

Ada User Journal Volume 32, Number 3, September 2011

ADA
USER
JOURNAL

Volume 32
Number 3

September 2011

Contents
Page

Editorial Policy for Ada User Journal 130

Editorial 131

Quarterly News Digest 133

Conference Calendar 154

Forthcoming Events 158

Special Contribution

 J. Barnes
“Rationale for Ada 2012: Introduction” 164

Articles from the Industrial Track of Ada-Europe 2011

 P. Thornley
“The Implementation of High Integrity Data Structures” 182

 J. S. Andersen
“Crimeville – using Ada inside an on-line multi-user game” 188

P. J. Bradley, J. A. de la Puente, J. Zamorano

Ada User Guide for LEGO MINDSTORMS NXT 194

Ada-Europe Associate Members (National Ada Organizations) 204

Ada-Europe 2011 Sponsors Inside Back Cover

130

Volume 32, Number 3, September 2011 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 131

Ada User Journal Volume 32, Number 3, September 2011

Editorial

As we had put forward in the first issue of this year, the September issue of the Ada User Journal (Volume 32, Number 3)
commences the publication of the Rationale for Ada 2012, an important reference document which is, as usual (and we are
thankful for that), being prepared by John Barnes. The first instalment in this issue provides the introduction and an overview
of the changes to the language; these will be subsequently detailed in forthcoming chapters. We are certain that the Journal
readers will enjoy this contribution (as well as being eagerly waiting for the continuation) as much as we do.

Continuing with the contents of the issue, I would also like to draw your attention to the two papers derived from the
Industrial Track of the Ada-Europe 2011 conference. In the first paper, Phil Thornley, from SPARKSure, UK, demonstrates
how to prove the correctness of linked data structures with SPARK, providing also some conclusions about the use of proofs
in the development process. In the second paper, Jacob Andersen, from Jacob Sparre Andersen Research & Innovation,
Denmark, provides an interesting description of a language server which was developed in Ada for an online game, an
application domain where we are not used to see Ada being used.

Also in this issue, we present an Ada User Guide, this time on the use of Ada for programming the LEGO Mindstorms
platform. In this guide, a contribution from a group of authors from Universidad Politécnica de Madrid, Spain, the reader can
find a description on how Ada, using a Ravenscar runtime together with some tools (such as a screwdriver), can be used to
develop applications for this robotic kit.

Finally, and as usual, a note to the important information provided in the News, Calendar and Forthcoming Events sections.
In particular, the latter provides the advance program of the SIGAda 2011 conference, which will take place next November
in Denver, Colorado, USA, and an invitation, from the conference’s General Chair, for the 17th International Conference on
Reliable Software Technologies – Ada-Europe 2012, to take place June 2012 in Stockholm, Sweden.

 Luís Miguel Pinho
Porto

September 2011
 Email: lmp@isep.ipp.pt

 133

Ada User Journal Volume 32, Number 3, September 2011

Quarterly News Digest
Marco Panunzio
University of Padua. Email: panunzio@math.unipd.it

Contents

Ada-related Organizations 133
Ada-related Events 133
Ada and Education 135
Ada-related Resources 136
Ada-related Tools 136
Ada-related Products 137
Ada and CORBA 139
Ada and GNU/Linux 139
References to Publications 139
Ada Inside 139
Ada in Context 141

Ada-related
Organizations
30th Anniversary Issue of
the AUJ available online
From: Ada-Europe website
Date: Mon, 20 Jun 2011
Subject: On-line Availability of Ada User

Journal 30th Anniversary Special Issue
URL: http://www.ada-europe.org/

Press_releases/press-release-AUJ.pdf
FOR IMMEDIATE RELEASE
On-line Availability of Ada User Journal
30th Anniversary Special Issue
EDINBURGH, UK (June 20, 2011) – On
the occasion of Ada-Europe 2011, the
16th annual Conference on Reliable
Software Technologies, Ada-Europe
announces the on-line availability of the
Ada User Journal 30th Anniversary
special issue.
Ada User Journal, the quarterly
publication of Ada-Europe, keeps its
readership abreast of developments in the
standardization, use and promotion of the
Ada programming language and
technology, as well as issues related with
reliable software technologies and
engineering in Europe and the rest of the
world.
The origins of the Ada User Journal date
back to the birth of Ada UK News, which
started publication in March 1980. The
current name of the Journal first appeared
in Volume 15 in the year 1994, when it
was still published by Ada UK. Ada-
Europe published the Ada-Europe News
since June 1989, until it was merged with
the Ada User Journal in March 1998.
From that time onward, Ada-Europe and
Ada UK jointly published the Journal
until Ada-Europe took over as the sole
publisher from Volume 23 in 2002.

The celebration of the 30th anniversary of
the Journal started in the March 2009 with
a special article entitled “Thirty years of
the Ada User Journal”, recalling its three
decades of history. Celebratory posters
were also exhibited at various Ada-
Europe and SIGAda conferences. The
celebration closed with a special issue of
the Journal, released in March 2010, the
official 30th Anniversary Issue, reprinting
a selection of the best articles published in
the Journal over the past 30 years,
selected by a prominent group of Guest
Editors.
The Ada User Journal maintains an on-
line accessible archive, a work-in-
progress resource offered to the Ada
community, for browsing, consulting and
downloading selected contents of back
issues of the Ada User Journal. This
Online Archive provides the full contents
of all issues dated from March 2001 (Vol.
22, N. 1) to the last-but-four issues. For
the latest year, the Online Archives solely
provides the table of contents.
It is in this context that the March 2010
issue has been released in the on-line
archive, providing the Ada community
with free access to “a sample of the
papers that may be considered to have had
the most impact and relevance at the time
of publication, in the several incarnations
of the Ada User Journal.”
About Ada-Europe
Ada-Europe is the international non-profit
organization that promotes the knowledge
and use of Ada into academia, research
and industry in Europe.
Current member organizations of Ada-
Europe are: Ada-Belgium, Ada in
Denmark, Ada-Deutschland, Ada-France,
Ada-Spain, Ada in Sweden and Ada-
Switzerland. Ada-Europe also includes
and welcomes individual members from
other European countries with no national
organization.
A PDF version of this press release is
available at www.ada-europe.org.
Press contact
Dirk Craeynest, Ada-Europe Vice-
President,
Dirk.Craeynest@cs.kuleuven.be

New website for Ada-
Switzerland
From: Thomas Løcke <tl@ada-dk.org>
Date: Tue, 19 Jul 2011
Subject: Ada Programming in Switzerland

URL: http://ada-dk.org/?page=news&
news_id=336

As you might know, I both read and post
to the identi.ca Ada group, and this
morning I read a notice from Gautier de
Montmollin about the new Ada-
Switzerland website, and I immediately
payed them a visit. I'm glad to report that
their website is clean, modern and easy to
navigate. Also after having been there, it
appears to me that Ada is actually doing
very well in Switzerland, which of course
would explain the famed Swiss efficiency.
If all their important infrastructure is
powered by Ada, then the Swiss
obviously aren't wasting time fixing bugs.
:o)
In Denmark it appears that no software is
built using Ada. I can't remember a single
large public software system ever
completed on time and within budget.
And when these large, expensive, systems
are finally "completed", for the first
couple of years they usually don't work.
It's a complete and utter mess.
Perhaps it's time we ask our politicians
and decision-makers to divert their eyes
towards Switzerland where there appears
to be a more widespread usage of Ada in
complicated, critical and important
software systems.
Well, enough of me ranting. Let me end
this post by congratulating Ada in
Switzerland on their beautiful new
website.
I look forward to reading more about the
various Swiss Ada projects.
[http://www.ada-switzerland.ch/
projects.aspx —mp]

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—mp]

The Ada-Connection —
Report by an exhibitor
From: Objektum Solutions' blog "The

Technical Diaries"
Date: Wed, 22 Jun 2011
Subject: Day 1 Exhibiting at The Ada

Connection

134 Ada-related Events

Volume 32, Number 3, September 2011 Ada User Journal

URL: http://the-technical-
diaries.blogspot.com/2011/06/
day-1-at-ada-connection.html

A speedy boarding (and disembarking)
Ajay Patel and I stepped down off our
easyJet flight in Edinburgh on Monday
night ready for The Ada Connection the
next day.
The conference was already in full swing
and the marquee (or tent for our American
readers) was ready for the eager
exhibitors to fill on the Tuesday and
Wednesday.
Tuesday morning was an early rise and
we headed to the John McIntyre
Conference Centre on the city’s university
campus. Thanks to the taxi driver’s
directions, we had a brisk morning walk
around the campus and made sure that the
delivery entrances were in full working
order before finding the correct entrance
and a warm welcome from Joan Atkinson
and Tom Anderson, from the University
of Newcastle, the conference organisers.
Our stand was erected and the table
adorned with data sheets, flyers and the
like. Whilst we waited for the delegates to
wander in for their morning coffee and
pastries, we had a chance to chat to fellow
exhibitors - LDRA, Resource Engineering
Projects, IPL, Ellidiss Software, AdaCore,
Rapita Systems, Verocel and Wind River
to name a few.
The delegates filtered in and avoided us
until they had their first hit of caffeine.
Once they were all well-oiled, we were
good to go and within 30 minutes had two
companies interested in the Objektum
Bridge Suite migration technology and
asking for webinars. Legacy migration
and obsolescence is a serious challenge
facing most organizations and so there
were plenty more cards swapped and
details taken down throughout the rest of
the day.
Lunch was in the student cafeteria but it
could have well been a decent restaurant.
As one observant exhibitor pointed out,
the only give-away was the copious
amount of baked beans available.
And then came the rain. Lots and lots of
it. Being positioned in the marquee, a
short dash from the main conference
building and through the waterfall above
the door, a couple of us were asking
whether the delegates would venture
outside or whether they would remain in
the dryer foyer area leaving us out in the
cold and all alone. A few, including
myself, were asking if there were any
more heaters were available… The
organisers, Tom, Joan and Steve Riddle
explored all the options with Edinburgh
First, the venue’s conference team. A few
options had to be discounted because of
health and safety regulations (there were
stairs we might throw ourselves down)
but they persisted and kept us all
informed. Meanwhile, at the four o’clock

coffee break, the Ada community braved
the elements for a couple of seconds and
made it into the marquee, much to our
appreciation and satisfaction. As the
coffee break ended, it was decided that
Ada developers were in fact made of
strong stuff and we would stay put. I’m
sure it would be a different story if we
we’re exhibiting at the Miss World
competition. Those who were cold found
a spot inside and everyone was happy.
I’m sure all the exhibitors would join me
in thanking Joan and Tom for keeping
everyone that way.
The thought of the whisky tasting session
in the evening kept everyone warm as we
waited for 6.15pm to approach when we
were allowed to take the lids off the
bottles and let the aromas drift amongst
the crowd. Each of the exhibitors had a
bottle of the finest Scotch whisky on their
table and stacks of tasting cups. I was
most relieved to have Highland Park as
our resident whisky. Not because it is a
perfectly balanced 18 year old single malt
with a toffee sweetness and a mouth-
wateringly smokey finish. I was happy
because after a whole day and evening
exhibiting, I didn’t fancy trying to
pronounce Aberlour a’bunadh or Ardbeg
Uigeadailthe. The whisky inevitably got
everyone chatting and moving around the
exhibition tasting what was on offer. I
snuck off to have a quick look at the foyer
area to see how that was going and when I
came back a crowd had formed around
our table. I thought Ajay must have pulled
out the Objektum Bridge presentation and
people had swarmed round to see this so
called wizardy. As I approached the
crowd, I realised that it wasn’t the Bridge
that was dazzling the audience. It was
Tucker Taft, one of the chief designers of
the Ada language. It was 8.30pm and we
knew we weren’t going to compete with
Mr. Taft for attention so Ajay and I
gathered our belongings and called it a
day.
And a successful day at that.
From: Objektum Solutions' blog "The

Technical Diaries"
Date: Thu, 23 Jun 2011
Subject: Day 2 Exhibiting at The Ada

Connection
URL: http://the-technical-

diaries.blogspot.com/2011/06/
day-2-exhibiting-at-ada-connection.html

Day 2 for us at Ada Connection and there
was a few more new faces, and after the
ice-breaker whisky reception the night
before, a more relaxed atmosphere.
The talks focused on code generation in
the morning and the people we spoke to in
the coffee break were keen for the
presentations to start.
As people started to filter back into the
conference rooms, we had a rare sighting.
The sun. Exactly what those in the
marquee wanted. In the tropical exhibition

area, we made use of the quiet periods by
tapping away on our laptops until the
sandwiches were laid out on the central
table in the marquee and we were all
immediately distracted. We ate our share
before the masses arrived and were able
to talk to people about training and
software migration. We were on a roll and
gave several presentations on the
Objektum Bridge Suite. It’s not all about
sales though; for us it’s also about using
these opportunities to find out views and
opinions of various technologies and
markets. I had a great conversation with a
University lecturer from the US about
student attitudes to programming mission
& saftey critical software and Ada. (This
will form an entirely separate blog post!)
Lunch finished and we were on the final
straight. The man of many hats, Ahlan
Marriot, treasurer of Ada Europe and next
year’s conference organiser, came to our
stand to talk about next year’s conference
in Stockholm, Sweden. “Would we be
interested in being at the conference next
year?” I think so I replied. It’s been a well
organized and well attended conference
and we’ve met some interesting people
whom we hope to work with in the future.
Ada is a specialism of Objektum
Solutions and so we will continue to
support mission and safety critical
software development.
The second and last coffee break came
and went with more discussions
happening around the room. As the last
delegate left, all the exhibitors dragged
their boxes out from the behind the
stands, pulled the plugs out and started to
pack up their camps.
Our official duties as exhibitors had ended
and after short power naps in front of the
Wimbledon coverage, we grabbed our
jackets and bags and made our way to the
spectacular Signet Library in the centre of
town. We turned in to Parliament Square
and right on cue, we followed the piper’s
bellowing tune to the entrance of this
grand building.
Enclosed within the columns and walls of
law books of the Lower Library, the Ada
community delicately sipped on a glass of
bubbly (thanks to AdaCore) and craned
their necks to take in the splendour of the
surroundings. A man with a big wooden
hammer (I’m sure he has an official title)
did his thing – namely hitting the hammer
on another wooden object - to gather
people's attention and he grandly called us
into the Upper Library where dinner
would be served. So, we made our way up
the majestic staircase to the breath-taking
setting of our banquet. Professor Les
Hatton gave us an entertaining pre-dinner
speech; one track of which was “Why
programmers are monkeys?”. I am not a
programmer myself but I work with many
of them so I wish I had made notes to
prove this theory when I return to the
office on Friday.

Ada and Educat ion 135

Ada User Journal Volume 32, Number 3, September 2011

I’ll quickly mention the starter, pea and
mint soup, but the plate that stole the
show was the haggis. Man carrying
hammer (aka MC Hammer) did his bit
and welcomed the haggis. We clapped the
haggis in as it was accompanied by the
piper and made its way to the front of the
hall (on a tray, not on legs).
Tom Anderson loudly broke into Scottish
verse and we thought he’d gone mad.
It unfolded that this was in fact Scottish
tradition and Tony Elliston of Ellidiss
Software pointed out that there were some
“wee drams” of whisky at the front which
would go to those who played a part in
the Haggis performance that evening; the
Piper, The Artist Formally Known as
Tom, MC Hammer and the Haggis. The
haggis had rave reviews that evening and
one critic said of it, “It’s the best I’ve ever
tasted”.
Main course of sea bass and desserts were
laid down by the silver service staff and
the speeches started. There was a tiny bit
of chocolate torte left on my plate but the
speeches were all entertaining enough to
distract me from it for a short while. The
colourful John Barnes stood on his seat
and addressed the dinner guests with tales
of Ada Europe from 20 years ago which
celebrated a solicitor’s help to receive
some money which was rightfully theirs.
That solicitor, now a sheriff, was tracked
down and invited to the dinner and
gracefully received a round of applause
and some flowers for her efforts all those
years ago.
The clock struck 11.00pm and it was time
for us to call it a night.
I conclude these posts from bonny
Edinburgh, with a big thank you to all
those involved with Ada Connection, both
organisers and attendees, for making it an
enjoyable and successful few days. It’s
been great and as I am starting to feel a
little weary, I wish I had asked the DHL
chap who just picked up our stand to
deliver me back to leafy Surrey too.

The Ada-Connection —
Report by a participant
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: Mon, 25 Jul 2011
Subject: Ada Europe 2011 / The Ada

Connection 2011
URL: http://ada-dk.org/?page=news&

news_id=343
On 21-23 June I participated in the annual
Ada Europe conference.
This year the conference was held in
Edinburgh.
The conference was a good opportunity to
present one of my recent projects - the
Crimeville language server - and to meet
other people interested in reliable
software technologies.

Some of the new knowledge I brought
home from Edinburgh:
- Software professionals would probably

be wise to make note of the Hippocratic
oath, and consider how it applies to their
work. (thanks to Pippa Moore)

- Supposedly there exists such a thing as
"too many cores". (thanks to Alan
Burns)

- The term "technical debt" and a bit of
knowledge about the SQALE quality
assessment model. (thanks to Jean-Pierre
Rosen)

- The core of agile methods is to
continuously hit the customer over the
head with an incomplete product until he
submits. (thanks to Les Hatton)

- It is not at all easy to do static
verification of linked data structures.
(thanks to Phil Thornley)

- A nice way to implement mixed
criticality real-time systems in pure Ada.
(thanks to Alan Burns)

- There exists an ARM chip with built-in
3D accelerometer. (thanks to one of the
exhibitors)

Traditional events:
- A new suggestion for an extension to

AdaControl: Make it possible to tell
AdaControl which packages contain
potentially blocking operations.

- Maciej was quick to find a weak point in
the implementation I presented in my
talk. It is always nice to have an
attentive audience.

New reading materials:
- "High-Integrity Object-Oriented

Programming in Ada" from AdaCore.
[…]

Ada-Europe 2012 —
Preliminary Call for Papers
From: Dirk Craeynest

<dirk@vana.cs.kuleuven.be>
Date: Wed, 6 Jul 2011 20:50:33 +0000
Subject: CfP 17th Conf. Reliable Software

Technologies, Ada-Europe 2012
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc

PRELIMINARY CALL FOR PAPERS

17th International Conference on
Reliable Software Technologies -

Ada-Europe 2012

11-15 June 2012, Stockholm, Sweden

http://www.ada-
europe.org/conference2012

Organized by Ada-Europe,
in cooperation with ACM SIGAda

(approval pending)

*** CfP in HTML/PDF on web site ***

Ada-Europe organizes annual
international conferences since the early
80's.
This is the 17th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), Brest, France ('09), Valencia, Spain
('10), and Edinburgh, UK ('11).

General Information
The 17th International Conference on
Reliable Software Technologies - Ada-
Europe 2012 will take place in
Stockholm, Sweden. Following its
traditional style, the conference will span
a full week, including, from Tuesday to
Thursday, three days of parallel scientific,
technical

Schedule
28 November 2011: Submission of
regular papers, tutorial and workshop
proposals
12 January 2012: Submission of
industrial presentation proposals
3 February 2012: Notification of
acceptance to all authors
2 March 2012: Camera-ready version
of regular papers required
11 May 2012: Industrial presentations,
tutorial and workshop material required
[…]

Ada and Education
Course of "Ada for
experienced programmer"
From: Ed Colbert <colbert@abssw.com>
Date: Fri, 5 Aug 2011 05:30:19 -0700
Subject: [Announcing] Public Ada Courses

12-16 September 2011 in Carlsbad CA
Newsgroups: comp.lang.ada
[…]
Absolute Software will be holding a
public Ada course during the week of 22
August in Carlsbad, CA. You can find a
full description and registration form on
our web-site, www.abssw.com. Click the
Public Courses button in the left margin.

136 Ada-related Tools

Volume 32, Number 3, September 2011 Ada User Journal

(We also offer courses on software
architecture-based development, safety-
critical development, object-oriented
methods, and other object-oriented
languages.)
If there is anything you'd like to discuss,
please call, write, or send me an e-mail.

Ada-related Resources
The Crimeville Language
Server
From: Thomas Løcke <tl@ada-dk.org>
Date: Wed, 15 Jun 2011
Subject: The Crimeville Language Server
URL: http://ada-dk.org/?page=news&

news_id=320
Our very own Jacob Sparre will be giving
a presentation at The Ada Connection
2011 Conference on the spelling/language
server he has developed for the Danish
(soon international) childrens’ game
Crimeville.
For those of us that aren't fortunate
enough to be in Edinburgh for the
conference, Jacob has made both the
presentation (PDF file) and the source
code (ZIP file) available on his website.
[http://www.jacob-sparre.dk/spelling/
crimeville-talk.pdf
http://www.jacob-sparre.dk/spelling/
crimeville.zip —mp]
Here's a blurb from the presentation:
> When Art of Crime contacted me, their

problem was simply described as
helping the players write correctly, and
limit how much they insult each other.
– Already at this stage the plan was to
do this at the word level. In short, every
word written by a player should be
categorized in one of four categories;
correct, foul, misspelled or unknown. I
proposed a solution with network
servers checking words using Ispell
compatible Open Source spell checkers.

It is an interesting read for sure, and the
accompanying source code is just an
added benefit for those of us who'd like to
learn how to best tame Ada to do our
bidding. This obviously includes me, so
thanks a bunch Jacob! :o)

AdaTutor is back online
From: Thomas Løcke <tl@ada-dk.org>
Date: Thu, 30 Jun 2011
Subject: AdaTutor is back online
URL: http://ada-dk.org/?page=news&

news_id=326
I just got word from Karl Nyberg that the
AdaTutor program is back online:
> I have taken over rehosting of

www.adatutor.com for John.
 It appears to be functional again.

John is of course John Herro, the original
author of the AdaTutor program.
Back in April he mentioned that he would
be shutting down adatutor.com.
Luckily Karl decided to put it back online.
I haven't tried AdaTutor yet, as it seems to
be very Windows oriented, but I do plan
on giving it a whirl and see what happens
when it is exposed to Slackware Linux
and GNAT GPL 2011. :o)

Ada-related Tools
Ada 95 Booch Components
20110612 and 20110622
From: Simon Wright

<simon@pushface.org>
Date: Sun, 12 Jun 2011 20:13:21 +0100
Subject: ANN: Booch Components

20110612
Newsgroups: comp.lang.ada
A new release of the Ada 95 Booch
Components is now available.
See
https://sourceforge.net/projects/booch95/
files/booch95/20110612/ for the software,
http://booch95.sourceforge.net/
release.html for the release notes.
From: Simon Wright

<simon@pushface.org>
Date: Wed, 22 Jun 2011 18:27:22 +0100
Subject: ANN: Ada 95 Booch Components

20110622
Newsgroups: comp.lang.ada
Release 20110612 was missing the top-
level bc.gpr and support files for
Indefinite Maps.
Compilation warnings eliminated.

Matreshka 0.1.1
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Sat, 2 Jul 2011 23:51:08 -0700
Subject: Announce: Matreshka 0.1.1
Newsgroups: comp.lang.ada
We are pleased to announce availability
of Matreshka 0.1.1. Here is list of most
significant improvements of functionality:
- support for calendars and calendrical

calculations;
- support for SQL Database Access,

including Oracle, PostgreSQL and
SQLite;

- support for persistent application
settings; INI files and Windows Registry
are supported;

- support for ISO-8859-1 and Windows-
1251 encoding;

- several extensions of Universal_String
and Universal_String_Vector.

Matreshka is set of Ada libraries to
simplify development of Ada

applications. For more information please
visit
http://adaforge.qtada.com/cgi-bin/
tracker.fcgi/matreshka/wiki
[see also "Matreshka 0.0.6" in AUJ 32‑1
(Mar 2011), p.9 —mp]

JSON Support in GNATcoll
From: Thomas Løcke <tl@ada-dk.org>
Date: Fri, 22 Jul 2011
Subject: JSON Support in GNATcoll
URL: http://ada-dk.org/?page=news&

news_id=339
Today I grabbed the latest GNATcoll
developer SVN commit
[http://libre.adacore.com/libre/tools/
gnat-component-collection/ —mp] and
with it came a very nice surprise - it
appears that AdaCore is adding JSON
support to this already wonderful library.
Here are the new files in question:
- gnatcoll-json.ads
- gnatcoll-json.adb
- gnatcoll-json-utility.ads
- gnatcoll-json-utility.adb
Looks very nice! To my knowledge, the
only other Ada JSON library available, is
the jdaughter library by Tero Koskinen.
[http://hg.stronglytyped.org/jdaughter
—mp]
I don't know how the two
implementations compare to each other,
but it sure is nice to have more choices.

Ada support in *BSD
distributions
From: John Marino

<dragonlace.cla@marino.st>
Date: Fri, 15 Jul 2011
Subject: GNAT-AUX Updated with GCC

4.6.1
URL: http://www.dragonlace.net/posts/

GNAT-AUX_Updated_with_GCC_4.6.1/
GCC 4.6.1 was released on June 27th.
While not much was done directly to
GNAT, 157 bugs were addressed. GNAT
AUX was updated accordingly and it's
already available to FreeBSD users.
Patches have already been submitted to
pkgsrc so that DragonFly and NetBSD
fans will also receive the latest version of
GNAT-AUX soon.[…]
[See also "Ada support in *BSD and
Android distributions" in AUJ 32-2 (Jun
2011), p.72 —mp]

Ada for Android
From: John Marino

<dragonlace.cla@marino.st>
Date: Tue, 19 Jul 2011
Subject: FreeBSD64 Android cross-

compiler builds Tetris with Tasking

Ada-related Products 137

Ada User Journal Volume 32, Number 3, September 2011

URL: http://www.dragonlace.net/posts/
FreeBSD64-Android_cross-
compiler_builds_Tetris_with_Tasking/

We still don't own a real Android device,
so continued work on the Android
compiler has been difficult. This may
change in the near future as we have our
eyes on an Asus Transformer (ARM v7),
but until then we are still limited to using
the ARM v5 Android SDK emulator.
A new cross-compiler was built, this time
using FreeBSD64 as the host machine.
The goal is to convert the cross compiler
into a set of ports so that FreeBSD users
can obtain the cross compiler like they get
other software.
This will be the next project, and once the
Android tablet is obtained, the full
testsuite will be run on the cross-
compiler.
In the meantime, I found a text version of
Tetris written in Ada on the AdaPower
site. It turns out this game takes advantage
of tasking, and that's how we found out
the the Android compiler had broken
tasking.
Luckily, it only took a couple of hours to
figure out how to fix it.
As proof, a screenshot of FreeBSD64-
built Ada Tetris running inside an
Android SKD emulator hosted on Ubuntu
10.04 LTS Linux is presented, and it
works! The fact that tasking runs is a very
good indicator that the compiler should do
very well when the testsuite is run.
Hopefully we can get these ports built
were interested parties can untar them in
FreeBSD's /usr/ports directory and get
working Android cross-compilers so they
can play with it as well. If all goes well,
we'll get the ports officially added to the
FreeBSD ports tree.
[…]
From: John Marino

<dragonlace.cla@marino.st>
Date: Sat, 23 Jul 2011
Subject: GNATDroid cross-compiler ports

created for FreeBSD
URL: http://www.dragonlace.net/posts/

GNATDroid_cross-compiler_ports_
created_for_FreeBSD/

FreeBSD users now have an easy method
to obtain their own Ada capable Android
cross-compiler. We have created four
FreeBSD ports that can build two
different GNAT-AUX (gcc 4.6.1)
compilers that target Android ARMv5
and Android ARMv7.
The ARMv5 version creates binaries that
can be run on the Android SKD emulator.
The ARMv7 version is intended to
produce binaries that can be run on ARM
Cortex-A8+ CPUs, but until we get that
Android tablet, we can't confirm it's
functional. The emulator can NOT run
ARMv7 binaries, so don't attempt it.

The ports will not be submitted to
FreeBSD until we can run the full
testsuite on them, but in the meantime
we're making them available to anyone
that wants to use them now (no promises
of course!)
The four packages are:
1. lang/gnatdroid-sysroot
2. lang/gnatdroid-binutils
3. lang/gnatdroid-armv5
4. lang/gnatdroid-armv7
The first two are dependencies of the last
two which get automatically built, so the
process to install a cross-compiler is
simple (logged in as root):

1. > cd ~
2. > fetch

 http://downloads.dragonlace.net/
gnatdroid_cross-compiler.tar.bz2

3. > tar -xyf gnatdroid_cross-
compiler.tar.bz2 -C /usr

4. > cd /usr/ports/lang/gnatdroid-armv5
5. > make install

If you prefer PGP-signed downloads, the
signature file is available, and can be
verified against John Marino's public key.
Feedback or comments about these cross-
compilers are always welcome.
[See also "Ada support in *BSD and
Android distributions" in AUJ 32-2 (Jun
2011), p.72 —mp]

Zip-Ada v.41 (beta)
From: Thomas Løcke <tl@ada-dk.org>
Date: Mon, 25 Jul 2011
Subject: Support for UTF-8 in Zip-Ada
URL: http://ada-dk.org/?page=news&

news_id=340
A few days ago Gautier de Montmollin
mentioned that he'd added support for
UTF-8 archive entries in version 41 of his
Zip-Ada library, and as can be seen from
revision 99, he wasn't kidding around.
[http://sourceforge.net/projects/unzip-ada/
—mp]
The changes in version 41 are:
- Support for Unicode (UTF-8) entry

names within archives; see: Zip,
Zip.Create, Zip_Streams

- Zip_Streams: Made names more
consistent, previous names preserved
with pragma Obscolescent

There doesn't appear to be an actual
version 41 release announcement (yet), so
while we're waiting for that, why not visit
Gautier's identi.ca stream and subscribe?
[see also "Zip-Ada v.40" in AUJ 32-2
(Jun 2011), p.73 —mp]

Ada-related Products
AdaCore / Altran Praxis —
SPARK Pro 10
From: AdaCore Press Center
Date: Tue, 07 Jun 2011
Subject: AdaCore and Altran Praxis Release

SPARK Pro 10
URL: http://www.adacore.com/2011/06/07/

sparkpro10/
Increased flexibility and functionality for
high-assurance systems
NEW YORK and PARIS, June 7, 2011 –
AdaCore and Altran Praxis today
announced the release of the SPARK Pro
10 software development and verification
environment, providing a major step
forward for the developers of high-
assurance systems. SPARK Pro now
offers increased flexibility to developers
of systems with mixed integrity levels or
with the need to integrate SPARK with
other languages or legacy code.
SPARK Pro is a product jointly developed
by Altran Praxis, international specialist
in embedded and critical systems
engineering, and AdaCore, the leading
provider of commercial software solutions
for the Ada language. SPARK Pro
provides the foremost language, toolset
and design discipline for engineering
high-assurance software. It combines
Altran Praxis’ acclaimed SPARK
language and verification tools, with the
GNAT Programming Studio (GPS) and
GNATbench Integrated Development
Environments from AdaCore. There are
SPARK versions based on Ada 83, Ada
95, and Ada 2005, so all standard Ada
compilers and tools work out-of-the-box
with SPARK.
SPARK Pro is a language and toolset
specifically designed for developing
applications where correct operation is
vital for safety or security. The SPARK
Pro toolset offers static verification that is
unrivalled in terms of its soundness, low
false-alarm rate, depth and efficiency. The
toolset generates evidence for correctness
that can be used to meet the requirements
of safety and security certification
schemes such as DO-178B and the
Common Criteria.
SPARK Pro 10’s new features include:
Automatic selection of flow analysis
mode
The SPARK Pro Examiner now supports
automatic selection of information flow or
data flow analysis on a per-subprogram
basis. This new feature increases
flexibility for users by making it easier to
analyse SPARK programs which have
derives annotations (information flow
contracts) only on certain subprograms,
for example at the lower levels in the call
tree or in those areas of the program with
the highest integrity level requirements.

138 Ada-related Products

Volume 32, Number 3, September 2011 Ada User Journal

This increased flexibility can equally be
applied to facilitate the integration of
SPARK code with non-SPARK or legacy
code (e.g., full Ada or C). It also allows
programs to be developed initially
without derives annotations, and to have
derives annotations added at a later stage
as necessary.
KCG Language Profile
As part of a collaborative development
with Esterel Technologies, a new
language profile has been added to the
Examiner for processing automatically-
generated SPARK code produced by
Esterel’s KCG code generator for
SCADE. The SPARK/Ada version of
KCG for SCADE will be available in Q4
of 2011 and further releases of both the
SCADE and SPARK Pro toolsets in 2011
and 2012 will provide users with a route
to static verification of automatically-
generated SPARK code. The integration
of these technologies
will afford users the benefits of model-
driven development with the assurance of
a secure programming language and
associated verification tool suite.
Derived Numeric Types
Definition of numeric types has been
made easier by the introduction of
language and tool support for explicitly
derived numeric types. This removes the
need for a user-supplied base type
assertion and removes the risk of the user
indicating a base type that is inconsistent
with the target.
SPARKBridge preview for Windows
SPARKBridge – a bridge between the
SPARK tools and Satisfiable Modulo
Theories (SMT) solvers – was initially
introduced as a GNU/Linux-only preview
in SPARK Pro 9.1. SPARK Pro 10
extends this preview to Windows users,
allowing them to experiment with
alternate provers for discharging
Verification Conditions. A fully-
supported version of SPARKBridge will
be available in future releases of the
Black Belt edition of SPARK Pro.
Library Additions
The SPARK library has been augmented
with several new packages including
Interfaces, Ada.Characters.Handling, and
Ada.Text_IO.
Proof Tools
A number of improvements have been
made to the SPARK Pro proof tools.
The Simplifier now has enhanced
reasoning capabilities for modular types,
allowing more proofs to be automatically
discharged. In addition, the proof
summary output (from the POGS tool)
has been improved to make the
management of the proof process easier
for large projects.
Availability

SPARK Pro 10 is available now. For
more information please visit
http://www.adacore.com/home/products/
sparkpro/ or contact info@adacore.com.
Webinar
A webinar providing an introduction to
the new features in SPARK Pro 10 will be
presented on the 5th July. For more
information and to register please visit
www.adacore.com/home/products/
sparkpro/language_toolsuite/webinars/
About Altran Praxis
Altran Praxis is a specialist systems and
software house, focused on the
engineering of systems with demanding
safety, security or innovation
requirements.
Altran Praxis leads the world in specific
areas of advanced systems engineering
and innovation such as: ultra low defect
software engineering, Human Machine
Interface (HMI), safety engineering for
complex or novel systems, systems
engineering and methods/tools (such as
SPARK). Altran Praxis offers clients a
range of services including turnkey
systems development, consultancy,
training and R&D. Key market sectors are
aerospace and defence, rail, nuclear, air
traffic management, automotive, medical
and security.
The company operates globally with
active projects in the US, Asia and
Europe.
The headquarters of Altran Praxis are in
Bath (UK) with offices in Sophia
Antipolis, London, Paris, Loughborough
and Bangalore.
Altran Praxis is an expertise centre within
the Altran Group (altran.com) – a global
leader in innovation engineering,
employing over 17,000 staff across the
world. www.altran-praxis.com
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, a state-of-the-art programming
language designed for large, long-lived
applications where safety, security, and
reliability are critical. AdaCore’s flagship
product is the GNAT Pro development
environment, which comes with expert
on-line support and is available on more
platforms than any other Ada technology.
AdaCore has an extensive world-wide
customer base; see
http://www.adacore.com/home/company/
customers/ for further information.
Ada and GNAT Pro see a growing usage
in high-integrity and safety-certified
applications, including commercial
aircraft avionics, military systems, air
traffic management/control, railway
systems and medical devices, and in
security-sensitive domains such as
financial services.

