the Industrial Track of the Ada-Europe 2011 conference, from a group 
of authors from Eurocopter and ESG, Germany, discussing the Software Product Line approach to the development of the 
NH90 helicopter avionics software, in Ada 83. To finalise, the Ada Gems section provides a set of gems with the trail Code 
Archetypes for Real-Time Programming, by Marco Panunzio, from the University of Padua, Italy.  

 
 

  Luís Miguel Pinho 
Porto 

June 2011 
 Email: lmp@isep.ipp.pt  



 69 

Ada User Journal Volume 32, Number 2, June 2011 

Quarterly News Digest 
Marco Panunzio 
University of Padua. Email: panunzio@math.unipd.it 
 

Contents 
 
Ada-related Organizations 69 
Ada-related Events 70 
Ada-related Resources 71 
Ada-related Tools 72 
Ada-related Products 75 
Ada and GNU/Linux 77 
Ada Inside 77 
Ada in Context 81 

Ada-related 
Organizations 
Submission for "The Ada 
Way" programming contest 
From: Dirk Craeynest 

<dirk@vana.cs.kuleuven.be> 
Date: Tue, 26 Apr 2011 21:35:50 +0000 

UTC 
Subject: The Ada Way programming contest 

now accepts submissions 
Newsgroups: comp.lang.ada, 

fr.comp.lang.ada,comp.lang.misc 
Ada-Europe's first Annual Student 
Programming Contest "The Ada Way" is 
now accepting submissions. 
Last September, Ada-Europe [1] kicked 
off its annual student programming 
contest "The Ada Way" [2]. The 
challenge for the 2010-2011 competition 
was to build a software simulator of a 
football match. The submission of entries 
has now been opened: they will be 
accepted through May 15th. 
The submission shall be made as a single 
compressed archive of all items listed at 
the contest web site. Dropbox [3] is used 
to handle the submission process online. 
Details are available on the contest web 
site. 
The winning submission shall be 
announced on the contest web site and at 
the Ada-Europe 2011 Conference [4], 
held June 20-24 in Edinburgh, UK. This 
edition of the contest is sponsored by 
AdaCore, Atego and Ada-Europe. 
About Ada-Europe 
Ada-Europe is the international non-profit 
organization that promotes the knowledge 
and use of the Ada programming 
language in academia, research and 
industry in Europe.  Ada-Europe has 
member organizations all over the 
continent, in Belgium, Denmark, France, 
Germany, Spain, Sweden, Switzerland, as 

well as individual members in many other 
countries. 
[1] http://www.ada-europe.org/ 
[2] http://www.ada-europe.org/AdaWay/ 
[3] http://www.dropbox.com/ 
[4] http://www.ada-europe.org/ 
      conference2011/ 

Ada-Belgium Spring 2011 - 
Debian packaging workshop 
From: Dirk Craeynest 

<dirk@vana.cs.kuleuven.be>  
Date: Tue, 10 May 2011 21:37:18 +0000 

UTC 
Subject: Ada-Belgium Spring 2011 Event 

incl. Debian packaging workshop 
Newsgroups: comp.lang.ada, 

fr.comp.lang.ada,be.comp.os.linux, 
be.comp.programming 

 
--------------------------------------------------- 
A d a - B e l g i u m   S p r i n g   2 0 1 1   

E v e n t 
 

Sunday, May 22, 2011, 12:00-19:00 
Brussels, Belgium 

 
including at 14:30 

2011 Ada-Belgium General Assembly 
and at 15:30 

Workshop on Creating Debian Packages 
of Ada Software 

 
<http://www.cs.kuleuven.be/~dirk/ 

ada-belgium/events/local.html> 
 
--------------------------------------------------- 
Announcement 
------------ 
The next Ada-Belgium event will take 
place on Sunday, May 22, 2011 in 
Brussels. 
For the fourth year in a row, Ada-Belgium 
decided to organize their "Spring Event", 
which starts at noon, runs until 7pm, and 
includes an informal lunch, a key signing 
party, the 18th General Assembly of the 
organization, and a workshop on 
packaging Ada software for Debian 
hosted by Ludovic Brenta, principal 
maintainer of Ada in Debian. 

Schedule 
-------- 
- 12:00  welcome and getting started 
(please be there!) 
- 12:15  informal lunch 
- 14:30  Ada-Belgium General Assembly 
- 15:15  key signing party 
- 15:30  workshop on creating Debian 
packages of Ada software 
- 19:00  end 
Participation 
------------- 
Everyone interested (members and non-
members alike) is welcome at any or all 
parts of this event. 
For practical reasons registration is 
required. If you would like to attend, 
please send an email before Tuesday, 
May 17, to Dirk Craeynest 
<Dirk.Craeynest@cs.kuleuven.be> with 
the subject "Ada-Belgium Spring 2011 
Event", so you can get precise directions 
to the place of the meeting. 
If you are a member but have not renewed 
your affiliation yet, please do so by 
paying the appropriate fee before the 
General Assembly (you have also 
received a printed request via normal 
mail). If you are interested to become a 
new member, please register by filling out 
the 2011 membership application form[1] 
and by paying the appropriate fee before 
the General Assembly. 
After payment you will receive a receipt 
from our treasurer and you are considered 
a member of the organization for the year 
2011 with all member benefits[2]. Early 
renewal ensures you receive the full Ada-
Belgium membership benefits (including 
the Ada-Europe indirect membership 
benefits package). 
As mentioned at earlier occasions, we 
have a limited stock of documentation 
sets and Ada related CD-ROMs that were 
distributed at previous events. Most 
important are back issues of the Ada User 
Journal[3]. These will be available on a 
first-come first-served basis at the 
General Assembly for current and new 
members. 
[1] http://www.cs.kuleuven.be/~dirk/ada- 
      belgium/forms/member-form11.html 
[2] http://www.cs.kuleuven.be/~dirk/ 
      ada-belgium/member-benefit.html 
[3] http://www.ada-europe.org/ 
      journal.html 



70  Ada-related Events 

Volume 32, Number 2, June 2011 Ada User Journal 

Informal lunch 
-------------- 
The organization will provide food and 
beverage to all Ada-Belgium members. 
Non-members who want to participate at 
the lunch are also welcome: they can 
choose to join the organization or pay the 
sum of 15 Euros per person to the 
Treasurer of the organization. 
General Assembly 
---------------- 
All Ada-Belgium members have a vote at 
the General Assembly, can add items to 
the agenda, and can be a candidate for a 
position on the Board[4]. See the separate 
official convocation[5] for all details. 
[4] http://www.cs.kuleuven.be/~dirk/ 
      ada-belgium/board/ 
[5] http://www.cs.kuleuven.be/~dirk/ 
      ada-belgium/events/11/ 
      110522-abga-conv.html 
Key Signing Party 
----------------- 
Wouldn't it be nice if a majority of people 
used GPG to sign their email every day so 
that you could send all non-signed email 
into the spam bin? To make that dream 
come true, please join and expand the 
global Web of Trust [6]! 
What you should bring with you: 
- an official ID card issued by your 

national government; 
- your GPG key fingerprint (i.e. the output 

of gpg --fingerprint) on small paper 
slips; a dozen copies or so should be 
enough. 

What you will go home with: 
- signatures from all other participants; 
- automatic inclusion in the global Web of 

Trust; 
- the ability to digitally sign or encrypt 

anything you like. 
[6] http://en.wikipedia.org/wiki/ 
      Web_of_Trust 
Workshop:  
Packaging Ada Software for Debian 
------------------------------------------- 
Debian [7], "The Universal Operating 
System", is simply the best platform for 
the enthusiast Ada developer. The 
features that distinguish Debian from the 
rest are: 
- a binary distribution that avoids the need 

to recompile Florist, ASIS, GtkAda and 
all other Ada packages; 

- a large number of packages intended for 
Ada developers; 

- a clear and consistent policy[8] making 
all packages integrate seamlessly and 
interoperate; 

- outstanding support for the Ada part of 
the GNU Compiler Collection (GCC) 

with unique innovations like libgnatvsn 
and libgnatprj not found anywhere else; 

- backports of bug fixes from the bleeding 
edge of GCC development into the safe 
and stable compiler used for all Debian 
packages; 

- support for more hardware architectures 
than any other Ada distribution: alpha, 
amd64, hppa, i386, ia64, kfreebsd-i386, 
powerpc, s3980 and sparc (with mips, 
mipsel and ppc64 added recently). 

- a choice between "stable", "testing" and 
"unstable" versions of Debian to suit 
personal preferences; 

- Debian is the mother of Ubuntu, 
Knoppix and dozens of other 
distributions which sometimes 
incorporate the Ada packages. 

The goal of the workshop is to help 
people participate in this effort to bring 
even more Ada software to Debian, or to 
help maintain the existing packages. 
What you should bring with you: 
- your computer, already installed with 

Debian unstable or with an unstable 
chroot already created (see below); 

- network cables (or WiFi already 
configured); 

- monitor and keyboard, if your computer 
is not a laptop; 

- power cables; 
- some Ada software you would like to 

see in Debian but is not there (not 
necessarily software that you wrote; any 
software with a license permitting 
redistribution in source and binary form 
will do). 

Note 1: if your computer does not run 
Debian as its main operating system, you 
can install Debian in a virtual machine 
(VMWare or other), in a jail on a 
FreeBSD system (Debian kfreebsd-i386), 
or in a chroot on any other distribution. 
Danny Beullens will offer help and 
assistance to those who would like to 
install Debian in a VMWare virtual 
machine. 
Note 2: if you would like to install Debian 
as your main operating system but are 
uncomfortable doing so by yourself, 
please get in touch with your nearest 
Linux User Group (e.g. 
http://www.bxlug.be in Brussels). 
What Ludovic Brenta will do for you: 
- set up a local Debian mirror, so you can 

install or upgrade packages necessary 
for Ada package development; 

- explain how to package Ada software 
for Debian; 

- help you package your own program or 
library; 

- answer questions about GNAT, GCC, 
Debian, etc.; 

- if your package is suitable for inclusion 
in Debian, sponsor it for you. 

What you will go home with: 
- your own .deb packages installed on 

your computer; 
- better understanding of how packaging 

works; 
- better understanding of the Debian 

Policy for Ada; 
- if your package is suitable, your name 

on the Debian Package Tracking System 
and your package on the next Debian 
DVD or CDROM distribution. 

[7] http://www.debian.org/ 
[8] http://people.debian.org/~lbrenta/ 
     debian-ada-policy.html 
Directions 
---------- 
To permit this more interactive and social 
format, the event takes place at private 
premises in Brussels. As instructed above, 
please inform us by e-mail if you would 
like to attend, and we'll provide you 
precise directions to the place of the 
meeting. Obviously, the number of 
participants we can accommodate is not 
unlimited, so don't delay… 
Looking forward to meet many of you in 
Brussels! 
Dirk Craeynest, President Ada-Belgium 
Dirk.Craeynest@cs.kuleuven.be 
--------------------------------------------------- 

Acknowledgements 
We would like to thank our sponsors for 
their continued support of our activities: 
AdaCore, Katholieke Universiteit Leuven 
(K.U.Leuven), and Université Libre de 
Bruxelles (U.L.B.). 

Ada-related Events 
[To give an idea about the many Ada-
related events organized by local groups, 
some information is included here. If you 
are organizing such an event feel free to 
inform us as soon as possible. If you 
attended one please consider writing a 
small report for the Ada User Journal.  
—mp] 

SIGAda 2011 Call for 
Papers 
From: Greg Gicca 

<greggicca@gmail.com> 
Date: Wed, 23 Mar 2011 07:57:27 -0700 

PDT 
Subject: SIGAda 2011 conference Call for 

Papers 
Newsgroups: comp.lang.ada 
Group, 
An important announcement for Ada and 
high reliability software developers: 
SIGAda 2011 



Ada-related Resources 71  

Ada User Journal Volume 32, Number 2, June 2011 

Denver, Colorado, USA 
November 6 - 10, 2011 
 
Call for Technical Contributions 
 
ACM Annual International Conference on 
Ada and Related Technologies: 
 
Engineering Safe, Secure, and Reliable 
Software 
 
Submission Deadline: June 30, 2011 
Sponsored by ACM SIGAda 
http://www.acm.org/sigada/conf/ 
sigada2011 
 
SUMMARY: Reliability, safety, and 
security are among the most critical 
requirements of contemporary software. 
The application of software engineering 
methods, tools, and languages all 
interrelate to affect how and whether 
these requirements are met. Such software 
is in operation in many application 
domains. Much has been accomplished in 
recent years, but much remains to be 
done. Our tools, methods, and languages 
must be continually refined; our 
management process must remain focused 
on the importance of reliability, safety, 
and security; our educational institutions 
must fully integrate these concerns into 
their curricula. 
The conference will gather industrial and 
government experts, educators, software 
engineers, and researchers interested in 
developing, analyzing, and certifying 
reliable, safe, long-lived, secure software. 
We are soliciting technical papers and 
experience reports with on these 
development topics. A direct relationship 
or comparison with the Ada language is 
preferred. 
[…] 
HOW TO SUBMIT: Send contributions 
by June 30, 2011, in Word, PDF, or text 
format as follows: 
Technical Articles, Extended Abstracts, 
Experience Reports, and Panel 
Session Proposals to: Program Chair, 
Lt. Col. Jeff Boleng 
(jeff.boleng@usafa.edu) 
Tutorial Proposals to: Tutorials Chair, Dr. 
Robert Pettit 
(rpettit@gmu.edu) 
Industrial Presentations Proposals to: 
Industrial Committee Chair, 
Prof. Liz Adams (adamses@cs.jmu.edu) 
[…] 
ANY QUESTIONS? 

Please submit any questions to the 
conference chair, Ricky E.(Ranger) Sward 
(rsward@mitre.org). 

Ada-related Resources 
How to build a GNAT  
cross-compiler for QNX 
From: Piotr Trojanek 

<piotr.trojanek@gmail.com> 
Date: Sat, 23 Apr 2011 14:17:34 -0700 PDT 
Subject: GNAT Ada cross compiler for QNX 
Newsgroups: comp.os.qnx, comp.lang.ada 
Dear all, 
recently I have completed an updated 
document about how to build a GNAT 
Ada Linux->QNX cross-compiler: 
https://github.com/ptroja/qnx-cross/ 
wiki/Ada-Annex-E-with-PolyORB-under-
QNX 
In addition instructions about the cross 
build of the the PolyORB distributed 
middleware (implementation of the 
Distributed System Annex) have been 
added. 
Hope this will be helpful to other porters 
and of course all the QNX and Ada 
community. 

AdaCore @ YouTube 
From: Thomas Løcke <tl@ada-dk.org> 
Date: Fri, 25 Mar 2011 
Subject: AdaCore @ YouTube 
URL: http://ada-dk.org/?page=news& 

news_id=290 
I'm one of those people who enjoy tech-
talks on video, so when I found out that 
AdaCore have a channel @ YouTube, it 
made my day. 
Yes, I'm that easy to please. :o) 
It's a fairly busy channel, with regular 
updates. Some of the subjects dealt with 
are: 
- What is SPARK? 
- GPS 5 Auto Highlighting 
- Hi-Lite: a Verification Toolkit for Unit 

Test & Unit Proof 
And of course lots more. Be sure to check 
it out! 
[Visit the channel at 
http://www.youtube.com/adacore05  
—mp] 

Safe and Secure Software 
with Ada 2005 
From: Thomas Løcke <tl@ada-dk.org> 
Date: Fri, 18 Mar 2011 
Subject: Safe and Secure Software With Ada 

2005 
URL: http://ada-dk.org/?page=news& 

news_id=285 

John Barnes, who is probably known to 
most Ada programmers, have written a 
booklet on how to use Ada 2005 to build 
safe and secure software. 
It is, to no surprise, a good read. 
The booklet is divided into 13 chapters, 
each in its own PDF file: 
- Introduction 
- Chapter 1 – Safe Syntax 
- Chapter 2 – Safe Typing 
- Chapter 3 – Safe Pointers 
- Chapter 4 – Safe Architecture 
- Chapter 5 – Safe Object Oriented  
                      Programming 
- Chapter 6 – Safe Object Construction 
- Chapter 7 – Safe Memory Management 
- Chapter 8 – Safe Startup 
- Chapter 9 – Safe Communication 
- Chapter 10 – Safe Concurrency 
- Chapter 11 – Certified Safe with  
                        SPARK 
- Chapter 12 – Conclusion 
The entire booklet is available here. 
[http://www.adacore.com/home/ada_ 
answers/ada_2005/safe_secure —mp] 
I'd like to end this news item with a quote 
from the booklet: 
> In terms of software, the languages Ada 

and C have very different attitudes to 
freedom. Ada introduces restrictions 
and checks, with the goal of providing 
freedom from errors. On the other hand 
C gives the programmer more freedom, 
making it easier to make errors. One of 
the historical guidelines in C was "trust 
the programmer". This would be fine 
were it not for the fact that 
programmers, like all humans, are frail 
and fallible beings. Experience shows 
that whatever techniques are used it is 
hard to write "correct" software. It is 
good advice therefore to use tools that 
can help by finding bugs and 
preventing bugs. Ada was specifically 
designed to help in this respect. There 
have been three versions of Ada – Ada 
83, Ada 95 and now Ada 2005. The 
purpose of this booklet is to illustrate 
the ways in which Ada 2005 can help in 
the construction of reliable software, by 
illustrating some aspects of its features. 
It is hoped that it will be of interest to 
programmers and managers at all 
levels.  

[…] 

Tutorial on Ada streams 
From: Riccardo Bernardini 

<framefritti@gmail.com> 
Date: Mon, 28 Feb 2011 09:00:23 -0800 

PST 
Subject: Ann: Little tutorial about streams 
Newsgroups: comp.lang.ada



72  Ada-related Tools 

Volume 32, Number 2, June 2011 Ada User Journal 

Dear all, 
remembering my initial difficulties with 
streams (I self-taught Ada, using few 
tutorials and lots of experiments before 
landing to the RM), I decided to write a 
page (my first one, so be patient :-) of the 
Wikibook with a little stream tutorial 
http://en.wikibooks.org/w/index.php? 
title=Ada_Programming/Input_Output/ 
Stream_Tutorial 
As said in the page, the goal is to give to 
the reader an intuitive idea about how 
streams work so, in order to not hide the 
forest with too many leaves, some of the 
finest details have been omitted. A 
subpage of the above page has a fairly 
complex example that is not complete yet, 
but I plan to complete it soon. 
The page is not linked yet with the book 
body. I was thinking to add a link to it in 
the "Input Output" page as soon as the 
subpage with the example is in a good 
state. 
[…] 

Ada Tutor tutorial 
From: Jeffrey R. Carter 

<pragmada@pragmada.x10hosting.com> 
Date: Wed, 04 May 2011 14:25:00 -0700 
Subject: Ada Tutor Available from 

PragmAda Software Engineering 
Newsgroups: comp.lang.ada 
John Herro's Ada Tutor Ada-95 tutorial is 
now available from PragmAda Software 
Engineering: 
http://pragmada.x10hosting.com/ 

New website Ada-Poland.org 
From: Maciej Sobczak 

<maciej@msobczak.com> 
Date: Sat, 19 Mar 2011 03:09:21 -0700 

PDT 
Subject: Ada-Poland.org 
Newsgroups: comp.lang.ada 
I'm pleased to announce the mini-launch 
of new website: 
http://www.ada-poland.org/ 
The purpose of this site is to gather 
mutual contacts to people and companies 
in Poland who are interested in the use of 
Ada in their projects, promotion of their 
own work and representation in the 
international community. 
This simple web page is a seed and 
currently contains some useful basic links, 
as well as the following important 
information: 
Ada-Poland.org is currently *not* 
associated to Ada-Europe, but its intent is 
to get the (snow)ball rolling and build the 
critical mass that will eventually make it 
happen. 
Please feel free to promote this site 
among Polish software engineers. 

Ada-related Tools 
Mathpaqs, February 2011 
From: Gautier de Montmollin 

<gdemont@users.sourceforge.net> 
Date: Mon, 21 Feb 2011 10:43:29 -0800 

PST 
Subject: Ann: Mathpaqs, release Feb. 2011 
Newsgroups: comp.lang.ada 
Hello, there is a new release of Mathpaqs 
@ http://sf.net/projects/mathpaqs/ 
What's new: 
- *new* Discrete_random_simulation 

package (this is for simulating any 
discrete random distribution) 

- updated the Finite_distributed_random 
function (this is for simulating a random 
distribution for an enumerated type) 

- cleanup of ConjGrad (Conjugate 
gradient iterative methods for solving 
the matrix equation Ax=b) 

[see also "Mathpaqs - November 28, 
2010" in AUJ 32-1 (Mar 2011), p.11  
—mp] 

Ada 2005 Math Extensions 
20110320 
From: Simon Wright 

<simon.john.wright@gmail.com> 
Date: Sun, 20 Mar 2011 10:24:50 -0700 

PDT 
Subject: ANN: Ada 2005 Math Extensions 

20110320 
Newsgroups: comp.lang.ada 
This release has just been made at 
Sourceforge: 
https://sourceforge.net/projects/ 
gnat-math-extn/files/20110320/  
Changes in this release: 
- An additional overloaded procedure 

Eigensystem returns the generalized 
eigenvalues and eigenvectors of a pair of 
non-hermitian complex matrices. 

- The program Test_Extensions is 
renamed to Demo_Extensions, and 
includes a demonstration of the real 
generalized eigensystem code. 

- The library project file is renamed 
src/gnat_math_extensions.gpr. 

[…] 
[see also "Ada 2005 Math Extensions" in 
AUJ 32-1 (Mar 2011), p.11 —mp] 

Ada support in *BSD and 
Android distributions 
From: John Marino 

<dragonlace.cla@marino.st> 
Date: Thu, 3 Mar 2011 12:07:22 -0800 PST 
Subject: Ann: DragonLace and Ada Support 

on *BSD / *Solaris / Android 
Newsgroups: comp.lang.ada 

For a long time, support for Ada was poor 
to non-existent for the four major BSD 
platforms of FreeBSD, NetBSD, 
DragonFlyBSD, and OpenBSD. 
GNAT would not build from source, 
although FreeBSD i386 was pretty close. 
Over the last year, I've developed a 
substantial set of patches and now GNAT 
from GCC-4.6 passes the entire ACATS 
and gnat.dg testsuite without failure on 
FreeBSD, DragonFlyBSD, and NetBSD 
on both the AMD64 and i386 platforms.  
The version is called "GNAT-AUX" and 
it also builds on OpenBSD with only a 
single failure the same two platforms. 
Three of the BSDs have brand new Ada 
software in the package/ports system. I 
would like to give many thanks to Wen 
Helping for his extensive testing and 
tweaking of the following software (just) 
now available in the FreeBSD ports 
system: 
lang/gnat-aux       [GNAT compiler based 
                               on gcc-4.6] 
devel/gps           [GNAT Programming  
                           Studio] 
devel/gprbuild-aux  [GPRBuild for  
                                  GNAT-AUX] 
devel/gnatpython    [Needed for AWS test  
                                 suite] 
textproc/xmlada     [XML library needed  
                                by GPS and AWS] 
x11-toolkits/gtkada [gtk bindings needed  
                                 by GPS] 
www/aws             [Ada Web Server] 
I would like to extend the same gratitude 
to Matthias Drochner who also spent an 
incredible effort bringing the same 
packages to NetBSD and DragonFlyBSD 
through their mutual package system 
"pkgsrc": 
lang/gnat-aux 
devel/gps 
devel/gprbuild-aux 
devel/gnatpython 
textproc/xmlada 
x11/gtkada 
www/aws 
Progress about Ada support the *BSD and 
*Solaris is found at the 
http://www.dragonlace.net web site. 
There's a blog/RSS feed there, and we've 
started a mailing list that people can use 
to talk about any of the projects they may 
have interest in. 
I've also successfully built GNAT-AUX 
which passes flawlessly on OpenSolaris. I 
also appreciate the Solaris-based 
Operating system, so support for Illumos 
based systems will likely arrive in the 
future. It's not on my immediate priority 
list, but maybe interest from others will 
affect that. 



Ada-related Tools 73  

Ada User Journal Volume 32, Number 2, June 2011 

OPENBSD 
======= 
As previously mentioned, GNAT-AUX 
builds and performs seemingly just fine 
on OpenBSD, already passing almost 
every test. However, I do not plan on 
creating any Ada ports for OpenBSD. 
There appears to be zero interest for Ada 
ports for OpenBSD, even from the Ada 
users I know that are fans of OpenBSD. 
That said, anybody can just copy the 
Makefiles from FreeBSD to tweak them 
for OpenBSD. I won't do it, but I'm happy 
to give advise to anyone else that wants to 
tackle this. 
DRACO 
===== 
A long-term project of mine is to graft the 
GNAT front end of GCC to LLVM by 
replacing the "GiGi" module. The 
resulting native Ada compiler for LLVM 
will be called DRACO. I've spent a fair 
amount of time on this in the past and 
currently the project is mothballed, but 
not for forever. 
ANDROID 
======= 
I've recently built a GNAT-AUX cross-
compiler for Android, and verified that 
helloworld runs on the Android SDK 
emulator. I'm looking to buy a 
Honeycomb Android tablet. After that I'll 
look to fully test GNAT-AUX on the 
platform and hopefully blaze the trail for 
creating native Ada applications for 
Android devices. 
There are other projects brewing. As 
appropriate, details will appear on 
DragonLace. If you have interest in any of 
these projects aimed at *BSD, *Solaris, or 
Android platforms, then feel free to help 
kick off use of the DragonLace mailing 
lists and possibly contribute to some of 
these projects. If nothing else, consider 
that no less than 3 BSD platforms are now 
excellent Ada development environments! 
[…] 
From: John Marino 

<dragonlace.cla@marino.st> 
Date: Wed, 27 Apr 2011 11:23:11 -0700 

PDT 
Subject: Ann: GNAT-AUX upgrade in 

*BSD, includes C++ now 
Newsgroups: comp.lang.ada 
GNAT-AUX is heavily patched version 
of GCC 4.6 which builds perfectly on 
FreeBSD, NetBSD, and DragonFlyBSD 
among other platforms. 
The first versions published to FreeBSD 
ports and NetBSD pkgsrc were pre-
release. GCC 4.6.0 was released on 25 
March, so GNAT-AUX has been synced 
to this version. In addition, the C++ 
language is built by default, although this 
can be switched off. 

The FreeBSD port was published today. 
The NetBSD/DragonFlyBSD pkgsrc 
package will probably be published 
within a week as the committer has been 
busy traveling. 
In any case, if you have multiple language 
(Ada,C,C++) projects and use *BSD, then 
you definitely want to get this new 
version. The next release of GNAT-AUX 
will coincide with GCC 4.6.1 release. 
[…] 
[See also "Ada support in *BSD 
distributions" in AUJ 32-1 (Mar 2011), 
p.13 and "GNAT AUX ported to 
Android" in the same AUJ issue, p.10  
—mp] 

Zip-Ada v.40 
From: Gautier de Montmollin 

<gdemont@users.sourceforge.net> 
Date: Wed, 2 Mar 2011 01:51:48 -0800 PST 
Subject: Ann: Zip-Ada v.40 
Newsgroups: comp.lang.ada 
Hello! 
A new version of the Zip-Ada library,  
@ http://unzip-ada.sf.net/ , is out. 
Latest changes are: 
- New package Zip.Compress.Deflate, 

with a first (weak but straightforward) 
compression technique for the Deflate 
format - more to come! 

- Some improvements in the ReZip and 
UnZipAda tools 

Zip-Ada is a library for handling, 
decompressing and creating Zip archives. 
Some features: 
- full sources are in Ada (no binding) 
- decompression for all Zip formats up to 

BZip2 
- compression for all Zip formats up to 

Deflate 
- unconditionally portable 
- input and output can be any stream (file, 

buffer,…) for archive creation as well as 
data extraction. 

- task safe 
- endian-neutral 
URL: http://unzip-ada.sf.net/ 
The zipada40.zip archive contains: 
- The full library sources inside one 

directory, Zip_Lib, in pure Ada 95+ 
- Some command-line demo / tools: 
  o ZipAda, a zipping tool 
  o UnZipAda, an unzipping utility 
  o Comp_Zip, compares two Zip files 
  o Find_Zip, searches a text string 

through contents of a Zip file 
  o ReZip.adb, optimizes compression of 

Zip archives 

[see also "Zip-Ada v.38" in AUJ 31-1 
(Mar 2010), p.12 —mp] 

Excel Writer v.07 
From: Gautier de Montmollin 

<gdemont@users.sourceforge.net> 
Date: Sun, 6 Mar 2011 07:22:57 -0800 PST 
Subject: Ann: Excel Writer v.07 
Newsgroups: comp.lang.ada 
Hello! 
There is a new release of Excel Writer. 
What's new: 
- Cell merging on a row has been 

implemented, at least in a very light way 
- Some unexpected display of built-in 

numeric formats (%'s) on some versions 
of Excel with some language settings 
has been fixed 

URL for download:  
http://excel-writer.sf.net 
[…] 
[see also "Excel Writer v.05" in AUJ 31‑
1 (Mar 2010), p.13 —mp] 

AXMPP, an XMPP 
implementation for Ada 
From: coopht <coopht@gmail.com> 
Date: Mon, 7 Mar 2011 13:32:25 -0800 

PST 
Subject: Announce: AXMPP library. XMPP 

protocol implementation for Ada. 
Newsgroups: comp.lang.ada 
Hi all. I'm pleased to announce the first 
release of AXMPP library. 
AXMPP is an implementation of the 
XMPP protocol for the Ada programming 
language. 
The first release of AXMPP library - 
AXMPP-0.0.1 includes the following 
features: 
- Secure connection support with agnutsl 

(ada-binding to gnutls) library. 
- Base XMPP protocol implementation: 

o Roster management support. 
o Messaging support. 
o Multi-user chat support. 
o Presence support. 
o Resource management support. 
o Raw IQ Support 

- Version extension support. 
http://adaforge.qtada.com/ 
cgi-bin/tracker.fcgi/axmpp 

Storage pool with bindings 
to Apache Runtime Pools 
library 
From: Brad Moore 

<brad.moore@shaw.ca> 
Date: Thu, 24 Mar 2011 08:00:04 -0600 



74  Ada-related Tools 

Volume 32, Number 2, June 2011 Ada User Journal 

Subject: ANN: Storage pool for Ada 2005 
with bindings to Apache Runtime Pools 
library 

Newsgroups: comp.lang.ada 
This is the initial release of a storage pool 
for Ada 2005 called Deepend, that binds 
to the Apache Runtime Pools library. 
Key features 
- Pool may deallocate all storage all at 

once, rather than having to perform 
Unchecked_Deallocation one object at a 
time. 

- No need to call 
Unchecked_Deallocation with this pool. 
It is essentially a NO-OP. 

- Provides Subpool capabilities, where a 
pool object may be a subpool of another 
pool object. The lifetime of the subpool 
object extends to the lifetime of the 
ultimate top-level pool object. Subpools 
may in turn also have subpools. 

- Fast storage management, should be 
more efficient than garbage collection 
strategies used in other languages. 

The latest stable release and older releases 
may be downloaded from; 
https://sourceforge.net/projects/ 
deepend/files/ 
For those who want the current 
development versions of the source they 
can download using git  
(http://git-scm.com/) by issuing the 
following commands 
mkdir sandbox 
cd sandbox 
git clone 
git://deepend.git.sourceforge.net/gitroot/ 
deepend/deepend 
The current development version typically 
will correspond to the latest stable release, 
but may at times be unstable when new 
features are being worked on. 
Low-level Bindings to the Apache 
Runtime Pools library were recently used 
for a submission to the Computer 
Language Benchmarks game, binary tree 
benchmark, and moved Ada into the 
number 2 spot behind C. On my machine, 
the Ada version actually runs 10% faster 
than the C version, but for some reason 
the benchmark has C ahead of Ada. 
It may be that the number of worker 
threads isn't tuned correctly for the 
benchmark hardware, or compiler version 
differences, or other differences related to 
the target platform. 
See 
http://shootout.alioth.debian.org/u64q/ben
chmark.php?test=binarytrees&lang=all 
Although the submission code does not 
use Deepend, the submission code has 
been reworked to use deepend to see if 
performance is impacted by using Ada's 
storage pool mechanism, and no 

noticeable performance impacts were 
found. 
From: Brian Drummond 

<brian_drummond@btconnect.com> 
Date: Thu, 24 Mar 2011 15:59:48 +0000 

UTC 
Subject: Re: ANN: Storage pool for Ada 

2005 with bindings to Apache Runtime 
Pools library 

Newsgroups: comp.lang.ada 
[…] 
Great work, and certainly blows the doors 
off my puny efforts! 
You may be right about tuning the 
number of threads; on my (AMD 
Phenom) system, my version (#3) gave 
the same runtime for 4 or 8 tasks, but on 
the test system (Intel Q6600) 8 tasks was 
about 10% slower than 4. (The memory 
footprint was doubled, suggesting 
memory or cache limitations on the Intel 
system). 
It may be worth posting the Deepend 
version - either there, or is there a place 
on Rosetta for it? - as a demonstration of 
the flexibility of Ada's storage pools. 
From: Brad Moore 

<brad.moore@shaw.ca> 
Date: Thu, 24 Mar 2011 15:25:44 -0600 
Subject: Re: ANN: Storage pool for Ada 

2005 with bindings to Apache Runtime 
Pools library 

Newsgroups: comp.lang.ada 
[…] 
Thanks for your version also, in 
particular, the output generation from 
your version saved me from having to 
fiddle around with getting the output to 
come out right. 
I actually set the number of workers to 5, 
which was a bit surprising to me. I believe 
there are 9 iterations, which is why the 
number of workers doesnt come out to an 
even number. On my system, an AMD 
Quadcore, 5 workers gave me the best 
time. I was thinking 9 would have been 
the best number. 
It may be that 4 is a better number on 
their machine. I should maybe ask the 
maintainers of the benchmarks to try 
running with 4 to see if that runs any 
better. 
I was thought about posting the Deepend 
version, (there are actually two versions, 
one that uses nested access types that 
relies on Ada's ability to clean up objects 
when access types get finalized, using the 
new operator, and the second version that 
uses calls to Deepend's generic allocate 
procedure that lets you use a single access 
type with different pool objects. The 
reason I decided against posting the result 
was more that the one that was there 
involves less source code, and might be 
better for language comparisons. 
I'm not aware of Rosetta. I'll see if I can 
find that site. 

