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   Command : constant String :=  
                                       "USERNAME"; 
   Answer_Ptr : constant 
         Interfaces.C.Strings.chars_ptr :=  
                              GetEnv (Command); 
   Answer : constant String :=  
         Interfaces.C.Strings.Value  
                               (Answer_Ptr); 
begin 
   return Answer; 
end GetUsername; 

Not pure Ada, but fits very well. 
Thank to all suggestions. 
From: Pablo Rego <pvrego@gmail.com> 
Date: Wed, 9 Nov 2011 17:16:51 -0800 
Subject: Re: Read Windows login username 

in Ada 95 
Newsgroups: comp.lang.ada 
> For a pure Ada version why not use 

Ada.Environment_Variables? 
The problem is that 
Ada.Environment_Variables is an Ada 
2005 package, cannot use it. 
From: Adam Beneschan 

<adam@irvine.com> 

Date: Wed, 9 Nov 2011 16:02:51 -0800 
Subject: Re: Read Windows login username 

in Ada 95 
Newsgroups: comp.lang.ada 
> In Windows, you can call function 

GetEnvironmentVariable and get the 
value of the environment variable 
"USERNAME". 

Doesn't always work (and neither does 
using Ada.Environment_Variables).  
I just tried it and found that GetUserName 
returns my login name, while 
Ada.Environment_Variables says that 
"USERNAME" doesn't exist.  
It may be an unusual setup--I'm logging 
into an Windows XP system remotely 
through the GoodTech telnet server. But 
you may as well use the function that 
works more reliably. 
This worked for me, but it could use more 
error checking: 

with Text_IO; 
procedure Print_User_Name is 
    subtype Buffer_Type is String  
                                           (1 .. 200); 

    function GetUserName ( 
           lpBuffer : access Buffer_Type; 
           lpnSize  : access Integer)  
        return Integer; 
    pragma Import (StdCall,  
        GetUserName, "GetUserNameA"); 
 
    Buf : aliased Buffer_Type; 
    Size : aliased Integer; 
    Result : Integer; 
begin 
    Size := Buffer_Type'Length; 
    Result := GetUserName (Buf'Access,  
                                           Size'Access); 
    Text_IO.Put_Line (Buf (1 .. Size - 1)); 
end Print_User_Name; 

StdCall is how we import Windows API 
functions with ICC Ada. Don't know how 
GNAT does it--probably the same. Result 
should be checked for errors, but I didn't 
bother. GetUserName sets Size to the size 
of the result including the null terminator, 
which is why the next line uses Size - 1. 
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Conference Calendar 
Dirk Craeynest 
K.U.Leuven. Email: Dirk.Craeynest@cs.kuleuven.be 
 
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on 
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific 
Ada focus. Items marked with ☺ denote events with close relation to Ada. 
The information in this section is extracted from the on-line Conferences and events for the international Ada community at: 
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full 
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly. 
 

2012 
 
April 03-05 4th NASA Formal Methods Symposium (NFM'2012), Norfolk, Virginia, USA. Topics include: 

identifying challenges and providing solutions to achieving assurance in mission- and safety-critical 
systems; formal verification, including theorem proving, model checking, and static analysis; model-
based development; techniques and algorithms for scaling formal methods, such as abstraction and 
symbolic methods, parallel and distributed techniques, ...; code generation from formally verified 
models; significant applications of formal methods to aerospace systems; etc. 

April 10-13 7th European Conference on Computer Systems (EuroSys'2012), Bern, Switzerland. Topics include: 
all areas of operating systems and distributed systems, including systems aspects of dependable 
computing, distributed computing, parallel and concurrent computing, programming-language support 
and runtime systems, real-time and embedded systems, security, etc. 

☺ April 11-13 15th IEEE International Symposium on Object/component/service-oriented Real-time distributed 
Computing (ISORC'2012), Shenzhen, China. Topics include: Programming and system engineering 
(languages, model-driven development of high integrity applications, specification, design, verification, 
validation, maintenance, ...); System software (real-time kernels, middleware support for ORC, 
extensibility, synchronization, scheduling, fault tolerance, security, ...); Applications (embedded systems 
(automotive, avionics, consumer electronics, etc), real-time object-oriented simulations, ...); System 
evaluation (timeliness, worst-case execution time, dependability, end-to-end QoS, fault detection and 
recovery time, ...); etc. 

April 11-13 19th Annual IEEE International Conference and Workshops on the Engineering of Computer 
Based Systems (ECBS'2012), Novi Sad, Serbia. Topics include: Dependability, Safety, and Security; 
Distributed Systems Design & Architecture; ECBS Infrastructure (Tools, Platforms); Embedded Real-
Time Software Systems; Model-based System Development; Verification & Validation; Reengineering 
& Reuse; Evolution & Change; etc. 