AdaCore has North American
headquarters in New York and European
headquarters in Paris.
www.adacore.com

AdaCore — GNAT GPL
2011
From: Dirk Craeynest

<Dirk.Craeynest@cs.kuleuven.be>
Date: Wed, 15 Jun 2011
Subject: GNAT GPL 2011 available
Mailing list: ada-belgium-info.

cs.kuleuven.be
Dear Ada-Belgium friend,
We hereby forward you an announcement
from our long time corporate member and
sponsor AdaCore about the new GNAT
GPL 2011 release.
[…]
----- Forwarded message -----
Dear GNAT GPL user,
We are pleased to announce the release of
GNAT GPL 2011, the integrated Ada, C,
and C++ toolset for Academic users and
FLOSS developers.
This new edition provides many new
features and enhancements in all areas of
the technology. The most notable ones
are:
- improved support for Ada 2012
- enhanced versions of tools
 o GPS 5.0 enhanced IDE (improved

support for C/C++, more powerful
source editing, better usability, ?.),

 o GtkAda (new widgets, interface to the
Cairo graphics library)

- more flexible and more efficient project
manager tool

- support for unloading Ada plug-ins
- improved support for Ada constructs on

the .NET platform
- more detailed exception messages

(-gnateE switch)
- complete support for Lego

MINDSTORMS hardware, including
audio and I2C sensors

GNAT GPL 2011 comes with version
5.0.1 of the GNAT Programming Studio
IDE and GNATbench 2.5.1, the GNAT
plug-in for Eclipse.
GNAT GPL 2011 can be downloaded
from the "Download" section on
https://libre.adacore.com.

AdaCore / Altran Praxis —
SPARK GPL 2011 and
SPARKSkein 2011
From: Rod Chapman

<roderick.chapman@googlemail.com>
Date: Wed, 20 Jul 2011 05:39:23 -0700

Ada Inside 139

Ada User Journal Volume 32, Number 3, September 2011

Subject: SPARK GPL 2011 and
SPARKSkein 2011

Newsgroups: comp.lang.ada
SPARK GPL 2011 is now up on
libre.adacore.com.
We've also updated the SPARKSkein
release to meet v1.3 of the Skein
specification, and reproduced all analyses
and proofs with the GPL 2011 toolset.
This is at www.skein-hash.info.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Thu, 21 Jul 2011 04:42:04 -0400
Subject: Re: SPARK GPL 2011 and

SPARKSkein 2011
Newsgroups: comp.lang.ada
[…]
Very interesting!
However, I think www.skein-hash.info
could use a bit more propaganda about
what SPARKskein is, and why people
should care about it.
For example, here is the abstract from the
paper about SPARKskein:
(http://www.skein-hash.info/sites/default/
files/SPARKSkein.pdf)
"This paper describes SPARKSkein – a
new reference implementation of the
Skein algorithm, written and verified
using the SPARK language and toolset.
This paper is aimed at readers familiar
with the Skein algorithm and its existing
reference implementation, but who might
not be familiar with SPARK. The new
implementation is readable, completely
portable to a wide-variety of machines of
differing word-sizes and endian-ness, and
“formal” in that it is subject to a proof of
type safety. This proof also identified a
subtle bug in the implementation which
persists in the C version of the code. The
new code offers similar performance to
the existing reference implementation. As
a further result of this work, we have
identified several opportunities to
improve both the SPARK tools and
GCC."
Just getting this on the web page
somewhere (perhaps on http://www.skein-
hash.info/downloads) would be very
good. Especially the parts about being
completely portable (I'm assuming the C
version is not?), finding a bug in the C
version, and "similar performance".
This is an excellent opportunity to
advertise the benefits of Ada and SPARK.
Hmm. That info is available at
http://www.altran-praxis.com/news/
SPARKskein_16_Aug_10.aspx, which is
probably a more appropriate place for
such things. Pardon my enthusiasm :)
[…]

Ada and CORBA
GNACK — GNU Ada
CORBA Kit 1.3
From: Oliver M. Kellogg

<okellogg@users.sourceforge.net>
Date: Sat, 16 Jul 2011 18:36:50 -0700
Subject: Ada bindings for the GNOME

ORBit CORBA ORB
Newsgroups: comp.lang.ada
Version 1.3 of the GNU Ada CORBA Kit
(GNACK) has been released.
The main feature for this version is
improved stability for server
implementations.
For further info, see the NEWS file
included in gnack-1.3.tar.gz.
http://sourceforge.net/projects/orbitada
[See also "GNACK — GNU Ada
CORBA Kit" in AUJ 28-1 (Mar 2007),
p.17. —mp]

Ada and GNU/Linux
Support for Ada in Fedora
Linux
From: Thomas Løcke <tl@ada-dk.org>
Date: Mon, 27 Jun 2011
Subject: Ada in Fedora
URL: http://ada-dk.org/?page=news&

news_id=323
For quite some time now, Ada has been a
primary citizen in Debian Linux with lots
of packages available by simple typing
the familiar apt-get command.
Now it seems as if Fedora users will get
the same treatment.
[http://fedoraproject.org/wiki/Packaging:
Ada —mp]
I don't know if someone has stepped up to
the plate yet, but simply having a policy
for how to build Ada packages for Fedora
is a good start.
Maybe I should consider doing the same
for Slackware? I could write a few
slackbuild scripts and submit them to
slackbuilds.org.
Hmm, it's worth considering at least.

Debian Ada VM
From: R. Tyler Croy <tyler@linux.com>
Date: 03 Aug 2011 04:27:06 GMT
Subject: Debian Ada VM
Newsgroups: comp.lang.ada
I've been tinkering with Vagrant
(http://vagrantup.com) and Puppet lately
and I've created a simple set of manifests
for automatically provisioning a Debian
Ada VM:
https://github.com/rtyler/debian-ada-vm

It's pretty bare-bones right now since I'm
not doing anything tricky with that. If
you're interested in extending it and
adding repositories from GitHub
(ockham, adbci, etc) or something like
that, it should be pretty easy.
Happy hacking.

References to
Publications
High-integrity object-
oriented programming with
Ada
From: Thomas Løcke <tl@ada-dk.org>
Date: Mon, 08 Aug 2011 13:52:28 -0700
Subject: High-integrity object-oriented

programming with Ada
URL: http://ada-dk.org/?page=news&

news_id=346
Written by Benjamin Brosgol from
AdaCore, this article series dig deep into
the bowels of Ada and its OOP features,
specifically pertaining to high-integrity
systems. It is a very interesting read, with
lots of exact information. Clearly
Benjamin is an experienced and skilled
engineer.
It's a three part article, of which two parts
are currently available.
Part 1 of this three-part article reviews the
basics of object-oriented programming
and summarizes the challenges it presents
for high-integrity programming. Part 2
will provide a primer on the Ada
programming language, and Part 3 will
detail the tools Ada offers to help
developers meet the OOP challenges.
If you are in any way interested in Ada
and OOP, then these articles can serve as
a good place to start.
- High-integrity object-oriented

programming with Ada - Part 1
 [http://www.eetimes.com/design/

military-aerospace-design/4218039/
High-Integrity-Object-Oriented-
Programming-with-Ada —mp]

- High-integrity object-oriented
programming with Ada - Part 2

 [http://www.eetimes.com/design/
military-aerospace-design/4218257/
High-integrity-object-oriented-
programming-with-Ada---Part-2 —mp]

I will of course link to part 3 of the article
series, as soon as it's made available.

Ada Inside
Ada used in railway control
and information systems by
Siemens
From: AdaCore Press Center

140 Ada Inside

Volume 32, Number 3, September 2011 Ada User Journal

Date: Thu, 30 June 2011
Subject: Siemens Switzerland Selects

AdaCore Toolset for Railway Project
URL: http://www.adacore.com/2011/06/30/

siemens-railway/
GNAT Pro to be used for safety-critical
software development of railway control
system
NEW YORK, PARIS, ZURICH, June 30,
2011 – 16th International Conference on
Reliable Software Technologies AdaCore,
a leading supplier of Ada development
tools and support services, today
announced that the Mobility Division of
Siemens Switzerland Ltd., has selected
GNAT Pro, along with the CodePeer
static analysis tool, to develop the next
generation of its railway control and
information system. The contract with
AdaCore provides Siemens software
developers with state-of-the-art Ada tools
and direct access to the world’s largest
team of Ada experts, many of whom have
years of experience in safety-critical
application development.
The Siemens railway control system is a
modern networked application that covers
every aspect of the railway control
domain. It uses a distributed architecture
to allow a computer to automatically take
over control of a cell from another
computer in the same cell due to a
hardware failure or planned maintenance.
This architecture guarantees high-
availability of the system in accordance
with European railway software
standards. The current version of the
system controls the train traffic
throughout major parts of Switzerland and
also parts of Austria, Hungary and
Malaysia.
“Safety has the highest priority in the
railway business. Therefore, we invest a
lot of time and energy in code-review and
testing activities.
Recently, Siemens is experiencing a
renaissance in demand for its railway
control software, which is placing a heavy
load on our software development
resources. In order to meet the demand,
without compromising safety or quality,
we recognized the need for tools that
would allow us to work more efficiently.
Our two most important requirements
were an Ada compiler that could be
configured to analyze code against a
rigorous set of specific criteria, and an
automated code review and validation
tool to identify potential runtime errors.
Now, with detailed feedback from the
GNAT compiler and CodePeer we are
able to discover problems at the source
instead of in the test lab and the code-
review process is now essentially
automated,” said Daniel Bigelow,
Siemens software developer.
[…]

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —mp]
Job offer [France]: Ada Software
Engineer
[…] You will report to the technical lead
of the embedded software division.
You will be involved in a project
developed in partnership with our main
clients of the railway industry. During
your assignment, you will develop
software for the on-board and ground
segment of the CBTC [Communications-
Based Train Control —mp] safety system.
You will mainly develop new
functionalities for the CBTC (analysis,
design specification, coding and testing)
and correct bugs.
Additionally, you will support the project
team in the integration and validation of
the system.
Profile:
You hold a degree in industrial
informatics and have previous experience
in the development of embedded software
for the railway, defence or avionics
domains.
You have a good knowledge of the Ada
programming language and of the
EN50128 standard.
Knowledge of the CBTC system is an
asset.
[…]
[Translated from French —mp]
Job offer [Italy]: Software Engineer
We are looking for a software engineer.
You hold a master's degree in electronic,
aerospace or computer engineering and
have at least 2/3 years of experience in the
development and testing of real-time
embedded software.
The tasks for this job position include:
- Detailed design with UML from

software requirements.
- Development of source code in Ada 95.
- Definition of the testing procedures for

functional and software verification
- Testing and analysis of results.
You shall also fulfill the following
requirements:
- Knowledge of Ada 95 and of an

associated compilation and debugging
toolchain (preferably AdaMULTI)

- Knowledge of design tools based on
UML (preferably Real-Time Studio)

- Knowledge of Matlab and Simulink
- Knowledge of Visual Basic

- Knowledge of a configuration tool
(preferably PVCS)

- Excellent proficiency in written and
spoken English

Knowledge of the software life-cycle and
related standards (e.g. RTCA/DO178B) is
an asset.
[Translated from Italian —mp]
Job offer [Spain]: Senior Software
Engineer
- Bachelor's or master's degree
[…]
- Experience in the management of small

projects or work packages of big
projects.

- Experience in software development life
cycle

- Experience in Ada, C, C++. Knowledge
of Polyspace and C# is an advantage.

- Knowledge of the complete life cycle of
a software project

Experience 3-5 years
We are looking for […] 2 experts in real-
time systems with experience in avionics
and/or railway signalling who will work
in the management area and want to
assume technical leadership.
[Translated from Spanish —mp]
Job offer [Spain]: Embedded Software
Engineer
[…]
Education: A degree in Computer,
Electronic or Telecommunications
engineering.
Project domain: Automation, Consumer
Electronics.
Experience: 2 years
We are collaborating in R&D projects for
the industrialization of electronic products
for automation and consumer and
professional electronics.
In the automotive domain, we are
working with first-tier integrators and
suppliers.
We are looking for engineers with
experience in the development of real-
time software (specification, architecture,
coding, unit testing, integration testing,
validation), with good knowledge of one
or more programming languages (C, C++,
ADA [sic —mp]), microcontrollers, real-
time operating systems (VxWorks,
Nucleus, pSOS, MCarol etc.), tools for
configuration management […], and
communication busses […].
Requirements : Experience of at least 2
years as embedded software engineer.
Technical knowledge: RTOS (pSOS,
VxWorks, MCarol…), microcontrollers
(Hitachi, ST, Intel, Motorola…),
programming languages (C, C++, TCL,
VB, ADA…), communication busses
(CAN, Most, I2C), tool for configuration

Ada in Context 141

Ada User Journal Volume 32, Number 3, September 2011

management (Clearcase, Continuus,
PVCS)…
[Translated from Spanish —mp]
Job offer [United Kingdom]: Lead
Software Engineer
Lead Software Engineer, Aerospace - C,
C++, Ada
You will be responsible for defining
technical concepts and top level
implementation solutions, providing
technical oversight for services contracted
for outside providers and design,
implement, program and test software
ensuring applicable processes are
followed and quality specifications are
met.
Ideally, the successful candidate will be
an experienced Software Engineer with
previous experience of working in a
customer-facing position.
Experience of programming in the
following languages is highly desirable:
C, C++, Ada and Assembler.
[…]

Ada in Context
Best practices for the "use"
clause
From: Arnauld Michelizza

<a.michelizza@gmail.com>
Date: Tue, 7 Jun 2011 08:32:25 -0700
Subject: using `use' : what is the best

practice ?
Newsgroups: comp.lang.ada
Hi guys,
Sorry with my annoying questions, but it's
not easy to program in Ada after 20 years
programming in asm / C ;-)
Maybe a not so anedoctical question :
when using the 'use' clause ?
My first thought is that using 'use' is not
good because it masks the package tree.
[…]
But always avoiding 'use' give some
rather obfuscated code, especially when
using some specific arithmetic operator.
For example, playing with Address
arithmetic without 'use' :

with System;
with System.Storage_Elements;
procedure Main is
 A : System.Address;
 N : Integer;
begin
 A := System.Storage_Elements.
 To_Address(16#10000#);
 N := 4;
 System.Storage_Elements.
 "+"(System.Storage_Elements.
 Storage_Offset(N),A);

end Main;

The same code with 'use' is more readable
[…]
From: Simon Wright

<simon@pushface.org>
Date: Tue, 07 Jun 2011 16:59:05 +0100
Subject: Re: using `use' : what is the best

practice ?
Newsgroups: comp.lang.ada
> My first thought is that using 'use' is not

good because it masks the package tree.
100% agree. Well, actually more like
90%! I have no problem writing

with Ada.Text_IO; use Ada.Text_IO;

(but, I'd most often be using Text_IO for
debug trace output, not in operational
code).
And some packages
(Ada.Strings.Unbounded) are designed
to be "use"d.
AdaCore tend to use package renaming,
e.g.

package SSE renames
 System.Storage_Elements;

[…]
> But always avoiding 'use' give some

rather obfuscated code, especially when
using some specific arithmetic operator.
[…]

See "use type", designed for exactly this
purpose.
http://www.adaic.org/resources/
add_content/standards/05rm/html/
RM-8-4.html#I3407
Although you can "use type" in the
context clauses (the "with"s) I much
prefer to put them as close as possible to
the actual use: e.g., in the declarative
region of a subprogram.
Of course, if all the subprograms in a
package need to "use type", move the
"use type" to package scope.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 7 Jun 2011 18:22:46 +0200
Subject: Re: using `use' : what is the best

practice ?
Newsgroups: comp.lang.ada
> Maybe a not so anedoctical question :

when using the 'use' clause ?
Always, and packages has to be designed
to be "use-friendly."
[…]
In general, the idea of fully qualified
names is incompatible with generic
programming, i.e. when some operations
are defined on a class of types with
different bodies for different members of
the class.
P.S. All Ada users are subdivided into
use-haters and with-haters. The former are
in majority.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 7 Jun 2011 19:25:29 +0200
Subject: Re: using `use' : what is the best

practice ?
Newsgroups: comp.lang.ada
> use-haters and use-lovers? Hating

"with" would match pretty well with
hating Ada, I'd have thought!

In

with P; use P;

the "with P" is meaningless here.
"With" does not carry any useful
information for the reader. You have to
manage sets of "with" as you develop
your packages. I bet even most stubborn
use-haters do not take the idea of "with"
seriously. Because otherwise they would
have to mention *all* implicitly or
explicitly referenced packages in "with"
clauses. This mammoth task would go to
waste. Because the information that
brings is null, and interesting only to the
compiler-linker. And if you are in favor of
dotted names longer than the source line,
why would you need an additional "with"
if the source is already full of package
names?
BTW, there is another dichotomy: child
packages-haters vs. with-haters.
Package dependencies introduced by
children-parent relation are more evident
and less arbitrary than ones by "with."
The only problem is that multiple parents
are not allowed.
From: Simon Wright

<simon@pushface.org>
Date: Tue, 07 Jun 2011 18:29:48 +0100
Subject: Re: using `use' : what is the best

practice ?
Newsgroups: comp.lang.ada
> Because otherwise they would have to

mention *all* implicitly or explicitly
referenced packages in "with" clauses.
This mammoth task would go to waste.

Perhaps that's why the language designers
didn't go that way.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 7 Jun 2011 21:38:32 +0200
Subject: Re: using `use' : what is the best

practice ?
Newsgroups: comp.lang.ada
[…]
It was different in the 80s, projects were
much smaller. There were almost no
reusable components. You could really
gasp all relationships between your
packages. The structure of packages was
very rigid, designed up front.
In these days this is just unrealistic, so the
coding style must adapt and the language
should provide some support. I would
prefer stricter rules on declarations hiding
each other (requiring explicit resolution of
all conflicts) [*]. I definitely want a

142 Ada in Context

Volume 32, Number 3, September 2011 Ada User Journal

stronger than "use", transitive clause to
incorporate the declaration scope of a
package into the scope of another
package. I would like to have multiple
parents too.
* When people play this card against MI,
they forget that packages allow exactly
same. And if fully qualified names were a
solution for packages, why it could not be
for MI as well?
From: Shark8

<onewingedshark@gmail.com>
Date: Tue, 7 Jun 2011 16:38:53 -0700
Subject: Re: using `use' : what is the best

practice ?
Newsgroups: comp.lang.ada
> […] My first thought is that using 'use'

is not good because it masks the
package tree.

While this is true it can be handy for
reducing prefix-clutter, as could a rename.
So, while you may be hesitant to use them
on the package, I find using them in
declare-blocks and subprograms to be
quite readable and usable.
[…]
From: Pascal Obry <pascal@obry.net>
Date: Tue, 07 Jun 2011 19:33:29 +0200
Subject: Re: using `use' : what is the best

practice ?
Newsgroups: comp.lang.ada
> But always avoiding 'use' give some

rather obfuscated code, especially when
using some specific arithmetic
operator.[…]

I don't like use so when *I* design a
package I prefer to take a convention
where use is not necessary. But when you
want to use an already built API you must
often use it the way it has been designed
to be used. Take for example
Unbounded_String, nobody will avoid
using use in this case… Look at this code:

 with Ada.Strings.Unbounded;
 procedure Whatever is
 S : Ada.Strings.Unbounded.
 Unbounded_String;
 begin
 Ada.Strings.Unbounded.Append (
 S, "toto");
 end Whatever;

Far better with:

 with Ada.Strings.Unbounded;
 procedure Whatever is
 use Ada.Strings.Unbounded;
 S : Unbounded_String;
 begin
 Append (S, "toto");
 end Whatever;

Because Ada.Strings.Unbounded (and all
Ada runtime packages) has been designed
to be used with a use clause.
Now I do prefer:

 package Circle is
 type Object is…

And use it as:

 with Circle;
 O : Circle.Object;

To

 package Circle is
 type Circle_Type is…

And use it as:

 with Circle; use Circle;
 O : Circle_Type;

But all styles are around…
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Tue, 7 Jun 2011 21:42:10 -0500
Subject: Re: using `use' : what is the best

practice ?
Newsgroups: comp.lang.ada
> […] Take for example

Unbounded_String, nobody will avoid
using use in this case... Look at this
code: […]

Looks good to me, it's what I would write.
> Far better with: […]
Maybe, if that is the entire package. But
that's not usually the case, and typically
the use of Unbounded_Strings is a very
small fraction of the code.
Moreover, if you also have fixed strings
floating around (which I usually do), and
some uses of Ada.Strings.Fixed as well
(which also are pretty likely), use clauses
are simply not going to work. The typical
expression cannot be understood by the
compiler, and trying to figure out why
will be impossible.
I sometimes rename the horribly named
"To_Unbounded_String" to "+" (this
operation needs to be short), and
occasionally will use a "use clause" in a
subprogram scope. But that's about it.
> Because Ada.Strings.Unbounded (and

all Ada runtime packages) has been
designed to be used with a use clause.

Right, and it is unfortunate.
With Claw, we tried to split the
difference; we used short subprogram
names and longer type names. The
"Object" trick was too weird for me at the
time (and I still don't like it much).
From: Jeffrey Carter <jrcarter@acm.org>
Date: Tue, 07 Jun 2011 11:51:43 -0700
Subject: Re: using `use' : what is the best

practice ?
Newsgroups: comp.lang.ada
[…]
This is something of a religious topic;
people have strong opinions one way or
the other. "Best" is difficult to define
objectively.

However, it's interesting to note that use
clauses are not allowed in SPARK. If
correctness of your SW is important
enough to use SPARK, you won't have
use clauses.
From: Peter C. Chapin

<PChapin@vtc.vsc.edu>
Date: Tue, 07 Jun 2011 19:04:46 -0500
Subject: Re: using `use' : what is the best

practice ?
Newsgroups: comp.lang.ada
[…]
It should be noted that SPARK does allow
a (limited) form of 'use type' precisely so
that operators can be made directly
visible.
From: Stefan Lucks <stefan.lucks@uni-

weimar.de>
Date: Wed, 8 Jun 2011 08:06:58 +0200
Subject: Re: using `use' : what is the best

practice ?
Newsgroups: comp.lang.ada
[…]
There are alternatives to the use in the
syntax clause:
-> use type;
-> a renames clause
-> a local use
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Sun, 12 Jun 2011 03:55:12 -0400
Subject: Re: using `use' : what is the best

practice ?
Newsgroups: comp.lang.ada
> […] So, while you may be hesitant to

use them on the package, I find using
them in declare-blocks and
subprograms to be quite readable and
usable.

This is my policy as well; 'use' clauses are
forbidden in package specs, and must be
localized as much as possible in package
bodies.

On the suppression of run-
time checks
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Fri, 17 Jun 2011 11:42:45 +0200
Subject: Runtime check : what about you ?
Newsgroups: comp.lang.ada
Hello, just out of curiosity as much as
because this may be worth to discuss […]:
how many of you typically compile
releases with run-time check and how
many of you typically compile releases
without runtime check ?
[…]
Feel free to add any specific context
information with your reply (I guess most
of you will feel the need)
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Fri, 17 Jun 2011 12:56:06 +0300

Ada in Context 143

Ada User Journal Volume 32, Number 3, September 2011

Subject: Re: Runtime check : what about
you ?

Newsgroups: comp.lang.ada
[…] I release with run-time checks
(-gnato -fstack-check, although I must
sometimes omit the latter due to compile-
time problems). This is a non-interactive,
non-embedded, non-real-time application
for PCs.
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Fri, 17 Jun 2011 03:06:21 -0700
Subject: Re: Runtime check : what about

you ?
Newsgroups: comp.lang.ada
[…] With checks on since 1995 - the real
difference (for me) was the move from
68000's to PowerPC - the processor was
fast enough to allow them […] Unless the
safety of the system required no run-time
exceptions, of course! […]
From: Simon Wright

<simon@pushface.org>
Date: Fri, 17 Jun 2011 11:43:59 +0100
Subject: Re: Runtime check : what about

you ?
Newsgroups: comp.lang.ada
[…] The mission-critical system I used to
work on was released with run-time
checks enabled. We would have used
stack checking, but there was a problem
with the old GNAT release we were
working with (I forget now exactly what).
It was considered better to halt one of the
redundant systems, and fail over to the
other, rather than proceed with the system
in an unexpected and probably unstable
state.
From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 17 Jun 2011 13:35:23 +0200
Subject: Re: Runtime check : what about

you ?
Newsgroups: comp.lang.ada
[…] AdaControl is always released with
all checks on - and a number of internal
additional checks.
From: Björn Lundin

<b.f.lundin@gmail.com>
Date: Fri, 17 Jun 2011 09:06:47 -0700
Subject: Re: Runtime check : what about

you ?
Newsgroups: comp.lang.ada
[…] On all systems and platforms -
Windows/aix
We use gnato and fstack-check
On some systems we went from -O0 to
-O2. Disaster on both platforms.
We also use -g This is with GNAT Pro.
The trouble with -O2 is probably fixed,
this was several years ago.
Warehouse management/control system.
The penalty is overweighted by ease of
find reasons for crashes (if we get them)
From: Jeffrey Carter <jrcarter@acm.org>
Date: Fri, 17 Jun 2011 10:53:56 -0700

Subject: Re: Runtime check : what about
you ?

Newsgroups: comp.lang.ada
[…] The description of the language in
the ARM includes run-time checks. If
checks are turned off, then you're using
some other language, not Ada.
We always have checks on for our soft-
real-time application.
From: Adam Beneschan

<adam@irvine.com>
Date: Fri, 17 Jun 2011 11:59:37 -0700
Subject: Re: Runtime check : what about

you ?
Newsgroups: comp.lang.ada
[…] Then I guess the RM sections on the
Suppress pragma must be a big fat
misprint. Obviously, they're rogue pages
that sneaked into the RM from the
standard for some other language.
Really, I don't see the point of statements
like that. Ada is a tool, to be used for
practical purposes. It's not a religion. And
it was certainly part of the intent of Ada's
designers that developers would develop
their programs with checking turned on
but then turn it off after the program has
been tested and is ready to be put into
production. It's interesting to me that no
one here has admitted doing this; I don't
know what this means, except that
perhaps they're only developing programs
for which the computation time is small to
the amount of time spent waiting for the
user to figure out where to move the
cursor, or something. Or that no one is
developing programs that require a long
intensive algorithm on a large 2-D array
or something like that, for which turning
off checking could easily make a huge
difference.
From: J-P. Rosen <rosen@adalog.fr>
Date: Sat, 18 Jun 2011 09:16:50 +0200
Subject: Re: Runtime check : what about

you ?
Newsgroups: comp.lang.ada
> And it was certainly part of the intent of

Ada's designers that developers would
develop their programs with checking
turned on but then turn it off after the
program has been tested and is ready to
be put into production. […]

Definitely not. Don't forget that a pragma,
including pragma suppress, can be put in
very limited scopes.
The intent is that IF you have identified
the innermost loop that eats up 90% of the
computing time, and IF you have
determined by careful measurement that a
significant part of it is taken by checks,
and IF your program cannot meet
otherwise the performances from its
requirements, THEN you can include this
loop into a block statement to which a
pragma suppress applies.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Fri, 17 Jun 2011 19:26:29 -0500

Subject: Re: Runtime check : what about
you ?

Newsgroups: comp.lang.ada
> […] It's interesting to me that no one

here has admitted doing this;
I've done it, but not much recently. Even
computationally intensive programs like
my Solitare solver only needed it in a
couple of very limited locations. And in
the most recent such cases, I restructured
the code (and admittedly, made the
compiler smarter) so that the checks aren't
generated in the first place -- which is of
course the best of both worlds -- fast code
which the compiler has proved to have no
check failures.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Fri, 17 Jun 2011 19:15:39 -0500
Subject: Re: Runtime check : what about

you ?
Newsgroups: comp.lang.ada
[…]
Janus/Ada is released with checking off.
That was because the compiler with
checking on was too large for typical
machines back in the day, and there are
various reasons that it is best to keep this
the same going forward. OTOH, all of the
beta releases of Janus/Ada are with
checking all.
All of RRS's other programs and my other
programs are released/used with checking
on. Modern Ada compilers do a very good
job of removing extra checks, and it is
very rare that I have seen a case where it
is worth the effort to suppress them. For
things like the AdaIC search engine, it's
many times better to have the protection
of the checks in case there is some bug
(out-of-range, null pointer deref, etc.) in
the code -- with checking on, such bugs
have no effect than causing a denial-of-
service to the caller; with checking off,
who knows what could happen?
I personally believe in the seatbelt
analogy: "turning off checks in released
software is like using seatbelts in the
driveway and then taking them off when
you reach the highway". For me, this also
applies to assertions and contracts as well
-- I only turn these things off if they are
tremendously expensive (in which case I
usually remove them permanently). I
know there are others (like Bob Duff)
who think this analogy is silly.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Fri, 17 Jun 2011 20:29:29 -0400
Subject: Re: Runtime check : what about

you ?
Newsgroups: comp.lang.ada
No, I don't think it's silly. I think it applies
in some cases, but not others. I think
turning checks on or off is a difficult
engineering decision that should depend
on various factors.

144 Ada in Context

Volume 32, Number 3, September 2011 Ada User Journal

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Fri, 17 Jun 2011 13:30:05 -0700
Subject: Re: Runtime check : what about

you ?
Newsgroups: comp.lang.ada
[…] In my case, we are spending most of
the time on either database I/O or
communication I/O.
From: Tom Moran <tmoran@acm.org>
Date: Sat, 18 Jun 2011 03:08:56 +0000
Subject: Re: Runtime check : what about

you ?
Newsgroups: comp.lang.ada
[…] I've never in real life seen a
difference that could be called "huge".
Although I grant that for some things, like
a 2-D FFT on many images, I call an
optimized asm library routine (which has
no checks).
My current code runs a small PEG TV
station, where nobody dies if the time-
and-temperature slide misses an update
cycle, or a DVD is unreadable, etc. All
Ada checks are on, and the handler logs,
sends an email, or sends a text message if
there's a Minor .. Significant unforeseen
problem.
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Sat, 18 Jun 2011 11:04:09 +0300
Subject: Re: Runtime check : what about

you ?
Newsgroups: comp.lang.ada
[…] We effectively did that in my
preceding Ada project (the platform on-
board SW for the GOCE satellite) where
we tested on a workstation using native
compilation with checks on, but released
cross-compiled target code with checks
off. The target compiler does not support
standard exception handling so we did not
even have to think about whether and how
we could have handled check failures on
the target. (We did of course run the tests
on the target, too, not just on the
workstation.)
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 18 Jun 2011 08:56:41 +0200
Subject: Re: Runtime check : what about

you ?
Newsgroups: comp.lang.ada
[…] We leave most checks on (stack,
integer overflow) in the release versions.
[…] The platforms are VxWorks and
Windows, used for distributed automation
and control systems (many sensors,
actuators, protocols etc). When
performance question arise, which
happens due to very tight requirements on
the latencies we have, we try to optimize
the software, so that the compiler would
remove unnecessary checks.

On task components and
finalization
From: Pablo Rego <pvrego@gmail.com>
Date: Mon, 11 Jul 2011 20:24:04 -0700
Subject: Task origin track from a class
Newsgroups: comp.lang.ada
I have a class Def_Class which defines a
record which is a task. Say:

task type My_Task_Kind;

type Def_Class is tagged limited
 record
 Some_Element : Integer; -- or other
 --type anyway
 My_Task : My_Task_Kind;
 end record;

and I want to access my class inside the
task body, something like

type body My_Task_Kind (
 Origin: Def_Class) is
begin
 if Origin.Some_Element = 1 then
 (…)
 end if;
end My_Task_Kind;

So how can I do it? (I tried to use an entry
type, but got problems with limited/non
limited types, so asking for help!!)
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 12 Jul 2011 09:41:24 +0200
Subject: Re: Task origin track from a class
Newsgroups: comp.lang.ada
[…]
> I have a class Def_Class which defines

a record which is a task.
You shouldn't do that, because most likely
you will later have serious (unsolvable)
problems with the object's finalization.
Unless the task has somewhere a select
with an open terminate alternative, the
object's finalization will hang.
Note that deriving it from
Ada.Finalization.Limited_Controlled
won't help.
Consider this:

 type Parent;
 task type Worker (
 Data : not null access
 Parent'Class) is
 entry Do_Stuff;
 entry Stop;
 end Worker;
 type Parent is
 new Ada.Finalization.
 Limited_Controlled with
 record
 My_Task: Worker(Parent'Access);
 end record;

 overriding procedure Finalize
 (Object : in out Parent);

and the implementation:

 procedure Finalize (
 Object : in out Parent) is
 begin
 Object.My_Task.Stop; -- Kill the
 -- task
 end Finalize;

 task body Worker is
 begin
 loop
 select
 accept Do_Stuff;
 -- Some useful stuff to do
 or accept Stop;
 exit;
 end select;
 end loop;
 end Worker;

This does *not* work! The problem is
that the task must complete *before*
Finalize of the containing object is called.
It would work if the select of the task
would have:

 or terminate; -- Complete if asked

(and then the Stop entry call removed
from Finalize, of course).
The problem with this is that too
frequently there is no way to add the
terminate alternative (for various reasons,
which are irrelevant here).
So the unfortunate rule of the thumb is:
never use task components, but access to
task instead. From Finalize you would
call Stop entry or an equivalent and then
free the task object using
Unchecked_Deallocation.
From: Simon Wright

<simon@pushface.org>
Date: Tue, 12 Jul 2011 11:29:59 +0100
Subject: Re: Task origin track from a class
Newsgroups: comp.lang.ada
[…]
With GNAT, best not to free the task
object until 'Terminated is True (GNATs I
have used would silently fail to actually
free the TCB! [Task Control Block —mp]
resulting in an insidious memory leak).
From: Simon Wright

<simon@pushface.org>
Date: Tue, 12 Jul 2011 11:31:45 +0100
Subject: Re: Task origin track from a class
Newsgroups: comp.lang.ada
[…] Oops, I forgot to add that I'd aborted
the task first (as Dmitry said, it's not
always possible to arrange a clean
shutdown).
From: Shark8

<onewingedshark@gmail.com>
Date: Tue, 12 Jul 2011 17:36:29 -0700

Ada in Context 145

Ada User Journal Volume 32, Number 3, September 2011

Subject: Re: Task origin track from a class
Newsgroups: comp.lang.ada
[…]
Hm, would it be a usable idea for say the
memory manager for an OS, such that the
requests to the manager from programs
(and perhaps even compilers) are
delegated to the task; after all you don't
want to shut the memory-manager down
(terminate the task) at any point in normal
operation.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 13 Jul 2011 09:41:11 +0200
Subject: Re: Task origin track from a class
Newsgroups: comp.lang.ada
The issue has nothing to do with memory
management. The actual problems are:
1. The procedure of destruction of the

objects having task components. Tasks
are completed *before* Finalize is
called. Ada's approach to construction/
destruction is very much broken. This is
just one example of this.