From: Brad Moore 
<brad.moore@shaw.ca> 

Date: Thu, 24 Mar 2011 23:25:53 -0600 
Subject: Re: ANN: Storage pool for Ada 

2005 with bindings to Apache Runtime 
Pools library 

Newsgroups: comp.lang.ada 
[…] 
Actually, thinking about it some more, it 
makes sense to me that 5 workers would 
be the best choice for 9 iterations and 4 
processors. 
At t=0, 5 workers should proceed at the 
same rate, (assuming that processor 
affinity is not set on the tasks). The 5 
workers should migrate as needed 
between the 4 processors to ensure fair 
sharing of the processing resources. 
Four of the workers will be given two 
iterations, while one will be given a single 
iteration. 
The worker with a single iteration will 
finish first. At that time the other workers 
should have roughly one full iteration left. 
At that point there are four workers with 
even work loads, and four processors. 
The workers proceed until all the work is 
complete, and all processors were fully 
loaded for the entire processing. 

KDF9 emulator in Ada 2005 
From: Bill Findlay 

<yaldnif.w@blueyonder.co.uk> 
Date: Sat, 16 Apr 2011 01:44:34 +0100 
Subject: KDF9 emulator in Ada 2005 
Newsgroups: comp.lang.ada 
The first public release of ee9, my KDF9 
emulator, is now available via: 
http://www.findlayw.plus.com/KDF9/ 
#Emulator 
The zip file includes a Mac OS X binary, 
and full Ada 2005 source code. 
Courtesy of David Holdsworth, a 
Linux/FreBSD binary is available at: 
http://sw.ccs.bcs.org/KDF9/ee9.zip 
(Many thanks to Simon Wright for 
building a 64-bit GNAT for MacOS X 
last year, which rescued me from an over-
hasty adoption of Snow Leopard.) 
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de> 
Date: Sat, 16 Apr 2011 11:08:44 +0200 
Subject: Re: KDF9 emulator in Ada 2005 
Newsgroups: comp.lang.ada 
[…] 
To see a computer of roughly my own age 
having used highlighting, in color, 
making form follow function, and serving 
intuition ("it's that simple"…) is amazing. 
I apologize if this is its least noteworthy 
feature. 
It is spectacular.



Ada-related Products 75  

Ada User Journal Volume 32, Number 2, June 2011 

It's got separate stacks for separate 
purposes! 
Another of the few insights into the 
history of wonderful inventions that 
market forces have not improved. Thank 
you! 
From: Bill Findlay 

<yaldnif.w@blueyonder.co.uk> 
Date: Sat, 16 Apr 2011 13:29:00 +0100 
Subject: Re: KDF9 emulator in Ada 2005 
Newsgroups: comp.lang.ada 
[…] 
You're welcome! KDF9 does seem to 
inspire that sort of admiration in people, 
Even 50 years after it was designed. 8-) 
From: Bill Findlay 

<yaldnif.w@blueyonder.co.uk> 
Date: Thu, 21 Apr 2011 03:01:28 +0100 
Subject: ee9 available in Snow Leopard, 

PPC Tiger and Intel Linux ports. 
Newsgroups: comp.lang.ada 
See 
http://www.findlayw.plus.com/KDF9/ 
emulation/emulator.html 
Mike Hore, who built the PPC version for 
me, said: 
"I must say this whole process went 
amazingly smoothly. (Having ported a 
few other projects in my time :-) I must 
have a closer look at Ada." 

Ahven 1.9 
From: Tero Koskinen's blog 
Date: Tue, 19 Apr 2011 
Subject: Ahven 1.9 released 
URL: http://tero.stronglytyped.org/ 

2011/04/ahven-19 
I finally managed to release Ahven 1.9 
[…]  
[http://sourceforge.net/projects/ahven/ 
files/ahven/Ahven%201.9/ahven-
1.9.zip/download —mp] 
This is a small bug fix release only to 
allow Ahven compile with GNAT GPL 
2010 also. 
If everything goes as planned, the next 2.0 
will include new features, like timeouts, 
improved documentation, and possibly an 
ability to skip some tests. 
[see also "Ahven 1.8" in AUJ 31‑3 (Sep 
2010), p.159 —mp] 

Ada-related Products 
AdaCore — GNAT Pro 6.4 
From: AdaCore Press Center 
Date: Tue, 01 Mar 2011 
Subject: AdaCore Releases GNAT Pro 6.4 
URL: http://www.adacore.com/2011/03/01/ 

adacore-releases-gnat-pro-6-4/ 
Ada development environment brings 
new features, platforms, and tool support 

NEW YORK, PARIS and 
NUREMBERG, Germany, March 1, 2011 
– Embedded World Conference – 
AdaCore, a leading supplier of Ada 
development tools and support services, 
today announced the release of a new 
major version of its GNAT Pro 
development environment. GNAT Pro 
6.4, the latest annual release of the 
company’s flagship product, evidences 
AdaCore’s continuing commitment to 
regularly scheduled technology updates 
with new features and improvements 
(many based on user suggestions), support 
for new platforms, and integration with 
new tools. As with all AdaCore products, 
GNAT Pro is Freely-Licensed Open 
Source Software (FLOSS). 
“In the FLOSS world, you can’t just sit on 
your hands, do nothing, and expect to 
succeed,” said Robert Dewar, AdaCore 
President and CEO. “You have to 
constantly innovate. One of the rewarding 
things about AdaCore is that we have 
been able to keep up a high pace of 
exciting innovation. Our regular update 
release of GNAT Pro 6.4, which marks 
the 10th anniversary of our regular release 
schedule, is no exception. This is a major 
update of the product, including 
significantly improved performance and 
major new features.  
When a new version of Ada is on the way, 
in this case Ada 2012, you don’t have to 
wait for the formal release to try it out. 
GNAT Pro 6.4 already has all the 
important stuff from Ada 2012, in 2011!” 
The new GNAT Pro 6.4 features include 
the following enhancements: 
- Ada 2012 preview, including most of the 

currently finalized Ada Issues (AIs) and 
in particular conditional/case/ 
parameterized/quantified expressions, 
aspect specifications (including 
pre/postconditions and type invariants), 
subtype predicates, and improved 
support for multiprocessors 

- Improved code generator based on GCC 
4.5 

- New switch to generate cross reference 
information for C and C++ 

- More detailed exception messages 
- New rules for gnatcheck (coding 

standard enforcement tool) 
- New warnings 
- Better debugger performance 
- More flexible and more efficient project 

manager in gnatmake/gprbuild 
- More aggregates recognized as static 
- Support for GNATbench 2.5 Integrated 

Development Environment, which will 
work with a new version of Eclipse 

GNAT Pro 6.4 is now available for a new 
embedded platform, Wind River’s 
VxWorks MILS 2.1.x, and for updated 
versions of VxWorks 6 Cert (6.6.2) and 

SYSGO’s ElinOS (5.1). On the native 
side, GNAT Pro 6.4 supports Red Hat 
Enterprise Linux 6 on x86 (32- and 64-
bit). 
New tools now supported by GNAT Pro, 
and available separately, include 
GNATemulator and GNATcoverage. 
Used together, these are especially useful 
for High-Integrity applications where 
safety certification is required, such as 
DO-178B for avionics. The tools’ 
supported architectures include PowerPC 
and LEON. 
GNATemulator, based on QEMU 
technology, offers an efficient and 
flexible emulator solution for Ada, C and 
C++ applications. It allows developers to 
compile code directly for their target 
architecture and run it on their host 
platform, through an approach that 
translates from the target object code to 
native instructions on the host. 
The GNATcoverage tool, known earlier 
as XCov, performs coverage analysis on 
both object code (including branch 
coverage) and source code. Source code 
analysis includes both decision coverage 
and Modified Condition/Decision 
Coverage (MC/DC). The tool does not 
require instrumentation of the executable 
code. Instead, the tests can be run either 
on a version of GNATemulator 
instrumented for collecting coverage data, 
or directly on a board with a suitable 
debugger interface. 
About AdaCore 
Founded in 1994, AdaCore is the leading 
provider of commercial software solutions 
for Ada, a modern programming language 
designed for large, long-lived applications 
where safety, security, and reliability are 
critical.  
AdaCore’s flagship product is the GNAT 
Pro development environment, which 
comes with expert on-line support and is 
available on more platforms than any 
other Ada technology. AdaCore has an 
extensive worldwide customer base;  
see 
http://www.adacore.com/home/company/
customers/ for further information. 
Ada and GNAT Pro continue to see 
growing usage in high-integrity and 
safety-certified applications, including 
commercial aircraft avionics, military 
systems, air traffic management/control, 
railway systems and medical devices, and 
in security-sensitive domains such as 
financial services.  
[…] 

AdaCore — CodePeer 2.0 
From: AdaCore Press Center 
Date: Tue, 12 Apr 2011 
Subject: AdaCore Releases Major New 

Version of CodePeer Source Code 
Analysis Tool 



76  Ada-related Products 

Volume 32, Number 2, June 2011 Ada User Journal 

URL: http://www.adacore.com/ 
2011/04/12/codepeer2/ 

More efficient, generates fewer “false 
positive” messages 
NEW YORK and PARIS, April 12, 2011 
– AdaCore, a leading supplier of Ada 
development tools and support services, 
today announced the release of CodePeer 
2.0, the advanced source code analysis 
tool that helps developers detect potential 
run-time and logic errors in Ada 
programs. CodePeer 2.0 also comes with 
a number of complementary static 
analysis tools common to the GNAT Pro 
technology – a coding standard 
verification tool (GNATcheck), a 
program metric generator (GNATmetric), 
a semantic analyzer, and a document 
generator that can be invoked through the 
GNAT Programming Studio (GPS) 
Integrated Development Environment 
(IDE). 
CodePeer 2.0 introduces many 
enhancements to the technology, most 
driven by customer feedback, including: 
- Support for subprogram calls via 

pointers. 
- Much more efficient intermediate format 

(SCIL) generation, with faster 
processing and simpler (and fewer) 
SCIL files. In addition, CodePeer 
requires fewer partitions by default to 
perform an analysis. 

- Support for parallel SCIL generation on 
multiple cpus/cores, via the gnatmake “-
j” switch. 

- New, “useless self assignment” warning 
when an assignment does not modify the 
destination variable. 

- Fewer “false positives” (false alarms). 
- Improved integration with the GPS IDE. 
“CodePeer 2.0 brings maturity to our 
static analyzer technology and allows 
processing of large applications easily, 
taking particular advantage of multi-core 
computers,” said Arnaud Charlet, 
CodePeer Project Manager at AdaCore. 
“CodePeer is not just a bug finding tool; 
its ability, in particular, to generate and 
display annotations in a human readable 
form is a unique capability.” 
Webinar 
A webinar introducing the CodePeer 2.0 
features will be presented by Tucker Taft 
(SofCheck) on May 5, 2011, at 11:00 am 
(EDT) / 5:00 pm (GMT). For more 
information, or to register, please visit 
http://www.adacore.com/home/gnatpro/w
ebinars/. 
About CodePeer 
Serving as an efficient and accurate code 
reviewer, CodePeer identifies constructs 
that are likely to lead to run-time errors, 
such as buffer overflows, and it flags 
legal, but suspect, code typical of logic 
errors.  

Going well beyond the capabilities of 
typical static analysis tools, CodePeer also 
produces a detailed analysis of each 
subprogram, including pre- and post-
conditions. Such an analysis makes it 
easier to find potential bugs and 
vulnerabilities early: if the implicit 
specification deduced by CodePeer does 
not match the component’s requirements, 
a reviewer is alerted immediately to a 
likely logic error. CodePeer can be used 
both during system development − to 
prevent errors from being introduced, or 
as part of a systematic code review 
process to dramatically increase the 
efficiency of human review − and 
retrospectively on existing code, to detect 
and remove latent bugs. 
CodePeer was developed jointly by 
AdaCore and SofCheck. 

Inspirel — YAMI4 1.3.0 
From: Maciej Sobczak 

<maciej@msobczak.com> 
Date: Tue, 8 Mar 2011 05:34:34 -0800 PST 
Subject: YAMI4 1.3.0 released 
Newsgroups: comp.lang.ada 
I am pleased to announce that the 1.3.0 
version of YAMI4 is available for 
download: 
http://www.inspirel.com/yami4/ 
This new release is an important 
milestone and includes a rich Ada-
oriented content: 
The Ada-Ravenscar variant of the core 
interface was introduced for systems that 
expect compliance with the Ravenscar 
language profile. 
The original API was retained as well - 
the two versions are very similar and 
differ only in those places where the 
original interface violated the restrictions 
on implicit use of dynamic memory. 
Three central services were added to 
complement the peer-to-peer capabilities 
of the YAMI4 library. Contrary to some 
other messaging solutions, these services 
are not necessary components, but are 
provided as optional utilities that extend 
the YAMI4 suite with wider set of 
performance and deployment 
characteristics: 
1. Name Server that helps to build easy to 

configure and manageable systems. 
2. Message Broker that supports heavy-

duty publish-subscribe messaging with 
very powerful and flexible message 
routing engine. 

3. Cache that allows easy data sharing 
between nodes in a single distributed 
system. 

All three central services were 
implemented in Ada on top of the Ada-
Ravenscar interface. The reason for this 
was to demonstrate that the provided API 
is functionally complete and supports 

efficient implementation of non-trivial 
distributed systems. The binary versions 
of these services are provided for 
Windows and Linux as turn-key 
components for instant deployment. 
Some minor tweaks have been applied to 
Makefiles and .gpr files to ensure proper 
compilation with recent GNAT versions 
and to include FreeBSD in the set of 
supported systems. 
Those programmers who work with 
multi-language systems will also 
appreciate the complete .NET 
implementation in C# - the principal 
intent of this library is to integrate 
Windows-oriented GUI applications 
written for the .NET framework with 
other components in a single distributed 
system. 
Of course, the YAMI4 book was revised 
to cover all these new features. 
From: Maciej Sobczak 

<maciej@msobczak.com> 
Date: Tue, 8 Mar 2011 12:56:49 -0800 PST 
Subject: Re: YAMI4 1.3.0 released 
Newsgroups: comp.lang.ada 
In addition to the original announcement, 
I have the pleasure to post the following: 
The tutorial on YAMI4 (or rather the Ada 
perspective of the whole suite) will be 
given at the Ada Connection 2011 
conference: 
http://conferences.ncl.ac.uk/ 
adaconnection2011/tutorials/T3.html 
I would like to kindly invite all those Ada 
programmers who will attend the 
conference and who are interested in 
distributed systems.  
Don't hesitate to contact me in advance if 
you have any related questions. 
[see also "Inspirel — YAMI4 v. 1.2.1 and 
1.2.2" in AUJ 32-1 (Mar 2011), p.15  
—mp] 

XGC Technology — LEON 
Ada 1.8 
From: XGC website 
Date: Tue, 10 May 2011 [fetched] 
Subject: LEON Ada Version 1.7 -- now 

updated to 1.8 
URL: http://www.xgc.com/news/news.html 
We announce the first version of LEON 
Ada. Based on ERC32 Ada, this is a 
restricted Ada 95 compilation system for 
the new LEON microprocessor from 
ESTEC and Atmel. Two spacecraft 
products, the Atmel AT695E and AT695F 
are explicitly supported. See the technical 
summary.  
[http://www.xgc-tek.com/ 
manuals/pdf/leon-ada-ts.pdf —mp] 
An evaluation copy of LEON Ada is 
available now.



Ada Inside 77  

Ada User Journal Volume 32, Number 2, June 2011 

Ada and GNU/Linux 
Binding to ncurses available 
in Debian unstable 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Sun, 17 Apr 2011 00:27:53 +0200 
Subject: Ada in Debian: libncursesada -- 

Ada binding for the ncurses text user 
interface library 

Newsgroups: comp.lang.ada 
Thanks to the initiative and efforts of 
Nicolas Boulenguez, I am happy to 
announce that the Ada binding to ncurses 
is now part of Debian unstable, with the 
same level of quality as all other Ada 
packages. 
The following packages are now but an 
"aptitude install" away: 
 libncursesada-doc - Ada binding to the 

ncurses text interface library: 
documentation 

 libncursesada1 - Ada binding to the 
ncurses text interface library: shared 
library 

 libncursesada1-dbg - Ada binding to the 
ncurses text interface library: debug 
symbols 

 libncursesada1-dev - Ada binding to the 
ncurses text interface library: 
development 

These packages add to the already 
extensive complement of libraries present 
in Debian for the Ada developer. 

SPARK GPL 2010 available 
in Debian unstable 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Tue, 19 Apr 2011 05:19:05 -0700 

PDT 
Subject: SPARK on Debian! 
Newsgroups: comp.lang.ada 
It is my pleasure once again to announce a 
new addition to Debian relevant to Ada 
programmers.  
Eugeniy Meshcheryakov, a Debian 
Developer, has completed the initial work 
in packaging the SPARK GPL 2010 
toolset for Debian with help from Florian 
Schanda of Altran Praxis. The following 
new package is therefore available in 
Debian unstable: 
spark - SPARK programming language 
toolset 
Please test and report any problems you 
find in the Debian bug tracking system. 
Note that Eugeniy does not follow 
comp.lang.ada but he is reachable on the 
mailing list debian-ada@lists.debian.org, 
where highly detailed and technical 
discussions are welcome. 

From: Rod Chapman 
<roderick.chapman@googlemail.com> 

Date: Tue, 19 Apr 2011 11:04:19 -0700 
PDT 

Subject: Re: SPARK on Debian! 
Newsgroups: comp.lang.ada 
Nice work guys. I'm very pleased to see 
the GPL edition of SPARK reach the 
Debian community. 

New Debian maintainer and 
Debian packages 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Tue, 10 May 2011 01:31:57 -0700 

PDT 
Subject: Nicolas Boulenguez is a new 

Debian Maintainer 
Newsgroups: comp.lang.ada 
Hello 
After Xavier Grave[1], Stephen Leake[2], 
Reto Buerki[3], it is my pleasure to 
announce the continued growth of the 
Ada in Debian team. Nicolas Boulenguez 
has been accepted as an official Debian 
Maintainer and has already made his first 
upload. Nicolas has been my Padawan for 
more than a year now and has adopted the 
libtexttools package from me as well as 
added new ones. He currently maintains: 
libgmpada -- Ada binding to the GNU 

MultiPrecision library* 
libncursesada -- Ada binding to the 

ncurses text interface library* 
libtexttools -- Ada and C++ library for 

writing console applications 
oolite -- space sim game, inspired by Elite 
Nicolas is also the upstream author of 
libgmpada. The packages marked * are 
new in Debian and would not be there at 
all if it were not for Nicolas.  
In addition, Nicolas is a member of the 
team that maintains: 
gnat-gps -- The GNAT Programming 

System - advanced IDE for C and Ada 
Nicolas has also made contributions to the 
packaging of GNAT, the Ada compiler. 
Now that he is a Debian Maintainer, he 
has the right to upload new versions of his 
packages to the Debian archive without 
supervision from a sponsor. 
In time, I do hope he will grow into a full 
Debian Developer with voting rights, the 
right to upload any package and to 
sponsor packages for his own Padawans :) 
[1] http://lists.debian.org/ 

   debian-ada/2010/03/msg00000.html 
[2] http://lists.debian.org/ 

    debian-ada/2010/04/msg00004.html 
[3] http://lists.debian.org/ 

    debian-ada/2010/05/msg00000.html 
 
 

Ada Inside 
Ada used for the 
development of the nEUROn 
Unmanned Aircraft 
From: AdaCore Press Center 
Date: Tue, 1 Mar 2011 
Subject: EADS CASA Selects AdaCore 

Toolset for nEUROn Unmanned Aircraft 
URL: http://www.adacore.com/ 

2011/03/01/neuron-unmanned-aircraft/ 
GNAT Pro supports high-integrity 
systems on European unmanned air 
combat vehicle 
NEW YORK, PARIS and 
NUREMBURG, Germany, March 1, 2011 
– Embedded World Conference – 
AdaCore, provider of tools and expertise 
for mission-critical, safety-critical, and 
security-critical software development, 
today announced that EADS CASA is 
using the GNAT Pro High-Integrity 
Edition to implement the data exchange 
and air-to-ground data links systems for 
the nEUROn Unmanned Combat Air 
Vehicle (UCAV) demonstrator. The 
GNAT Pro High-Integrity Edition, which 
encompasses AdaCore’s development 
environment and accompanying support 
services, helps develop Ada systems that 
need to achieve the highest levels of 
safety and/or security certification. EADS 
CASA selected AdaCore and GNAT Pro 
based on the Ada programming 
language’s suitability for developing 
critical systems and AdaCore’s previous 
experience with high-integrity projects, 
including the Eurofighter, MRTT, Airbus 
A400M, and Barracuda projects. 
[…] 
The delta wing nEUROn UCAV project 
began in 2006 and is a technology 
demonstrator for future European combat 
aircraft. It is one of the largest and most 
advanced unmanned air vehicles in the 
world, with a similar airframe size to that 
of some of the existing  fighter aircrafts. 
Led by Dassault Aviation of France, the 
nEUROn project is a pan-European co-
operation among EADS CASA (Spain), 
HAI (Greece), Saab (Sweden), RUAG 
(Switzerland), Alenia Aeronautica (Italy), 
and Thales (France). Test flights will take 
place in France, Sweden and Italy. The 
maiden flight is scheduled for mid-2012. 
EADS CASA, which began software 
development planning at the end of 2007, 
is responsible for the nEUROn wing, 
ground control, and data link segments of 
the project. The company selected 
AdaCore and the GNAT Pro High 
Integrity Edition for DO-178B to develop 
the critical ground stations software and 
the data link management software, which 
will run on the Wind River VxWorks 653 
Platform.  



78  Ada Inside 

Volume 32, Number 2, June 2011 Ada User Journal 

The finished project will create over 
500,000 lines of code. 
With the GNAT Pro High-Integrity 
Edition for DO-178B, the EADS CASA 
development team benefits from a 
complete toolsuite that simplifies 
compliance with the various certification 
levels of the DO-178B avionics standard 
on the same hardware. This includes code 
standard verification (GNATcheck), static 
stack size analysis (GNATstack), and a 
choice of several certifiable Ada run-time 
libraries.  
Smooth and industry-proven integration 
with Wind River’s Workbench platform 
means an environment oriented towards 
the needs of the safety-critical industry, 
whether the application is developed in 
Ada 83, Ada 95, Ada 2005, or a 
combination of Ada, C or C++. 
[…] 

Use of Ada in Singo's Blaze 
call management system 
From: AdaCore Press Center 
Date: Tue, 19 April 2011 
Subject: AdaCore Helps Singo Solution 

Implement Scalable, Robust Call 
Management System 

URL: http://www.adacore.com/ 
2011/04/19/singo/ 

Improved quality, reliability, and 
performance in new Blaze product 
NEW YORK and PARIS, April 19, 2011 
– AdaCore, a leading supplier of Ada 
development tools and support services, 
today announced that Singo Solution, 
Inc., a global provider of specialized call-
center solutions, selected the Ada 
programming language and GNAT Pro 
Development Environment to build Blaze 
– one of the largest, most innovative call 
management systems. Blaze is a 
comprehensive, scalable, web-enabled 
VoIP dialing platform that manages 
customer interactions via phone lines and 
a variety of other electronic methods of 
communication. The system is already 
being used in both traditional and non-
traditional call center applications around 
the world, including healthcare, cable and 
telecommunications, utilities, insurance 
and many others. 
When work started on the Blaze product, 
Singo realized that its own C-based call 
detection algorithm, and the many 
complicated contact management 
functions, were too time consuming and 
costly to maintain, and that enhancing 
them would not be practical, so the 
company decided to start from scratch. 
They knew that the programming 
language choice was critical, and decided 
early on that Ada was the best available 
language for producing code with the 
expressiveness, speed, and – most 
importantly – the reliability needed for a 
call center system of Blaze’s magnitude. 

“We know we made the right decision in 
choosing Ada, because it is simply more 
robust than any other language available,” 
said Sieu Ngo, President and CEO, Singo 
Solution, Inc. “The code is efficient, but it 
is also extremely readable and 
maintainable. It helped us get our code 
done right the first time.” 
As a strongly typed language, Ada detects 
at compile time many errors that would 
only be found during testing and 
integration in a language such as C. This 
allows developers to spend their time 
enhancing the core software with new 
features and functions, versus trying to 
figure out why things aren’t working. One 
of Ada’s distinguishing features is its 
support for concurrency. 
Concurrency is inherent in the Singo 
Blaze call center software logic: many 
different calls come in, are routed, and are 
handled all at the same time.  
Singo found Ada’s tasking a natural 
solution for the system’s concurrency 
requirements, and was able to achieve key 
objectives of efficiency and reliability. 
- Efficiency 
Ada’s tasking implementation 
automatically takes advantage of multi-
core platforms.  
As the number of cores increases, the 
operating system can automatically 
exploit the additional processing power 
by allocating tasks to the new cores, with 
a resultant speedup in system 
performance. 
-Reliability 
With Ada’s tasking model, data 
corruption errors can be prevented by 
defining the shared data structures as 
protected objects. The Ada tasking 
implementation ensures that when a 
protected object is being modified, this 
operation is executed with mutual 
exclusion. 
To implement the Blaze Call 
Management System, Singo selected 
AdaCore’s GNAT Pro Ada Development 
Environment. The GNAT Pro product 
offers a modern, professional software 
build environment and tool-chain that 
scale up to handle very large systems. 
Most importantly, GNAT Pro is backed 
by expert support services provided by the 
product developers themselves. GNAT 
Pro is available on more native and 
embedded platforms than any other Ada 
environment, and is widely used to write 
applications with the most demanding 
reliability, safety and/or security 
requirements. 
In developing the Blaze system, Singo 
used several AdaCore products that 
complement the GNAT Pro toolset. One 
is the Ada Web Server (AWS) 
technology, which supports development 
of web-based graphical user interfaces 
(GUIs). The new GUI allowed new users 

to be instantly productive where past 
systems almost always required some 
training prior to use. Another AdaCore 
product heavily used in Blaze is PolyOrb, 
which supports CORBA distributed 
communications. Much like the basic 
architecture where Ada tasking can take 
advantage of the number of cores, Blaze 
can handle an increasing number of phone 
lines, nodes within the CORBA 
implementation, without needing to be 
rebuilt. If the number of lines increase as 
a call center grows, new memory can be 
added to the hardware to support new 
nodes.  
Thus Blaze is highly scalable, handling a 
range from just a few call lines to 
upwards of hundreds of thousands if 
required. 
[…] 

Use of Ada in Rockwell 
Collins' new avionics display 
system 
From: AdaCore Press Center 
Date: Mon, 2 May 2011 
Subject: Rockwell Collins Selects GNAT Pro 

for Advanced Avionics Display System 
URL: http://www.adacore.com/ 

2011/05/02/rockwell-avionics-display/ 
GNAT Pro High-Integrity Edition for 
DO-178B used for EFIS/EICAS upgrade 
and modernization 
SAN JOSE, Calif., NEW YORK and 
PARIS, May 2, 2011 – Embedded 
Systems Conference – AdaCore, a leading 
supplier of Ada development tools and 
support services, today announced that 
Rockwell Collins has adopted AdaCore’s 
GNAT Pro High-Integrity Edition for 
DO-178B to implement the Electronic 
Flight Instrument System / Engine 
Indication and Crew Alert System 
(EFIS/EICAS) Interface Unit, model EIU-
7001. These are key components of an 
advanced avionics display system that is 
being deployed on major jet aircraft. 
Rockwell Collins is using the GNAT Pro 
High-Integrity Edition for bare board 
PowerPC ELF as the cross-compilation 
environment for developing this new-
generation software. 
Rockwell Collins selected the GNAT Pro 
tool chain to port the existing Ada 
codebase from the aircraft’s previous 
display system to a modern processor, as 
the most efficient and lowest risk 
approach to system modernization. Using 
the Ada language and GNAT Pro has 
allowed Rockwell Collins to easily 
integrate the proven legacy codebase 
while adding several new features from 
other Rockwell Collins products. By 
using this approach, the company has 
been able to quickly port the existing code 
and get it running on the new platform. 
The GNAT Pro High-Integrity Edition for 
DO-178B development environment 



Ada Inside 79  

Ada User Journal Volume 32, Number 2, June 2011 

includes several run-time libraries that are 
fully certifiable to DO-178B Level A 
requirements. For the EIU-7001display 
system project, Rockwell Collins has 
selected the Zero-Footprint (ZFP) run-
time library, corresponding to a sequential 
Ada subset that eliminates both non-
deterministic and complex language 
features. Use of this clearly-defined 
subset has significantly reduced the 
Rockwell Collins certification effort. 
A core requirement for the display system 
is the ability to run on processors that can 
support the many new features required 
for modern aircraft. The largest part of the 
EIU-7001 display system development 
effort has been the migration of the 
Electronic Flight Instrument System / 
Engine Indication and Crew Alert System 
(EFIS/EICAS) Interface Unit (EIU) to the 
new target processor. The original EIU 
was designed in the late 1980’s using the 
Rockwell Collins AAMP platform. For 
the EIU-7001, significantly more  
processing capability was required to 
support the modern flight deck. The new 
EIU-7001 meets the current display 
system capabilities with spare capacity as 
additional functionality is required in the 
future. 
[…] 

Ada used for the 
development of the Argos 
satellite's payload 
From: AdaCore Press Center 
Date: Mon, 2 May 2011 
Subject: Thales Selects AdaCore Toolset for 

Argos Satellite Project 
URL: 

http://www.adacore.com/2011/05/02/thal
es-argos-satellite/ 

GNAT Pro to be used on high-assurance 
software for global location and data 
collection system 
SAN JOSE, Calif., NEW YORK and 
PARIS, May 2, 2011 – Embedded 
Systems Conference AdaCore, provider 
of tools and expertise for the development 
of mission-critical, safety-critical, and 
security-critical software, today 
announced that Thales Airborne Systems 
has selected the GNAT Pro High Integrity 
Edition to develop onboard instrument 
software for the next generation of the 
Argos satellite project. Argos is a unique, 
satellite-based worldwide location and 
data collection system dedicated to 
studying and protecting the environment. 
In addition to these core tasks, the Argos 
satellite family is also known for its safety 
and security-related applications, 
including boat localization, territorial 
security, and law enforcement. The 
GNAT Pro High-Integrity Edition, which 
encompasses AdaCore’s development 
environment and accompanying support 
services, is focused on Ada systems that 

need to achieve the highest levels of 
safety and/or security certification. 
In its new mission, Argos will face 
several challenges. In particular, Argos-4 
will simultaneously handle three times as 
many transmitters as Argos-3 and provide 
these transmitters with increased 
operational flexibility. Thales chose 
AdaCore because of AdaCore’s ability to 
provide a complete solution that includes 
an efficient development environment 
(GNAT Pro), a LEON 2 emulator 
(GNATemulator), and a code coverage 
tool (GNATcoverage) that does not 
require code instrumentation.  
This combination streamlines the 
development, testing, and validation of 
the software as all these tasks can be 
performed on the host development 
platform. 
Operational since 1978, Argos enables 
scientists across the globe to gather 
information on any object equipped with 
an appropriate transmitter. Messages from 
these transmitters are recorded by a series 
of satellites carrying Argos instruments 
and then relayed to dedicated processing 
centers. 
By measuring temperature, pressure, 
humidity and sea levels, Argos 
transmitters provide invaluable 
information on the planet and Earth’s 
atmosphere. Argos is used for a variety of 
applications, including volcano 
monitoring, ship and expedition tracking, 
fishing management, tracking animal 
migration, and geophysical data 
collection. Begun jointly by France and 
the United States (National Oceanic and 
Atmospheric Administration – NOAA), 
Argos is operated globally by Collecte 
Localisation Satellite (CLS), a subsidiary 
of the French Centre National d’Etudes 
Spatiales (CNES) and Ifremer, the French 
institute of marine research and 
exploration. 
Thales will be using GNAT Pro for 
LEON ELF and the LEON 2 simulation 
platform. The LEON2 processor was 
commissioned by the European Space 
Agency (ESA), and is designed 
specifically for use in satellite systems.  
The 18 month project is expected to be 
completed in mid-2011, and is estimated 
to require approximately 25,000 lines of 
code. The Argos-4 contract is covered by 
the Thales corporate-wide software 
licence with AdaCore. 
[…] 

NIST report on SPARK 
From: AdaCore Press Center 
Date: Mon, 2 May 2011 
Subject: NIST Report Shows SPARK Most 

Suitable Language for Secure 
Programming 

URL: http://www.adacore.com/2011/05/02/ 
spark-nist/ 

SPARK language shown to have fewest 
vulnerabilities 
SAN JOSE, Calif., NEW YORK and 
PARIS, May 2, 2011 – Embedded 
Systems Conference – AdaCore, a leading 
supplier of Ada development tools and 
support services, today announced that the 
SPARK language’s immunity to many 
vulnerabilities found in other languages 
has been corroborated by a recent report 
published by the National Institute of 
Standards and Technology (NIST). This 
report – Source Code Security Analysis 
Tool Functional Specification Version 1.1 
(NIST Special Publication 500-268 v1.1) 
– examines software assurance tools as a 
fundamental resource to improve quality 
in today’s software applications. It looks 
at the behavior of one class of software 
assurance tool: the source code security 
analyzer. Because many software security 
weaknesses are introduced at the 
implementation phase, using a source 
code security analyzer should help reduce 
the number of security vulnerabilities in 
software. 
The report defines a minimum capability 
to help software professionals understand 
how a tool can help meet their software 
security assurance needs.  
The example languages studied are C, 
C++, Java and SPARK. SPARK, 
originally designed by Praxis, is a subset 
of Ada augmented with annotations 
(“contracts”) that assist in automated 
proof of program properties, such as 
freedom from exceptions. The NIST 
report identifies the languages’ 
vulnerabilities. 
 
