

Forthcoming Events 243

Ada User Journal Volume 32, Number 4, December 2011

Program

Following tradition, the conference will span a full week, including a three-day technical program with the latest
scientific advances in reliable software technologies and Ada. Attendees will have a varied choice of half-day and
full-day tutorials that will be offered on Monday and Friday, either side of the central days of the conference.
Tutorials consist of courses given by recognised experts in their respective fields, which deal with up-to-date
technologies for the development of reliable software. Ada-Europe 2012 will also encompass panels and parallel
industrial and vendor tracks.

The program of the conference will offer ample time for interaction and networking, with extensive lunch and
coffee periods and a banquet being held on Wednesday, at Östermalms Saluhall, a marketplace food hall in a
magnificent building from 1888.

Ada-Europe 2012 will build on the success of the 2011 event, in Edinburgh, UK, on June 20-24, which attracted
over 130 delegates coming from Belgium, Brazil, Canada, Denmark, Egypt, Finland, France, Germany, Israel, Italy,
Norway, Poland, Portugal, Russia, Slovakia, South Africa, Spain, Sweden, Switzerland, The Netherlands, UK and
USA, representing more than 20 universities and 50 companies.

Further Information

The conference website at http://www.ada-europe.org/conference2012 will provide full and up-to-
date details of the program, venue and social program, accommodation and travel advice. For exhibiting and
sponsoring details please contact the Conference Chair, Ahlan Marriott, at ahlan@ada-switzerland.ch.

Organization

Conference Chair

Ahlan Marriott
White Elephant GmbH, Switzerland
ahlan@ada-switzerland.ch

Program Co-Chairs

Mats Brorsson
KTH Royal Institute of Technology, Sweden
matsbror@kth.se

Luís Miguel Pinho
CISTER Research Centre/ISEP, Portugal
lmp@isep.ipp.pt

Tutorial Chair

Albert Llemosí
Universitat de les Illes Balears, Spain
albert.llemosi@uib.cat

Industrial Chair

Jørgen Bundgaard
Rovsing A/S, Denmark
jbg@rovsing.dk

Publicity Chair

Dirk Craeynest
Aubay Belgium & K.U.Leuven, Belgium
dirk.craeynest@cs.kuleuven.be

Local Chair

Rei Stråhle
Ada-Sweden
rei@ada-sweden.org

ACM SIGAda, SIGBED, SIGPLAN

244 Forthcoming Events

Volume 32, Number 4, December 2011 Ada User Journal

Preliminary Call for Technical Contributions
SIGAda 2012

ACM Annual International Conference
on Ada and Related Technologies:

Engineering Safe, Secure, and Reliable Software
Boston, Massachusetts USA

Autumn 2012
Submission Deadline: June 29, 2012

Sponsored by ACM SIGAda (ACM approval pending)
http://www.acm.org/sigada/conf/sigada2012

SUMMARY: Reliability, safety, and security are among the most critical requirements of contemporary
software. The application of software engineering methods, tools, and programming languages all interrelate to
affect how and whether these requirements are met.
Such software is in operation in many application domains. Much has been accomplished in recent years, but
much remains to be done. Our tools, methods, and languages must be continually refined; our management
process must remain focused on the importance of reliability, safety, and security; our educational institutions
must fully integrate these concerns into their curricula.
The conference will gather industrial and government experts, educators, software engineers, and researchers
interested in developing, analyzing, and certifying reliable, safe, long-lived, secure software. We are soliciting
technical papers and experience reports with a focus on, or comparison with, Ada.
We are especially interested in experience in integrating these concepts into the instructional process at all levels.

POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:
• Ada 2012
• Ada and SPARK in universities
• Language selection for highly reliable systems
• Mixed-language development
• Ada and multicore
• Use of high reliability profiles such as Ravenscar
• Software safety standards such as DO-178B and
DO-178C
• System of Systems
• Real-time networking/quality of service guarantees
• Analysis, testing, and validation
• Use of ASIS for new Ada tool development

• High-reliability development experience reports
• Static and dynamic analysis of code
• Integrating COTS software components
• System Architecture & Design including Service-
Oriented Architecture and Agile Development
• Information Assurance
• Ada products certified against Common Criteria /
Common Evaluation Methodology
• Distributed systems
• Fault tolerance and recovery
• Comparisons with other language technologies
• Cyber Security and Ada

KINDS OF TECHNICAL CONTRIBUTIONS:
TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically
10-20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings
and in ACM Ada Letters. The Proceedings will be entered into the widely-consulted ACM Digital Library
accessible online to university campuses, ACM's 100,000 members, and the software community.
EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature.
If your abstract is accepted, you will be expected to produce a full paper, which will appear in the proceedings.
Extended abstracts will be double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its
relationship with previous work by you and others (with bibliographic references), results to date, and future
directions.

Forthcoming Events 245

Ada User Journal Volume 32, Number 4, December 2011

EXPERIENCE REPORTS present timely results on the application of Ada and related technologies. Submit a
1-2 page description of the project and the key points of interest of project experiences. Descriptions will be
published in the final program or proceedings, but a paper will not be required.

PANEL SESSIONS gather a group of experts on a particular topic who present their views and then exchange
views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic,
coordinator, and potential panelists.

WORKSHOPS are focused work sessions, which provide a forum for knowledgeable professionals to explore
issues, exchange views, and perhaps produce a report on a particular subject. A list of planned workshops and
requirements for participation will be published in the Advance Program. Workshop proposals, up to 5 pages in
length, will be selected by the Program Committee based on their applicability to the conference and potential for
attracting participants.

TUTORIALS offer the flexibility to address a broad spectrum of topics relevant to Ada, and those enabling
technologies which make the engineering of Ada applications more effective. Submissions will be evaluated
based on relevance, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial proposals
should include the expected level of experience of participants, an abstract or outline, the qualifications of the
instructor(s), and the length of the tutorial (half-day or full-day).

INDUSTRIAL PRESENTATIONS Authors of industrial presentations are invited to submit a short overview (at
least 1 page in size) of the proposed presentation to the Industrial Committee Chair by August 1st 2012. The
authors of selected presentations shall prepare a final short abstract and submit it to the Committee Chair by
October 1st, 2012, aiming at a 30-minute talk. The authors of accepted presentations will be invited to submit
corresponding articles for publication in the ACM Ada Letters.

HOW TO SUBMIT: For details on proposal deadlines and how to submit, please visit the conference website:
www.acm.org/sigada/conf/sigada2012

FURTHER INFORMATION:
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and
university curricula. The Conference welcomes a grant application from anyone whose goals meet this
description. The benefits include full conference registration with proceedings and registration costs for 2 days of
conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students from
GNAT Academic Program member institutions, which can be combined with conference grants. For more details
visit the conference web site or contact Prof. Michael B. Feldman (MFeldman@gwu.edu)

OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper
selected by the program committee as the outstanding student contribution to the conference.

SPONSORS AND EXHIBITORS: For information about becoming a sponsor and/or exhibitor at SIGAda 2012,
please visit the conference website: www.acm.org/sigada/conf/sigada2012

IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be
particularly aware and careful about visa requirements, and should plan travel well in advance. Please visit the
conference website for detailed information pertaining to visas.

ANY QUESTIONS?
Please contact the SIGAda Vice-Chair Conferences/Meetings, Alok Srivastava (Alok.Srivastava@auatac.com),
the Conference Chair, Ben Brosgol (brosgol@adacore.com), or the SIGAda Chair, Ricky E. Sward
(rsward@mitre.org).

 247

Ada User Journal Volume 32, Number 4, December 2011

Rationale for Ada 2012:
1 Contracts and aspects
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract
This paper describes the mechanisms for including
contracts in Ada 2012.
The main feature is that preconditions and
postconditions can be given for subprograms. In
addition, invariants can be given for types and
predicates can be given for subtypes.
In attempting to find a satisfactory way of adding
these features it was found expedient to introduce the
concept of an aspect specification for describing
properties of entities in general. It is thus convenient
to describe aspect specifications in this paper.
Keywords: rationale, Ada 2012.

1 Overview of changes
The WG9 guidance document [1] identifies very large
complex systems as a major application area for Ada. It
further identifies four areas for improvements, one of
which is

 Improving the ability to write and enforce contracts for
Ada entities (for instance, via preconditions).

The idea of contracts has been a cornerstone of
programming for many years. The very idea of specifying
parameters for subroutines is a simple form of contract
going back to languages such as Fortran over half a century
ago.

More recently the idea of contracts has been brought to the
fore by languages such as SPARK and Eiffel.

SPARK is, as many readers will be aware, a subset of Ada
with annotations providing assertions regarding state
embedded as Ada comments. The subset excludes features
such as access types and dynamic dispatching but it does
include Ravenscar tasking and generics. The subset was
chosen to enable the contracts to be proved prior to
execution. Thus SPARK is a very appropriate vehicle for
real programs that just have to be correct because of
concerns of safety and security.

Eiffel, on the other hand, is a language with a range of
dynamic facilities much as in Ada and has found favour as
a vehicle for education. Eiffel includes mechanisms
describing contracts which are monitored on a dynamic
basis at program execution.

The goal of this amendment to Ada is to incorporate
matters such as pre- and postconditions but with the
recognition that they are, like those in Eiffel, essentially for
checking at runtime.

Adding pre- and postconditions and similar features has
had quite a wide ranging impact on Ada and has required
much more flexibility in many areas such as the form of
expressions which will be addressed in later papers.

The following Ada issues cover the key changes and are
described in detail in this paper:

145 Pre- and postconditions

146 Type invariants

153 Subtype predicates

183 Aspect specifications

191 Aliasing predicates

228 Default initial values for types

229 Specifiable aspects

230 Inheritance of null procedures with precondition

243 Clarification of categorization

247 Preconditions, postconditions, multiple inheritance
 and dispatching calls

250 Thoughts on type invariants

254 Do we really have contracts right?

267 Improvements for aspect specifications

These changes can be grouped as follows.

First we lay the syntactic foundations necessary to
introduce features such as preconditions by discussing
aspect specifications which essentially replace or provide
an alternative to pragmas for specifying many features
(183, 229, 243, 267).

Then we discuss the introduction of pre- and postconditions
on subprograms including the problems introduced by
multiple inheritance (145, 230, 247, 254).

Two other related topics are type invariants and subtype
predicates which provide additional means of imposing
restrictions on types (146, 153, 250).

248 Rat ionale for Ada 2012: 1 Contracts and aspects

Volume 32, Number 4, December 2011 Ada User Journal

Finally, two auxiliary features are the ability to provide
default values for scalar types and array types (228) and
means of checking that aliasing does not occur between
two objects (191).

2 Aspect specifications
Although in a sense the introduction of aspect
specifications is incidental to the main themes of Ada 2012
which are contracts, real-time, and containers, the clarity
(and some might say upheaval) brought by aspect
specifications merits their description first.

An early proposal to introduce preconditions was by the
use of pragmas. Thus to give a precondition not Is_Full to
the usual Push procedure acting on a stack S and a
corresponding postcondition not Is_Empty, it was proposed
that this should be written as

pragma Precondition(Push, not Is_Full(S));
pragma Postcondition(Push, not Is_Empty(S));

But this looks ugly and is verbose since it mentions Push in
both pragmas. Moreover, potential problems with
overloading means that it has to be clarified to which
procedure Push they apply if there happen to be several. As
a consequence it was decreed that the pragmas had to apply
to the immediately preceding subprogram. Which of course
is not the case with pragma Inline which with overloading
applies to all subprograms with the given name. Other
curiosities include the need to refer to the formal
parameters of Push (such as S) so that the expression has to
be resolved taking heed of these even though it is detached
from the actual specification of Push.

Other pragmas proposed were Inherited_Precondition and
Inherited_Postcondition for use with dispatching
subprograms.

So it was a mess and an alternative was sought. The
solution which evolved was to get away from wretched
pragmas in such circumstances. Indeed, the Ada 83
Rationale [2] says "In addition, a program text can include
elements that have no influence on the meaning of the
program but are included as information and guidance for
the human reader or for the compiler. These are:
Comments; Pragmas..."

So pragmas were meant to have no effect on the meaning
of the program. Typical pragmas in Ada 83 were List,
Inline, Optimize and Suppress. But in later versions of Ada,
pragmas are used for all sorts of things. The days when
pragmas had no effect are long gone!

The basic need was to tie the pre- and postconditions
syntactically to the specification of Push so that there could
be no doubt as to which subprogram they applied; this
would also remove the need to mention the name of the
subprogram again. And so, as described in the introductory
paper (in the previous issue of this esteemed journal) we
now have

procedure Push(S: in out Stack; X: in Item)
 with

 Pre => not Is_Full(S),
 Post => not is Empty(S);

The syntax for aspect specification is

aspect_specification ::=
 with aspect_mark [=> expression] { ,
 aspect_mark [=> expression] }

and this can be used with a variety of structures,
subprogram declaration being the example here.

Note especially the use of the reserved word with. Serious
attempts were made to think of another word so as to avoid
using with again but nothing better was suggested.

It might be thought that it would be confusing to use with
which is firmly associated with context clauses. However,
recall that with has also been used to introduce generic
formal subprogram parameters without causing confusion
since 1983. Thus

generic
 with function This ...
procedure That ...

Moreover, Ada 95 introduced the use of with for type
extension as in

type Circle is new Object with
 record
 Radius: Float;
 end record;

So in Ada 95 there were already three distinct uses and a
fourth one will surely do no harm. It's a versatile little
word.

Any risk of confusion is easily avoided by using a sensible
layout. Thus a with clause should start on a new line at the
left and aligned with the following unit to which it applies.
A formal generic parameter starting with with should be
aligned with other formal parameters and indented after the
word generic. In the case of type extension, with should be
at the end of the line. Finally, in the case of aspect
specifications, with should be at the beginning of a line and
indented after the entity to which it applies.

Having introduced aspect specifications which are
generally so much nicer than pragmas, it was decided to
allow aspect specifications for all those situations where
pragmas are used and an aspect specification makes sense.
And then to make most of the pragmas obsolete.

Before looking at the old pragmas concerned in detail, two
general points are worth noting.

The usual linear elaboration rules do not apply to the
expression in an aspect specification. It is essentially sorted
out at the freezing point of the entity to which the aspect
applies. The reason for this was illustrated by an example
in the Introduction which was

type Stack is private
 with
 Type_Invariant => Is_Unduplicated(Stack);

J. G. P. Barnes 249

Ada User Journal Volume 32, Number 4, December 2011

The problem here is that the function Is_Unduplicated
cannot be declared before that of the type Stack and yet it is
needed in the aspect specification of the declaration of
Stack. So there is a circularity which is broken by saying
that the elaboration of aspect specifications is deferred.

The other general point is that some aspects essentially take
a Boolean value. For example the pragma Inline is replaced
by the aspect Inline so that rather than writing

procedure Do_It(...);
pragma Inline(Do_It);

we now write

procedure Do_It(...)
 with Inline;

The aspect Inline has type Boolean and so we could write

procedure Do_It(...)
 with Inline => True;

To have insisted on this would have been both pedantic and
tedious and so in the case of a Boolean aspect there is a rule
that says that => True can be omitted and True is then taken
by default. Note however that omitting the whole aspect by
just writing

procedure Do_It(...);

results of course in the Inline aspect of Do_It being False.

A mad programmer could even use defaults for
preconditions and postconditions. Thus writing

procedure Curious(...)
 with Pre;

in which by default the precondition is taken to be True,
results in the Curious procedure always being called.

We will now consider the fate of the various pragmas in
Ada 2005. Some are replaced by aspect specifications and
the pragmas made obsolete (of course, they can still be
used, but should be discouraged in new programs). Some
are paralleled by aspect specifications and the user left with
the choice. Some are unchanged since for various reasons
aspect specifications were inappropriate. Some pragmas are
new to Ada 2012 and born obsolete.

The following are the obsolete pragmas with some
examples of corresponding aspect specifications

The pragmas Inline, No_Return, and Pack are examples
having Boolean aspect. We can now write

procedure Do_It(...)
 with Inline;
procedure Fail(...)
 with No_Return;
type T is ...
 with Pack;

Some thought was given as to whether the name of the
Pack aspect should be Packing rather than Pack because
this gave better resonance in English. But the possible

confusion in having a different name to that of the pragma
overrode the thought of niceties of (human) language.

Curiously enough the old pragmas Inline and No_Return
could take several subprograms as argument but naturally
the aspect specification is explicitly given to each one.

If several aspects are given to a procedure then we simply
put them together thus

procedure Kill
 with Inline, No_Return;

rather than having to supply several pragmas (which
careless program maintenance might have scattered
around).

In the case of a procedure without a distinct specification,
the aspect specification goes in the procedure body before
is thus

procedure Do_It(...)
 with Inline is
 ...
begin
 ...
end Do_It;

This arrangement is because the aspect specification is very
much part of the specification of the subprogram. This will
be familiar to users of SPARK where we might have

procedure Do_It(...)
--# global in out Stuff;
is ...

If a subprogram has a distinct specification then we cannot
give a language-defined aspect specification on the body;
this avoids problems of conformance. If there is a stub but
no specification then any aspect specification goes on the
stub but not the body. Thus aspect specifications go on the
first of specification, stub, and body but are never repeated.
Note also that we can give aspect specifications on other
forms of stubs and bodies such as package bodies, task
bodies and entry bodies but none are defined by the
language.

In the case of a stub, abstract subprogram, and null
subprogram which never have bodies, the aspect
specification goes after is separate, is abstract or is null
thus

procedure Action(D: in Data) is separate
 with Convention => C;
procedure Enqueue(...) is abstract
 with Synchronization => By_Entry;
procedure Nothing is null
 with Something;

The above example of the use of Synchronization is from
the package Synchronized_Queue_Interrfaces, a new child
of Ada.Containers as mentioned in the Introduction.