April 17-19 25th Conference on Software Engineering Education and Training (CSEET'2012), Nanjing, China. 
Topics include: Technology Transfer; Student projects and internships; Industry-academia collaboration 
models; Software engineering professionalism; Education & training for "real-world" Software 
Engineering practices; Evaluation of SE Curricula: Are We Still Relevant?; Training models in industry; 
Systems and Software Engineering; Teaching the Business of Software Engineering; etc. 

April 23-26 24th Annual Systems and Software Technology Conference (SSTC'2012), Salt Lake City, UT, USA. 

May 08-11 9th European Dependable Computing Conference (EDCC'2012), Sibiu, Romania. Topics include: 
Hardware and software architecture of dependable systems, Safety critical systems, Embedded and real-
time systems, Impact of manufacturing technology on dependability, Testing and validation methods, 
etc. 

☺ May 21-25 26th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2012), Shanghai, 
China. Topics include: all areas of parallel and distributed processing, such as Parallel and distributed 
algorithms; Applications of parallel and distributed computing; Parallel and distributed software, 
including parallel and multicore programming languages and compilers, runtime systems, parallel 
programming paradigms, programming environments and tools, etc. 
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☺ May 25 Workshop on Multithreaded Architectures and Applications (MTAAP'2012). 
Topics include: programming frameworks for multithreading in the form of languages 
and libraries, compilers, analysis and debugging tools to increase the programming 
productivity. 

May 25 13th International Workshop on Parallel and Distributed Scientific and 
Engineering Computing (PDSEC-12). Topics include: parallel and distributed 
computing techniques and codes; practical experiences using various parallel and 
distributed systems; loop and task parallelism; scheduling; compiler issues for scientific 
and engineering computing; scientific and engineering computing on parallel computers, 
multicores, GPUs, FPGAs, ...; etc. 

☺ May 29-31 50th International Conference on Objects, Models, Components, Patterns (TOOLS Europe'2012), 
Prague, Czech Republic. Topics include: Object technology, programming techniques, languages, tools; 
Language implementation techniques, compilers, run-time systems; Distributed and concurrent object 
systems, multicore programming; Program verification and analysis techniques; Trusted, reliable and 
secure components; Component-based programming, modeling, tools; Model-driven development; 
Empirical studies on programming models and techniques; Domain specific languages and language 
design; Industrial-strength experience reports; Real-time object-oriented programming and design; etc. 

May 31- Jun 1 International Conference on Multicore Software Engineering, Performance, and 
Tools (MSEPT'2012). Topics include: from small-scale systems to large-scale parallel 
systems; from writing new applications to reengineering legacy applications; 
frameworks and libraries for multicore software; parallel software architectures; 
modeling techniques for multicore software; programming models for multicore; testing 
and debugging of parallel applications; verification techniques for multicore software; 
software reengineering for parallelism; development environments and tools for 
multicore software; compiler techniques and auto-parallelization on multicore; multicore 
software issues in scientific computing; multicore software on mobile and embedded 
devices; experience reports; etc. 

☺ June 02-09 34th International Conference on Software Engineering (ICSE'2012), Zurich, Switzerland. Theme: 
"Sustainable Software for a Sustainable World". Deadline for early registration: April 22, 2012. 

June 01 5th Workshop on Refactoring Tools (WRT'2012). Topics include: refactoring engines, 
program analyses for refactoring tools, tools for suggesting refactorings, medium- and 
large-scale refactorings (e.g., package- or component-level), refactoring for concurrency 
and parallelism, etc. 

June 02-03 9th International Working Conference on Mining Software Repositories 
(MSR'2012). Topics include: mining of repositories across multiple projects; 
characterization, classification, and prediction of software defects based on analysis of 
software repositories; techniques to model reliability and defect occurrences; search 
techniques to assist developers in finding suitable components and code fragments for 
reuse, and software search engines; analysis of change patterns and trends to assist in 
future development; empirical studies on extracting data from repositories of large long-
lived and/or industrial projects; mining execution traces and logs; etc. 

☺ June 09 5th Workshop on Exception Handling (WEH'2012). Topics include: Exceptions in the 
software life-cycle (specifications, architectural design, modelling and programming, 
verification, debugging, testing, refactoring, variability management, static analysis, 
etc); Exception handling for and with new software artefacts (aspects, components, etc); 
Exception handling in today's applications (distributed, web-based, cloud, etc); 
Empirical studies of exception handling; Design patterns and anti-patterns, architectural 
styles, and good programming practice; etc. 

June 07-08 4th USENIX Workshop on Hot Topics in Parallelism (HotPar'2012), Berkeley, CA, USA. 