Vulnerability     Applicable  

   to SPARK 
Range Errors   
   Stack Overflow    No  
   Heap Overflow    No 
   Format String Vulnerability  No  
   Improper Null Termination  No  
API Abuse   
   Heap Inspection    No  
   Often Misused:  
        String Management     No  
Time and State   
   Unchecked Error Condition  No  
Code Quality   
   Memory Leak    No  
   Double Free    No  
   Use After Free    No  
   Uninitialized Variable   No  
   Unintentional Pointer Scaling  No  
   Null Dereference   No  
SPARK was designed to aid in safe and 
secure programming. By preventing 
vulnerabilities it reduces the cost of 



80  Ada Inside 

Volume 32, Number 2, June 2011 Ada User Journal 

developing safe and secure software 
applications, by reducing the time spent in 
finding errors and testing to meet top 
safety and security standards. Such 
reductions are hard to quantify, but this 
report from NIST helps identify the types 
of security flaws that can be guaranteed to 
be prevented when SPARK is used. 
The full report, Source Code Security 
Analysis Tool Functional Specification 
Version 1.1 (NIST Special Publication 
500-268 v1.1), is available on the web via 
the following link:  
http://samate.nist.gov/docs/ 
source_code_security_analysis_spec_ 
SP500-268_v1.1.pdf  
A detailed study on the SPARK language 
and vulnerabilities will be published 
shortly in a separate report, “Software 
Vulnerabilities Precluded by SPARK,” by 
Dr. Joyce L Tokar and co-authors. This 
paper will be presented at the High 
Confidence Software and Systems 
(HCSS) 11th Annual Conference.  
See: http://hcss-cps.org/hcssc.html. 
SPARK Pro, an open source tool set for 
SPARK, is available from AdaCore.  
See: 
http://www.adacore.com/home/products/s
parkpro for more information.  
[…] 

Indirect Information on Ada 
Usage 
[Extracts from and translations of job-ads 
and other postings illustrating Ada usage 
around the world. —mp] 
Job offer [Belgium]: Ada 95 Software 
Engineer 
[…] I am looking for an Ada 95 software 
engineer who will get involved in the 
following: 
- Detailed Software Design. 
- Implementation (design, code & test). 
- Participate in test automation 

preparation and implementation. 
- Writing of documentation mainly of 

technical nature. 
- Participation in on-call service, third 

level (with remote equipment).  
Skills required: 
- Hardware/Platforms: HP-UX, Linux. 
- Communications protocols: knowledge 

of the communication protocols such as 
TCP/IP. 

- Good knowledge of relational databases 
(e.g. Oracle). 

- Mainly Ada. C++ knowledge is an 
advantage, Ada 95 knowledge is an 
advantage. 

- Unix Scripting, Emacs, test tools, 
ClearCase. 

- Object-Oriented Analysis and Design 
(HOOD, Booch, UML, …). 

- Experience with tools such as Rational 
Rose. 

- MOTIF, Windows, GTK.  
You will be able to absorb large amounts 
of complex information. In spite of the 
large degree of abstraction, this is a 
necessary requirement to be able to 
maintain and to implement new 
requirements in a code base of roughly 
1.5 M LoC of Ada. Strong algorithmic 
knowledge and ability to abstract and 
factorize is essential. Being prepared to 
invest in learning about ATFM domain. 
Due to the long learning curve and 
investment needed to get and bring 
somebody to proficient level, it is 
expected the successful candidate will be 
willing to stay quite a long time, i.e. 
years, on the project. Being prepared to 
participate in a third level on-call roster to 
provide application support.  
[…] 
Job offer [Germany]: Hardware/Software 
Integration Engineer 
Skills: 
- Software and Hardware Engineering 
- Integration 
- Good knowledge of Lauterbach Practice 

and Trace command files 
- General Scripting language experience, 

eg Python, Perl, ACL 
Nice to have: 
- MC68020 knowledge 
- Ability to understand Ada and C 

programming languages 
- General Jet Engine operation 
- General electronics and engine actuator 

knowledge 
- Dimensions (Config control tool) 
- DO-178B 
Job Description: 
To support the continued development of 
the EJ200 DECMU engine controller by 
providing testing and integration expertise 
both at an interactive and script based 
level. 
Job offer [United Kingdom]: Ada 
Embedded Software Engineer 
[…] This role requires the successful 
candidate to work on real-time and 
mission-critical systems […]  
Working within small development 
teams, you will be involved in the full life 
cycle of software development from 
initial requirements capture to post-
development support and may be 
involved in any of the following: 
- Team/Project Leading 

- Software analysis and design using 
formal OO methodology (such as 
UML). 

- The development of robust ADA [sic  
—mp] embedded software. 

- Code review. 
- Unit and acceptance testing. 
Job offer [United Kingdom]: Principal 
Ada Software Test Engineer 
[…] 
Role 
To undertake a full range of software 
engineering activities in line with relevant 
processes, quality and other requirements, 
supplying specialist advice and support 
across projects, other business units and 
customer as appropriate. 
Responsibilities include 
- Take initiative in evaluating technical 

issues/solutions in order to develop 
proposals and technical demonstrators as 
required 

- Perform a full range of technical 
analyses and investigations, including 
selection of preferred options to resolve 
problems and challenges within the 
project. 

- Define test strategy, specify tests and 
evaluate results to meet the needs of the 
project. 

- Support the identification of 
problems/issues/concerns arising within 
the team at any early stage. 

- Supplying technical support and 
expertise to others as required. 

- Provide reports on progress and 
achievement to the team leader as 
required. 

- Support functional goals by identifying, 
suggesting and trialling improvements in 
SET capability.  

In particular consider improvement 
towards the goals of a more Agile 
development process and enhanced test 
and diagnostic procedures. 
[…] 
Skills and Knowledge to include 
- Degree qualified or equivalent 

(computing, software, or related) 
- Capable of design, development and 

proving of systems for defence or 
equivalent complex system applications. 

- Domain knowledge of design, 
development and proving of test and 
simulation facilities for the proving of 
software-based defence applications. 

- Understanding of associated interfaces 
with aircraft and ground equipment 
systems. 

[…]



Ada in Context 81  

Ada User Journal Volume 32, Number 2, June 2011 

- Sound knowledge of software processes, 
engineering and quality standards. 

[…] 
Experience of the following: (The first 2 
are ESSENTIAL) 
- Ada 
- UML Tool or MASCOT 
- Dimensions Configuration Control 
- C 
- Doors requirement management system* 
- Matlab(Simulink) 
Job offer [United Kingdom]: Software 
Engineer 
[…] 
Role Description 
2 x Software Engineers are needed to 
work on the testing of Embedded Real 
Time avionics software written in Ada 
using the Rational Apex development 
environment. 
Experience Required 
- Experience of the Ada Programming 

Language 
- Experience of Rational TestMate test 

tool 
- Experience of Unix/Solaris operating 

system 
- Experience of Avionics Software 
[…] 
Job offer [United Kingdom]: Software 
Engineer 
[…] looking to immediately recruit a 
talented and highly motivated Software 
Engineer to join a small team developing 
state-of-the-art on-target verification 
tools.  
These tools, which include code coverage 
and measurement-based execution time 
analysis, are used in real-time embedded 
systems development in the aerospace and 
automotive electronics industries. 
As a Software Engineer, your main 
responsibilities will include specification, 
design, development, and testing of […] 
on-target verification tools.  
You will have the opportunity to work on 
both the graphical user interface 
programmed in Java and Eclipse and the 
command line tools written in Ada. You 
can also expect to be involved in a variety 
of other activities, including EU research 
projects. […] 
The successful candidate will be highly 
motivated, hard working, innovative, and 
self-reliant, with strong interpersonal and 
communication skills.  
They will have previous software 
engineering experience, including strong 
programming skills in Java and Eclipse, 
(experience with C, C++, Ada, HQL/SQL 
and Unix is also desirable) and excellent 
degree level qualifications in Computer 

Science or related discipline (a 2.1 or 
higher).  
Knowledge of real-time systems theory 
and concepts and embedded programming 
experience is also desirable.  
Previous experience working for a 
technology start-up is seen as an 
advantage. 
[…] 

Ada in Context 
Order of evaluation of 
subprogram parameters and 
aggregate components 
From: Syntax Issues 

<syntax.issues@gmail.com> 
Date: Sat, 19 Mar 2011 10:10:04 -0700 

PDT 
Subject: Order of execution of subprogram 

parameters 
Newsgroups: comp.lang.ada 
Across Ada compilers what is the order of 
execution for subprogram parameters? Is 
it left-to-right, right-to-left, and does it 
matter if I use labels out of order? 
Example: 

type Record_Joint is record 
  Name   : String(1..64); 
  Flags  : Integer_1_Unsigned; 
  Parent : Integer_4_Signed; 
  Start  : Integer_4_Signed; 
 end record; 
package Container_Record_Joint 
 is new Ada.Containers. 
  Indefinite_Vectors 
   (Integer_4_Unsigned, 
    Record_Joint); 
 … 
Animation    : Record_Md5_Animation; 
… 
Animation.Joints.Append( 
 (Name   => 
     Remove_Quotes( 
   Next_String(File, Current_Line)), 
  Parent =>  
    Next_Integer_4_Signed( 
    File, Current_Line), 
  Flags  => 
    Next_Integer_1_Unsigned( 
    File, Current_Line), 
  Start  => 
    Next_Integer_4_Signed( 
    File, Current_Line)); 
… 
function Next_X 
 (File : in out File_Type; 
  Line : in out String) 
 return X; 

From: Jeffrey R. Carter 
<jrcarter@acm.org> 

Date: Sat, 19 Mar 2011 11:58:22 -0700 
Subject: Re: Order of execution of 

subprogram parameters 
Newsgroups: comp.lang.ada 
[…] 
> Across Ada compilers what is the order 

of execution for subprogram 
parameters? Is it left-to-right, right-to-
left, and does it matter if I use labels 
out of order? 

ARM 6.4 says, 
"For the execution of a subprogram call, 
the name or prefix of the call is evaluated, 
and each parameter_association is 
evaluated (see 6.4.1). If a 
default_expression is used, an implicit 
parameter_association is assumed for this 
rule. These evaluations are done in an 
arbitrary order." 
> Animation.Joints.Append( 
   (Name   =>  

Remove_Quotes(Next_String(File, 
Current_Line)), 
Parent =>  
Next_Integer_4_Signed(File, 
Current_Line), 
 Flags  =>  
Next_Integer_1_Unsigned(File,  
    Current_Line), 
Start  =>  Next_Integer_4_Signed(File,  
    Current_Line)); 

However, what you have here is not 
evaluation of subprogram parameters but 
evaluation of aggregate components. The 
answer, from ARM 4.3, is the same: 
"For the evaluation of an aggregate, an 
anonymous object is created and values 
for the components or ancestor part are 
obtained (as described in the subsequent 
subclause for each kind of the aggregate) 
and assigned into the corresponding 
components or ancestor part of the 
anonymous object. Obtaining the values 
and the assignments occur in an arbitrary 
order." 

On the overflow with Integer 
and Float types 
From: Alex Mentis <asmentis@gmail.com> 
Date: Thu, 31 Mar 2011 20:25:13 +0000 

UTC 
Subject: Unconstrained base subtype 

questions 
Newsgroups: comp.lang.ada 
The following does not cause a constraint 
error in my version of GNAT on my 
system: 

Integer_Result := (Integer'Last + 
                              Integer'Last) / 2; 

If I understand correctly, this is because 
the Integer operators are defined for 
operands of type Integer'Base, which is an 
unconstrained subtype and allows the 
operands to be stored in extended-length 



82  Ada in Context 

Volume 32, Number 2, June 2011 Ada User Journal 

registers so that intermediate values in 
calculations do not overflow. 
My questions are: 
1) Do I understand correctly what's going 

on? 
2) Does the language make any 

guarantees about preventing spurious 
overflow, or am I just getting lucky with 
my compiler/architecture? If guarantees 
are made by the language, what are 
they? 

From: Adam Beneschan 
<adam@irvine.com> 

Date: Thu, 31 Mar 2011 14:10:55 -0700 
PDT 

Subject: Re: Unconstrained base subtype 
questions 

Newsgroups: comp.lang.ada 
> […] If I understand correctly, this is 

because the Integer operators are 
defined for operands of type 
Integer'Base, which is an unconstrained 
subtype and allows the operands to be 
stored in extended-length registers so 
that intermediate values in calculations 
do not overflow. 

No, it's because all the operands are 
known at compile time and the compiler 
can just figure out what the answer is. 
There is no question about "where 
operands are stored" or about how 
registers are used.  
The code for this statement should not 
perform any addition or division (or shift) 
operations. See 4.9. 
From: Simon Wright 

<simon@pushface.org> 
Date: Thu, 31 Mar 2011 22:18:29 +0100 
Subject: Re: Unconstrained base subtype 

questions 
Newsgroups: comp.lang.ada 
[…] 
That's a compile-time calculation, and any 
Ada compiler should work it out using 
infinite-precision arithmetic. 

   with Ada.Text_IO; use Ada.Text_IO; 
   procedure Very_Large is 
      Integer_Result : Integer; 
   begin 
      Integer_Result := 10**128 / 10**127; 
      Put_Line ( 
             Integer'Image (Integer_Result)); 
   end Very_Large; 
 
   $ gnatmake very_large.adb 
   gcc -c very_large.adb 
   gnatbind -x very_large.ali 
   gnatlink very_large.ali 
   $ ./very_large 
    10 

As against 

   with Ada.Text_IO; use Ada.Text_IO; 
   procedure Very_Large is 

      Integer_Result : Integer; 
   begin 
      Integer_Result := Integer'Last; 
      Integer_Result :=  Integer_Result + 
                                    Integer'Last; 
      Integer_Result := Integer_Result / 2; 
      Put_Line ( 
           Integer'Image (Integer_Result)); 
   end Very_Large; 
 
   $ gnatmake very_large.adb 
   gcc -c very_large.adb 
   very_large.adb:6:37: warning: value 
   not in range of type "Standard.Integer" 
   very_large.adb:6:37: warning:  
   "Constraint_Error" will be raised at run  
     time 
   gnatbind -x very_large.ali 
   gnatlink very_large.ali 
   $ ./very_large 
   raised CONSTRAINT_ERROR : 
   very_large.adb:6 overflow check failed 

Note that the compiler knew that was 
going to happen. If the overflow wasn't 
visible at compile time, you'd have to tell 
GNAT to perform run-time integer 
overflow checks using -gnato. Other 
compiler writers may have different views 
about whether run-time integer overflow 
checks should be off by default :-) 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Thu, 31 Mar 2011 16:24:54 -0500 
Subject: Re: Unconstrained base subtype 

questions 
Newsgroups: comp.lang.ada 
[…] 
> 2) Does the language make any 

guarantees about preventing spurious 
overflow, or am I just getting lucky 
with my compiler/architecture? If 
guarantees are made by the language, 
what are they? 

The language says effectively that you 
either will get the right answer or 
Constraint_Error. But it makes no 
guarantees about which you will get for 
values outside of the result subtype. So 
that is compiler-dependent. 
The intent is to be able to use the 
hardware effectively. To take an example, 
older Intel X86 processors did all of their 
floating point calculations in 80-bit 
registers. The only certain way to use 
fewer bits was to store the register into 
memory and then reload it (which forced 
the needed rounding). Needless to say, 
this doesn't help performance! 
In something like: 
    F := (A * B) / (C * D); 
you would have two extra store/load 
pairs. That's awful, thus the rule allowing 
extra precision. 

For float types, Ada actually has an 
attribute to explicitly discard extra 
precision (S'Machine). For integer types, 
you'd have to explicitly store the 
subexpression into an object and do a 
validity test on it. (It's not clear to me that 
a type conversion alone would guarantee 
a check for a type like Integer where 
Integer has the same range as 
Integer'Base. The validity rules always 
allow delaying a constraint check, so only 
'Valid is certain to smoke out overflowing 
values.) 
But both of these operations are 
expensive, and should only be used when 
absolute portability is needed. 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Thu, 31 Mar 2011 23:09:49 +0200 
Subject: Re: Unconstrained base subtype 

questions 
Newsgroups: comp.lang.ada 
[…] 
I'm not sure what you mean by "spurious 
overflow" (as opposed to "overflow") but: 
- static constants must be computed 

without any overflow checks at compile 
time (ARM 4.9(33)); this means that 
intermediate values can be arbitrarily 
large or small (ARM 4.9(35/2)) but the 
final result must be in the range 
specified for the constant. If not, the 
compiler reports an error. 

- during execution, there are two kinds of 
overflow checks. 
Intermediate results must lie within the 
"base range of the type" which, for all 
intents and purposes, is the full range of 
[[Long_]Long_]Integer (ARM 
4.5.4(20)). So, if an intermediate value 
exceeds e.g. Integer'Last you get a 
Constraint_Error. 

- At the end of a computation, the result is 
either assigned to a variable, a constant, 
or a subprogram parameter. This 
assignment involves a conversion to the 
target subtype, the range of which may 
be smaller than the base range of the 
type, and this conversion includes an 
overflow check (ARM 4.6(51/2)) which 
must raise Constraint_Error if it fails 
(ARM 4.6(57)). 

For example: 

type T is range 1 .. 10; 
A : T := 95 - 90; -- OK 

See also 
http://en.wikibooks.org/wiki/ 
Ada_Programming/Type_System# 
Elaborated_Discussion_of_Types_for_Sig
ned_Integer_Types 
From: Alex Mentis <asmentis@gmail.com> 
Date: Thu, 31 Mar 2011 21:26:10 +0000 

UTC 
Subject: Re: Unconstrained base subtype 

questions 
Newsgroups: comp.lang.ada 



Ada in Context 83  

Ada User Journal Volume 32, Number 2, June 2011 

> […] I suspect you compiled without the 
secret -gnato option 

No, I compiled with that option enabled. 
It still ran happily and produced the 
correct output. 
[…] By "spurious overflow" I mean 
overflow from intermediate results of a 
calculation in which the correct final 
result is actually still within the type 
constraints. 
> - during execution, there are two kinds 

of overflow checks. 
>   Intermediate results must lie within the 

"base range of the type" which, for all 
intents and purposes, is the full range of 
[[Long_]Long_]Integer (ARM 
4.5.4(20)). So, if an intermediate value 
exceeds e.g. Integer'Last you get a 
Constraint_Error. 

Well, that's my question. In the 
calculation above, I clearly have an 
intermediate value that exceeds 
Integer'Last. And I tried something 
similar with Long_Long_Integer and still 
couldn't get an overflow error! So what is 
the actual limit on the base range of the 
type? Is it language defined, compiler 
defined, hardware defined, none of the 
above? 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Thu, 31 Mar 2011 23:36:36 +0200 
Subject: Re: Unconstrained base subtype 

questions 
Newsgroups: comp.lang.ada 
[…] 
It is both language- and implementation-
defined. I gave you the references to what 
the language says. The implementation-
defined part is the "base range of the 
type"; a sane implementation would 
choose a range that matches the hardware. 
The reason why you did not get an 
overflow at runtime is because your 
computation did not take place at run 
time. […] 
From: Alex Mentis <foo@invalid.invalid> 
Date: Thu, 31 Mar 2011 21:51:29 +0000 

UTC 
Subject: Re: Unconstrained base subtype 

questions 
Newsgroups: comp.lang.ada 
> […] In something like: 
    F := (A * B) / (C * D); 
    you would have two extra store/load 

pairs. That's awful, thus the rule 
allowing extra precision. 

Using variables gave me the behavior I 
was expecting. I didn't know Ada did 
infinite precision arithmetic on static 
expressions. […] 
From: Adam Beneschan 

<adam@irvine.com> 
Date: Thu, 31 Mar 2011 15:18:18 -0700 

PDT 

Subject: Re: Unconstrained base subtype 
questions 

Newsgroups: comp.lang.ada 
[…] 
However, the language does specify that 
whatever base range the implementation 
chooses, Integer'Last will be the top of the 
range.  
It's not legally possible for the "base 
range" of Integer to include values that 
are larger than Integer'Last. (Note that 
that applies only to Standard.Integer; it 
"should" apply to other predefined signed 
integer types in Standard, but it doesn't 
apply to user-defined integer types.) 
The language does say, though 
(3.5.4(24)), that implementations don't 
need to raise Constraint_Error for 
arithmetic operations on signed integers 
as long as they produce correct results, 
even if intermediate results are outside the 
base range---that's what Randy was 
referring to, I think. 

On aliased parameters in 
Ada 2012 
From: Yannick Duchêne 

<yannick_duchene@yahoo.fr> 
Date: Mon, 28 Mar 2011 13:47:22 +0200 
Subject: Ada 2012 : aliased parameters? 
Newsgroups: comp.lang.ada 
Hello, 
I was looking at what the Ada 2012 
reference looks like so far, and especially 
at all the “Extensions to Ada 2005” 
sections. In “Subprogram Declarations” 
there is such an extension. 
Quote from Ada 2012: 
“Parameters can now be explicitly aliased, 
allowing parts of function results to 
designate parameters and forcing by-
reference parameter passing.” 
I'm not sure I've understood. What was 
wrong with access type parameters?  
I don't see a reason why aliased 
parameters may be required (and don't 
feel this can be clean). Well, why not 
in/out parameter for functions, as things 
like test-and-set are common idioms, but I 
really can't figure why this one in 
particular was required. 
I may look at the related AI later, but it's 
long (so I will deffer it).  
A quick overview of good reasons from 
someone who know ?  
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Mon, 28 Mar 2011 22:04:53 -0500 
Subject: Re: Ada 2012 : aliased 

parameters? 
Newsgroups: comp.lang.ada 
[…] 
> Interesting. How to force by-reference 

something allocated in a register? 

The thing passed has to be aliased or 
tagged (of course), so the compiler just 
has to avoid allocating them in a register. 
Standard stuff. 
> Yes one could copy the actual value and 

then pass a reference to the copy, but 
that is not what I would call "by-
reference." 

Neither do we. 
From: Christoph Grein 

<christoph.grein@eurocopter.com> 
Date: Mon, 28 Mar 2011 04:56:51 -0700 

PDT 
Subject: Re: Ada 2012 : aliased 

parameters? 
Newsgroups: comp.lang.ada 
Aliased parameters are meant to cure a 
deficiency in e.g. containers. 
With current Ada, it's awkward to replace 
an element of a container. 
Now if you make the cursor an aliased 
parameter, the function result may 
dereference safely the cursor, since the 
cursor and the result are tightly coupled, 
i.e. the cursor cannot be changed as long 
as the function result exists: 

function Get (Pos: aliased Cursor)  
   return access Element; 

This is the idea. The syntax in this 
example might not be correct. 
From: Florian Weimer 

<fw@deneb.enyo.de> 
Date: Tue, 29 Mar 2011 20:22:51 +0200 
Subject: Re: Ada 2012 : aliased 

parameters? 
Newsgroups: comp.lang.ada 
[…] 
> Now if you make the cursor an aliased 

parameter, the function result may 
dereference safely the cursor, since the 
cursor and the result are tightly 
coupled, 

But this is already the case in Ada 2005.  
The lifetime of passed-in objects extends 
beyond the immediate need for evaluating 
the expression: 
Leaving an execution happens 
immediately after its completion, except 
in the case of a _master_: the execution of 
a body other than a package_body; the 
execution of a statement; or the evaluation 
of an expression, function_call, or range 
that is not part of an enclosing expression, 
function_call, range, or simple_statement 
other than a simple_return_statement. 
This is from 7.6.1(3/2). 
I've written experimental code which 
depends on this, providing a syntactically 
convenient and efficient form of variadic 
subprograms. 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Mon, 28 Mar 2011 22:16:45 -0500 
Subject: Re: Ada 2012 : aliased 

parameters? 



84  Ada in Context 

Volume 32, Number 2, June 2011 Ada User Journal 

Newsgroups: comp.lang.ada 
> […] I'm not sure I've understood. What 

was wrong with access type 
parameters? 

Two things: (1) need to explicitly write 
'Access at every call site, when all you are 
doing is passing a by-reference parameter; 
(2) anonymous access requires a run-time 
accessibility level; that means that passing 
the wrong thing (a local object, for 
instance) might cause Program_Error to 
be raised later. This is an unnecessary 
hazard for the sorts of uses envisioned for 
aliased parameters. Aliased parameters 
move the check to the call site, where it 
almost always will succeed (there is one 
case involving function calls inside of 
allocators where it might fail, and if it 
does it almost always will fail at compile-
time). 
> I don't see a reason why aliased 

parameters may be required […] 
The motivating case is to make the 
containers better. Ada 2012 adds the 
following to all of the containers: 

function Reference ( 
      Container : aliased in out Vector;  
      Position : in Cursor) 
  return Reference_Type; 

where Reference_Type is defined as: 

type Reference_Type ( 
   Element : not null access 
          Element_Type) is private 
  with 
    Implicit_Dereference => Element; 

The aspect "Implicit_Dereference" lets 
you omit "Element.all" from uses of this 
type, so the call: 

    My_Vector.Reference 
                 (My_Cursor).Comp := 10; 

is legal (presuming the element type has a 
component "Comp"). And another 
"feature" allows a form of user-defined 
indexing, so you actually can write: 

   My_Vector (My_Cursor).Comp := 10; 

which is a big improvement over using 
Update_Element (which requires writing 
a procedure to do an in-place element 
update). 
From: Maciej Sobczak 

<maciej@msobczak.com> 
Date: Tue, 29 Mar 2011 00:34:49 -0700 

PDT 
Subject: Re: Ada 2012 : aliased 

parameters? 
Newsgroups: comp.lang.ada 
[…] 
Out of curiosity - is it possible to leak the 
reference this way? I mean - is it possible 
for the caller to make a copy of returned 
reference and store it arbitrarily long? 

Note that the "copy" might not be 
obvious, as in: 

declare 
   My_Element : 
       Vector_Type.Reference_Type 
       renames 
       My_Vector.Reference (My_Cursor); 
begin 
   My_Element.Comp := 10; 
   My_Element.Other_Comp := 3.14; 
end; 

The C++ equivalent of this is both a 
fantastic performance feature and a 
deadly security hole. How is this solved in 
Ada? 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Tue, 29 Mar 2011 19:09:47 -0500 
Subject: Re: Ada 2012 : aliased 

parameters? 
Newsgroups: comp.lang.ada 
[…] 
>Out of curiosity - is it possible to leak 

the reference this way? […] 
No, because the attempt to make the copy 
will fail the accessibility check. 
Specifically, the access discriminant has 
the lifetime of the containing object. So if 
the object is short-lived (as most return 
objects are), the access discriminant 
cannot be assigned into anything that lives 
longer. OTOH, if the object is long-lived, 
there is no problem, because as long as 
the object lives, attempting to add or 
remove elements from the container is not 
allowed and must raise Program_Error. 
There is are a couple of small holes that 
occur by using Unchecked_Deallocation, 
but no one is going to do that by accident, 
and if there is any sort of management (or 
sense) on a project, the end-around will be 
easily detected. 
>Note that the "copy" might not be 

obvious, as in: 
> 
>declare 
>   My_Element : 

Vector_Type.Reference_Type renames 
>     My_Vector.Reference (My_Cursor); 
>begin 
>   My_Element.Comp := 10; 
>   My_Element.Other_Comp := 3.14; 
>end; 
This isn't a leak, because the Reference 
object has to continue to exist until the 
renames goes away (and thus the 
reference). Instead, My_Vector is locked 
against "tampering" so long as that object 
exists. So any attempt to delete this 
element in this block body will raise 
Program_Error. 
[…] 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Tue, 29 Mar 2011 19:12:43 -0500 
Subject: Re: Ada 2012 : aliased 

parameters? 
Newsgroups: comp.lang.ada 
[…] 
This works in your example because you 
avoid the type system completely and thus 
the accessibility checks. It also would 
work if you don't care that it can raise 
Program_Error if someone passes in a 
local variable. That runtime source of 
failure is not acceptable, and the use of 
aliased parameters makes it a compile-
time check. 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Wed, 30 Mar 2011 14:44:33 -0500 
Subject: Re: Ada 2012 : aliased 

parameters? 
Newsgroups: comp.lang.ada 
[…] 
> There is are a couple of small holes that 

occur by using 
Unchecked_Deallocation, but no one is 
going to do that by accident […] 

I should mention that there is a relatively 
easy way to defeat these accessibility 
checks: simply use 
.all'Unchecked_Access. More generally, 
any unchecked programming can of 
course default the protection. Nothing 
new about that - that's true of any Ada 
construct. But of course it is obvious that 
unchecked programming is being used, so 
again that is a management problem. 
From: Florian Weimer 

<fw@deneb.enyo.de> 
Date: Sat, 23 Apr 2011 20:47:16 +0200 
Subject: Re: Ada 2012 : aliased 

parameters? 
Newsgroups: comp.lang.ada 
[…] 
> type Reference_Type (Element : not 

null access Element_Type) is 
> private 
>        with 
>           Implicit_Dereference => 

Element; 
Is it necessary that Element is a 
discriminant? If the aliased business 
works with fields, you could write 
something like this: 

  type String_Reference is record 
     Data : access String; 
  end record; 
 
  function "+" (S: aliased String)  
      return String_Reference is 
  begin 
     return String_Reference'( 
         Data => S'Access); 
  end "+"; 



Ada in Context 85  

Ada User Journal Volume 32, Number 2, June 2011 

String_Reference could be part of an 
array, so we would get ragged arrays as a 
side effect. 
In any case, it seems to me that the 
definition of "master" in 7.6.1 needs 
updating. 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Mon, 25 Apr 2011 02:19:35 -0500 
Subject: Re: Ada 2012 : aliased 

parameters? 
Newsgroups: comp.lang.ada 
[…] 
> Is it necessary that Element is a 

discriminant? 
Yes, because access discriminants have 
special accessibility rules which happen 
to have the right effect. 
>  If the aliased business works with 

fields, you could write something like 
this: 

> 
>  type String_Reference is record 
>     Data : access String; 
>  end record; 
You can write this, but you lose all 
accessibility checking if you do. The 
accessibility of a normal component is 
that of the type, which is typically library 
level. OTOH, a discriminant in a returned 
object has the accessibility of the point of 
call; combined with the rules for aliased 
parameters, such a discriminant will 
always succeed (no runtime checks or 
overhead needed) and will always be safe 
(can't copy it into anything with a longer 
lifetime, which is essentially anything). 
I'm no fan of accessibility checks, but in 
this case at least they don't get in the way 
beyond preventing operations that we 
don't want to allow in the first place. 
> In any case, it seems to me that the 

definition of "master" in 7.6.1 needs 
updating. 

It did, but only for bugs. The access 
discriminant semantics is from Ada 95, 
although it was never defined properly 
(probably still isn't, although not for the 
lack to trying). We've just found a good 
use for the strange semantics. 
From: Florian Weimer 

<fw@deneb.enyo.de> 
Date: Thu, 28 Apr 2011 21:47:37 +0200 
Subject: Re: Ada 2012 : aliased 

parameters? 
Newsgroups: comp.lang.ada 
>> Is it necessary that Element is a 

discriminant? 
> Yes, because access discriminants have 

special accessibility rules which happen 
to have the right effect. 

This is unfortunate because it means that 
this cannot be used to make variadic 
argument list trick safer and less of a 
hack. 