The same style is followed by the newly introduced
expression functions thus

250 Rat ionale for Ada 2012: 1 Contracts and aspects

Volume 32, Number 4, December 2011 Ada User Journal

function Inc (A: Integer) return Integer is (A + 1)
 with Inline;

Other examples of Boolean aspects are Atomic, Volatile, and
Independent. We now write for example

Converged: Boolean := False
 with Atomic;

The aspects Atomic_Components, Volatile_Components
and Independent_Components are similar.

The three pragmas Convention, Import and Export are
replaced by five aspects, namely Import, Export,
Convention, External_Name and Link_Name.

For example, rather than, (see [3] page 702)

type Response is access procedure (D: in Data);
pragma Convention(C, Response);
procedure Set_Click(P: in Response);
pragma Import(C, Set_Click);
procedure Action(D: in Data) is separate;
pragma Convention(C, Action);

we now more neatly write

type Response is access procedure (D: in Data)
 with Convention => C;
procedure Set_Click(P: in Response)
 with Import, Convention => C;
procedure Action(D: in Data) is separate
 with Convention => C;

Note that the aspects can be given in any order whereas in
the case of pragmas, the parameters had to be in a particular
order. We could have written with Import => True but that
would have been pedantic. As another example (see the
RM 7.4), instead of

CPU_Identifier: constant String(1 .. 8);
pragma Import(Assembler,
 CPU_Identifier, Link_Name => "CPU_ID");

we now have

CPU_Identifier: constant String(1 .. 8)
 with Import, Convention => Assembler,
 Link_Name => "CPU_ID";

Observe that we always have to give the aspect name such
as Convention whereas with pragmas Import and Export, the
parameter name Convention was optional. Clearly it is
better to have to give the name.

The pragma Controlled which it may be recalled told the
system to keep its filthy garbage collector off my nice
access type is plain obsolete and essentially abandoned. It
is doubted whether it was ever used. The subclause of the
RM (13.11.3) relating to this pragma is now used by a new
pragma Default_Storage_Pools which will be discussed in a
later paper.

The pragma Unchecked_Union is another example of a
pragma replaced by a Boolean aspect. So we now write

type Number(Kind: Precision) is
 record
 ...
 end record
 with Unchecked_Union;

Many obsolete pragmas apply to tasks. The aspect
Storage_Size takes an expression of any integer type. Thus
in the case of a task type without a task definition part (and
thus without is and matching end) we write

task type T
 with Storage_Size => 1000;

In the case of a task type with entries we write

task type T
 with Storage_Size => 1000 is
 entry E ...
 ...
end T;

The interrupt pragmas Attach_Handler and Interrupt_
Handler now become

procedure P(...)
 with Interrupt_Handler;

which specifies that the protected procedure P can be a
handler and

procedure P(...)
 with Attach_Handler => Some_Id;

which actually attaches P to the interrupt Some_Id.

The pragmas Priority and Interrupt_Priority are replaced by
corresponding aspect specifications for example

task T
 with Interrupt_Priority => 31;
protected Object
 with Priority => 20 is -- ceiling priority

Note that a protected type or singleton protected object
always has is and the aspect specification goes before it.

Similarly, instead of using the pragma Relative_Deadline
we can write

task T
 with Relative_Deadline => RD;

The final existing pragma that is now obsolete is the
pragma Asynchronous used in the Distributed Systems
Annex and which can be applied to a remote procedure or
remote access type. It is replaced by the Boolean aspect
Asynchronous.

That covers all the existing Ada 2005 pragmas that are now
obsolete.

Two new pragmas in Ada 2012 are CPU and
Dispatching_Domain but these are born obsolete. Thus we
can write either of

task My Task is
 pragma CPU(10);
or

J. G. P. Barnes 251

Ada User Journal Volume 32, Number 4, December 2011

task My_Task
 with CPU => 10 is

and similarly

task Your_Task is
 pragma Dispatching_Domain(Your_Domain);

or

task Your_Task
 with Dispatching_Domain => Your_Domain is

The reason for introducing these pragmas is so that existing
tasking programs with copious use of pragmas such as
Priority can use the new facilities in a similar style. It was
considered inelegant to write

task My_Task
 with CPU => 10 is
 pragma Priority(5);

and a burden to have to change programs to

task My_Task
 with CPU => 10, Priority => 5 is

So existing programs, can be updated to

task My_Task is
 pragma CPU(10);
 pragma Priority(5);

(One other pragma that was never born was Implemented
which turned into the aspect Synchronization often used to
ensure that an abstract procedure is actually implemented
by an entry as illustrated earlier.)

A number of existing pragmas are paralleled by aspect
specifications but the pragmas are not made obsolete.
Examples are the pragmas relating to packages such as
Pure, Preelaborate, Elaborate_Body and so on.

Thus we can write either of

package P is
 pragma Pure(P);
end P;

or

package P
 with Pure is
end P;

The author prefers the former but some avant garde
programmers might like to use the latter.

Note that Preelaborable_Initialization is unusual in that it
cannot be written as an aspect specification for reasons that
need not bother us.

Finally, there are many pragmas that do not relate to any
particular entity and so for which an aspect specification
would be impossible.

These include Assert and Assertion_Policy, Suppress and
Unsuppress, Page and List, Optimize and Restrictions.

As well as replacing pragmas, aspect specifications can be
used instead of aspect clauses.

For example rather than

type Byte is range 0 .. 255;

followed (perhaps much later) by

for Byte'Size use 8;

we can now write

type Byte is range 0 .. 255
 with Size => 8;

Similarly

type My_Float is digits 20
 with Alignment => 16;
Loose_Bits: array (1 .. 10) of Boolean
 with Component_Size => 4;
type Cell_Ptr is access Cell
 with Storage_Size => 500 * Cell'Size / Storage_Unit,
 Storage_Pool => Cell_Ptr_Pool;
S: Status
 with Address => 8#100#;
type T is delta 0.1 range –1.0 .. +1.0
 with Small => 0.1;

But we cannot use this technique to replace an enumeration
representation clause or record representation clause. Thus
although we can write

type RR is
 record
 Code: Opcode;
 R1: Register;
 R2: Register;
 end record
with Alignment => 2, Bit_Order => High_Order_First;

the layout information has to be done by writing

for RR use
 record
 Code at 0 range 0 .. 7;
 R1 at 1 range 0 .. 3;
 R2 at 1 range 4 .. 7;
 end record;

It is interesting to note that attribute definition clauses and
at clauses were not made redundant in the way that many
pragmas were made redundant. This is because there are
things that one can do with attribute definition clauses that
cannot be done with aspect specifications. For example a
visible type can be declared in a visible part and then
details of its representation can be given in a private part.
Thus we might have

package P is
 type T is ...
private
 Secret_Size: constant := 16;
 for T'Size use Secret_Size;
end P;

252 Rat ionale for Ada 2012: 1 Contracts and aspects

Volume 32, Number 4, December 2011 Ada User Journal

It's not that convincing because the user can use the
attribute T'Size to find the Secret_Size anyway. But some
existing programs are structured like that and hence the
facility could hardly be made redundant.

The examples above have shown aspect specifications with
the following constructions: subprogram declaration,
subprogram body, stub, abstract subprogram declaration,
null procedure declaration, full type declaration, private
type declaration, object declaration, package declaration,
task type declaration, single task declaration, and single
protected declaration. In addition they can be used with
subtype declaration, component declaration, private
extension declaration, renaming declaration, protected type
declaration, entry declaration, exception declaration,
generic declaration, generic instantiation, and generic
formal parameter declaration.

The appropriate layout should be obvious. In the case of a
large structure such as a package specification and any
body, the aspect specification goes before is. But when
something is small and all in one piece such as a procedure
specification, stub, null procedure, object declaration or
generic instantiation any aspect specification goes at the
end of the declaration; it is then more visible and less likely
to interfere with the layout of the rest of the structure.

In some cases such as exception declarations there are no
language defined aspects that apply but implementations
might define them.

3 Preconditions and postconditions
We will look first at the simple case when inheritance is not
involved and then look at more general cases.

To apply a precondition Before and/or a postcondition After
to a procedure P we write

procedure P(P1: in T1; P2: in out T2; P3: out T3)
 with Pre => Before,
 Post => After;

where Before and After are expressions of a Boolean type
(that is of type Boolean or a type derived from it).

The precondition Before and the postcondition After can
involve the parameters P1 and P2 and P3 and any visible
entities such as other variables, constants and functions.
Note that Before can involve an out parameter such as P3
(if necessary it will be copied in to enable this).

The attribute X'Old will be found useful in postconditions;
it denotes the value of X on entry to P. Old is typically
applied to parameters of mode in out such as P2 but it can
be applied to any visible entity such as a global variable.
This can be useful for monitoring global variables which
are updated by the call of P. But note that 'Old can only be
used in postconditions and not in arbitrary text and it
cannot be applied to objects of a limited type.

Perhaps surprisingly 'Old can also be applied to parameters
of mode out. For example, in the case of a parameter of a
record type that is updated as a whole, nevertheless we
might want to check that a particular component has not

changed. Thus in updating some personal details, such as
address and occupation, we might want to ensure that the
person's date of birth and sex are not tampered with by
writing

Post => P.Sex = P.Sex'Old and P.Dob = P.Dob'Old

In the case of an array, we can write A(I)'Old which is the
same as A'Old(I'Old) which means the original value of A(I).
But A(I'Old) is different since it is the component of the
final value of A but indexed by the old value of I.

Remember that the result of a function is an object and so
'Old can be applied to it. Note carefully the difference
between F(X)'Old and F(X'Old). The former applies F to X
on entry to the subprogram and saves it. The latter saves X
and applies F to it when the postcondition is evaluated.
These could be different because the function F might also
involve global variables which have changed.

Generally 'Old can be applied to anything but there are
restrictions on its use in certain conditional structures in
which it can only be applied to statically determined
objects. The details will be given in a later paper when we
look at expressions in general.

(The collector of Ada curiosities might be amused to note
that we can write

subtype dlo is Character;

and then in a postcondition we could have

dlo'('I')'old

which is palindromic. If the subtype were blo rather than
dlo then the expression would be mirror reflective!

I am grateful to Jean-Pierre Rosen for this example.)

In the case of a postcondition applying to a function F, the
result of the function is denoted by the attribute F'Result.
Again this attribute can only be used in postconditions.

Some trivial examples of declarations of a procedure Pinc
and function Finc to perform an increment are

procedure Pinc(X: in out Integer)
 with Post => X = X'Old+1;
function Finc(X: Integer) return Integer
 with Post => Finc'Result = X'Old+1;

Preconditions and postconditions are controlled by the
pragma Assertion_Policy. They are enabled by

pragma Assertion_Policy(Check);

and disabled by using parameter Ignore. It is the value in
effect at the point of the subprogram declaration that
matters. So we cannot have a situation where the policy
changes during the call so that preconditions are switched
on but postconditions are off or vice versa.

And so the overall effect of calling P with checks enabled
is roughly that, after evaluating any parameters at the point
of call, it as if the body were

J. G. P. Barnes 253

Ada User Journal Volume 32, Number 4, December 2011

if not Before then -- check precondition
 raise Assertion_Error;
end if;
evaluate and store any 'Old stuff;
call actual body of P;
if not After then -- check postcondition
 raise Assertion_Error;
end if;
copy back any by-copy parameters;
return to point of call;

The exceptions Assertion_Error are propagated and so
raised at the point of call; they cannot be handled inside P.
Of course, if the evaluation of Before or After themselves
raise some exception then that will similarly be propagated
to the point of call.

Note that conditions Pre and Post can also be applied to
entries.

Before progressing to the problems of inheritance it is
worth reconsidering the purpose of pre- and postconditions.

 A precondition Before is an obligation on the caller to
ensure that it is true before the subprogram is called and
it is a guarantee to the implementer of the body that it
can be relied upon on entry to the body.

 A postcondition After is an obligation on the
implementer of the body to ensure that it is true on
return from the subprogram and it is a guarantee to the
caller that it can be relied upon on return.

The symmetry is neatly illustrated by the diagram below

 Pre Post

Call writer obligation guarantee

Body writer guarantee obligation

The simplest form of inheritance occurs with derived types
that are not tagged. Suppose we declare the procedure Pinc
as above with the postcondition shown and supply a body

procedure Pinc(X: in out Integer) is
begin
 X := X+1;
end Pinc;

and then declare a type

type Apples is new Integer;

then the procedure Pinc is inherited by the type Apples. So
if we then write

No_Of_Apples: Apples;
...
Pinc(No_Of_Apples);

what actually happens is that the code of the procedure Pinc
originally written for Integer is called and so the
postcondition is inherited automatically.

If the user now wants to add a precondition to Pinc that the
number of apples is not negative then a completely new
subprogram has to be declared which overrides the old one
thus

procedure Pinc(X: in out Apples)
 with Pre => X >= 0,
 Post => X = X'Old+1;

and a new body has to be supplied (which will of course in
this curious case be essentially the same as the old one). So
we cannot inherit an operation and change its conditions at
the same time.

We now turn to tagged types and first continue to consider
the specific conditions Pre and Post. As a perhaps familiar
example, consider the hierarchy consisting of a type Object
and then direct descendants Circle, Square and Triangle.

Suppose the type Object is

type Object is tagged
 record
 X_Coord, Y_Coord: Float;
 end record;

and we declare a function Area thus

function Area(O: Object) return Float
 with Pre => O.X_Coord > 0.0,
 Post => Area'Result = 0.0;

This imposes a requirement on the caller that the function is
called only with objects with positive x-coordinate (for
some obscure reason), and a requirement on the
implementer of the body that the area is zero (raw objects
are just points and have no area).

If we now declare a type Circle as

type Circle is new Object with
 record
 Radius: Float;
 end record;

and override the inherited function Area then the Pre and
Post conditions on Area for Object are not inherited and we
have to supply new ones, perhaps

function Area(C: Circle)
 with Pre => C.X_Coord - C.Radius > 0.0,
 Post => Area'Result > 3.1 * C.Radius**2 and
 Area'Result < 3.2 * C.Radius**2;

The conditions ensure that all of the circle is in the right
half-plane and that the area is about right!

So the rules so far are exactly as for the untagged case. If
an operation is not overridden then it inherits the conditions
from its ancestor but if it is overridden then those
conditions are lost and new ones have to be supplied. And
if no new ones are supplied then they are by default taken
to be True.

In conclusion, the conditions Pre and Post are very much
part of the actual body. One consequence of this is that an

254 Rat ionale for Ada 2012: 1 Contracts and aspects

Volume 32, Number 4, December 2011 Ada User Journal

abstract subprogram cannot have Pre and Post conditions
because an abstract subprogram has no body.

We now turn to the class wide conditions Pre'Class and
Post'Class which are subtly different. The first point is that
the class wide ones apply to all descendants as well even if
the operations are overridden. In the case of Post'Class if
an overridden operation has no condition given then it is
taken to be True (as in the case of Post). But in the case of
Pre'Class, if an overridden operation has no condition
given then it is only taken to be True if no other Pre'Class
applies (no other is inherited). We will now look at the
consequences of these rules.

It might be that we want certain conditions to hold
throughout the hierarchy, perhaps that all objects concerned
have a positive x-coordinate and nonnegative area. In that
case we can use class wide conditions.

function Area(O: Object) return Float
 with Pre'Class => O.X_Coord > 0.0,
 Post 'Class => Area'Result >= 0.0;

Now when we declare Area for Circle, Pre'Class and
Post'Class from Object will be inherited by the function
Area for Circle. Note that within a class wide condition a
formal parameter of type T is interpreted as of T'Class.
Thus O is of type Object'Class and thus applies to Circle.
The inherited postcondition is simply that the area is not
negative and uses the attribute 'Result.

If we do not supply conditions for the overriding Area for
Circle and simply write

overriding
function Area(C: Circle) return Float;

then the precondition inherited from Object still applies. In
the case of the postcondition not only is the postcondition
from Object inherited but there is also an implicit
postcondition of True. So the applicable conditions for Area
for Circle are

Pre'Class for Object
Post'Class for Object
True

Suppose on the other hand that we give explicit Pre'Class
and Post'Class for Area for Circle thus

overriding
function Area(C: Circle return Float)
 with Pre'Class => ,
 Post'Class => ... ;

We then find that the applicable conditions for Area for
Circle are

Pre'Class for Object
Pre'Class for Circle
Post'Class for Object
Post'Class for Circle

Incidentally, it makes a lot of sense to declare the type
Object as abstract so that we cannot declare pointless
objects. In that case Area might as well be abstract as well.

Although we cannot give conditions Pre and Post for an
abstract operation we can still give the class wide
conditions Pre'Class and Post'Class.

If the hierarchy extends further, perhaps Equilateral_
Triangle is derived from Triangle which itself is derived
from Object, then we could add class wide conditions to
Area for Triangle and these would also apply to Area for
Equilateral_Triangle. And we might add specific conditions
for Equilateral_Triangle as well. So we would then find that
the following apply to Area for Equilateral_Triangle

Pre'Class for Object
Pre'Class for Triangle
Pre for Equilateral Triangle
Post'Class for Object
Post'Class for Triangle
Post for Equilateral_Triangle

The postconditions are quite straightforward, all apply and
all must be true on return from the function Area. The
compiler can see all these postconditions when the code for
Area is compiled and so they are all checked in the body.
Note that any default True makes no difference because B
and True is the same as B.

However, the rules regarding preconditions are perhaps
surprising. The specific precondition Pre for
Equilateral_Triangle must be true (checked in the body) but
so long as just one of the class wide preconditions
Pre'Class for Object and Triangle is true then all is well.
Note that class wide preconditions are checked at the point
of call. Do not get confused over the use of the word apply.
They all apply but only the ones seen at the point of call are
actually checked.