2. The usage of the terminate alternative
which cannot be mixed with for example
the delay alternative.

From: Georg Bauhaus <rm.dash-
bauhaus@futureapps.de>

Date: Wed, 13 Jul 2011 10:43:15 +0200
Subject: Re: Task origin track from a class
Newsgroups: comp.lang.ada
> 1. The procedure of destruction of the

objects having task components. […]
When the life time of objects is
determined by Ada's language rules (and
not by the type system), isn't it normal to
expect that the language defined wrecking
ball smashes the thing only after it has
finished?
What would be the alternative? Would it
be that the programmer then has to
actively manage all parts of destruction
himself?
When an implementation collects
garbage, when would the "destructor"
run? Do finalization and RAII [Resource
Acquisition Is Initialization —mp]
destruction(?) have to be separate things?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 13 Jul 2011 13:59:13 +0200
Subject: Re: Task origin track from a class
Newsgroups: comp.lang.ada
[…]
Finalize is expected to have the object
fully operational if called for the first
time. Which is not the case for the task
components.
> What would be the alternative? Would

it be that the programmer then has to
actively manage all parts of destruction
himself?

Not at all. The alternative is for the user-
defined constructor/destructor's hook to
meet all components valid when called.
Finalize is not such a hook.
> When an implementation collects

garbage, when would the "destructor"
run?

The destructor of the type T to be called
before the memory allocated for the
object loses its attribution to the type T.
Note that this does not imply deallocation.
For instance when S is demoted to its base
type T, the destructor of S must be called
to make a T out of S.
> Do finalization and RAII destruction(?)

have to be separate things?
Finalization is another word for
destruction. (I am not a language lawyer
and don't known what the RM might say
about it)
Again, observe that promotion requires a
partial construction while demotion does
a partial destruction. The primitive
operation Finalize is a partial destructor.
A complete destruction includes the
bodies of the Finalize from all bases and
destructors of all components.
Note also that a consistent model must
also provide hooks for
promotion/demotion to the class (e.g. S ->
T'Class, T'Class -> S).
From: Shark8

<onewingedshark@gmail.com>
Date: Wed, 13 Jul 2011 09:31:47 -0700
Subject: Re: Task origin track from a class
Newsgroups: comp.lang.ada
[…]
> The issue has nothing to do with

memory management.
You misunderstand me; I was asking that
if it's generally impossible to destroy such
a construct then would the use of such a
construct be allowable (or desirable) in
the cases where the destruction of such
construct is itself generally
undesirable/invalid.
> The actual problems are:
 1. The procedure of destruction of the
 objects having task components. Tasks
 are completed *before* Finalize is
 called.
Shouldn't they be completed before
Finalization of the object?
And, if they are still running, shouldn't a
finalize force termination?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 13 Jul 2011 19:22:50 +0200
Subject: Re: Task origin track from a class
Newsgroups: comp.lang.ada
[…] It is possible, the requirement, as I
said, is an open terminate alternative.
[…]

> Shouldn't they be completed before
Finalization of the object?

Yes, the question is at which part of
finalization. Finalization is a complex
action.
BTW, it is not just Finalize. If you
considered to pass some parameters to a
task component, you cannot do it from
Initialize. The following does *not* work:

 task type Worker is
 entry Start (Text : String);
 end Worker;
 type T is
 new Ada.Finalization.
 Limited_Controlled with
 record
 My_Task : Worker;
 end record;
 overriding procedure Initialize
 (Object : in out T);

 task body Worker is
 begin
 accept Start (Text : String) do
 Ada.Text_IO.Put_Line (Text);
 end Start;
 end Worker;
 procedure Initialize (
 Object : in out T) is
 begin
 Object.My_Task.Start ("Hey");
 -- Beware, it will hang!
 end Initialize;

This is not a compiler bug, it is a
mandated behavior.
> And, if they are still running, shouldn't

a finalize force termination?
You cannot force task termination
because the tasking model is cooperative.
In particular you should never use the
abort statement unless the task was
carefully designed to be abortable. It
should not allocate any resources which
might get lost upon a preemptive task
termination. One way to make a task
abortable is to have a controlled object of
which does the cleanup:

 task Abortable is
 Resources : Controlled_Object;
 begin
 loop
 ...
 end loop;
 end Abortable;

when Abortable is aborted the Resources'
Finalize will be called so that you could
do the necessary cleanup before the task
dies. Note that Finalize is abort-deferred,
it means that you cannot abort a Finalize
(when Finalize is called as a part of
finalization), it must complete first.

146 Ada in Context

Volume 32, Number 3, September 2011 Ada User Journal

On the rationale for task
components
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 13 Jul 2011 20:52:02 +0200
Subject: Task components, the rationale
Newsgroups: comp.lang.ada
OK, to avoid false impression that Ada
was carelessly designed, it must be said
that there was a valid reason why task
components are broken this way.
That is to prevent a much worse disaster
when so-called Rosen's trick is used.
Consider the pattern discussed earlier (the
Rosen's trick):

 type T;
 task type Worker (Self : not null
 access T'Class);
 type T is new Ada.Finalization.
 Limited_Controlled
 with record
 My_Worker : Worker (T'Access);
 end record;
 overriding procedure Initialize(
 Object : in out T);
 procedure Foo (Object : in out T)
 is abstract; -- A primitive operation

Now, if My_Worker started before
completion of Initialize then this body

 task body Worker is
 begin
 Self.Foo; -- Boom!

could call Foo of T or any of its derived
type *before* Initialize, i.e. before the
object's construction is done! That would
be a much worse problem.
There is no simple solution for this. To
start with tasks must be inheritable from
and their bodies must be primitive or
class-wide operations, because
aggregation (composition) + Rosen's trick
is necessarily broken.
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Wed, 13 Jul 2011 13:58:36 -0700
Subject: Re: Task components, the rationale
Newsgroups: comp.lang.ada
[…]
I don't even think you need to introduce
tasks to show the problem - what if the
component is of another controlled type?
Then you have two nested calls to distinct
Initialize operations - the first one for the
component (where you have the
discriminant access value to play with)
and the second one for the whole, which
is too late:

with Ada.Finalization;
with Ada.Text_IO;

procedure Test is

 type Outer;

 type Inner (Shell : access Outer)
 is new Ada.Finalization.
 Limited_Controlled
 with null record;

 overriding procedure Initialize (
 Self : in out Inner);

 type Outer is new Ada.Finalization.
 Limited_Controlled
 with record
 I : Inner (Outer'Access);
 Some_Value : Integer;
 end record;

 overriding procedure Initialize (
 Self : in out Outer);

 procedure Initialize (
 Self : in out Inner) is
 begin
 Ada.Text_IO.Put_Line
 ("initializing inner,
 Self.Shell.Some_Value =" &
 Integer'Image(Self.Shell.all.
 Some_Value));
 end Initialize;

 procedure Initialize (
 Self : in out Outer) is
 begin
 Self.Some_Value := 123;
 Ada.Text_IO.Put_Line
 ("initialized outer, Some_Value ="
 & Integer'Image(Self.
 Some_Value));
 end Initialize;

 X : Outer;

begin
 null;
end Test;

$ gnatmake test
…
$./test
initializing inner,
Self.Shell.Some_Value = 0
initialized outer, Some_Value = 123

We are messing with the state that does
not yet exist. Oops.
> There is no simple solution for this.
You have to just, you know, simply,
introduce constructors to the language.
This is my pet feature for Ada 2020. :-)

> To start with tasks must be inheritable
from and their bodies must be primitive
or class-wide operations, because
aggregation (composition) + Rosen's
trick is necessarily broken.

It's not about tasks, it's about access
discriminants to outer records - they
introduce circular references (outer has
inner, inner knows outer) and as such are
evil.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de
Date: Thu, 14 Jul 2011 11:23:07 +0200
Subject: Re: Task components, the rationale
Newsgroups: comp.lang.ada
> […] I don't even think you need to

introduce tasks to show the problem -
what if the component is of another
controlled type?

Yes, but the hack was made specifically
for tasks.
If anybody wished to have safe
construction/destruction in presence of
components spoiled by the Rosen's trick,
he would need to postpone parts of
constructors/destructors to arrange them
in certain order. It guaranteed is
impossible to do in certain cases. With
task components that manifests itself as a
deadlock. (I don't know if the problem is
detectable through static analysis, but I
doubt it is.)
[…]
Well, constructors need to be properly
crafted to handle this. Note that the
problem is in inconsistencies at the typing
level. Returning to the tasks, you have to
properly attribute the task body. Is it a
primitive operation? Is it class-wide? etc.
Depending on that you should be able or
not to dispatch from the body and that
will determine the earliest stage of
construction when the body is allowed to
start and the latest point before it started. I
think it would not be possible to do
without class-wide constructors, e.g. ones
constructing classes out of specific types.
(This is a subproblem of a more general
problem: dispatching upon
construction/destruction.)
[…]
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Thu, 14 Jul 2011 10:52:59 +0200
Subject: Re: Task components, the rationale
Newsgroups: comp.lang.ada
[…]
Out of curiosity, would this be enough?
How will it work?
Assuming, naively, not knowing C++,
that constructors of C++ could lead the
way, I get

#include <iostream>

namespace
{

Ada in Context 147

Ada User Journal Volume 32, Number 3, September 2011

 class Outer;

 class Inner {
 private:
 Outer* shell;
 public:
 Inner(Outer*);
 };

 class Outer {
 private:
 Inner i;
 public:
 int some_value;
 Outer();
 };

 Inner::Inner(Outer* wrap) {
 this->shell = wrap;
 std::cout << "initializing inner,
 this->shell->some_value = "
 << this->shell->some_value
 << std::endl;
 }

 Outer::Outer() : i(this) {
 this->some_value = 123;
 std::cout << "initialized outer,
 this->some_value = "
 << this->some_value
 << std::endl;
 }
}

int main()
{
 Outer x;
 return 0;
}

$ c++ news23.cpp
$./a.out
initializing inner, this->shell-
>some_value = 1606422610
initialized outer, this->some_value = 123

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Thu, 14 Jul 2011 11:15:53 -0700
Subject: Re: Task components, the rationale
Newsgroups: comp.lang.ada
It would not be sufficient, but it would be
necessary.
The point is, in order to solve these kind
of puzzles you have to recognize
initialization as a special operation (i.e.
stop pretending that it can be a regular
primitive operation of a type) and use that
notion to impose special rules.
In the case of access discriminants the
circular relationship is possible to
discover statically. After all, the whole

T'Access "expression" is special, and
allowed only in this particular case. Once
you statically know you have a problem,
you can work from there - but no matter
what kind of restrictions or provisions you
impose in the constructor, you have to
recognize that it is a special operation, not
a regular primitive one.
If you ask me from the top of my head
how *exactly* this can be solved, I will
not attempt to give a full solution (hey,
the committee has a full decade for it ;-)),
but one of the possible ideas might
involve adding a lifetime information to
the access discriminant, just as it is done
for tracking scopes of types and objects
with anonymous access parameters today.
That is, raise Program_Error when you
discover that within the constructor of T
its access discriminant (pointer to outer) is
dereferenced while the outer was not yet
initialized.
Most cases (like the two examples we
have shown) can be fully analyzed
statically for this.
> Assuming, naively, not knowing C++,

that constructors of C++ could lead the
way,

They will not lead the way in solving the
problem of dangling pointers, because this
is not the problem that C++ was designed
to solve in general. But recognizing that
the constructor is a special place is an
important contribution.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Fri, 22 Jul 2011 18:28:16 -0500
Subject: Re: Task components, the rationale
Newsgroups: comp.lang.ada
[…]
Well, actually, work on Ada 2020 would
need to be finished by late 2018 in order
to have a good chance of being
standardized in 2020. Since it is mid-2011
now, I think that is more like 7 years than
10.
[…]
> but one of the possible ideas might

involve adding a lifetime information to
the access discriminant, just as it is
done for tracking scopes of types and
objects with anonymous access
parameters today.

That was suggested for Ada 2012 [by me
and others], and it turns out that it cannot
be done (at least with the sorts of lifetime
indications that Ada has used to date). If it
was mandated, it would necessarily make
Ada implementations far more expensive
than they currently are -- so I doubt very
much that we'll see that. (Sorry, I don't
remember which AI we were discussing
at the time, so I can't give you a
reference.)
The static accessibility model for access
discriminants is *very* problematical; it
leads to distributed overhead for functions

that might return something with a
discriminant -- yet that still is considered
preferable to any dynamic model. My
preference is to not use them at all (not
always possible, as shown by some of
these examples).

On invariants and the 'Valid
attribute
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 21 Jun 2011 14:08:15 +0200
Subject: Re: Ada2012 Invariants and

obaque types
Newsgroups: comp.lang.ada
[…]
> package P1 is
 type T1 is tagged private
 with Invariant => Is_Valid (T1);
Unrelated to Ada, but in theory, an
invariant is a private implementation
dependent thing. An invariant is trivially
true in all public views of the object, i.e.
between any two calls to the object's
operations. From that follows, when
mentioned in a public part then:

type T1 is tagged private
 with Invariant => True;

(Again, I don't know which ideas Ada
designers had about invariants, I am not a
language lawyer.)
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Tue, 21 Jun 2011 14:17:11 +0200
Subject: Re: Ada2012 Invariants and

obaque types
Newsgroups: comp.lang.ada
[…]
In another theory, the invariant may
express things such as

Num_Green_Lights (T1) >= 3;

or

'Length < State_of_Things (T1) * 2;

where Num_Green_Lights is a publicly
visible function whose result is somehow
computed. These predicates would be
informative, and formal.
Would they be private implementation
dependent things? Or could I expect,
seeing the public view and its invariant,
the possibility of different
implementations (of both the view and the
invariant)?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 21 Jun 2011 14:31:49 +0200
Subject: Re: Ada2012 Invariants and

obaque types
Newsgroups: comp.lang.ada
[…]
That is not an invariant, but a constraint.
Constraint creates a subtype, it is a type-

148 Ada in Context

Volume 32, Number 3, September 2011 Ada User Journal

algebraic operation. Invariant does
nothing, it is just a predicate known to be
true for all instances of the type in public
contexts. As such it can be removed any
time without changing the program
semantics. A constraint cannot be
removed, because its violation is 1)
possible and legal, 2) has defined effect
(exception). Violation of an invariant in
public context is impossible in a correct
program.

subtype Line is String (1..80);
 -- 1..80 is a constraint
Line'Length = 80 -- This is an invariant

P.S. Again, no idea how Ada 2012 treats
this issue, differently I guess.
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Tue, 21 Jun 2011 15:29:22 +0200
Subject: Re: Ada2012 Invariants and

obaque types
Newsgroups: comp.lang.ada
[…]
> That is not an invariant, but a constraint.
I don't see bounds in the above.
I can state, though, that there will be---
invariably---at least three green lights
because that is a property of how each
implementation of the type will be
constructed. How is that variant? That is,
if the (theoretical) assertion is "at least, no
matter what, under all circumstances, in
each implementation", isn't this an
invariant?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 21 Jun 2011 16:42:05 +0200
Subject: Re: Ada2012 Invariants and

obaque types
Newsgroups: comp.lang.ada
[…]
Constraint could be any, not only bounds.
It is not the formula, but the meaning of:

S = { x | x in T and P (x) }

here P is a constraint, which produces S.

x in S => Q (x)

here Q is an invariant of S. It might
happen that Q (x) <=> P (x). Then you
could define S using Q, that would make
Q constraint and P invariant.
> That is, if the (theoretical) assertion is

"at least, no matter what, under all
circumstances, in each
implementation", isn't this an invariant?

1. Different implementations of the same
specification may have different
invariants. That are the predicates which
cannot be derived from the specification.

2. When a predicate can be derived from
the specification that does not yet imply
its equivalence to the specification.
Invariant does not necessarily defines
the type.

3. The difference is the intent. The
specification defines the [sub]type.
Invariant merely is a predicate provable
true for the given implementation of the
specification. (Properly constructed
invariants can be used in construction of
implementations, e.g. Dijkstra's
approach to programming, loop
invariants etc.)

4. You cannot distinguish predicates used
in definitions from ones used in proofs
by just looking at them. It is the
language's task to do this by syntax
means.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 21 Jun 2011 20:53:17 +0200
Subject: Re: Ada2012 Invariants and

obaque types
Newsgroups: comp.lang.ada
[…]
> While that's OK in theory, in practice

the user may wish methods to check for
validity rules defined for a type.

Validity is a misconception. In a properly
typed language any value is valid, that is
the property of being typed. A value is
invalid when the type system was
circumvented, which should never happen
publicly.
> Then, Is_Valid is abstract enough. And

after-all, you already have 'Valid
attribute in Ada. This is useful for
designs relying on defensive
programming and which disallow use
of exceptions.

'Valid is a hack around missing value
initialization enforcement or some
kludges to support
Unchecked_Conversion. It cannot justify
anything because 'Valid itself lacks
credibility.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 21 Jun 2011 22:52:22 +0200
Subject: Re: Ada2012 Invariants and

obaque types
Newsgroups: comp.lang.ada
> […] How do you properly initialise

and/or validate values coming from an
untrusted external source (i.e. "bus")?
Always using the full bit pattern and
write the conversion routine yourself?

Yes, I always do exactly this, at least in
order to make my program portable. E.g.
instead of querying the endianness of the
machine and trying to guess what kind of
bit shuffling might be appropriate in order
to map an external representation onto the
machine one through
Unchecked_Conversion (provided such
mapping exists, which in real life could
not be the case when working with bus
encodings), I just interpret bits as they are
described. It is safer, cleaner, easier to
understand, requires no preprocessing. If
this could be slightly less efficient, I don't
care.

BTW, what I do miss for this stuff is cross
type checks. E.g.

X : Integer := ...;
if X in Unsigned_32'Range then

The problem is that both

if X in Integer (Unsigned_32'First)..
 Integer (Unsigned_32'Last) then

or

if Unsigned_32 (X) in
 Unsigned_32'Range then

might fail on different machines. I need a
test if the value of the type T can be
converted to the type S. (For real types it
can be a quite non-trivial to test)
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 22 Jun 2011 09:55:43 +0200
Subject: Re: Ada2012 Invariants and

obaque types
Newsgroups: comp.lang.ada
[…] I always provide a low-level I/O
package which defines operations for
getting objects from, say, an octet array
and putting it back:

procedure Get
 (Data : Octet_Array;
 Pointer : in out Integer;
 -- Advanced to the next octet
 Value : out Clock_Source
 -- May raise Data_Error
);

I never use memory mapping of read data.
Incoming data are parsed by a sequence
of calls to the corresponding Get
operations.

On incomplete types and
invariants
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Tue, 21 Jun 2011 01:53:31 -0700
Subject: Ada2012 Invariants and obaque

types
Newsgroups: comp.lang.ada
A fairly common Ada idiom is to define
the full view of a private type using an
incomplete declaration. Thus leaving the
actual implementation to the package
spec. Trying this out with the public view
defined with an invariant lead to a
compiler error - is this:
a) expected?
b) an unexpected consequence? or
c) a compiler bug?
Example:

package P1 is
 type T1 is tagged private
 with Invariant => Is_Valid (T1);
 function Create return T1;

Ada in Context 149

Ada User Journal Volume 32, Number 3, September 2011

 function Is_Valid (This : T1) return
Boolean;
private
 type Imp;
 type T1 is tagged
 record
 I : Imp;
 end record;
end P1;

gnatmake -ws -c -u -PH:\Ada\
test_invariants\test_invariants.gpr
p1.ads
gcc -c -g -g -gnatE -gnatVn -gnato
-fstack-check -gnat12 -gnatf -I-
-gnatA H:\Ada\test_invariants\src\p1.ads

p1.ads:11:04: type "Imp" is frozen at line
3 before its full declaration
[…]
p1.ads:15:14: invalid use of type before
its full declaration
gnatmake: ”H:\Ada\test_invariants\src\
p1.ads" compilation error

[2011-06-21 09:46:55] process exited
with status 4 (elapsed time: 00.26s)

[Correct version of the code included as
per a later post —mp]
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 21 Jun 2011 03:43:24 -0700
Subject: Re: Ada2012 Invariants and

obaque types
Newsgroups: comp.lang.ada
[…]
This looks like a consequence of
13.14(8.2/1): "If an expression is
implicitly converted to a type or subtype
T, then at the place where the expression
causes freezing, T is frozen." (where in
this case the expression is T1, which
stands for the current instance of the type,
and the type T is also T1).
This subclause however seems to
contradict 13.14(7.2/3): "At the freezing
point of the entity associated with an
aspect_specification, any expressions or
names within the aspect_specification
cause freezing."; this subclause would
defer the freezing point of T1 until the
end of the enclosing package spec or the
declaration of a constant of the type,
whichever comes first (as is normal for
tagged types).
Another possible interpretation is that
Is_Valid must be called as part of the
elaboration of type T1, in which case the
aspect_specification is a function call,
which freezes the types of its parameters
(per 13.14(10.1/3)). But I doubt this is
true.
So, this looks like an area of the language
definition that needs clarifying (but then
again, freezing rules have always been

difficult to understand). The behavior of
the compiler definitely looks undesirable
to me. So I vote for b) an unexpected (and
undesirable) consequence (of existing
rules).
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Tue, 21 Jun 2011 03:46:35 -0700
Subject: Re: Ada2012 Invariants and

obaque types
Newsgroups: comp.lang.ada
> […] Just out of curiosity: which GNAT

flavor do you use for Ada 2012 ?
GNAT GPL 2011
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Tue, 21 Jun 2011 07:31:10 -0400
Subject: Re: Ada2012 Invariants and

obaque types
Newsgroups: comp.lang.ada
[…] This has nothing to do with
invariants. Incomplete types can only be
used in very restricted ways. Not as
components. You need to use an access
type.
This dates back to Ada 83 -- it's always
been illegal, and still is.
When compiling clients of P1 that declare
objects of type T1, how would the
compiler know the size? It could treat it
as dynamic, or it could take a peek at the
body, but if either of those was the
intended compilation model, then there
would be no need for private parts in the
first place -- we'd put the completion of a
private type in the body, where it belongs.
I suggest you erase the invariant, fix the
errors, and then put the invariant back in.
There's nothing wrong with your
invariant.
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Tue, 21 Jun 2011 05:01:48 -0700
Subject: Re: Ada2012 Invariants and

obaque types
Newsgroups: comp.lang.ada
[…] Ok, with no Invariant:

package P1 is
 type T1 is tagged private;
 function Is_Valid (This : T1)
 return Boolean;
private
 type Imp;
 type Imp_Ref is not null access Imp;
 type T1 is tagged
 record
 I : Imp_Ref;
 end record;
end P1;

I get:

gnatmake -d -PH:\Ada\test_invarients\
test_invarients.gpr p1.ads

gcc -c -g -g -gnatE -fstack-check -gnato
-gnatf -fcallgraph-info=su,da -gnat12 -I-
-gnatA H:\Ada\test_invarients\src\p1.ads

cannot generate code for file p1.ads
(package spec)
gnatmake: "H:\Ada\test_invarients\
src\p1.ads" compilation error

[2011-06-21 12:58:10] process exited
with status 4 (elapsed time: 00.37s)

i.e. no error.
The most reduced version I can come up
with is now:

package P1 is
 type T1 is tagged private
 with Invariant => True;
 -- NB: not even a 'real' function
private
 type Imp;
 type Imp_Ref is not null access Imp;
 type T1 is tagged
 record
 I : Imp_Ref;
 end record;
end P1;

which produces the same original error:

[…]
p1.ads:5:04: type "Imp" is frozen at line
2 before its full declaration
gnatmake: "H:\Ada\test_invarients\
src\p1.ads" compilation error
[…]
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Tue, 21 Jun 2011 05:22:04 -0700
Subject: Re: Ada2012 Invariants and

obaque types
Newsgroups: comp.lang.ada
> […] Looks like a compiler bug. […]
Thanks! I'll just have to stick with "with
Post =>" on all the operations instead for
now…until GNAT GPL 2012!! :-)
Shame the GPL version only updates once
per year…I suppose there is not any
chance of even a twice-yearly release
schedule?…
From: Martin Dowie

<martin.dowie@btopenworld.com>
Date: Tue, 21 Jun 2011 06:00:59 -0700
Subject: Re: Ada2012 Invariants and

obaque types
Newsgroups: comp.lang.ada
> […] Or don't use incomplete types

completed in the body. […]
Yes, I was thinking of replacing this with
discriminant to an interface
instead…(think 'strategy pattern' but with
only 1 strategy)…wonder if hold
Invar/Pre/Post will cope with that!! :-)

150 Ada in Context

Volume 32, Number 3, September 2011 Ada User Journal

On multiple dispatch in Ada
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Sat, 11 Jun 2011 12:13:21 +0200
Subject: Multiple dispatch
Newsgroups: comp.lang.ada
[…] In your opinion, what is the best
known design pattern for multiple
dispatch in Ada ? (as far as I know, there
is no way to get multiple dispatching in
Ada the direct way).
As with any design matters, an answer to
this question will probably depends on the
concrete case, so here is an overview of
the concrete matter: it deals with
serialization.
An example: you have multiple object of
different types rooted at a some root type;
you also have multiple containers of
different types too, also rooted at another
root type. Now, say objects are all to have
a serialization methods, a different one for
each type. This could be dispatching, OK,
except that you have the requirement
these objects are also to be serialized a
way or another, depending on the
container which will hold the serialized
data.
Add to this that you can't change this,
because this is part of some standard or
any other kind of things already fixed.
Say Object_1_Type, to be serialized to
Container_1_Type, will use Method_1_1
… Object_1_Type, to be serialized to
Container_2_Type, will use Method_1_2
… Object_2_Type, to be serialized to
Container_1_Type, will use Method_2_1
… Object_2_Type, to be serialized to
Container_2_Type, will use Method_2_2
… and so on
A quick solution could be:
1) Define two methods for object: one
would be Serialize_To_Container_1 and
Serialize_To_Container_2.
2) Then, a master Serialize method could
get two parameters, one object and one
container,
3) This method would discriminate on
container's type, so would invoke either
Serialize_To_Container_1 or
Serialize_To_Container_1 depending on
the container's type, and this call would be
dispatching on object's type.
OK, but why not the opposite? And then,
where the master dispatcher should reside
? In the module defining objects? In the
module defining containers? In a third
module? Who should own the knowledge
about serialization? I feel it's natural to
say, Objects, of course; but this also
requires dispatching on container's
types… Still seems natural the
serialization should be driven by objects,
at least because objects to be serialized
may hold private stuff, or else are the only

ones to know which of their properties are
to be stored and which are to be derived
from the ones stored.
Alternatively, may be a seed of a solution:
the containers would define some
serialization primitives for some basic
property types objects are made of, and
objects could request the container to
provide these method, via dispatching
calls.
This would end into…
Steps for the serialization of an object to a
container:
1) Determine the object serialization

method to use depending on its type.
2) The object is composed of properties of

types Property_1_Type,
Property_2_Type, and so on.

3) The containers provides methods
Serialize_Property_Type_1,
Serialize_Property_Type_2, and so on.

4) The object's serialization method
invokes these container's methods, via
dispatching calls.

Seems OK? Any one see a better design
pattern? Do someone see something
wrong with this repartitions of knowledge
and responsibilities between modules?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 11 Jun 2011 13:52:05 +0200
Subject: Re: Multiple dispatch
Newsgroups: comp.lang.ada
[…] Yes, that looks like the usual pattern
for protocols and similar stuff, when
objects do not depend on the containers.
The opposite case is represented by
drivers, when objects are maintained by
the driver, you might first dispatch on the
driver type and then on the type of its
objects.
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Sat, 11 Jun 2011 15:19:00 +0200
Subject: Re: Multiple dispatch
Newsgroups: comp.lang.ada
What kind of dependencies do you have
in mind? Object existence depending on
the container ? Or object's properties
depending on the container?
I was trying to figure many cases (in an
attempt to invalidate the design, and fail
with that, to prove this is the good
design); among others, this one : if the
container know enough about the object
types because it is fully dedicated to these
object types, one may argue the container
could also serialize objects on its own
side. However, this would imply a switch
on object types, which is not clean, due to
an implicit though behind this:
dispatching calls and switch are
somewhat similar things, however with an
important difference, which is that with
dispatching calls, the corresponding
switch is always owned by (under the
responsibility of) the type on which the

switch is to be done, while with the
switch approach, anything could do a
switch. The former more enforce
structuring.
Another approach, with a more concrete-
like example (which is not the one I am
actually dealing with… I wont tell more,
as I prefer to keep this talk as much
abstract as possible) : you have two types,
one for a character string and one for an
array of numbers, and two containers. Say
one container is a file and the other is
anything else you wish (could be a serial
communication wire plugged to some
device, as an example). Let’s say there are
two way to serialize each type. For the
string, there is a C-like serialization, that
is, all characters first, with a final
Unicode U+0000, and a Pascal-like
serialization, with a length first and then
the all characters. Let’s say there is
something similar with the array of
numbers: it could either be serialized with
a kind of null terminator, and the other
way, starting with its length and then its
numbers. Say each of the two container
expect one or the other serialization.
This case seems more ambiguous at first
sight, at it could seem as much easy and
clean to dispatch on either the container
or the object. Eh, but only one container
type knows about what null terminators
are and only one knows about what
lengths are. Now let’s say none of the
array of numbers or the character strings,
know about what null terminators are.
With such a case, wouldn't it be better to
dispatch first on the container? Is that the
kind of dependency you though about?
[…]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 11 Jun 2011 15:57:34 +0200
Subject: Re: Multiple dispatch
Newsgroups: comp.lang.ada
> […] What kind of dependencies do you

have in mind? Object existence
depending on the container? Or object's
properties depending on the container?

Any dependencies (correlations). Imagine
the dispatching table. It is a 2D matrix for
double dispatch. In full dispatch the table
is irregular, i.e. there is no preferred way
to index this matrix either by columns or
by rows.
In special cases there can be similarities
between rows or between columns, in that
case you dispatch across the most varying
dimension leaving the least variance to
the secondary dispatch.
> With such a case, wouldn't it be better

to dispatch first on the container? Is
that the kind of dependency you though
about?

Yes, that is full dispatch, which is not
decomposable. Returning to the example
with the 2D matrix of dispatch D, when it
was the representation:

Ada in Context 151

Ada User Journal Volume 32, Number 3, September 2011

D (i, j) = a (i) * b (j)

you can decompose full dispatch into
cascaded dispatch (first a(i), then b(j)).
[…]
Typically driver has a task processing I/O
requests. Queuing the request naturally
goes to the driver, so you dispatch first on
the driver object. Once you dequeue the
request, you dispatch on the object
handled by the driver, e.g. write analogue
24-bit output etc.
From: Emmanuel Briot

<briot.emmanuel@gmail.com>
Date: Sat, 11 Jun 2011 11:42:25 -0700
Subject: Re: Multiple dispatch
Newsgroups: comp.lang.ada
I have prepared recently a "gem" on the
Visitor design pattern (see the Gang of
Four book on design patterns), that will be
published this month on the Adacore web
site. I think you might find the pattern
interesting if you do not know about it
yet, so looking at the book might be of
interest to you.
[unfortunately the Ada Gem has not been
published yet (Aug 1, 2011) —mp]
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Sun, 12 Jun 2011 00:13:03 -0500
Subject: Re: Multiple dispatch
Newsgroups: comp.lang.ada
[…]
Serialization is one of those problems that
really requires being implemented with
composition, such that every type knows
how to finalize itself and dispatches
properly to use the similar routine of any
component types. (It's annoying that Ada
compilers know how to do this
automatically, given that they do it for
streams and for equality, but they won't
help you do it in other cases.)
However, if you have external
requirements that prevent you from doing
that in the natural way, then some other
solution will be needed. That solution is
likely to look like a hack -- and that's OK,
because the problem itself requires a hack
(it doesn't map to a natural solution).
Which is a long way of saying that there
are a lot of problems that can't really be
solved elegantly, and it isn't very
worthwhile to look for the perfect design
for such problems. Come up with some
design that solves the problem and don't
obsess about it too much.
From: Natasha Kerensikova

<lithiumcat@gmail.com>
Date: Wed, 15 Jun 2011 10:30:43 +0000
Subject: Re: Multiple dispatch
Newsgroups: comp.lang.ada
> […] Imagine the dispatching table. It is

a 2D matrix for double dispatch. In full
dispatch the table is irregular, i.e. there
is no preferred way to index this matrix
either by columns or by rows.