> It did, but only for bugs. The access 
discriminant semantics is from Ada 95, 
although it was never defined properly 
[…] 

I don't think the difference is observable 
in Ada 95 because you couldn't return 
new objects of limited type. 
By the way, how tight are the access level 
checks? Is it relatively safe to assume that 
if an Ada 2005 compiler compiles a 
program which makes heavy use of 
anonymous access types and runs it 
without exceptions, then there are no 
dangling pointers? (Ignoring unchecked 
deallocation, of course.) 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Thu, 28 Apr 2011 18:54:52 -0500 
Subject: Re: Ada 2012 : aliased 

parameters? 
Newsgroups: comp.lang.ada 
[…] 
One could argue that variadic arguments 
are themselves a hack. :-) 
This feature is intended for one particular 
use (and any other uses are a happy 
accident): providing safe user-defined 
dereferencing. What is needed for it to be 
safe is to prevent any copying of the 
access value while still allowing it to be 
dereferenced (including assigning into it). 
We originally had some syntax to define 
the accessibility of the returned access 
type, but it was eventually pointed out 
that access discriminants already had the 
appropriate accessibility. (Anonymous 
access return types also have this same 
accessibility.) Thus we changed the 
mechanism to use the discriminants rather 
than inventing a new feature. 
The advantage of the aliased parameters is 
that they eliminate the runtime checks by 
forcing the checks to the call site (where 
they can be statically made 99% of the 
time). 
[…] 
> By the way, how tight are the access 

level checks?  Is it relatively safe to 
assume that if an Ada 2005 compiler 
compiles a program which makes 
heavy use of anonymous access types 
and runs it without exceptions, then 
there are no dangling pointers? 
(Ignoring unchecked deallocation, of 
course.) 

The intent is that it is impossible to create 
a dangling pointer if no unchecked 
programming is used. 
(Unchecked_Deallocation, 
'Unchecked_Access, 
Unchecked_Conversion, 
Address_to_Access_Conversions, abuse 
of Unchecked_Unions, etc.) That goes for 
all access types (not just anonymous 
ones). The problem, of course, is that it is 
impractical to do much without using one 
of those things. (I've only succeeded in 

using 'Access once in one of my 
programs; in all other cases I had to use 
'Unchecked_Access.) 
We're constantly fixing holes in the 
model, and it is easy to use the unchecked 
things, so I wouldn't consider it 
impossible to get a dangling pointer. 
(Personally, I prefer to hide pointers as 
much as possible, as in the container 
cursors, so that dangling pointer detection 
becomes much more possible, and their 
creation becomes less likely.) 
From: Florian Weimer 

<fw@deneb.enyo.de> 
Date: Sat, 30 Apr 2011 20:32:04 +0200 
Subject: Re: Ada 2012 : aliased 

parameters? 
Newsgroups: comp.lang.ada 
[…] 
> One could argue that variadic 

arguments are themselves a hack. :-) 
It would make it possible to call this little 
gem, PostgreSQL's main client function 
for executing SQL statements, 

   PGresult *PQexecParams( 
                       PGconn *conn, 
                       const char *command, 
                       int nParams, 
                       const Oid *paramTypes, 
                       const char * const  
                                         *paramValues, 
                       const int *paramLengths, 
                       const int *paramFormats, 
                       int resultFormat); 

without any allocations and in a type-safe 
manner (for a predefined set of types). For 
such untyped external interfaces, variadic 
subprograms are often handy. 
> The advantage of the aliased parameters 

is that they eliminate the runtime 
checks by forcing the checks to the call 
site (where they can be statically made 
99% of the time). 

I'm wondering if it is necessary that the 
returned limited record is controlled, so 
that a reference counter can be 
incremented and later decremented to 
ensure that the access discriminant does 
not become dangling.  That would make 
the whole thing a bit clumsy to use, and 
come with quite a bit of run-time 
overhead. 
> The intent is that it is impossible to 

create a dangling pointer if no 
unchecked programming is used.[…] 

Anonymous access types seem to help 
quite a bit. I use 'Access for access 
discriminants, creating proxies, to fake 
the in-out parameter mode for functions, 
and on locally defined callback functions. 
> (Personally, I prefer to hide pointers as 

much as possible, as in the container 
cursors, so that dangling pointer 
detection becomes much more possible, 
and their creation becomes less likely.) 



86  Ada in Context 

Volume 32, Number 2, June 2011 Ada User Journal 

And implicit deference could make them 
even safer to use. 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Sat, 30 Apr 2011 18:46:57 -0500 
Subject: Re: Ada 2012 : aliased 

parameters? 
Newsgroups: comp.lang.ada 
[…] 
> I'm wondering if it is necessary that the 

returned limited record is controlled 
[…] 

It's not required, but that is the way it will 
be used in the containers (so that the 
tampering check can apply only so long 
as the access exists). One hopes that 
compilers will work to minimize the 
overhead in this case (the non-list 
finalization implementation that GNAT is 
supposedly getting will be ideal for such 
cases). 
[…] 
> Anonymous access types seem to help 

quite a bit. […] And implicit deference 
could make them even safer to use. 

Exactly. And more convenient, too. 
I would like to see containers use to be as 
easy as using access types; if that is true, 
then there is little reason to use the less 
safe access types to create lists and trees 
(and maps and sets). There always will be 
cases not covered by containers or where 
performance needs are ultra-critical -- but 
those should be the unusual cases. Ada 
2012 definitely moves us closer to that 
goal. 

Breaking circularity in data 
structures 
From: Gene Ressler 

<gene.ressler@gmail.com> 
Date: Sun, 27 Mar 2011 21:11:10 -0700 

PDT 
Subject: Breaking a circularity 
Newsgroups: comp.lang.ada 
Need some expert help here with a 
circularity in the data structures for a 
discrete event simulation. 
We need event queues and an arbitrary 
number of event types. The handlers for 
events must have access to a simulation 
state record, so we used a generic: 

generic 
   type State_Type is private; 
package Event_Queues is 
 
   type Event_Type is abstract  
      tagged limited private; 
 
   procedure Handle( 
      State : in out State_Type; 
      Event : access Event_Type)  
   is abstract; 
 

   type Event_Ptr_Type is  
      access all Event_Type'Class; 
 
   procedure Add( 
      Event_Queue : in out   
            Event_Queue_Type; 
      Time : in Time_Type; 
      Event : access Event_Type'Class); 
 
   -- other methods not shown. 
private 
 
   type Event_Type is abstract record 
      Id : Positive; 
      Time : Time_Type; 
   end record; 
 
   function Sooner_Than( 
      A, B : in Event_Ptr_Type)  
   return Boolean; 
 
   -- We are just going to put a thin 
   -- wrapper around Ada ordered sets to 
   -- implement our event queue. 
   package Event_Queues is new  
      Ada.Containers.Ordered_Sets( 
         Event_Ptr_Type, Sooner_Than, 
         "="); 
   type Event_Queue_Type is new 
      Event_Queues.Set with null record; 
 
end Event_Queues; 

Here's the circularity: Instantiating an 
event queue requires the simulation state 
type, but the simulation state must contain 
an event queue (of the instantiated type). 
This is the best I've come up with so far: 

private 
   type Event_Queue_Wrapper_Type; 
 
   type State_Type is 
      record 
         Future_Events : access 
              Event_Queue_Wrapper_Type; 
         -- other stuff not shown 
      end record; 
 
   package Simulation_Events is 
     new Event_Queues(State_Type); 
 
   -- Now we can define the wrapper  
   -- to contain the event queue. 
   type Event_Queue_Wrapper_Type is 
      record 
         Queue : Simulation_Events. 
                       Event_Queue_Type; 
      end record; 

Is there a cleaner way to do this? The 
painful part is introducing a pointer to the 

event queue in State_Type just to break 
the circularity, when this seems 
superfluous and means I should make 
State_Type controlled to release the 
queue. 
From: Ludovic Brenta <ludovic@ludovic-

brenta.org> 
Date: Mon, 28 Mar 2011 02:59:35 -0700 

PDT 
Subject: Re: Breaking a circularity 
Newsgroups: comp.lang.ada 
[…] 
How about this: 

generic 
   type State_Type is tagged private; 
package States_With_Event_Queues is 
 
   type State_With_Event_Queue_Type 
       is new State_Type with private; 
 
   type Event_Type is abstract tagged  
       limited private; 
 
   procedure Handle( 
       State : in out State_Type; 
       Event : access Event_Type)  
   is abstract; 
 
   type Event_Ptr_Type is  
       access all Event_Type'Class; 
 
   procedure Add( 
       Event_Queue : in out  
               Event_Queue_Type; 
       Time : in Time_Type; 
       Event : access Event_Type'Class); 
 
   -- other methods not shown. 
private 
 
   type Event_Type is abstract record 
      Id : Positive; 
      Time : Time_Type; 
   end record; 
 
   function Sooner_Than( 
       A, B : in Event_Ptr_Type)  
   return Boolean; 
 
   -- We are just going to put a thin    
   -- wrapper around Ada ordered sets 
   -- to implement our event queue. 
   package Event_Queues is new 
      Ada.Containers.Ordered_Sets(    
         Event_Ptr_Type, Sooner_Than,  
         "="); 
   type Event_Queue_Type is new  
        Event_Queues.Set with  
      null record; 
 
   type State_With_Event_Queue_Type  



Ada in Context 87  

Ada User Journal Volume 32, Number 2, June 2011 

    is new State_Type with record 
      Event_Queue : Event_Queue_Type; 
   end record; 
 
end States_With_event_Queues; 

Would that work? 
BTW, why does Event_Type have to be 
limited? If it weren't limited, you would 
not need Event_Ptr_Type. Also, why 
does it have to be abstract? 
From: Gene Ressler 

<gene.ressler@gmail.com> 
Date: Mon, 28 Mar 2011 12:47:09 -0700 

PDT 
Subject: Re: Breaking a circularity 
Newsgroups: comp.lang.ada 
[…] 
Interesting.  Ought to be fine, but 
> BTW, why does Event_Type have to be 

limited? If it weren't limited, you would 
not need Event_Ptr_Type. 

Events are "serial numbered" at creation 
time and meant to be unique. 
Pointer equality should be equivalent to 
content equality. 
> Also, why does it have to be abstract? 
Events only have meaning in their 
specializations to particular kinds, i.e. 
requests, mission starts, mission 
completions, etc. So the root event type is 
just an (abstract) placeholder, not 
something you'd want to create. […] 
From: Simon Wright 

<simon@pushface.org> 
Date: Mon, 28 Mar 2011 12:37:12 +0100 
Subject: Re: Breaking a circularity 
Newsgroups: comp.lang.ada 
> BTW, why does Event_Type have to be 

limited? If it weren't limited, you would 
not need Event_Ptr_Type.  Also, why 
does it have to be abstract? 

When I made my events limited, it was 
because any two events are different. In 
this case, we have 

type Event_Type is abstract record 
   Id : Positive; 
   Time : Time_Type; 
end record; 

so it probably won't make any sense for 
an Event to be copyable (what would Id 
be in the copy?). Of course the events 
could be privately non-limited. […] 
You'll certainly need pointers somewhere, 
because Event_Type instances have to be 
held in the Queue. Indefinite_Ordered_ 
Sets might do the trick, though. It would 
save the bother of having Handle 
deallocate the Event. 
From: Gene Ressler 

<gene.ressler@gmail.com> 
Date: Mon, 28 Mar 2011 15:38:25 -0700 

PDT 
Subject: Re: Breaking a circularity 

Newsgroups: comp.lang.ada 
[…] 
Yes and no. The only reason for making 
Event_Queue generic is so that a State 
can be passed through the dispatching 
Handle call. Since this is an "in out" 
parameter that's invariably a record type, 
it's being passed by pointer behind the 
scenes. Yet there doesn't seem to be a way 
to take advantage of *this* pointer for 
breaking the circularity. In (eeewwww) C 
we could use a void* or other pointer trick 
here.) 
E.g. if there were a generic parameter 
type for "access to incompletely declared 
type," we could pull it off by making 
Event_Queue generic in this way.  
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Mon, 28 Mar 2011 22:01:24 -0500 
Subject: Re: Breaking a circularity 
Newsgroups: comp.lang.ada 
[…] The way we handled this problem in 
Claw was to make State an abstract 
tagged type (rather than using a generic). 
Then, the parameter to the Handle call can 
be class-wide, which allows it to access 
any extension of the type.  
I suspect that this also breaks the 
circularity (since the State type doesn't 
need to be defined until much later), but I 
haven't tried to figure it out. 
From: Gene Ressler 

<gene.ressler@gmail.com> 
Date: Mon, 28 Mar 2011 14:31:32 -0700 

PDT 
Subject: Re: Breaking a circularity 
Newsgroups: comp.lang.ada 
> […] How is the Event_Queue going to 

know which instance of State_Type to 
pass to a call of Handle (State, Event)? 

There is currently only one state per 
simulation. The user of an Event_Queue 
instantiation is in a tight loop removing 
events from its event queue (which is 
embedded in its state), then calling 
Handle(State, Event) using its current 
state. This is dispatched to the correct 
handler based on (derived) event type. 
Handlers often schedule new events in the 
same event queue. It's essentially a 
callback. The state is the callback's 
execution context. 
> Could the same State instance be passed 

to more than one Event_Queue? 
It's easy to imagine simulations needing 
more than one event queue. 
These would all need access through the 
state. But the current application has only 
a single queue. 
> Will you really be using different 

State_Types? […] 
Not in this version, but it's foreseeable. 
[…] 

From: Martin Dowie 
<martin.dowie@btopenworld.com> 

Date: Mon, 28 Mar 2011 04:06:26 -0700 
PDT 

Subject: Re: Breaking a circularity 
Newsgroups: comp.lang.ada 
[…] Not sure you can do better in the 
sense of removing the access but perhaps 
you can bundle all that up into a generic 
wrapper? e.g. 

package States is 
   type State is record 
      I : Integer; 
   end record; 
end States; 
 
with Ada.Containers.Ordered_Sets; 
generic 
   type State_Type is private; 
package Event_Queues is 
   subtype Time_Type is Duration; 
   type Event_Type is abstract tagged  
      limited private; 
   procedure Handle ( 
      State : in out State_Type; 
      Event : access Event_Type)  
   is abstract; 
   type Event_Ptr_Type is  
      access all Event_Type'Class; 
   type Event_Queue_Type is private; 
   procedure Add ( 
      Event_Queue : in out 
          Event_Queue_Type; 
      Time    : in     Time_Type; 
      Event   : access Event_Type'Class); 
private 
   type Event_Type is abstract tagged 
limited record 
      Id   : Positive; 
      Time : Time_Type; 
   end record; 
   function Sooner_Than ( 
      A, B : in Event_Ptr_Type)  
   return Boolean; 
   package Event_Queues is new 
Ada.Containers.Ordered_Sets 
      (Event_Ptr_Type, Sooner_Than, 
        "="); 
   type Event_Queue_Type is new  
      Event_Queues.Set  
   with null record; 
end Event_Queues; 
 
with Event_Queues; 
generic 
   type State_Type is private; 
package Event_Queue_Wrappers is 
   type Event_Queue_Wrapper_Type is 
      private; 
private 
   type EQW_State_Type is 



88  Ada in Context 

Volume 32, Number 2, June 2011 Ada User Journal 

      record 
         State         : State_Type; 
         Future_Events : access  
            Event_Queue_Wrapper_Type; 
      end record; 
   package Simulation_Events is new  
       Event_Queues (EQW_State_Type); 
   type Event_Queue_Wrapper_Type  
      is record 
         Queue : Simulation_Events.  
                       Event_Queue_Type; 
      end record; 
end Event_Queue_Wrappers; 
 
with Event_Queue_Wrappers; 
with States; 
 
procedure Temp is 
   package EQW is new  
       Event_Queue_Wrappers ( 
             State_Type => States.State); 
   EQ : 
      EQW.Event_Queue_Wrapper_Type; 
begin 
   null; 
end Temp; 

At least that decouples the state your 
interested in from the queue mechanism. 
[…] 

Forcing exception handling 
From: iloAda <egzgheib@gmail.com> 
Date: Mon, 28 Feb 2011 09:27:51 -0800 

PST 
Subject: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
Hello everybody, 
I was wondering if there is a way in Ada 
to force exception handling. 
For instance, if there is a call to a function 
that may raise an exception, force the 
caller to handle that exception. 
I was wondering if there is a compile time 
pragma that will instruct the compiler to 
force the handling of exceptions!! 
[…] 
From: Vinzent Hoefler 
Date: Mon, 28 Feb 2011 19:34:46 +0100 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
[…] 
> What's wrong with the raise statement ? 
He wants the "exception" statement 
forced, I suppose. 
And no, there is currently no such thing in 
Ada, if only because there's no way of 
telling the compiler which subroutine may 
raise an (user-defined) exception. Or, 
IOW, there is no "throws" statement as 
there is in Java. 

From: Ludovic Brenta <ludovic@ludovic-
brenta.org> 

Date: Mon, 28 Feb 2011 21:35:03 +0100 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
[…] 
I think the Ada Rapporteur Group 
considered the idea and rejected it. I seem 
to remember they had good reasons but I 
forgot which they were.  
Maybe the first was that pretty much any 
statement can raise Storage_Error, and 
that Program_Error can be raised during 
elaboration, when there is no exception 
handler in place yet. 
From: Georg Bauhaus <rm-

host.bauhaus@maps.futureapps.de> 
Date: Mon, 28 Feb 2011 21:38:26 +0100 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
[…] 
IIRC, the new aspect specifications of 
Ada 2012 can be used to specify that 
some exception might be raised. 
Not sure, though. 
(Given that the feature is controversial in 
Java, not everyone might want them for 
this…) 
From: Shark8 

<onewingedshark@gmail.com> 
Date: Mon, 28 Feb 2011 16:19:22 -0800 

PST 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
> […] IIRC, the new aspect specifications 

of Ada 2012 can be used to specify that 
some exception might be raised. […] 

I'm honestly not sure this would be a good 
idea… 
In fact, given that Ada doesn't have an 
"exception hierarchy" like Delphi does it 
may be a horrendous idea: There is no 
way to catch all exceptions because there 
is no way to catch all exceptions of a 
certain type (i.e. Storage_Error'Class) 
which is caused by the lack of some root-
type "Exception_Root." 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Mon, 28 Feb 2011 21:54:08 -0600 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
> […] I think the Ada Rapporteur Group 

considered the idea and rejected it. I 
seem to remember they had good 
reasons but I forgot which they were. 
[…] 

I think it is more of a case of being unable 
to come to consensus than "rejecting" it. 
(Same effect, ultimately.) Some people 
feel that Java's version doesn't work very 
well in practice, leaving to too many 
"when Some_Exception => null" handlers 
rather than consideration of why the 
exceptions are being propagated. That 
seems like bad software management to 

me. In any case, any such "contracts" in 
Ada would have to be optional (for 
compatibility reasons), and that might 
actually help reduce the problems. 
We had such a discussion just a few 
weeks ago (not yet filed, so I can't point 
you at it), but in any case there won't be 
anything in Ada 2012 (we're very close to 
freezing that version, nothing significant 
can be added at this point). 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Tue, 1 Mar 2011 09:34:44 +0100 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
> […] Some people feel that Java's 

version doesn't work very well in 
practice, leaving to too many "when 
Some_Exception => null" handlers 
rather than consideration of why the 
exceptions are being propagated. 

I never understood this. Why 
Some_Exception is not added to the 
contract instead? The rule is simple, if 
you don't know how to handle it, then 
don't. 
> That seems like bad software 

management to me. In any case, any 
such "contracts" in Ada would have to 
be optional (for compatibility reasons), 
and that might actually help reduce the 
problems. 

Unless Storage_Error and 
Program_Error made manageable 
contracted exceptions would have only 
limited use. 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Tue, 1 Mar 2011 09:56:48 +0100 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
[…] 
> In fact, given that Ada doesn't have an 

"exception hierarchy" like Delphi does 
it may be a horrendous idea: There is 
no way to catch all exceptions because 
there is no way to catch a  all 
exceptions of a certain type (i.e. 
Storage_Error'Class) which is caused 
by the lack of some root-type 
"Exception_Root." 

It is a question. Since exceptions are used 
in case-like clauses, more natural where a 
model of a discrete type. In order to have 
constructs like: 

   when Numeric_Exception'First.. 
               Numeric_Exception'Last => 

BTW, it shows the importance of 
extensible enumeration types, because 
exceptions should be that kind of type. 
When exceptions are bunch of types like 
in C++ you would loose the above. 
Also consider this: 

   declare 
      Foo : exception: 



Ada in Context 89  

Ada User Journal Volume 32, Number 2, June 2011 

   begin 
      ... 
      raise Foo; 
   end;  -- Foo propagates out its scope!! 

Unless Ada would have upward closures, 
that cannot work when Foo is a type. 
I hope everybody agrees that upward 
closures should not be introduced. 
A possibility to handle this is exception 
promotion, e.g. Foo to Program_Error, 
when Foo gets finalized. 
BTW, contracted exception would solve 
this problem by making such programs 
illegal: each block would have an implicit 
contract not to propagate local exceptions. 
From: iloAda <egzgheib@gmail.com> 
Date: Tue, 1 Mar 2011 01:34:02 -0800 PST 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
[…] 
Mmmmmm...That's what I was fearing!! 
Actually the idea behind my question was 
that I'm working on a real time system, 
and as u know, we can't afford to a let a 
real time system crash because of an 
unhandled exception. Since I use some 
other libraries in my system (that weren't 
written by myself or anybody else I 
know) that will raise exceptions, I wanted 
to be forced to handle them. I was 
imagining that it could be done with some 
kind of a compiler pragma that will force 
the current package to handle all 
exception that may be raised, but as you 
guys pointed out, the compiler might not 
be able to know which procedure raises 
an exceptions (by contrast Java requires 
the addition of the "throws" instruction 
which tells the compiler what's gonna 
happen)  
One solution might be to just put the 
following code everywhere (even though 
I don't like this): 

exception 
 when others => 
     --  Do something that will allow the  
         system to keep on running 

Have you guys done something like that 
before? 
From: Vinzent Hoefler 
Date: Tue, 01 Mar 2011 10:47:01 +0100 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
> […] Since I use some other libraries in 

my system (that weren't written by 
myself or anybody else I know) that 
will raise exceptions, I wanted to be 
forced to handle them. 

Better not to let them raised at all. I know, 
this may not be easy, but it's the most 
reliable solution. 
> One solution might be to just put the 

following code everywhere (even 
though I don't like this): 

> 
> exception 
>  when others => 
>      --  Do something that will allow the 

system to keep on running 
This is dangerous. Especially when doing 
it "everywhere". Ignoring errors has never 
been a good idea, especially for the 
unexpected ones. 
> Have you guys done something like that 

before? 
Occasionally, yes. At the outermost task 
level to log the exception that caused the 
system to crash. If you do that inside a 
loop, you might be able to restart the 
affected task from there. 
But if you have more than one task and 
they interact with each other, fault 
recovery like that gets quite complex, 
because then things like data consistency 
within the whole system may be at risk. 
And you don't want that to happen. 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Tue, 1 Mar 2011 10:51:14 +0100 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
[…] 
> Since I use some other libraries in my 

system […] that will raise exceptions, I 
wanted to be forced to handle them. 

You should use some static analysis tool 
for that. E.g. SPARK. 

> exception 
>  When others => 
>      --  Do something that will allow the 

system to keep on running 
That is of course meaningless, because 
you don't know WHAT happened in order 
to determine the SOMETHING to be 
done. 
> Have you guys done something like that 

before? 
No, because see above. The most close 
thing is: 

  when Error : others => 
      Trace ("Fatal:" &  
             Ada.Exceptions.        
             Exception_Information (Error)); 

+/-  raise; 
From: J-P. Rosen <rosen@adalog.fr> 
Date: Tue, 01 Mar 2011 17:11:58 +0100 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
> […] Have you guys done something 

like that before? 
Or try AdaControl, rule 
Exception_Propagation 
From: Mark Lorenzen 

<mark.lorenzen@gmail.com> 
Date: Tue, 1 Mar 2011 05:27:26 -0800 PST 

Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
[…] 
If you cannot afford a crash, then you 
should make sure that exceptions do not 
occur in the first place, i.e. use SPARK as 
others have mentioned. 
> exception 
>  when others => 
>      --  Do something that will allow the 

system to keep on running 
I'm currently working on a system where 
we can afford that the program crashes, 
but we will use the above "when others" 
construct to catch all possible exceptions 
(pre-defined and user-defined) on the 
outer-most level and then simply dump 
the exception trace to memory (a bit like 
Dmitry's example) for later (off-line) 
analysis after a reboot that doesn't whipe 
that specific part of memory. 
We will use the addr2line utility to 
translate the addresses of the exception 
trace into file names and line numbers. 
You must compile your executable 
*with* debug information in order to 
perform the (offline) address translation. 
If you don't/can't run the executable with 
debug information (e.g. due to size 
constraints), then you can strip the debug 
information from the file that you are 
executing but keep it in the executable 
used for off-line analysis, and the address 
translation will still work correct. 
[…] 
From: Shark8 

<onewingedshark@gmail.com> 
Date: Tue, 1 Mar 2011 07:23:56 -0800 PST 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
[…] 
What's wrong with handling it with 
OTHERS? 
> A possibility to handle this is exception 

promotion, e.g. Foo to Program_Error, 
when Foo gets finalized. 

A third is to convert Exceptions to a 
hierarchy as stated in my last post. 
I'm not sure that's a Good Thing, but I 
think it's actually better than type 
extension; which I thought would be nice 
earlier… but the more I think on the 
problem the more it seems it would be 
utterly burdensome for implementors as 
well as possibly impossible-to-get-right. 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Tue, 1 Mar 2011 16:44:01 +0100 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
[…] 
> What's wrong with handling it with 

OTHERS? 
You have an object of non-existent type: 



90  Ada in Context 

Volume 32, Number 2, June 2011 Ada User Journal 

when Error : others => 

Assuming that Error is of 
Root_Exception_Type'Class, what 
should Error'Tag return? 
[…] 
> A third is to convert Exceptions to a 

hierarchy as stated in my last post. 
No, that does not work, because the 
exception type would be dead in the 
handler. C++ model cannot work in Ada 
2005+, because in Ada tagged types can 
be local. 
Further problems are overlapping choices 
in the exception clause. If the semantics 
of 

   exception 
      when X => 
      when Y => 

is dispatching on the tag of the current 
exception, which people suggesting class-
wide exceptions have in mind. Then that 
would be incompatible with the choice 

      when others => 

which has the semantics of a class-wide 
call. If you choose that semantics instead, 
then you would have to write 

   exception 
      when X'Class => 
      when Y'Class => 

and lose the property that alternatives do 
not overlap. That is way unacceptable to 
me. 
These are the reasons why I don't think 
that exception -> type mapping is such a 
good idea. I prefer exception -> value 
mapping + contracts. 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Tue, 1 Mar 2011 18:00:32 -0600 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
I agree; I think that if we go this way all 
exceptions would have to appear in the 
contract. To make that manageable, we'd 
also need a way to define a "set" of 
exceptions so they could be referred to 
together. I personally think that is 
sufficient, and it would let the compiler 
tell you what it knows about exceptions 
being raised. 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Tue, 1 Mar 2011 18:02:52 -0600 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
> […] I hope everybody agrees that 

upward closures should not be 
introduced. 

Right; this was one of the reasons that the 
intended plan (in Ada 2005) to make 
exceptions extensible tagged types 
eventually got dropped. It just doesn't 

work very well for Ada (it could have if 
done initially, but it is too late now). 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Tue, 1 Mar 2011 18:11:28 -0600 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
> […] Have you guys done something 

like that before? 
[…] For the Janus/Ada compiler and 
tools, we used to have such handlers, but 
they covered up errors so well that we got 
rid of them. It's better for the compiler to 
just crash outright because that makes 
customers call us with a report right away 
rather than trying to figure out what went 
wrong. (And often we can figure out the 
bug just from the default error walkback 
and a bit of poking in the source code -- 
saves lots of debugging time.) 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Wed, 2 Mar 2011 09:28:55 +0100 
Subject: Re: Forcing Exception Handling 
Newsgroups: comp.lang.ada 
> […] I agree; I think that if we go this 

way all exceptions would have to 
appear in the contract. […] 

I thought about sort of conditional 
exceptions. E.g. storage error possibly 
raised when stack has less than n storage 
units. The compiler should estimate n in 
the cases mandated by the ARM. In other 
cases (recursion etc) the program is 
illegal, but the programmer may specify n 
explicitly using a pragma (he must know 
what he's doing, of course). 
Another example of conditional exception 
would be "I don't raise, if you don't." 
And we need a mechanism of exception 
propagation from slave tasks to their 
masters (when the task's exception 
contract is not null). 

On local storage pools 
From: Brian Drummond 

<brian_drummond@btconnect.com> 
Date: Wed, 23 Feb 2011 19:01:22 +0000 
Subject: Using local storage pools... 
Newsgroups: comp.lang.ada 
I am trying to learn a little about storage 
pools, with a view to (hopefully) using 
local pools to improve the Binary_Trees 
benchmark in the same way as some of 
the faster C benchmarks. 
[…] they do not explicitly free each tree 
node (the "free" call has been deleted!) 
but free the entire pool at the end of the 
loop. But if that's valid, Ada should be 
able to do the same. 

http://gcc.gnu.org/onlinedocs/  
gcc-4.1.2/gnat_ugn_unw/Some-Useful-
Memory-Pools.html 

suggests System.Pool_Local offers a way 
to do likewise - a pool that is 

automatically reclaimed when it goes out 
of scope. 
This turns out to have its own 
performance problem, but that is another 
story… 
The question(or four)  for now is … 
should the following really raise 
Storage_Error, i.e. am I doing something 
silly, and if so, what? 
Or is this a bug in GNAT? 
NOTE - using 
System.Pool_Global.Unbounded_No_ 
Reclaim_Pool (commented out) instead 
of the pool shown, works as expected. 
(Tested on GCC4.5.0 and GNAT GPS 
2010) 
[…] 

with System.Pool_Local; 
with System.Pool_Global; 
with Ada.Unchecked_Deallocation; 
 
procedure pooltest is 
 
   type Node; 
   type Treenode is access Node; 
   type Node is record 
      Left  : Treenode := null; 
      Right : Treenode := null; 
      Item  : Integer  := 0; 
   end record; 
 
   P : System.Pool_Local. 
         Unbounded_Reclaim_Pool; 
   --P : System.Pool_Global. 
           Unbounded_No_Reclaim_Pool; 
   for Treenode'Storage_Pool use P; 
 
   procedure free is new  
        Ada.Unchecked_Deallocation( 
           Node, Treenode); 
 
   TestNode : Treenode; 
 
begin 
   Testnode := new Node'(null, null, 1); 
   free(Testnode); 
end pooltest; 

From: Ludovic Brenta <ludovic@ludovic-
brenta.org> 

Date: Wed, 23 Feb 2011 21:51:20 +0100 
Subject: Re: Using local storage pools... 
Newsgroups: comp.lang.ada 
[…] 
This looks like a genuine bug at  
s-pooloc.adb:114. To trigger the bug, two 
conditions must hold simultaneously: 
- the pool contains exactly one allocated 

object. 
- the user calls Unchecked_Deallocation 

on this object. 



Ada in Context 91  

Ada User Journal Volume 32, Number 2, June 2011 

[…] 
This procedure is *not* called by the 
finalization of the pool, which simply 
walks the linked list of nodes and 
deallocates each one, but does not modify 
any nodes. 
Because this pool is intended for use 
without any explicit 
Unchecked_Deallocation, I would 
qualify this bug as minor. 
The workaround, in your case, is to 
simply not do any 
Unchecked_Deallocation and let the 
finalization of the storage pool do the 
deallocation. 
From: Simon Wright 

<simon@pushface.org> 
Date: Wed, 23 Feb 2011 21:01:51 +0000 
Subject: Re: Using local storage pools... 
Newsgroups: comp.lang.ada 
[…] 
Looks to me like a bug in GNAT. I expect 
it's not been found before because the 
point of this pool type is that you *don't* 
deallocate, but leave it up to finalization! 
I'm not quite clear how we can use this 
pool in the binary-trees benchmark, since 
the rules say you create a class to 
represent the tree, which must include the 
access types, and the storage pool needs 
to exist before the access types are used. 
Perhaps a generic? 
Even then, why not just declare an access 
type in the appropriate scope and let the 
compiler figure out how to deallocate 
storage on scope exit? (in other words, I 
don't see why GNAT includes 
System.Pool_Local in the first place). 
Oh, perhaps it's so that you can actually 
create such a generic? 
From: Brian Drummond 

<brian_drummond@btconnect.com> 
Date: Thu, 24 Feb 2011 00:00:00 +0000 
Subject: Re: Using local storage pools... 
Newsgroups: comp.lang.ada 
[…] 
>  Looks to me like a bug in GNAT. I 

expect it's not been found before 
because the point of this pool type is 
that you *don't* deallocate, but leave it 
up to finalization! 

Probably, but the doc doesn't say that 
freeing is illegal, and the source file 
(s_pooloc.ads/b) does have a deallocate 
routine, so I believe it ought to work… 
I can imagine cases where you free to 
improve memory footprint, but for 
whatever reason you can't (or don't) 
entirely eliminate memory leaks (so 
cleanup at a well-defined point)- in that 
case, the pool should allow both 
strategies. 
When I created a "local pool" per task, it 
only left scope on termination, therefore 
the memory footprint blew up without 

freeing. You could argue this was my 
programming error. 
>  I'm not quite clear how we can use this 

pool in the binary-trees benchmark, 
since the rules say you create a class to 
represent the tree, which must include 
the access types, and the storage pool 
needs to exist before the access types 
are used. Perhaps a generic? 

Exactly. In my binary_trees experiments I 
have made the Treenode package a 
generic. That part seems to work… 
>  Even then, why not just declare an 

access type in the appropriate scope and 
let the compiler figure out how to 
deallocate storage on scope exit? (in 
other words, I don't see why GNAT 
includes System.Pool_Local in the first 
place). 