June 07-10 21st International Workshop on Algebraic Development Techniques (WADT'2012), Salamanca, 
Spain. Topics include: other approaches to formal specification; specification languages, methods, and 
environments; model-driven development; integration of formal specification techniques; quality 
assurance, validation, and verification; etc. 
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♦ June 11-15 17th International Conference on Reliable Software Technologies - Ada-
Europe'2012, Stockholm, Sweden. Sponsored by Ada-Europe, in cooperation with 
ACM SIGAda, SIGBED, SIGPLAN. 

☺ June 11-16 26th European Conference on Object-Oriented Programming (ECOOP'2012), Beijing, China. Topics 
include: all areas of object technology and related software development technologies, such as Analysis 
and design methods; Concurrent, parallel, distributed, and real-time systems; Language design and 
implementation; Modularity, aspects, features, components, services; Software development 
environments and tools; Static and dynamic software analysis; Type systems, formal methods; Software 
evolution; etc. 

☺ June 13 International Workshop on Languages for the Multi-core Era (LaME'2012). Topics 
include: programming language support for concurrency; the development of innovative 
or improved concurrency models, languages, run-time systems, libraries and tools for 
multicore programming. Deadline for submissions: April 15, 2012 (regular papers), May 
20, 2012 (position papers, programming challenge). 

June 11-16 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'2012), 
Beijing, China. Events also includes: 3rd Workshop on Experimental Evaluation of Software and 
Systems in Computer Science (Evaluate), ACM SIGPLAN 7th Workshop on Programming Languages 
and Analysis for Security (PLAS), 2nd ACM SIGPLAN Software Security and Protection Workshop 
(SSP), etc. 

☺ June 14 1st Asia-Pacific Programming Languages and Compilers Workshop (APPLC'2012). 
Topics include: Language designs and extensions; Static and dynamic analysis of 
programs; Domain-specific languages and tools; Type systems and program logics; 
Checking or improving the security or correctness of programs; Memory management; 
Parallelism, both implicit and explicit; Novel programming models; Debugging 
techniques and tools; Interaction of compilers and run-time systems with underlying 
systems; etc. 

June 13-15 37th USENIX Annual Technical Conference (USENIX ATC'2012), Boston, MA, USA. Topics 
include: Distributed and parallel systems; Embedded systems; Reliability, availability, and scalability; 
Security, privacy, and trust; etc. 

June 13-16 7th International Federated Conferences on Distributed Computing Techniques (DisCoTec'2012), 
Stockholm, Sweden. Includes the COORDINATION, DAIS, and FMOODS & FORTE conferences. 

June 18-22 9th International Conference on Integrated Formal Methods (iFM'2012), Pisa, Italy. Topics include: 
the combination of (formal and semi-formal) methods for system development, covering all aspects 
from language design through verification and analysis techniques to tools and their integration into 
software engineering practice. 

June 21-22 Symposium on Languages, Applications and Technologies (SLATE'2012), Braga, Portugal. Topics 
include: Programming language concepts and methodologies; Design of novel language constructs and 
their implementation; Domain Specific Languages design and implementation; Programming tools; 
Programming, refactoring and debugging environments; Dynamic and static analysis: Program Slicing 
Compilation and interpretation techniques; Code generation and optimization; Runtime techniques and 
Memory management; etc. 

June 25-27 11th International Conference on Mathematics of Program Construction (MPC'2012), Madrid, 
Spain. Topics of interest range from algorithmics to support for program construction in programming 
languages and systems, such as type systems, program analysis and transformation, programming-
language semantics, security, etc. 

June 25-28 Federated Events on Component-Based Software Engineering and Software Architecture 
(CompArch'2012), Bertinoro, Italy. 

June 26-28 3rd International Symposium on Architecting Critical Systems (ISARCS'2012). 
Topics include: architectural support for evolution; automotive and avionic systems; 
component-based development; critical infrastructures; embedded, mobile, and 
ubiquitous systems; industrial case studies, challenges, problems, and solutions; 
integrators (wrappers) for dependability; model-driven development; runtime checks; 
survivability and error confinement; type checking techniques; etc. 
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June 27-29 12th International Conference on Application of Concurrency to System Design (ACSD'2012), 
Hamburg, Germany. Topics include: (industrial) case studies of general interest, gaming applications, 
automotive systems, (bio-)medical applications, internet and grid computing, etc.; synthesis and control 
of concurrent systems, (compositional) modeling and design, (modular) synthesis and analysis, 
distributed simulation and implementation, ...; etc. 