I remember having faced that kind of
issues with C through dynamic linker
introspection : there is a function that
returns a function pointer corresponding
to the given symbol name. I crafted the
symbol name using an operation like
"dispatch_prefix_" & First_Tag & "_" &
Second_Tag
This makes the dispatch table completely
isotropic and allows to implement any
element of the matrix in any compilation
unit (as long as it is linked (statically or
dynamically) to the final binary). I found
this feature very nice when the "glue"
between the row type and the column type
does not obviously belong to either type
(in the original example, that would be a
very special representation of a given
general data type in a given general
container).
I guess the introspection of object files is
too low-level for Ada, and even importing
libdl from C wouldn't be of much use
because of the name-mangling performed
by Ada compiler (or you have to use C
symbol names and give up namespaces,
case-insensitivity and other cool Ada
features).
I know other high-level languages do
have introspection mechanisms, but I
haven't seen anything like that in Ada.
Have I missed them?
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Wed, 15 Jun 2011 16:59:13 +0200
Subject: Re: Multiple dispatch
Newsgroups: comp.lang.ada
[…] You could build something around
(external) tag names. […]

Ada and security code
standards
From: Nasser M. Abbasi

<nma@12000.org>
Date: Sat, 28 May 2011 11:53:25 -0700
Subject: Does Ada need a 'secure coding

standard' as well?
Newsgroups: comp.lang.ada
I saw that CMU makes now what is called
CERT (secure coding standards) for
different languages. They have Java, C,
C++ in there.
These are supposed to be rules that a
programmer should adopt to make the
code written by that language more 'safe'
and 'secure'
Here is the one for C for example:
https://www.securecoding.cert.org/
confluence/display/seccode/
CERT+C+Secure+Coding+Standard
I was wondering if Ada would benefit of
having something like these secure
programming rules customized for Ada.
Or if it is even needed as much for Ada?
Some of the rules seem good to know
about.

May be some of this material is already in
the Ada rationale in different places. […]
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Sat, 28 May 2011 21:32:37 +0200
Subject: Re: Does Ada need a 'secure

coding standard' as well?
Newsgroups: comp.lang.ada
[…] This is addressed by ISO/IEC JTC
1/SC 22/WG 23 Programming Language
Vulnerabilities [1].
There are language-specifix annexes for
Ada, SPARK and several other languages.
The annexes for Ada and SPARK are in
the Ada User Journal [2], Volume 32, No
3 and 4 respectively [Volume 31 —mp].
[1] http://www.aitcnet.org/isai/
[2] http://www.ada-europe.org/
 journal.html
From: Simon Wright

<simon@pushface.org>
Date: Sat, 28 May 2011 22:37:55 +0100
Subject: Re: Does Ada need a 'secure

coding standard' as well?
Newsgroups: comp.lang.ada
I wouldn't have rated
https://www.securecoding.cert.org/
confluence/display/seccode/POS39-
C.+Use+the+correct+byte+ordering+whe
n+transferring+data+between+systems
as a _guideline_ exactly!
Or
https://www.securecoding.cert.org/c
onfluence/display/seccode/FIO09-
C.+Be+careful+with+binary+data+when+
transferring+data+across+systems
[…]
From: Mark Ngbapai

<lightningbolt31@gmail.com>
Date: Sun, 29 May 2011 06:29:15 -0700
Newsgroups: comp.lang.ada
Subject: Re: Does Ada need a 'secure

coding standard' as well?
[…]
There are references to Ada in the NASA
Software Safety Book, it is worth reading
and can be downloaded freely at:
http://www.hq.nasa.gov/office/codeq/
doctree/871913.pdf
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Sun, 29 May 2011 08:23:52 -0700
Subject: Re: Does Ada need a 'secure

coding standard' as well?
Newsgroups: comp.lang.ada
[…]
> Or if it is even needed as much for Ada?
Apparently it is, as several such
documents were written for Ada.
Apart from those already mentioned,
these two might be of interest:

152 Ada in Context

Volume 32, Number 3, September 2011 Ada User Journal

"Ada95 Trustworthiness Study: Guidance
on the Use of Ada95 in the Development
of High Integrity Systems"
ISO/IES TR 15942: "Guide for the use of
the Ada programming language in high
integrity systems"
From: Florian Weimer

<fw@deneb.enyo.de>
Date: Sun, 29 May 2011 23:03:07 +0200
Subject: Re: Does Ada need a 'secure

coding standard' as well?
Newsgroups: comp.lang.ada
I don't think the CERT guide is targeted at
high-integrity systems.
It's intended for an extremely broad range
of things, from server software to
productivity applications for end users.
This means that certain features are taken
for granted, such as the need to restart

applications from time to time (because of
a non-compacting dynamic memory
manager) and the ability of software to
scale with available resources.
From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 30 May 2011 12:25:20 +0200
Subject: Re: Does Ada need a 'secure

coding standard' as well?
Newsgroups: comp.lang.ada
[…]
> In the particular area of Object-Oriented

Design applied to High-Integrity
applications, there is one AdaCore
worked on:

 www.open-do.org/wp-content/uploads/
2011/04/HighIntegrityAda.pdf

 I know Jean-Pierre Rosen also took part
to a similar workshop, but I have no
reference to this.

There will be a panel on this topic at the
upcoming Ada-Europe conference. One
more reason to attend ;-)
From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 30 May 2011 12:27:28 +0200
Subject: Re: Does Ada need a 'secure

coding standard' as well?
Newsgroups: comp.lang.ada
> Do you know some reference to papers

published after the workshop Jean-
Pierre Rosen talked about here some
months ago ? This was about OOD in
applications with hard requirement for
safety. I posted one link to such a
document, but a pointer to this other
material would still be worth.

I wrote one that I sent (a bit late, sorry) to
Ada Letters. Should be in the next issue.

154

Volume 32, Number 3, September 2011 Ada User Journal

Conference Calendar
Dirk Craeynest
K.U.Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2011

☺ October 04-07 30th IEEE International Symposium on Reliable Distributed Systems (SRDS'2011), Madrid, Spain.

Topics include: distributed systems design, development and evaluation, particularly with emphasis on
reliability, availability, safety, security, trust and real time; high-confidence systems; distributed objects
and middleware systems; formal methods and foundations for dependable distributed computing;
analytical or experimental evaluations of dependable distributed systems; etc.

October 10-12 13th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS'2011), Grenoble, France. Topics include: Fault-Tolerance and Dependable Systems, Safety and
Verification, Security, etc.

☺ October 10-14 20th International Conference on Parallel Architectures and Compilation Techniques
(PACT'2011), Galveston Island, Texas, USA. Topics include: Parallel computational models; Compilers
and tools for parallel computer systems; Support for correctness in hardware and software (esp. with
concurrency); Parallel programming languages, algorithms and applications; Middleware and run time
system support for parallel computing; Applications and experimental systems studies; etc.

October 17-20 18th Working Conference on Reverse Engineering (WCRE'2011), Lero, Limerick, Ireland. Topics
include: Program comprehension; Mining software repositories; Empirical studies in reverse
engineering; Redocumenting legacy systems; Reverse engineering tool support; Reengineering to
distributed architectures; Software architecture recovery; Program analysis and slicing; Reengineering
patterns; Program transformation and refactoring; etc.

☺ October 20-22 12th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2011), Gwangju, Korea. Topics include: all areas of parallel and distributed
computing; Reliability, and fault-tolerance; Formal methods and programming languages; Software
tools and environments; Parallelizing compilers; Component-based and OO Technology;
Parallel/distributed algorithms; Task mapping and job scheduling; etc.

☺ October 22-27 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2011), Portland, Oregon, USA. Includes: panels on "Language-based security as
extreme modularity", Multicore, manycore, and cloud computing: is a new programming language
paradigm required?", ...; Educators and Trainers Symposium; etc.

☺ October 23 Workshop on Transitioning to Multicore (TMC'2011). Topics include: tools and
systems for parallel programming that are interoperable with legacy code, minimize the
annotation burden for developers, and match well with current industry practice;
Surveys or empirical studies measuring current practice for multicore programming in
industry; Field studies identifying barriers and benefits to using existing tools; Analysis
tools focused on correctness, performance, or understandability of existing programs;
New programming models which are interoperable with legacy multithreaded systems;
etc.

☺ October 23 1st Workshop on Combined Object-Oriented Modeling and Programming
(COOMP'2011). Topics include: Differences and similarities between modeling and
programming; Modeling constructs not supported by programming languages and vice

Conference Calendar 155

Ada User Journal Volume 32, Number 3, September 2011

versa; Support for concurrent / distributed modeling and programming; Tools for
modeling and programming; Implementation techniques; New mechanisms to raise the
level of abstraction; Experience reports regarding pros/cons in using separate modeling
and programming languages, modeling in a programming language, executable
modeling languages, ...; etc.

☺ October 24 3rd Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU'2011). Topics include: methods, metrics and techniques for evaluating the
usability of languages and language tools, such as empirical studies of programming
languages; methodologies and philosophies behind language and tool evaluation;
software design metrics and their relations to the underlying language; user studies of
language features and software engineering tools; critical comparisons of programming
paradigms; tools to support evaluating programming languages; etc.

☺ October 23 6th Workshop on Programming Languages and Operating Systems (PLOS'2011), Cascais, Portugal.
Topics include: critical evaluations of new programming language ideas in support of OS construction;
type-safe languages for operating systems; language-based approaches to crosscutting system concerns,
such as security and run-time performance; language support for system verification; the use of OS
abstractions and techniques in language runtimes; etc.

October 25-28 13th International Conference on Formal Engineering Methods (ICFEM'2011), Durham, UK. Topics
include: Abstraction and refinement; Formal specification and modelling; Software verification;
Program analysis; Tool development and integration; Software safety, security and reliability;
Experiments involving verified systems; Applications of formal methods; etc.

♦ Nov 06-10 ACM SIGAda Annual International Conference on Ada and Related
Technologies (SIGAda'2011), Denver, Colorado, USA. Sponsored by ACM SIGAda, in
cooperation with SIGAPP, SIGBED, SIGCAS, SIGCSE, SIGPLAN, Ada-Europe, and the
Ada Resource Association (cooperation approvals pending). Deadline for early
registration: October 8, 2011.

November 09-11 30th International Conference of the Chilean Computer Science Society (SCCC'2011), Curicó,
Chile. Topics include: Theory of Computer Science, Security, Distributed and Parallel Systems,
Software Engineering, Programming Languages, Computer Science and Education, etc.

Novermber 14-18 9th International Conference on Software Engineering and Formal Methods (SEFM'2011),
Montevideo, Uruguay. Topics include: programming languages, program analysis and type theory;
formal methods for real-time, hybrid and embedded systems; formal methods for safety-critical, fault-
tolerant and secure systems; light-weight and scalable formal methods; tool integration; applications of
formal methods, industrial case studies and technology transfer; etc.

☺ December 07-09 17th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2011), Tainan,
Taiwan. Topics include: Parallel and Distributed Applications and Algorithms; Multi-core and
Multithreaded Architectures; Resource Provision, Monitoring, and Scheduling; Security and Privacy;
Dependable and Trustworthy Computing and Systems; Real-Time Systems; etc.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!
December 18-21 18th IEEE International Conference on High Performance Computing (HiPC'2011), Bengaluru,

Bangalore, India. Topics include: Parallel and Distributed Algorithms, Parallel Languages and
Programming Environments, Scheduling, Fault-Tolerant Algorithms and Systems,
Scientific/Engineering/Commercial Applications, Compiler Technologies for High-Performance
Computing, Software Support, etc. Deadline for early registration: November 14, 2011.

2012

☺ January 25-27 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL'2012), Philadelphia, USA. Topics include: all aspects of programming languages and systems,
with emphasis on how principles underpin practice.

February 22-25 5th India Software Engineering Conference (ISEC'2012), Kanpur, India. Topics include: Testing and
Static Analysis, Specification and Verification, Model Driven Software Engineering, Software

156 Conference Calendar

Volume 32, Number 3, September 2011 Ada User Journal

Architecture and Design, Tools and Environments, Development Paradigms and Processes,
Maintenance and Evolution, Quality Management, Component Based Software Engineering, Object-
Oriented Analysis and Design, Distributed Software Development, Case Studies and Industrial
Experience, Software Engineering Education, Mining Software Repositories, etc.

☺ Feb 29 – Mar 03 43rd ACM Technical Symposium on Computer Science Education (SIGCSE'2012), Raleigh, North
Carolina, USA.

Mar 24 – Apr 01 European Joint Conferences on Theory and Practice of Software (ETAPS'2012), Tallinn, Estonia.
Events include: CC, International Conference on Compiler Construction; ESOP, European Symposium
on Programming; FASE, Fundamental Approaches to Software Engineering; FOSSACS, Foundations of
Software Science and Computation Structures; TACAS, Tools and Algorithms for the Construction and
Analysis of Systems.

☺ March 25-29 SAC2012 - Track on Object-Oriented Programming Languages and Systems (OOPS'2012), Riva
del Garda, Trento, Italy. Topics include: Language design and implementation; Type systems, static
analysis, formal methods; Integration with other paradigms; Aspects, components, and modularity;
Distributed, concurrent or parallel systems; Interoperability, versioning and software adaptation; etc.

March 25-30 11th International Conference on Aspect-Oriented Software Development (AOSD'2012), Potsdam,
Germany. Topics include: Complex systems; Software design and engineering; Programming languages
(language design, compilation and interpretation, verification and static program analysis, ...); Varieties
of modularity (model-driven development, generative programming, software product lines, contracts
and components, ...); Tools (evolution and reverse engineering, crosscutting views, refactoring, ...);
Applications (distributed and concurrent systems, middleware, ...); etc. Deadline for submissions:
October 13, 2011 (abstracts round 3), October 17, 2011 (papers round 3).

♦ June 20-24 17th International Conference on Reliable Software Technologies - Ada-
Europe'2012, Stockholm, Sweden. Sponsored by Ada-Europe, in cooperation with
ACM SIGAda (approval pending). Deadline for submissions: November 28, 2011
(papers, tutorials, workshops), January 12, 2012 (industrial presentations).

158 Forthcoming Events

Volume 32, Number 3, September 2011 Ada User Journal

Advance Program
ACM Annual International Conference

on Ada and Related Technologies:
Engineering Safe, Secure, and Reliable Software

Magnolia Hotel
Denver, Colorado 80202 (USA)

November 6-10, 2011

Sponsored by the ACM Special Interest Group on the Ada Programming Language (SIGAda)
in cooperation with Ada-Europe, Ada Resource Association, and ACM Special Interest Groups on Embedded

Systems, Programming Languages, Computers and Society, and Computer Science Education

Featured Speakers and Session Leaders

Everything I Know I Learned from Ada

Grady Booch, IBM Fellow
(Chief Scientist for Software Engineering,

IBM Research)
Presentation via Second Life

Why I Came Back To Ada

Martin Carlisle, Ph.D.
(US Air Force Academy)

Software Safety, and Related Language

Considerations
Jim Rogers (MEI Technologies, Inc.)

How to Make Ada go "Viral”

JP Rosen
(AdaLog)

Corporate Sponsors – Platinum Corporate Sponsors – Silver

Forthcoming Events 159

Ada User Journal Volume 32, Number 3, September 2011

ACM SIGAda Annual International Conference, November 6-10, 2011
Summary Conference Schedule

PRE-CONFERENCE TUTORIALS Sunday, November 6

Introduction to Ada (SF1 - Full Day)
 Michael Feldman (George Washington Univ. retired)
How to measure and optimize reliable embedded software
 (SA1 - Morning)
 Ian Broster(Rapita Systems)
Service-Oriented Architecture (SOA) Concepts and
Implementations (SA2 - Morning)
 Ricky Sward (MITRE Corp) and Jeff Boleng (USAF Academy)
DO-178C: The Next Avionics Safety Standard (SP1 -

Afternoon)
Ben Brosgol (AdaCore)

Improving the Quality of Ada Software with Range Analysis
(SP2 - Afternoon)

 Jay Abraham (The Mathworks, Inc.)

PRE-CONFERENCE TUTORIALS Monday, November 7

Building Embedded Real-Time Applications (MF1 - Full Day)

John McCormick (Univ. of Northern Iowa) and Frank Singhoff
(Univ. of Brest)

Experimenting with ParaSail – Parallel Specification and
Implementation Language (MA1 - Morning)
Tucker Taft (SofCheck)

Ada Coding Standards (MP1 - Afternoon)
J-P Rosen (AdaLog)

TECHNICAL PROGRAM Tuesday, November 8

9
–

10
:3

0
am

Greetings from SIGAda and Conference Officers

Keynote Address:
Everything I Know I Learned from Ada
Grady Booch (IBM Fellow, Chief Scientist for Software
Engineering, IBM Research)
Via Second Life Broadcast

10:30 – 11:00 am Morning Break - Exhibits Open

11
 –

 1
2:

30
 p

m

A Parallel Programming Model for Ada
 Hazem Ali and Luís Miguel Pinho (CISTER Research
Centre, Polytechnic Institute of Porto, Portugal)
Stack Safe Parallel Recursion with Paraffin
 Brad Moore (General Dynamics, Canada)
AdaCore Sponsor Presentation

12:30 – 2:00 pm Mid-day Break and Exhibits

2
–

4:
00

 p
m

Panel: How to Make Ada go "Viral”
 JP Rosen (AdaLog), Tucker Taft (SofCheck), Brad

Moore (GD Canada)
Ellidiss Sponsor Presentation

4:00 – 4:30 pm Afternoon Exhibits

4:30
–

5:30
 Birds of a feather: ParaSail

Tuesday Evening Reception (7:00pm - 10:00pm)

10
:3

0
–

12

no
on

Towards Ada 2012, An Interim Report
 John Barnes (John Barnes Informatics)
Ada-Europe 2012 Announcement
ACM SIGAda 2012 Announcement

Closing Remarks

TECHNICAL PROGRAM Wednesday, November 9

9:
- 1

0:
30

 a
m

SIGAda Awards
Keynote Address: Why I Came Back to Ada

Martin Carlisle (US Air Force Academy)

10:30 – 11:00 am Morning Break and Exhibits

11
 a

m
 –

 1
2:

30
 p

m

Software Vulnerabilities Precluded by SPARK
Paul E. Black, PhD and Chris E. Dupilka (NIST and
US DoD) - F. David Jones and Joyce L. Tokar, PhD
(Pyrrhus Software)

Enhancing SPARK's Contract Checking Facilities
Using Symbolic Execution
John Hatcliff, Jason Belt, and Robby Robby (Kansas
State Univ.)
LDRA Sponsor Presentation

12:30 – 2:00 pm Mid-day Break and Exhibits
2

–
4:

00
 p

m

An Ada Design Pattern Recognition Tool for
AADL Performance Analysis
 V. Gaudel, F. Singhoff, A. Plantec, and S. Rubini
(Univ. of Brest, France) - P. Dissaux and J. Legrand
(Ellidiss Software)
Improving the Quality of Ada Software with
Range Analysis
 Jay Abraham, Christian Bard, Jeff Chapple,
Patrick Munier, and Cyril Preve (The Mathworks,
Inc.)
Making the Non-executable ACATS Tests
Executable
 Dan Eilers, (Irvine Compiler Corp.) and Tero
Koskinen

4:00 – 4:30 pm Afternoon Break
4:30

– 5:30 Birds of a Feather: GNAT

5:30 – 7:00 pm Dinner Break

7:00
– 11:00 Workshops

TECHNICAL PROGRAM Thursday, November 10

9
–

10
:1

5a
m

 Conference Best Paper Awards

Invited Talk: Software Safety, and Related
Language Considerations
 Jim Rogers (MEI Technologies, Inc.)

10:15 – 10:30 am Morning Break

http://www.sigada.org/conf/sigada2011

160 Forthcoming Events

Volume 32, Number 3, September 2011 Ada User Journal

Dear reader,

It is my pleasure to bring to your attention the Call for Contributions for the 17th International
Conference on Reliable Software Technologies - Ada-Europe 2012, that will take place in the beautiful
venue of Stockholm, Sweden, from June 11 to June 15, 2012.

This conference is the forthcoming edition in a series of annual international conferences, regularly held
since the early 80's, under the auspices of, and organization by, Ada-Europe, the European non-profit
organization that promotes the knowledge and use of the Ada programming language and reliable
software technologies.

We expect that next year’s conference will confirm the success of the 2011 event, in Edinburgh, UK, on
June 20-24, which attracted over 130 delegates coming from Belgium, Brazil, Canada, Denmark, Egypt,
Finland, France, Germany, Israel, Italy, Norway, Poland, Portugal, Russia, Slovakia, South Africa,
Spain, Sweden, Switzerland, The Netherlands, UK and USA, representing more than 20 Universities and
50 companies.

The 17th International Conference on Reliable Software Technologies – Ada-Europe 2012, addresses a
wide range of topics of interest, under the general umbrella of reliable software systems, with a strong
but not exclusive interest on Ada-related views on the subject. To mark the completion of the technical
work for the Ada 2012 standard revision process, contributions that discuss the potential of the revised
language are especially sought. The challenges presented to the development of reliable software by the
need for multicore programming models will be another prime topic of interest to the 2012 conference.

We therefore invite you to consider contributing, to the conference by the submission of a paper or
proposal for industrial presentation, exhibition, demonstration, panel discussion, workshop, and of
course by promoting the event to your contacts and working environment.

Looking forward for your participation.

With my best wishes,

Ahlan Marriott
Conference Chair

Forthcoming Events 161

Ada User Journal Volume 32, Number 3, September 2011

Call for Papers

17th International Conference on
Reliable Software Technologies

Ada‐Europe 2012
11‐15 June 2012, Stockholm, Sweden

http://www.ada-europe.org/conference2012

Conference Chair

Ahlan Marriott
White Elephant GmbH,
Switzerland
Ada@white‐elephant.ch

Program Co‐Chairs

Mats Brorsson
KTH Royal Institute of
Technology, Sweden
matsbror@kth.se

Luís Miguel Pinho
CISTER Research Centre/ISEP,
Portugal
lmp@isep.ipp.pt

Tutorial Chair

Albert Llemosí
Universitat de les Illes Balears,
Spain
albert.llemosi@uib.cat

Industrial Chair

Jørgen Bundgaard
Rovsing A/S, Denmark
jbg@rovsing.dk

Publicity Chair

Dirk Craeynest
Aubay Belgium & K.U.Leuven,
Belgium
Dirk.Craeynest@cs.kuleuven.be

Local Chair

Rei Stråhle
Ada‐Sweden
rei@ada‐sweden.org

In cooperation with
ACM SIGAda

(approval pending)

General Information

The 17th International Conference on Reliable Software Technologies – Ada‐Europe 2012 will
take place in Stockholm, Sweden. Following its traditional style, the conference will span a
full week, including, from Tuesday to Thursday, three days of parallel scientific, technical and
industrial programs, along with parallel tutorials and workshops on Monday and Friday.

Schedule

Topics
The conference has successfully established itself as an international forum for providers,
practitioners and researchers into reliable software technologies. The conference
presentations will illustrate current work in the theory and practice of the design,
development and maintenance of long‐lived, high‐quality software systems for a variety of
application domains. The program will allow ample time for keynotes, Q&A sessions, panel
discussions and social events. Participants will include practitioners and researchers
representing industry, academia and government organizations active in the promotion and
development of reliable software technologies.
To mark the completion of the technical work for the Ada 2012 standard revision process,
contributions that discuss the potential of the revised language are sought after. In parallel,
facing the challenges presented to the development of reliable concurrent software,
multicore programming models is added to the conference topics of interest.
Topics of interest to this edition of the conference include but are not limited to:

• Multicore Programming Models: Reliable Parallel Software, Parallel Execution of Ada
Programs, Compositional Parallelism Models, Performance Modelling, Deterministic Debugging.

• Real‐Time and Embedded Systems: Real‐Time Software, Architecture Modeling, HW/SW Co‐
Design, Reliability and Performance Analysis.

• Theory and Practice of High‐Integrity Systems: Distribution, Fault Tolerance, Security,
Reliability, Trust and Safety, Languages Vulnerabilities.

• Software Architectures: Design Patterns, Frameworks, Architecture‐Centered Development,
Component and Class Libraries, Component‐based Design and Development.

• Methods and Techniques for Software Development and Maintenance: Requirements
Engineering, Object‐Oriented Technologies, Model‐driven Architecture and Engineering, Formal
Methods, Re‐engineering and Reverse Engineering, Reuse, Software Management Issues.

• Enabling Technologies: Compilers, Support Tools (Analysis, Code/Document Generation,
Profiling), Run‐time Systems, Distributed Systems, Ada and other Languages for Reliable Systems.

• Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis,
Verification, Validation, Testing of Software Systems.

• Mainstream and Emerging Applications: Manufacturing, Robotics, Avionics, Space, Health
Care, Transportation, Energy, Games and Serious Games, etc.

• Experience Reports: Case Studies and Comparative Assessments, Management Approaches,
Qualitative and Quantitative Metrics.

• The Future of Ada: New language features, implementation and use issues; positioning in the
market and in education; where should Ada stand in the software engineering curriculum; lessons
learned on Ada Education and Training Activities with bearing on any of the conference topics.

28 November 2011 Submission of regular papers, tutorial and workshop proposals
12 January 2012 Submission of industrial presentation proposals
3 February 2012 Notification of acceptance to all authors
2 March 2012 Camera‐ready version of regular papers required
11 May 2012 Industrial presentations, tutorial and workshop material required

162 Forthcoming Events

Volume 32, Number 3, September 2011 Ada User Journal

Program Committee
Alan Burns, University of York, UK
Albert Llemosí, Universitat de les Illes

Balears, Spain
Alfons Crespo, Universidad Politécnica de

Valencia, Spain
Bernd Burgstaller, Yonsei University,

Korea
Dirk Craeynest, Aubay Belgium &

K.U.Leuven, Belgium
Ed Schonberg, AdaCore, USA
Elena Troubitsyna, Åbo Akademi

University, Finland
Erhard Plödereder, Universität Stuttgart,

Germany
Franco Mazzanti, ISTI-CNR Pisa, Italy
Jan Jonsson, Chalmers University of

Technology, Sweden
Jérôme Hugues, ISAE Toulouse, France
Johann Blieberger, Technische

Universität Wien, Austria
John McCormick, University of Northern

Iowa, USA
Jorge Real, Universidad Politécnica de

Valencia, Spain
Jørgen Bundgaard, Rovsing A/S,

Denmark
José Javier Gutiérrez, Universidad de

Cantabria, Spain
José Ruiz, AdaCore, France
Juan A. de la Puente, Universidad

Politécnica de Madrid, Spain
Juan Zamorano, Universidad Politécnica

de Madrid, Spain
Julio Medina, Universidad de Cantabria,

Spain
Jürgen Mottok, Regensburg University of

Applied Sciences, Germany
Kristina Lundqvist, Mälardalen

University, Sweden
Laurent Pautet, Telecom Paris, France
Luís Miguel Pinho, CISTER Research

Centre/ISEP, Portugal
Mats Brorsson , KTH Royal Institute of

Technology, Sweden
Michael González Harbour, Universidad

de Cantabria, Spain
Peter Hermann, Universität Stuttgart,

Germany
Santiago Urueña, GMV, Spain
Sergio Sáez, Universidad Politécnica de

Valencia, Spain
Stephen Michell, Maurya Software,

Canada
Ted Baker, US National Science

Foundation, USA
Theodor Tempelmeier, Univ. of Applied

Sciences Rosenheim, Germany
Tullio Vardanega, Università di Padova,

Italy

Industrial Committee
Ahlan Marriott, White-Elephant GmbH,

Switzerland
Alok Srivastava, TASC Inc, USA
Dirk Craeynest, Aubay Belgium &

K.U.Leuven, Belgium
Erik Wedin, Saab, Sweden
Hubert Keller, Forschungszentrum

Karlsruhe GmbH, Germany
Ian Broster, Rapita Systems, UK
Ismael Lafoz, Airbus Military, Spain
Jamie Ayre, AdaCore, France
Jean-Loup Terraillon, European Space

Agency, The Netherlands
Jean-Pierre Rosen, Adalog, France
Jørgen Bundgaard, Rovsing A/S,

Denmark
Paolo Panaroni, Intecs, Italy
Paul Parkinson, Wind River, UK
Rod Chapman, Altran Praxis Ltd, UK
Rod White, MBDA, UK

Call for Regular Papers

Authors of regular papers which are to undergo peer review for acceptance are invited to submit
original contributions. Paper submissions shall be in English, complete and not exceeding 14
LNCS‐style pages in length. Authors should submit their work via the EasyChair conference system
(http://www.easychair.org/conferences/?conf=adaeurope2012). The format for submission is
solely PDF. Should you have problems to comply with format and submission requirements,
please contact the Program Chairs.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS)
series by Springer, and will be available at the start of the conference. The authors of accepted
regular papers shall prepare camera‐ready submissions in full conformance with the LNCS style,
not exceeding 14 pages and strictly by March 2, 2012. For format and style guidelines authors
should refer to the following URL: http://www.springer.de/comp/lncs/authors.html. Failure to
comply and to register for the conference by that date will prevent the paper from appearing in
the proceedings.
The conference is ranked class A in the CORE ranking, is among the top quarter of CiteSeerX
Venue Impact Factor, and listed in DBLP, SCOPUS and Web of Science Conference Proceedings
Citation index, among others.

Awards

Ada‐Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Industrial Presentations

The conference also seeks industrial presentations which deliver value and insight, but may not fit
the selection process for regular papers. Authors of industrial presentations are invited to submit
a short overview (at least 1 page in size) of the proposed presentation by January 12, 2012. Please
follow the submission instructions on the conference website. The Industrial Committee will
review the proposals and make the selection. The authors of selected presentations shall prepare
a final short abstract and submit it by May 11, 2012, aiming at a 20‐minute talk. The authors of
accepted presentations will be invited to submit corresponding articles for publication in the Ada
User Journal, which will host the proceedings of the Industrial Program of the Conference. For any
further information please contact the Industrial Chair directly.

Call for Tutorials

Tutorials should address subjects that fall within the scope of the conference and may be
proposed as either half‐ or full‐day events. Proposals should include a title, an abstract, a
description of the topic, a detailed outline of the presentation, a description of the presenter's
lecturing expertise in general and with the proposed topic in particular, the proposed duration
(half day or full day), the intended level of the tutorial (introductory, intermediate, or advanced),
the recommended audience experience and background, and a statement of the reasons for
attending. Proposals should be submitted by e‐mail to the Tutorial Chair. The authors of accepted
full‐day tutorials will receive a complimentary conference registration as well as a fee for every
paying participant in excess of 5; for half‐day tutorials, these benefits will be accordingly halved.
The Ada User Journal will offer space for the publication of summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be
submitted for half‐ or full‐day events, to be scheduled at either end of the conference week.
Workshop proposals should be submitted to the Conference Chair. The workshop organizer shall
also commit to preparing proceedings for timely publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the three days of the main conference. Vendors and
providers of software products and services should contact the Conference Chair for information
and for allowing suitable planning of the exhibition space and time.

Grant for Reduced Student Fees

A limited number of sponsored grants for reduced fees is expected to be available for students
who would like to attend the conference or tutorials. Contact the Conference Chair for details.

164

Volume 32, Number 3, September 2011 Ada User Journal

Rationale for Ada 2012: Introduction
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125;
email: jgpb@jbinfo.demon.co.uk

Abstract
This is the first of a number of papers describing the
rationale for Ada 2012. In due course it is anticipated
that the papers will be combined (after appropriate
reformatting and editing) into a single volume for
formal publication.
This first paper covers the background to the
development of Ada 2012 and gives a brief overview
of the main changes from Ada 2005. Later papers will
then look at the changes in more detail.
Keywords: rationale, Ada 2012.

1 Revision process
Ada has evolved over a number of years and, especially for
those unfamiliar with the background, it is convenient to
summarize the processes involved. The first version was
Ada 83 and this was developed by a team led by the late
Jean Ichbiah and funded by the USDoD. The development
of Ada 95 from Ada 83 was an extensive process also
funded by the USDoD. Formal requirements were
established after comprehensive surveys of user needs and
competitive proposals were then submitted resulting in the
selection of Intermetrics as the developer under the
leadership of Tucker Taft. Then came Ada 2005 and this
was developed on a more modest scale. The work was
almost entirely done by voluntary effort with support from
within the industry itself through bodies such as the Ada
Resource Association and Ada-Europe.

After some experience with Ada 2005 it became clear that
some further evolution was appropriate. Adding new
features as in Ada 2005 always brings some surprises
regarding their use and further polishing is almost
inevitable. Accordingly, it was decided that a further
revision should be made with a goal of completion in 2012.

As in the case of Ada 2005, the development is being
performed under the guidance of ISO/IEC JTC1/SC22
WG9 (hereinafter just called WG9). Previously chaired by
Jim Moore, it is now under the chairmanship of Joyce
Tokar. This committee has included national
representatives of many nations including Belgium,
Canada, France, Germany, Italy, Japan, Sweden,
Switzerland, the UK and the USA. WG9 developed
guidelines [1] for a revision to Ada 2005 which were then
used by the Ada Rapporteur Group (the ARG) in drafting
the revised standard.

The ARG is a team of experts nominated by the national
bodies represented on WG9 and the two liaison

organizations, ACM SIGAda and Ada-Europe. In the case
of Ada 2005, the ARG was originally led by Erhard
Plödereder and then by Pascal Leroy. For Ada 2012, it is
led by Ed Schonberg. The editor, who at the end of the day
actually writes the words of the standard, continues to be
the indefatigable Randy Brukardt.

Suggestions for the revised standard have come from a
number of sources such as individuals on the ARG,
national bodies on WG9, users and implementers via email
discussions on Ada-Comment and so on. Also several
issues were left over from the development of Ada 2005.

At the time of writing (August 2011), the revision process
is approaching completion. The details of all individual
changes are now clear and they are being integrated to form
a new version of the Annotated Ada Reference Manual.
The final approved standard should emerge towards the end
of 2012.

2 Scope of revision
The changes from Ada 95 to Ada 2005 were significant
(although not so large as the changes from Ada 83 to Ada
95). The main additions were

▪ in the OO area, multiple inheritance using interfaces and
the ability to make calls using prefixed notation,

▪ more flexible access types with anonymous types, more
control over null and constant, and downward closures
via access to subprogram types,

▪ enhanced structure and visibility control by the
introduction of limited with and private with clauses and
by an extended form of return statement,

▪ in the real-time area, the Ravenscar profile [2], various
new scheduling polices, timers and execution time
budget control,

▪ some minor improvements to exception handling,
numerics (especially fixed point) and some further
pragmas such as Assert,

▪ various extensions to the standard library such as the
introduction of operations on vectors and matrices,
further operations on times and dates, and operations on
wide wide characters; and especially:

▪ a comprehensive library for the manipulation of
containers of various kinds.