I think it's so you can also declare a 
storage pool along with the locally-
declared access type, (i.e. locally 
instantiated generic) such that the entire 
pool goes out of scope and can be deleted 
on leaving the scope. 
Using the main pool, you would have to 
deallocate the locally declared access 
types but leave the longer-lived objects… 
Unfortunately, the current implementation 
of System.Pool_Local derives from 
System.Pool_Global, so it is 
implemented on the main heap, and its 
"Finalize" simply loops over every object 
freeing them individually. Therefore there 
is no performance gain this way… 
From: Brian Drummond 

<brian_drummond@btconnect.com> 
Date: Thu, 24 Feb 2011 00:27:17 +0000 
Subject: Re: Using local storage pools... 
Newsgroups: comp.lang.ada 
[…] 
>  Because this pool is intended for use 

without any explicit 
Unchecked_Deallocation, I would 
qualify this bug as minor. 

I believe it should support both strategies 
(especially since it has a "deallocate") but 
I can't argue it's anything other than minor 
if I'm the first to find it! 
>  The workaround, in your case, is to 

simply not do any 
Unchecked_Deallocation and let the 
finalization of the storage pool do the 
deallocation. 

Which was the original intent. Thanks for 
the detective work! 
[…] 
From: Brian Drummond 

<brian_drummond@btconnect.com> 
Date: Thu, 24 Feb 2011 17:04:04 +0000 
Subject: Re: Using local storage pools... 
Newsgroups: comp.lang.ada 
[…] 
>> Should I also report it to either 

Debian, or mainstream GCC? 

> To the GCC bugzilla, please. The bug 
has been confirmed on 4.4.5 and 4.5.2 
but my investigation reveals it has been 
present at least since 2001 (first commit 
into the public GCC source repository). 

Done:- Bug 47880. 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Wed, 23 Feb 2011 21:42:49 +0100 
Subject: Re: Using local storage pools... 
Newsgroups: comp.lang.ada 
[…] 
Why don't you implement an arena pool? 
It is a quite common technique to allocate 
nodes of a tree in an arena and never 
deallocate them explicitly.  
I am always use this for the nodes of the 
abstract syntax tree (AST). Note that 
since arena never deallocates, allocation 
in arena becomes trivial. 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Thu, 24 Feb 2011 10:26:26 +0100 
Subject: Re: Using local storage pools... 
Newsgroups: comp.lang.ada 
> […] the shootout rules explicitly 

disallow implementing your own pool. 
Huh: 

   type Nodes_Arena is array 
       (1..<huge-number>) of  
       aliased Node; 
   Last_Allocated : Integer := 0; 
 
   function Create  
      return not null access Node is 
   begin 
      Last_Allocated := Last_Allocated + 
                                   1; 
      return Nodes_Arena 
           (Last_Allocated)'Access; 
   end Create; 

This is an implementation of arena. How 
can this be disallowed? 
> (But importing one from available 

libraries seems to be permitted; so is 
there a suitable candidate?) 

You can try this one: 
http://www.dmitry-kazakov.de/ 
ada/components.htm#7.1 
From: Georg Bauhaus <rm-

host.bauhaus@maps.futureapps.de> 
Date: Thu, 24 Feb 2011 10:51:51 +0100 
Subject: Re: Using local storage pools... 
Newsgroups: comp.lang.ada 
[…] 
"Each program should 
... 
"allocate, walk, and deallocate many 
bottom-up binary trees 
   * allocate a tree 



92  Ada in Context 

Volume 32, Number 2, June 2011 Ada User Journal 

   * walk the tree nodes, checksum the 
node items (and maybe deallocate the 
node) 

   * deallocate the tree 
... 
"Note: these programs are being measured 
with the default initial heap size - the 
measurements may be very different with 
a larger initial heap size or GC tuning. 
"<strong>Please don't implement your 
own custom memory pool or free list.</>" 
"The binary-trees benchmark is a 
simplistic adaptation of Hans Boehm's 
GCBench, 
(http://www.hpl.hp.com/personal/ 
Hans_Boehm/gc/gc_bench/applet/ 
GCBench.java) 
which in turn was adapted from a 
benchmark by John Ellis and Pete 
Kovac." 
http://shootout.alioth.debian.org/u32/ 
performance.php?test=binarytrees 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Thu, 24 Feb 2011 11:09:36 +0100 
Subject: Re: Using local storage pools... 
Newsgroups: comp.lang.ada 
[…] 
I see no contradiction. Tree is allocated. It 
is deallocated too (when array is 
destroyed). […] 
> "<strong>Please don't implement your 

own custom memory pool or free 
list.</>" 

They seem trying to exclude pool access 
overhead from the measure, but they have 
no working idea how. All these 
"benchmarks" are measuring things 
having nothing or little to do with the 
manifested objective. 
From: Robert A Duff 

<bobduff@shell01.TheWorld.com> 
Date: Thu, 24 Feb 2011 07:34:35 -0500 
Subject: Re: Using local storage pools... 
Newsgroups: comp.lang.ada 
[…] 
> […] they do not explicitly free each tree 

node (the "free" call has been deleted!) 
but free the entire pool at the end of the 
loop. […] 

[…] This technique is commonly used. 
I have used it in various compilers and 
static analysis tools and other programs. 
Whenever you have large numbers of 
small heap-allocated objects that all have 
roughly the same lifetime, this technique 
simplifies the program, makes it more 
efficient, and helps avoid dangling 
pointers. 
> http://gcc.gnu.org/onlinedocs/gcc-

4.1.2/gnat_ugn_unw/Some-Useful-
Memory-Pools.html  

suggests System.Pool_Local offers a way 
to do likewise - a pool that is 

automatically reclaimed when it goes out 
of scope. 
Pool_Local is not what you want (for 
efficiency) in this case. 
What you want is a pool that allocates 
large chunks of memory, and allocates 
individual small objects within that, and 
deallocates the whole thing (all the 
chunks) at the end (Finalize). For 
efficiency, you never call 
Unchecked_Deallocation. 
I'm not sure if such a pool is part of 
gnatcoll, but if not, I'll probably add it to 
gnatcoll someday. 
Pool_Local would be more appropriate if 
the allocated objects are large (and 
usually have similar lifetimes). 
[…] 
I don't see anything wrong with your 
code. If you report it to AdaCore 
(report@adacore.com) it will get fixed (at 
low priority, if you're not a supported 
customer). I'm interested in storage pools 
-- maybe I'll be assigned to fix the bug (if 
it is a bug). 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Fri, 25 Feb 2011 21:02:34 -0600 
Subject: Re: Using local storage pools... 
Newsgroups: comp.lang.ada 
> […] they do not explicitly free each tree 

node[…] but free the entire pool at the 
end of the loop. […] 

This sounds like a job for Ada 2012 
subpools. Of course, to use them, you 
have to have an Ada 2012 compiler (and I 
don't think there is an implementation at 
the moment - we [the ARG] just approved 
the AI last week). 
If the pools are completely disjoint and 
you can live with local access types, you 
can use individual local pool objects to do 
the job, but that typically isn't the case in 
practice. 
You can write a pool to do mass 
deallocations, but such a pool is always 
erroneous according to the language (both 
Ada 95 and Ada 2005), so there can be no 
guarantee that it will work on another 
compiler. [Bob Duff will tell you that the 
intent was such things would work, and 
they often will - as compilers don't try to 
do bad things unless there is a good 
reason - but the language doesn't provide 
any help.] 
From: Pascal Obry <pascal@obry.net> 
Date: Sat, 26 Feb 2011 19:59:47 +0100 
Subject: Re: Using local storage pools... 
Newsgroups: comp.lang.ada 
[…] 
>> This sounds like a job for Ada 2012 

subpools. […] 
> Hum, can you tell me more about this 

AI? What's the number? 
I think I found it: 

http://www.ada-auth.org/  
cgi-bin/cvsweb.cgi/ai05s/ 
ai05-0111-3.txt?rev=1.8 
[…] 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Fri, 25 Feb 2011 21:07:01 -0600 
Subject: Re: Using local storage pools... 
Newsgroups: comp.lang.ada 
[…] 
Another thought: the Multiway_Tree 
container may very well have this 
behavior. The bounded version *has* to 
have this behavior. Not sure what effect 
using the container would have on the 
benchmark, but it would be an interesting 
option to try. (Of course, this is another 
Ada 2012 feature, but it is easy to 
implement in existing compilers and I 
believe it is available in recent versions of 
GNAT.) 

On alternative design for 
Ada 2005/2012 
From: Tom Moran <tmoran@acm.org> 
Date: Thu, 21 Apr 2011 23:05:26 +0000 

UTC 
Subject: design changes per Ada 2005/12? 
Newsgroups: comp.lang.ada 
Randy, 
A lot of Claw used/tested new Ada 95 
features. What would you *design* 
differently with Ada 2005 or 2012? (Not 
syntactic sugar). 
Similar question to other folks. 
From: Lucretia 

<Lucretia9000@yahoo.co.uk> 
Date: Thu, 21 Apr 2011 18:10:09 -0700 

PDT 
Subject: Re: design changes per Ada 

2005/12? 
Newsgroups: comp.lang.ada 
[…] Interfaces if the FSF GNAT doesn't 
produce an ICE. 
[…] 
P.S: The containers should've used 
interfaces! 
From: Shark8 

<onewingedshark@gmail.com> 
Date: Thu, 21 Apr 2011 18:23:25 -0700 

PDT 
Subject: Re: design changes per Ada 

2005/12? 
Newsgroups: comp.lang.ada 
[…] 
Indeed they should have. 
It really is too bad that they chose to 
emulate Java-style interfaces rather than 
Delphi-style interfaces; with Delphi's 
properties you can have a 'field' of an 
object which can be calculated (a 
procedure or function) or a renaming of 
an internal field, for both reading and 
writing to the property. Read-only and 
write-only properties are also do-able. 



Ada in Context 93  

Ada User Journal Volume 32, Number 2, June 2011 

From: Randy Brukardt 
<randy@rrsoftware.com> 

Date: Fri, 22 Apr 2011 19:36:04 -0500 
Subject: Re: design changes per Ada 

2005/12? 
Newsgroups: comp.lang.ada 
[…] 
Well, obviously we would have used 
overriding indicators from the beginning. 
(No surprise there, the indicators were 
one of the first Ada 2005 features -- they 
got added in part because of a hard push I 
made because of my Claw experience.) 
We would have used "private with" a lot, 
too. Both of these are time-consuming to 
retrofit, but they wouldn't have changed 
the design a lot. 
I would have liked to have been able to 
make some or all of the types limited; one 
reason we didn't do that was the loss of 
the function syntax. Had we done that, we 
would have spent less time trying to get 
finalization to work right (the "clone" 
semantics is complicated to implement, 
and not that easy to work with, either). 
For Ada 2012, I would have definitely 
used the iterators to walk lists.  
Probably also would have used some of 
the contract features (preconditions, etc.) 
although they don't work well in the Claw 
model (where objects can change state 
asynchronously to the program). 
I'm sure there is other stuff that would 
have helped in specific cases (null 
exclusions come to mind), but I don't 
think the design would have been wildly 
different. I don't think we would have 
used any interfaces, for instance. 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Fri, 22 Apr 2011 19:41:59 -0500 
Subject: Re: design changes per Ada 

2005/12? 
Newsgroups: comp.lang.ada 
[…] 
>P.S: The containers should've used 

interfaces! 
We tried that with the new Queue 
containers, and IMHO it is a disaster. You 
have to use an extra instantiation and 
extra formal parameters for a feature that 
you are not going to use on 90% of the 
programs. (Typically, you only use one 
kind of queue in a program.) 
The introduction of the interfaces also 
forced a horrible structure which requires 
the implementation to declare all of its 
internal data structures in a *visible* 
nested package. (This is partially the fault 
of protected types, which don't allow 
nested types for good reasons -- but if we 
didn't have the interface we could hide the 
protected type in the private part.) 
Some of this could be fixed with 
substantial violence to the Ada visibility 
and implementation models, but it is not 
clear that what you would end up with be 

Ada. Not likely to happen, and surely not 
before Ada 2020. 
From: Dmitry A. Kazakov 

<mailbox@dmitry-kazakov.de> 
Date: Sat, 23 Apr 2011 08:44:27 +0200 
Subject: Re: design changes per Ada 

2005/12? 
Newsgroups: comp.lang.ada 
[…] 
Yes, I have same experience. Interfaces 
do not work good with generics, which 
should not surprise anybody. 
From: Maciej Sobczak 

<maciej@msobczak.com> 
Date: Sat, 23 Apr 2011 14:27:24 -0700 PDT 
Subject: Re: design changes per Ada 

2005/12? 
Newsgroups: comp.lang.ada 
[…] 
> Yes, I have same experience. Interfaces 

do not work good with generics, which 
should not surprise anybody. 

Agree here. This approach seems to be 
bearable in Java, where standard 
collections (java.util.*) are all both 
generics and interface-based, but I think 
this is because all this Java stuff is more 
dynamically than statically typed. On the 
user perspective, the benefits of these 
interfaces are close to zero and the very 
few potential advantages (like the ability 
to change the concrete collection type 
without modifying all user code) are more 
results of Java not having type aliasing 
(typedefs or renamings) features. 
C++ uses non-interface approach and I 
have never seen a situation where this was 
an issue. Ada got it right, too. 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Tue, 26 Apr 2011 18:12:02 -0500 
Subject: Re: design changes per Ada 

2005/12? 
Newsgroups: comp.lang.ada 
[…] 
> Things like iterators could be 

implemented ok with interfaces. 
And indeed they are (see AI05-0139-2). 
But it is interesting that iterators were the 
only example where interfaces worked. 
We tried and discarded models using 
interfaces for both implicit dereferencing 
and indexing, because they either ended 
up as nothing more than a marker (which 
can be accomplished in a straightforward 
way without using any interfaces), or 
because they required violating 
visibility/overloading rules. 

Ada bindings to C++ class 
templates 
From: David Sauvage 

<sauvage.david@gmail.com> 
Date: Sat, 5 Mar 2011 01:36:41 -0800 PST 
Subject: Ada bindings to C++ class 

templates 

Newsgroups: comp.lang.ada 
Hi, I'm trying to know more about how to 
write Ada bindings to C++ class 
templates. 
Unfortunately, I have found no 
documentation concerning this subject. 
May be we could use the C++ STL vector 
class template [1] as a basis for the 
discussion & hints (if any). 
I would think that the Ada binding would 
start from a generic package. 
I would prefer to implement the necessary 
intermediate C layers to make the binding 
compiler portable if possible. (instead of 
using g++ -fdump-ada-spec for example) 
Any help & hints would be appreciated. 
[1] http://en.wikipedia.org/wiki/ 

Vector_(C++) 
From: Maciej Sobczak 

<maciej@msobczak.com> 
Date: Sat, 5 Mar 2011 02:56:56 -0800 PST 
Subject: Re: Ada bindings to C++ class 

templates 
Newsgroups: comp.lang.ada 
> I'm trying to know more about how to 

write Ada bindings to C++ class 
templates. 

There is no direct way to couple Ada with 
C++ at the level of class templates, so… 
> I would prefer to implement the 

necessary intermediate C layers to 
make the binding compiler portable if 
possible. 

and this is the recommended way to go - 
create a layer of thin C interfaces to 
whatever C++ stuff you want to use and 
bind to that interface. This seems to be 
time consuming, but in fact is not - the 
actual application code on both sides 
tends to be much bigger and this allows to 
quickly amortize the additional effort to 
create the C interface layer. 
The problem is that the C interface layer 
will not be generic and will force you to 
"flatten" the type space to what is 
available in C. On one hand this seems to 
be a severe limitation (it is from the 
design point of view), but on the other 
hand (the deployment point of view) it 
isolates the two sides well enough to 
allow complete replacement of either 
component, and it also open some new 
opportunities, like using the low-level 
component in interpreters (Python, Tcl, 
etc.). So, in short - yes, creating a C layer 
is a preferred way to go and even though 
requires some up-front effort, it brings 
long-term benefits. 

Adding proof function 
definitions to SPARK 
From: Phil Thornley 

<phil.jpthornley@gmail.com> 
Date: Sun, 27 Feb 2011 04:51:42 -0800 

PST 



94  Ada in Context 

Volume 32, Number 2, June 2011 Ada User Journal 

Subject: SPARK: Defining the meaning of a 
proof function 

Newsgroups: comp.lang.ada 
One significant gap in the SPARK 
language is the absence of any way to 
define the meaning of a proof function 
(i.e. a function declared in annotations). 
The only way to do this is in a user proof 
rule that is read by the Simplifier. 
If the user were able to define the 
meaning of a proof function in the 
SPARK text then this could be 
incorporated into the VCs generated by 
the Examiner. This would remove the 
need for a number of user rules and make 
completion of the proofs simpler, quicker 
and less error-prone. 
At present, a function operation can be 
given a return annotation, and this is used 
to add a hypothesis about the value 
returned by a call of that function - but 
only where that operation appears in code. 
Hypotheses are not added when the 
equivalent proof function appears in a 
proof context (pre/post, assert, check). 
As an experiment I extended my 
SPARKRules utility to mimic the effect 
of adding proof function definitions to 
SPARK. The extended program edits the 
Examiner generated VCs to add the 
hypotheses that (I think) the Examiner 
would add if it had definitions for proof 
functions. 
The results were very positive and suggest 
that the combination of adding proof 
function definitions to SPARK and using 
more capable solvers via Victor has the 
potential to make proof a great deal 
simpler and quicker. 
I used the current version of the Tokeneer 
software as the trial application.  Full 
details of the work and the results are in: 
http://www.sparksure.com/resources/ 
Proof_Function_Definitions.pdf 
Summarising the results: 
- The current version of Tokeneer has 84 

distinct user rules (some very complex) 
that create 97 rules in 26 user rule files. 
These complete the proofs of 101 VCs 
in 43 operations. (There are a further 24 
VCs that have review proofs.) 

- If the proof function definitions are 
added and Victor used to submit the 
VCs to alt-ergo, then there are just 10 
VCs (out of 101) left unproven in 8 
operations (out of 43). Completion of 
these remaining VCs requires 17 user 
rules (all of which are quite simple). 

It is the combination of proof function 
definitions and Victor that is effective: 
Adding the proof function definitions 
leaves 58 VCs in 30 operations. 
Using Victor leaves 76 VCs in 36 
operations. 
I hope that this experiment will make the 
enhancement more likely - supported 

customers are encouraged to use their 
influence to promote this change. 
Although I will not make this extended 
version of SPARKRules (called 
SPARKRulesPF) generally available 
(since it is not a properly tested program) 
I am prepared to make it available on 
request provided that the reason for the 
request is given and an undertaking made 
to share any results. Replies to this 
message will reach me, or you can use a 
sparksure.com address. The program 
compiles and runs on both Windows 7 
and openSUSE 11.3 using the latest 
versions of GNAT and SPARK (but 
Victor is available only on Linux at 
present). 
From: Alexander Senier <mail@senier.net> 
Date: Mon, 28 Feb 2011 09:21:33 +0100 
Subject: Re: SPARK: Defining the meaning 

of a proof function 
Newsgroups: comp.lang.ada 
[…] 
> One significant gap in the SPARK 

language is the absence of any way to 
define the meaning of a proof function 
(i.e. a function declared in annotations). 
The only way to do this is in a user 
proof rule that is read by the Simplifier. 

There is another way to define the 
meaning of proof functions. However, it 
is not integrated into the SPARK source 
text either. The current release of the 
Isabelle theorem prover [1] adds the 
HOL/SPARK proof environment. This 
environment can read in the VCs 
produced by the Examiner and the 
Simplifier (and associated FDL rules etc.) 
and present them as proof contexts in 
Isabelle. 
Abstract SPARK proof functions can be 
associated with concrete Isabelle 
functions (of suitable type, checked by 
Isabelle). Using HOL/SPARK can be 
advantageous, as e.g. existing powerful 
proof strategies, automated external 
provers and existing proofs may be used 
to prove open VCs.  
Furthermore, it is much harder to 
introduce logical inconsistencies in 
Isabelle/HOL than in hand-written rule 
files. 
Examples for using HOL/SPARK can be 
found in "src/HOL/SPARK/Examples" in 
the Isabelle2011 distribution. 
Unfortunately, there is no documentation 
available currently (being improved at the 
moment). 
[1] http://isabelle.in.tum.de 

On constraints in extended 
return 
From: Simon Wright 

<simon@pushface.org> 
Date: Sat, 19 Mar 2011 10:42:45 +0000 
Subject: Constraints in extended return 
Newsgroups: comp.lang.ada 

This code transposes a matrix: 

function Transpose ( 
      M : Complex_Matrix)  
   return Complex_Matrix 
is 
begin 
   return  
      Result : Complex_Matrix ( 
                       M'Range (2),  
                       M'Range (1)) do 
        for J in M'Range (1) loop 
           for K in M'Range (2) loop 
              Result (K, J) := M (J, K); 
           end loop; 
        end loop; 
   end return; 
end Transpose; 

This is all very well for providing a value 
where no constraint is otherwise imposed, 
for example as an actual in a subprogram 
call, but what about the case where there 
is a prior constraint? 

Input : Complex_Matrix (1 .. 2, 11 .. 12); 
Output : Complex_Matrix (1 .. 2, 1 .. 2); 
begin 
   Input := (...); 
   Output := Transpose (Input); 

Is there any way for the extended return to 
determine the constraints of the 'target'? I 
suspect not, but the language in RM6.5 is 
deep. 
From: Robert A Duff 

<bobduff@shell01.TheWorld.com> 
Date: Sat, 19 Mar 2011 09:30:18 -0400 
Subject: Re: Constraints in extended return 
Newsgroups: comp.lang.ada 
[…] 
> […] what about the case where there is 

a prior constraint? 
You get Constraint_Error if the constraint 
is wrong. 
But this isn't directly related to extended 
return statements. 
You get the same thing for old-fashioned 
returns: 

function F(…) return String is 
begin 
   … 
  return "Hello"; 
end F; 
 
X : String (1..100); 
 
X := F(…); -- Constraint_Error 

>  Is there any way for the extended 
return to determine the constraints of 
the 'target'? 

No. You can do that for 'out' parameters, 
but unfortunately not for function results. 
So normally, you would avoid 



Ada in Context 95  

Ada User Journal Volume 32, Number 2, June 2011 

constraining at the call site, and do things 
like: 

Output : constant  
   Complex_Matrix := Transpose (Input); 

From: Dmitry A. Kazakov 
<mailbox@dmitry-kazakov.de> 

Date: Sat, 19 Mar 2011 14:51:23 +0100 
Subject: Re: Constraints in extended return 
Newsgroups: comp.lang.ada 
[…] 
> No. You can do that for 'out' 

parameters, but unfortunately not for 
function results. 

Fortunately you mean, because how could 
we otherwise create unconstrained 
objects? 
From: Simon Wright 

<simon@pushface.org> 

Date: Sat, 19 Mar 2011 15:55:00 +0000 
Subject: Re: Constraints in extended return 
Newsgroups: comp.lang.ada 
> Output : constant Complex_Matrix := 

Transpose (Input); 
Thanks, that's what I thought would be 
the case. This will constrain my solution 
:-) but we all need boundaries! 
From: Randy Brukardt 

<randy@rrsoftware.com> 
Date: Mon, 21 Mar 2011 21:02:32 -0500 
Subject: Re: Constraints in extended return 
Newsgroups: comp.lang.ada 
[…] 
> Is there any way for the extended return 

to determine the constraints of the 
'target'? I suspect not, but the language 
in RM6.5 is deep. 

Why do we care what the bounds are? 
Assignments "slide" bounds; all that is 
required is that the lengths of the array 
dimensions match. This is true whether 
this is an extended return or a regular 
return (at least it had better be; it would 
be awful to have the semantics change 
depending on the form of the return 
statement). 
For instance, 

   Output := Input; 

is both a legal assignment and does not 
raise Constraint_Error (both dimensions 
have length 2). 
Now, if you get the lengths wrong, you 
have a problem, but not the actual bounds. 
 

 



 97
  

Ada User Journal  Volume 32, Number 2, June 2011 

Conference Calendar 
Dirk Craeynest 
K.U.Leuven. Email: Dirk.Craeynest@cs.kuleuven.be 
 
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on 
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific 
Ada focus. Items marked with ☺ denote events with close relation to Ada. 
The information in this section is extracted from the on-line Conferences and events for the international Ada community at: 
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full 
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly. 
 

2011 
 
July 03-06 4th International Conference on Software Language Engineering (SLE'2011), Braga, Portugal. 

Topics include: Formalisms used in designing and specifying languages and tools that analyze such 
language descriptions; Language implementation techniques; Program and model transformation tools; 
Language evolution; Approaches to elicitation, specification, or verification of requirements for 
software languages; Design challenges in SLE; Applications of languages including innovative domain-
specific languages or "little" languages; etc. 

July 05-07 15th International Conference on System Design Languages of the SDL Forum Society (SDL'2011), 
Toulouse, France. Topics include: Industrial application reports (industrial usage and experience reports, 
tool engineering and frameworks, domain-specific applicability, such as aerospace, automotive, control, 
...); Evolution of development tools and languages (domain-specific profiles and extensions, modular 
language design, semantics and evaluation, methodology for application, standardization activities); 
Modeling in multi-core and parallel applications; Education and Promotion of System Design 
Languages; etc. 

July 07-09 23rd International Conference on Software Engineering and Knowledge Engineering (SEKE'2011), 
Miami Beach, USA. Topics include: Integrity, Security, and Fault Tolerance; Reliability; Industry 
System Experience and Report; Component-Based Software Engineering; Embedded Software 
Engineering; Reverse Engineering; Programming Languages and Software Engineering; Program 
Understanding; Software Assurance; Software dependability; Software Engineering Tools and 
Environments; Software Maintenance and Evolution; Software product lines; Software Quality; 
Software Reuse; Software Safety; Software Security; Software Engineering Case Study and Experience 
Reports; etc. 

July 13-14 11th International Conference on Quality Software (QSIC'2011), Madrid, Spain. Topics include: 
Software quality (review, inspection and walkthrough, reliability, safety and security, ...); Evaluation of 
software products and components (static and dynamic analysis, validation and verification); Economics 
of software quality; Formal methods (program analysis, model construction, ...); Applications 
(component-based systems, distributed systems, embedded systems, enterprise applications, information 
systems, safety critical systems, ...); etc. 

July 14-20 23rd International Conference on Computer Aided Verification (CAV'2011), Snowbird, Utah, USA. 
Topics include: Algorithms and tools for verifying models and implementations, Program analysis and 
software verification, Verification methods for parallel and concurrent hardware/software systems, 
Applications and case studies, Verification in industrial practice, etc. 

July 18-21 6th International Conference on Software and Data Technologies (ICSOFT'2011), Seville, Spain. 
Topics include: Software Engineering, Software Maintenance, Model-Driven Engineering, Software 
Economics, Reverse Engineering, Programming Languages, Distributed Systems, Security and Privacy, 
etc. 

☺ July 25-29 25th European Conference on Object-Oriented Programming (ECOOP'2011), Lancaster, UK. Topics 
include: all areas of object technology and related software development technologies, such as Analysis 
and design methods and patterns; Distributed, concurrent, real-time systems; Language design and 



98  Conference Calendar 

Volume 32, Number 2, June 2011 Ada User Journal 

implementation; Modularity, components, services; Software development environments and tools; 
Type systems, formal methods; Compatibility, software evolution; etc. 

☺ July 26 6th Workshop on Implementation, Compilation, Optimization of Object-Oriented 
Languages, Programs and Systems (ICOOOLPS'2011). Topics include: efficient 
implementation and compilation of OO languages in various application domains 
ranging from embedded and real-time systems to desktop systems. 

August 15-18 6th IEEE International Conference on Global Software Engineering (ICGSE'2011), Helsinki, 
Finland. Topics include: Strategic issues in distributed development (cost-benefit-risk analysis, ...); 
Methods and tools for distributed software development (requirements engineering, design, coding, 
verification, testing and maintenance, development governance); Empirical studies and lessons learnt 
from distributed development; etc. 

August 22-27 6th International Conference on Software Engineering Advances (ICSEA'2011), Nice, France. 
Topics include: Advances in fundamentals for software development; Advanced mechanisms for 
software development; Advanced design tools for developing software; Software security, privacy, 
safeness; Open source software; Software deployment and maintenance; Software economics, adoption, 
and education; etc. 

☺ August 29-30 16th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2011), 
Trento, Italy. Topics include: Design, specification, code generation and testing based on formal 
methods; Verification and validation methods that address shortcomings of existing methods with 
respect to their industrial applicability; Tools for the development of formal design descriptions; Case 
studies and experience reports on industrial applications of formal methods, focusing on lessons learned 
or identification of new research directions; Impact of the adoption of formal methods on the 
development process and associated costs; Application of formal methods in standardization and 
industrial forums; etc. 

August 29-31 5th IEEE International Conference on Theoretical Aspects of Software Engineering (TASE'2011), 
Xi'an, China. Topics include: Embedded and Real-Time Systems; Program Analysis; Software 
Architectures and Design; Component-Based Software Engineering; Reverse Engineering and Software 
Maintenance; Aspect and Object Orientation; Dependable Concurrency; Specification and Verification; 
Model-Driven Engineering; Software Safety, Security and Reliability; Static Analysis; etc. 

Aug 29 – Sep 02 15th IEEE International Enterprise Computing Conference (EDOC'2011), Helsinki, Finland. Topics 
include: the full range of engineering technologies and methods contributing to intra- and inter-
enterprise distributed application systems; industry specific solutions, e.g. for aerospace, automotive, 
finance, logistics, medicine and telecommunications; etc. 

☺ Aug 30 – Sep 02 International Conference on Parallel Computing 2011 (ParCo'2011), Gent, Belgium. Topics include: 
all aspects of parallel computing, including applications, hardware and software technologies as well as 
languages and development environments, in particular Applications of multicores, GPU-based 
applications, Parallel programming languages, compilers and environments, Best practices of parallel 
computing, etc. 

Au 30–Se 02 ParCo2011 - Parallel Computing with FPGAs (ParaFPGA'2011). Topics include: 
programming environments for FPGAs, parallel languages and design tools for FPGA 
application development, FPGA-based parallel applications, etc. 

Aug 30 – Sep 02 37th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA'2011), 
Oulu, Finland. Topics include: information technology for software-intensive systems; tracks on Lean 
Software Product Development (LSPD), Resilient Systems, Robotics and Critical Infrastructures 
(RSRCI), Embedded Software Engineering (ESE), etc. 

Au 30–Se 02 Track on Software Process and Product Improvement (SPPI'2011). Topics include: 
Value-based software engineering; Open source software and software quality; Agile 
and lean development; Software reuse, product lines, and software ecosystems; 
Dependability, safety, security, or usability; Quality assurance, inspections, testing; 
Software evolution; Innovative approaches to software development; Empirical studies 
and experimental approaches; etc. etc. 



Conference Calendar 99  

Ada User Journal Volume 32, Number 2, June 2011 

☺Au 30–Se 02 Track on Embedded Software Engineering (ESE'2011). Topics include: Design and 
implementation of embedded software; Programming methodologies and languages for 
embedded software; Testing and certification of embedded software; Embedded 
software verification and validation; Software-intensive systems applications, e.g., in 
automotive, avionics, energy, industrial automation, health care, and telecommunication; 
etc. 

September 05-09 8th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT 
Symposium on the Foundations of Software Engineering (ESEC/FSE'2011), Szeged, Hungary. 
Topics include: Case studies and experience reports; Engineering of distributed/parallel software 
systems; Engineering of embedded and real-time software; Engineering secure software; Reverse 
engineering and maintenance; Software architecture and design; Software components and reuse; 
Software dependability, safety and reliability; Software tools and development environments; Theory 
and formal methods; etc. 

September 12-14 16th European Symposium on Research in Computer Security (ESORICS'2011), Leuven, Belgium. 
Topics include: Accountability, Information Hiding, Information Flow Control, Integrity, Formal 
Security Methods, Language-Based Security, Risk Analysis and Management, Security Verification, 
Software Security, etc. 

September 13-15 Forum on specification & Design Languages (FDL'2011), Oldenburg, Germany. Topics include: the 
application of languages, their associated design methods and tools for the design of electronic systems. 
Deadline for submissions: August 30, 2011 (onsite meetings). 

September 13-16 5th European Conference on Software Architecture (ECSA'2011), Essen, Germany. Topics include: 
software tools and environments for architecture-centric software engineering; component-based 
models, middleware, component-based deployment; technology of components and component-based 
frameworks; industrial applications, case studies, best practices and experience reports; architecture 
description languages and metamodels; etc. 

☺ September 13-16 40th International Conference on Parallel Processing (ICPP'2011), Taipei, Taiwan. Topics include: 
all aspects of parallel and distributed computing, such as Compilers, Programming Models and 
Languages, Multi-core and Parallel Systems, etc. 

Sep 14-16 15th International Real-Time Ada Workshop (IRTAW'2011), Liébana, Cantabria, 
Spain. In cooperation with Ada-Europe. 

☺ September 19-21 FedCSIS2011 - 3rd Workshop on Advances in Programming Languages (WAPL'2011), Szczecin, 
Poland. Topics include: Compiling techniques; Domain-specific languages; Formal semantics and 
syntax; Generative and generic programming; Languages and tools for trustworthy computing; 
Language concepts, design and implementation; Model-driven engineering languages and systems; 
Practical experiences with programming languages; Program analysis, optimization and verification; 
Program generation and transformation; Programming tools and environments; Proof theory for 
programs; Specification languages; Type systems; etc. 