The reason for this state of affairs concerns dispatching and
especially redispatching. Consider the case of Ada airlines
which has Basic, Nice and Posh passengers. Basic
passengers just get a seat. Nice passengers also get a meal
and Posh passengers also get a limo. The types
Reservation, Nice_Reservation and Posh_Reservation form
a hierarchy with Nice_Reservation being extended from
Reservation and so on. The facilities are assigned when a
reservation is made by calling an appropriate procedure
Make thus

procedure Make(R: in out Reservation) is
begin
 Select_Seat(R);
end Make;

procedure Make(NR: in out Nice_Reservation) is
begin
 Make(Reservation(NR));
 Order_Meal(NR);
end Make;

procedure Make(PR: in out Posh_Reservation) is
 Make(Nice_Reservation(PR));
 Arrange_Limo(PR);
end Make;

J. G. P. Barnes 255

Ada User Journal Volume 32, Number 4, December 2011

Each Make calls its ancestor in order to avoid duplication
of code and to ease maintenance.

A variation involving redispatching introduces two
different procedures Order_Meal, one for Nice passengers
and one for Posh passengers. We then need to ensure that
Posh passengers also get a posh meal rather than a nice
meal. We write

procedure Make(NR: in out Nice_Reservation) is
begin
 Make(Reservation(NR));
 -- now redispatch to appropriate Order_Meal
 Order_Meal(Nice_Reservation'Class(NR));
end Make;

Now suppose we have a precondition Pre'Class on
Order_Meal for Nice passengers and one on Order_Meal for
Posh passengers. The call of Order_Meal sees that it is for
Nice_Reservation'Class and so the code includes a test of
Pre'Class on Nice_Reservation. It does not necessarily
know of the existence of the type Posh_Reservation and
cannot check Pre'Class on that Order_Meal. At a later date
we might add Supersonic passengers (RIP Concorde) and
this can be done without recompiling the rest of the system
so it certainly cannot do anything about checking Pre'Class
on Order_Meal for Supersonic_Reservation which does not
exist when the call is compiled. So when we eventually get
to the body of one of the procedures Order_Meal all we
know is that some Pre'Class on Order_Meal has been
checked somewhere. And that is all that the writer of the
code of Order_Meal can rely upon. Note that nowhere does
the compiled code actually "or" a lot of preconditions
together.

In summary, class wide preconditions are checked at the
point of call. Class wide postconditions and both specific
pre- and postconditions are checked in the actual body.

A small point to remember is that a class wide operation
such as

procedure Do_It(X: in out T'Class);

is not a primitive operation of T and so although we can
specify Pre and Post for Do_It we cannot specify Pre'Class
and Post'Class for Do_It.

We now turn to the question of multiple inheritance and
progenitors.

We noted above that the aspects Pre and Post cannot be
specified for an abstract subprogram because it doesn't have
a body. They cannot be given for a null procedure either,
since we want all null procedures to be identical and do
nothing and that includes no conditions.

In the case of multiple inheritance we have to consider the
so-called Liskov Substitutability Principle (LSP). The usual
consequence of LSP is that in the case of preconditions
they are combined with "or" (thus weakening) and the rule
for postconditions is that they are combined with "and"
(thus strengthening). But the important thing is that a
relevant concrete operation can be substituted for the
corresponding operations of all its relevant ancestors.

In Ada, a type T can have one parent and several
progenitors. Thus we might have

type T is new P and G1 and G2 with ...

where P is the parent and G1 and G2 are progenitors.
Remember that a progenitor cannot have components and
cannot have concrete operations (apart possibly for null
procedures). So the operations of the progenitors have to be
abstract or null and cannot have Pre and Post conditions.
However, they can have Pre'Class and Post'Class
conditions. It is possible that the same operation Op is
primitive for more than one of these. Thus the progenitors
G1 and G2 might both have an operation Op thus

procedure Op(X: G1) is abstract;
procedure Op(X: G2) is abstract;

If they are conforming (as they are in this case) then the
one concrete operation Op of the type T derived from both
G1 and G2 will implement both of these. (If they don't
conform then they are simply overloadings and two
operations of T are required). Hence the one Op for T can
be substituted for the Op of both G1 and G2 and LSP is
satisfied.

Now suppose both abstract operations have pre- and
postconditions. Take postconditions first, we might have

procedure Op(X: G1) is abstract
 with Post'Class => After1;

procedure Op(X: G2) is abstract
 with Post'Class => After2;

Users of the Op of G1 will expect the postcondition After1
to be satisfied by any implementation of that Op. So if
using the Op of T which implements the abstract Op of G1,
it follows that Op of T must satisfy the postcondition
After1. By a similar argument regarding G2, it must also
satisfy the postcondition After2.

It thus follows that the effective postcondition on the
concrete Op of T is as if we had written

procedure Op(X: T)
 with Post'Class => After1 and After2;

But of course we don't actually have to write that since we
simply write

overriding
procedure OP(X: T);

and it automatically inherits both postconditions and the
compiler inserts the appropriate code in the body.
Remember that if we don't give a condition then it is True
by default but anding in True makes no difference.

If we do provide another postcondition thus

overriding
procedure OP(X: T)
 with Post'Class => After_T;

then the overall class wide postcondition to be checked
before returning will be After1 and After2 and After_T.

256 Rat ionale for Ada 2012: 1 Contracts and aspects

Volume 32, Number 4, December 2011 Ada User Journal

Now consider preconditions. Suppose the declarations of
the two versions of Op are

procedure Op(X: G1) is abstract
 with Pre'Class => Before1;

procedure Op(X: G2) is abstract
 with Pre'Class => Before2;

Assuming that there is no corresponding Op for P, we must
provide a concrete operation for T thus

overriding
procedure Op(X: T)
 with Pre'Class => Before_T;

This means that at a point of call of Op the precondition to
be checked is Before_T or Before1 or Before2. As long as
this is satisfied it does not matter that Before1 and Before2
might have been different.

If we do not provide an explicit Pre'Class then the
condition to be checked at the point of call is Before1 or
Before2.

An interesting case arises if a progenitor (say G1) and the
parent have a conforming operation. Thus suppose P itself
has the operation

procedure Op(X: P);

and moreover that the operation is not abstract. Then
(ignoring preconditions for the moment) this Op for P is
inherited by T and thus provides a satisfactory
implementation of Op for G1 and all is well.

Now suppose that Op for P has a precondition thus

procedure OP(X: P)
 with Pre'Class => Before_P;

and that Before_P and Before1 are not the same. This is
rather confusing if we do not provide an explicit overriding
for Op. So in this case there is a rule that an explicit
overriding is required for Op for T.

If Op for P is abstract then a concrete Op for T must be
provided and the situation is just as in the case for the Op
for G1 and G2.

If T itself is declared as abstract (and P is not abstract and
Op for P is concrete) then the inherited Op for T is abstract.

(These rules are similar to those for functions returning a
tagged type when the type is extended; it has to be
overridden unless the type is abstract in which case the
inherited operation is abstract.)

We finish this somewhat mechanical discussion of the rules
by pointing out that if silly inappropriate preconditions are
given then we will get a silly program.

At the end of the day, the real point is that programmers
should not write preconditions that are not sensible and
sensibly related to each other. Because of the generality,
the compiler cannot tell so stupid things are hard to
prohibit. There is no defence against stupid programmers.

A concrete example using simple numbers might help.
Suppose we have a tagged type T1 and an operation Solve
which takes a parameter of type T1 and perhaps finds the
solution to an equation defined by the components of T1.
Solve delivers the answer in a parameter A with a
parameter D giving the number of significant digits
required in the answer. Also we impose a precondition on
the number of digits D thus

type T1 is tagged record ...
procedure Solve(X: in T1; A: out Float; D: in Integer)
 with Pre'Class => D < 5;

The intent here is that the version of Solve for the type T1
always works if the number of significant digits asked for is
less than 5.

Now suppose we declare a type T2 derived from T1 and
that we override the inherited Solve with a new version that
works if the number of significant digits asked for is less
than 10

type T2 is new T1 with ...
overriding
procedure Solve(X: in T2; A: out Float; D: in Integer)
 with Pre'Class => D < 10;

And so on with a type T3

type T3 is new T2 with ...
overriding
procedure Solve(X: in T3; A: out Float; D: in Integer)
 with Pre'Class => D < 15;

Thus we have a hierarchy of algorithms Solve with
increasing capability.

Now suppose we have a dispatching call

An_X: T1'Class := ... ;
Solve(An_X, Answer, Digs);

this will dispatch to one of the Solve procedures but we do
not know which one. The only precondition that applies is
that on the Solve for T1 which is D < 5. That is fine because
D < 5 implies D < 10 and D < 15 and so on. Thus the
preconditions work because the hierarchy weakens them.

Similarly, if we have

An_X: T2'Class := ... ;
Solve(An_X, Answer, Digs);

then it will dispatch to a Solve for one of T2, T3, ..., but not
to the Solve for T1. The applicable preconditions are D < 5
and D < 10 and these are notionally ored together which
means D < 10 is actually required. To see this suppose we
supply D = Digs = 7. Then D < 5 is False but D < 10 is True
so by oring False and True we get True, so the call works.

On the other hand if we write

An_X: T2 := ... ;
Solve(An_X, Answer, Digs);

then no dispatching is involved and the Solve for T2 is
called. But both class wide preconditions D < 5 and D < 10

J. G. P. Barnes 257

Ada User Journal Volume 32, Number 4, December 2011

apply and so again the resulting ored precondition that is
required is D < 10.

Now it should be clear that if the preconditions do not form
a weakening hierarchy then we will be in trouble. Thus if
the preconditions were D < 15 for T1, D < 10 for T2, and D
< 5 for T3, then dispatching from the root will only check D
< 15. However, we could end up calling the Solve for T2
which expects the precondition D < 10 and this might not
be satisfied.

Care is thus needed with preconditions that they are
sensibly related.

4 Type invariants
Type invariants are designed for use with private types
where we want some relationship to always hold between
components of the type. Like pre- and postconditions there
are both specific invariants that can be applied to any type
and class wide invariants that can only be applied to tagged
types.

One example mentioned above and discussed in the
Introduction was a type Stack with specific invariant
Is_Unduplicated. Thus we write

type Stack is private
 with Type_Invariant => Is_Unduplicated(Stack);

After calls of Push and Pop and any other operations that
manipulate the stack, the function Is_Unduplicated is called
to ensure that there are no duplicates on the stack.

The monitoring is controlled by the pragma
Assertion_Policy in the same way as pre- and
postconditions. If an invariant fails (that is, has value False)
then Assertion_Error is raised.

The invariant Is_Unduplicated is a curious example because
it cannot be violated by Pop anyway since if there were no
duplicates then removing the top item cannot make one
appear.

Moreover, Push needs to ensure that the item to be added is
not a duplicate of one on the stack already and so
essentially much of the checking is repeated. Indeed, when
writing Push we should be able to assume that no items are
already duplicated and hence all we need to do is check that
the new item to be added is not equal to one of the existing
items (so n comparisons). However, a general function
Is_Unduplicated will need to compare all pairs and thus
require a double loop (so n(n+1)/2 comparisons).

The reader is invited to meditate over this conundrum.
One's first reaction might be that this is a bad example.
However, one way to ensure reliability is to introduce
redundancy. Thus if the encoding of Is_Unduplicated and
Push are done independently then there is an increased
probability that any error will be detected.

The aspect Type_Invariant requires an expression of a
Boolean type. The mad programmer could therefore also
write

type Stack is private
 with Type_Invariant;
which would thus be True by default and so useless!
Actually it might not be entirely useless since it might act
as a placeholder for an invariant to be defined later and
meanwhile the program will compile and execute.

Type invariants are useful whenever a type is more than
just the sum of its components. Note carefully that the
invariant may not hold when an object is being manipulated
by a subprogram having access to the full type. In the case
of Push and Pop and the invariant Is_Unduplicated this will
not happen but consider the following simple example.

Suppose we have a type Point which describes the position
of an object in a plane. It might simply be

type Point is
 record
 X, Y: Float;
 end record;

Now suppose we want to ensure that all points are within a
unit circle. We could ensure that a point lies within a square
by means of range constraints by writing

type Point is
 record
 X, Y: Float range –1.0 .. +1.0;
 end record;

but we need to ensure that X**2 + Y**2 is not greater than
1.0, and that cannot be done by individual constraints. So
we might declare a type Disc_Pt with an invariant as
follows

package Places is

 type Disc_Pt is private
 with Type_Invariant => Check_In(Disc_Pt);
 function Check_In(D: Disc_Pt) return Boolean;
 ... -- various operations on disc points
private

 type Disc_Pt is
 record
 X, Y: Float range –1.0 .. +1.0;
 end record;
 function Check_In(D: Disc_Pt) return Boolean is
 (D.X**2 + D.Y**2 <= 1.0)
 with Inline;

end Places;

Note that we have used an expression function for
Check_In. Expression functions were outlined in the
Introduction and will be discussed in detail in the next
paper. They are very useful for small functions in situations
like this and typically will be given the aspect Inline as
shown.

Now suppose that we wish to make available to the user a
procedure Flip that reflects a Disc_Pt in the line x = y, or in
other words interchanges its X and Y components. The
body might be

258 Rat ionale for Ada 2012: 1 Contracts and aspects

Volume 32, Number 4, December 2011 Ada User Journal

procedure Flip(D: in out Disc_Pt) is
 T: Float; -- temporary
begin
 T := D.X; D.X := D.Y; D.Y := T;
end Flip;

This works just fine but note that just before the assignment
to D.Y, it is quite likely that the invariant does not hold. If
the original value of D was (0.1, 0.8) then at the
intermediate stage it will be (0.8, 0.8) and so well outside
the unit circle.

So there is a general principle that an intermediate value
not visible externally need not satisfy the invariant. There is
an analogy with numeric types. The intermediate value of
an expression can fall outside the range of the type but will
be within range when the final value is assigned to the
object. For example, suppose type Integer is 16 bits (a
small machine) but the registers perform arithmetic in 32
bits, then a statement such as

J := K * L / M;

could easily produce an intermediate result K * L outside the
range of Integer but the final value could be in range.

In many cases it will not be necessary for the user to know
that a type invariant applies to the type; it is after all merely
a detail of the implementation. So perhaps the above should
be rewritten as

package Places is
 type Disc_Pt is private;

 ... -- various operations on disc points
private
 type Disc_Pt is
 record
 X, Y: Float range –1.0 .. +1.0;
 end record
 with Type_Invariant =>
 Disc_Pt.X**2 + Disc_Pt.Y**2 <= 1.0;

end Places;

In this case we do not need to declare a function Check_In
at all. Note the use of the type name Disc_Pt in the
invariant expression. This is another example of the use of
a type name to denote a current instance (this is familiar
from way back in Ada 83 with task type names).

We now turn to consider the places where a type invariant
on a private type T is checked. These are basically when it
can be changed from the point of view of the outside user.
They are

▪ after default initialization of an object of type T,

▪ after a conversion to type T,

▪ after assigning to a view conversion having a part of
type T,

▪ after a call of T'Read or T'Input,

▪ after a call of a subprogram declared in the immediate
scope of T and visible outside that returns a result with a

part of type T or has an out or in out or access
parameter with a part of type T.

Note that by saying a part of type T, the checks not only
apply to subprograms with parameters and results of type T
but they also apply to parameters and results whose
components are of the type T or are view conversions
involving the type T.

Beware, however, that the checks do not extend to deeply
nested situations, such as components with components that
are access values to objects that themselves involve type T
or worse. Thus there are holes in the protection offered by
type invariants. However, if the types are straightforward
and the writer does not do foolish things like surreptitiously
export access types referring to T then all will be well. It is
another example of there being no defence against foolish
programmers.

The checks on type invariants regarding parameters and
results can be conveniently implemented in the body of the
subprogram in much the same way as for postconditions.
This saves duplicating the code of the tests at each point of
call.

If a subprogram such as Flip which is visible outside is
called from inside then the checks still apply. This is not
strictly necessary of course, but fits the simple model of the
checks being in the body and so simplifies the
implementation.

If an untagged type is derived then any existing specific
invariant is inherited for inherited operations. However, a
further invariant can be given as well and both will apply to
the inherited operations. This fits in with the model of view
conversions used to describe how an inherited subprogram
works on derivation. The parameters of the derived type are
view converted to the parent type before the body is called
and back again afterwards. As mentioned above, view
conversions are one of the places where invariants are
checked.

However, if we add new operations then the old invariant
does not apply to them. In truth, the specific invariant is not
really inherited at all; it just comes along for free with the
inherited operations that are not overridden. So if we do
add new operations then we need to state the total invariant
required.

Note that this is not quite the same model as specific
postconditions. We cannot add postconditions to an
inherited operation but have to override it and then any
specific postconditions on the parent are lost. In any event,
in both cases, if we want to use inheritance then we should
really use tagged types and class wide aspects.

So there is also an aspect Type_Invariant'Class for use with
private tagged types. The distinction between
Type_Invariant and Type_Invariant 'Class has similarities to
that between Post and Post'Class.

The specific aspect Type_Invariant can be applied to any
type but Type_Invariant'Class can only be applied to tagged

J. G. P. Barnes 259

Ada User Journal Volume 32, Number 4, December 2011

types. A tagged type can have both an aspect
Type_Invariant and Type_Invariant 'Class.

Type_Invariant cannot be applied to an abstract type.

Type_Invariant'Class is inherited by all derived types; it can
also be applied to an abstract type.

Note the subtle difference between Type_Invariant and
Type_Invariant'Class. Type_Invariant'Class is inherited for
all operations of the type but as noted above Type_Invariant
is only incidentally inherited by the operations that are
inherited.