The changes from Ada 2005 to Ada 2012 were intended to
be relatively modest and largely to lead on from the
experience of the additions introduced in Ada 2005. But

J. Barnes 165

Ada User Journal Volume 32, Number 3, September 2011

one thing led to another and in fact the changes are of a
similar order to those from Ada 95 to Ada 2005.

From the point of view of the ISO standard, Ada 2005 is
the Ada 95 standard modified by two documents. First
there was a Corrigendum issued in 2001 [3] and then an
Amendment issued in 2005 [4]. In principle the poor user
thus has to study these three documents in parallel to
understand Ada 2005. However, they were informally
incorporated into the Ada 2005 Reference Manual [5].

In the case of Ada 2012, this process of developing a
further formal amendment would then lead to the need to
consult four documents and so the intention is that the new
Edition will formally be a single Revision.

The scope of this Revision is guided by a document issued
by WG9 to the ARG in October 2008 [1]. The essence is
that the ARG is requested to pay particular attention to

A Improvements that will maintain or improve Ada's
advantages, especially in those user domains where
safety and criticality are prime concerns. Within this
area it cites improving the use and functionality of
containers, the ability to write and enforce contracts for
Ada entities (for instance, via preconditions) and the
capabilities of Ada on multicore and multithreaded
architectures.

B Improvements that will remedy shortcomings in Ada. It
cites in particular the safety, use, and functionality of
access types and dynamic storage management.

So the ARG is asked to improve both OO and real-time
with a strong emphasis on real-time and high integrity
features. Moreover, "design by contract" features should be
added whereas for the previous amendment they were
rejected on the grounds that they would not be static.

The ARG is also asked to consider the following factors in
selecting features for inclusion:

▪ Implementability. Can the feature be implemented at
reasonable cost?

▪ Need. Do users actually need it?

▪ Language stability. Would it appear disturbing to current
users?

▪ Competition and popularity. Does it help to improve the
perception of Ada and make it more competitive?

▪ Interoperability. Does it ease problems of interfacing
with other languages and systems?

▪ Language consistency. Is it syntactically and
semantically consistent with the language's current
structure and design philosophy?

As before, an important further statement is that "In order
to produce a technically superior result, it is permitted to
compromise backwards compatibility when the impact on
users is judged to be acceptable." In other words don't be
paranoid about compatibility.

Finally, there is a warning about secondary standards. Its
essence is don't use secondary standards if you can get the
material into the RM itself.

The guidelines conclude with the target schedule. This
includes WG9 approval of the scope of the amendment in
June 2010 which was achieved and submission to ISO/IEC
JTC1 in late 2011.

3 Overview of changes
It would be tedious to give a section by section review of
the changes as seen by the Reference Manual language
lawyer. Instead, the changes will be presented by areas as
seen by the user. There can be considered to be six areas:

1 Introduction of dynamic contracts. These can be seen to
lead on from the introduction of the Assert pragma in
Ada 2005. New syntax (using with again) introduces
aspect specifications which enable certain properties of
entities to be stated where they are declared rather than
later using representation clauses. This is put to good
use in introducing pre- and postconditions for
subprograms and similar assertions for types and
subtypes.

2 More flexible expressions. The introduction of
preconditions and so on increases the need for more
powerful forms of expressions. Accordingly, if
expressions, case expressions, quantified expressions
and expression functions are all added. A related change
is that membership tests are generalized.

3 Structure and visibility control. Functions are now
permitted to have out and in out parameters, and rules
are introduced to minimize the risk of inadvertent
dependence on order of evaluation of parameters and
other entities such as aggregates. More flexibility is
permitted with incomplete types and another form of use
clause is introduced. There are minor enhancements to
extended return statements.

4 Tasking and real-time improvements. Almost all of the
changes are in the Real-Time Systems annex. New
packages are added for the control of tasks and
budgeting on multiprocessor systems, and the
monitoring of time spent in interrupts. There are also
additional facilities for non-preemptive dispatching, task
barriers and suspension objects.

5 Improvements to other general areas. More flexibility is
allowed in the position of labels, pragmas, and null
statements. A number of corrections are made to the
accessibility rules, improvements are made to
conversions of access types, and further control over
storage pools is added. The composability of equality is
now the same for both tagged and untagged record
types.

6 Extensions to the standard library. Variants on the
existing container packages are introduced to handle
bounded containers more efficiently. Additional
containers are added for a simple holder, multiway trees
and queues. Moreover, a number of general features

166 Rat ionale for Ada 2012: Introduct ion

Volume 32, Number 3, September 2011 Ada User Journal

have been added to make containers and other such
reusable libraries easier to use. Minor additions cover
directories, locale capabilities, string encoding and
further operations on wide and wide wide characters.

The reader might feel that the changes are quite extensive
but each has an important role to play in making Ada more
useful. Indeed the solution of one problem often leads to
auxiliary requirements. The desire to introduce stronger
description of contracts led to the search for good syntax
which led to aspect specifications. And these strengthened
the need for more flexible forms of expressions and so on.
Other changes were driven by outside considerations such
as the multiprocessors and others stem from what now
seem to be obvious but minor flaws in Ada 2005.

A number of other changes were rejected as really
unnecessary. For example, the author was at one time
enthused by a desire for fixed point cyclic types. But it
proved foolish without base 60 hardware to match our
inheritance of arithmetic in a Babylonian style for angles.

Before looking at the six areas in a little more detail it is
perhaps worth saying a few words about compatibility with
Ada 2005. The guidelines gave the ARG freedom to be
sensible in this area. Of course, the worst incompatibilities
are those where a valid program in Ada 2005 continues to
be valid in Ada 2012 but does something different. It is
believed that serious incompatibilities of this nature will
never arise.

However, incompatibilities whereby a valid Ada 2005
program fails to compile in Ada 2012 are tolerable
provided they are infrequent. A few such incompatibilities
are possible. The most obvious cause is the introduction of
one more reserved word, namely some, which is used in
quantified expressions to match all. Thus if an existing Ada
2005 program uses some as an identifier then it will need
modification. Once again, the introduction of a new
category of unreserved keywords was considered but was
eventually rejected as confusing.

3.1 Contracts
One of the important issues highlighted by WG9 for the
Amendment was the introduction of material for enforcing
contracts such as preconditions and postconditions. As a
simple example consider a stack with procedures Push and
Pop. An obvious precondition for Pop is that the stack must
not be empty. If we have a function Is_Empty for testing
the state of the stack then a call of Is_Empty would provide
the basis for an appropriate precondition.

The question now is to find a good way to associate the
expression not Is_Empty with the specification of the
procedure Pop. Note that it is the specification that matters
since it is the specification that provides the essence of the
contract between the caller of the procedure Pop and the
writer of its body. The contract provided by a traditional
Ada subprogram specification is rather weak – essentially it
just provides enough information for the compiler to
generate the correct code for the calls but says nothing
about the semantic behaviour of the associated body.

The traditional way to add information of this kind in Ada
is via a pragma giving some kind of aspect clause.
However, there were problems with this approach. One is
that there is no convenient way to distinguish between
several overloaded subprograms and another is that such
information is given later on because of interactions with
freezing and linear elaboration rules.

Accordingly, it was decided that a radical new approach
should be devised and this led to the introduction of aspect
specifications which are given with the item to which they
relate using the reserved word with. So to give the
precondition for Pop we augment the specification of Pop
by writing

procedure Pop(S: in out Stack; X: out Item)
 with Pre => not Is_Empty(S);

In a similar way we might give a postcondition as well
which might be that the stack is not full. So altogether the
specification of a generic package for stacks might be

generic
 type Item is private;
package Stacks is
 type Stack is private;

 function Is_Empty(S: Stack) return Boolean;
 function Is_Full(S: Stack) return Boolean;

 procedure Push(S: in out Stack; X: in Item)
 with
 Pre => not Is_Full(S),
 Post => not Is_Empty(S);

 procedure Pop(S: in out Stack; X: out Item)
 with
 Pre => not Is_Empty(S),
 Post => not Is_Full(S);

private
 ...
end Stacks;

Note how the individual aspects Pre and Post take the form
of

aspect_mark => expression

and that if there are several then they are separated by
commas. The final semicolon is of course the semicolon at
the end of the subprogram declaration as a whole. Thus the
overall syntax is now

subprogram_declaration ::=
 [overriding_indicator]
 subprogram_specification
 [aspect_specification] ;

and in general

aspect_specification ::=
 with aspect_mark [=> expression] { ,
 aspect_mark [=> expression] }

Pre- and postconditions are controlled by the same
mechanism as assertions using the pragma Assert. It will be

J. Barnes 167

Ada User Journal Volume 32, Number 3, September 2011

recalled that these can be switched on and off by the
pragma Assertion_Policy. Thus if we write

pragma Assertion_Policy(Check);

then assertions are enabled whereas if the parameter of the
pragma is Ignore then all assertions are ignored.

In the case of a precondition, whenever a subprogram with
a precondition is called, if the policy is Check then the
precondition is evaluated and if it is False then
Assertion_Error is raised and the subprogram is not entered.
Similarly, on return from a subprogram with a
postcondition, if the policy is Check then the postcondition
is evaluated and if it is False then Assertion_Error is raised.

So if the policy is Check and Pop is called when the stack
is empty then Assertion_Error is raised whereas if the
policy is Ignore then the predefined exception
Constraint_Error would probably be raised (depending upon
how the stack had been implemented).

Note that, unlike the pragma Assert, it is not possible to
associate a specific message with the raising of
Assertion_Error by a pre- or postcondition. The main reason
is that it might be confusing with multiple conditions
(which can arise with inheritance) and in any event it is
expected that the implementation will give adequate
information about which condition has been violated.

Note that it is not permitted to give the aspects Pre or Post
for a null procedure; this is because all null procedures are
meant to be interchangeable.

There are also aspects Pre'Class and Post'Class for use
with tagged types (and they can be given with null
procedures). The subtle topic of multiple inheritance of pre-
and postconditions will be discussed in detail in a later
paper.

Two new attributes are useful in postconditions. X'Old
denotes the value of X on entry to the subprogram whereas
X denotes the value on exit. And in the case of a function F,
the value returned by the function can be denoted by
F'Result in a postcondition for F.

As a general rule, the new aspect specifications can be used
instead of aspect clauses and pragmas for giving
information regarding entities such as types and
subprograms.

For example rather than

type Bit_Vector is array (0 .. 15) of Boolean;

followed later by

for Bit_Vector'Component_Size use 1;

we can more conveniently write

type Bit_Vector is array (0 .. 15) of Boolean
 with Component_Size => 1;

However, certain aspects such as record representation and
enumeration representations cannot be given in this way
because of the special syntax involved.

In cases where aspect specifications can now be used, the
existing pragmas are mostly considered obsolescent and
condemned to Annex J.

It should be noted that pragmas are still preferred for
stating properties of program units such as Pure,
Preelaborable and so on. However, we now talk about the
pure property as being an aspect of a package. It is a
general rule that the new aspect specifications are preferred
with types and subprograms but pragmas continue to be
preferred for program units. Nevertheless, the enthusiast for
the new notation could write

package Ada_Twin
 with Pure is
end Ada_Twin;

which illustrates that in some cases no value is required for
the aspect (by default it is True).

A notable curiosity is that Preelaborable_Initialization,
although a property of a type, still has to be specified by a
pragma (this is because of problems with different views of
the type).

Note incidentally that to avoid confusion with some other
uses of the reserved word with, in the case of aspect
specifications with is at the beginning of the line.

There are two other new facilities of a contractual nature
concerning types and subtypes. One is known as type
invariants and these describe properties of a type that
remain true and can be relied upon. The other is known as
subtype predicates which extend the idea of constraints.
The distinction can be confusing at first sight and the
following extract from one of the Ada Issues might be
helpful.

“Note that type invariants are not the same thing as
constraints, as invariants apply to all values of a type, while
constraints are generally used to identify a subset of the
values of a type. Invariants are only meaningful on private
types, where there is a clear boundary (the enclosing
package) that separates where the invariant applies
(outside) and where it need not be satisfied (inside). In
some ways, an invariant is more like the range of values
specified when declaring a new integer type, as opposed to
the constraint specified when defining an integer subtype.
The specified range of an integer type can be violated (to
some degree) in the middle of an arithmetic computation,
but must be satisfied by the time the value is stored back
into an object of the type.”

Type invariants are useful if we want to ensure that some
relationship between the components of a private type
always holds. Thus suppose we have a stack and wish to
ensure that no value is placed on the stack equal to an
existing value on the stack. We can modify the earlier
example to

package Stacks is
 type Stack is private
 with
 Type_Invariant => Is_Unduplicated(Stack);

168 Rat ionale for Ada 2012: Introduct ion

Volume 32, Number 3, September 2011 Ada User Journal

 function Is_Empty(S: Stack) return Boolean;
 function Is_Full(S: Stack) return Boolean;
 function Is_Unduplicated(S: Stack) return Boolean;

 procedure Push(S: in out Stack; X: in Item)
 with
 Pre => not Is_Full(S),
 Post => not Is_Empty(S);

 -- and so on

The function Is_Unduplicated then has to be written (in the
package body as usual) to check that all values of the stack
are different.

Note that we have mentioned Is_Unduplicated in the type
invariant before its specification. This violates the usual
"linear order of elaboration". However, there is a general
rule that all aspect specifications are only elaborated when
the entity they refer to is frozen. Recall that one of the
reasons for the introduction of aspect specifications was to
overcome this problem with the existing mechanisms
which caused information to become separated from the
entities to which it relates.

The invariant on a private type T is checked when the value
can be changed from the point of view of the outside user.
That is primarily

▪ after default initialization of an object of type T,

▪ after a conversion to type T,

▪ after a call that returns a result of a type T or has an out
or in out or access parameter of type T.

The checks also apply to subprograms with parameters or
results whose components are of the type T.

In the case of the stack, the invariant Is_Unduplicated will
be checked when we declare a new object of type Stack and
each time we call Push and Pop.

Note that any subprograms internal to the package and not
visible to the user can do what they like. It is only when a
value of the type Stack emerges into the outside world that
the invariant is checked.

The type invariant could be given on the full type in the
private part rather than on the visible declaration of the
private type (but not on both). Thus the user need not know
that an invariant applies to the type.

Type invariants, like pre- and postconditions, are controlled
by the pragma Assertion_Policy and only checked if the
policy is Check. If an invariant fails to be true then
Assertion_Error is raised at the appropriate point.

There is also an aspect Type_Invariant'Class for use with
tagged types.

The subtype feature of Ada is very valuable and enables the
early detection of errors that linger in many programs in
other languages and cause disaster later. However, although
valuable, the subtype mechanism is somewhat limited. We
can only specify a contiguous range of values in the case of
integer and enumeration types.

Accordingly, Ada 2012 introduces subtype predicates as an
aspect that can be applied to type and subtype declarations.
The requirements proved awkward to satisfy with a single
feature so in fact there are two aspects: Static_Predicate
and Dynamic_Predicate. They both take a Boolean
expression and the key difference is that the static predicate
is restricted to certain types of expressions so that it can be
used in more contexts.

Suppose we are concerned with seasons and that we have a
type Month thus

type Month is (Jan, Feb, Mar, Apr, May, ..., Nov, Dec);

Now suppose we wish to declare subtypes for the seasons.
For most people winter is December, January, February.
(From the point of view of solstices and equinoxes, winter
is from December 21 until March 21 or thereabouts, but
March seems to me generally more like spring rather than
winter and December feels more like winter than autumn.)
So we would like to declare a subtype embracing Dec, Jan
and Feb. We cannot do this with a constraint but we can
use a static predicate by writing

subtype Winter is Month
 with Static_Predicate => Winter in Dec | Jan | Feb;

and then we are assured that objects of subtype Winter can
only be Dec, Jan or Feb (provided once more that the
Assertion_Policy pragma has set the Policy to Check). Note
the use of the subtype name (Winter) in the expression
where it stands for the current instance of the subtype.

The aspect is checked whenever an object is default
initialized, on assignments, on conversions, on parameter
passing and so on. If a check fails then Assertion_Error is
raised.

The observant reader will note also that the membership
test takes a more flexible form in Ada 2012 as explained in
the next section.

If we want the expression to be dynamic then we have to
use Dynamic_Predicate thus

type T is ... ;
function Is_Good(X: T) return Boolean;
subtype Good_T is T
 with Dynamic_Predicate => Is_Good(Good_T):

Note that a subtype with predicates cannot be used in some
contexts such as index constraints. This is to avoid having
arrays with holes and similar nasty things. However, static
predicates are allowed in a for loop meaning to try every
value. So we could write

for M in Winter loop...

Beware that the loop uses values for M in the order, Jan,
Feb, Dec and not Dec, Jan, Feb as the user might have
wanted.

As another example, suppose we wish to specify that an
integer is even. We might expect to be able to write

subtype Even is Integer
 with Static_Predicate => Even mod 2 = 0; -- illegal

J. Barnes 169

Ada User Journal Volume 32, Number 3, September 2011

Sadly, this is illegal because the expression in a static
predicate is restricted and cannot use some operations such
as mod. We have to use a dynamic predicate thus

subtype Even is Integer
 with Dynamic_Predicate => Even mod 2 = 0; --OK

and then we cannot write

for X in Even loop ...

but have to spell it out in detail such as

for X in Integer loop
 if X mod 2 = 0 then -- or if X in Even then
 ... -- body of loop
 end if;
end loop;

The assurance given by type invariants and subtype
predicates can depend upon the object having a sensible
initial value. There is a school of thought that giving
default initial values (such as zero) is bad since it can
obscure flow errors. However, it is strange that Ada does
allow default initial values to be given for components of
records but not for scalar types or array types. This is
rectified in Ada 2012 by aspects Default_Value and
Default_Component_Value. We can write

type Signal is (Red, Amber, Green)
 with Default_Value => Red;

type Text is new String
 with Default_Component_Value =>
 Ada.Characters.Latin_1.Space;

subtype Day is Integer range 1 .. 31
 with Default_Value => 1;

Note that, unlike default initial values for record
components, these have to be static.

Finally, two new attributes are introduced to aid in the
writing of preconditions. Sometimes it is necessary to
check that two objects do not occupy the same storage in
whole or in part. This can be done with two attributes thus

X'Has_Same_Storage(Y)
X'Overlaps_Storage(Y)

As an example we might have a procedure Exchange and
wish to ensure that the parameters do not overlap in any
way. We can write

procedure Exchange(X, Y: T)
 with Pre => not X'Overlaps_Storage(Y);

Attributes are used rather than predefined functions since
this enables the semantics to be written in a manner that
permits X and Y to be of any type and moreover does not
imply that X or Y are read.

3.2 Expressions
Those whose first language was Algol 60 or Algol 68 or
who have had the misfortune to dabble in horrid languages
such as C will have been surprised that a language of the
richness of Ada does not have conditional expressions.

Well, the good news is that Ada 2012 has at last introduced
conditional expressions which take two forms, if
expressions and case expressions.

The reason that Ada did not originally have conditional
expressions is probably that there was a strong desire to
avoid any confusion between statements and expressions.
We know that many errors in C arise because assignments
can be used as expressions. But the real problem with C is
that it also treats Booleans as integers, and confuses
equality and assignment. It is this combination of fluid
styles that causes problems. But just introducing
conditional expressions does not of itself introduce
difficulties if the syntax is clear and unambiguous.

If expressions in Ada 2012 take the form as shown by the
following statements:

S := (if N > 0 then +1 else 0);

Put(if N = 0 then "none" elsif N = 1 then "one" else
 "lots");

Note that there is no need for end if and indeed it is not
permitted. Remember that end if is vital for good
structuring of if statements because there can be more than
one statement in each branch. This does not arise with if
expressions so end if is unnecessary and moreover would
be heavy as a closing bracket. However, there is a rule that
an if expression must always be enclosed in parentheses.
Thus we cannot write

X := if L > 0 then M else N + 1; -- illegal

because there would be confusion between

X := (if L > 0 then M else N) + 1; -- and

X := (if L > 0 then M else (N + 1));

The parentheses around N+1 are not necessary in the last
line above but added to clarify the point.

However, if the context already provides parentheses then
additional ones are unnecessary. Thus an if expression as a
single parameter does not need double parentheses.

It is clear that if expressions will have many uses.
However, the impetus for providing them in Ada 2012 was
stimulated by the introduction of aspects of the form

Pre => expression

There will be many occasions when preconditions have a
conditional form and without if expressions these would
have to be wrapped in a function which would be both
heavy and obscure. For example suppose a procedure P has
two parameters P1 and P2 and that the precondition is that
if P1 is positive then P2 must also be positive but if P1 is
not positive then there is no restriction on P2. We could
express this by writing a function such as

function Checkparas(P1, P2: Integer) return Boolean is
begin
 if P1 > 0 then
 return P2 > 0;
 else -- P1 is not positive

170 Rat ionale for Ada 2012: Introduct ion

Volume 32, Number 3, September 2011 Ada User Journal

 return True; -- so don't care about P2
 end if;
end Checkparas;

and then we can write

procedure P(P1, P2: Integer)
 with Pre => Checkparas(P1, P2);

This is truly gruesome. Apart from the effort of having to
declare the wretched function Checkparas, the consequence
is that the meaning of the precondition can only be
determined by looking at the body of Checkparas and that
could be miles away, typically in the body of the package
containing the declaration of P. This would be a terrible
violation of information hiding in reverse; we would be
forced to hide something that should be visible.

However, using if expressions we can simply write

Pre => (if P1 > 0 then P2 > 0 else True);

and this can be abbreviated to

Pre => (if P1 > 0 then P2 > 0);

because there is a convenient rule that a trailing else True
can be omitted when the type is a Boolean type. Many will
find it much easier to read without else True anyway since
it is similar to saying P1 > 0 implies P2 > 0. Adding an
operation such as implies was considered but rejected as
unnecessary.

The precondition could be extended to say that if P1 equals
zero then P2 also has to be zero but if P1 is negative then
we continue not to care about P2. This would be written
thus

Pre => (if P1 > 0 then P2 > 0 elsif P1 = 0 then P2 = 0);

There are various sensible rules about the types of the
various branches in an if expression as expected. Basically,
they must all be of the same type or convertible to the same
expected type. Thus consider a procedure Do_It taking a
parameter of type Float and the call

Do_It (if B then X else 3.14);

where X is a variable of type Float. Clearly we wish to
permit this but the two branches of the if statement are of
different types, X is of type Float whereas 3.14 is of type
universal_real. But a value of type universal_real can be
implicitly converted to Float which is the type expected by
Do_It and so all is well.

There are also rules about accessibility in the case where
the various branches are of access types; the details need
not concern us in this overview!

The other new form of conditional expression is the case
expression and this follows similar rules to the if
expression just discussed. Here is an amusing example
based on one in the AI which introduces case expressions.

Suppose we are making a fruit salad and add various fruits
to a bowl. We need to check that the fruit is in an
appropriate state before being added to the bowl. Suppose
we have just three fruits given by

type Fruit_Kind is (Apple, Banana, Pineapple);

then we might have a procedure Add_To_Salad thus

procedure Add_To_Salad(Fruit: in Fruit_Type);

where Fruit_Type is perhaps a discriminated type thus

type Fruit_Type (Kind: Fruit_Kind) is private;

In addition there might be functions such as Is_Peeled that
interrogate the state of a fruit.

We could then have a precondition that checks that the fruit
is in an edible state thus

Pre => (if Fruit.Kind = Apple then Is_Crisp(Fruit)
 elsif Fruit.Kind = Banana then Is_Peeled(Fruit)
 elsif Fruit.Kind = Pineapple then Is_Cored(Fruit));

(This example is all very well but it has allowed the apple
to go in uncored and the pineapple still has its prickly skin.)

Now suppose we decide to add Orange to type Fruit_Kind.
The precondition will still work in the sense that the
implicit else True will allow the orange to pass the
precondition unchecked and will go into the fruit salad
possibly unpeeled, unripe or mouldy. The trouble is that we
have lost the full coverage check which is such a valuable
feature of case statements and aggregates in Ada.

We overcome this by using a case expression and writing

Pre => (case Fruit.Kind is
 when Apple => Is_Crisp(Fruit),
 when Banana => Is_Peeled(Fruit),
 when Pineapple => Is_Cored(Fruit),
 when Orange => Is_Peeled(Fruit));

and of course without the addition of the choice for Orange
it would fail to compile.

Note that there is no end case just as there is no end if in
an if expression. Moreover, like the if expression, the case
expression must be in parentheses. Similar rules apply
regarding the types of the various branches and so on.

Of course, the usual rules of case statements apply and so
we might decide not to bother about checking the crispness
of the apple but to check alongside the pineapple (another
kind of apple!) that it has been cored by writing

Pre => (case Fruit.Kind is
 when Apple | Pineapple => Is_Cored(Fruit),
 when Banana | Orange => Is_Peeled(Fruit));

We can use others as the last choice as expected but this
would lose the value of coverage checking. There is no
default when others => True corresponding to else True
for if expressions because that would defeat coverage
checking completely.

A further new form of expression is the so-called quantified
expression. Quantified expressions allow the checking of a
boolean expression for a given range of values and will
again be found useful in pre- and postconditions. There are
two forms using for all and for some. Note carefully that
some is a new reserved word.

J. Barnes 171

Ada User Journal Volume 32, Number 3, September 2011

Suppose we have an integer array type

type Atype is array (Integer range <>) of Integer;

then we might have a procedure that sets each element of
an array of integers equal to its index. Its specification
might include a postcondition thus

procedure Set_Array(A: out Atype)
 with Post => (for all M in A'Range => A(M) = M);

This is saying that for all values of M in A'Range we want
the expression A(M) = M to be true. Note how the two parts
are separated by =>.

We could devise a function to check that some component
of the array has a given value by

function Value_Present(A: Atype; X: Integer) return
 Boolean
 with Post => Value_Present'Result =
 (for some M in A'Range => A(M) = X);

Note the use of Value_Present'Result to denote the result
returned by the function Value_Present.

As with conditional expressions, quantified expressions are
always enclosed in parentheses.

The evaluation of quantified expressions is as expected.
Each value of M is taken in turn (as in a for statement and
indeed we could insert reverse) and the expression to the
right of => then evaluated. In the case of universal
quantification (a posh term meaning for all) as soon as one
value is found to be False then the whole quantified
expression is False and no further values are checked; if all
values turn out to be True then the quantified expression is
True. A similar process applies to existential quantification
(that is for some) where the roles of True and False are
reversed.

Those with a mathematical background will be familiar
with the symbols ∀ and ∃ which correspond to for all and
for some respectively. Readers are invited to discuss
whether the A is upside down and the E backwards or
whether they are both simply rotated.

As a somewhat more elaborate example suppose we have a
function that finds the index of the first value of M such
that A(M) equals a given value X. This needs a precondition
to assert that such a value exists.

function Find(A: Atype; X: Integer) return Integer
 with
 Pre => (for some M in A'Range => A(M) = X),
 Post => A(Find'Result) = X and
 (for all M in A'First .. Find'Result–1 => A(M) /= X);

Note again the use of Find'Result to denote the result
returned by the function Find.

Quantified expressions can be used in any context requiring
an expression and are not just for pre- and postconditions.
Thus we might test whether an integer N is prime by

RN := Integer(Sqrt(Float(N)));
if (for some K in 2 .. RN => N mod K = 0) then
 ... -- N not prime

or we might reverse the test by

if (for all K in 2 .. RN => N mod K / = 0) then
 ... -- N is prime

Beware that this is not a recommended technique if N is at
all large!

We noted above that a major reason for introducing if
expressions and case expressions was to avoid the need to
introduce lots of auxiliary functions for contexts such as
preconditions. Nevertheless the need still arises from time
to time. A feature of existing functions is that the code is in
the body and this is not visible in the region of the
precondition – information hiding is usually a good thing
but here it is a problem. What we need is a localized and
visible shorthand for a little function. After much debate,
Ada 2012 introduces expression functions which are
essentially functions whose visible body comprises a single
expression. Thus suppose we have a record type such as

type Point is tagged
 record
 X, Y: Float := 0.0;
 end record;

and the precondition we want for several subprograms is
that a point is not at the origin. Then we could write

function Is_At_Origin(P: Point) return Boolean is
 (P.X = 0.0 and P.Y = 0.0);

and then

procedure Whatever(P: Point; ...)
 with Pre => not P.Is_At_Origin;

and so on.

Such a function is known as an expression function;
naturally it does not have a distinct body. The expression
could be any expression and could include calls of other
functions (and not just expression functions). The
parameters could be of any mode (see next section).

Expression functions can also be used as a completion. This
arises typically if the type is private. In that case we cannot
access the components P.X and P.Y in the visible part.
However, we don't want to have to put the code in the
package body. So we declare a function specification in the
visible part in the normal way thus

function Is_At_Origin(P: Point) return Boolean;

and then an expression function in the private part thus

private
 type Point is ...

 function Is_At_Origin(P: Point) return Boolean is
 (P.X = 0.0 and P.Y = 0.0);

172 Rat ionale for Ada 2012: Introduct ion

Volume 32, Number 3, September 2011 Ada User Journal

and the expression function then completes the declaration
of Is_At_Origin and no function body is required in the
package body.

Observe that we could also use an expression function for a
completion in a package body so that rather than writing
the body as

function Is_At_Origin(P: Point) return Boolean is
begin
 return P.X = 0.0 and P.Y = 0.0;
end Is_At_Origin;

we could write an expression function as a sort of
shorthand.

Incidentally, in Ada 2012, we can abbreviate a null
procedure body in a similar way by writing

procedure Nothing(...) is null;

as a shorthand for

procedure Nothing(...) is
begin
 null;
end Nothing;

and this will complete the procedure specification

procedure Nothing(...);

Another change in this area is that membership tests are
now generalized. In previous versions of Ada, membership
tests allowed one to see whether a value was in a range or
in a subtype, thus we could write either of

if D in 1 .. 30 then

if D in Days_In_Month then

but we could not write something like

if D in 1 | 3 | 5 | 6 ..10 then

This is now rectified and following in we can now have one
or more of a value, a range, or a subtype or any
combination separated by vertical bars. Moreover, they do
not have to be static.

A final minor change is that the form qualified expression
is now treated as a name rather than as a primary.
Remember that a function call is treated as a name and this
allows a function call to be used as a prefix. For example
suppose F returns an array (or more likely an access to an
array) then we can write

F(...)(N)

and this returns the value of the component with index N.
However, suppose the function is overloaded so that this is
ambiguous. The normal technique to overcome ambiguity
is to use a qualified expression and write T'(F(...)). But in
Ada 2005 this is not a name and so cannot be used as a
prefix. This means that we typically have to copy the array
(or access) and then do the indexing or (really ugly)
introduce a dummy type conversion and write
T(T'(F(...)))(N). Either way, this is a nuisance and hence the
change in Ada 2012.

3.3 Structure and visibility
What will seem to many to be one of the most dramatic
changes in Ada 2012 concerns functions. In previous
versions of Ada, functions could only have parameters of
mode in. Ada 2012 permits functions to have parameters of
all modes.

There are various purposes of functions. The purest is
simply as a means of looking at some state. Examples are
the function Is_Empty applying to an object of type Stack.
It doesn't change the state of the stack but just reports on
some aspect of it. Other pure functions are mathematical
ones such as Sqrt. For a given parameter, Sqrt always
returns the same value. These functions never have any side
effects. At the opposite extreme we could have a function
that has no restrictions at all; any mode of parameters
permitted, any side effects permitted, just like a general
procedure in fact but also with the ability to return some
result that can be immediately used in an expression.

An early version of Ada had such features, there were pure
functions on the one hand and so-called value-returning
procedures on the other. However, there was a desire for
simplification and so we ended up with Ada 83 functions.

In a sense this was the worst of all possible worlds. A
function can perform any side effects at all, provided they
are not made visible to the user by appearing as parameters
of mode in out! As a consequence, various tricks have been
resorted to such as using access types (either directly or
indirectly). A good example is the function Random in the
Numerics annex. It has a parameter Generator of mode in
but this does in fact get updated indirectly whenever
Random is called. So parameters can change even if they
are of mode in. Moreover, the situation has encouraged
programmers to use access parameters unnecessarily with
increased runtime cost and mental obscurity.

Ada 2012 has bitten the bullet and now allows parameters
of functions to be of any mode. But note that operators are
still restricted to only in parameters for obvious reasons.

However, there are risks with functions with side effects
whether they are visible or not. This is because Ada does
not specify the order in which parameters are evaluated nor
the order in which parts of an expression are evaluated. So
if we write

X := Random(G) + Random(G);

we have no idea which call of Random occurs first – not
that it matters in this case. Allowing parameters of all
modes provides further opportunities for programmers to
inadvertently introduce order dependence into their
programs.

So, in order to mitigate the problems of order dependence,
Ada 2012 has a number of rules to catch the more obvious
cases. These rules are all static and are mostly about
aliasing. For example, it is illegal to pass the same actual
parameter to two formal in out parameters – the rules apply
to both functions and procedures. Consider

J. Barnes 173

Ada User Journal Volume 32, Number 3, September 2011

procedure Do_It(Double, Triple: in out Integer) is
begin
 Double := Double * 2;
 Triple := Triple * 3;
end Do_It;

Now if we write

Var: Integer := 2;
...
Do_It(Var, Var); -- illegal in Ada 2012

then Var might become 4 or 6 in Ada 2005 according to the
order in which the parameters are copied back.

These rules also apply to any context in which the order is
not specified and which involves function calls with out or
in out parameters. Thus an aggregate such as

(Var, F(Var))

where F has an in out parameter is illegal since the order of
evaluation of the expressions in an aggregate is undefined
and so the value of the first component of the aggregate
will depend upon whether it is evaluated before or after F is
called.

Full details of the rules need not concern the normal
programmer – the compiler will tell you off!