☺ September 19-23 11th International Conference on Parallel Computing Technologies (PaCT'2011), Kazan, Russia. 
Topics include: all aspects of the applications of parallel computer systems; methods and tools for 
parallel solution of large-scale problems; languages, environment and software tools supporting parallel 
processing; etc. 

September 21-23 9th International Conference on Formal Modeling and Analysis of Timed Systems 
(FORMATS'2011), Aalborg, Denmark. Topics include: Methods and Tools (techniques, algorithms, 
data structures, and software tools for analyzing timed systems and resolving temporal constraints, such 
as scheduling, worst-case execution time analysis, optimization, model checking, testing, constraint 
solving); Applications (adaptation and specialization of timing technology in application domains in 
which timing plays an important role, such as real-time software, problems of scheduling in 
manufacturing and telecommunication, ...); etc. 

September 22-23 5th International Symposium on Empirical Software Engineering and Measurement (ESEM'2011), 
Banff, Alberta, Canada. Topics include: Generative programming, metaprogramming; Product-line 
architectures; Analysis of language support for generative programming; Semantics, type-systems of 
generative programs; Case Studies and Demonstration Cases; etc. 



100  Conference Calendar 

Volume 32, Number 2, June 2011 Ada User Journal 

Sep 25 – Oct 01 27th IEEE International Conference on Software Maintenance (ICSM'2011), Williamsburg, VA, 
USA. Topics include: reverse engineering and re-engineering; static and dynamic analysis; software 
migration and renovation; maintenance and evolution process; mining software repositories; empirical 
studies in software maintenance and evolution; testing, only in relation to maintenance (e.g., regression 
testing); etc. 

☺ September 26-30 CBSoft2011 - 15th Brazilian Symposium on Programming Languages (SBLP'2011), Sao Paulo, 
Brazil. Topics include: the fundamental principles and innovations in the design and implementation of 
programming languages and systems; such as: Programming paradigms and styles, including object-
oriented, real-time, multithreaded, parallel, and distributed programming; Program analysis and 
verification, including type systems, static analysis and abstract interpretation; Programming language 
design and implementation, including new programming models, programming language environments, 
compilation and interpretation techniques; etc. 

☺ September 28-30 Facing the Multicore-Challenge II Conference, Karlsruhe, Germany. Topics include: Parallel 
programming models, environments and languages; Library and tool support; Scalability issues and 
portability of software solutions; Compiler techniques and code optimization strategies; Practice and 
experience of multicore programming; Parallel applications and benchmarks; etc. Deadline for 
submissions: July 17, 2011 (full papers), September 4, 2011 (short talks, posters). 

September 29-30 10th International Conference on Intelligent Software Methodologies, Tools and Techniques 
(SoMeT'2011), Saint Petersburg, Russia. Topics include: Software methodologies, and tools for robust, 
reliable, non-fragile software design; Software developments techniques and legacy systems; Automatic 
software generation versus reuse, and legacy systems; Software evolution techniques; Agile Software 
and Lean Methods; Formal methods for software design; Software maintenance; Software security tools 
and techniques; Formal techniques for software representation, software testing and validation; Software 
reliability, and software diagnosis systems; Model Driven Development (DVD), code centric to model 
centric software engineering; etc. 

☺ October 04-07 30th IEEE International Symposium on Reliable Distributed Systems (SRDS'2011), Madrid, Spain. 
Topics include: distributed systems design, development and evaluation, particularly with emphasis on 
reliability, availability, safety, security, trust and real time; high-confidence systems; distributed objects 
and middleware systems; formal methods and foundations for dependable distributed computing; 
analytical or experimental evaluations of dependable distributed systems; etc. 

October 10-12 13th International Symposium on Stabilization, Safety, and Security of Distributed Systems 
(SSS'2011), Grenoble, France. Topics include: Fault-Tolerance and Dependable Systems, Safety and 
Verification, Security, etc. 

☺ October 10-14 20th International Conference on Parallel Architectures and Compilation Techniques 
(PACT'2011), Galveston Island, Texas, USA. Topics include: Parallel computational models; Compilers 
and tools for parallel computer systems; Support for correctness in hardware and software (esp. with 
concurrency); Parallel programming languages, algorithms and applications; Middleware and run time 
system support for parallel computing; Applications and experimental systems studies; etc. Deadline for 
submissions: July 8, 2011 (student research competition). 

☺ October 20-22 12th International Conference on Parallel and Distributed Computing, Applications, and 
Techniques (PDCAT'2011), Gwangju, Korea. Topics include: all areas of parallel and distributed 
computing; Reliability, and fault-tolerance; Formal methods and programming languages; Software 
tools and environments; Parallelizing compilers; Component-based and OO Technology; 
Parallel/distributed algorithms; Task mapping and job scheduling; etc. 

☺ October 22-27 ACM Conference on Systems, Programming, Languages, and Applications: Software for 
Humanity (SPLASH'2011), Portland, Oregon, USA. 

October 25-28 13th International Conference on Formal Engineering Methods (ICFEM'2011), Durham, UK. Topics 
include: Abstraction and refinement; Formal specification and modelling; Software verification; 
Program analysis; Tool development and integration; Software safety, security and reliability; 
Experiments involving verified systems; Applications of formal methods; etc. 

♦ Nov 06-10 ACM SIGAda Annual International Conference on Ada and Related 
Technologies (SIGAda'2011), Denver, Colorado, USA. Sponsored by ACM SIGAda, in 



Conference Calendar 101  

Ada User Journal Volume 32, Number 2, June 2011 

cooperation with SIGAPP, SIGBED, SIGCAS, SIGCSE, SIGPLAN, Ada-Europe, and the 
Ada Resource Association (cooperation approvals pending). 

November 09-11 30th International Conference of the Chilean Computer Science Society (SCCC'2011), Curicó, 
Chile. Topics include: Theory of Computer Science, Security, Distributed and Parallel Systems, 
Software Engineering, Programming Languages, Computer Science and Education, etc. 

November 14-18 9th International Conference on Software Engineering and Formal Methods (SEFM'2011), 
Montevideo, Uruguay. Topics include: programming languages, program analysis and type theory; 
formal methods for real-time, hybrid and embedded systems; formal methods for safety-critical, fault-
tolerant and secure systems; light-weight and scalable formal methods; tool integration; applications of 
formal methods, industrial case studies and technology transfer; etc. 

☺ December 07-09 17th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2011), Tainan, 
Taiwan. Topics include: Parallel and Distributed Applications and Algorithms; Multi-core and 
Multithreaded Architectures; Resource Provision, Monitoring, and Scheduling; Security and Privacy; 
Dependable and Trustworthy Computing and Systems; Real-Time Systems; etc. 

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day! 
December 18-21 18th IEEE International Conference on High Performance Computing (HiPC'2011), Bengaluru, 

Bangalore, India. Topics include: Parallel and Distributed Algorithms, Parallel Languages and 
Programming Environments, Scheduling, Fault-Tolerant Algorithms and Systems, 
Scientific/Engineering/Commercial Applications, Compiler Technologies for High-Performance 
Computing, Software Support, etc. Deadline for submissions: September 16, 2011 (student symposium). 
Deadline for early registration: November 14, 2011. 

2012 
 
☺ January 25-27 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2012), 

Philadelphia, USA. Topics include: all aspects of programming languages and systems, with emphasis 
on how principles underpin practice. Deadline for submissions: July 8, 2011 (abstracts), July 12, 2011 
(papers). 

February 22-25 5th India Software Engineering Conference (ISEC'2012), Kanpur, India. Topics include: Testing and 
Static Analysis, Specification and Verification, Model Driven Software Engineering, Software 
Architecture and Design, Tools and Environments, Development Paradigms and Processes, 
Maintenance and Evolution, Quality Management, Component Based Software Engineering, Object-
Oriented Analysis and Design, Distributed Software Development, Case Studies and Industrial 
Experience, Software Engineering Education, Mining Software Repositories, etc. Deadline for 
submissions: September 5, 2011 (abstracts), September 13, 2011 (papers). 

☺ Feb 29 – Mar 03 43rd ACM Technical Symposium on Computer Science Education (SIGCSE'2012), Raleigh, North 
Carolina, USA. 

Mar 24 – Apr 01 European Joint Conferences on Theory and Practice of Software (ETAPS'2012), Tallinn, Estonia. 
Events include: CC, International Conference on Compiler Construction; ESOP, European Symposium 
on Programming; FASE, Fundamental Approaches to Software Engineering; FOSSACS, Foundations of 
Software Science and Computation Structures; TACAS, Tools and Algorithms for the Construction and 
Analysis of Systems. 

March 25-30 11th International Conference on Aspect-Oriented Software Development (AOSD'2012), Potsdam, 
Germany. Topics include: Complex systems; Software design and engineering; Programming languages 
(language design, compilation and interpretation, verification and static program analysis, ...); Varieties 
of modularity (model-driven development, generative programming, software product lines, contracts 
and components, ...); Tools (evolution and reverse engineering, crosscutting views, refactoring, ...); 
Applications (distributed and concurrent systems, middleware, ...); etc. Deadline for submissions: July 
14, 2011 (abstracts round 2), July 18, 2011 (papers round 2), October 6, 2011 (abstracts round 2), 
October 10, 2011 (papers round 2). 

♦ June 11-15 17th International Conference on Reliable Software Technologies - Ada-Europe'2012. 
Stockholm, Sweden. 

 



Forthcoming Events 103  

Ada User Journal Volume 32, Number 2, June 2011 

  

 
 

ACM’s Annual International Conference on 
Ada and Related Technologies  

Engineering Safe, Secure, and Reliable Software  
 
 

Sponsored by SIGAda, ACM’s Special Interest Group on the Ada Programming 
Language,  

in cooperation with SIGAPP, SIGBED, SIGCAS, SIGCSE, SIGPLAN, 
Ada-Europe, and the Ada Resource Association  

(Cooperation approvals pending) 

 
 

November 6-10, 2011 — Denver, Colorado 
 

 

 

 
 

 

 
 

Magnolia Hotel  
818 17th Street  

Denver, Colorado   80202   (USA) 

 



104 Forthcoming Events 

Volume 32, Number 2, June 2011 Ada User Journal 

  Preliminary Call for Papers

17th International Conference on Reliable Software Technologies 
Ada-Europe 2012 

11-15 June 2012, Stockholm, Sweden 
http://www.ada-europe.org/conference2012 

Conference Chair 

Ahlan Marriott 
White Elephant GmbH, 
Switzerland 
Ada@white-elephant.ch 

Program Co-Chairs 

Mats Brorsson 
KTH Royal Institute of 
Technology, Sweden 
matsbror@kth.se 
 
Luís Miguel Pinho 
CISTER Research Centre/ISEP, 
Portugal 
lmp@isep.ipp.pt 

Tutorial Chair 

Albert Llemosí 
Universitat de les Illes Balears, 
Spain 
albert.llemosi@uib.cat 

Industrial Chair 

Jørgen Bundgaard 
Rovsing A/S, Denmark 
jorgen.bundgaard@tdcadsl.dk 

Publicity Chair 

Dirk Craeynest 
Aubay Belgium & K.U.Leuven, 
Belgium 
Dirk.Craeynest@cs.kuleuven.be 

Local Chair 

Rei Stråhle  
Ada-Sweden 
rei@ada-sweden.org 

 

In cooperation with 
ACM SIGAda 

(approval pending) 

 
 

General Information 

The 17th International Conference on Reliable Software Technologies – Ada-Europe 2012 will 
take place in Stockholm, Sweden. Following its traditional style, the conference will span a 
full week, including, from Tuesday to Thursday, three days of parallel scientific, technical and 
industrial programs, along with parallel tutorials and workshops on Monday and Friday. 

Schedule 

 

Topics 

The conference has successfully established itself as an international forum for providers, 
practitioners and researchers into reliable software technologies. The conference 
presentations will illustrate current work in the theory and practice of the design, 
development and maintenance of long-lived, high-quality software systems for a variety of 
application domains. The program will allow ample time for keynotes, Q&A sessions, panel 
discussions and social events. Participants will include practitioners and researchers 
representing industry, academia and government organizations active in the promotion and 
development of reliable software technologies.  

To mark the completion of the technical work for the Ada 2012 standard revision process, 
contributions that discuss the potential of the revised language are sought after. In parallel, 
facing the challenges presented to the development of reliable concurrent software, 
multicore programming models is added to the conference topics of interest. 
Topics of interest to this edition of the conference include but are not limited to: 

• Multicore Programming Models: Reliable Parallel Software, Parallel Execution of Ada Programs, 
Compositional Parallelism Models, Performance Modelling, Deterministic Debugging. 

• Real-Time and Embedded Systems: Real-Time Software, Architecture Modeling, HW/SW Co-
Design, Reliability and Performance Analysis. 

• Theory and Practice of High-Integrity Systems: Distribution, Fault Tolerance, Security, Reliability, 
Trust and Safety, Languages Vulnerabilities. 

• Software Architectures: Design Patterns, Frameworks, Architecture-Centered Development, 
Component and Class Libraries, Component-based Design and Development. 

• Methods and Techniques for Software Development and Maintenance: Requirements 
Engineering, Object-Oriented Technologies, Model-driven Architecture and Engineering, Formal 
Methods, Re-engineering and Reverse Engineering, Reuse, Software Management Issues. 

• Enabling Technologies: Compilers, Support Tools (Analysis, Code/Document Generation, Profiling), 
Run-time Systems, Distributed Systems, Ada and other Languages for Reliable Systems. 

• Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis, 
Verification, Validation, Testing of Software Systems. 

• Mainstream and Emerging Applications: Manufacturing, Robotics, Avionics, Space, Health Care, 
Transportation, Energy, Games and Serious Games, etc. 

• Experience Reports: Case Studies and Comparative Assessments, Management Approaches, 
Qualitative and Quantitative Metrics. 

• The Future of Ada: New language features, implementation and use issues; positioning in the 
market and in education; where should Ada stand in the software engineering curriculum; lessons 
learned on Ada Education and Training Activities with bearing on any of the conference topics. 

28 November 2011 Submission of regular papers, tutorial and workshop proposals
12 January 2012 Submission of industrial presentation proposals 
3 February 2012 Notification of acceptance to all authors 

2 March 2012 Camera-ready version of regular papers required 
11 May 2012 Industrial presentations, tutorial and workshop material required



Forthcoming Events 105  

Ada User Journal Volume 32, Number 2, June 2011 

Call for Regular Papers 

Authors of regular papers which are to undergo peer review for acceptance are invited to submit original 
contributions. Paper submissions shall be in English, complete and not exceeding 14 LNCS-style pages in length. 
Authors should submit their work via the EasyChair conference system 
(http://www.easychair.org/conferences/?conf=adaeurope2012). The format for submission is solely PDF. Should you 
have problems to comply with format and submission requirements, please contact the Program Chairs. 

Proceedings 

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS) series by Springer, and 
will be available at the start of the conference. The authors of accepted regular papers shall prepare camera-ready 
submissions in full conformance with the LNCS style, not exceeding 14 pages and strictly by March 2, 2012. For format 
and style guidelines authors should refer to the following URL: http://www.springer.de/comp/lncs/authors.html. 
Failure to comply and to register for the conference by that date will prevent the paper from appearing in the 
proceedings. 

The conference is ranked class A in the CORE ranking, is among the top quarter of CiteSeerX Venue Impact Factor, and 
listed in DBLP, SCOPUS and Web of Science Conference Proceedings Citation index, among others.  

Awards 

Ada-Europe will offer honorary awards for the best regular paper and the best presentation. 

Call for Industrial Presentations 

The conference also seeks industrial presentations which deliver value and insight, but may not fit the selection 
process for regular papers. Authors of industrial presentations are invited to submit a short overview (at least 1 page 
in size) of the proposed presentation by January 12, 2012. Please follow the submission instructions on the 
conference website. The Industrial Committee will review the proposals and make the selection. The authors of 
selected presentations shall prepare a final short abstract and submit it by May 11, 2012, aiming at a 20-minute talk. 
The authors of accepted presentations will be invited to submit corresponding articles for publication in the Ada User 
Journal, which will host the proceedings of the Industrial Program of the Conference. For any further information 
please contact the Industrial Chair directly. 

Call for Tutorials 

Tutorials should address subjects that fall within the scope of the conference and may be proposed as either half- or 
full-day events. Proposals should include a title, an abstract, a description of the topic, a detailed outline of the 
presentation, a description of the presenter's lecturing expertise in general and with the proposed topic in particular, 
the proposed duration (half day or full day), the intended level of the tutorial (introductory, intermediate, or 
advanced), the recommended audience experience and background, and a statement of the reasons for attending. 
Proposals should be submitted by e-mail to the Tutorial Chair. The authors of accepted full-day tutorials will receive a 
complimentary conference registration as well as a fee for every paying participant in excess of 5; for half-day 
tutorials, these benefits will be accordingly halved. The Ada User Journal will offer space for the publication of 
summaries of the accepted tutorials. 

Call for Workshops 

Workshops on themes that fall within the conference scope may be proposed. Proposals may be submitted for half- 
or full-day events, to be scheduled at either end of the conference week. Workshop proposals should be submitted to 
the Conference Chair. The workshop organizer shall also commit to preparing proceedings for timely publication in 
the Ada User Journal. 

Call for Exhibitors 

The commercial exhibition will span the three days of the main conference. Vendors and providers of software 
products and services should contact the Conference Chair for information and for allowing suitable planning of the 
exhibition space and time. 

Grant for Reduced Student Fees 

A limited number of sponsored grants for reduced fees is expected to be available for students who would like to 
attend the conference or tutorials. Contact the Conference Chair for details. 



 



 107  

Ada User Journal Volume 32, Number 2, June 2011 

Implementing a Software Product Line for a 
complex Avionics System in Ada 83 
Richard Bridges 
Eurocopter Deutschland GmbH, D-81663 München, Germany; Tel:+49 89 607 28891; 
email:Richard.Bridges@eurocopter.com 

Frank Dordowsky 
ESG Elektroniksystem- und Logistik-GmbH, Livry-Gargan-Str. 6, D-82256 Fürstenfeldbruck, Germany; Tel+49 8 
9216 2871; email: Frank.Dordowsky@esg.de 

Dr. Holger Tschöpe 
Eurocopter Deutschland GmbH, D-81663 München, Germany Tel:+49 89 607 26713; email: 
Holger.Tschoepe@eurocopter.com 
 

Abstract 
The NH90 is a medium weight multi-role helicopter 
that has been successfully sold to 14 nations and their 
armed forces. The growing number of customers and 
their specific application domains for the NH90 has 
led to an increasing number of functionally different 
helicopter variants. In order to cope with the high 
number of software variants, the NH90 software team 
has developed a software architecture that is based 
on Software Product Line (SPL) principles. 
Software product lines rely on variability to manage 
the differences between products. Many variability 
realisation techniques discussed in the literature rely 
on mechanisms that are discouraged in the 
development of safety critical avionics software. 
The majority of the avionics software of the NH90 is 
written in the programming language Ada 83. Its 
successor Ada 95 offers additional features to 
implement variation points. However, a transition to 
Ada 95 was not possible due to a number of project 
specific restrictions.  
The construction of the NH90 SPL relies on three 
pillars: an embedded real-time framework, extensive 
code generation and a set of design and coding 
patterns. 
This article discusses the main properties of the 
software architecture that enabled the introduction of 
the software product line, the techniques used for 
code generation, and the use of design and coding 
patterns. It provides an example of an implementation 
of a software product line in a real project within the 
avionics domain under the limitations of a dated 
technology. 
Keywords: Avionics Systems, Software Product Lines, 
Ada 

1  Introduction 
1.1 Project background 
The NH90 is a medium weight multi-role military 
helicopter that comes in two basic versions: the Tactical 
Transport Helicopter (TTH) and the NATO Frigate 
Helicopter (NFH). It is being produced in more than 20 
variants for 14 nations and their armed forces. 

The software division at Eurocopter Germany develops the 
on-board software for three computers of the NH90 
avionics system. The growing number of customers and 
their specific set of mission requirements for the NH90 has 
led to an increasing number of functionally different 
helicopter variants. Moreover, during the long development 
time that is typical for complex military avionics projects, 
the computing technology has changed considerably over 
time so that the current operational software has to fit to 
several processor architectures. In order to cope with the 
high number of software variants and technology 
variations, the NH90 software team has developed concepts 
and strategies for SW architecture and tool modifications 
based on Software Product Line (SPL) principles [8]. 

1.2 Nh90 avionics system architecture 
The NH90 Avionics System is decomposed into two major 
subsystems: the CORE System and the MISSION System 
([4],[5]). Each major subsystem is controlled and 
monitored by a redundant set of main computers, the Core 
Management Computer (CMC) and the Mission Tactical 
Computer (MTC) respectively. Major end items of the 
CORE system are the Display and Keyboard Units (DKUs) 
and the Multifunctional Displays (MFDs) that together 
form the main human-machine interface (HMI) of the 
NH90 helicopter. The equipment of each subsystem is 
connected to its main computers either via a dual redundant 
MIL-STD 1553 bus, via ARINC 429 lines, serial RS-485 
lines, or via Ethernet lines. The main computers act as bus 
controllers for their respective data buses. For both pairs of 
redundant main computers, one assumes the system role of 



108  Implement ing a Software Product L ine for  a complex Avionics System in Ada 83  

Volume 32, Number 2, June 2011 Ada User Journal 

primary bus controller where the other acts as backup bus 
controller. 

This article describes the software architecture of the CMC 
and the MTC. Both computers share the same hardware and 
software architecture as described in Sect. 3 below and are 
known generically as CMTC.  

1.3 Article outline 
Section 2 summarizes the limitations imposed by 
regulations of the domain and the dated implementation 
technology on the selection of variability mechanisms 
available for the NH90 SPL. It also lists the major product 
line design principles that address these limitations.  

The NH90 software team has developed a solution that 
follows these principles and that relies on three pillars: a 
software architecture based on an embedded real-time 
framework, code generation and a set of design and coding 
patterns. The main subject of this paper is the software 
architecture that is described in section 3, followed by a 
short account of the code generation technology (Sect. 4). 
Section 5 discusses the use and implementation of design 
patterns under the limitations of Ada 83. 

Section 6 concludes the article with a summary. 

2 The NH90 software product line  
2.1 NH90 SPL goals 
The NH90 was originally planned for 4 nations (France, 
Germany, Italy, Netherlands) for all armed forces (sea, 
land, and air) so there were already 8 variants from the 
beginning [18]. Every new customer then increased the 
total number of variants. Moreover, for every contractual 
variant there may be more than one technical variant.  

The first dramatic increase occurred in 2002 when the 
number of variants rose from under 10 to nearly 25. The 
second large increase was in 2005 (from 25 to over 40).  

These variants are not only functionally different but also 
employ different hardware and software technologies as 
shown in Table 1. 

Table 1  NH90 Software Platforms 

 Customer Compiler / CPU Type 
  Runtime and Speed 

I 
Germany, Italy, 
France (Navy), 
Netherlands, 

Alsys Ada 83 Dual Motorola 
68040 

 
Finland, Norway, 
Sweden (CMC), 
Greece 

ARTK 
 

25 MHz /  
20 MHz 

II Sweden (MTC), 
Australia, Oman, GHS Ada 95 Dual Power 

MPC8245 
 New Zealand GSTART 250 MHz 

III Spain, France (Army), 
Belgium, Portugal, Aonix Ada 95 Single 

PowerPC750Fx 
 Germany, Italy, … RAVEN 580 MHz 

The initial solution attempt to copy all software and 
documentation of one variant and to maintain the different 
variants in separate branches soon became unmanageable 

and much too costly in terms of man power and 
development resources. The NH90 software team then 
decided to apply product line principles to solve the variant 
problem. The major concept of a software product line is to 
produce and maintain all current and future helicopter 
variants out of a single asset base as described in [7]. With 
this approach the integration of new features or equipment 
will be simplified and the reduced effort for qualification 
and maintenance will lead to an overall cost reduction 

2.2 NH90 SPL constraints 
One advantage of software product lines is that a large 
body of knowledge has been developed in the past 15 years 
with many solutions to common problems that arise during 
implementation of a product line. Unfortunately, a number 
of these solutions cannot be used in the domain of military 
avionics due to the specialities of this domain. Some of 
these are listed in the following: 

The RTCA DO-178B ([1]) guides certification authorities 
on the approval of safety critical airborne software. Three 
topics of these recommendations are especially important 
for software product lines: dead code elimination, option-
selectable software and deactivated code. Dead code is 
code that will never be executed and the DO-178B requires 
dead code to be completely removed. Deactivated code is 
only executed in certain configurations. As an example, the 
NH90 software team produces software versions that will 
be loaded to several helicopter variants where not all 
functions are executed in all these variants. The code that 
implements these functions is option-selectable and 
therefore represents deactivated code. For approval, it must 
be verified that deactivated code cannot be executed 
inadvertently. In order to facilitate this verification, variant 
decision code must not be distributed over the code base. 

Some approaches use tool supported source code 
modification based on feature selection. Modified code 
must be re-verified at high cost, or the tool – which would 
be rated as development tool in DO-178B terms – must be 
qualified to the same design assurance level and the same 
standards as the software that it modifies. The authors are 
not aware of a commercially available SPL tool that is 
qualifiable in the sense of DO-178B. 

Safety critical real-time systems must be fully deterministic 
and predictable. They are not allowed to crash due to 
memory exhaustion, and hard real-time systems must 
always meet their deadlines. The system implementation 
must be verifiable in that respect, and analysis during 
design must assure that resource consumption and timing 
constraints will always be met.  

Object-oriented features such as inheritance and 
polymorphism are often used to implement variation points 
([19],[13]). Certification authorities have raised a number 
of concerns on the application of object-oriented principles 
in the past ([2],[11],[3],[12]). The new issue of the DO-178, 
DO-178C, will include guidance for the application of 
object-oriented techniques in one of its technical 
supplements. However, airborne software developers still 
need to consider if the cost and restrictions for meeting the 



R. Br idges, F.  Dordowsky, H. Tschöpe  109 

Ada User Journal Volume 32, Number 2, June 2011 

objectives of DO-178 as well as the risks of introducing 
new technology do not outweigh the benefits of object 
orientation 

The development of military systems for several customers 
must consider secrecy and the fact that system maintenance 
is often performed by the customers own organisation or 
industry. A suitable reuse strategy must therefore consider 
the following principles: 

• Non-disclosure Principle: A customer requires 
that deliverables including documentation and 
source code do not reveal any customer specific 
information to other customers. 

• Customer Relevance Principle: A customer 
requires that deliverables only contain design and 
implementation details which are relevant to this 
customer.  

There are also some constraints specific to the NH90 
project:  

• A single software version may be loaded in 
different helicopter variants. The software must 
identify the helicopter variant during run-time and 
then activate the functions of this variant and de-
activate all others. 

• In the NH90 project, different hardware and 
software technologies are used: the main 
computers of some variants are equipped with 
multiprocessor boards on Motorola MC-68040 
basis, others use single boards with PowerPC 
architectures (see Tab. 1). Some variants use Ada 
95, others still Ada 83. Application component 
design must not be affected by the underlying 
technology. 

• A large code base written in Ada 83 was already 
available and a migration to later versions of Ada 
was not possible due to schedule and budget 
constraints. Any architectural solution to the 
variability problem must therefore provide 
downward compatibility to the large Ada 83 code 
base. 

2.3 NH90 SPL constraints 
The development of the NH90 SPL was guided by the 
following major principles:  

1 Feature based selection of pre-developed components 
with subsequent integration into the final variant 
specific product instantiation. This process should 
only need as little manual adaptation as possible – the 
ultimate goal is to have no manual adaptation at all.  

2 Components must be reusable across variants without 
modification — this applies not only to code but also 
to all other artefacts such as documentation, models, 
test scripts and data etc. 

3 The assets must not contain any variant specific 
information and they shall not make any assumptions 
about the helicopter variant for which they may have 

been selected. There must be no variant decision logic 
within the components, and component code must not 
be aware of the actual variant it is running in. 

4 Complex and distributed adaptations shall be 
delegated to code generation. 

Some practitioners recommend to use language pre-
processors (e.g. #ifdef in C) to implement variability. 
However, pre-processors are not available in standard Ada, 
and the NH90 SPL had to rely on a truly Ada conformant 
solution. 

3 Software architecture 
Both CMC and MTC share the same hardware and the 
same software architecture. The architecture of both 
computers is shaped by the embedded real-time framework 
NSS that is described in the following subsection. The 
actual version of the operational software on either 
computer is instantiated with a mechanism called 
adaptation that is described in 3.4 below. 

3.1 Embedded real-time framework NSS 
The software framework NSS relieves the application 
programmer of intricate real-time programming tasks such 
as real-time scheduling, device and I/O handling, data 
conversion between Ada data structures and raw I/O data, 
error and exception handling, redundancy management etc. 
The real-time framework is organised as a layered system 
([6],[10]) as indicated in Figure 1. 

 

Figure 1  Software Architecture Overview 

The main components of the architecture are the following: 

The System Controller forms the uppermost layer and 
controls the complete operational software. It is responsible 
for the control, schedule and dispatch of Ada tasks as well 
as general management functions such as start-up, 
shutdown and redundancy management for example. A 
very important subcomponent in this context is the button 
database which is described below. 
The system controller determines the helicopter variant by 
reading a designated non-volatile memory location that 
contains the variant id string. It is also responsible for 
identifying the actual system role and mode and initiates 
the transition into that role and mode respectively. 



110  Implement ing a Software Product L ine for  a complex Avionics System in Ada 83  

Volume 32, Number 2, June 2011 Ada User Journal 

The System Drivers drive the physical exchange of raw IO 
data. There are drivers for Milbus, ARINC, Ethernet, serial 
and discrete lines. They store data received from external 
equipment in the Virtual Subsystems (see below), or 
retrieve data from the Virtual Subsystems and send it to the 
external equipment. 

The Application Servers make use of the system drivers 
and provide a higher level of abstraction on data exchange. 
Important examples of Application Servers are the DKU 
Server which handles the communication to the DKUs, or 
the NVM Server which manages access to the non-volatile 
memory (NVM) of the main computers. 

The On-board Processing Functions (OPFs) implement 
the proper application specific processing requirements. An 
OPF is a set of operations which accept data or control 
input, perform computational or control functions and 
produce data or control output. The OPFs form the 
application components. They provide an interface to the 
system controller that is called the button layer. This 
naming shall reflect that the realtime framework does not 
know the internals of the operations and simply regards 
them as buttons to be pushed. The button layer consists of 
standardised Ada procedures that are called by the system 
controller. The information as to which buttons must be 
called in which system mode at what frequency is stored in 
the button database that is part of the system controller, as 
mentioned above. The button database plays an important 
role in the implementation of the NH90 SPL and is 
described in more detail below. 

The Virtual Subsystems are a common real-time data 
store which provides a uniform data abstraction of the 
avionic subsystems to the operational processing functions, 
and isolates these from I/O interface specific data 
representations. They also organise the data exchange 
between application components and between application 
components and the NSS. With the virtual subsystems, the 
architecture adopts a style known as repository style ([10]) 
or blackboard style ([6]). The virtual subsystems are 
divided into virtual devices - a virtual device is an Ada 
package representation of an equipment or equipment 
capability. As such it forms one of the basic building 
blocks of the NH90 SPL. 

The Isolation layer provides an abstract interface to the 
equipment software (EQSW) and the Ada Runtime Kernel 
(ARTK). It isolates the operational software from system 
dependent features and enables the operational software to 
run on target and host platforms as well as the different 
hardware architectures with only minor modifications. 

The EQSW/ARTK layer contains the software provided 
by equipment manufacturers of the computer hardware and 
the compiler vendors.  

The framework and the application components exhibit the 
sandwich structure that is typical for frameworks (e.g. 
[14]): application components call NSS services but are 
themselves called by the NSS. Therefore, application 
components must be visible to the NSS. However, different 
software variants require differing sets of application 

components and therefore lead to changing dependencies 
and dispatch routines within the NSS. In object-oriented 
systems, or at least if function pointers would be available, 
this could be implemented by a registration pattern (e.g. the 
publisher-subscriber pattern in [6]). Since these 
mechanisms are not available for Ada 83, the interface 
between NSS and the application servers, drivers and the 
OPFs is generated. 

It is important to understand that all concurrency and 
therefore the complete real-time tasking is provided by the 
framework alone; the application components as well as 
server and driver code is strictly sequential. A major 
distinction of the operations that the system controller 
activates is between cyclic or acyclic activation. The 
variant specifics of the dispatch of cyclic and acyclic 
operations is slightly different and described in the 
following subsections. 

3.2 Cyclic processing  
The periods of the cyclic operations are completely 
determined by the MILBUS message frequencies that range 
from 50 Hz down to 1.5625 Hz. There is one uniquely 
identified periodic Ada task per frequency and per 
processor (the standard main computer has two processing 
boards), and every cyclic operation is allocated to a unique 
periodic task depending on its frequency and the processing 
board it has to run on. 