An interesting rule is that Type_Invariant'Class cannot be
applied to a full type declaration which completes a private
type such as Disc_Pt in the example above. This is because
the writer of an extension will need to see the applicable
invariants and this would not be possible if they were in the
private part.

So if we have a type T with a class wide invariant thus

type T is tagged private
 with Type_Invariant'Class => F(T);
procedure Op1(X: in out T);
procedure Op2(X: in out T);

and then write

type NT is new T with private
 with Type_Invariant'Class => FN(NT);
 overriding
 procedure Op2(X: in out NT);
 not overriding
 procedure Op3(X: in out NT);

then both invariants F and FN will apply to NT.

Note that the procedure Op1 is inherited unchanged by NT,
procedure Op2 is overridden for NT and procedure Op3 is
added.

Now consider various calls. The calls of Op1 will involve
view conversions as mentioned earlier and these will apply
the checks for FN and the inherited body will apply the
checks for F. The body of Op2 will directly include checks
for F and FN as will the body of Op3. So the invariant F is
properly inherited and all is well.

Remember that if the invariants were specific and not class
wide then although Op1 will have checks for F and FN,
Op2 and Op3 will only check FN.

In the case of the type Disc_Pt we might decide to derive a
type which requires that all values are not only inside the
unit circle but outside an inner circle – in other words in an
annulus or ring. We use the class wide invariants so that the
parent package is

package Places is
 type Disc_Pt is tagged private
 with Type_Invariant'Class => Check_In(Disc_Pt);

 function Check_In(D: Disc_Pt) return Boolean;
 ... -- various operations on disc points
private

 type Disc_Pt is tagged
 record
 X, Y: Float range –1.0 .. +1.0;
 end record;

 function Check_In(D: Disc_Pt) return Boolean is
 (D.X**2 + D.Y**2 <= 1.0)
 with Inline;

end Places;

And then we might write

package Places.Inner is
 type Ring_Pt is new Disc_Pt with null record
 with Type_Invariant'Class => Check_Out(Ring_Pt);

 function Check_Out(R: Ring_Pt) return Boolean;

private

 function Check_Out(R: Ring_Pt) return Boolean is
 (R.X**2 + R.Y**2 >= 0.25)
 with Inline;

end Places.Inner;

And now the type Ring_Pt has both its own type invariant
but also that inherited from Disc_Pt thereby ensuring that
points are within the ring or annulus. It is unfortunate that
we could not make the size of the inner circle a
discriminant but a discriminant cannot be of a real type. Ah
well, perhaps in Ada 2019??

Finally, it is worth emphasizing that it is good advice not to
use inheritance with specific invariants but they are
invaluable for checking internal and private properties of
types.

5 Subtype predicates
The final major facility to be discussed here is subtype
predicates. These are not really contractual in the sense that
preconditions, postconditions and invariants are contractual
but are more akin to constraints.

Subtype predicates are of two kinds, Static_Predicate and
Dynamic_Predicate. They can be applied to subtype
declarations and to type declarations using aspect
specifications. For example, in the Introduction we met

subtype Even is Integer
 with Dynamic_Predicate => Even mod 2 = 0;

subtype Winter is Month
 with Static_Predicate => Winter in Dec | Jan | Feb;

The predicates take an expression of a Boolean type and
again we note the use of the subtype name to denote the
current instance. In the case of Dynamic_Predicate, the
expression can be any Boolean expression.

However, in the case of Static_Predicate, the expression is
restricted and can only be

▪ a static membership test where the choice is selected by
the current instance,

▪ a static case expression selected by the current instance,

260 Rat ionale for Ada 2012: 1 Contracts and aspects

Volume 32, Number 4, December 2011 Ada User Journal

▪ a call of the predefined operations =, /=, <, <=, >, >=
where one operand is the current instance,

▪ an ordinary static expression,

and, in addition, a call of a Boolean logical operator and,
or, xor, not whose operands are such static predicate
expressions, and, a static predicate expression in
parentheses.

So we see that the predicate in the subtype Even cannot be
a static predicate because the operator mod is not permitted
with the current instance. But mod could be used in an
inner static expression.

However, the predicate in the subtype Winter can be a static
predicate because it takes the from of a membership test
where the choice is selected by the current instance and
whose individual items are static. Note that membership
tests are considerably enhanced in Ada 2012; further details
will be given in a later paper. Another useful example of
this kind is

subtype Letter is Character
 with Static_Predicate => Letter in 'A' .. 'Z' | 'a' .. 'z';

Static case expressions are valuable because they provide
the comfort of covering all values of the current instance.
Suppose we have a type Animal

type Animal is (Bear, Cat, Dog, Horse, Wolf);

We could then declare a subtype of friendly animals

subtype Pet is Animal
 with Static_Predicate => Pet in Cat | Dog | Horse;

and perhaps

subtype Predator is Animal
 with Static_Predicate => not (Predator in Pet);

or equivalently

subtype Predator is Animal
 with Static_Predicate => Predator not in Pet;

Now suppose we add Rabbit to the type Animal. Assuming
that we consider that rabbits are pets and not food, we
should change Pet to correspond but we might forget with
awkward results. Maybe we have a procedure Hunt which
aims to eliminate predators

procedure Hunt(P: in out Predator);

and we will find that our poor rabbit is hunted rather than
petted!

What we should have done is use a case expression
controlled by the current instance thus

subtype Pet is Animal
 with Static_Predicate =>
 (case Pet is
 when Cat | Dog | Horse => True,
 when Bear | Wolf => False);

and now if we add Rabbit to Animal and forget to update
Pet to correspond then the program will fail to compile.

Note that a similar form of if expression where the current
instance has to be of a Boolean type would not be useful
and so is excluded.

Subtype predicates, like pre- and postconditions and type
invariants are similarly monitored by the pragma
Assertion_Policy. If a predicate fails (that is, has value
False) then Assertion_Error is raised.

Subtype predicates are checked in much the same sort of
places as type invariants. Thus

▪ on a subtype conversion,

▪ on parameter passing (which covers expressions in
general),

▪ on default initialization of an object.

Note an important difference from type invariants. If a type
invariant is violated then the damage has been done. But
subtype predicates are checked before any damage is done.
This difference essentially arises because type invariants
apply to private types and can become temporarily false
inside the defining package as we saw with the procedure
Flip applying to the type Disc_Pt.

If an object is declared without initialization and no default
applies then any subtype predicate might be false in the
same way that a subtype constraint might be violated.

Beware that subtype predicates like type invariants are not
foolproof. Thus in the case of a record type they apply to
the record as a whole but they are not checked if an
individual component is modified.

Subtype predicates can be given for all types in principle.
Thus we might have

type Date is
 record
 D: Integer range 1 .. 31;
 M: Month;
 Y: Integer;
 end record;

and then

subtype Winter_Date is Date
 with Dynamic_Predicate => Winter_Date.M in Winter;

Note how this uses the subtype Winter which was itself
defined by a subtype predicate. However, Winter_Date has
to have a Dynamic_Predicate because the selector is not
simply the current instance but a component of it.

We can now declare and manipulate a Winter_Date

WD: Winter_Date := (25, Dec, 2011);
...
Do_Date(WD);

and the subtype predicate will be checked on the call of
Do_Date. However, beware that if we write

WD.Month := Jun; -- dodgy

J. G. P. Barnes 261

Ada User Journal Volume 32, Number 4, December 2011

then the subtype predicate is not checked because we are
modifying an individual component and not the record as a
whole.

Subtype predicates can be given with type declarations as
well as with subtype declarations. Consider for example
declaring a type whose only allowed values are the possible
scores for an individual throw when playing darts. These
are 1 to 20 and doubles and trebles plus 50 and 25 for an
inner and outer bull's eye. We could write these all out
explicitly

type Score is new Integer
 with Static_Predicate =>
 Score in 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12
 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21
 | 22 | 24 | 25 | 26 | 27 | 28 | 30 | 32 | 33
 | 34 | 36 | 38 | 39 | 40 | 42 | 45 | 48 | 50
 | 51 | 54 | 57 | 60;

But that is rather boring and obscures the nature of the
predicate. We can split it down by first defining individual
subtypes for doubles and trebles as follows

subtype Single is Integer range 1 .. 20;
subtype Double is Integer
 with Static_Predicate =>
 Double in 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20;

subtype Treble is Integer
 with Static_Predicate =>
 Treble in 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30;
subtype Score is Integer
 with Static_Predicate =>
 Score in Single or Score in Double or
 Score in Treble or Score in 25 | 50;

Note that it would be neater to write

subtype Score is Integer
 with Static_Predicate =>
 Score in Single | Double | Treble | 25 | 50;

Observe that it does not matter that the individual
predicates overlap. That is a score such as 12 is a Single, a
Double and a Treble.

If we do not mind the predicates being dynamic then we
can write

subtype Double is Integer
 with Dynamic_Predicate =>
 Double mod 2 = 0 and Double / 2 in Single;

and so on. Or we could even use a quantified expression

subtype Double is Integer
 with Dynamic_Predicate =>
 (for some K in Single => Double = 2*K);

or go all the way in one lump

type Dyn_Score is new Integer
 with Dynamic_Predicate =>
 (for some K in 1 .. 20 =>
 Score = K or Score = 2*K or Score = 3*K)
 or Score in 25 | 50;

There are some restrictions on the use of subtypes with
predicates.

If a subtype has a static or dynamic predicate then it cannot
be used as an array index subtype. This is to avoid arrays
with holes. So we cannot write

type Winter_Hours is array (Winter) of Hours; -- illegal
type Hits is array (Score range <>) of Integer; -- illegal

Similarly, we cannot use a subtype with a predicate to
declare the range of an array object or to select a slice. So if
we have

type Month_Days is array (Month range <>) of Integer;
The_Days: Month_Days := (31, 28, 31, 30, ...);

then we cannot write

Winter_Days: Month_Days(Winter); -- illegal array
The_Days(Winter) := (Jan | Dec => 31, Feb => 29);
 -- really nasty illegal slice

However, a subtype with a static predicate can be used in a
for loop thus

for W in Winter loop ...

and in a named aggregate such as

(Winter => 10.0, others => 14.0); -- OK

but a subtype with a dynamic predicate cannot be used in
these ways. Actually the named aggregate restriction is
slightly more complicated. If the original subtype is not
static such as

subtype To_N is Integer range 1 .. N;

then if To_N has a static predicate it still cannot be used in
a named aggregate.

These rules can also be illustrated by considering the
dartboard. We might like to accumulate a count of the
number of times each particular score has been achieved.
So we might like to declare

type Hit_Count is array (Score) of Integer; -- illegal

but sadly this would result in an array with holes and so is
forbidden. However, we could declare an array from 1 to
60 and then initialize it with 0 for those components used
for hits and –1 for the unused components thus

type Hit_Count is array (1 .. 60) of Integer :=
 (Score => 0, others => –1);

and we can use Score to indicate the used components.

The Hit_Count array can then be updated by the value of
each hit as expected

A_Hit: Score := ... ; -- next dart
Hit_Count(A_Hit) := Hit_Count(A_Hit) + 1;

If we attempt to assign a value of type Integer which is not
in the subtype Score to A_Hit then Assertion_Error is raised.

After the game, we can now loop through the subtype
Score and print out the number of times each hit has been

262 Rat ionale for Ada 2012: 1 Contracts and aspects

Volume 32, Number 4, December 2011 Ada User Journal

achieved and perhaps accumulate the total at the same time
thus

for K in Score loop
 New_Line; Put(Hit); Put(Hit_Count(K));
 Total := Total + K * Hit_Count(K);
end loop;

The reason for the distinction between static and dynamic
predicates is that the static form can be implemented as
small sets with static operations on the small sets. Hence
the loop

for K in Score loop ...

can be implemented simply as a sequence of 43 iterations.
However, a loop such as

for X in Even loop ...

which might look innocuous requires iterating over the
whole set of integers. Thus we insist on having to write

for X in Integer loop
 if X in Even then ...

which makes the situation quite clear.

Another restriction on the use of subtypes with predicates is
that the attributes First, Last and Range cannot be applied.
But Pred and Succ are permitted because they apply to the
underlying type. As a consequence, if a generic body uses
First, Last or Range on a formal type and the actual type
has a subtype predicate then Program_Error is raised.

Subtype predicates can be applied to abstract types but not
to incomplete types.

Subtype predicates are inherited as expected on derivation.
Thus if we have

type T is ...
 with Static_Predicate => SP(T);

and then

type NT is new T
 with Dynamic_Predicate => DP(NT);

the result is that both predicates apply to NT rather as if we
had written the predicate as SP(NT) and DP(NT). So if
several apply they are anded together. If any one is
dynamic then restrictions on the use of subtypes with a
dynamic predicate apply.

There is no need for special predicates for class wide types
in the way that we have both Type_Invariant and
Type_Invariant'Class. So in the general case where a tagged
type is derived from a parent and several progenitors

type T is new P and G1 and G2 with ...

where P is the parent and G1 and G2 are progenitors, the
subtype predicate applicable to T is simply those for P, G1
and G2 all anded together.

6 Default initial values
It is often important that we can rely upon an object having
a value within its subtype even before it is assigned to and

this especially applies in the face of type invariants and
subtype predicates. Consider a type Location whose type
invariant In_Place requires the point to be within some
place.

package Places is
 type Location is private
 with Type_Invariant => In_Place(Location);
 function In_Place(L: Location) return Boolean;
 procedure Do_It(X: in out Location; ...);

private
 type Location is
 record
 X, Y: Float range –1.0 .. +1.0;
 end record;

 ...
end Places;

If we just declare an object of type Location thus

Somewhere: Location;

then there is no guarantee that Somewhere is anywhere in
particular. If the type invariant In_Place applies and a
subprogram with an in out parameter such as Do_It is
called

Do_It(Somewhere);

then it might be that some paths through Do_It do not
assign a new value to X. Nevertheless, on return from
Do_It, the type invariant In_Place will be checked on the
parameter. If Somewhere by chance had an accidental
initial value outside the space implied by In_Place then the
call will fail. Now it might be that other parameters of the
procedure indicate to the caller that Somewhere has not
been updated in this case but unfortunately this information
is unlikely to be available to the invariant.

One solution to this is to ensure that objects always have an
initial value satisfying the requisite constraints, predicates
or invariants. One might do this by assigning a safe initial
value thus

Somewhere: Location := (0.0, 0.0); -- illegal

but this is illegal because the type is private. We could of
course export from the package Places a safe initial value
so that we could write

Somewhere: Location := Places.Haven;

But this is often frowned upon because giving an explicit
initial value can hide flow errors. It is thus best to ensure
that the object automatically has a safe default value by
writing perhaps

 type Location is
 record
 X, Y: Float range –1.0 .. +1.0 := 0.0;
 end record;

It is curious that Ada allows default initial values for
components of records and provides them automatically for
access types (null) but not for scalar types or for array

J. G. P. Barnes 263

Ada User Journal Volume 32, Number 4, December 2011

types. This is remedied in Ada 2012 by the introduction of
aspects Default_Value and Default_Component_Value for
scalar types and arrays of scalar types respectively. The
format is as expected

type My_Float is digits 20
 with Default_Value => 0.5;

type OK is new Boolean
 with Default_Value => True;

The usual rule regarding the omission of => True does not
apply in the case of Default_Value for Boolean types for
obvious reasons.

If possible, a special value indicating the status of the
default should be supplied. This particularly applies to
enumeration types. For example

type Switch is (On, Off, Unknown)
 with Default_Value => Unknown;

In the case of an array type this can be constrained or
unconstrained and the default value will apply to all
components.

type Vector is array (Integer range <>) of Integer
 with Default_Component_Value => 0;

Default initial values cannot be given to the predefined
types but they can be given to types derived from them
such as the Boolean type OK above.

In the case of a private type, any default has to be given on
the full type declaration.

It is important to note that default initial values can only be
given for types and not for subtypes. If a default initial
value lies outside the range of a subtype then declaring an
object of a subtype without its own specific initial value
will raise Constraint_Error. So writing

subtype Known_Switch is Switch range On .. Off;
A_Switch: Known_Switch;

raises Constraint_Error because the default initial value
Unknown is outside the range of the subtype
Known_Switch.

If a record type is declared and some components are given
initial values but others are not then explicitly given initial
values take precedence over default values given by these
aspects. Thus if we have

 type Location is
 record
 X: My_Float range –1.0 .. +1.0 := 0.0;
 Y: My_Float range –1.0 .. +1.0;
 end record;

then the component X has default value 0.0 but component
Y has default value 0.5, (since My_Float declared above has
default value 0.5).

A final important point is that default initial values supplied
by these aspects have to be static unlike default initial
values for record components.

7 Storage occupancy checks
Finally, two new attributes are introduced to aid in the
writing of preconditions. Sometimes it is necessary to
check that two objects do not occupy the same storage in
whole or in part. This can be done with two functional
attributes X'Has_Same_Storage and X'Overlaps_Storage
which apply to an object X of any type.

Their specifications are

function X'Has_Same_Storage(Arg: any_type)
 return Boolean;

function X'Overlaps_Storage(Arg: any_type)
 return Boolean;

As an example we might have a procedure Exchange and
wish to ensure that the parameters do not overlap in any
way. We can write

procedure Exchange(X, Y: in out T)
 with Pre => not X'Overlaps_Storage(Y);

Attributes are used rather than predefined functions since
this enables the semantics to be written in a manner that
permits X and Y to be of any type and moreover does not
imply that X or Y are read.

The object X and the parameter Y could be components
such as A(5) or indeed A(J) or even a slice A(1 .. N). Thus
the actual addresses to be checked may not be statically
determined but have to be determined at the point of call.