Another change concerning parameters is that it is possible
in Ada 2012 to explicitly state that a parameter is to be
aliased. Thus we can write

procedure P(X: aliased in out T; ...);

An aliased parameter is always passed by reference and the
accessibility rules are modified accordingly. This facility is
used in a revision to the containers which avoids the need
for expensive and unnecessary copying of complete
elements when they are updated. The details will be given
in a later paper.

A major advance in Ada 2005 was the introduction of
limited with clauses giving more flexibility to incomplete
types. However, experience has revealed a few minor
shortcomings.

One problem is that an incomplete type in Ada 2005 cannot
be completed by a private type. This prevents the following
mutually recursive structure of two types having each other
as an access discriminant

type T1;
type T2 (X: access T1) is private;
type T1 (X: access T2) is private; -- OK in Ada 2012

The rules in Ada 2012 are changed so that an incomplete
type can be completed by any type, including a private type
(but not another incomplete type obviously).

Another change concerns the use of incomplete types as
parameters. Generally, we do not know whether a
parameter of a private type is passed by copy or by
reference. The one exception is that if it is tagged then we
know it will be passed by reference. As a consequence
there is a rule in Ada 2005 that an incomplete type cannot

be used as a parameter unless it is tagged incomplete. This
has forced the unnecessary use of access parameters.

In Ada 2012, this problem is remedied by permitting
incomplete types to be used as parameters (and as function
results) provided that they are fully defined at the point of
call and where the body is declared.

A final change to incomplete types is that a new category
of formal generic parameter is added that allows a generic
unit to be instantiated with an incomplete type. Thus rather
than having to write a signature package as

generic
 type Element is private;
 type Set is private;
 with function Empty return Set;
 with function Unit(E: Element) return Set;
 with function Union(S, T: Set) return Set;
 ...
package Set_Signature is end;

which must be instantiated with complete types, we can
now write

generic
 type Element;
 type Set;
 with function Empty return Set;
 ...
package Set_Signature is end;

where the formal parameters Element and Set are
categorized as incomplete. Instantiation can now be
performed using any type, including incomplete or private
types as actual parameters. This permits the cascading of
generic packages which was elusive in Ada 2005 and will
be explained in detail in a later paper. Note that we can also
write type Set is tagged; which requires the actual
parameter to be tagged but still permits it to be incomplete.

There is a change regarding discriminants. In Ada 2005, a
discriminant can only have a default value if the type is not
tagged. Remember that giving a default value makes a type
mutable. But not permitting a default value has proved to
be an irritating restriction in the case of limited tagged
types. Being limited they cannot be changed anyway and so
a default value is not a problem and is permitted in Ada
2012. This feature is used in the declaration of the
protected types for synchronized queues in Section 3.6.

Another small but useful improvement is in the area of use
clauses. In Ada 83, use clauses only apply to packages and
everything in the package specification is made visible.
Programming guidelines often prohibit use clauses on the
grounds that programs are hard to understand since the
origin of entities is obscured. This was a nuisance with
operators because it prevented the use of infixed notation
and forced the writing of things such as

P."+"(X, Y)

Accordingly, Ada 95 introduced the use type clause which
just makes the operators for a specific type in a package
directly visible. Thus we write

174 Rat ionale for Ada 2012: Introduct ion

Volume 32, Number 3, September 2011 Ada User Journal

use type P.T;

However, although this makes the primitive operators of T
visible it does not make everything relating to T visible.
Thus it does not make enumeration literals visible or other
primitive operations of the type such as subprograms. This
is a big nuisance.

To overcome this, Ada 2012 introduces a further variation
on the use type clause. If we write

use all type P.T;

then all primitive operations of T are made visible (and not
just primitive operators) and this includes enumeration
literals in the case of an enumeration type and class wide
operations of tagged types.

Finally, there are a couple of small changes to extended
return statements which are really corrections to amend
oversights in Ada 2005.

The first is that a return object can be declared as constant.
For example

function F(...) return LT is
...
 return Result: constant LT := ... do

 end return;
end F;

We allow everything else to be declared as constant so we
should here as well especially if LT is a limited type. This
was really an oversight in the syntax.

The other change concerns class wide types. If the returned
type is class wide then the object declared in the extended
return statement need not be the same in Ada 2012
provided it can be converted to the class wide type.

Thus

function F(...) return T'Class is
...
 return X: TT do
 ...
 end return;
end F;

is legal in Ada 2012 provided that TT is descended from T
and thus covered by T'Class. In Ada 2005 it is required that
the result type be identical to the return type and this is a
nuisance with a class wide type because it then has to be
initialized with something and so on. Note the analogy with
constraints. The return type might be unconstrained such as
String whereas the result (sub)type can be constrained such
as String(1 .. 5).

3.4 Tasking and real-time facilities
There are a number of improvements regarding scheduling
and dispatching in the Real-Time Systems annex.

A small addition concerns non-preemptive dispatching. In
Ada 2005, a task wishing to indicate that it is willing to be
preempted has to execute

delay 0.0;

(or delay until Ada.Real_Time.Time_First in Ravenscar).
This is ugly and so a procedure Yield is added to the
package Ada.Dispatching.

A further addition is the ability to indicate that a task is
willing to be preempted by a task of higher priority (but not
the same priority). This is done by calling Yield_To_Higher
which is declared in a new child package with specification

package Ada.Dispatching.Non_Preemptive is
 pragma Preelaborate(Non_Preemptive);
 procedure Yield_To_Higher;
 procedure Yield_To_Same_Or_Higher renames Yield;
end Ada.Dispatching.Non_Preemptive;

Another low-level scheduling capability concerns
suspension objects; these were introduced in Ada 95.
Recall that we can declare an object of type
Suspension_Object and call procedures to set it True or
False. By calling Suspend_Until_True a task can suspend
itself until the state of the object is true.

Ada 2005 introduced Earliest Deadline First (EDF)
scheduling. The key feature here is that tasks are scheduled
according to deadlines and not by priorities. A new facility
introduced in Ada 2012 is the ability to suspend until a
suspension object is true and then set its deadline sometime
in the future. This is done by calling the aptly named
procedure Suspend_Until_True_And_Set_Deadline in a
new child package Ada.Synchronous_Task_Control.EDF.

A new scheduling feature is the introduction of
synchronous barriers in a new child package
Ada.Synchronous_Barriers. The main features are a type
Synchronous_Barrier with a discriminant giving the
number of tasks to be waited for.

type Synchronous_Barrier(Release_Threshold:
 Barrier_Limit) is limited private;

There is also a procedure

procedure Wait_For_Release(
 The_Barrier: in out Synchronous_Barrier;
 Notified: out Boolean);

When a task calls Wait_For_Release it gets suspended until
the number waiting equals the discriminant. All the tasks
are then released and just one of them is told about it by the
parameter Notified being True. The general idea is that this
one task then does something on behalf of all the others.
The count of tasks waiting is then reset to zero so that the
synchronous barrier can be used again.

A number of other changes in this area are about the use of
multiprocessors and again concern the Real-Time Systems
annex.

A new package System.Multiprocessors is introduced as
follows

package System.Multiprocessors is
 pragma Preelaborate(Multiprocessors);
 type CPU_Range is range 0..implementation-defined;

J. Barnes 175

Ada User Journal Volume 32, Number 3, September 2011

 Not_A_Specific_CPU: constant CPU_Range := 0:
 subtype CPU is CPU_Range
 range 1 .. CPU_Range'Last;
 function Number_Of_CPUs return CPU;
end System.Multiprocessors;

A value of subtype CPU denotes a specific processor. Zero
indicates don't know or perhaps don't care. The total
number of CPUs is determined by calling the function
Number_Of_CPUs. This is a function rather than a constant
because there could be several partitions with a different
number of CPUs on each partition.

Tasks can be allocated to processors by an aspect
specification. If we write

task My_Task is
 with CPU => 10;

then My_Task will be executed by processor number 10. In
the case of a task type then all tasks of that type will be
executed by the given processor. The expression giving the
processor for a task can be dynamic. The aspect can also be
set by a corresponding pragma CPU. (This is an example of
a pragma born obsolescent.) The aspect CPU can also be
given to the main subprogram in which case the expression
must be static.

Further facilities are provided by the child package
System.Multiprocessors.Dispatching_Domains. The idea is
that processors are grouped together into dispatching
domains. A task may then be allocated to a domain and it
will be executed on one of the processors of that domain.

Domains are of a type Dispatching_Domain. They are
created by a function Create

function Create(First, Last: CPU) return
 Dispatching_Domain;

that takes the first and last numbered CPU of the domain
and then returns the domain. All CPUs are initially in the
System_Dispatching_Domain. If we attempt to do
something silly such as create overlapping domains, then
Dispatching_Domain_Error is raised.

Tasks can be assigned to a domain in two ways. One way is
to use an aspect

task My_Task
 with Dispatching_Domain => My_Domain;

The other way is by calling the procedure Assign_Task
whose specification is

procedure Assign_Task(
 Domain: in out Dispatching_Domain;
 CPU: in CPU_Range := Not_A_Specific_CPU;
 T: in Task_Id := Current_Task);

There are a number of other subprograms for manipulating
domains and CPUs. An interesting one is
Delay_Until_And_Set_CPU which delays the calling task
until a given real time and then sets the processor.

The Ravenscar profile is now defined to be permissible
with multiprocessors. However, there is a restriction that

tasks may not change CPU. Accordingly the definition of
the profile now includes the following restriction

No_Dependence =>
 System.Multiprocessors.Dispatching_Domains

In order to clarify the use of multiprocessors with group
budgets the package Ada.Execution_Time.Group_Budgets
introduced in Ada 2005 is slightly modified. The type
Group_Budget (which is currently just tagged limited
private) has a discriminant in Ada 2012 giving the CPU
thus

type Group_Budget(
 CPU: System.Multiprocessors.CPU :=
 System.Multiprocessors.CPU'First)
 is tagged limited private;

This means that a group budget only applies to a single
processor. If a task in a group is executed on another
processor then the budget is not consumed. Note that the
default value for CPU is CPU'First which is always 1.

Another improvement relating to times and budgets
concerns interrupts. Two Boolean constants are added to
the package Ada.Execution_Time

Interrupt_Clocks_Supported:
 constant Boolean := implementation-defined;
Separate_Interrupt_Clocks_Supported:
 constant Boolean := implementation-defined;

The constant Interrupt_Clocks_Supported indicates whether
the time spent in interrupts is accounted for separately from
the tasks and then Separate_Interrupt_Clocks_Supported
indicates whether it is accounted for each interrupt
individually. There is also a function

function Clocks_For_Interrupts return CPU_Time;

This function gives the time used over all interrupts.
Calling it if Interrupt_Clocks_Supported is false raises
Program_Error.

A new child package accounts for the interrupts separately
if Separate_Interrupt_Clocks_Supported is true.

package Ada.Execution_Time.Interrupts is
 function Clock(Interrupt: Ada.Interrupts.Interrupt_Id)
 return CPU_Time;
 function Supported(
 Interrupt: Ada.Interrupts.Interrupt_Id)
 return Boolean;
end Ada.Execution_Time.Interrupts;

The function Supported indicates whether the time for a
particular interrupt is being monitored. If it is then Clock
returns the accumulated time spent in that interrupt handler
(otherwise it returns zero). However, if the overall constant
Separate_Interrupt_Clocks_Supported is false then calling
Clock for a particular interrupt raises Program_Error.

Multiprocessors have an impact on shared variables. The
existing pragma Volatile (now the aspect Volatile) requires
access to be in memory but this is strictly unnecessary. All
we need is to ensure that reads and writes occur in the right

176 Rat ionale for Ada 2012: Introduct ion

Volume 32, Number 3, September 2011 Ada User Journal

order. A new aspect Coherent was considered but was
rejected in favour of simply changing the definition of
Volatile.

The final improvement in this section is in the core
language and concerns synchronized interfaces and
requeue. The procedures of a synchronized interface may
be implemented by a procedure or entry or by a protected
procedure. However, in Ada 2005 it is not possible to
requeue on a procedure of a synchronized interface even if
it is implemented by an entry. This is a nuisance and
prevents certain high level abstractions.

Accordingly, Ada 2012 has an aspect Synchronization that
takes one of By_Entry, By_Protected_Procedure, and
Optional. So we might write

type Server is synchronized interface;
procedure Q(S: in out Server; X: in Item);
 with Synchronization => By_Entry;

and then we are assured that we are permitted to perform a
requeue on any implementation of Q.

As expected there are a number of consistency rules. The
aspect can also be applied to a task interface or to a
protected interface. But for a task interface it obviously
cannot be By_Protected_Procedure.

In the case of inheritance, any Synchronization property is
inherited. Naturally, multiple aspect specifications must be
consistent. Thus Optional can be overridden by By_Entry or
by By_Protected_Procedure but other combinations
conflict and so are forbidden.

A related change is that if an entry is renamed as a
procedure then we can do a requeue using the procedure
name. This was not allowed in Ada 95 or Ada 2005.

3.5 General improvements
As well as the major features discussed above there are also
a number of improvements in various other areas.

We start with some gentle stuff. Ada 95 introduced the
package Ada thus

package Ada is
 pragma Pure(Ada);
end Ada;

However, a close reading of the RM revealed that poor Ada
is illegal since the pragma Pure is not in one of the allowed
places for a pragma. Pragmas are allowed in the places
where certain categories are allowed but not in place of
them. In the case of a package specification the constructs
are basic declarative items, but "items" were not one of the
allowed things. This has been changed to keep Ada legal.

A related change concerns a sequence of statements. In a
construction such as

if B then
 This;
else
 That;
end if;

there must be at least one statement in each branch so if we
don't want any statements then we have to put a null
statement. If we want a branch that is just a pragma Assert
then we have to put a null statement as well thus

if B then
 pragma Assert(...); null;
end if;

This is really irritating and so the rules have been changed
to permit a pragma in place of a statement in a sequence of
statements. This and the problem with the package Ada are
treated as Binding Interpretations which means that they
apply to Ada 2005 as well.

A similar change concerns the position of labels. It is said
that gotos are bad for you. However, gotos are useful for
quitting an execution of a loop and going to the end in
order to try the next iteration. Thus

for I in ... loop
 ...
 if this-one-no-good then goto End_Of_Loop; end if;
 ...
<<End_Of_Loop>> null; -- try another iteration
end loop;

Ada provides no convenient way of doing this other than by
using a goto statement. Remember that exit transfers
control out of the loop. The possibility of a continue
statement as in some other languages was discussed but it
was concluded that this would obscure the transfer of
control. The great thing about goto is that the label sticks
out like a sore thumb. Indeed, a survey of the code in a well
known compiler revealed an orgy of uses of this handy
construction.

However, it was decided that having to put null was an
ugly nuisance and so the syntax of Ada 2012 has been
changed to permit the label to come right at the end.

There is a significant extension to the syntax of loops used
for iteration. This arose out of a requirement to make
iteration over containers easier (and this will be described
in a later paper) but the general ideas can be illustrated with
an array. Consider

for K in Table'Range loop
 Table(K) := Table(K) + 1;
end loop;

This can now be written as

for T of Table loop
 T := T +1;
end loop;

The entity T is a sort of generalized reference and hides the
indexing. This mechanism can also be used with
multidimensional arrays in which case just one loop
replaces a nested set of loops.

A minor problem has arisen with the use of tags and
Generic_Dispatching_Constructor. There is no way of
discovering whether a tag represents an abstract type other
than by attempting to create an object of the type which

J. Barnes 177

Ada User Journal Volume 32, Number 3, September 2011

then raises Tag_Error; this is disgusting. Accordingly, a
new function

function Is_Abstract(T: Tag) return Boolean;

is added to the package Ada.Tags.

There were many changes to access types in Ada 2005
including the wide introduction of anonymous access types.
Inevitably some problems have arisen.

The first problem is with the accessibility of stand-alone
objects of anonymous access types such as

A: access T;

Without going into details, it turns out that such objects are
not very useful unless they carry the accessibility level of
their value in much the same way that access parameters
carry the accessibility level of the actual parameter. They
are therefore modified to do this.

Programmers have always moaned about the need for many
explicit conversions in Ada. Accordingly, implicit
conversions from anonymous access types to named access
types are now permitted provided the explicit conversion is
legal. The idea is that the need for an explicit conversion
with access types should only arise if the conversion could
fail. A curious consequence of this change is that a
preference rule is needed for the equality of anonymous
access types.

An issue regarding allocators concerns their alignment. It
will be recalled that when implementing a storage pool, the
attribute Max_Size_In_Storage_Units is useful since it
indicates the maximum size that could be requested by a
call of Allocate. Similarly, the new attribute
Max_Alignment_For_Allocation indicates the maximum
alignment that could be requested.

Another problem is that allocators for anonymous access
types cause difficulties in some areas. Rather than
forbidding them completely a new restriction identifier is
added so that we can write

pragma Restrictions(No_Anonymous_Allocators);

Another new restriction is

pragma Restrictions(No_Standard_Allocators_
 After_Elaboration);

This can be used to ensure that once the main subprogram
has started no further allocation from standard storage
pools is permitted. This prevents a long lived program
suffering from rampant heap growth.

However, this does not prevent allocation from user-
defined storage pools. To enable users to monitor such
allocation, additional functions are provided in
Ada.Task_Identification, namely Environment_Task (returns
the Task_Id of the environment task) and
Activation_Is_Complete (returns a Boolean result indicating
whether a particular task has finished activation).

A new facility is the ability to define subpools using a new
package System.Storage_Pools.Subpools. A subpool is a

separately reclaimable part of a storage pool and is
identified by a subpool handle name. On allocation, a
handle name can be given.

Further control over the use of storage pools is provided by
the ability to define a default storage pool. Thus we can
write

pragma Default_Storage_Pool(My_Pool);

and then all allocation within the scope of the pragma will
be from My_Pool unless a different specific pool is given
for a type. This could be done using the aspect
Storage_Pool as expected

type Cell_Ptr is access Cell
 with Storage_Pool => Cell_Ptr_Pool;

A pragma Default_Storage_Pool can be overridden by
another one so that for example all allocation in a package
(and its children) is from another pool. The default pool can
be specified as null thus

pragma Default_Storage_Pool(null);

and this prevents any allocation from standard pools.

Note that coextensions and allocators as access parameters
may nevertheless be allocated on the stack. This can be
prevented (somewhat brutally) by the following restrictions

pragma Restrictions(No_Coextensions);

pragma Restrictions(No_Access_Parameter_Allocators);

A number of other restrictions have also been added. The
introduction of aspects logically requires some new
restrictions to control their use. Thus by analogy with
No_Implementation_Pragmas, we can write

pragma Restrictions(No_Implementation_Aspect_
 Specifications);

and this prevents the use of any implementation-defined
aspect specifications. The use of individual aspects such as
Default_Value can be prevented by

pragma Restrictions(No_Specification_of_Aspect =>
 Default_Value);

Implementations and indeed users are permitted to add
descendant units of Ada, System and Interfaces such as
another child of Ada.Containers. This can be confusing for
maintainers since they may be not aware that they are using
non-standard packages. The new restriction

pragma Restrictions(No_Implementation_Units);

prevents the use of such units.

In a similar vein, there is also

pragma Restrictions(No_Implementation_Identifiers);

and this prevents the use of additional identifiers declared
in packages such as System.

A blanket restriction can be imposed by writing

pragma Profile(No_Implementation_Extensions);

178 Rat ionale for Ada 2012: Introduct ion

Volume 32, Number 3, September 2011 Ada User Journal

and this is equivalent to the following five restrictions

No_Implementation_Aspect_Specifications,
No_Implementation_Attributes,
No_Implementation_Identifiers,
No_Implementation_Pragmas,
No_Implementation_Units.

Finally, the issue of composability of equality has been
revisited. In Ada 2005, tagged record types compose but
untagged record types do not. If we define a new type (a
record type, array type or a derived type) then equality is
defined in terms of equality for its various components.
However, the behaviour of components which are records
is different in Ada 2005 according to whether they are
tagged or not. If a component is tagged then the primitive
operation is used (which might have been redefined),
whereas for an untagged type, predefined equality is used
even though it might have been overridden. This is a bit
surprising and so has been changed in Ada 2012 so that all
record types behave the same way and use the primitive
operation. This is often called composability of equality so
that we can say that in Ada 2012, record types always
compose for equality. Remember that this only applies to
records; components which are of array types and
elementary types always use predefined equality.

3.6 Standard library
The main improvements in the standard library concern
containers. But there are a number of other changes which
will be described first.

In Ada 2005, additional versions of Index and
Index_Non_Blank were added to the package
Ada.Strings.Fixed with an additional parameter From
indicating the start of the search. The same should have
been done for Find_Token. So Ada 2012 adds

procedure Find_Token(Source: in String;
 Set: in Maps.Character_Set;
 From: in Positive;
 Test: in Membership;
 First: out Positive;
 Last: out Natural);

Similar versions are added for bounded and unbounded
strings to the corresponding packages.

New child packages of Ada.Strings are added to provide
conversions between strings, wide strings, or wide wide
strings and UTF8 or UTF16 encodings. They are

Ada.Strings.UTF_Encoding – declares a function Encoding
to convert a String into types UTF_8, UTF_16BE, or
UTF_16LE where BE and LE denote Big Endian and
Little Endian respectively.

Ada.Strings.UTF_Encoding.Conversions – declares five
functions Convert between the UTF schemes.

Ada.Strings.UTF_Encoding.Strings – declares functions
Encode and Decode between the type String and the
UTF schemes.

Ada.Strings.UTF_Encoding.Wide_Strings – declares six
similar functions for the type Wide_String.

Ada.Strings.UTF_Encoding.Wide_Wide_Strings – declares
six similar functions for the type Wide_Wide_String.

Further new packages are Ada.Wide_Characters.Handling
and Ada.Wide_Wide_Characters.Handling. These provide
classification functions such as Is_Letter and Is_Lower and
conversion functions such as To_Lower for the types
Wide_Character and Wide_Wide_Character in a similar
way to the existing package Ada.Characters.Handling for
the type Character.

Experience with the package Ada.Directories added in Ada
2005 has revealed a few shortcomings.

One problem concerns case sensitivity. Unfortunately,
common operating systems differ in their approach. To
remedy this the following are added to Ada.Directories

type Name_Case_Kind is (Unknown, Case_Sensitive,
 Case_Insensitive, Case_Preserving);

function Name_Case_Equivalence(Name: in String)
 return Name_Case_Kind;

Calling Name_Case_Equivalence enables one to discover
the situation for the operating system concerned.

Another problem is that the basic approach in
Ada.Directories is a bit simplistic and assumes that file
names can always be subdivided into a directory name and
a simple name. Thus the existing function Compose is

function Compose(Containing_Directory: String := "";
 Name: String;
 Extension: String := "") return String;

and this requires that the Name is a simple name such as
"My_File" with possibly an extension if one is not provided.

Accordingly, an optional child package is introduced,
Ada.Directories.Hierarchical_File_Names, and this adds the
concept of relative names and a new version of Compose
whose second parameter is a relative name and various
functions such as Is_Simple_Name and Is_Relative_Name.

Programs often need information about where they are
being used. This is commonly called the Locale. As an
example, in some regions of the world, a sum such as a
million dollars is written as $1,000,000.00 whereas in
others it appears as $1.000.000,00 with point and comma
interchanged. An early attempt at providing facilities for
doing the right thing was fraught with complexity. So Ada
2012 has adopted the simple solution of enabling a program
to determine the country code (two characters) and the
language code (three characters) and then do its own thing.
The codes are given by ISO standards. Canada is
interesting in that it has one country code ("CA") but uses
two language codes ("eng" and "fra").

The information is provided by a new package Ada.Locales
which declares the codes and the two functions Language
and Country to return the current active locale (that is, the
locale associated with the current task).

J. Barnes 179

Ada User Journal Volume 32, Number 3, September 2011

And finally, we consider the container library. Containers
were a major and very valuable addition to Ada 2005 but
again, experience with use has indicated that some
enhancements are necessary.

We start with a brief summary of what is in Ada 2005. The
parent package Ada.Containers has six main children
namely Vectors, Doubly_Linked_Lists, Hashed_Maps,
Ordered_Maps, Hashed_Sets, and Ordered_Sets. These
manipulate definite types.

In addition there are another six for manipulating indefinite
types with names such as Indefinite_Vectors and so on.

There are also two packages for sorting generic arrays, one
for unconstrained types and one for constrained types.

There are four new kinds of containers in Ada 2012

▪ bounded forms of the existing containers,

▪ a container for a single indefinite object,

▪ a container for multiway trees, and

▪ a number of containers for queues.

In addition there are a number of auxiliary new facilities
whose purpose is to simplify the use of containers.

We will start by briefly looking at each of the new kinds of
containers in turn.

The existing containers are unbounded in the sense that
there is no limit to the number of items that can be added to
a list for example. The implementation is expected to use
storage pools as necessary. However, many applications in
high integrity and real-time areas forbid the use of access
types and require a much more conservative approach.
Accordingly, a range of containers is introduced with
bounded capacity so that there is no need to acquire extra
storage dynamically.

Thus there are additional packages with names such as
Containers.Bounded_Doubly_Linked_Lists. A key thing is
that the types List, Vector and so on all have a discriminant
giving their capacity thus

type List(Capacity: Count_Type) is tagged private;

so that when a container is declared its capacity is fixed. A
number of consequential changes are made as well. For
example, the bounded form has to have a procedure Assign

procedure Assign(Target: in out List; Source: in List);

because using built-in assignment would raise
Constraint_Error if the capacities were different. Using a
procedure Assign means that the assignment will work
provided the length of the source is not greater than the
capacity of the target. If it is, the new exception
Capacity_Error is raised.

Moreover, a similar procedure Assign is added to all
existing unbounded containers so that converting from a
bounded to an unbounded container or vice versa is
(reasonably) straightforward.

Conversion between bounded and unbounded containers is
also guaranteed with respect to streaming.

There are no bounded indefinite containers; this is because
if the components are indefinite then dynamic space
allocation is required for the components anyway and
making the overall container bounded would be pointless.

In Ada, it is not possible to declare an object of an
indefinite type that can hold any value of the type. Thus if
we declare an object of type String then it becomes
constrained by the mandatory initial value.

S: String := "Crocodile";

We can assign other strings to S but they must also have
nine characters. We could assign "Alligator" but not
"Elephant". (An elephant is clearly too small!)

This rigidity is rather a nuisance and so a new form of
container is defined which enables the cunning declaration
of an object of a definite type that can hold a single value
of an indefinite type. In other words it is a wrapper. The
new package is Ada.Containers.Indefinite_Holders and it
takes a generic parameter of the indefinite type and
declares a definite type Holder which is tagged private thus

generic
 type Element_Type (<>) is private;
 with function "="(Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Indefinite_Holders is
 type Holder is tagged private;
 ... -- various operations
end Ada.Containers. Indefinite_Holders;

The various operations include a procedure
Replace_Element which puts a value into the holder and a
function Element which returns the current value in the
holder.

Another new container is one for multiway trees. It might
have been thought that it would be easy to do this using the
existing containers such as the list container. But it is
difficult for various reasons concerning memory
management. And so it was concluded that a new container
for multiway trees should be added to Ada 2012.

The package Ada.Containers.Multiway_Trees has all the
operations required to operate on a tree structure where
each node can have multiple child nodes to any depth. Thus
there are operations on subtrees, the ability to find siblings,
to insert and remove children and so on.

Finally, there is a group of containers for queues. This topic
is particularly interesting because it has its origins in the
desire to provide container operations that are task safe.
However, it turned out that it was not easy to make the
existing containers task safe in a general way which would
satisfy all users because there are so many possibilities.

However, there was no existing container for queues and in
the case of queues it is easy to see how to make them task
safe.

180 Rat ionale for Ada 2012: Introduct ion

Volume 32, Number 3, September 2011 Ada User Journal

There are in fact four queue containers and all apply to
queues where the element type is definite; these come in
both bounded and unbounded forms and for synchronized
and priority queues. We get (writing AC as an abbreviation
for Ada.Containers)

▪ AC.Unbounded_Synchronized_Queues,

▪ AC.Bounded_Synchronized_Queues,

▪ AC.Unbounded_Priority_Queues,

▪ AC.Bounded_Priority_Queues.

These in turn are all derived from a single synchronized
interface. This is a good illustration of the use of
synchronized interfaces and especially the aspect
Synchronization discussed earlier (see Section 3.4). First
there is the following generic package which declares the
type Queue as a synchronized interface (writing AC as an
abbreviation for Ada.Containers and ET for Element_Type)

generic
 type ET is private; -- element type for definite queues
package AC.Synchronized_Queue_Interfaces is
 pragma Pure(...);
 type Queue is synchronized interface;

 procedure Enqueue(Container: in out Queue;
 New_Item: in ET) is abstract
 with Synchronization => By_Entry;

 procedure Dequeue(Container: in out Queue;
 Element: out ET) is abstract
 with Synchronization => By_Entry;

 function Current_Use(Container: Queue)
 return Count_Type is abstract;
 function Peak_Use(Container: Queue)
 return Count_Type is abstract;
end AC.Synchronized_Queue_Interfaces;

Then there are generic packages which enable us to declare
actual queues. Thus the essence of the unbounded
synchronized version is as follows (still with abbreviations
AC for Ada.Containers, ET for Element_Type)

with System; use System;
with AC.Synchronized_Queue_Interfaces;
generic
 with package Queue_Interfaces is new
 AC.Synchronized_Queue_Interfaces(<>);
 Default_Ceiling: Any_Priority := Priority'Last;
package AC.Unbounded_Synchronized_Queues is
 pragma Preelaborate(...);

 package Implementation is
 -- not specified by the language
 end Implementation;

 protected type Queue(Ceiling: Any_Priority :=
 Default_Ceiling)
 with Priority => Ceiling
 is new Queue_Interfaces.Queue with

 overriding
 entry Enqueue(New_Item: in Queue_Interfaces.ET)
 overriding
 entry Dequeue(Element: out Queue_Interfaces.ET);

 overriding
 function Current_Use return Count_Type;
 overriding
 function Peak_Use return Count_Type;

 private
 ...
 end Queue;

private
 ...
end AC.Unbounded_Synchronized_Queues;

The discriminant gives the ceiling priority and for
convenience has a default value. Remember that a
protected type is limited and when used to implement an
interface (as here) is considered to be tagged. In Ada 2012,
defaults are allowed for discriminants of tagged types
provided they are limited as mentioned in Section 3.3.

Note that the Priority is given by an aspect specification.
Programmers who are allergic to the multiple uses of with
could of course use the old pragma Priority in their own
code.

The need for the package Implementation will be explained
in a later paper. However, this need not bother the user
because the above text is all part of Ada 2012. Now to
declare our own queue of integers say we first write

package My_Interface is new
 AC.Synchronized_Queue_Interfaces(ET => Integer);

This creates an interface for dealing with integers. Then to
obtain an unbounded queue package for integers we write

package My_Q_Package is new
 AC.Unbounded_Synchronized_Queues(My_Interface);

This creates a package which declares a protected type
Queue. Now at last we can declare an object of this type
and perform operations on it.

The_Queue: My_Q_Package.Queue;
...
The_Queue.Enqueue(37);

The various calls of Enqueue and Dequeue are likely to be
in different tasks and the protected object ensures that all is
well.

The other generic queue packages follow a similar style.
Note that unlike the other containers, there are no queue
packages for indefinite types. Indefinite types can be
catered for by using the holder container as a wrapper or by
using an access type.

In Ada 2005 there are two generic procedures for sorting
arrays; one is for constrained arrays and one is for

J. Barnes 181

Ada User Journal Volume 32, Number 3, September 2011

unconstrained arrays. In Ada 2012, a third generic
procedure is added which can be used to sort any indexable
structure. Its specification is

generic
 type Index_Type is (<>);
 with function Before(Left, Right: Index_Type)
 return Boolean;
 with procedure Swap(Left, Right: Index_Type);
procedure Ada.Containers.Generic_Sort
 (First, Last: Index_Type'Base);
pragma Pure(Ada.Containers.Generic_Sort);

Note that there is no parameter indicating the structure to
be sorted; this is all done indirectly by the subprograms
Before and Swap working over the range of values given
by First and Last. It's almost magic!

A frequent requirement when dealing with containers is the
need to visit every node and perform some action, in other
words to iterate over the container. And there are probably
many different iterations to be performed. In Ada 2005, this
has to be done by the user defining a subprogram for each
iteration or writing out detailed loops involving calling
Next and checking for the last element of the container and
so on. And we have to write out this mechanism for each
such iteration.

In Ada 2012, after some preparatory work involving the
new package Ada.Iterator.Interfaces it is possible to
simplify such iterations hugely. For example, suppose we
have a list container each of whose elements is a record
containing two components of type Integer (P and Q say)
and we want to add some global X to Q for all elements
where P is a prime. In Ada 2005 we have to write the
laborious

C := The_List.First; -- C declared as of type Cursor
loop
 exit when C = No_Element;
 E := Element(C);
 if Is_Prime(E.P) then
 Replace_Element(C, (E.P, E.Q + X));
 end if;
 C := Next(C);
end loop;

Not only is this tedious but there is lots of scope for errors.
However, in Ada 2012 we can simply write

for E of The_List loop
 if Is_Prime(E.P) then E.Q := E.Q + X; end if;
end loop;

The mechanism is thus similar to that introduced in the
previous section for arrays.

There are also a number of minor new facilities designed to
simplify the use of containers. These include the
introduction of case insensitive operations for comparing
strings and for writing hash functions.

4 Conclusions
This overview of Ada 2012 should have given the reader an
appreciation of the important new features in Ada 2012.
Some quite promising features failed to be included partly
because the need for them was not clear and also because a
conclusive design proved elusive.

Further papers will expand on the six major topics of this
overview in more detail.

It is worth briefly reviewing the guidelines (see Section 2
above) to see whether Ada 2012 meets them.

The group A items were about extending the advantages of
Ada and specifically mentioned containers, contracts and
real-time. There are many new features for containers, pre-
and postconditions have been added and so have facilities
for multiprocessors.

The group B items were about eliminating shortcomings,
increasing safety and particularly mentioned improvements
to access types and storage management. This has been
achieved with corrections to accessibility checks, the
introduction of subpools and so on.

It seems clear from this brief check that indeed Ada 2012
does meet the objectives set for it.

Finally, I need to thank all those who have helped in the
preparation of this paper and especially Randy Brukardt,
Ed Schonberg and Tucker Taft.