The set of application functions that must be executed 
depends on the system mode (operational, maintenance) and 
the system role (master, slave). Moreover, since a single 
software supports several helicopter variants, different sets 
of application operations are executed for the different 
helicopter variants. The system controller must therefore 
determine which set of operations to execute in the actual 
combination of helicopter variant, mode and role. To do 
this, the system controller must evaluate a runtime data 
structure that is called periodic button database. The 
periodic button database is part of the button database that 
was briefly introduced in section 3. It stores for each 
operation the associated periodic task as well as the roles 
and modes and the helicopter variants in which the 
operation is required to be executed. The code section 
below shows the generated Ada construct for the periodic 
button database 

-- <<Generated>> 
Pdb : constant Periodic_Button_Db := ( 
. . . 
16 => (On_Helicopter =>  
        (A => True, others => False), 
      In_Role =>  
        (Master => True, Slave => True), 
      In_Mode =>  
        (Operational => True,  
         Maintenance => True), 
      Task_Name => P1, 
      Button_Name => Capability_A_Process_P1), 
. . . ) ; 



R. Br idges, F.  Dordowsky, H. Tschöpe  111 

Ada User Journal Volume 32, Number 2, June 2011 

Since it is not possible with Ada 83 to store a reference to a 
subroutine in a data structure, every operation must be 
uniquely identified by an operation identifier (Button 
Name) that is an enumeration literal of a generated 
enumeration type. The Button Name is derived 
automatically from the fully qualified operations’ name. It 
is obvious that such a design would not be maintainable 
without code generation. 

A lookup of every operation in every processing cycle 
would produce too much overhead so the team has 
developed a prefetch solution, called configuration: during 
start-up and during role or mode changes, the system 
controller scans the periodic button database and selects all 
operations that are permitted in the actual combination of 
helicopter variant, role and mode, and establishes a list of 
the permitted operations (activation list) for every periodic 
task (Figure 2). The function Is_In_Set accesses the 
periodic database to check if a button (identified by an 
index) is permitted for a given role, mode and helicopter 
variant: 

function Is_In_Set ( 
  Index : in Natural_16; 
  On_Helicopter : in Helicopter_Variant ; 
  In_Role : in Computer_Role; 
  In_Mode : in Computer_Mode) return Boolean is 
begin 
  return Pdb (Index).On_Helicopter (On_Helicopter) 
         and then 
       Pdb (Index).In_Role (In_Role) and then 
       Pdb (Index).In_Mode (In_Mode); 
end Is_In_Set; 

 

During cyclic execution for each periodic task, the task 
simply dispatches every operation that is on its activation 

list (Figure 3). This list contains the operation IDs instead 
of the operations, and the actual dispatcher is a large 
generated case statement on the Button Name. The button 
database is not consulted during cyclic execution: 

 
procedure Execute (T : in Task_Name) is 
begin 
  if Activation_List (T).Size /= Null_Length then 

   for I in 1 .. Activation_List (T).Size loop 
     Dispatch (Activation_List (T).Item ( I )); 
   end loop; 
  end if; 
end Execute; 
-- <<Generated>> 
procedure Dispatch (Name : in Button_Name) is 
begin 
  case Name is 
. . . 
   when Capability_All_Process_P1 => 
     Capability_All .Process_P1; 
   when Capability_A_Process_P1 => 
     Capability_A.Process_P1; 
   when Capability_B_Process_P1 => 
     Capability_B.Process_P1; 
. . . 
   end case; 
end Dispatch; 

 

Within every periodic task, the operations are sequential 
and it is therefore possible to specify an execution order of 
the operations. This execution order is maintained during 
the runtime as long as there is no other role or mode switch. 

The result is a set of periodic tasks with harmonic periods 
that are scheduled non-deterministically which is in line 
with the Ada tasking model. We apply rate monotonic 
scheduling theory ([15]) to ensure and verify the 
schedulability of the tasks. 

3.3 Event handling 
The NSS implements an event based implicit invocation 
architectural style ([10]) to handle acyclic processing 
requests. Events are the only means to establish 
asynchronous communication between components, 
including OPF and NSS components. Events are used to 
process asynchronous MILBUS messages for example, but 
the main use of events is to process crew commands from 
the DKU. 

A component or one of its operations can raise an event by 
putting data into a data structure called Traffic Light Data 
(TLD) that is located in the virtual subsystems. The TLD 
enqueues an event associated with the data to the system 
queue (Figure 4). The system queue works across processor 
boundaries. Operations or components that raise an event 
are called producers of the event. 

 
Figure 2   Cyclic Processing Configuration 

 
Figure 3   Cyclic Processing 



112  Implement ing a Software Product L ine for  a complex Avionics System in Ada 83  

Volume 32, Number 2, June 2011 Ada User Journal 

Operations or components that react on an event are called 
consumers of the event. There may be more than one 
consumer per event. 

On every CPU there is a special task in the system 
controller, the Sporadic Consumer Task SPC, that dequeues 
the events from the system queue. The Sporadic Consumer 
Task dispatches the consumer operations for the event with 
a large, generated case statement on the event id. However, 
before the consumer operation is executed, the dispatcher 
checks if the operation is permitted for the current 
combination of helicopter variant, role and mode by 
interrogating the event button database:  

procedure Execute is 
begin 
  System_Queue.Get (New_Message); 
  if New_Message.Event /= Null_Event then 
   Dispatch (New_Message); 
  end if ; 
end Execute; 
-- <<Generated>> 
procedure Dispatch (E : in Event_Message) is 
begin 
  case E.Event is 
. . . 
   when Capability_A_Switch_On => 
     if Is_Permitted (Capability_A_Perform, Variant, 
        Role, Mode) then 
      Capability_A.Perform(Switch_On); 
     end if ; 
   when Capability_A_Switch_Off => 
     if Is_Permitted (Capability_A_Perform, Variant, 
        Role, Mode) then 
      Capability_A.Perform(Switch_Off); 
     end if ; 
. . . 
end case; 

 
The event button database is similar in structure as the 
periodic button database and is also part of the button 
database that has been introduced in section 3.1. The 
consumer operations are also identified by generated 
operation identifiers. 

The name of the Sporadic Consumer has been derived from 
its implementation as a sporadic server algorithm 
([17],[16]). This algorithm optimises response times for 

events with irregular arrival times but fits well in the rate 
monotonic scheduling theory so that the deadlines for the 
periodic tasks can still be maintained. 

3.4 Adaptation 
The real-time framework is composed of two basic 
segments: an NSS kernel segment, comprising a set of 
components which are common to all NSS, CMC and MTC 
variants and software versions, and an adaptable computer 
specific segment, comprising a set of components all of 
which need some kind of adaptation to the specific needs of 
the computer. The framework has been designed so that all 
components requiring adaptation are separate Ada units. 
This concentration of adaptable code into a few separate 
units increases reliability, maintainability, testability of the 
adaptation. Moreover, most modules requiring adaptation 
are generated.  

The non-generated units that must be manually adapted are 
kept in separate variant specific file branches. There is an 
ongoing effort to reduce the number of these non-generated 
adapted files by either generating them or by removing 
them with a more adaptable design. The mapping registry 
pattern (section 5 below) is an example of such a design 
improvement 

4 Software generators  
More than 50 percent of the adaptation source code of the 
main computers is generated from data maintained in an 
ORACLE database called ODIN. ODIN is an acronym for 
OFRS Data and Interfaces in NH90. ODIN imports 
interface definition data from other engineering databases 
(Figure 5). Software engineers then add software related 
information (see [5] and [8] for a more complete overview 
over the NH90 tool chain). The content of ODIN is 
extracted and fed into a set of Perl scripts that produce the 
generated code. The tool chain has been qualified so that 
the generated source code does not need the verification 
required for the manually written code. 

There are three main areas in the ODIN data model: 

• Real-time Model: All definitions necessary to 
generate the Ada tasking model and the allocation 
of Ada tasks to processors. 

 
Figure 5 - NH90 Tool Chain 

 
Figure 4 - NSS Event Handling 



R. Br idges, F.  Dordowsky, H. Tschöpe  113 

Ada User Journal Volume 32, Number 2, June 2011 

• Virtual Subsystems: All data required for the 
generation of the virtual subsystems. This is also 
the area that stores the imported interface data.  

• Buttons (Operations): This area contains all 
information associated with the operations in order 
to generate the button databases, including the 
fully qualified Ada name and the frequency of the 
operation as well as its allocation to a processor 
board.  

The most important requirement imposed by NH90 SPL 
principles is to maintain a single data repository for all 
variants in order to avoid duplicated effort for maintaining 
several copies of the same data. We call such a 
comprehensive repository a superset. The data definitions 
in this superset also form assets in the sense of [7]. 

In order to fulfil the specific constraints of military avionics 
as listed in section 2, the extraction and code generation 
must only produce software items that are applicable to the 
software version under construction. This requires that the 
data elements must be filtered on extraction. In ODIN, the 
extraction filter uses the feature as filter criterion. Buttons 
and devices are linked to features as their implementations. 
A helicopter variant is defined, in ODIN, as a set of 
features. A set of helicopter variants can be combined into 
a variant group.  

The extraction script takes a variant group as input and 
selects all elements from the ODIN superset that are 
associated with at least one feature of at least one variant in 
the variant group. The extraction script produces an 
intermediate output in the form of formatted ASCII files. 
The generator scripts pick up these intermediate files and 
produce the Ada sources. They use a set of templates that 
form the skeletons of the generated Ada packages. The 
generator scripts are implemented in Perl. 

The generator scripts do not contain any variant decision 
logic – the filter rules are concentrated in the extract scripts 
in order to reduce the complexity of the generator scripts 
and thus to facilitate the qualification of the tool set. 

5 Design patterns  
The application components must be designed in a certain 
way to meet the modularisation principles of the NH90 
SPL. In fact, a product line is much more sensitive to the 
quality of the design than a system not intended for re-use. 
Developers must follow clean design practices because 
sloppiness in that respect can break the re-usability of a 
component which in turn reduces the benefits of the 
product line approach. In order to assist the developers in 
achieving the design goals as well as enforcing compliance 
to the software architecture, the NH90 team has developed 
a set of design patterns that provide standard solutions to 
recurring design problems, especially for variant handling.  

The pattern names have been selected to resemble well-
known patterns established in the literature (e.g. [9]), based 
on the intent of the pattern. The implementation of course 
differs due to the unavailability of object-oriented features 

– instead, it relies on sophisticated use of the mechanisms 
of the software architecture and on code generation. 

One example of an NH90 specific design pattern is the 
mapping registry pattern. This pattern addresses the 
problem that sometimes cross-sectional type mappings 
between different discrete types are needed that span 
multiple components but also depend on the helicopter 
variant. 

The mapping tables cannot be located within a single 
component, and they cannot be generated because it is not 
possible to extend ODIN and the generator suite whenever 
a new mapping is introduced. Manually maintaining a 
mapping table and its access methods is also not a viable 
solution because the mapping table would need separate 
source code branches for every software version and would 
therefore create a major maintenance problem.  

The mapping registry pattern resolves these problems by 
providing a central variable mapping table where 
components can register the type mappings they need. The 
implementation of the pattern relies on another 
architectural pattern: every component must provide an 
initialization procedure that is executed by the system 
controller before entering the operational mode. 

The central variable mapping table is encapsulated by a 
registry object. The registry provides a registration 
operation to set up the actual mappings in the registry. 
These registry operations can be called by the initialization 
procedure of the component in order to provide the type 
mappings that are relevant to it (Figure 6). 

The registry also provides a map function that can be used 
by any client component to look up the mapped element. 

With the mapping registry pattern it is possible to 
dynamically adjust the type mapping tables to the types 
actually used in the helicopter variant without manual 
recoding and without creating numerous variant specific 
branches of the source files that contains the mapping. The 
implementation of the pattern only uses Ada 83 capabilities 
and the features of the NH90 software architecture. 

6 Summary  
The NH90 SPL is an example of a software product line in 
a real large project within the complex domain of military 
avionics. Product lines in this domain are subject to a 
number of restrictions that limit the choices of 
implementation concepts. The most important restrictions 
for the NH90 SPL are the strict regulations in the domain 

 
Figure 6 - Registry Mapping Initialization 



114  Implement ing a Software Product L ine for  a complex Avionics System in Ada 83  

Volume 32, Number 2, June 2011 Ada User Journal 

and the limited support by a dated technology implicated 
by the mandated use of the existing design and code base. 

The NH90 software team has developed a solution that 
relies on three pillars: a software architecture well suited 
for product lines, intensive use of code generation, and the 
provision of design and coding patterns to help developers 
to meet the design constraints imposed by the SPL. Any of 
these three building blocks is indispensable. 

With the software product line approach the NH90 software 
team is now in the position to efficiently manage the 
helicopter variants: the effort for updating a product 
instance is negligent by now, and the effort for the creation 
of a new product instance has been reduced to a quarter of 
the original effort without the SPL. As a positive side effect 
we witness an increase of the overall quality, transparency 
and maintainability of code and design. 

References 
[1] RTCA DO-178B Software Considerations in Airborne 

Systems and Equipment Certification, December 1992. 

[2] Position paper CAST-4: Object-oriented technology 
(OOT) in civil aviation projects: Certification 
concerns, January 2000. 

[3] EASA certification memo: Use of object oriented 
techniques at design or source code level, May 2008. 
Issue 1 Rev. 2. 

[4] Richard Bridges. NH90 helicopter avionics systems 
from the 1990s to 2010 and beyond. In Workshop 
Software-Architekturen für Onboardsysteme in der 
Luft- und Raumfahrt. Fachausschuss T6.4 Software 
Engineering, Deutsche Gesellschaft fuer Luft- und 
Raumfahrt, Oct 2007. 

[5] Gerd Budich. Generation of Ada code from 
specifications for NH90 computers. In Proceedings of 
the 26th European Rotorcraft Forum, 26–29 
September 2000. 

[6] Frank Buschmann, Regine Meunier, Hans Rohnert, 
Peter Sommerlad, and Michael Stal. Pattern-oriented 
Software Architecture: A System of Patterns. John 
Wiley & Sons, 1996. 

[7] Paul Clements and Linda Northrop. Software Product 
Lines - Practices and Patterns. SEI Series in Software 
Engineering. Addison-Wesley, 2002. 

[8] Frank Dordowsky and Walter Hipp. Adopting software 
product line principles to manage software variants in 
a complex avionics system. In John D. McGregor and 

Dirk Muthig, editors, Proceedings of the 13th 
International Software Product Line Conference, San 
Francisco, California, USA 2009, volume 1. Software 
Engineering Institute, August 2009. 

[9] E. Gamma, R. Helms, R. Johnson, and J. Vlissides. 
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995. 

[10] David Garlan and Mary Shaw. An introduction to 
software architecture. Technical Report CMU-CS-94-
166, Carnegie Mellon University, 1994. 

[11] K.J. Hayhurst and C.M. Holloway. Considering object 
oriented technology in aviation applications. In Digital 
Avionics Systems Conference, 2003. DASC ’03. The 
22nd, volume 1, pages 3.B.1–3.1–8 vol.1, Oct. 2003. 

[12] Javier Miranda. Towards certification of object-
oriented code with the gnat compiler. Ada User 
Journal, 28(3):178–183, September 2007. 

[13] Thomas Patzke and Dirk Muthig. Product line 
implementation technologies. Programming language 
view. Technical Report IESE Report No. 057.02/E, 
IESE Institut Experimentelles Software Engineering, 
October 2002. 

[14] Wolfgang Pree. Meta patterns — A means for 
capturing the essentials of reusable object-oriented 
design. Lecture Notes in Computer Science, 821:150ff, 
1994. 

[15] Lui Sha and John B. Goodenough. Real-time 
scheduling theory and Ada. Technical Report 
CMU/SEI-89-TR-014, ESD-TR-89-022, Software 
Engineering Institute, April 1989. 

[16] Brinkley Sprunt and Lui Sha. Implementing sporadic 
servers in Ada. Technical Report CMU/SEI-90-TR-6, 
ESD-90-TR-207, SEI Software Engineering Institute, 
May 1990. 

[17] Brinkley Sprunt, Lui Sha, and John Lehoczky. 
Scheduling sporadic and aperiodic events in a hard 
real-time system. Technical Report CMU/SEI-89-TR-
11, ESD-TR-89-19, SEI Software Engineering 
Institute, April 1989. 

[18] Stefan Steyer. NH90 Beschaffungsdrama. Die Ent-
wicklung des NH90. Rotorblatt, 16(3):52–55, 2009. 

[19] Mikael Svahnberg, Jilles Van Gurp, Jilles Van, Gurp, 
and Jan Bosch. A taxonomy of variability realization 
techniques. Software—Practice and Experience, 
35:705–754, 2001. 

 

 



116  

Volume 32, Number 2, June 2011 Ada User Journal 

Ada Gems 
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and 
related files, can be found at http://www.adacore.com/category/developers-center/gems/. 

 

Gem #89: Code Archetypes for 
Real-Time Programming – Part 1 
Marco Panunzio, University of Padua 
Date: 22 June 2010 
 
Abstract: In the programming of real-time systems, code that 
deals with concurrency and real time often draws from explicit 
or implicit recurring patterns. Therefore it is best factored out. 
In this series of Ada Gems, we illustrate a set of code pattern 
archetypes that are intended to ease the development of real-
time systems. 
 

Introdution 
In this series of Ada Gems we propose a set of code archetypes 
for the development of real-time systems. The code archetypes 
comply with the restrictions of the Ravenscar Profile, a subset 
of the Ada language specifically suited for the development of 
high-integrity real-time systems. The Ravenscar Profile was 
devised to guarantee that programs written in accordance with 
it are amenable to static analysis in the time dimension. In fact, 
the profile excludes all Ada constructs that are exposed to 
nondeterministic or unbounded execution time. In the space 
dimension, the profile prohibits the use of constructs that 
implicitly perform dynamic memory allocation. 
As an additional benefit, Ravenscar systems can be 
implemented on top of real-time kernels that can be very small 
in size and fast in time, which are attractive characteristics for 
applications that can afford little overhead and must undergo 
extensive qualification/certification. 
The essential elements of the Ravenscar restrictions are: (i) 
static existence model. The system is composed of a fixed set 
of tasks and protected objects, defined at library level and with 
a statically assigned priority or ceiling priority. No task 
terminates, and abort statements are disallowed. (ii) 
communication model. Tasks are only allowed to communicate 
asynchronously, via protected objects. Task rendezvous is 
therefore disallowed. (iii) deterministic execution model. The 
profile excludes all constructs that introduce nondeterminism: 
relative delays, as they introduce nondeterminism in the 
suspension time of tasks; requeue statements; the use of the 
Ada.Calendar package, as all time-related operations rely on 
the high-precision Ada.Real_Time package; protected objects 
are restricted to having at most one entry on which only a 
single task can enqueue; guards of entries are composed of a 
simple Boolean condition to avoid side effects and 
nondeterminism in the evaluation time. 
In this series of Ada Gems we illustrate a set of code 
archetypes that realize common programming patterns suited 
for the development of Ravenscar-compliant real-time 
systems. The use of the archetypes permits factorization and 
thus helps reduce the size of the code that implements the 
concurrent elements of the system. 
 

An important additional goal of these archetypes is to achieve 
complete separation between the algorithmic/sequential code 
of the system and the code that manages concurrency and real-
time aspects. This separation of concerns permits developing 
the algorithmic contents of the system (that is, the behavior of 
the system) independently of the management of tasking and 
real-time issues. 

 
This goal is achieved by encapsulating the sequential code in a 
suitable task structure. The figure above depicts the generic 
structure of our task archetypes. 
The sequential code is enclosed in a structure that we term the 
Operational Control Structure (OPCS). The code is 
executed by a Thread, which represents a distinct flow of 
control of the system. The task structure may be optionally 
equipped with an Object Control Structure (OBCS). The 
OBCS represents a synchronization agent for the task: as we 
shall see, we use it mainly for sporadic tasks. The OBCS 
consists of a protected object that stores incoming requests for 
services to be executed by the Thread. As multiple clients may 
independently require services to be executed by that Thread, 
the operations that post execution requests in the OBCS are 
protected. Upon each release, the Thread fetches one of those 
requests (FIFO ordering is the default) and then executes the 
sequential code, stored in the OPCS, which corresponds with 
the request. 
As we will illustrate in the third Gem of this series, the 
operations provided by the OBCS, which form the provided 
interface of the overall entity, match the signature of the 
sequential operations of the OPCS (Op_A in the figure above). 
Thanks to that, the callers need not be aware that they are in 
fact only posting execution requests in the OBCS, while the 
actual execution will be performed by the Thread. 
The sequential code embedded in the OPCS may need to 
invoke services from other software entities (the operation 
Op_Z in the figure above). In the fifth Gem of this series we 
will describe how those functional needs can be fulfilled. 
As a conclusion, our entities encapsulate their internal 
structure and expose to the external world just an interface that 
matches the signature of the operations embedded in the 
OPCS. The different concerns dealt with by each such entity 
are separately allocated to its internal constituents: the 
sequential behaviour is handled by the OPCS; tasking and 
execution concerns by the Thread; interaction with concurrent 
clients and handling of execution requests are handled by the 
OBCS. 
Structure of this Ada Gems Miniseries 



Ada Gems 117  

Ada User Journal Volume 32, Number 2, June 2011 

1. Introduction and Cyclic Task 
2. Simple Sporadic Task 
3. Sporadic Task – System Types and Task Types 
4. Sporadic Task – Sequential Code and OBCS 
5. Intertask Communication 

Acknowledgments The task structure we adopt is an evolution 
of the HRT-HOOD design methodology [1], from which we 
also inherit the terms OBCS and OPCS. 
Early work on code generation from HRT-HOOD to Ada was 
described in [2] and [3]. 
The code archetypes that we describe in this Ada Gems 
miniseries were used for the code generation in the HRT-UML 
track of the EU-funded ASSERT project [4]. In that project, 
Matteo Bordin, then at the University of Padua, was the main 
designer of the code generation strategy and code archetypes. 
Finally we would like to thank Tullio Vardanega for his 
preliminary review of the contents of this miniseries, and 
Matteo Bordin, now with AdaCore, for his extensive review of 
the contents and his useful suggestions. 
Let’s get started… 
Cyclic Task 
In this section we illustrate our code archetype for cyclic tasks. 
It allows the developer to create a cyclic task by instantiating a 
generic package, passing the operation that needs to be 
executed periodically. 

 

The archetype is quite simple. In fact, we only need to create a 
task type that cyclically executes a given operation with a 
fixed period. The specification element of the archetype is: 

with System; use System; 
generic 
  with procedure Cyclic_Operation; 
package Cyclic_Task is 
  task type Thread_T 
   (Thread_Priority : Priority; 
    Period : Positive) is 
   pragma Priority (Thread_Priority); 
  end Thread_T; 
end Cyclic_Task; 

The specification above defines the task type for the cyclic 
thread. Each thread is instantiated with a statically assigned 
priority and a period which stays fixed throughout the whole 
lifetime of the thread. The task type is created inside a generic 
package, which is used to factorize the code archetype and 
make it generic on the cyclic operation. The Ada body is 
specified as follows: 

with Ada.Real_Time; 
with System_Time; 
 
package body Cyclic_Task is 

  task body Thread_T is 
   use Ada.Real_Time; 
   Next_Time : Time := System_Time.System_Start_Time; 
  begin 
   loop 
     delay until Next_Time; 
     Cyclic_Operation; 
     Next_Time := Next_Time + Milliseconds (Period); 
   end loop; 
  end Thread_T; 
end Cyclic_Task; 

The body of the task consists of an infinite loop. Just after 
activation, the task enters the loop and is immediately 
suspended until a system-wide start time (System_Start_Time). 
This initial suspension is used to synchronize all the tasks that 
are to execute in phase and let them have their first release at 
the same absolute time. When resuming from the suspension 
(which notionally coincides with the release of the task), the 
task contends for the processor and executes the 
Cyclic_Operation specified in the instantiation of its generic 
package. Then it calculates the next time it needs to be 
released (Next_Time) and as first instruction of the subsequent 
loop, it issues a request for absolute suspension until the next 
multiple of its period. 
The code archetype is simple to understand, yet a few 
comments are in order. 
Firstly, we must stress that the use of absolute time and thus of 
the construct delay until (as opposed to relative time and the 
construct delay) is essential to prevent the actual time of the 
periodic release from drifting. 
Secondly, the reader should note that the Cyclic_Operation is 
parameterless. That is not much of a surprise, as it is consistent 
with the very nature of cyclic operations which are not 
requested explicitly by any software client. 
Finally, this version of the cyclic task assumes that all tasks 
are initially released at the same time (System_Start_Time). 
Support for a task-specific offset (phase) is easy to implement: 
we just need to specify an additional Offset parameter on task 
instantiation, which is then added to System_Start_Time to 
determine the time of the first release of the task. The periodic 
release of the task will then assume the desired phase with 
respect to the synchronized release of the tasks with no offset. 
In the next Ada Gem we will illustrate a simple code archetype 
to realize sporadic tasks. 
References 
[1] Alan Burns and Andy J. Wellings: “HRT-HOOD: A 

Structured Design Method for Hard Real-Time Ada 
Systems”. Elsevier Science, 1995. ISBN 978-0444821645. 

[2] Juan Antonio de la Puente, Alejandro Alonso, and Angel 
Alvarez: “Mapping HRT-HOOD Designs to Ada 95 
Hierarchical Libraries.” Reliable Software Technologies – 
Ada-Europe, Springer Volume LNCS 1088, 1996. 

[3] Matteo Bordin and Tullio Vardanega: “Automated Model-
Based Generation of Ravenscar-Compliant Source Code”. 
Proceedings of the 17th Euromicro Conference on Real-
Time Systems, IEEE Computer Society, 2005. ISBN 0-
7695-2400-1. 

[4] ASSERT project (Automated proof-based System and 
Software Engineering for Real-Time Systems) 
http://www.assert-project.net 



118  Ada Gems 

Volume 32, Number 2, June 2011 Ada User Journal 

Gem #92: Code Archetypes for 
Real-Time Programming – Part 2 
Marco Panunzio, University of Padua 
Date: 11 October 2010 
 
Abstract: In the previous Gem in this series we introduced 
the key concepts underlying our code archetypes and described 
the simplest of our archetypes, which realizes a cyclic task. In 
this Gem we show how to realize an equally simple sporadic 
task. In the next Gem in this series, we will depart from this 
level of simplicity to realize a complete archetype that 
overcomes some of the limitations intrinsic in these initial 
solutions. 
 

Let’s get started… 
Simple sporadic task 
A sporadic task is a task such that any two subsequent 
activations of it are always separated by no less than a 
minimum guaranteed time span. This minimum separation is 
typically called minimum inter-arrival time (MIAT). In this 
initial archetype, the task executes a single operation at each 
activation, and it does so in response to a request issued by an 
external client. 
Much like the cyclic task, our sporadic task is composed of: (i) 
a protected object, shared with the outside world, that external 
clients invoke to post their requests for execution. In the 
previous Gem we termed this resource an OBCS; and (ii) a 
thread of control that waits for incoming requests, fetches the 
first of them from the protected object and executes the 
sporadic operation that corresponds to a specific operation as 
provided by the OPCS. 
The task structure whose code we are about to show is 
sketched in the figure below. 

 

Fortunately, the Ada language is well equipped to realize that 
structure, and we implement that in our archetype using a 
protected object under the Ceiling_Locking policy for (i) and a 
task type for (ii). 
For the moment, we illustrate a base version of the archetype 
for a sporadic task. In the explanation we also illustrate some 
of its limitations that will not be present in a more complex 
version of the archetype. 
The specification for the simple sporadic task follows: 

with System; 
generic 
  with procedure Sporadic_Operation; 
  Ceiling : System.Priority; 
  OBCS_Size : Integer; 
package Simple_Sporadic_Task is 
  procedure Put_Request; 
  task type Thread_T 
   (Thread_Priority : System.Priority; Interval : Integer) 

  is 
   pragma Priority (Thread_Priority); 
  end Thread_T; 
end Simple_Sporadic_Task; 

The specification defines (as for the Cyclic task that we 
presented in the previous Gem) a task type inside a generic 
package. When instantiating the package we specify the 
sporadic operation for the task, the Ceiling Priority for the 
OBCS protected object, and the size of the queue of requests 
of the OBCS. 
Additionally, we create the procedure Put_Request, that is 
used by clients to post a request to the sporadic task. 
The body for the package is instead: 

with System_Time; 
with System_Types; 
with Ada.Real_Time; 
 
package body Simple_Sporadic_Task is 
  Protocol : System_Types.Simple_Sporadic_OBCS 
          (Ceiling, OBCS_Size); 
 
  procedure Put_Request is 
  begin 
   Protocol.Put_Request; 
  end Put_Request; 
 
  task body Thread_T is 
 
   use Ada.Real_Time; 
   Next_Time: Time:= System_Time.System_Start_Time + 
                 System_Time.Task_Activation_Delay; 
   MIAT : Time_Span := Milliseconds (Interval); 
   Release : Time; 
 
  begin 
   loop 
     delay until Next_Time; 
     Protocol.Get_Request (Release); 
     Next_Time := Release + MIAT; 
     Sporadic_Operation; 
   end loop; 
  end Thread_T; 
 
end Simple_Sporadic_Task; 

Comparing this body to the body of the cyclic task, two major 
differences appear: (i) the presence of an OBCS; and (ii) a 
slightly modified loop structure. 
As in the cyclic task, the sporadic task enters its infinite loop 
and suspends itself until the system-wide start time. After that: 
(i) it calls the entry Get_Request(Time) of the OBCS; (ii) after 
the execution of the entry (from which, as we show later on, it 
obtains a timestamp of when release actually occurred), the 
task executes the Sporadic_Operation (single, for now) 
specified at the instantiation of its generic package; (iii) it 
calculates the next earliest time of release (Next_Time) so as to 
respect the minimum separation between subsequent 
activations. Therefore, on the next iteration of the loop the task 
issues a request for absolute suspension until that time, and 
thus it won’t probe the OBCS for execution requests until the 
required minimum separation has elapsed. 



Ada Gems 119  

Ada User Journal Volume 32, Number 2, June 2011 

As a final note, when the procedure Put_Request is called, it 
just performs a simple indirection to an OBCS procedure with 
the same name. To appreciate that, we must take a look at the 
OBCS, which acts as the synchronization agent for the task. 
The specification of the OBCS is as follows: 

with System; 
with Ada.Real_Time; use Ada.Real_Time; 
 
package System_Types is 
  protected type Simple_Sporadic_OBCS ( 
       C : System.Priority; Size : Integer) is 
    pragma Priority(C); 
    procedure Put_Request; 
    entry Get_Request (Release_Time : out Time); 
  private 
    Max_Pending : Integer := Size; 
    START_Pending : Integer := 0; 
    Barrier : Boolean := False; 
  end Simple_Sporadic_OBCS; 
end System_Types; 

The OBCS declares a procedure Put_Request that is used to 
post requests in its queue, and a guarded entry 
Get_Request(Time) that is used by the thread to fetch the 
requests. In the private part of the declaration, the 
Max_Pending attribute is used to set the maximum number of 
pending requests that the OBCS can hold (obviously no 
greater than its size); the START_Pending attribute indicates 
the actual number of pending requests; finally the Boolean 
Barrier is used to control the guard of Get_Request(Time). 

package body System_Types is 
  protected body Simple_Sporadic_OBCS is 
 
   procedure Update_Barrier is 
   begin 
     Barrier := Start_Pending > 0; 
   end Update_Barrier; 
 
   procedure Put_Request is 
   begin 
     if Start_Pending < Max_Pending then 
      Start_Pending := Start_Pending + 1; 
     end if; 
     Update_Barrier; 
   end Put_Request; 
 
   entry Get_Request (Release_Time : out Time)  
        when Barrier is 
   begin 
     Release_Time := Ada.Real_Time.Clock; 
     Start_Pending := Start_Pending - 1; 
     Update_Barrier; 
   end Get_Request; 
 
  end Simple_Sporadic_OBCS; 
end System_Types; 

The body of the OBCS is quite easy to understand. When the 
procedure Put_Request is called, the number of pending 
requests (START_Pending) is increased unless the maximum 
number has already been reached. In that case the new request 
is just silently ignored. 

The entry Get_Request(Time) is used by the task to probe the 
OBCS for pending requests. In the case where there are 
requests, the Barrier guard is open and the task: (i) saves the 
time stamp of the execution of the entry (which notionally 
coincides with the release of the task), that is later used to 
calculate the next release time; and (ii) decreases the number 
of pending requests. 
At the end of Put_Request and Get_Request, the value of the 
Barrier guard is refreshed using Update_Barrier. In the event 
that there are no more pending requests, Barrier is set to false. 
For this reason, if the guard is closed when the task calls the 
entry, the call is blocked until a new request is posted. 
The check for the request queue to be not empty is not directly 
used as the guard expression for the entry, so as to comply 
with the restriction of the Ravenscar Profile that requires 
guards to be simple Boolean conditions, and thus have 
deterministic evaluation. The OBCS has a single entry, as the 
profile requires, and the only task that can be enqueued on it is 
the task to which the OBCS belongs, thus ensuring full 
compliance with the Ravenscar Profile. 
While the proposed structure achieves our goal of creating a 
sporadic task, we immediately notice two potential drawbacks: 
the Sporadic_Operation is parameterless, and the 
synchronization protocol is very, perhaps too, simple to 
capture real-life system needs. 
For what concerns the first issue, clients of the sporadic task 
simply trigger new releases of the task, but cannot, for 
example, pass data to the task as parameters of the release 
request. Creating a nontrivial producer-consumer collaboration 
pattern with this task structure is impossible because the 
consumer task (our sporadic task) cannot receive any data to 
process. 
For what concerns instead the OBCS, in this version it is a 
simple counter of pending requests. 
In the next Gems in this series, we will illustrate how to 
support sporadic operations with parameters and start to 
realize more complex queuing policies for execution requests. 