AI-191 shows the following curious example

procedure Count(A: in out Arrtype; B: in Arrtype)
 with Pre => not A'Overlaps_Storage(B)
is
 -- intended to count in A the number of value
 -- occurrences in B as part of a distribution sort
begin
 for I in B'Range loop
 A(B(I)) := A(B(I)) + 1;
 end loop;
end Count;

The author seems to have assumed that the array A has
appropriate components and that they are initialized to
zero. This also illustrates the use of an aspect specification
in a subprogram body.

At the machine level Overlaps_Storage means that at least
one bit is in common and Has_Same_Storage means that
all bits are in common. Hence X'Has_Same_Storage(Y)
implies X'Overlaps_Storage(Y).

In some applications involving the possibility of aliasing
(messing with tree structures comes to mind) we do really
want to check that two entities are not in the same place
rather than just overlapping in which case it is more logical
to use Has_Same_Storage.

264 Rat ionale for Ada 2012: 1 Contracts and aspects

Volume 32, Number 4, December 2011 Ada User Journal

References
[1] ISO/IEC JTC1/SC22/WG9 N498 (2009) Instructions

to the Ada Rapporteur Group from SC22/WG9 for
Preparation of Amendment 2 to ISO/IEC 8652.

[2] Rationale for the Design of the Ada Programming
Language, Ichbiah, Barnes, Firth and Woodger (1986),
Honeywell and Alsys.

[3] J. G. P. Barnes (2006) Programming in Ada 2005,
Addison-Wesley.

© 2011 John Barnes Informatics.

265

Implementation and Usage of the new Ada 2012
Execution Time Control Features
Kristoffer Nyborg Gregertsen, Amund Skavhaug
Department of Engineering Cybernetics, NTNU, Trondheim, Norway; email: {gregerts,amund}@itk.ntnu.no

Abstract

This paper describes an implementation of Ada 2012
execution time control supporting the new separate exe-
cution time clocks for interrupts that has a design with
several benefits. The real-time and execution time fea-
tures use the same clock and alarm abstraction reduc-
ing the amount of code needed for the implementation.
The design also allows a single hardware timer to sup-
port these features, freeing other timer hardware for
application use. Clock measurement is tick-less, remov-
ing the periodic clock overflow interrupts. While the
implementation is for a GNAT bare-board run-time en-
vironment, the presented design principles should be
applicable for other systems. Performance tests are
done to find the additional overhead to context switches
and interrupt handling caused by execution time control.
In addition to execution time measurement for inter-
rupts we also provide an interrupt timer, and extend
the object-oriented real-time framework to facilitate
execution-time control for interrupts. An example appli-
cation using this feature is given.

Keywords: Ada 2012, execution time control, interrupt
clocks, real-time, embedded, GNAT.

1 Introduction
Scheduling analysis of real-time systems rely on the worst-
case execution time (WCET) of tasks being known. However,
finding the WCET of an algorithm may be hard, for some
cases it is not even possible to predict if an algorithm will
ever halt [1]. Furthermore, pipelines, caches and other perfor-
mance enhancing techniques used on contemporary computer
architectures makes the WCET even harder to find [2]. This
makes WCET analysis a costly and time consuming process.
Also, the WCET will often be considerably longer than the
average execution time as it includes the very unlikely event
of many or all of the performance enhancing techniques fail-
ing. Therefore pessimistic scheduling is needed in order to
provide an offline guarantee that all hard deadlines will be
met, which again leads to poor processor utilization if there
are not enough tasks with soft, or no, deadlines to use the
remaining processor resources.

Execution time control is a simple, yet powerful tool that
allows the total time a task has been executed on a processor
to be measured, and a handler to be called when this execution
time reaches a specified timeout value. Combined with a
scheduling policy taking advantage of this feature, it allows

online control of task execution time instead of relying solely
on offline guarantees [3]. Execution time control also allows
execution time servers such as the deferrable and sporadic
server for soft sporadic tasks [4]. Furthermore, it facilitates
tasks executing algorithms were there is an increasing reward
with increased service (IRIS) [5]. In this case the algorithm
is stopped when it has converged or its execution time budget
is exhausted. If no acceptable result was computed in time a
simpler algorithm may be executed.

Execution time control was standardized together with other
new real-time features in Ada 2005 [6]. The standard did
not state which execution time budget, if any, that is to be
charged the execution time of interrupt handlers. All imple-
mentations known to the authors up to this point charged the
running task this execution time [7,8,9,10]. This causes inac-
curacy to execution time measurement and was pointed out
as an issue when the new Ada 2005 real-time features were
evaluated [11]. The authors at NTNU have ported GNATfor-
LEON [12], a bare-board run-time environment supporting
the Ravenscar restricted tasking model, to the Atmel AVR32
UC3 microcontrollers series [13] and developed it further [14].
When Ada 2005 execution time control was implemented for
this run-time environment, special execution time clocks for
interrupts handling were added, one for each interrupt pri-
ority [15, 16]. This improved accuracy of execution time
measurement for tasks and also allowed execution time con-
trol for interrupts. These features were presented by the
authors at IRTAW 14 and suggested added to Ada 2012 [17].
At the same workshop the developers of MaRTE suggested
measuring the execution time of all interrupt handling com-
bined [18]. The workshop decided to suggest execution time
measurement both for separate interrupt IDs and all inter-
rupts combined to be added to Ada 2012 [19, 20]. These
features are now included in the working draft for the Ada
2012 standard [21].

In this paper there is first a brief presentation of the Ada
2012 execution time control. Then follows an abstraction for
clocks and alarms supporting both the real-time clock and
timing events, and execution time clocks and timers for tasks
and interrupts. It is shown how this design is implemented
on the AVR32 UC3 microcontroller series, and performance
test results are presented. After this, it is described how
execution time control for interrupts is integrated into the
object-oriented real-time framework, and an example appli-
cation is given. Finally there is a discussion on the design
and implementation, the implementation cost compared to
the benefits of execution time control, the portability of the
design, and the real-time framework extensions.

Ada User Jour na l Vo lume 32, Number 4, December 2011

266 Implementat ion and Usage of the new Ada 2012 Execut ion Time Cont ro l Features

Listing 1: Interrupt execution time clocks

package Ada.Execution_Time is
...

Interrupt_Clocks_Supported : constant Boolean
:= implementation−defined;

Separate_Interrupt_Clocks_Supported : constant Boolean
:= implementation−defined;

function Clock_For_Interrupts return CPU_Time;

...
end Ada.Execution_Time;

package Ada.Execution_Time.Interrupts is

function Clock
(Interrupt : Ada.Interrupts. Interrupt_Id)

return CPU_Time;

function Supported
(Interrupt : Ada.Interrupts. Interrupt_Id)

return Boolean;

end Ada.Execution_Time.Interrupts;

2 Ada 2012 real-time features
2.1 Execution time measurement and timers

The package Ada.Execution_Time defines the type CPU_Time rep-
resenting elapsed execution time measurement and the func-
tion Clock to get the execution time of a task [21]. The execu-
tion time of a task is defined as the time spent by the system
executing that task, including the time spent executing run-
time or system services on its behalf [21]. For Ada 2005
it was implementation defined which task, if any, that was
charged the execution time used by interrupt handlers and
run-time services on behalf of the system. Ada 2012 has the
ability to account for either the total or separate execution
time of interrupts handlers. Listing 1 shows the additions to
the specification of Ada.Execution_Time and its new child pack-
age Interrupts to support this feature.

The constant Interrupt_Clocks_Supported indicates if the system
supports measuring the total execution time of interrupt hand-
lers by the use of the function Clock_For_Interrupts . The func-
tion will raise Program_Error when called if not supported. The
constant Separate_Interrupt_Clocks_Supported indicates if the sys-
tem supports measuring the execution time of interrupt hand-
lers separately by the child package Interrupts . In this child
package the function Clock returns the execution time for the
handler of the given interrupt or raises Program_Error if separate
execution time for interrupts is not supported. If Supported re-
turns false for the given interrupt Clock is to return a CPU_Time
equal to Time_Of (0).

2.1.1 Timers

The child package Ada.Execution_Time.Timers defines the tagged
type Timer which is used for detecting execution time overruns
for a single task. The type Timer_Handler identifies a protected
procedure to be executed when the timer expires. Handlers are

set to expire at a given execution time or after a given time in-
terval using two overloading Set_Handler procedures, and may
be cancelled using the procedure Cancel_Handler. The function
Time_Remaining returns the time remaining until the timer ex-
pires. Implementations are allowed to limit the number of
timers possible for a single task and raise Timer_Resource_Error
if this limit is exceeded. In this work there is a limit of one
timer for each task as this limitation is recommended for
use with the Ravenscar profile [9]. The Ravenscar profile
does however not allow timers, so by including these strict
compliance with the profile is lost.

2.2 The real-time clock and timing events
The package Ada.Real_Time defines the types Time and Time_Span
used for the monotonic real-time clock, and the function
Clock to retrieve the value of this clock. The real time clock
corresponds to the passing of physical time, either with the
time of system initialization as epoch or another reference
time frame.

2.2.1 Timing events

The child package Ada.Real_Time.Timing_Events defines the
tagged type Timing_Event that allows protected procedures to be
called at a specified time without the need for a task or delay
statement. The type Timing_Event_Handler identifies a protected
procedure to be executed when the timing event occurs. With
the exception of the function Time_Of_Event returning the abso-
lute time of the event instead of the time remaining, timing
events are used in the same way as timers. Implementations
are required to document the upper bound on the overhead of
the handler being called. The Ravenscar profile only allows
timing events declared at library level.

3 Implementation
3.1 Design
The functionality of the real-time clock (RTC) and execution
time clocks (ETCs) are quite similar: both clocks support
high accuracy measurement of the monotonic passing of time
since an epoch, and both support calling a protected handler
when a given timeout time is reached. The main difference
is that the RTC is always active, while an ETC is active
only when its corresponding task or interrupt is executed.
The similarities allow a design where one implementation
of clocks and alarms in the internal package System.BB.Time
provides support for both execution time control and the
real-time features. In addition alarms are used internally for
real-time task delay.

The package System.BB.Time defines the type Time to represent
the passing of time since the epoch as a 64-bit modular in-
teger, and the type Time_Span as a 64-bit integer with range
from −263 to 263 − 1 to represent time differences. The
package defines the limited private types Clock_Descriptor and
Alarm_Descriptor to represents clocks and alarms respectively,
and Clock_Id and Alarm_Id as access types for these. The private
definitions of clocks and alarms are shown in Listing 2.

The package also defines public routines for clock and alarm
operations used by the Ada 2012 execution time control and

Volume 32, Number 4, December 2011 Ada User Jour na l

K. N. Greger tsen, A. Skavhaug 267

Listing 2: Definition of clocks and alarms

type Clock_Descriptor is
record

Base_Time : Time;
−− Base time of clock

First_Alarm : Alarm_Id;
−− Points to the first alarm of this clock

Capacity : Natural;
−− Remaining alarm capacity, no more alarms if zero

end record;

type Alarm_Descriptor is
record

Timeout : Time;
−− Timeout of alarm when set

Clock : Clock_Id;
−− Clock of this alarm

Handler : Alarm_Handler;
−− Handler to be called when the alarm expires

Data : System.Address;
−− Argument to be given when calling handler

Next : Alarm_Id;
−− Next alarm in queue when set, null otherwise

end record;

real-time packages. These are also used by the internal pack-
age System.BB.Threads for thread wake-up. In addition there
are procedures for changing the active execution time clock
used by System.BB. Interrupts , System.BB.Protection and the context
switch routine. The routines are described in more detail in
the following.

3.2 Hardware timer
The 32-bit COUNT / COMPARE system registers of the
Atmel AVR32 architecture are used as hardware timer in
this work. The COUNT register is reset to zero at system
start-up and is incremented by one every CPU clock cycle.
The COMPARE interrupt is triggered when COUNT equals
COMPARE, cleared when COMPARE is written, and dis-
abled when COMPARE is zero, which is also the reset value
of the register. For newer UC3 revisions the COUNT register
is reset on COMPARE match, which is not desirable for our
use. It is however possible to disable this behavior in the CPU
configuration register.

Three hardware timer operations are provided in the package
System.BB.CPU_Primitives and implemented using in-line assem-
bler code. The function Get_Count returns a snap-shot value
of COUNT. The procedure Adjust_Compare sets COMPARE ac-
cording to the argument C while preventing that the interrupt
is lost:

COMPARE← max(C,COUNT + ε)

Here ε is a small number of clock cycles, so that an interrupt
will be pending immediately after leaving the procedure if C

was less than COUNT. The procedure Reset_Count sets COUNT
to zero and returns the previous COUNT value cp in one
atomic operation:

cp ← COUNT− (1)
COUNT+ ← 0 (2)

This is done by two instructions, the first reading cp from
COUNT, the second writing the value 2 to COUNT as this
is the number of clock cycles the two instructions take. The
operation is done atomically as interrupts are disabled when
executing kernel calls. No clock cycles are lost when resetting
the COUNT register: the sum of cp and COUNT equals the
value COUNT would have had without reset. The COMPARE
register is not altered by the reset procedure, and has to be
updated with a call to Adjust_Compare if needed.

3.3 Clocks
The type Clock_Descriptor seen in Listing 2 represents clocks
and has three data members: (1) The Base_Time that holds the
part of the clocks elapsed time not present in the hardware
timer. It is initialized to zero. (2) The First_Alarm pointing to
the first set alarm of the clock. It is initialized to a sentinel
alarm and is never null after this. (3) The Capacity gives the
remaining number of alarms allowed for this clock. For the
real-time clock it is initialized to Natural ’Last which in practice
means no limit on the number of alarms. For task clocks
Capacity is initialized to one as is recommended for the Raven-
scar profile [9]. We also allow one alarm for interrupt clocks
for interrupts not of the highest interrupt priority.

The package body has Clock_Descriptors for the RTC, interrupt
clocks, and the internal idle clock used when the system is
executing the idle-loop. In order save memory there is a
pool of interrupt clocks and a look-up table with Interrupt_ID
as index, instead of having a Clock_Descriptor for every in-
terrupt. This Ravenscar run-time environment is designed
not to use dynamic memory in the kernel [12]. The pool
size is set to allow at most ten interrupts, but this can be
easily be changed in the package System.BB.Parameters. The
Clock_Descriptor of threads is stored in the type Thread_Descriptor
of the package System.BB.Threads.

3.3.1 Clock management

After initialization of the package there are precisely two
active clocks: the RTC that is always active and the ETC that
points either to the clock of the running thread, to the clock
for the interrupt being handled or to the idle clock. The ETC
is changed as a result of a context switch, interrupt handling,
or system idling.

The low-level interrupt handler of the run-time environment
calls Enter_Interrupt with the Interrupt_ID prior to calling the
interrupt handler. This procedure pushes the current ETC on a
stack and activates the interrupt clock found in the look-up
table as the new ETC. After the interrupt handler is called a
call to Leave_Interrupt pops and reactivated the old ETC. The
interrupt handler may also be interrupted by a higher priority

Ada User Jour na l Vo lume 32, Number 4, December 2011

268 Implementat ion and Usage of the new Ada 2012 Execut ion Time Cont ro l Features

0

Enter Interrupt

Leave Interrupt

1

Enter Interrupt

Leave Interrupt

2

Figure 1: Stack states with two interrupt levels.

interrupt as seen in Figure 1. The stack size is limited by the
systems number of interrupt levels.

There is no idle thread in the run-time environment. Instead
the thread τa that finds the ready queue empty when leaving
the kernel enters an idle-loop waiting for any thread to be
made runnable by an interrupt. Prior to entering the idle
loop a call to Enter_Idle activates the idle clock as the ETC. If
τa is made runnable it calls Leave_Idle to reactivate its clock.
Also a context switch may take place and change clock to
the new running thread τb as seen in Figure 2. When τa
resumes execution the idle clock will be activated by the
context switch again instead of the task clock. In order to
do this the Thread_Descriptor has a field Active_Clock that points
either to the tasks own clock, or the idle clock if the tasks is
executing the idle loop. Only one thread at a time will enter
the idle loop.

τa

Enter Idle

Ia

Leave Idle

Context Switch

τb

Context Switch

Figure 2: System idling with two tasks.

The states in Figure 2 are sub-states of state 0 in Figure 1, any
of the states can be interrupted and will be restored when the
interrupt handler is left. Since no task can have a base priority
in the interrupt priority range in the Ravenscar profile context
switches can only occur in state 0, after the task priority has
be lowered back to the tasks base priority.

3.3.2 Measuring time

The use of the hardware timer is tick-less and therefore
does not require a periodic clock overflow interrupt. Instead
COUNT is reset using Reset_Count when the ETC is changed,
and the base time of the RTC and the old ETC is incremented
with the previous COUNT value cp. By doing this the same
hardware timer may be used for both the RTC and the ETC
as seen in Figure 3.

The elapsed time of a clock t since the epoch is retrieved by
the function Elapsed_Time, and is computed from the base time
b and the COUNT register value:

t =

{
b+ COUNT if clock is active
b else

An interrupt may occur after reading the base time but before
reading COUNT in Elapsed_Time. This will update the base
time and reset COUNT, making the sum of the earlier read
base time and COUNT invalid. To avoid this there is a check

RTC 0

ETC 0

bR

bE

COUNT

tR

tE

COMPARE

TR

TE

CM

Figure 3: Relation between the RTC and ETC, and the hard-
ware timer registers. The base time of the clocks are aligned.

after reading COUNT to see if the base time has been updated,
in which case the updated base time will be returned as the
elapsed time.