References
[1] ISO/IEC JTC1/SC22/WG9 N498 (2009) Instructions

to the Ada Rapporteur Group from SC22/WG9 for
Preparation of Amendment 2 to ISO/IEC 8652.

[2] ISO/IEC TR 24718:2004 Guide for the use of the Ada
Ravenscar profile in high integrity systems.

[3] ISO/IEC 8652:1995/COR 1:2001, Ada Reference
Manual – Technical Corrigendum 1.

[4] ISO/IEC 8652:1995/AMD 1:2007, Ada Reference
Manual – Amendment 1.

[5] S. T Taft et al (eds) (2007) Ada 2005 Reference
Manual, LNCS 4348, Springer-Verlag.

© 2011 John Barnes Informatics.

182

Volume 32, Number 3, September 2011 Ada User Journal

The Implementation of High Integrity Data
Structures
Phil Thornley
SPARKSure, 32 Purbeck Drive, Bolton, BL6 4JF, UK.; Tel: +44 1204 695923; email: phil@sparksure.com

Abstract
An initial attempt to prove the correctness of a simple
linked data structure written in SPARK failed when
the proof artefacts became unmanageable. This paper
discusses the reasons for the failure and describes an
alternative approach that has succeeded in
completing the proofs. Finally a broader conclusion
about the place of proof within the software process is
suggested.
Keywords: SPARK, proof of correctness, reachability,
linked data structure, data structure invariant, Ada.

1 Introduction
SPARK implementations of simple data structures (stack,
queue) have simple proofs, but for even the simplest linked
data structure, it has been found that the proofs can become
very elaborate and unmanageable.

The natural approach to the proofs is to define an abstract
data structure invariant for the public view and a detailed
invariant for the internal view. The proofs are then
completed by showing that the detailed invariant is
maintained by all operations that modify the data structure.

However, experience with this approach shows that it
generates an excessive number of proof artefacts
(annotations and proof rules).

• Since SPARK programs cannot use a heap, each data
structure must define and manage its own set of free
elements, and the data structure invariant must include
the correct management of those elements.

• Proof of correctness for linked data structures requires
proofs about the reachability of the elements, but
reachability cannot be fully proved using first-order
logic. Consequently the user has to provide a large
number of detailed rules about how reachability
changes as the data structure is modified.

An alternative method of completing the proofs is
illustrated using a singly linked ordered list of integers. The
method can be tailored to different levels of integrity – the
proof rules can be validated manually or they can be shown
to follow from an established axiomatization of
reachability.

All the files for the examples used in this paper (code,
rules, Proof Checker scripts) are available from the Data
Structures page at www.sparksure.com.

2 A simple data structure
2.1 The specification
SPARK data structures must be bounded, so the capacity is
defined:

Capacity : constant := 100;

The list type is declared:

type T is private;
Ordered is the (abstract) data structure invariant.

--# function Ordered(L : T) return Boolean;

Set_Of_List is the abstraction function for a list and
Set_Of_One converts an integer to a set containing just that
integer:

--# function Set_Of_List(L : T) return Set;
--# function Set_Of_One(X : Integer) return Set;

Empty and Full are query functions on the list:

function Empty(L : T) return Boolean;
--# pre Ordered(L);

function Full(L : T) return Boolean;
--# pre Ordered(L);

Initialize creates an empty list and establishes the invariant
for the list:

procedure Initialize(L : out T);
--# post Ordered(L)
--# and Empty(L);

Insert is one of the operations that manipulates the list; it
must maintain the data structure invariant:

procedure Insert(L : in out T;
 X : in Integer);
--# derives L from *, X;
--# pre Ordered(L)
--# and (not Member(X, Set_Of_List(L)) -> not Full(L));
--# post Ordered(L)
--# and Set_Of_List(L) = Union(Set_Of_List(L~),
--# Set_Of_One(X));

Other operations (Delete, Contains) are also provided, this
paper uses Insert as its example.

2.2 The implementation
A marker value is required to indicate the last item in a list:

List_End : constant := 0;

P. Thornley 183

Ada User Journal Volume 32, Number 3, September 2011

Subtypes for the link values and the array indices:

type Index is range 0 .. Capacity;
subtype List_Index is Index range 1 .. Capacity;

The array types:

type Link_T is array(List_Index) of Index;
type Data_T is array(List_Index) of Integer;

The implementation of the list type:

type T is
 record
 Head : Index;
 Free : Index;
 Next : Link_T;
 Data : Data_T;
 end record;

Note that the links between items (stored in Next) and the
data values (stored in Data) are in separate arrays rather
than stored in a single array of records. The reasons for this
are explained later.

2.3 The data structure invariant
The data structure invariant requires reachability to be
defined:

--# function Reachable(L : T;
--# I, J : Index) return Boolean;
-- Reachable(L, I, J) is defined as:
-- I = J -> True
-- I /= J and I = List_End -> False
-- I /= J and I /= List_End -> Reachable(L, L.Next(I), J)

The detailed (concrete) data structure invariant states that:

• both the data list and the list of free items terminate
(i.e. List_End is reachable from L.Head and L.Free)

• each item is exclusively in the list or is a free item

• every item in the list, except the last, has a data
value that is lower than its successor.

-- Ordered(L) <->
-- (Reachable(L, L.Head, List_End)
-- and
-- Reachable(L, L.Free, List_End)
-- and
-- (for all I in List_Index => (Reachable(L, L.Head, I)
-- xor
-- Reachable(L, L.Free, I)))
-- and
-- (for all I in List_Index =>
– ((Reachable(L, L.Head, I)
-- and
-- L.Next(I) /= List_End)
-- -> L.Data(I) < L.Data(L.Next(I)))))

3 The initial attempt
The natural way to approach the correctness proofs is to use
the detailed version of the invariant in the refined pre- and
post-conditions in the package body.

The refinement verification conditions will then be satisfied
by a proof rule that defines the correspondence of the two
versions of the invariant. The main proof task becomes the
demonstration, for each operation, that its refined post-
condition follows from its refined pre-condition.

However, completion of the proof of the refined post-
conditions becomes very difficult. The factors that
contribute to this difficulty include the following.

• There are three main components to be developed -
code, annotations and proof rules.

• These components are very strongly interrelated and
changing any one of them requires changes to the other
two.

• Because of the way that the Simplifier applies user
defined proof rules, most rules are specific to a
particular conclusion within a particular verification
condition. Therefore a large number of rules, each
slightly different to all the others, must be provided by
the user.

• Many of the user defined proof rules will be about
changes to reachability of items as the Next array is
updated. These rules are quite complicated to write but
must be shown to be valid – that they follow from the
definition of reachability. However, the validation of
these rules is quite a lengthy process, and it would be
wasteful to do this before the code and annotations
(and hence the set of rules) are in their final forms.

• Inevitably, errors and omissions are found in some
proof rules when they are formally validated. This
triggers further changes to the code and annotations
and, consequently, to the proof rules, some of which
may already have been formally validated but are now
no longer required or required in a changed form.

The problems of managing the interaction of the changes to
code, annotations and proof rules makes the direct
completion of the proofs of the post-conditions an
impractical approach.

4 An alternative approach
4.1 Defining a single rule
Since each operation makes well-defined changes to the
structure of the list, an alternative approach is to consider
the overall effect of each change and encapsulate this in a
single rule.

The simplest way to see the overall change to a structure is
to draw the before and after diagrams.

184 The Implementat ion of High Integr i ty Data Structures

Volume 32, Number 3, September 2011 Ada User Journal

Figure 1 Initial state of the list: L~

Figure 2 New item inserted: L

Figure 1 above shows the state of the links in the imported
list for a call of Insert and Figure 2 shows the links in the
exported list after a new item has been added following the
item pointed at by the index I.

The expressions in square brackets appended to some of the
items are the expressions that access those items in each of
the lists.

Since the items in the two figures correspond, it is simple to
write down the equalities that define the required changes
to be made:

L.Next(I) = L~.Free
L.Free = L~.Next(L~.Free)
L.Next(L.Next(I)) = L~.Next(I)

It is now straightforward to write a single proof rule that
determines whether the code of Insert has correctly added
the required item into the list. The rule must include the
correct initial conditions (to ensure that it is only applied
where it is valid) and constraints to ensure that only the
required changes are made.

For the Insert operation the rule must also ensure that the
new item is correctly located in the list.

Within the rule the required changes (the above equalities)
are translated into FDL (the language of the SPARK proof
tools). L_Old is used in the rule for L~.

ordered(L)

 may_be_deduced_from

[/* The correct initial conditions */
 ordered(L_Old),
 reachable(L_Old, head, I),
 fld_free(L_Old) <> list_end,

 /* The required changes */
 element(fld_next(L), [I]) = fld_free(L_Old),
 fld_free(L) = element(fld_next(L_Old),
 [fld_free(L_Old)]),
 element(fld_next(L), [element(fld_next(L), [I])])
 = element(fld_next(L_Old), [I]),

 /* No other changes are made to the Next array */
 fld_next(L) = update(update(fld_next(L_Old),
 [fld_free(L_Old)],
 Y),
 [I],
 Z),

 /* Head is unchanged. */
 fld_head(L) = fld_head(L_Old),

 /* The correct value is written into the Data array */
 fld_data(L) = update(fld_data(L_Old),
 [fld_free(L_Old)],
 X),

 /* The new item is in the correct position */
 X > element(fld_data(L_Old), [I]),
 element(fld_next(L_Old), [I]) = list_end
 or X < element(fld_data(L_Old),
 [element(fld_next(L_Old), [I])])] .

(The checks that values are within their subtype ranges
have been omitted in this paper.)

There are several important features to this rule.

• Every component of the exported list is fully defined.

• The update expressions for Next and Data are in
separate sideconditions – this is one reason for

[L~.Next(I)] [I]

I

 [L~.Free]
[L~.Free] [L~.Free(L~.Free)]

L~.Head

L.Head

[L.Next(L.Next(I))]

[I]

I

 [L.Free]
[L.Next(I)] [L.Free]

P. Thornley 185

Ada User Journal Volume 32, Number 3, September 2011

defining them as two separate arrays in the list record
type. If a single array had been used then there would
be a single, much more complex update expression.

• The rule simply states the overall effect required by the
code, so it is linked very loosely to the form of the
code (in contrast to the very tight linkage found in the
initial approach). The above form does require the two
updates to the Next array to be in a specified sequence,
but (if required) this could be avoided by using
additional wild cards as the indexes of the two updates.
It is noted in the Conclusions section that this sequence
is, in fact, a deliberate choice.

• A second rule with the conclusion:
Set_Of_List(L) = Union(Set_Of_List(L_Old),
 Set_Of_One(X))

and identical side-conditions is required to fully prove
the post-condition on Insert.

• Similar rules can be created for the Delete operation.
(But all other operations, including Initialize, are
proved conventionally.)

For a certain level of integrity it would be sufficient to
validate the rules for Insert and Delete, developed in this
way, by manual inspection.

For a higher level of integrity it would be desirable to
validate the rules more formally. This can be done by
creating verification conditions that correspond to the rules
and proving these using the SPADE Proof Checker. Since
the development of these proofs is likely to be quite a
lengthy process it would be helpful to first reduce the
number of the rules that need to be validated.

4.2 A modified list definition
The rule shown above is specific to the insertion of an item
within the list and a slightly different rule is required for
the addition of an item as the first in the list.

The need for a second set of rules specific to the first item
in the list can be avoided by creating an additional element
within the Next array that is used in place of the Head
component.

Head : constant := Capacity + 1;
List_End : constant := 0;
type Extended_Index is range 0 .. Head;
subtype Extended_List_Index is
 Extended_Index range 1 .. Head;
subtype Index is
 Extended_Index range 0 .. Capacity;
subtype List_Index is
 Extended_List_Index range 1 .. Capacity;
type Link_T is array(Extended_List_Index) of Index;
type Data_T is array(List_Index) of Integer;
type T is
 record
 Free : Index;
 Next : Link_T;
 Data : Data_T;
 end record;

Note that the two arrays now have different index subtypes
– this is the second reason for keeping the links and data
values in separate arrays. A spurious data value for the
Head element would introduce substantial complications
into the proofs.

The only changes to the rule as given above are to remove
the references to fld_head and to change the test that X is
greater than the Ith element to:

I = head
 or X > element(fld_data(L_Old), [I])

4.3 Validating the rule
It is simple to create the verification condition that
validates a rule: convert the side-conditions to hypotheses
with wildcards in the rule (the names with upper-case
characters) replaced by variables of the appropriate type
(these are declared in an associated fdl file, which is not
shown here).

The verification condition (VC) that proves the modified
rules for Insert is:

H1: ordered(l_old) .
H2: reachable(l_old, head, i) .
H3: fld_free(l_old) <> list_end .
H4: element(fld_next(l), [i]) = fld_free(l_old) .
H5: fld_free(l) = element(fld_next(l_old),
 [fld_free(l_old)]) .
H6: element(fld_next(l), [element(fld_next(l), [I])])
 = element(fld_next(l_old), [i]) .
H7: fld_next(l) = update(update(fld_next(l_old),
 [fld_free(l_old)],
 y),
 [i],
 z) .
H8: fld_data(l) = update(fld_data(l_old),
 [fld_free(l_old)],
 x) .
H9: i = head
 or x > element(fld_data(l_old), [i]) .
H10: element(fld_next(l_old), [i]) = list_end
 or x < element(fld_data(l_old),
 [element(fld_next(l_old), [i])]) .
 ->
C1: ordered(l) .
C2: set_of_list(l) = union(set_of_list(l_old),
 set_of_one(x)) .

Definitions of the various proof functions in the VC
(ordered, reachable, union, equality of sets, etc.) are
provided in further defining rules (not given in this paper).

A proof of this VC using the Proof Checker will formally
validate the rule. We know that this proof will require
further rules about reachability, as a proof that uses only
the definition of reachability is not possible using first-
order logic. However we cannot predict exactly what rules
may be required until the proof is attempted, so attempting
the proof is the easiest way to identify the further rules that
are required.

186 The Implementat ion of High Integr i ty Data Structures

Volume 32, Number 3, September 2011 Ada User Journal

When this is done for the rules for both Insert and Delete,
about 10 further rules are identified. Examples of these
rules are:

reachable(L, I, J)
 may_be_deduced_from
[reachable(L, I, K),
 reachable(L, K, J)] .

reachable(L, I, J) <-> not reachable(L, J, I)
 may_be_deduced_from
[reachable(L, K, I),
 reachable(L, K, J),
 reachable(L, K, list_end),
 I <> J] .

reachable(L2, I, J)
 may_be_deduced_from
[reachable(L1, I, J),
 fld_next(L2) = update(fld_next(L1), [K], X),
 not reachable(L1, I, K)] .

Some of these rules, such as the first of the above, could be
validated manually but others are more complex and less
easy to validate manually. Fortunately the basis for formal
validation of these rules is already available.

Nelson [1] provides an axiomatization of reachability
which, along with the other results proved in [1], can be
converted to Proof Checker rules. Using just these rules and
other defining rules that, for example, follow from the
declarations in the Ordered_Lists package, the verification
conditions corresponding to all the additional rules can be
proved using the Proof Checker.

There is one significant addition to Nelson's analysis that is
required – the definition of list termination. This is not
defined in [1], but clearly must be taken into account in
these proofs. In particular this means that, for Nelson's
function f, f(u) is not defined if u = list_end.

4.4 Binary tree example
For this approach to be practicable, the rules generated
should not increase rapidly in size and complexity as the
number of changes to the data structure increases. The most
complex application of this method to date is the deletion
of elements from a binary search tree.

There are several different cases for deletion and it helps if
there is a rule for each case. The following example is for
the deletion of an internal node that is the left child of its
parent.

Figures 3 and 4 are the before and after diagrams for this
case. The node to be deleted is replaced by its immediate
successor.

There are four item pointers:
• I points to the item to be deleted,
• P points to its parent,
• Succ is the immediate successor of I
• Succ_P is its parent.

In this case there are five changes to the links, compared to
two changes in the list example.

Figure 3 Before deletion of item I

Figure 4 After deletion of item I

Succ_X

X

Tree~.Free

[Tree~.Free]

[P]

[I]

[Tree~.Left(I)] [Tree~.Right(I)]

[Succ_P]

[Succ]

[Tree~.Right(Succ)]
~

[Tree.Right(Succ)]

Tree.Free

X

Succ_X

[Tree.Left(I)]

[P]

[I]

[Tree.Left(Succ)]

[Succ_P]

[Succ]

[Tree.Left(Succ_P)]

P. Thornley 187

Ada User Journal Volume 32, Number 3, September 2011

This example indicates that the rate of increase in the size
and complexity of the rule is not worse that linear with the
number of changes to the data structure.

The rule for this action is:

deleted_internal_left(Tree_Old, Tree, P, I)

 may_be_deduced_from

[/* The correct initial conditions */
 binary_tree(Tree_Old),
 ancestor(Tree_Old, root, P),
 I = element(fld_left(Tree_Old), [P]),
 element(fld_left(Tree_Old), [I]) <> leaf,
 element(fld_right(Tree_Old), [I]) <> leaf,
 element(fld_left(Tree_Old),
 [element(fld_right(Tree_Old), [I])]) <> leaf,
 immediate_successor(Tree_Old, I, Succ),
 Succ = element(fld_left(Tree_Old), [Succ_P]),

 /* The correct changes are made to the tree */
 fld_free(Tree) = I,
 element(fld_left(Tree), [I]) = fld_free(Tree_Old),
 element(fld_left(Tree), [P]) = Succ,
 element(fld_left(Tree), [Succ]) =
 element(fld_left(Tree_Old), [I]),
 element(fld_right(Tree), [Succ]) =
 element(fld_right(Tree_Old), [I]),
 element(fld_left(Tree), [Succ_P]) =
 element(fld_right(Tree_Old), [Succ]),

 /* No other changes are made to the tree */
 fld_left(Tree) =
 update(update(update(update(fld_left(Tree_Old),
 [Succ_P],
 Y1),
 [Succ],
 Y2),
 [P],
 Y3),
 [I],
 Y4),
 fld_right(Tree) = update(fld_right(Tree_Old),
 [Succ],
 Z),

 /* The Data array is unchanged */
 fld_data(Tree) = fld_data(Tree_Old)] .

The complete analysis for a binary tree is also available. In
this case the rules have not been validated further (i.e. by
proving the related verification conditions with the Proof
Checker).

5 Conclusions
The main conclusion to be drawn is that the natural
approach to the proof of correctness for linked data

structures is unlikely to succeed, however the alternative
approach described here may be sufficiently rigorous for
the integrity required.

A broader conclusion, strongly supported by the work
reported here, concerns the use of proof within a software
development process:

The completion of proofs should not be separated
from the software design and code activities.

The completion of proofs is, typically, quite difficult and
time-consuming. Furthermore the difficulties experienced
are strongly affected by design and code details that will
often appear irrelevant to design and code engineers who
are not concerned with the proofs. There are several
instances of this in the ordered list data structure.

• The structure of the list record, with separate arrays for
the links and data is unlikely to be the implementation
chosen by most software engineers, and the creation of
a data value for the Head element is unlikely to be seen
as a problem.

• In the discussion of the rule for Insert in Section 4, it
was noted that the two updates to the Next array were
required to be in a specific sequence. This sequence is,
in fact, required by the formal validation of the rule.
When writing the code each possible sequence was
considered and the choice made as the one that was
thought likely to lead to easier proofs than the
alternatives. An engineer not concerned with proof
would not have considered this.

• The code of the Insert operation has an unusual and
slightly inefficient form (with a test that is not required
in the more obvious form). This makes the proofs
easier to create and validate, but would never be the
choice if proof were not being taken into account.

Projects that delay work on the proofs until after
completion of design and code are therefore likely to
experience more problems with those proofs.

This conclusion should be taken into account by anyone
using code already developed to evaluate the use of proof;
they are unlikely to see the full potential benefits unless
they are prepared to modify the code during that evaluation.

References
[1] Greg Nelson (1983), Verifying Reachability Invariants

of Linked Structures, in Proceedings of the 10th ACM
SIGACT-SIGPLAN symposium on Principles of
programming languages.

The text of this reference is available via the Google
scholar link at: http://www.informatik.uni-trier.de/~ley/
db/conf/popl/popl83.html

188

Volume 32, Number 3, September 2011 Ada User Journal

“Crimeville” – using Ada inside an on-line
multi-user game
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation, Vesterbrogade 148 K, 1620 København V, Danmark;
email: jacob@jacob-sparre.dk

Abstract
This paper presents an Open Source language server
developed for the children's on-line multi-user game
“Crimeville”. The language server was developed in
Ada using the POSIX Ada API. The language server
is to the author's knowledge the first time Ada has
been used when implementing a commercial computer
game, and we are thus pushing the boundaries of
where Ada is an accepted programming language.
The language server is an example of how the POSIX
Ada API can be used to launch external applications,
and handle communications with them through
POSIX pipes.

1 Introduction
The children's game universe “Crimeville” challenges the
players to solve detective riddles cooperatively. In the on-
line version of the game this means that the players in each
session of the game can chat with each other.

To help the children write better – and to limit them being
naughty – the chat is going through a language server. The
language server is thus a part of the game developers'
attempt to assure that the on-line game is “safe” for
children.

The language server is written in Ada using the POSIX Ada
API [1] 1 . It uses existing Ispell [3] compatible Open
Source spell-checkers and their associated dictionaries as
an integrated part of the system. The language server is
implemented such that it should be possible to reuse it
“as-is” for future games, and has since the Ada Europe
2011 conference been available as Open Source software.

The paper is structured roughly following the development
of the language server going from requirements (section 2)
over the specification (section 3) to architectural decisions
(section 4) and seclected implementation details (section 5).
Following that I will present information on source code
reuse (section 6), and finally a few words on performance
(section 7) and a conclusion.

1 In practise using the Florist [4] implementation of the standard as
distributed with Debian GNU/Linux.

2 Requirements
When Art of Crime, the developers of “Crimeville”,
contacted me, they described the task as helping the players
write correctly, and limit how much they insult each other.
They wanted to do this on the level of whole words, and
were interested in leveraging existing Open Source spell-
checking dictionaries for this purpose.

In addition to this, it was expressed that the solution had to
be “sufficiently” 2 fast.

3 Specification
We decided to solve the task by implementing a TCP/IP
server responsible for checking words in a specific
language. Behind the scenes this server should run two
instances of the Aspell [2] spell-checker; one with an
ordinary dictionary of known (polite) words, and one with a
specialised dictionary of foul words. The Aspell instances
should be easily substitutable with another Ispell
compatible spell-checker, in case tests showed that Aspell
was too slow.

We mapped out the categorisation rules going from spell-
checker responses:

• Correct / Misspelled / Unknown correct word
• Correct / Misspelled / Unknown foul word

to categories used by the in-game chat:

• Correct word – allowed
• Foul word – forbidden
• Misspelled word – to be corrected
• Unknown word – allowed

This mapping is shown in figure 1.

A protocol for the communications with the language
server was defined. The protocol is text-based (ISO-8859-
1) with messages terminated by Ada.Characters.Latin_1.LF
(i.e. line-based). The client sends a request formatted as:

Request_Key Space Word
 { Space Word } LF

2 Later this was revealed to be relative to known bottlenecks in the game,
and the speed of the selected production hardware.

J. S. Andersen 189

Ada User Journal Volume 32, Number 3, September 2011

Figure 1 Diagram showing how it is decided which category a word should be put in. This

diagram was drawn together with Art of Crime staff as a part of the specification of the system.

Figure 2 Diagram showing the architecture of the language server. The two “aspell” processes
are launched by the protected objects in the language server. The connection handler tasks are

created by the main task.

The matching answer from the server is formatted as:
Request_Key Space Category_ID Word

 { Space Category_ID Word } LF

where the “Category_ID” is “+“ for a correct word, “-“ for a
foul word, “ “ for a misspelled word and “?” for an
unknown word 3.

We agreed to postpone any optimisations of the system
until we had it working and could compare its speed with
the requirements.

4 Architecture
The specification lead to an architecture (figure 2), where
the main task is responsible for setting up the system and

3 This is actually the second iteration of the protocol. In the first iteration,
only one word could be sent to the language server in each message.

listening for incoming TCP/IP connections. Whenever a
client connects to the server, the main task creates a new
connection handling task and hands over the client to that
task.

When a connection handler needs to check a word in one of
the two dictionaries it calls a procedure in a protected
object, which encapsulates two POSIX pipes connected to a
spell-checker process 4.

The incoming connections from the clients are
encapsulated in a package, hiding the actual protocol inside
two types representing messages respectively from and to
the clients.

4 Technically I/O is a potentially blocking operation, and thus a bounded
error, when used from a protected object. Since it works in practise, and is
a less complicated construction, than having a task doing the I/O, I have
decided to keep it like this for now.

190 “Cr imevi l le” – using Ada inside an on- l ine mult i -user game

Volume 32, Number 3, September 2011 Ada User Journal

5 Implementation
In the following sections I will present selected parts of the
source code for the Crimeville language server. In section
5.1 I will present the core of the system making the
decisions about categorising words. In section 5.2 I will
show how one can use the POSIX Ada API to launch an
external application with POSIX pipes connected to
“Standard_Input”, “Standard_Output” and “Standard_
Error” of the external process. Finally, in section 5.3 I will
show how the external protocol of the language server is
encapsulated.

5.1 Application logic
One of the great benefits of using Ada is that it is designed
for source code to be read and understood. One of my goals
when implementing a system is that my customers should
be able to understand enough of the source code, to make it
possible for them to verify that the system is likely to do
what they intend it to do 5. It is not my intent that any
customer necessarily should be able to read my source code
unaided, but I should be able to talk them through the core
of the system; in this case the bit of logic deciding which
category a word falls in. The core application logic of the
Crimeville language server reads like this:

Foul_Words.Check (Word => Word,
 Class => Class) ;

case Class is
 when Aspell.Found =>
 return Game_Communication.Foul_Word;
 when Aspell.Misspelled =>
 Dictionary.Check (Word => Word,
 Class => Class) ;
 case Class is
 when Aspell.Found =>
 return Game_Communication.
 Correct_Word;
 when Aspell.Misspelled =>
 return Game_Communication.
 Misspelled_Word;
 when Aspell.Not_Found |
 Aspell.Timeout | Aspell.Error =>
 return Game_Communication.
 Foul_Word;
 end case ;
 when Aspell.Not_Found | Aspell.Timeout |
 Aspell.Error =>
 Dictionary.Check (Word => Word,
 Class => Class) ;
 case Class is
 when Aspell.Found =>
 return Game_Communication.

5 I have already once, on a previous project, had great benefit from
insisting on this kind of code review. My customer noticed that the
program – although implemented to the specfication – didn't do exactly
what was intended, and we caught the error before we started testing the
system.

 Correct_Word;
 when Aspell.Misspelled =>
 return Game_Communication.
 Misspelled_Word;
 when Aspell.Not_Found | Aspell.Timeout |
 Aspell.Error =>
 return Game_Communication.
 Unknown_Word ;
 end case;
end case;

“Foul_Words” and “Dictionary” are the two protected
objects encapsulating the Aspell processes. The “Check”
operation looks up a word in Aspell, and returns the class
Aspell puts it in. In practise we group together an
unexpected result (“Error”) or no result (“Timeout”) from
Aspell with words Aspell cannot find in the dictionary.

It is worth noting that the code structure with two levels of
case statements in part is like that to match the specification
diagram (figure 1)6. If the specification of the classification
rules had been in tabular form, it would have made more
sense to create the mapping using a constant two-
dimensional array.

5.2 Launching an Aspell process
When we launch an Aspell process to take care of phonetic
mapping and dictionary look-up, the first step is to set up
the POSIX pipes to be used to communicate with the
Aspell process. The second step is to “fork” the running
process, i.e. create a clone of it, where the only difference
of importance to us is the result from the “fork” function 7.
The third step is to close the unused ends of the pipes.
Finally – in the cloned process – we move the pipes to the
required positions (“Standard_Input”, “Standard_Output”
and “Standard_Error”), before we substitute the language
server program with the aspell program using the
“Exec_Search” procedure.

Altogether this is the core of the subroutine
“Pipe_Fork_Exec_Search”:

POSIX.IO.Create_Pipe (Write_End => To_Child,
Read_End => From_Parent) ;

POSIX.IO.Create_Pipe (Write_End => To_Parent,
Read_End => From_Child) ;

POSIX.IO.Create_Pipe (Write_End =>Errors_To_Parent,
Read_End => Errors_From_Child) ;

case Fork is
when Parent =>

POSIX.IO.Close (From_Parent) ;
POSIX.IO.Close (To_Parent) ;
POSIX.IO.Close (Errors_To_Parent) ;

6 There is also the hope that it may avoid a few procedure calls to the
“Dictionary” protected object.
7 The other difference is that only the POSIX thread calling "fork" is
active in the cloned process.

J. S. Andersen 191

Ada User Journal Volume 32, Number 3, September 2011

Unit Compilation units Subroutines Lines Characters
Standardised 18 26 6297 205858
Vendor-provided 2 9 3480 111864
Reused 5 5 111 3920
Reusable 7 20 344 10934
Project-only 6 13 485 16592
Total 38 73 10717 349168

Figure 3 Levels of source code reuse measured in different units. Standard library line and character
counts are for the GNAT and Florist implementations. Note that for standard and vendor-provided

packages only explicitly withed packages and called subroutines are included in the counts. Since the
standard and vendor-provided packages provides relatively more unused functionality, their line and

character counts are much relatively larger than for in-house produced source code.

when Child =>
POSIX.IO.Close (To_Child);
POSIX.IO.Close (From_Child) ;
POSIX.IO.Close (Errors_From_Child) ;
Move (From => From_Parent,

 To => POSIX.IO.Standard_Input) ;
Move (From => To_Parent ,

 To => POSIX.IO.Standard_Output) ;
Move (From => Errors_To_Parent ,

 To => POSIX.IO.Standard_Error) ;
POSIX.Unsafe_Process_Primitives.Exec_Search (

 Program_Name,
Arguments) ;

end case ;

In the source above, the procedure “Move” is a local
procedure, which encapsulates the POSIX subroutines
“Duplicate_And_Close” and “Close” with appropriate error
handling.

5.3 Client query protocol
The protocol used by clients (i.e. the Crimeville game
server) to ask the language server to classify the words in a
sentence is encapsulated in the package
“Game_Communication”. The public part of the package
specification is:

package Game_Communication is
 type Paragraph is private;
 procedure Get (Item : out Paragraph;
 From : in out Buffered_IO.File) ;
 function More_Words (Source : in Paragraph)
 return Boolean ;
 procedure Get_Next_Word (
 Source : in out Paragraph;
 Word : out Ada.Strings.Unbounded.
 Unbounded_String) ;
 type Classifications is private;
 type Word_Classifications is (Correct_Word,
 Misspelled_Word,
 Unknown_Word,
 Foul_Word);

 procedure Copy_Key (Source : in Paragraph;
 Target : out Classifications);
 procedure Append (Target : in out Classifications;
 Word : in Ada.Strings.Unbounded.
 Unbounded_String ;
 Classification : in Word_Classifications);
 procedure Put (Item : in Classifications ;
 To : in Buffered_IO.File) ;
private

The type “Paragraph” represents a query from a client,
containing a query key and a sentence to be classified. The
primitive operations of this type allow the user of the

 package to read a query from a le (in practise a TCP/IP
socket) and to pull out the individual words in the query.

The type “Classifications” represent a response from the
language server. The primitive operations of this type allow
the user of the package to compose a response of words and
word classifications and write it to a file (in practise a
TCP/IP socket).

6 Reuse
Just as the language server application has been developed
with the intent that it can be reused in other systems than
Crimeville, the development of the system has also been
done with attention to reuse of existing source code (and
data) in mind. First of all, we reuse the existing Aspell
spell-checker and related dictionaries and phonetic rules.

When it comes to the source code for the language server, I
have used both standardised packages, compiler vendor
provided libraries, and some of my own pre-existing
packages. In addition to this I have developed some
packages which I hope to be able to reuse in the future. The
table in figure 3 gives an overview of the distribution of
source code use on these categories in terms of compilation
units of withed packages, called subroutines, and lines and
characters in the source files of the withed packages.

One of the not yet reused compilation units is
“Pipe_Fork_Exec_Search”, the core of which is shown in

192 “Cr imevi l le” – using Ada inside an on- l ine mult i -user game

Volume 32, Number 3, September 2011 Ada User Journal

section 5.2. In earlier projects I have written this commonly
used idiom from scratch every time I have needed it.

The compilation units I expect to reuse, even though they
have been written in connection with this project are:

• “Buffered_IO”: Adds a minimal “Ada.Text_IO”-like
interface on top of “POSIX.IO”

• “Daemon”: Imports the C function “daemon”, which is
used to disconnect a process from its terminal and
parent process.

• “Logging”: Simple logging package. Encapsulates an
“Ada.Text_IO” file in a protected object, which only
allows writing whole lines.

• “Pipe_Fork_Exec_Search”: Launches an external
program with POSIX pipes to its standard input, output
and error files.

7 Performance
The capacity of the language server was measured on the
production hardware chosen by Art of Crime, and was
found suficient. This means that it wasn't found necessary
to optimise the initially delivered system.

We also measured the distribution of the CPU use between
the actual language server process (the part written in Ada)
and the aspell processes (written in C++). The language
server uses approximately 5% of the used CPU resources,
while the aspell processes use the other 95%.

8 Conclusion
Altogether I consider this project a success. I have created a
working Ada application which – without any problems –
has been put in production in an environment outside of
what is typical for Ada.

Some specific points which I believe have been positive for
the project and my customer's confidence in the solution:

• Solving the task as a stand-alone TCP/IP server
allowed me to

o use the best programming language for the task,
independently of what was used for other parts of
the complete system.

o make an easily reusable system

o have a well-defined boundary between my
responsibilities and those of my customer

and in general made the language server independent
of the actual Crimeville game server.

• Using existing Open Source spell-checkers allows us
to reuse existing language data such as dictionaries and
phonetic rules.

• Using the Ispell pipe protocol to communicate with the
spell-checker allows us to switch between different
spell checkers with only a small modification of the
system.

The complete source code for the language server can be
downloaded from

http://www.jacob-sparre.dk/spelling/crimeville.zip.

References
[1] POSIX Ada95 Bindings for Protocol Independent

Interfaces (P1003.5c).

[2] Kevin Atkinson. Aspell, 2001.

[3] Geoff Kuenning. International Ispell.