Gem #94: Code Archetypes for 
Real-Time Programming – Part 3 
Marco Panunzio, University of Padua 
Date: 8 November 2010 
 
Abstract: In the previous Ada Gem we described a code 
archetype for a simple sporadic task. Nevertheless, we 
recognized that the archetype is not completely satisfactory for 
at least two reasons: (i) it is not possible to pass parameters to 
the sporadic operation; (ii) the synchronization agent (OBCS) 
is a simple counter of pending requests. In this Ada Gem we 
illustrate a more complex archetype that supports the 
invocation of a sporadic operation with parameters. 
Additionally, we want to explore how it is possible to enrich 
the OBCS to support complex queueing policies for the 
incoming requests. 
 
Let’s get started… 
Sporadic task  
The archetype of a sporadic task that we wish to illustrate is 
depicted in the figure below. 



120  Ada Gems 

Volume 32, Number 2, June 2011 Ada User Journal 

 
Suppose that we want to create a sporadic task that at each 
release can execute either operation Op1 or operation Op2, 
according to incoming requests by clients. Executing different 
operations with the same task is not an unusual need in real-
time systems, especially when the execution platform has 
scarce computational power and memory resources, and the 
excessive proliferation of tasks may tax the system too much. 
Furthermore, in this archetype we may also want to establish 
some relative ordering of importance between Op1 and Op2. 
We consider Op1 as the nominal operation of the sporadic task 
(the operation normally called by clients), and we call it the 
START operation; in contrast, we consider Op2 to be a 
modifier operation, called the ATC. Then, we stipulate that 
pending requests for execution of Op1 are served by the 
sporadic task in FIFO ordering, but requests for Op2 take 
precedence over pending requests of Op1. This choice implies 
that modifier operations are allowed to cause a one-time (as 
opposed to permanent) modification of the nominal execution 
behavior of the task. 
OBCS for a sporadic task  

 

We want to encapsulate the implementation of this policy and 
simply expose to clients of this sporadic task a set of 
procedures with the signatures of Op1 and Op2; the role of 
these procedures is to reify the corresponding execution 
requests. The invocation (type and actual parameters) is 
recorded in a language-level structure and stored in the OBCS. 
When the sporadic task fetches a request, it decodes the 
original request and calls the appropriate operation with the 
correct parameters. 
Sporadic Task — System Types and Task Type  
Let us now have a look at the set of types we need to 
implement this archetype. They are declared in a modified 
version of the package System_Types that we also used in 
the preceding Ada Gem. 

with System; 
with Ada.Real_Time; use Ada.Real_Time; 
with System_Time; 
with Ada.Finalization; use Ada.Finalization; 
 
package System_Types is 
 
  -- Abstract parameter type -- 
  type Param_Type is abstract tagged record 
   In_Use : Boolean := False; 
  end record; 

 
  -- Abstract functional procedure -- 
  procedure My_OPCS (Self : in out Param_Type)  
   is abstract; 
 
  type Param_Type_Ref is access all Param_Type'Class; 
  type Param_Arr is array(Integer range <>)  
   of Param_Type_Ref; 
  type Param_Arr_Ref is access all Param_Arr; 
 
  -- Request type -- 
  type Request_T is (NO_REQ, START_REQ, ATC_REQ); 
 
  -- Request descriptor to reify an execution request 
  type Request_Descriptor_T is 
   record 
     Request : Request_T; 
     Params : Param_Type_Ref; 
   end record; 
 
  -- Parameter buffer 
  type Param_Buffer_T(Size : Integer) is 
   record 
     Buffer : aliased Param_Arr(1..Size); 
     Index : Integer := 1; 
   end record; 
 
  type Param_Buffer_Ref is access all Param_Buffer_T; 
  procedure Increase_Index(Self : in out Param_Buffer_T); 

We have declared a set of types to represent parameters, a type 
describing the kinds of requests (START_REQ, ATC_REQ, 
and an additional kind NO_REQ just for the sake of the 
explanation), and a request descriptor type to encapsulate the 
information about invocations of Op1 and Op2. We also 
declare procedure My_OPCS(..), which is an abstract 
procedure that represents all possible operations that can be 
invoked by the sporadic task. 
We now continue on with the remainder of the specification of 
package System_Types:  

  -- Abstract OBCS -- 
  type OBCS_T is abstract new Controlled  
   with null record; 
  type OBCS_T_Ref is access all OBCS_T'Class; 
 
  procedure Put(Self : in out OBCS_T;  
              Req : Request_T; P : Param_Type_Ref) 
   is abstract; 
 
  procedure Get(Self : in out OBCS_T;  
               R : out Request_Descriptor_T) 
   is abstract; 
 
  -- Sporadic OBCS -- 
  type Sporadic_OBCS(Size : Integer) is  
     new OBCS_T with 
   record 
     START_Param_Buffer : Param_Arr(1..Size); 
     START_Insert_Index : Integer; 
     START_Extract_Index : Integer; 
     START_Pending : Integer; 
     ATC_Param_Buffer : Param_Arr(1..Size); 
     ATC_Insert_Index : Integer; 



Ada Gems 121  

Ada User Journal Volume 32, Number 2, June 2011 

     ATC_Extract_Index : Integer; 
     ATC_Pending : Integer; 
     Pending : Integer; 
   end record; 
 
  overriding 
  procedure Initialize(Self : in out Sporadic_OBCS); 
 
  overriding 
  procedure Put(Self : in out Sporadic_OBCS;  
              Req : Request_T; P : Param_Type_Ref); 
 
  overriding 
  procedure Get(Self : in out Sporadic_OBCS;  
               R : out Request_Descriptor_T); 
 
end System_Types; 

Above, we declare a root type to represent an abstract OBCS 
(OBCS_T) and a Sporadic_OBCS type that implements the 
queueing policy we previously described. 
START_Param_Buffer and ATC_Param_Buffer are two 
distinct circular buffers that are used to store the invocations of 
the respective types of operation. In addition, we create a 
buffer for parameters. 
The package body follows: 

package body System_Types is 
 
  -- Sporadic OBCS -- 
  procedure Initialize (Self : in out Sporadic_OBCS) is 
  begin 
   Self.START_Pending    := 0; 
   Self.START_Insert_Index := 
      Self.START_Param_Buffer'First; 
   Self.START_Extract_Index := 
      Self.START_Param_Buffer'First; 
   Self.ATC_Pending     := 0; 
   Self.ATC_Insert_Index  :=  
      Self.ATC_Param_Buffer'First; 
   Self.ATC_Extract_Index  :=  
      Self.ATC_Param_Buffer'First; 
  end Initialize; 
 
  procedure Put(Self : in out Sporadic_OBCS;  
              Req : Request_T; P : Param_Type_Ref) is 
  begin 
   case Req is 
     when START_REQ => 
      Self.START_Param_Buffer 
        (Self.START_Insert_Index) := P; 
      Self.START_Insert_Index :=  
         Self.START_Insert_Index + 1; 
      if Self.START_Insert_Index > 
         Self.START_Param_Buffer'Last then 
        Self.START_Insert_Index :=  
         Self.START_Param_Buffer'First; 
      end if; 
      -- Increase the number of pending requests,  
      -- but do not overcome 
      -- the number of buffered ones 
      if Self.START_Pending < 
         Self.START_Param_Buffer'Last then 

        Self.START_Pending := Self.START_Pending + 1; 
      end if; 
     when ATC_REQ => 
      Self.ATC_Param_Buffer (Self.ATC_Insert_Index)  
         := P; 
      Self.ATC_Insert_Index :=  
         Self.ATC_Insert_Index + 1; 
      if Self.ATC_Insert_Index >  
         Self.ATC_Param_Buffer'Last then 
        Self.ATC_Insert_Index :=  
         Self.ATC_Param_Buffer'First; 
      end if; 
 
      if Self.ATC_Pending <  
        Self.ATC_Param_Buffer'Last then 
        -- Increase the number of pending requests,  
        -- but do not overcome 
        -- the number of buffered ones 
        Self.ATC_Pending := Self.ATC_Pending + 1; 
      end if; 
 
     when others => null; 
   end case; 
   Self.Pending := Self.START_Pending +  
                Self.ATC_Pending; 
  end Put; 
 
  procedure Get(Self : in out Sporadic_OBCS;  
               R : out Request_Descriptor_T) is 
  begin 
   if Self.ATC_Pending > 0 then 
     R := (ATC_REQ, 
       Self.ATC_Param_Buffer(Self.ATC_Extract_Index)); 
     Self.ATC_Extract_Index :=  
       Self.ATC_Extract_Index + 1; 
     if Self.ATC_Extract_Index > 
       Self.ATC_Param_Buffer'Last then 
      Self.ATC_Extract_Index := 
       Self.ATC_Param_Buffer'First; 
     end if; 
     Self.ATC_Pending := Self.ATC_Pending - 1; 
     else 
      if Self.START_Pending > 0 then 
        R := (START_REQ, 
            Self.START_Param_Buffer  
                 (Self.START_Extract_Index)); 
        Self.START_Extract_Index :=  
          Self.START_Extract_Index + 1; 
        if Self.START_Extract_Index >  
            Self.START_Param_Buffer'Last then 
         Self.START_Extract_Index := 
            Self.START_Param_Buffer'First; 
        end if; 
        Self.START_Pending := Self.START_Pending - 1; 
      end if; 
   end if; 
   R.Params.In_Use := True; 
   Self.Pending := Self.START_Pending +  
                Self.ATC_Pending; 
  end Get; 
 



122  Ada Gems 

Volume 32, Number 2, June 2011 Ada User Journal 

  procedure Increase_Index 
           (Self : in out Param_Buffer_T) is 
  begin 
   Self.Index := Self.Index + 1; 
   if Self.Index > Self.Buffer'Last then 
     Self.Index := Self.Buffer'First; 
   end if; 
  end Increase_Index; 
end System_Types; 

In the package body we implement the desired queuing policy. 
Procedure Put(..) simply inserts the representation of the 
incoming request in the queue of the requested operation kind 
(START_REQ or ATC_REQ). The ordering among requests 
of the same operation kind is FIFO. 
Procedure Get(..) is used to extract a request descriptor. We 
can see that as long as there are pending ATC requests, they 
are selected based on their arrival order. When the ATC queue 
is empty, requests for START operations are fetched. 
The task that uses this sporadic OBCS has a specification 
almost identical to the “simple sporadic task” we presented in 
the preceding Ada Gem. The only difference is that 
Get_Request now also fetches a request descriptor. 

with System_Types; use System_Types; 
with System; use System; 
with Ada.Real_Time; use Ada.Real_Time; 
 
generic 
  with procedure Get_Request( 
               Req : out Request_Descriptor_T; 
               Release : out Time); 
package Sporadic_Task is 
 
  task type Thread_T (Thread_Priority : Any_Priority; 
           MIAT : Integer) is 
   pragma Priority (Thread_Priority); 
  end Thread_T; 
 
end Sporadic_Task; 

The body for the task type follows: 

with System_Time; use System_Time; 
package body Sporadic_Task is 
 
  task body Thread_T is 
   Req_Desc : Request_Descriptor_T; 
   Release : Time; 
   Next_Time : Time := System_Start_Time; 
  begin 
   loop 
     delay until Next_Time; 
     Get_Request (Req_Desc, Release); 
     Next_Time := Release + Milliseconds (MIAT); 
     case Req_Desc.Request is 
      when NO_REQ => 
          null; 
      when START_REQ | ATC_REQ => 
          My_OPCS (Req_Desc.Params.all); 
      when others => 
          null; 
     end case; 
   end loop; 

  end Thread_T; 
 
end Sporadic_Task; 

Notice that the descriptor of the fetched request can be used to 
discriminate the action to perform according to the type of 
operation (this is done with the case statement). In our case, if 
we fetch a request of kind START_REQ or ATC_REQ, we 
simply execute My_OPCS, that will dynamically dispatch to 
the requested operation. This mechanism will be clear when, 
in a later Gem, we complete the picture with the declaration of 
Op1 and Op2 as seen by their clients. 

Gem #96: Code Archetypes for 
Real-Time Programming – Part 4 
Marco Panunzio, University of Padua 
Date: 6 December2010 
 
Abstract: In the previous Ada Gem we started to describe a 
complete archetype for a sporadic task. We illustrated the 
structure of the task and the realization of a complex queuing 
policy for its synchronization agent (OBCS). In this Ada Gem, 
we complete the picture with the description of the OPCS, 
which contains the functional code executed by the sporadic 
task, and show how we complete the declaration of the OBCS 
and of the provided interface exposed to clients of the sporadic 
task. 
 

Let’s get started… 
It is now time to create the functional code for the procedures 
executed by our sporadic task. Suppose we want a Consumer 
that provides operations Op1 and Op2 as depicted in the figure 
below. 

 

The operations Op1 and Op2 would be included in an OPCS 
structure which encapsulates their respective functional code, 
decoupling it from other nonfunctional concerns. The OPCS is 
then embedded in the sporadic task structure. 
First, we declare two simple enumeration types, T1 and T2, in 
a separate package, to be used by our functional code: 

package Types is 
  type T1 is (F1, F2); 
  T1_Default_Value : constant T1 := F1; 
  type T2 is (X1, X2); 
  T2_Default_Value : constant T2 := X1; 
end Types; 

Then in another package we declare a new type, say 
Consumer_FC, that extends Controlled (thus it is a tagged 



Ada Gems 123  

Ada User Journal Volume 32, Number 2, June 2011 

type) and has two primitive procedures Op1(T1, T2) and 
Op2(T1): 

with Types; 
with Ada.Finalization; use Ada.Finalization; 
 
package Consumer is 
 
  type Consumer_FC is new Controlled with private;   
  type Consumer_FC_Ref is access all 
                        Consumer_FC'Class; 
  type Consumer_FC_Static_Ref is access all 
                        Consumer_FC; 
  type Consumer_FC_Arr is array(Standard.Integer  
      range <>) of Consumer_FC_Ref; 
  type Consumer_FC_Arr_Ref is access  
                        Consumer_FC_Arr; 
 
  overriding 
  procedure Initialize(This : in out Consumer_FC); 
  
  procedure Op1 (This : in out Consumer_FC;  
                a : in Types.T1; b : in Types.T2); 
  procedure Op2 (This : in out Consumer_FC;  
                a : in Types.T1); 
   
private 
 
  type Consumer_FC is new Controlled  
     with null record ...; 
 
end Consumer; 

Consumer_FC is the type that represents what we called the 
OPCS. The sequential code is given in the bodies of the two 
procedures Op1 and Op2: 

package body Consumer is 
  -- procedure Initialize omitted 
  procedure Op1(This : in out Consumer_FC;  
               a : in Types.T1; b : in Types.T2) is 
  begin 
  -- User-defined sequential code here -- 
  end Op1; 
 
  procedure Op2 (This : in out Consumer_FC;  
                a : in Types.T1) is 
  begin 
  -- User-defined sequential code here -- 
  end Op2; 
 
end Consumer; 

Now let’s complete the definition of the OBCS and discuss the 
instantiation of the sporadic task. 

with System; 
with Types; 
with System_Types; 
with Consumer; 
with Ada.Real_Time; use Ada.Real_Time; 
 
package Op1_Op2_Sporadic_Consumer is 
 
  use System; use Types; 
   
  use System_Types; 
 
  -- Nested generic package for instantiating a sporadic task: 
 

  generic 
   Thread_Priority : Priority; 
   Ceiling : Priority; 
   MIAT : Integer; 
   -- The OPCS instance 
   OPCS_Instance : Consumer.Consumer_FC_Static_Ref; 
  package My_Sporadic_Factory is 
 
   procedure Op1(a : in T1; b : in T2); 
   procedure Op2(a : in T1); 
 
  private 
   -- ... 
  end My_Sporadic_Factory; 
   
private 
 
  Param_Queue_Size : constant Integer := 3; 
  OBCS_Queue_Size : constant  
      Integer := Param_Queue_Size * 2; 
 
  -- Create data structures to reify invocations of Op1 
 
  type Op1_Param_T is new Param_Type with record 
    OPCS_Instance : Consumer.Consumer_FC_Static_Ref; 
    a : T1; 
    b : T2; 
  end record; 
  
  type Op1_Param_T_Ref is access all Op1_Param_T; 
 
  type Op1_Param_Arr is array(Integer range <>)  
     of aliased Op1_Param_T; 
  
  overriding 
  procedure My_OPCS(Self : in out Op1_Param_T); 
 
  -- Create data structures to reify invocations of Op2 
 
   type Op2_Param_T is new Param_Type with record 
    OPCS_Instance : Consumer.Consumer_FC_Static_Ref; 
    a : T1; 
  end record; 
 
  type Op2_Param_T_Ref is access all Op2_Param_T; 
 
  type Op2_Param_Arr is array(Integer range <>)  
     of aliased Op2_Param_T; 
 
  overriding 
  procedure My_OPCS(Self : in out Op2_Param_T); 
 
  -- Create an OBCS that matches the interface of the  
  -- OPCS (FC) 
  protected type OBCS 
   (Ceiling : Priority; 
   Op1_Params_Arr_Ref_P : Param_Arr_Ref; 
   Op2_Params_Arr_Ref_P : Param_Arr_Ref) 
  is 
   pragma Priority(Ceiling);  
  
   entry Get_Request(Req : out Request_Descriptor_T; 
                                   Release : out Time); 
   procedure Op2(a : in T1); 
   procedure Op1(a : in T1; b : in T2); 
 
  private 
 
    -- The queue system for the OBCS 



124  Ada Gems 

Volume 32, Number 2, June 2011 Ada User Journal 

    OBCS_Queue : Sporadic_OBCS(OBCS_Queue_Size); 
    -- Arrays to store a set of reified invocations  
    -- for Op1 and Op2 
    Op1_Params : Param_Buffer_T(Param_Queue_Size) :=  
     (Size => Param_Queue_Size, Index => 1,  
      Buffer => Op1_Params_Arr_Ref_P.all); 
    Op2_Params : Param_Buffer_T(Param_Queue_Size) :=  
     (Size => Param_Queue_Size, Index => 1,  
      Buffer => Op2_Params_Arr_Ref_P.all); 
    Pending : Standard.Boolean := False; 
 
  end OBCS; 
 
end Op1_Op2_Sporadic_Consumer; 

In essence, in the specification above: (i) we declare a nested 
generic package (My_Sporadic_Factory) that we use to 
instantiate a sporadic task. In this manner we can instantiate 
several sporadic tasks which only differ in their timing 
attributes and properties (MIAT, priority and ceiling priority 
for the OBCS); the generic package provides an interface to 
the rest of the system that matches its OPCS (it provides Op1 
and Op2 in our case); (ii) in the private part of the parent 
package (Op1_Op2_Sporadic_Consumer), we create the data 
structures to store reified invocations of Op1 and Op2. This is 
done by extending Param_Type (defined in System_Types, 
see the previous Ada Gem in this series) by new types 
Op1_Param_T and Op2_Param_T that are records containing 
the parameters of the call and a reference to the OPCS (an 
access to FC in our case). Additionally, we override procedure 
My_OPCS. Therefore, when My_OPCS is called on 
Op1_Param_T or Op2_Param_T, it will dispatch to the 
appropriate procedure that we later define in the body of this 
package. The reader can check again that this is what really 
happens when the sporadic task type (defined in the previous 
Gem in this series) calls the procedure My_OPCS after 
fetching the request descriptor from the OBCS. 

with Ada.Real_Time; use Ada.Real_Time; 
 
with Sporadic_Task; 
with Types; use Types; 
 
package body Op1_Op2_Sporadic_Consumer is 
 
  use System_Types; 
 
  -- Redefinition of My_OPCS. Call Consumer_FC.Op1  
  -- and set In_Use to False. 
 
  procedure My_OPCS(Self : in out Op1_Param_T) is 
  begin 
   Self.OPCS_Instance.Op1(Self.a, Self.b); 
   Self.In_Use := False; 
  end My_OPCS; 
   
  -- Redefinition of My_OPCS. Call Consumer_FC.Op2  
  -- and set In_Use to False. 
  procedure My_OPCS(Self : in out Op2_Param_T) is 
  begin 
   Self.OPCS_Instance.Op2(Self.a); 
   Self.In_Use := False; 
  end My_OPCS; 
 
  protected body OBCS is 
 
   procedure Update_Barrier is 
   begin 

     Pending := (OBCS_Queue.Pending) > 0; 
   end Update_Barrier; 
 
   -- Get_Request stores the time of the release of the task, 
   -- gets the next request (according to the OBCS  
   -- queuing policy), and updates the guard. 
 
   entry Get_Request (Req: out Request_Descriptor_T;  
                                    Release: out Time) when Pending is 
   begin 
     Release := Clock; 
     Get(OBCS_Queue, Req); 
     Update_Barrier; 
   end Get_Request; 
    
   -- When a client calls Op1, the request is reified  
   -- and put in the OBCS queue. 
    
   procedure Op1(a : in T1; b : in T2) is 
   begin 
    if Op1_Params.Buffer(Op1_Params.Index).In_Use then 
      Increase_Index(Op1_Params); 
    end if; 
 
    Op1_Param_T_Ref(Op1_Params.Buffer( 
                                    Op1_Params.Index)).a := a; 
    Op1_Param_T_Ref(Op1_Params.Buffer( 
                                    Op1_Params.Index)).b := b; 
    Put(OBCS_Queue, START_REQ, 
           Op1_Params.Buffer(Op1_Params.Index)); 
    Increase_Index(Op1_Params); 
    Update_Barrier; 
   end Op1; 
 
   -- When a client calls Op2, the request is reified  
   -- and put in the OBCS queue. 
 
   procedure Op2(a : in T1) is 
   begin 
     if Op2_Params.Buffer(Op2_Params.Index).In_Use then 
       Increase_Index(Op2_Params); 
     end if; 
      
     Op2_Param_T_Ref(Op2_Params.Buffer(  
                                     Op2_Params.Index)).a := a; 
     Put(OBCS_Queue, ATC_REQ,  
           Op2_Params.Buffer(Op2_Params.Index)); 
     Increase_Index(Op2_Params); 
     Update_Barrier; 
   end Op2; 
 
  end OBCS; 
 
  package body My_Sporadic_Factory is 
 
    Op1_Par_Arr :  
        Op1_Param_Arr(1..Param_Queue_Size) :=  
          (others =>  
           (False,  
           OPCS_Instance, 
           T1_Default_Value, 
           T2_Default_Value)); 
 
    Op1_Ref_Par_Arr : aliased Param_Arr :=  
          (Op1_Par_Arr(1)'access,  



Ada Gems 125  

Ada User Journal Volume 32, Number 2, June 2011 

           Op1_Par_Arr(2)'access,  
           Op1_Par_Arr(3)'access); 
 
    Op2_Par_Arr :  
       Op2_Param_Arr(1..Param_Queue_Size) :=  
         (others => 
          (false,  
           OPCS_Instance,  
           T1_Default_Value));   
     
    Op2_Ref_Par_Arr : aliased Param_Arr :=  
        (Op2_Par_Arr(1)'access, 
         Op2_Par_Arr(2)'access,  
         Op2_Par_Arr(3)'access); 
 
    -- Creation of the OBCS 
    Protocol : aliased OBCS(Ceiling, 
                                            Op1_Ref_Par_Arr'access, 
                                            Op2_Ref_Par_Arr'access); 
 
    -- Indirection to Get_Request of the OBCS 
 
    procedure Getter(Req : out Request_Descriptor_T;  
                                  Release : out Time) is 
    begin 
     Protocol.Get_Request(Req, Release); 
    end Getter; 
 
    -- Instantiate the generic package using  
    -- the procedure above 
 
    package My_Sporadic_Task is new  
        Sporadic_Task(Getter); 
 
    Thread : My_Sporadic_Task.Thread_T(Thread_Priority, 
                                                                   MIAT); 
 
    -- When a client calls Op1, redirect the call to the OBCS 
    procedure Op1(a : in T1; b : in T2) is 
    begin 
     Protocol.Op1(a, b); 
    end Op1; 
 
    -- When a client calls Op2, redirect the call to the OBCS 
    procedure Op2(a : in T1) is 
    begin 
     Protocol.Op2(a); 
    end Op2; 
 
  end My_Sporadic_Factory; 
 
end Op1_Op2_Sporadic_Consumer; 

The package body above overrides My_OPCS for each 
operation provided to external clients (Op1 and Op2). The 
overriding simply ensures that My_OPCS calls the correct 
operation with the stored parameter of the original request and 
then signals that the parameters are no longer in use (which 
ensures correct management of the circular buffers in the 
OBCS). 
The body of the OBCS follows the same logic as the simpler 
OBCS described in Gem #92. Procedure Op1 and Op2 are 
simply extended to reify call requests and correctly store the 
parameters of the calls in the request descriptor. 
Finally, in the body of the generic package 
My_Sporadic_Factory, we create an OBCS with a defined 

ceiling priority and the queues to store the parameters of 
reified calls to Op1 and Op2. The sporadic thread is 
instantiated in the same package, and we complete the picture 
by redirecting the calls from Op1 and Op2, in the provided 
interface of the task structure, to the operations with the same 
names in the OBCS. 

Gem #103: Code Archetypes for 
Real-Time Programming – Part 5 
Marco Panunzio, University of Padua 
Date: 11 April 2010 
 
Abstract: In the previous Ada Gem we completed the 
creation of a complete sporadic task. In this Ada Gem that 
ends our miniseries, we want to complete the example by 
adding the realization of the communication between different 
tasks. In particular, we investigate how we can correctly 
manage the calls of operations outside a task. Those calls are 
performed from an OPCS and they have to be correctly routed 
to the endpoint of the communication. 
 

Let’s get started… 
Intertask communication —  
A producer-consumer example 
Suppose we want to realize the simple producer-consumer 
collaboration pattern depicted in the figure below. 

 

The Producer is a cyclic task which, after some processing, 
produces some data that is sent to a Consumer sporadic task. 
Data is passed as a parameter of operation Op1. 
This implies that we have to equip the Producer cyclic task 
with the means to communicate with the Consumer sporadic 
task. However, the task structure that we created encapsulates 
the functional code inside a structure called the OPCS. 
Therefore, inside the functional code of the Producer we 
cannot directly call Op1 of the Consumer (i.e., the 
functional/sequential code), but we have to call the appropriate 
provided interface of the whole Consumer task. 
Let us see how we can achieve this goal when creating the 
package Producer (analogous to the package Consumer that 
we presented in the previous Ada Gem of the series). 

package Producer is 
 
  type Producer_FC is new Controlled with private; 
  type Producer_FC_Ref is access all Producer_FC'Class;   
  type Producer_FC_Static_Ref is access all Producer_FC; 



126  Ada Gems 

Volume 32, Number 2, June 2011 Ada User Journal 

  -- [code omitted] 
 
  overriding 
  procedure Initialize(This : in out Producer_FC); 
 
  procedure Op0 (This : in out Producer_FC);  
  procedure Set_x(This : in out Producer_FC;  
          v : in Consumer.Consumer_FC_Ref); 
 
private 
 
  type Producer_FC is new Controlled with record 
   x : Consumer.Consumer_FC_Ref; 
  end record; 
 
end Producer; 

We are adding a member x in the record of Producer_FC that 
represents a reference to the Consumer that provides Op1, 
which consumes the data produced by the Producer. The 
reader should note that the static type of this reference is the 
OPCS of the Consumer (which was called Consumer_FC). 

package body Producer is 
 
  -- [procedure Initialize omitted] 
 
  procedure Op0(This : in out Producer_FC) is 
  begin 
   This.x.Op1([T1_VALUE]);  
  end Op1; 
  
  procedure Set_x(This : in out Producer_FC;  
          v : in Consumer.Consumer_FC_Ref) 
  is 
  begin 
   This.x := v; 
  end Set_x; 
end Producer; 

In the body of procedure Op0 (where the sequential code 
executed by the Producer task is specified), we insert the call 
to Op1 that is performed using reference x. 

-- Package spec 
type s1_T is new Consumer.Consumer_FC with record 
  Op1_Ref : access procedure (a : in Types.T1;  
                                                    b : in Types.T2); 
  Op2_Ref : access procedure (a : in Types.T1); 
end record; 
 
overriding 
procedure Op1(This : in out s1_T; a : in Types.T1;  
                           b : in Types.T2); 
 
overriding 
procedure Op2(This : in out s1_T; a : in Types.T1); 
 
-- Package body 
procedure Op1(This : in out s1_T; a : in Types.T1;  
                           b : in Types.T2) is 
begin 
  This.Op1_Ref.all(a,b); 
end Op1; 

Above, in another package, we create a new type s1_T. This 
type extends Consumer_FC and adds a pointer to a procedure 

with the signature of Op1, the operation that we call at the 
Producer side, and Op2. We also override Op1 for s1_T, so 
that a call to Op1 is reissued to the pointer just defined. 
Analogously, suppose we create a new type s0_T that extends 
Producer_FC. 
In the few remaining code excerpts below, we complete the 
example with the instantiation of the cyclic task for the 
Producer and the sporadic task for the Consumer. 

s0_Instance : aliased s0_T; 
package My_Cyclic_Producer_Task is new  
   Op0_Cyclic_Producer.My_Sporadic_Factory( 
      Thread_Priority => 1, 
      Period => 2000, 
      OPCS_Instance => 
        Producer.Producer_FC(s0_Instance)'access); 
 
s1_Instance : aliased s1_T; 
 
package My_Sporadic_Consumer_Task is new 
   Op1_Op2_Sporadic_Consumer.My_Sporadic_Factory( 
      Thread_Priority => 2, 
      Ceiling => 2, 
      MIAT => 500, 
      OPCS_Instance => 
        Consumer.Consumer_FC(s1_Instance)'access); 

Note that we pass a pointer to s0_Instance (respectively 
s1_Instance) as the OPCS during the instantiation of the 
Producer (respectively Consumer) cyclic (respectively 
sporadic) task. 

s1_Instance.Op1_Ref :=  
   My_Sporadic_Consumer_Task.Op1'access; 
s1_Instance.Op2_Ref :=  
   My_Sporadic_Consumer_Task.Op2'access; 

Finally, with the assignment above, we are able to impose that 
whenever Op1 is called on s1_Instance, then the call is 
directed to the operation Op1 on the provided interface of the 
Consumer Sporadic Task, and from there it follows the correct 
delegation chain (redirection to the OBCS and reification of 
the request in the OBCS queue). 

s0_Instance.Set_x( 
   Consumer.Consumer_FC_Ref(s1_Instance'access)); 

Finally, we establish the binding between the Producer and the 
Consumer with the call above. In fact, it ensures that the call 
of Op1 inside the OPCS of the Producer (Producer_FC) is a 
call to the provided interface of the Consumer sporadic task. 
Conclusion 
In this Ada Gems miniseries we described a set of Ravenscar-
compliant code archetypes for the realization of recurrent 
patterns in real-time systems. We presented two basic patterns 
for the realization of cyclic and sporadic tasks, commented on 
their drawbacks, and showed how to improve them to realize 
sporadic operations with parameters and an example of 
complex queuing policy. Finally, we showed how to perform 
intertask communication. 
The code archetypes we described were used for the code 
generation in the HRT-UML/RCM track of the EU-funded 
ASSERT project. 
 

 



128 

Volume 32, Number 2, June 2011 Ada User Journal 

National Ada Organizations 
 

Ada-Belgium 
attn. Dirk Craeynest 
c/o K.U. Leuven 
Dept. of Computer Science 
Celestijnenlaan 200-A 
B-3001 Leuven (Heverlee) 
Belgium 
Email: Dirk.Craeynest@cs.kuleuven.be 
URL: www.cs.kuleuven.be/~dirk/ada-belgium 

 

Ada in Denmark 
attn. Jørgen Bundgaard 
Email: Info@Ada-DK.org 
URL: Ada-DK.org 

 

Ada-Deutschland 
Dr. Hubert B. Keller 
Karlsruher Institut für Technologie (KIT)  
Institut für Angewandte Informatik (IAI) 
Campus Nord, Gebäude 445, Raum 243  
Postfach 3640 
76021 Karlsruhe 
Germany 
Email: Hubert.Keller@kit.edu 
URL: ada-deutschland.de 

 

Ada-France 
Ada-France 
attn: J-P Rosen 
115, avenue du Maine 
75014 Paris 
France 
URL: www.ada-france.org 

 

Ada-Spain 
attn. José Javier Gutiérrez 
Ada-Spain  
P.O.Box 50.403  
28080-Madrid 
Spain  
Phone: +34-942-201-394 
Fax: +34-942-201-402 
Email: gutierjj@unican.es 
URL: www.adaspain.org 

 

Ada in Sweden 
Ada-Sweden 
attn. Rei Stråhle 
Rimbogatan 18 
SE-753 24 Uppsala 
Sweden 
Phone: +46 73 253 7998 
Email: rei@ada-sweden.org 
URL: www.ada-sweden.org 

 

Ada Switzerland 
attn. Ahlan Marriott 
White Elephant GmbH 
Postfach 327 
8450 Andelfingen 
Switzerland 
Phone: +41 52 624 2939 
e-mail: ada@white-elephant.ch 
URL: www.ada-switzerland.ch 

 

 


	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Implementing a Software Product Line for a complex Avionics System in Ada 83
	Ada Gems
	National Ada Organizations