3.3.3 Setting the hardware timer
The COMPARE register is adjusted after updating ETC or after
changing the first alarm of an active clock. If within the light
gray region in Figure 3 the value C given to Adjust_Compare is
the smallest difference d for the RTC and ETC between the
first timeout T of the clock and its base time b:

C = min(min(dR, dE), CM)

In rare cases bmay be slightly larger than T . To handle this so
that the COMPARE interrupt will be pending immediately af-
ter calling Adjust_Compare and prevent overflow d is computed
as:

d = T −min(T, b)

Correct time measurement depends on COUNT never over-
flowing and CM is a safety mechanism to prevent this critical
error. By having CM = (232 − 1) − CS there will always
be a pending COMPARE interrupt the last CS clock cycles
before overflow. This region is marked darker gray in Fig-
ure 3. If interrupts are not blocked by the system for longer
than Cs the interrupt will be handled and COUNT reset when
Enter_Interrupt is called, preventing overflow. The COMPARE
interrupt handler will simply ignore this “false” interrupt. We
use a large safety region Cs = 231 to provide ample time for
the interrupt to be handled.

3.4 Alarms
The type Alarm_Descriptor seen in Listing 2 is used for repre-
senting internal alarms and has five data members: (1) Timeout
that gives the time of event when set. (2) The Clock of the
alarm given as argument to the alarm initialization procedure.
If the Capacity for the clock is zero the initialization will not
succeed and the alarm cannot be used. (3) Handler which is an
access to the procedure that is called when the alarm expires
and (4) the argument Data of type System.Address given when
calling this handler. The handler and data are set during ini-
tialization of the alarm and remain constant after this. (5) The
access Next pointing to the next alarm in the queue when the
alarm is set, null otherwise.

Volume 32, Number 4, December 2011 Ada User Jour na l

K. N. Greger tsen, A. Skavhaug 269

C1 A1,1 A1,2

C2 A2,1

C3

AS

Figure 4: Three clocks set with two, one and zero alarms in
addition to the sentinel at the end of the queue.

3.4.1 The alarm queue
The queue of pending alarms for clocks is managed as a
linked list sorted in ascending order after the Timeout value of
the alarms. Alarms with equal Timeout value are queued in
FIFO order. To avoid the special condition of an empty queue
there is a sentinel alarm with timeout at Time’Last that is always
present at the end of the queue. The constant Time_Last seen
by the user is set to Time’Last − 1 so that the sentinel is always
last. This avoids an additional check when searching the
queue. One sentinel alarm without handler is shared between
all clocks as shown in Figure 4 to save memory.

The procedure Set takes the alarm and timeout as argument,
sets the timeout field of the alarm, and searches the queue of
the clock associated with the alarm for another alarm with
timeout greater than the Timeout, the alarm is then inserted
before this one and always before the sentinel. The procedure
Cancel first checks that the alarm is set, and if so searches
for the alarm in the queue and removes it. It is necessary to
search the queue since to find the alarm before the one being
removed as it is implemented as a single linked list. Both
procedures reprogram the hardware timer if the alarm inserted
or removed is first in the queue of an active clock.

3.4.2 Calling alarm handlers
The COMPARE interrupt handler has the highest interrupt pri-
ority. When this handler is called the procedure Alarm_Wrapper
is called first for the RTC and then for the interrupted ETC
on top of the stack. At this point the active ETC is that of the
COMPARE interrupt itself, for which no alarms are allowed,
so only the interrupt ETC on top of the stack or the RTC may
be the cause of the interrupt. As the wrapper is called for both
clocks there is no need to check which caused the interrupt.
The alarm wrapper removes all alarms with timeout less or
equal to the base time of the clock from the head of alarm
queue one at the time, clears the alarm and calls the handler
with the data as argument. The alarm handler can, and very
often will, alter the alarm queue, so it is important to have
the queue in a consistent state before calling the handler and
reread the first alarm of the clock after calling the handler.

3.5 Ada 2012 interface
The implementation of the application programming interface
as described by the Ada reference manual [6] is quite similar
for the real-time and execution time control features as they
use the same internal time, clock and alarm types.

Listing 3: Interrupt timer specification

package Ada.Execution_Time.Interrupts.Timers is

type Interrupt_Timer (I : Ada.Interrupts. Interrupt_ID)
is new Ada.Execution_Time.Timers.Timer

(Ada.Task_Identification .Null_Task_Id’Access)
with private;

private

type Interrupt_Timer (I : Ada.Interrupts. Interrupt_ID)
is new Ada.Execution_Time.Timers.Timer

(Ada.Task_Identification .Null_Task_Id’Access)
with null record;

end Ada.Execution_Time.Interrupts.Timers;

3.5.1 Clocks

The functions named Clock in the packages Ada.Real_Time,
Ada.Execution_Time and Ada.Execution_Time. Interrupts all call
Elapsed_Time with the Clock_Id of the RTC, a task clock or an
interrupt clock as argument respectively. If there is no internal
clock for a given interrupt CPU_Time_First is returned. To get
the total execution time spent on interrupt handlers interrupts
Clock_For_Interrupts iterates through all Interrupt_ID s and finds
sum of calling Clock for each.

3.5.2 Timing events and timers

The tagged types Timing_Events and Timer both have an
Alarm_Descriptor, an Alarm_Id that points to this after initializa-
tion and a user handler of type Event_Handler and Timer_Handler
respectively. Both types use their alarm to call a wrapper
with the object as argument, that again calls the user han-
dler. The difference is in the initialization of the alarm where
Timing_Events use the RTC, while Timer uses the execution time
clock of the task. The alarm initialization may fail for Timer
in which case the exception Timer_Resource_Error will be raised.
For Timing_Event the initialization is asserted to succeed.

For both types the procedure Set_Handler first calls Cancel of
System.BB.Time to remove the alarm from the queue if necessary
before it sets the user handler and calls Set if this handler is
not null. This has to be done as Set expects the alarm to
be cleared. The procedure Cancel_Handler checks if the user
handler is set in which case Cancel is called and Cancelled is set
to true. Operations are done atomically by using the package
System.BB.Protection for blocking interrupts.

3.5.3 Interrupt timers

To allow execution time control for interrupts the non-
standard package Ada.Execution_Time. Interrupts .Timers shown in
Listing 3 defines the tagged type Interrupt_Timer that inherits
Timer and its operations. Note that the constant Null_Task_Id
from Ada. Task_Identification has to be marked aliased to be used
as discriminant when inheriting Timer. No body is needed for
this package. The initialization procedure for timers checks
if the object is of type Interrupt_Timer in which case it uses the
interrupt clock instead of task clock. Interrupt timers are used
in the exact same way as task timers.

Ada User Jour na l Vo lume 32, Number 4, December 2011

270 Implementat ion and Usage of the new Ada 2012 Execut ion Time Cont ro l Features

Table 1: Performance test results in CPU cycles

Test
Implementation

TI-ETC T-ETC N-ETC

Context switch 602 602 471
Timing event 381 272 270
Interruption cost 296 503 –

4 Performance
Performance testing of the implementation is done with the
Atmel AVR32 UC3A0512 microcontroller on the EVK1100
evaluation board. For the tests the microcontroller is run at
60 MHz, and is programmed and debugged using the Atmel
JTAG ICE Mk II. Test data is sent over the serial line to the
PC where it is retrieved and analyzed using GNU Octave.

The implementation with support for task and interrupt execu-
tion time control (TI-ETC) is tested against two other versions
of the run-time environment: one where support for execution
time control is completely removed (N-ETC), and one that
supports execution time control for tasks only (T-ETC). Here
N-ETC use the COUNT / COMPARE registers for the RTC
in the same way as TI-ETC, with the exception of COUNT
being reset in the COMPARE handler. This means that it has
zero additional overhead to context switches and interrupt
handling. For T-ETC the difference from TI-ETC is that the
interrupt clocks and corresponding packages are removed,
together with the calls to Enter_Interrupt and Leave_Interrupt in
the low-level interrupt handler. This implementations should
have zero additional overhead to interrupt handling compared
to N-ETC, but the same additional overhead as TI-ETC for
context switches.

4.1 Context switch overhead

The purpose of this test is to find the overhead to context
switches by changing the execution time clock. We test with-
out an alarm being set for the clock as the overhead is found
to be the same regardless of alarm status. The test is done
by having a task τa release a higher priority task τb that is
blocked on an entry of a protected object. The release time
is read by the protected procedure opening the entry, and is
returned to τb by the entry. After being released τb reads the
clock and the two time values are transferred over the USART
line before the task blocks again and the test is repeated.

The first row in Table 1 shows the results for the implementa-
tions. The exact same number of clock cycles was measured
in all samples for this test. This is due to simplicity of the
executed test program and the deterministic nature of the UC3
microcontroller. The additional overhead caused by execution
time control is inferred to be 131 clock cycles or 2.2 µs at the
clock frequency used in the test.

4.2 Timing event overhead

The system is required to document the overhead of handling
timing event occurrences. This is also a good measure of
interrupt handling overhead in general caused by execution

time control. The program has a single timing event that is
programmed to occur with random intervals between 1 and
3 milliseconds. When the handler is called the difference
between the timeout and the clock is recorded. After 100
samples the data is transferred over the USART line and the
test is repeated.

The second row in Table 1 shows the results for the imple-
mentations in clock cycles. As before there was only one
measured overhead value for each implementation due to
the simplicity of the test program and the determinism of
the UC3. It is inferred from the results that execution time
control gives an additional overhead of 111 clock cycles to
interrupt handling, or 1.85 µs at the clock frequency used for
the test. The difference of two clock cycles between T-ETC
and N-ETC is inferred to be caused by small differences in
the function Elapsed_Time reading the real-time clock.

4.3 Cost to interrupted task

The execution time cost to the task being interrupted is greater
than zero, as the interrupt clock is activated by the low-level
interrupt handler, and not by hardware. The purpose of this
test is to find this cost. The test is done by having a single
task τ first setting a timer for its own execution time clock to
expire in 20 ms if this timer is not already set, then reading its
execution time clock, busy waiting 10 millisecond, and then
reading this clock again. The clock values are transferred over
the USART line and the test is repeated. Only the interrupt
caused by the timer can occur between the two clock readings,
and it can occur only once. A protected procedure with null
as the only statement is used as handler. To find the cost we
compare the difference in execution time when interrupted to
when the task is not interrupted. This test is only relevant for
TI-ETC and T-ETC.

The last row in Table 1 shows the cost to the interrupted task
in clock cycles for the implementations with and without
separate execution time clocks for interrupts. The execution
time when not interrupted was always the same number of
clock cycles for both implementations due to the deterministic
nature of the UC3 microcontroller. When interrupted the
execution time varied with one clock cycle. The worst-case
cost of interruption is shown.

5 Use of interrupt timers
To ease development of real-time applications an object-
oriented framework has been developed by several contrib-
utors in the Ada community [22]. The framework pro-
vides common real-time patterns such as periodic and spo-
radic tasks, detection of deadline miss and overrun detection,
execution-time servers and more. By integrating the non-
standard Interrupt_Timer into this framework it is also possi-
ble to control the execution-time spent on interrupt handling
and thereby prevent deadlines being lost due to bursts of
interrupts. The framework components related to interrupt
handling can be separated into three parts: (1) the interface
Interrupt_Controller used to control hardware interrupt gener-

ation; (2) the protected interface Interrupt_Server used to con-
trol the execution time spent handling a given Interrupt_ID

Volume 32, Number 4, December 2011 Ada User Jour na l

K. N. Greger tsen, A. Skavhaug 271

Listing 4: Definition of interrupt controller

package Interrupt_Controllers is

type Interrupt_Controller is limited interface;

procedure Enable
(C : in out Interrupt_Controller ;
I : Interrupt_ID) is abstract;

procedure Disable
(C : in out Interrupt_Controller ;
I : Interrupt_ID) is abstract;

function Supported
(C : Interrupt_Controller ;
I : Interrupt_ID) return Boolean is abstract;

type Any_Interrupt_Controller is
access all Interrupt_Controller ’Class;

Unsupported_Interrupt : exception;

end Interrupt_Controllers ;

in accordance with some policy; (3) the protected interrupt
handlers, the framework provides the release mechanism
Sporadic_Interrupt to release tasks as a result of an interrupt.

5.1 Interrupt controller
The interface Interrupt_Controller is defined as shown in Listing
4. The interface will typically be implemented by a peripheral
driver. Depending on the peripheral it may control one or
more interrupts. Use of the interface is very straight-forward:
Enable enables the generation of given Interrupt_ID and Disable
disables it. The function Supported indicates if the controller
supports the interrupt, if other operations of a controller is
called with an unsupported interrupt the Unsupported_Interrupt
exception will be raised.

5.2 Interrupt servers
The interface Interrupt_Server shown in Listing 5 uses
Interrupt_Controller to control the execution time spent han-

dling a given interrupt according to a policy by en-
abling and disabling its generation. The tagged type
Interrupt_Server_Parameters is used to pass the controller and

the execution time budget to implementations of the interface.

The protected object Deferrable_Interrupt_Server shown in List-
ing 6 and 7 implements this interface following the deferrable
server policy. This allows us to model the execution time
spent handling the given interrupt as a periodic task with a
given period and budget. The type Deferrable_Server_Parameters
defines the additional parameters needed by the server, in
this case the replenishing period of the execution time budget.
Notice that the Interrupt_ID is given as a separate discriminant,
this is needed to declare the timer statically in the protected
object. Internally the deferrable server has a timing event
used to call the procedure Replenish periodically with the pe-
riod given as parameter. The procedure sets the execution
time budget for the interrupt using the interrupt timer, and
enables the interrupt if necessary. The first call to Replenish
is at the system epoch, and will enable the generation of the

Listing 5: Interrupt server interface

package Interrupt_Servers is

type Interrupt_Server_Parameters is tagged
record

Controller : Any_Interrupt_Controller;
Budget : Time_Span;

end record;

type Interrupt_Server is protected interface;

procedure Initialize
(S : in out Interrupt_Server) is abstract;

type Any_Interrupt_Server is access all Interrupt_Server;

end Interrupt_Servers;

Listing 6: Deferrable interrupt server specification

package Interrupt_Servers.Deferrable is

type Deferrable_Server_Parameters
is new Interrupt_Server_Parameters with
record

Period : Time_Span;
end record;

protected type Deferrable_Interrupt_Server
(I : Interrupt_ID ;
Param : access Deferrable_Server_Parameters) is
new Interrupt_Server with

procedure Initialize ;

pragma Priority (Any_Priority ’Last);

private

procedure Replenish (Event : in out Timing_Event);
procedure Overrun (TM : in out Timer);

Replenish_Event : Timing_Event;
Execution_Timer : Interrupt_Timer (I);
Next : Time;
Disabled : Boolean := True;

end Deferrable_Interrupt_Server;

end Interrupt_Servers.Deferrable;

interrupt. The procedure Overrun is called when the execution
time budget is exceeded and disables the generation of the
interrupt.

5.3 Example application
Our example application has a real-time task implemented by
a tagged type inheriting Periodic_Task of the real-time frame-
work. The task has period 10 ms and a 5 ms budget, and we
use the periodic release mechanism with overrun and deadline
miss detection. For each release the task simply busy waits
75% of its budget.

In addition the application receives data from the PC through
the USART line. We use the same hardware setup as for
the performance tests. The tagged type USART_Controller im-
plements Interrupt_Controller and is used to setup, enable and

Ada User Jour na l Vo lume 32, Number 4, December 2011

272 Implementat ion and Usage of the new Ada 2012 Execut ion Time Cont ro l Features

Listing 7: Deferrable interrupt server body

package body Interrupt_Servers.Deferrable is

protected body Deferrable_Interrupt_Server is

procedure Initialize is
begin

pragma Assert (Param.Controller.Supported (I));
Next := Epoch;
Replenish_Event.Set_Handler

(Next, Replenish’Access);
end Initialize ;

procedure Replenish (Event : in out Timing_Event) is
begin

Execution_Timer.Set_Handler
(Param.Budget, Overrun’Access);

if Disabled then
Disabled := False;
Param.Controller.Enable (I);

end if ;
Next := Next + Param.Period;
Event.Set_Handler (Next, Replenish’Access);

end Replenish;

procedure Overrun (TM : in out Timer) is
begin

pragma Assert (not Disabled);
Disabled := True;
Param.Controller.Disable (I);

end Overrun;

end Deferrable_Interrupt_Server;

end Interrupt_Servers.Deferrable;

disable the RX interrupt of the USART. A protected object
with the USART interrupt handler counts the number of char-
acters received. The environment task outputs this count every
second. This task has lower priority than the real-time task
and no deadline.

The baud rate of the USART line is a far higher rate than
the system is able to receive using interrupts. However, the
intended usage is that characters are typed one-by-one to the
serial line by the user, and therefore will be limited to a few
characters per second. Since we do not fully trust this limita-
tion to be respected, a deferrable interrupt server is included
to control the execution time spent handling receive USART
interrupt. We let the server have a replenishing period of 10
ms, the same period as the real-time task, and a budget of
1 ms. Hence, the total utilization not considering the back-
ground task, is 60% which is known to be safe using RMA.
The parts of the application related to interrupt handling are
shown in Listing 8.

Running on the UC3A0512 of the EVK1100 evaluation board,
the application correctly counts each character sent by typing
in the serial communication program “minicom”. In order
to test the interrupt execution time control, we use the “cat”
command to write the entire source code of the application to
the serial device file, and observe that the USART interrupt is
disabled when the budget is exceeded and re-enabled when
it is replenished. During the test the real-time task did not
miss any deadline. However, only 40% of the characters

Listing 8: Usage of interrupt server

package body Test is

USART : aliased USART_Controller (USART_1_Address);

Param : aliased constant Deferrable_Server_Parameters
:= (Controller => USART’Access,

Budget => Milliseconds (1),
Period => Milliseconds (10));

USART_Server : Deferrable_Interrupt_Server
(USART_1, Param’Access);

protected RX_Counter is
pragma Interrupt_Priority (USART_1_Priority);
function Get_Count return Natural;

private
procedure Increment;
pragma Attach_Handler (Increment, USART_1);
Count : Natural := 0;

end RX_Counter;

protected body RX_Counter is
function Get_Count return Natural is
begin

return Count;
end Get_Count;
procedure Increment is
begin

USART.Clear (USART_1);
Count := Count + 1;

end Increment;
end RX_Counter;

procedure Run is
Next : Time := Epoch;

begin
loop

delay until Next;
Put (RX_Counter.Get_Count);
New_Line;
Next := Next + Seconds (1);

end loop;
end Run;

begin
USART.Initialize;
USART_Server.Initialize;

end Test;

sent were successfully received by the system. This loss
could be prevented by using USART hardware flow control
or buffering, but we want to keep the example application
simple. As expected the real-time task misses all its deadlines
during the burst when the interrupt server is removed from
the system.