[4] Students and faculty of the Florida State University
Department of Computer Science. Florist.
http://www.cs.fsu.edu/~baker/florist.html.

194

Volume 32, Number 3, September 2011 Ada User Journal

Ada User Guide for LEGO MINDSTORMS NXT
Peter J. Bradley, Juan A. de la Puente, Juan Zamorano
Universidad Politécnica de Madrid, Madrid, Spain; http://polaris.dit.upm.es/str

Abstract
The purpose of this guide is to introduce the robotics
kit LEGO MINDSTORMS NXT to the Ada community.
All the steps required to complete a working Ada
application running under the LEGO MINDSTORMS
NXT are covered.
Keywords: LEGO, MINDSTORMS, Ada, Ravenscar,
Real-Time, Embedded, Robotics.

1 Introduction
The LEGO MINDSTORMS NXT (from now on NXT) is a
simple and flexible robotics kit that allows Ada pro-
grammers to develop applications that interact with the
“outside world” by means of sensors, actuators, etc. The
dynamic features associated to this interaction with the
physical environment require that the actions of the control
software are executed at a specified time rate. Therefore,
real-time constraints must be generally met. Ada’s
concurrency and real-time integrated features together with
the use of the Ravenscar profile [1] makes it the ideal
language for the NXT.

This guide is organised as follows. The first section is this
introduction. Then, the second section shows some
fundamental aspects of the NXT hardware that should be
kept in mind for NXT Ada development. Section three
briefly introduces Ada programming for the NXT taking
into consideration the Ravenscar compliant NXT runtime
system and the NXT Ada drivers library. The fourth section
gives an overview of the development environment with a
description of the tools required to work with the NXT. As
an example, the development of a prototype vehicle is
presented in section five. Finally, section six describes how
the internal JTAG interface of the NXT is accessed and
used to debug Ada programs.

Throughout this guide the AdaCore GNAT GPL for LEGO
MINDSTORMS NXT 2011 hosted in GNU/Linux for x86
(available from http://polaris.dit.upm.es/str/projects/
mindstorms) will be used but note that the Windows
version is also available (http://libre.adacore.com/libre/tools/
mindstorms).

2 MINDSTORMS NXT
2.1 Architecture overview
The NXT kit comes with a programmable controller, also
called Intelligent Brick. This Brick (see figure 1 for its
block diagram) features a 32-bit ARM main processor
(AT91SAM7S256) with 64 KB of RAM and 256 KB of
Flash memory that runs at 48 MHz. To assist the main
processor an 8-bit AVR co-processor (ATmega48) is also

included. Main processor and co-processor periodically
communicate through an I

2
C bus.

Figure 1 NXT block diagram

It also has three output ports, which are bidirectional, to
connect and control actuators such as electrical motors or
linear actuators and four input ports that support both
digital and analog sensors.

Communications with the Brick are possible using either
USB, via a full-speed USB 2.0 port, or Bluetooth, available
through a CSR BlueCore 4 chip that is connected to the
ARM’s USART. The USB 2.0 port is usually used to
connect to a PC and Bluetooth to communicate with other
NXT Bricks or any other Bluetooth enabled devices such as
smartphones, tablets, etc.

On the top of the Brick there is a 100 x 64 pixel LCD
display connected to the main processor via a SPI bus
(serial peripheral interface bus), and four rubber buttons,
controlled by the co-processor, to interact with the Brick.

The NXT Brick also comes with an audio amplifier,
connected to the ARM PWM (pulse-width modulation)
controller, and a 16 Ω speaker with a bandwidth of 2 -16
KHz.

For schematics and further information refer to LEGO
MINDSTORMS NXT Hardware Developer Kit [2].

2.2 Processor and co-processor
The AVR co-processor handles the following low-level
tasks for the main processor:

• Power management. Turns the NXT Brick off and
wakes it up when the center orange button is pressed. It

P. J. Bradley, J . A. de la Puente, J . Zamorano 195

Ada User Journal Volume 32, Number 3, September 2011

also monitors the battery status sending information to
the ARM processor.

• PWM generation. Generates pulses for the three
output ports at a frequency of 8 KHz with the duty
cycle specified by the ARM processor.

• A/D conversion. Performs a 10 bit digital conversion
of the analog signals at the input ports every 3 ms.

• Button decoding. Decodes the buttons so that the
main processor is able to tell which buttons are pressed
and which are not. Note that the co-processor does not
carry out any button debouncing. If it is not handled at
driver level the programmer should take care of it.

To handle all of the above it is necessary for main pro-
cessor and co-processor to periodically exchange infor-
mation. The communication between the two microcon-
trollers is set up as two memory allocations that, on the
original LEGO firmware, are updated on both microcon-
trollers every 2 ms. The communication interface operates
at 380 Kbit/s using the I

2
C hardware interface in both

microcontrollers with the ARM main processor functioning
as master.

2.3 Output ports

Figure 2 Output port generic schematic

All of the three output ports work in the same manner, see
figure 2. They have a ground (GND) and a 4.3 V supply
output (POWER). Two output signals (M0 & M1) that
come from an internal H-bridge motor driver that controls
the motor standby, forward, reverse or brake modes. This
motor driver is governed by the PWM pulses generated by
the co-processor. It also has two input signals (TACHO0 &
TACHO1) that are connected to the main processor’s
parallel input/output controller (PIO) using a Schmitt
trigger for noise suppression. Within the Ada drivers these
two last signals are used for the motor encoder. The
encoder has a resolution of 360 counts per revolution.
When the motor rotates the ARM processor receives an
interrupt in order to update the encoder counter through the
parallel I/O controller. Notice that clockwise and
counterclockwise operation is detected by the counter’s
increments or decrements.

2.4 Input ports
Depending on the type of sensor connected to the NXT
Brick the input ports behave differently. The input ports
allow both digital and analog interfaces, see figure 3.

Figure 3 Input NXT generic schematic

LEGO considers three types of sensors:

• Active sensors. This kind of sensors belongs to the
previous version of LEGO MINDSTORMS, the RCX.
They require an NXT adapter cable. NXT firmware
provides the same functionality available in the RCX
Bricks by using an extra current source. This current
source delivers power (approximately 18 mA) to the
active sensors. It supplies power to the sensor through
the analog pin (ANA) during 3 ms and then measures
the analog value during the following 0.1 ms. The
AVR sends the 10 bit digital conversion of the analog
value to the main processor using the scheme
presented in section 2.2.

When using this kind of sensors (e.g. RCX light
sensor, RCX rotation sensor) be sure to set the
appropriate input power settings by calling
Set_Input_Power(sensor_id,RCX_9V) from NXT.AVR
driver package where sensor_id is the input port used
for the active sensor.

• Passive sensors. These are analog sensors that do not
need the special power/measurement timing of the
active sensors. The power needs of these sensors are
not covered via the analog pin (ANA) but via a
specific pin (POWER). Note that the sampling of all
the AVR A/D converters occurs simultaneously so
active and passive sensors must be sampled at the same
rate, 333 Hz.

All of the sensors packed with the LEGO MIND-
STORMS NXT are passive with the exception of the
ultrasonic sensor.

• Digital sensors. These sensors contain all the nec-
essary logic and processing resources to work inde-
pendently. Thus, they perform their function au-
tonomously and send or receive information to/from
the ARM via an I

2
C channel (DIGI0 & DIGI1) running

at 9600 bit/s where the ARM functions as master.
These sensors are mapped as external memory areas
from/to which the programmer can read or write to
control the behaviour of the sensor and harvest data.
For a memory arrangement that optimises read and
write access refer to LEGO MINDSTORMS NXT
Hardware Developer Kit [2].

The ultrasonic sensor is the only digital sensor packed
in the NXT kit.

196 Ada User Guide for LEGO MINDSTORMS NXT

Volume 32, Number 3, September 2011 Ada User Journal

If a higher sampling rate is required by an analog input the
hardware allows configuring DIGI1 as an analog input.

Port 4 can also function as a high-speed communication
port. It has a RS485 IC that allows for high-speed-bi-
directional multipoint communications.

2.5 Bluetooth features
The NXT Brick can be connected using Bluetooth to any
other Bluetooth device that implements the Serial Port
Profile (SPP), a serial cable emulation profile. The effective
working Bluetooth range for the NXT Brick is
approximately 10 m (Bluetooth Class II device).

The NXT Brick provides a master/slave communication
scheme with four channels. Channel 0 is used when
working as slave and the other three when working as
master. The NXT Brick can either work as master or slave.
This means that when the NXT Brick works as master it
can communicate with three more devices.

The CSR BlueCore 4 firmware is implemented as a virtual
machine with an integrated command interpreter. Thus,
communication between the main ARM processor and the
Bluetooth chip is handled by a set of defined commands
and data streams that are exchanged through the USART
channel. Refer to LEGO MINDSTORMS NXT ARM7
Bluetooth Developer Kit [3] for a full specification.

3 Ada programming for NXT
3.1 NXT run-time system
The AdaCore GNAT GPL for LEGO MINDSTORMS
NXT 2011 cross-compiler toolchain relies on a Ravenscar
small footprint run-time system (Ravenscar SFP). It is
really a superset of the zero footprint profile. It adds the
specification of a secondary stack mechanism for
unconstrained objects and the Ravenscar tasking features to
the zero footprint profile. This means that Ada applications
for the NXT should comply with the Ravenscar profile for
tasking purposes. Also, as it is targeted for use with
embedded systems, it uses a sequential Ada subset where
not all language features are available. For example,
attributes ’Image and ’Value are not included. Moreover,
there is no exception propagation. Unhandled exceptions
jump to a “last chance handler” that can be reprogrammed
as desired as long as the application then terminates (it
must not return to the caller). Note that you must explicitly
include the package NXT.Last_Chance, using a with-
clause, for it to be part of your application. If you do not, a
default handler is included that only displays an address for
the exception on the NXT LCD screen. For a full
description of the Ravenscar SFP profile refer to GNAT
User’s Guide “Supplement for High-Integrity Edition
Platforms” [4].

The purpose of the Ravenscar profile is to restrict the use of
many tasking facilities so that the outcome of the program
is predictable. For this purpose, the profile is restricted to a
fixed priority and pre-emptive scheduling. With fixed
priority pre-emptive scheduling, the scheduler ensures that
at any given time, the processor executes the highest
priority task of all those tasks that are currently ready to be

executed. Also, the Immediate Ceiling Priority Protocol
(ICPP) is enforced by the Ravenscar profile. This means
that when a task locks the resource, its priority is
temporarily raised to the priority ceiling of the resource,
thus no task that may lock the resource is able to get
scheduled. This allows execution of a low priority task
deferring execution of higher-priority tasks, thus
minimizing priority inversion. More information can be
found in Annex D: Real-Time Systems of the Ada 2005
Reference Manual [5].

When writing an Ada application for NXT you should bear
in mind that only the Ada subset defined by the Ravenscar
profile can be used for tasking. These are some of the
restrictions:

• requeue statement.

• abort statements.

• Task entries.

• Dynamic priorities.

• Relative delays.

• Protected types with more than one entry.

• Protected entries with barriers other than a single
boolean variable declared within the same protected
type.

• Entry calls to a protected entry with a call already
queued.

• select statements.

• Task termination.

For a full and detailed list refer to Guide for the use of the
Ada Ravenscar Profile in high integrity systems [1].

3.2 NXT Ada drivers
The NXT drivers developed by AdaCore are completely
coded in Ada. These drivers are based on those of the
LeJOS Project. The LeJOS Project is a tiny Java virtual
machine ported to the NXT Brick in 2006
(http: //lejos.sourceforge.net).

These drivers have undergone major updates in the last two
versions of GNAT GPL for MINDSTORMS (2010 &
2011) so 2010 programs might not compile with the 2011
compiler. Unfortunately, AdaCore does not supply API
documentation with the drivers. It is convenient to revise
the drivers’ code to understand how they work. A full
description of the drivers is out of the scope of this guide.

For every Ada NXT program the NXT.AVR package must
always be imported even if its functions are not required.
The body of this package contains a periodic task called
Pump, with the highest priority, executed every 20 ms, that
handles the co-processor communications (explained in
subsection 2.2) using a circular buffer. By adding a with-
clause to the main program and importing NXT.AVR the
execution of this task within the program is guaranteed. It
is also advisable to import NXT.Display and
NXT.Last_Chance for exception handling.

P. J. Bradley, J . A. de la Puente, J . Zamorano 197

Ada User Journal Volume 32, Number 3, September 2011

High-level access to motors and sensors is available
through a series of object oriented interfaces that provide a
tagged type, a constructor function and some operations.
NXT.Motors and NXT.I2C_Sensors packages provide
abstract types and primitive operations. This object oriented
structure eases extending the code with new drivers for
third-party sensors. For AVR connected peripherals (analog
sensors, motors, buttons, etc.) the low-level package
NXT.AVR can also be used.

Note that these drivers provide user-transparent button
debouncing through the NXT.Filtering package.

Both AVR and Bluetooth interfaces perform checksum
analysis for all data exchanged with the main processor to
discard inconsistent data.

When using the concurrency features available with the
Ravenscar profile it must be considered that the display and
AVR drivers do not implement a thread-safe environment.
LCD data and the circular buffer with the outgoing
messages to the AVR are defined as global variables with
no access control. For concurrent access to the display the
NXT.Display.Concurrent package provided can be used. For
AVR concurrent access a thread-safe solution must be
provided by the user to avoid race conditions when calling
Power_Down, Set_Power and Set_Input_Power procedures.
Notice, that because of the periodic task that handles
ARM-AVR communications, every time a motor is used or
a power down to the NXT is set, race condition issues are
present. The 2010 GNU/Linux GNAT version provided
modified drivers that addressed this issue but since the
2011 GNU/Linux version changed its interface the solution
has not yet been adapted.

4 Development Environment
4.1 Tools overview
A cross-compiler toolchain is a set of tools (essentially a
compiler, an assembler and a linker) that create executable
code for a platform, in this case the NXT main processor
(ARMv3 architecture), other than the one on which the
tools run, that is, GNU/Linux x86. Cross-compiler
toolchains are used to compile code for a platform upon
which it is not feasible to do the compiling. AdaCore has
ported the GNAT compiler toolchain to the ARM
architecture by porting part of the LEON-based Open
Ravenscar Real-Time Kernel (ORK+) 1 developed by a
team of the Department of Telematics Engineering from the
Technical University of Madrid (DIT/UPM) [6].

4.2 Compiling a program
The NXT’s original firmware for the main processor is
completely removed (this invalidates the warranty) and
replaced by a binary image of the user’s Ada application
that is executed from RAM. Flash memory is not used. This

1 ORK+ is an open source real-time kernel that implements the Ravenscar
profile for the GNAT compiler system on a bare LEON2 processor.

means that every time a program is executed it must first by
uploaded to RAM.

Instead of using the widespread ELF as executable file
format the EABI format is used by the GNAT cross-
toolchain. EABI has been created as a common binary
interface so that object code and libraries created with one
toolchain can be linked to a project created with a different
one.

To generate an executable NXT file from the user’s Ada
application the GNAT cross-toolchain needs first to
compile and then link to RAM all compiled code using
kernel_samba.ld linker script. The code that needs to be
compiled is the user’s Ada code, the run-time system, the
Ada NXT required drivers, nxt main() C function (main.c),
a low-level routine to initialise the system (init.s), a low-
level interrupt handler routine (irq.s), a vector table that is
remapped to RAM (vectors.s) by init.s and the elaboration
code generated by the GNAT binder.

A GNU make script (Makefile.inc) is in charge of building
the binary image that is uploaded. This script compiles the
run-time libraries every time since precompiled library
units are not used.

4.3 Uploading a program
With no firmware, when the orange button of the NXT
Brick is pressed the ARM main processor executes the de-
fault Boot Program (SAM-BA Boot Assistant) located in
the first two sectors of the Flash memory. The SAM-BA
Boot Assistant supports serial communications through the
USB Device Port.

LibNXT is a utility library for communicating with the
NXT Brick from a POSIX-compliant host computer using
USB. When the ARM processor is in SAM-BA mode,
LibNXT is able upload the binary image file of the NXT
executable to RAM and then execute it. For Windows host
platforms, the Atmel SAM-BA software is available.
5 Vehicle Prototype
This section describes the steps to have a working NXT
vehicle prototype using Ada 2.

5.1 Functionality
The vehicle has a front castor wheel, free to turn, and two
back wheels, each driven by an independent motor. To
control the vehicle a hardwired joystick made with a touch
sensor to start/stop drive and a motor encoder to control
operation is used. Depending on the angle of the joystick
encoder, different speed commands are sent to the vehicle
motors, thus controlling vehicle motion, see figure 4.

2 Example modified from Bradley et al. [7].

198 Ada User Guide for LEGO MINDSTORMS NXT

Volume 32, Number 3, September 2011 Ada User Journal

Figure 4 Vehicle’s joystick

5.2 Design and assembly
Next step is to assemble a prototype that achieves the above
mentioned functionality. The best way to do so, especially
if dealing with a complex design, is to model it using a
CAD tool. LEGO offers a freeware software to develop
NXT models, LEGO Digital Designer 3 [8]. The vehicle
prototype for this guide was modelled with LDD, see figure
5.

Although it can initially be somehow frustrating, using this
kind of tools decreases assembly time by allowing the
development of several prototypes. It lists the bricks used
and generates a step-by-step building guide for the model.
Figure 6 shows the vehicle prototype fully assembled using
the generated building guide from the LDD model.

Figure 5 LDD model for the vehicle prototype

5.3 Software Architecture
The following are the tasks involved in the software ar-
chitecture of the vehicle prototype:

3 This software is available for Windows and Mac OS. LDraw and
LeoCAD are other CAD software alternatives.

• Control Task: Periodic task that executes every 20
ms. It checks if the touch sensor is pressed (a 20 ms
period to detect a man operated touch sensor is
considered sufficient). In case it is, it gets the value of
the joystick motor encoder to determine the speed
commands that are then stored in the circular buffer.
These speed commands are later sent to the AVR by
the Pump task. The Control_Task task takes the
position of the joystick motor at the beginning of its
execution as reference point. It also checks if the
orange button is pressed to switch off the NXT Brick.

• Display Task: Periodic task that executes every 500
ms with a lower priority than Control_Task. This task
shows the joystick’s position, the execution time and
the battery’s mV on the LCD screen.

• Background procedure: This is just a background
procedure that executes every time the ARM processor
is free.

Although the application performs as expected, the circular
buffer global variable used for the ARM-AVR com-
munications is not thread-safe and a race condition exists.
This race condition may or may not happen, and if it
happens, it does not necessarily mean the performance of
the vehicle will be affected. Nevertheless, it is not a good
programming practice to rely on non controlled access to a
global variable.

There is a thread-safe vehicle version using the 2010
modified AVR drivers that can be downloaded from
http://polaris.dit.upm.es/str/projects/mindstorms/2010.

Figure 6 Vehicle prototype fully assembled

5.4 Software Implementation
Three compilation units are used for the Ada vehicle
application: The main procedure (vehicle.adb) that calls
Background procedure, a package declaration (tasks.ads)
and its body (tasks.adb). The Tasks package includes the
two control tasks (Control_Task and Display_Task), the
empty procedure (Background) and some auxiliary
functions. Listing 1 shows a fragment of tasks.adb
containing the declaration of the two tasks and the
background procedure. When declaring a task, besides
using pragma Priority to establish the static priority, pragma
Storage_Size is used. Pragma Storage_Size specifies the
amount of memory to be allocated for the task stack. Notice
that this pragma is required because of the small amount of
memory available, 64KB of RAM memory. The stack size

P. J. Bradley, J . A. de la Puente, J . Zamorano 199

Ada User Journal Volume 32, Number 3, September 2011

must not be exceeded. If it does, a Storage_Error will be
raised. If this Storage_Size pragma is not used, a compiling
error about RAM overflowing could be prompted.

It must be remembered that the clock resolution defined by
the run-time system is of 1 ms.

-- Background task --

procedure Background is
begin
 loop
 null ;
 end loop;
end Background;

-- Tasks --

task Control_Task is
 pragma Priority (System.Priority ’ First + 2);
 pragma Storage_Size (4096);
end Control_Task;

task Display_Task is
 pragma Priority (System.Priority ’ First + 1);
 pragma Storage_Size (4096);
end Display_Task;

Listing 1: Specification of tasks.

6 Debugging Solution
A remote debugger is an extremely useful tool for an em-
bedded system developer. It can drastically decrease de-
velopment time. There is no open source Ada/C debugging
solution for the NXT. In this section we describe a way to
remotely debug Ada/C programs for the NXT using the
GNU debugger (GDB) and the ARM EmbeddedICE (In-
circuit Emulator) technology. The ARM EmbeddedICE is a
JTAG 4-based debugging channel available on the ARM
main processor. Debugging the NXT from a host computer
through the available JTAG interface is therefore possible.
RAM and Flash programming is also available using this
method.

This solution has been adapted to work on GNU/Linux x86
hosts but it could be easily ported to a Windows platform.

6.1 Overview
The JTAG-based debugging channel provides real-time
access to memory addresses and data dependent watch-
points, step-by-step execution, full control of the central
processing unit and other related debugging features. It
requires no use of memory unlike debugging monitor so-
lutions.

4 JTAG, as defined by the IEEE Std.-1149.1 standard, is an integrated
method for testing interconnects on printed circuit boards (PCBs) that are
implemented at the integrated circuit (IC) level.

The ARM featured EmbeddedICE-compatible macrocell
from the NXT includes an ARM7 core, a small amount of
control logic, a TAP 5 (Test Access Port) controller for the
JTAG interface and an EmbeddedICE macrocell, see figure
7. This EmbeddedICE macrocell has two real-time
watchpoint registers as well as control and status registers.
Each watchpoint register can be configured as a watchpoint
for data access or a breakpoint for instruction fetch. If a
match occurs between the values programmed into the
watchpoint registers and the values of the address bus and
data busses or some specific control signal, the ARM7 core
ceases to read instructions from the data bus and isolates
itself from the memory system entering debug state. Access
to the processor’s state and memory system is then possible
through the JTAG interface using the TAP controller.

GDB provides the remote serial protocol (RSP) for remote
debugging. RSP is a GDB protocol used to send debugging
commands through a serial or Ethernet link. Using a
localhost TCP connection on the developer’s host computer
an OpenOCD daemon processes the commands issued by
GDB.

OpenOCD (The Open On-Chip Debugger) is an open
source tool initially developed by Dominic Rath as part of
his diploma thesis at the University of Applied Sciences
Augsburg [9]. This software provides debugging, in-system
programming and boundary-scan testing for embedded
targets such as the NXT. OpenOCD essentially allows
GDB to talk through a JTAG adapter to the EmbeddedICE-
compatible macrocell on the NXT.

Figure 7 ICE debugging solution for NXT

A JTAG adapter is a piece of hardware that connects the
host computer with the JTAG interface of the remote target.
The JTAG adapter is in charge of adapting the serial

5 a TAP is the core of the JTAG standard. It is a finite state machine that
controls JTAG operations.

200 Ada User Guide for LEGO MINDSTORMS NXT

Volume 32, Number 3, September 2011 Ada User Journal

electric signalling received from OpenOCD, using, in this
case, an FTDI 6 chip, to send the JTAG operations to the
TAP controller. Figure 7 shows the debugging scheme.

6.2 Modifying the NXT Brick
To connect GDB in the host computer with the JTAG
interface of the NXT a JTAG adapter is required. Also, The
NXT Brick PCB has the provision for mounting a JTAG
connector but this has not been mounted to save cost. The
NXT Brick must be opened in order to access the JTAG
interface. Note that by performing this modification
warranty will be lost.

6.2.1 FTDI-based JTAG adapter
An FTDI-based JTAG adapter that is both compatible with
OpenOCD and the main processor of the NXT
(AT91SAM7S256) is required. For this guide the ARM-
USB-TINY-H adapter by Olimex (http://www.olimex.com)
was used. Open On-Chip Debugger: OpenOCD User’s
Guide [10] offers other vendor options.

6.2.2 Tools and materials
• Small Philips head screwdriver.

• Fine wire cutter.

• Wire stripper.

• Soldering iron with a fine tip and solder.

• De-soldering pump.

• Magnifying glass.

• Drill with 4 mm diameter bit.

• Digital multimeter.

• 20 pin 2.54 pitch ribbon cable male connector (ARM
JTAG connector).

• 30 SWG single core polyurethane insulated cable.

6.2.3 NXT Brick disassembly
Take out the battery pack or batteries to gain access to the
four Philips head screws. Unscrew them and remove the
front cover. Remove the silicon rubber buttons’ assembly.

Figure 8 NXT without front cover

6 Hardware solution to interface with USB peripherals.

Find the two screws that hold down the LCD display,
located on each side of it (the two small squares of figure
8). Loosen these screws and carefully lift the LCD display
to get access to the battery terminals that are soldered to the
main PCB. Note that the LCD display cannot be removed
from the PCB board on some models.

Once the two display screws have been removed the two
battery terminals must be de-soldered (the two small circles
of figure 8). To do this, remove the solder with the
soldering iron and the de-soldering pump. When the
terminals are free of solder separate the PCB from the
battery case and remove the input and output connector
supports. Note that there is a small silicone rubber push-
button between the battery case and the PCB.

6.2.4 JTAG connection
Since there was no short delivery 1.27 pitch connectors at
the time, the hard-wired option presented below was used.

Cut 8 equal lengths, at least 100 mm, of the single core
cable and strip 3 mm of insulation on one side. Identify
both ends with an indelible marker. The JTAG interface
(J17 on the PCB) is located below the loudspeaker beside
the quartz crystal (the big square of figure 8). Pin 1 has a
square pad and the remaining pins have round pads. Insert
one by one the stripped ends of the 8 cables in pins 1 -8 and
solder them to the board. This type of wire is used because,
unlike PVC insulation, it supports high temperatures
(155ºC) and makes soldering easy. With the magnifying
glass inspect each solder for bridges between pins. See left
picture from figure 9 for the final result.

Figure 9 Soldered JTAG interface & front cover drilled hole

Drill a 4 mm hole on the front cover of the NXT Brick
directly above the J17 connection as shown in the right
picture of figure 9. As a strain relief bundle the eight wires
together and tie a knot with them 20 mm from the PCB.
Take them through the hole of the front cover and cut them
to length for the connection to the ribbon cable connector
according to figure 10. As the wire used has a smaller
gauge than the connector it is advisable to solder the
connections after inserting them. Therefore, strip the wires,
insert them and solder them. Try to use as little solder as
possible to allow inserting the header in the connector.

P. J. Bradley, J . A. de la Puente, J . Zamorano 201

Ada User Journal Volume 32, Number 3, September 2011

Figure 10 NXT JTAG hardware schematic

Note that the GND connection is only connected to pin 6
because the JTAG adapter used has all the GND pins
internally connected.

6.2.5 Testing the connections
Locate on the NXT Brick PCB resistor R89, check for
continuity with the multimeter in Ω between the top of R89
and pin 2 of the ribbon cable connector (VCC 3V). Check
that the other end of R89 is connected to pin 3 of the ribbon
cable connector (PULL UP 10K). Next, check the GND
connection between pin 6 of the ribbon cable connector and
the negative battery terminal PCB connection (J5). Locate
test points TP82-TP86 on the solder side of the PCB and
check with the multimeter for continuity between them and
the corresponding pins of the ribbon cable connector. Also
check for short-circuits between connections.

Finally, once the connections have been checked, re-
assemble the NXT Brick.

For a more graphical guide on the modification of the NXT
Brick refer to Installing the JTAG connector [11].

6.3 A debugging session
In order to remotely debug programs under GNU/Linux
libusb-0.1, libusb-dev, libftdi1 and libftdi-dev are required.
The FTDI module with the JTAG adapter information will
probably have to be loaded also, once it is plugged in:

$ sudo modprobe -v ftdi_sio vendor=0x... product=0x...

When the NXT has no firmware the orange button must be
pressed. Then, when a clicking sound is heard, the JTAG
adapter must be plugged to the NXT. Next, arm-eabi-
openocd must be run with a specific configuration script:

$ arm-eabi-openocd -f debug-ram.cfg

This configuration file is a setup for OpenOCD that es-
tablishes communications with the NXT EmbeddedICE
macrocell. The script usually contains the daemon
configuration that establishes communications with GDB,
the configuration for the adapter, the board, the target and
some init commands. JTAG adapter vendors usually pro-
vide this OpenOCD script and in case they do not, the
share/openocd/scripts folder from the install directory
contains generic configuration files. For further information
refer to Open On-Chip Debugger: OpenOCD User’s Guide
[10].

When OpenOCD handshakes with the NXT successfully
GDB must be run with the executable as parameter, not
with the binary image:

$ arm-eabi-gdb executable_name

Any breakpoints should be added at this point. After, the
gdbinit script, see listing 2, must be run:

gdb> source gdbinit

Cross-debugging is now possible.

Init command
target remote localhost:3333

OpenOCD command to halt the processor
and wait
monitor soft_reset_halt

OpenOCD command to select the core state
monitor arm core_state arm

set flash wait state (AT91C_MC_FMR)
monitor mww 0xffffff60 0x00320100

watchdog disable (AT91C_WDTC_WDMR)
monitor mww 0xfffffd44 0xa0008000

enable main oscillator (AT91C_PMC_MOR)
monitor mww 0xfffffc20 0xa0000601

wait 100 ms
monitor sleep 100

set PLL register (AT91C_PMC_PLLR)
monitor mww 0xfffffc2c 0x00480a0e

wait 200 ms
monitor sleep 200

set master clock to PLL (AT91C_PMC_MCKR)
monitor mww 0xfffffc30 0x7

wait 100 ms
monitor sleep 100

enable user reset AT91C_RSTC_RMR
monitor mww 0xfffffd08 0xa5000401

force a peripheral RESET AT91C_RSTC_RCR
monitor mww 0xfffffd00 0xa5000004

toggle the remap register to place RAM
at 0x00000000
monitor mww 0xffffff00 0x01

set the PC to 0x00000000

202 Ada User Guide for LEGO MINDSTORMS NXT

Volume 32, Number 3, September 2011 Ada User Journal

monitor reg pc 0x00000000

enable use of software breakpoints
monitor gdb_breakpoint_override soft
monitor arm7_9 dbgrq enable

upload the application
load

resume execution from reset vector
continue

Listing 2 GDB init script

This GDB script basically sets the ARM processor to ex-
ecute the application and set some debugging features. The
script used is a modified version of that presented in Using
Open Source Tools for AT91SAM7S Cross Development by
James P. Lynch [12].

7 Conclusions
This guide shows the basics for Ada development using
LEGO MINDSTORMS NXT. The Ravenscar profile run-
time system offers concurrency Ada programming while
making possible a schedulability analysis of the system.
Ada development on the NXT presents a whole perspective
of an embedded system with real-time constraints.

At a reasonable price the NXT kit offers all kinds of
sensors and mechanisms to work with, even custom-made
sensors can be developed.

Development and sharing of Ada projects with the NXT
would be of great interest, in the same way as other
complex models like Rubik’s cube solvers, Segway robots,
scanners, etc. have been developed using other program-
ming languages and shared.

The Ada community is encouraged to use this development
platform that, besides the fun, can be an interesting
teaching asset.

It is important to note that all of the tools used, except
LDD, are open source and therefore there is no dependence
on software vendors. All of the source code is available and
can by modified.

Acknowledgements
The authors would like to thank AdaCore for their work
adapting the Ravenscar run-time system and developing the
Ada drivers for the LEGO MINDSTORMS NXT platform.

References
[1] Burns A., Dobbing B., Vardanega T. Guide for the use

of the Ada Ravenscar Profile in high integrity systems.

Ada Letters 2004 June;XXIV:1–74. Available from:
http://doi.acm.org/10.1145/997119. 997120.

[2] LEGO. LEGO MINDSTORMS NXT Hardware De-
veloper Kit; Version 1.00. Available from: http:
//mindstorms.lego.com.

[3] LEGO. LEGO MINDSTORMS NXT ARM7 Blue-
tooth Developer Kit; Version 1.00. Available from:
http://mindstorms.lego.com.

[4] AdaCore. GNAT Pro User’s Guide, Supplement for
High-Integrity Edition Platforms; 2011. The GNAT
Ada Compiler. GNAT GPL Edition, Version 2011
Document revision level 175263.

[5] Std. 8652:1995/Amd 1:2007 — Ada 2005 Reference
Manual. Language and Standard Libraries; 2007.
Published by Springer-Verlag, ISBN 978-3-540-
69335-2.

[6] de la Puente J. A., Ruiz J. F., Zamorano J. An Open
Ravenscar Real-Time Kernel for GNAT. In: Pro-
ceedings of the 5th Ada-Europe International Con-
ference on Reliable Software Technologies. Ada-
Europe ’00. London, UK: Springer-Verlag; 2000. p.
5-15. Available from: http://portal.acm.org/
citation.cfm?id=646579.697613.

[7] Bradley P. J., de la Puente J. A., Zamorano J. Real-
time system development in Ada using LEGO
MINDSTORMS NXT. In: Proceedings of the ACM
SIGAda annual international conference on SIGAda.
SIGAda’10. New York, NY, USA: ACM; 2010. p.
37-40. Available from: http://doi.acm.org/10.1145/
1879063.1879077.

[8] LEGO. LEGO Digital Designer 4.1 User Manual;
2011. Available from: http://ldd.lego.com.

[9] Rath D. Open On-Chip Debugger. Design and
Implementation of an On-Chip Debug Solution for
Embedded Target Systems based on the ARM7 and
ARM9 Family. University of Applied Sciences Augs-
burg; 2005.

[10] Brownell D. Open On-Chip Debugger: OpenOCD
User’s Guide; 2011. Available from: http://
openocd.berlios.de.

[11] IAR. Installing the JTAG connector. IAR Kick-Start
for LEGO MINDSTORMS NXT; 2009. Available
from: http://www.iar.com/website1/1.0.1.0/1483/1.

[12] Lynch J. P. Using Open Source Tools for
AT91SAM7S Cross Development. Grand Island, New
York, USA; 2007. Revision C.

204

Volume 32, Number 3, September 2011 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Rationale for Ada 2012: Introduction
	The Implementation of High Integrity Data Structures
	“Crimeville” – using Ada inside an on-line multi-user game
	Ada User Guide for LEGO MINDSTORMS NXT
	National Ada Organizations