6 Discussion
6.1 Design and implementation
Our design supports both the real-time clock and timing
events, and execution time clocks and timers using one in-
ternal clock and alarm implementation. This removes most
of the near duplicate code compared to separate implemen-
tations. Table 2 shows code metrics for the implementations
with full, task only and no execution time control as reported
by the “gnatmetric” tool. Only packages that are different for

Volume 32, Number 4, December 2011 Ada User Jour na l

K. N. Greger tsen, A. Skavhaug 273

Table 2: Code metrics for implementations

Implementation Decl. Stat. SLOC

TI-ETC 243 516 759
T-ETC 221 473 694
N-ETC 158 264 422

the implementations are included. As seen the difference be-
tween full and task only execution time control is small, only
65 logical code lines which includes two additional packages
for interrupt clocks and timers. For System.BB.Time the differ-
ence is only 11 logical code lines. The difference between
full and no execution time control is greater, 337 logical code
lines, but this includes seven additional packages for execu-
tion time control. For System.BB.Time the difference is only 27
logical code lines. Overall the number of code lines added by
execution time control seems small and acceptable compared
to the features provided.

Another benefit of our design is that one hardware timer is
sufficient to support both the RTC and the ETC. By using only
one hardware timer and one clock interrupt, our system is
easier to understand and debug as there are no race conditions
between interrupts of different hardware timers that need to be
handled. The reduced hardware requirements for the run-time
environment also frees timers for the application. Compared
to the earlier implementation of execution time control [16]
that used one of the two Timer / Counter hardware timer
units of the UC3A microcontroller, both these are available
for the application with the new design and can be used for
pulse-wave modulation (PWM), external signal generation
and more.

The tick-less design means that there are no periodic clock
interrupts to increment the most significant part (MSP) part
of the time value. If context switches and interrupts occur
more often than CM which is 35.8 seconds on our system
running at 60 MHz, there will be no interrupts caused by
clock measurement. For typical real-time systems there will
be more frequent context switches and interrupts than this.
The execution time of the clock overflow handlers may not be
negligible, meaning that it could affect scheduling analysis.
While the tick-less design comes at the cost of additional over-
head to context switches and interrupt handling, the benefits
of removing the periodic clock tick is greater.

6.2 Portability

While our design is implemented on the AVR32 UC3 mi-
crocontroller series, it should be portable to any architec-
ture where it is possible to implement the routines Get_Count,
Adjust_Compare and Reset_Count according to their specification.
With minor modifications it should also be possible to use
16-bit hardware timers instead of the 32-bit timer used in this
paper. In this case it would be necessary to reduce the clock
resolution as overflow interrupts would occur every 546 µs at
the resolution of 60 MHz used in this paper.

Our implementation uses a hardware timer within the pro-
cessor core, giving the benefit of a deterministic, constant

access time. It is possible to use a peripheral hardware timer,
although it may be harder to implement Reset_Count without
clock cycle leakage as the access time for reading and writing
timer registers over the peripheral bus would not be constant
for most systems.

6.3 Overhead caused by switching clocks
The two overhead tests measure the time it takes either be-
tween two clock readings, or the time between an event taking
place at a known time and reading the clock. It is known
whether this time includes changing execution time clocks
or not for the implementation being tested. When compar-
ing results it is important to remember that there are minor
changes in the compiler output that affect the result, and that
the function reading the clock also has minor changes be-
tween the implementations with and without execution time
control. However, the main difference in overhead is caused
by changing clocks and the results are considered valid. The
context switch and interrupt handling overhead was found
to be 131 and 111 clock cycles respectively. The small dif-
ference of 20 clock cycles between the two results is due to
differences in clock management.

The additional overhead to context switches and interrupt
handling caused by the full implementation is significant. At
the clock frequency of 60 MHz used in the tests this additional
overhead is 2.2 µs and 1.85 µs respectively. This adds to the
latency for interrupt handlers and task release, and reduces
the overall system performance. Still, the overhead is not
prohibitively high taking into account the benefits provided
by execution time control. Also, this overhead includes the
cost of the tick-less timer that removes the overhead to tasks
and interrupts caused by the periodic clock interrupt.

6.4 Cost of interruption
The test measuring the execution time cost to a task being
interrupted is more accurate than the overhead tests as we
compare the difference when the interrupt did and did not
happen for the same implementation. By design we know
that at most one interrupt may occur between reading the
clocks. The cost of interruption to the task when using in-
terrupt clocks was 297 or 298 clock cycles. When using the
clock of the interrupted task the cost was 502 or 503 clock
cycles. The difference between the two implementations is
thus 205 clock cycles, but without interrupt clocks the cost
includes the whole execution time overhead of calling the
timer handler including the Alarm_Wrapper and Execute_Handler
procedures. The cost would be less if an ordinary interrupt
handler was used.

The small but noticeable cost to the interrupted task when
using interrupt clocks means that if a task is interrupted many
times its budget may have to be extended to allow for this.
Without interrupt clocks the cost of interruption is varying,
depending on what is done in the interrupt handler. In the
case of very simple handlers this cost may even be lower than
when using interrupt clock due to the overhead of changing
clocks. Still, having a constant cost regardless of what is
done in the handler is better for analysis. It is also possible
to transfer execution time from the task clock to the interrupt

Ada User Jour na l Vo lume 32, Number 4, December 2011

274 Implementat ion and Usage of the new Ada 2012 Execut ion Time Cont ro l Features

clock before and after calling the interrupt handler to refund
the tasks cost without its clock going backwards observably.
While this scheme would reduce the cost to interrupted tasks,
it would increase the complexity and also would need to
be tuned depending on compiler output, and was therefore
discarded.

6.5 Hardware support

Ideally we would like to have near zero overhead to context
switches and interrupt handling caused by execution time con-
trol, and near zero cost of interruption for tasks. This is not
feasible without a specialized hardware timer that allows exe-
cution time clocks to be changed more efficiently. Therefore
the authors have designed a Time Management Unit (TMU)
supporting 64-bit timer values and atomic clock changes [23].
It is designed to have a simple memory mapped interface
accessible though the peripheral bus, making it portable to
different architectures. The TMU has been implemented with
the AVR32 UC3 core as a part of a masters thesis at NTNU
in cooperation with Atmel Norway [24]. Simulation results
indicates that the overhead of switching clocks can be reduced
to less than 50 clock cycles by using this hardware timer.

6.6 Interrupt timer

The interrupt timer is not a part of the Ada 2012 standard but
should in the authors opinion be added to the next revision
for the following reasons. First it provides execution time
control for interrupts similar to that for tasks. If we measure
the execution time for interrupts it should also be controllable
by means such as the framework extensions described in this
paper. This is important as the execution time spent handling
interrupts may be very hard to predict as the interrupts may
be generated by external hardware that are not controlled by
the application. Alternatives to interrupt timers are to count
the number of interrupts and disable the interrupt if the count
gets to high, or to poll the execution time of the interrupt after
the handler is called and disable the interrupt if the budget
is exceeded. These solutions are less precise and also less
efficient than using interrupt timers.

Also, the cost of including interrupt timers is small for our
implementation as the same clock abstraction and hardware
timer is used for task and interrupts. Since the interrupt timer
inherits the operations from the task timer, no additional code
is needed other than the definition of the tagged type and the
code to initialize interrupt timers.

6.7 Framework extensions

The interrupt timer allows us to extend the object-oriented
real-time framework to also provide execution time servers
for interrupts following the same pattern as used for task
execution time servers. While the task server controls the
execution time for a group of tasks released sporadically, the
interrupt server controls the execution time spent invoking one
interrupt handler many times. The object-oriented nature of
the framework allows us to create servers suitable for different
needs. We have implemented the deferrable server under the
assumption that it is acceptable to ignore interrupts for a while,

but other schemes may for instance be to reconfigure the
system into fail-safe mode in the case of interrupt overruns.

The deferrable interrupt server has a budget that is replenished
periodically, and disables interrupt generation if this budget
is exceeded. Since there is no way to cancel the interrupt
being handled in Ada, the budget has to allow for an overrun
of one additional handler invocation for the cases where the
budget is exceeded right after entering the low-level handler.
It should be considered adding a user handler that is called to
notify the application when an interrupt is disabled, to allow
for instance hardware diagnostics. This could of course also
be done in the Disable procedure of the peripheral driver. In
this case it could be useful to add a cause argument to this
procedure.

6.8 Example application
The example application is typical in that we must assume
one rate of interrupts, but cannot guarantee it as the genera-
tion the interrupt is not controlled by the application. Burst
of interrupts may also be caused by permanent or transient
hardware faults. The result is that the system has to handle
more interrupts than budgeted for in the real-time analysis,
if the effects of interrupt handling was analyzed at all. This
could cause deadlines to be missed and thereby system failure.
The presented extensions to the real-time framework provides
an easy way to protect our real-time application against these
situations.

In the example application we use the USART RX interrupt
to receive data sent on the serial line. This is reasonable and
efficient given that we know that the characters are sent by
the user typing in a serial communication program. However
the high baud rate means that the system could be overloaded
with interrupts if this limitation is not respected. By using
the deferrable interrupt server of the real-time framework
we can easily set a budget for the interrupt so that our real-
time task is guaranteed sufficient execution time to meet its
deadline. No deadlines were lost due to burst of interrupts
when the application was tested with the deferrable server,
while several deadlines were lost during the burst when the
server was not used. This gives a good indication that the
deferrable interrupt server works as intended.

7 Conclusion
Our implementation of Ada 2012 execution time control has
a design with several benefits. By using a single clock and
alarm abstraction to support both the real-time and execution
time clocks, we have reduced the amount of code needed
for the implementation. This also allows just one hardware
timer to support both these clocks, reducing the complexity
of the system and the hardware requirements of the run-time
environment. This frees valuable hardware timers for the
application. We use the hardware timer in a tick-less manner,
meaning that there are no periodical clock interrupts. By
requiring only one hardware timer the design should also be
easy to port to other architectures with similar timers.

Performance testing shows a noticeable overhead to context
switch and interrupt handling caused by our implementation

Volume 32, Number 4, December 2011 Ada User Jour na l

K. N. Greger tsen, A. Skavhaug 275

of execution time control. However, this is in our opinion
justified by the value of the provided features, and the tick-
less clock measurement. We also found that there is a low
constant execution time cost to tasks being interrupted. While
zero cost is the ideal, this constant cost is an improvement
in analyzability compared to the varying, and in most cases
higher, cost without separate execution time measurement for
interrupts.

We have presented an interrupt timer providing execution time
control for interrupts similar to that for tasks. This feature is
not a part of the Ada 2012 standard where the execution time
for interrupts can only be measured, and not controlled. By
extending the object-oriented real-time framework using the
interrupt timer we provide a deferrable execution time server
for interrupts so that the time spent on interrupt handling
may be analyzed as a periodic task. The example application
shows that our framework extensions provide an easy and
elegant solution to prevent deadlines being missed due to
bursts of interrupts. In the authors opinion interrupt timers
should be added to the next revision of the Ada programming
language.

8 Further work
Work is in progress with an implementation using a special-
ized Time Management Unit (TMU) for execution time con-
trol instead of the COUNT / COMPARE timer, and test this
implementation with the AVR32 UC3 core in cooperation
with Atmel Norway.

References
[1] A. Turing, “On computable numbers, with an applica-

tion to the Entscheidungsproblem,” Proceedings of the
London Mathematical Society, vol. 42, no. 2, 1937.

[2] R. Wilhelm et al., “The worst-case execution-time
problem—overview of methods and survey of tools,”
Trans. on Embedded Computing Sys., vol. 7, no. 3, pp. 1–
53, 2008.

[3] A. Wellings and A. Burns, Ada-Europe 2007, ch. Real-
Time Utilities for Ada 2005, pp. 1–14. Springer Berlin /
Heidelberg, 2007.

[4] A. Burns and A. Wellings, “Programming execution-
time servers in Ada 2005,” in Proc. 27th IEEE Interna-
tional Real-Time Systems Symposium RTSS ’06, pp. 47–
56, Dec. 2006.

[5] C. M. Krishna and K. G. Shin, Real-Time Systems.
McGraw-Hill International Edition, 1997.

[6] ISO/IEC, Ada Reference Manual - ISO/IEC
8652:1995(E) with Technical Corrigendum 1 and
Amendment 1.

[7] M. G. Harbour et al., “Implementing and using exe-
cution time clocks in Ada hard real-time applications,”
in Lecture Notes in Computer Science, vol. Volume
1411/1998, pp. 90–101, Springer Berlin / Heidelberg,
1998.

[8] M. G. Harbour and M. A. Rivas, “Managing multiple
execution-time timers from a single task,” Ada Lett.,
vol. XXIII, no. 4, pp. 28–31, 2003.

[9] J. A. de la Puente and J. Zamorano, “Execution-time
clocks and Ravenscar kernels,” Ada Lett., vol. XXIII,
no. 4, pp. 82–86, 2003.

[10] S. Urueña, J. Pulido, J. Redondo, and J. Zamorano,
“Implementing the new Ada 2005 real-time features on a
bare board kernel,” Ada Lett., vol. XXVII, no. 2, pp. 61–
66, 2007.

[11] A. Wellings, “Implementation experience with Ada
2005,” Ada Lett., vol. XXVII, no 2, pp. 59–60, 2007.
session report.

[12] J. F. Ruiz, “GNAT pro for on-board misson-critical
space applications,” Ada-Europe, 2005.

[13] Atmel Corporation, AVR32UC3 - Technical Reference
Manual, March 2010.

[14] K. N. Gregertsen and A. Skavhaug, “An efficient and
deterministic multi-tasking run-time environment for
Ada and the Ravenscar profile on the Atmel AVR32
UC3 microcontroller,” in Design, Automation & Test
in Europe Conference & Exhibition, 2009. DATE ’09.,
pp. 1572–1575, April 2009.

[15] K. N. Gregertsen, “Execution time management for
AVR32 Ravenscar,” Master’s thesis, Norwegian Uni-
versity of Science and Technology (NTNU), 2008.

[16] K. N. Gregertsen and A. Skavhaug, “Implementing the
new ada 2005 timing event and execution time control
features on the avr32 architecture,” Journal of Systems
Architecture, vol. 56, pp. 509–522, 2010.

[17] K. N. Gregertsen and A. Skavhaug, “Execution-time
control for interrupt handling,” Ada Lett., vol. 30, 2010.

[18] M. A. Rivas and M. G. Harbour, “Execution time moni-
toring and interrupt handlers: position statement,” Ada
Lett., vol. 30, 2010.

[19] T. Vardanega, M. G. Harbour, and L. M. Pinho, “Session
summary: language and distribution issues,” Ada Lett.,
vol. 30, 2010.

[20] S. Michell and J. Real, “Conclusions of the 14th inter-
national real-time ada workshop,” Ada Lett., vol. 30,
2010.

[21] ISO/IEC, Ada Reference Manual - ISO/IEC
8652:201x(E) (Draft 13).

[22] A. Burns and A. Wellings, Concurrent and Real-Time
Programming in Ada. Cambridge, 2007.

[23] K. N. Gregertsen and A. Skavhaug, “Functional spec-
ification for a Time Management Unit.” Presented at
SAFECOMP 2010.

[24] S. J. Søvik, “Hardware implementation of a Time Man-
agement Unit,” Master’s thesis, NTNU, 2010.

Ada User Jour na l Vo lume 32, Number 4, December 2011

276

Volume 32, Number 4, December 2011 Ada User Journal

15th International Real-Time Ada Workshop
(IRTAW-15)
Mario Aldea Rivas
Universidad de Cantabria, 39005-Santander, SPAIN; email: aldeam@unican.es

Abstract
The 15th International Real-Time Ada Workshop was
held in Fuente Dé, Spain from September 14th to the
16th, 2011. The main focus was on reviewing and
evaluating the Ada 2012 support for real-time systems
and on developing proposals for future language
revisions. The workshop was very successful in
achieving its goals and a number of issues were
identified for future language revisions.

1 Introduction
The 15th International Real-Time Ada Workshop
(IRTAW-15) was held in the impressive location of Fuente
Dé (Cantabria, Spain), a nice mountain area by the “Picos
de Europa” National Park.

The hotel was located close to the walls of the glacial
cirque of Fuente Dé and just by the base of the cable car
going up to the top of “Picos de Europa”.

The local organization by Michael González was excel-
lent, and there was plenty of time for discussions, informal
conversation and also for enjoying the beautiful
surroundings of Fuente Dé.

The Program Committee accepted twelve papers as a basis
for discussion, which are being published as part of the
official Proceedings of the Workshop [1]. There were
nineteen participants, coming from Europe (Spain, UK,
Italy, Portugal and France) and North America (USA and
Canada).

As in previous IRTAW meetings, all the attendees took
active part in the technical discussions which were at the
core of the workshop. The main points of the discussions
and the overall conclusions are summarized in the rest of
this report.

2 Technical program
The technical program was organized into four technical
sessions (Table 1). Each session had a chair person and a
rapporteur, who was in charge of writing a report of the
session including the agreements reached. The sessions
were organized into slots of four hours including a half an
hour coffee break.

The topic of multiprocessors was addressed by quite a
number of position papers this year, so the whole first day
of the IRTAW 15 workshop was allocated to discussing

Table 1. Workshop Programme

Day Session

Wednesday
Morning

A.1: Multiprocessor issues (part 1)

Wednesday
Afternoon

A.2: Multiprocessor issues (part 2,
resource control protocols)

Thursday
Full day

B: Language profiles and application
frameworks

Friday
Morning

C: Ada Concurrency

multiprocessor issues. The topic was divided into two
sessions, the first one about general multiprocessor topics
and the second one centered on resource control.

The other two sessions were centered on language profiles
and application frameworks, and on concurrency issues.

Figure 1 Technical Session

2.1 Session A.1: Multiprocessor Issues, Part 1
The goals of this session [14] were to review and evaluate
the Ada 2012 support for multiprocessors, and think about
possible additions to future (post Ada 2012) language
revisions.
Specific issues discussed in this session were:

• The current definition of dispatching domains

• Per dispatching domain scheduling policies

• Dynamic dispatching domains

• Support for very large number of cores

• Non-SMP architectures

M. A. Rivas 277

Ada User Journal Volume 32, Number 4, December 2011

It was a very interesting discussion backed by the expe-
rience acquired by a number of participants on imple-
menting the Ada 2012 support for multiprocessors in their
systems.

Current definition of dispatching domains

Two minor problems in the definition of the System
Dispatching Domain were pointed out:

• It is defined as a constant although it is in fact
modified by the creation of other dispatching
domains.

• Depending on the processor range chosen for the
other dispatching domains, the System
Dispatching Domain could represent a
discontinuous range of processors.

The workshop did not consider these two problems so
serious as to require a change in the Reference Manual but
recommended explaining then in the Ada 2012 Rationale.

Per dispatching domain scheduling policies

In the last IRTAW a proposal was made to allow assigning
specific scheduling policies to each dispatching domain.

During the discussion it was pointed out that this behavior
could be achieved by combining the dispatching domains
with the priority specific dispatching. The “workaround”
would consist in allocating to each dispatching domain
tasks in a particular priority band with the desired
dispatching policy.

Therefore, the conclusion was there is not a strong moti-
vation for trying to push forward this feature.

Dynamic dispatching domains

In Ada 2012 dispatching domains are static, not allowing
migration of CPUs from one dispatching domain to
another.

There was an agrement on considering CPU migration as
an important feature for “mode changes”. Therefore, it was
decided to encourage the submission of concrete proposals
on this topic for the next workshop.

Support for very large number of cores

The workshop agreed it would be desirable to have some
kind of “fine-grained” parallelism primitives to parallelize
blocks, loops, etc.

The submission of proposals about this subject was
strongly encouraged for the next workshop.

Non-SMP architectures

In non-SMP architectures, some banks of memory are
“closer” than others to each particular CPU. An Ada
application that wants to execute efficiently in this kind of
architectures should:

• have information about the memory map.
• be able to specify the location of the storage pools

in order to allocate objects where they can be
accessed more efficiently.

Proposals on these topics were encouraged for the next
workshop.

2.2 Session A.2: Multiprocessor issues (part 2,
resource control protocols)
The main goals of this session [15] were:

• To review and evaluate the efficacy of the Ada
2012 support in the area of multiprocessor
resource control.

• To look beyond Protected Objects and
Rendezvous to other paradigms amenable to be
used in multiprocessor platforms.

• To review previous workshop proposals of new
synchronization primitives to improve parallel
execution of Ada programs.

Ada 2012 support in multiprocessor resource control

The session started with a discussion about the meaning of
priority inheritance in partitioned systems. The conclusion
was that priority inheritance is still meaningful in
multiprocessor systems (provided the assignment of
priorities is globally coherent), because the scheduling
policy for each priority band is shared by all the dis-
patching domains.

Afterwards, a review of the most common shared data
protocols for multiprocessor systems was presented. The
workshop considered important that users are given an
interface to control and define different access protocols
than simple spin-locks. This interface would allow Ada
programmers to use the best protocol for each application.

Looking beyond Protected Objects: Software
Transactional Memory

Transactional Memory (TM) was presented as an alter-
native to lock-based protocols that could scale better in
architectures with a medium/large number of cores. An
implementation of TM in Ada was presented.

The workshop concluded that work on TM (an in other
paradigms for concurrency interaction with larger number
of cores) is important. Further work on this topic is
encouraged.

Mechanisms to improve parallelism

A proposal (first stated at IRTAW-13) to support a parallel
broadcast of calls to an array of protected objects was
revisited.

The complexity of such functionality was pointed out, since
the parallel calls would require some execution context.
Due to this complexity the workshop decided to dismiss
this functionality.

Finally a discussion was carried out on the possibility of
parallel releasing of tasks in functions within Protected
Objects

The difficulty of how to pass the data to the different tasks
was pointed out. The workshop concluded that this would

278 15th Internat ional Real-Time Ada Workshop (IRTAW-15)

Volume 32, Number 4, December 2011 Ada User Journal

be a good mechanism to have, but that a suitable approach
needs further investigation.

2.3 Session B: Language profiles and application
frameworks
The issues discussed in this session [16] were:

• Beyond Ravenscar: extensions and applicability.

• Real-time framework – dealing with multiproces-
sors and mode changes.

Language profiles beyond Ravenscar

The session started with the presentation of a proposal for a
new profile. This profile would go beyond Ravenscar,
including functionalities in order to gain the ability to
tolerate timing faults.

A key functionality to detect budget time overruns are the
Execution Time Timers, so this service should definitively
be included in the proposed profile.

In order to perform error recovery actions we need to be
able to suspend/resume individual tasks. There was a
discussion between dynamic priorities and asynchronous
task control as the alternatives to be included in the profile
in order to achieve this goal.

The topic was closed with a general agrement on the utility
and goals of the new profile and a clear intuition of the kind
of services to be included in it. There was an invitation to
the group to further investigate the topic, and then discuss
the findings at IRTAW-16.

Ravenscar and distribution

There was a presentation of a Ravenscar-compliant
Distributed Systems Annex implementation. The
implementation is not SPARK-compliant due to the use of
generics and abstract types.

The group sentiment in that respect was that “educated”
generics and abstract types are useful abstractions for the
project and they should be retained.

Code archetypes and programming frameworks

Two reports were presented: one about the development of
Ravenscar code patterns for automated code generation,
and the other about the extension to multiprocessor
architectures of the real-time programming framework.

Some complementarity was identified between both
approaches and the group encouraged both teams to
investigate the possibility of integrating their results.

Ravenscar and EDF

A proposal was examined for an EDF version of the
Ravenscar profile. In order to simplify the runtime support
for this profile, it would not include the Baker’s stack
resource protocol, but instead it would use non-preemptive
critical sections.

Some issues were raised on whether the EDF alone is
sufficient for safely programming HRT systems or if, on

the contrary, either fixed priority scheduling or budget
control should also be included in the profile.

Further research on this topic was encouraged for the next
workshop.

2.4 Session C: Ada Concurrency
The main issues discussed in this session [17] were:

• Concurrency and real time vulnerabilities

• Deferred attributes

General concurrency vulnerabilities

The ISO/IEC/JTC 1/SC 22/WG 23 Programming Lan-
guage Vulnerabilities Working Group is starting to con-
sider concurrency vulnerabilities.

The proposal for six concurrency vulnerabilities was
presented to the participants in the workshop:

• Thread activation

• Thread termination – directed

• Thread termination – premature termination

• Shared data access

• Concurrent data corruption

• Concurrency protocol errors

The workshop did some minor comments on some of them
and agreed all of them are programming language
vulnerabilities that should be considered by WG 23.

Real-time vulnerabilities

Afterwards, there was an open discussion in order to
identify concurrency real-time specific vulnerabilities. Two
of them were identified to be added to the general
concurrency vulnerabilities listed above.

The first vulnerability identified (“Real-Time Timing”) is
related to the drift between clocks in different processors or
the drift between the different clocks used by an
application.

The second vulnerability (“Real-Time Scheduling”) deals
with the issues such as priority inversion, missed interrupts
or events and others, that can cause a task to miss its
deadline or other undesirable scheduling effects.

Deferred attributes

The discussion about this topic was started in session 1.A
and finished in this session.

A presentation was made on the existing limitations of the
current model of setting attributes (priority, deadline and
affinity) that can cause undesirable effects when trying to
change several of them simultaneously for the same task.

There was some discussion about whether these changes
could be performed atomically from inside a protected
operation. The conclusion was that this is not a valid
approach when changing other task’s attributes.

M. A. Rivas 279

Ada User Journal Volume 32, Number 4, December 2011

The group sentiment was that a mechanism is required to
allow deferred attribute setting for the next dispatching
point of a task.

Two alternative implementations of the aforementioned
mechanism were discussed: using an attributes object or
using a set of procedures.

It was agreed that this issue needs further investigation,
modelling and trial implementations.

3 Conclusions
The meeting was considered successful by the participants.

An intensive revision and evaluation of the Ada 2012
support for real-time systems was made, in particular in
reference to multiprocessors issues.

The meeting has also identified an important number of
issues that should be revisited in further workshops. No
specific proposals for language changes have been raised
since, at this moment, the Ada 2012 standard is almost
closed and we are yet quite far away from the following
language revision.

Social program

The lunch breaks gave to the participants the opportunity to
enjoy the impressive surroundings of Fuente Dé. On
Wednesday we took the cable car to the top of the
mountains, 800 meters above the workshop location. As the
cable car went above the clouds, we were witnesses of the
astonishing landscape of “Picos de Europa”. After eating
our packed lunch we had a relaxing walk before coming
back to the technical work.

 The reception and dinner was held in a restaurant in Potes
(the main town in the area). Potes was celebrating its
annual festival, so the group could enjoy the festive
atmosphere in the town.

Figure 2 The group at the top station of the cable car

Next Workshop

The next meeting of the workshop is planned for the York
area, UK in the spring of 2013.

References
[1] Proceedings of the 15th International Ada Real-Time

Workshop (2011). To be published in Ada Letters.

[2] A. Burns and A.J. Wellings. Support for
Multiprocessor Platforms. To be published in Ada
Letters.

[3] A. Burns, A.J. Wellings and A.H. Malik. TTF-
Ravenscar: A Profile to Support Reliable High-
Integrity Multiprocessor Ada Application. To be
published in Ada Letters.

[4] Alan Burns. An EDF Run-Time Profile based on
Ravenscar. To be published in Ada Letters.

[5] S. Lin and A.J. Wellings and A. Burns. Ada 2012,
Resource Sharing and Multiprocessors. To be
published in Ada Letters.

[6] José F. Ruiz. Going real-time with Ada 2012 and
GNAT. To be published in Ada Letters.

[7] Héctor Pérez Tijero, J. Javier Gutiérrez, and Michael
González Harbour. Adapting the end-to-end flow
model for distributed Ada to the Ravenscar profile. To
be published in Ada Letters.

[8] Marco Panunzio and Tullio Vardanega. Charting the
evolution of the Ada Ravenscar code archetypes. To be
published in Ada Letters.

[9] António Barros and Luís Miguel Pinho. Revisiting
Transactions in Ada. To be published in Ada Letters.

[10] Sergio Sáez, Alfons Crespo. Deferred Setting of
Scheduling Attributes in Ada 2012. To be published in
Ada Letters.

[11] Stephen Michell. Programming Language
Vulnerabilities – Proposals to Include Concurrency
Paradigms. To be published in Ada Letters.

[12] Sergio Sáez, Jorge Real, and Alfons Crespo. Adding
Multiprocessor and Mode Change Support to the Ada
Real-Time Framework. To be published in Ada
Letters.

[13] Juan Zamorano, Angel Esquinas, Juan A. de la Puente.
Ada Real-Time Services and Virtualization. To be
published in Ada Letters.

[14] José F. Ruiz. Session Summary: Multiprocessor Issues,
Part 1. To be published in Ada Letters.

[15] Luís Miguel Pinho. Session Summary: Multiprocessor
Issues, part 2 (resource control protocols). To be
published in Ada Letters.

[16] Tullio Vardanega. Session Summary: Language Profile
and Application Frameworks. To be published in Ada
Letters.

[17] Stephen Michell. Session Summary: Concurrency
Issues. To be published in Ada Letters.

 281

Ada User Journal Volume 32, Number 4, December 2011

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Gem #101: SOAP/WSDL server part
Pascal Obry, EDF R&D
Date: 14 March 2011

Abstract: In this Gem we build a server providing Web
services on the network.

Introdution
This is the first part of a two-part Gem on SOAP (Simple
Object Access Protocol).
In this Gem we will be building a SOAP server and you’ll see
that with Ada it is quite simple!
Let’s take a simple package spec such as the following:

package Temperatures is

 type Celsius is new Float;
 type Fahrenheit is new Float;

 function To_Fahrenheit (C : Celsius) return Fahrenheit;
 function To_Celsius (F : Fahrenheit) return Celsius;

end Temperatures;

The body is not shown here but it’s part of the source packages
that can be downloaded 1.
The first step is to generate the WSDL (Web Service
Description Language). A WSDL is an XML language for
describing Web services. In the WSDL we find a description
of the types and the specs of the routines. A WSDL is similar
to an IDL but based on XML.
To generate the WSDL, AWS come with the ASIS-based
ada2wsdl tool:

$ ada2wsdl temperatures.ads -a http://localhost:8888
 -o temperatures.wsdl

 The options are:

-a http://... Specifies the end-point for the Web services.

-o temperatures.wsdl Outputs WSDL into
 temperatures.wsdl.

Out of this WSDL it’s possible to generate stubs (for calling
Web services) or skeletons (for implementing Web services).
In this first part we’re building a server, so we don’t need the

1 http://www.adacore.com/2011/03/14/gem-101-soapwsdl-server-part/

stubs. AWS comes with a second tool called wsdl2aws to
generate all the necessary the code:

$ wsdl2aws -nostub -cb -spec temperatures
 -main soap_server temperatures.wsdl

 The options are:

-spec temperatures To use the routines as implemented in
 Temperatures unit.

-cb Generates the SOAP callbacks using the routines
 found in the spec specified above.

-main soap_server Generates a main named
 soap_server, this main program starts
 the SOAP server by referencing a
 SOAP dispatcher using the callback
 routines.

Using the three options above is very handy for building a
server that provides Web services and nothing more. The last
actions are just to compile the server and run it:

$ gnatmake -gnat05 -Psoap_server
$./server

At this point the services are available on the network and can
be called by other programs, possibly built with other
languages (Java and C# are the most common ones).
In the second part of this series we will see how to call those
services from Ada using AWS.

Gem #102: SOAP/WSDL client part
Pascal Obry, EDF R&D
Date: 28 March 2011

Abstract: In this Gem we will use web services as described
in a WSDL document.

Let’s get started…
This is the second part of a two-part Gem series on SOAP and
WSDL.
In this Gem we will be using a Web Service as described in a
WSDL document. These services could be implemented in
Java, C#, or Ada, because the WSDL is universal in the Web
Services world.
In the previous Gem we generated a WSDL from a simple Ada
spec. Let’s use it to generate the necessary code to use these
Web services. We again use the wsdl2aws tool, but this time
to generate only the stubs:

282 Ada Gems

Volume 32, Number 4, December 2011 Ada User Journal

$ wsdl2aws -f -noskel temperatures.wsdl

A set of packages is generated. Two are of interest to us at the
moment, namely:

• Package temperatures_service-types.ads, containing the
types used by the Web services.

• Package temperatures_service-client.ads, containing the
Web services client spec.

For each Web Service routine, two specs are generated:

function To_Fahrenheit
 (C : Celsius_Type;
 Endpoint : String := Temperatures_Service.URL;
 Timeouts : AWS.Client.Timeouts_Values :=
 Temperatures_Service.Timeouts)
 return To_Fahrenheit_Result;

function To_Fahrenheit
 (Connection : AWS.Client.HTTP_Connection;
 C : Celsius_Type)
 return To_Fahrenheit_Result;

-- Raises SOAP.SOAP_Error if the operation fails

The first connects and closes the connection for each call,
whereas the second uses a persistent connection. The usage is
straightforward. Now, let’s build a small program which
converts Celsius to Fahrenheit:

with Ada.Text_IO;
with Temperatures_Service.Client;
with Temperatures_Service.Types;

procedure SOAP_Client is
 use Ada;
 use Temperatures_Service;
 C : constant Types.Celsius_Type := 20.0;
 F : constant Types.Fahrenheit_Type :=
 Client.To_Fahrenheit (C);

 package C_IO is new Text_IO.Float_IO
 (Types.Celsius_Type);
 package F_IO is new Text_IO.Float_IO
 (Types.Fahrenheit_Type);

begin
 Text_IO.Put ("Celsius ");
 C_IO.Put (C, Aft => 1, Exp => 0);
 Text_IO.New_Line;
 Text_IO.Put ("Fahrenheit ");
 F_IO.Put (F, Aft => 1, Exp => 0);
 Text_IO.New_Line;
end SOAP_Client;

We can use the following simple project file to build this
program:

with "aws";
project SOAP_Client is
 for Source_Dirs use (".");
 for Main use ("soap_client.adb");
end SOAP_Client;
$ gnatmake -gnat05 -Psoap_client

Now let’s test it, first by starting the server we have built last
week:

$./soap_server

Then running soap_client:

$./soap_client
Celsius 20.0
Fahrenheit 68.0

That’s all there is to it. As we’ve shown, it’s easy to use a Web
Service in Ada when the WSDL is provided. It’s still possible
to use a Web Service without a WSDL, but in that case it
would be necessary to hand-code it.

284

Volume 32, Number 4, December 2011 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