July 01-03 24th International Conference on Software Engineering and Knowledge Engineering (SEKE'2012), 
Redwood City, California, USA. Topics include: Integrity, Security, and Fault Tolerance; Reliability; 
Component-Based Software Engineering; Embedded Software Engineering; Reverse Engineering; 
Programming Languages and Software Engineering; Program Understanding; Software Assurance; 
Software dependability; Software economics; Software Engineering Tools and Environments; Software 
Maintenance and Evolution; Software product lines; Software Quality; Software Reuse; Software 
Safety; Software Security; Software Engineering Case Study and Experience Reports; etc. Deadline for 
early registration: May 10, 2012. 

☺ July 09-11 GNU Tools Cauldron 2012, Prague, Czech Republic. Sponsored by: AdaCore, Google, IBM. Topics 
include: gathering of GNU tools developers. 

☺ July 10-13 10th IEEE International Symposium on Parallel and Distributed Processing with Applications 
(ISPA'2012), Madrid, Spain. Topics include: Parallel and Distributed Algorithms, and Applications; 
High-performance scientific and engineering computing; Middleware and tools; Reliability, fault 
tolerance, and security; Parallel/distributed system architectures; Tools/environments for 
parallel/distributed software development; Novel parallel programming paradigms; Compilers for 
parallel computers; Distributed systems and applications; etc. 

☺ July 11-13 24th Euromicro Conference on Real-Time Systems (ECRTS’2012), Pisa, Italy. Topics include: 
avionics, aerospace, automotive applications; embedded devices; hardware/software co-design; compiler 
support; component-based approaches; middleware and distribution technologies; programming 
languages and operating systems; modelling and formal methods; etc. 

July 16-20 36th Annual International Computer Software and Applications Conference (COMPSAC'2012), 
Izmir, Turkey. Topics include: Software life cycle, evolution, and maintenance; Formal methods; 
Software architecture and design; Reliability, metrics, and fault tolerance; Security; Real-time and 
embedded systems; Education and learning; Applications; etc. Deadline for submissions: April 20, 2012 
(fast abstracts, posters, doctoral symposium papers). 

July 18-20 17th Annual IEEE International Conference on the Engineering of Complex Computer Systems 
(ICECCS'2012), Paris, France. Topics include: Verification and validation, Model-driven development, 
Reverse engineering and refactoring, Design by contract, Agile methods, Safety-critical & fault-tolerant 
architectures, Real-time and embedded systems, Tools and tool integration, Industrial case studies, etc. 
Deadline for early registration: May 30, 2012. 

☺ August 27-28 17th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2012), 
Paris, France. Co-located with FM'2012. Topics include: Design, specification, code generation and 
testing based on formal methods; Methods, techniques and tools to support automated analysis, 
certification, debugging, learning, optimization and transformation of complex, distributed, real-time 
systems and embedded systems; Verification and validation methods that address shortcomings of 
existing methods with respect to their industrial applicability (e.g., scalability and usability issues); 
Tools for the development of formal design descriptions; Case studies and experience reports on 
industrial applications of formal methods, focusing on lessons learned or identification of new research 
directions; Impact of the adoption of formal methods on the development process and associated costs; 
Application of formal methods in standardization and industrial forums. 

August 27-28 12th International Conference on Quality Software (QSIC'2012), Xi'an, China. Theme: "Engineering 
of Quality Software". Deadline for submissions: April 23, 2012 (papers). 

August 27-31 18th International Symposium on Formal Methods (FM'2012), Paris, France. Theme: 
"Interdisciplinary Formal Methods". Topics include: Interdisciplinary formal methods (techniques, tools 
and experiences demonstrating formal methods in interdisciplinary frameworks); Formal methods in 
practice (industrial applications of formal methods, experience with introducing formal methods in 
industry, tool usage reports, etc); Tools for formal methods (advances in automated verification and 
model-checking, integration of tools, environments for formal methods, etc); Role of formal methods in 
software and systems engineering (development processes with formal methods, usage guidelines for 
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formal methods, method integration, qualitative or quantitative improvements); Theoretical foundations 
(all aspects of theory related to specification, verification, refinement, and static and dynamic analysis); 
Teaching formal methods (original contributions that provide insight, courses of action regarding the 
teaching of formal methods, teaching experiences, educational resources, integration of formal methods 
into the curriculum, etc). 

September 05-08 38th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2012), 
Cesme, Izmir, Turkey. Topics include: information technology for software-intensive systems. Deadline 
for application: April 13, 2012 (PhD Symposium). 

☺ Sep 05-08 Track on Embedded Software Engineering (ESE’2012). Topics include: Design and 
implementation of embedded software; Programming methodologies and languages for 
embedded software; Model-based and component-based approached to embedded 
software development; Embedded software verification and validation; Testing and 
certification of embedded software; Software-intensive systems applications, e.g., in 
automotive, avionics, energy, industrial automation, health care, and telecommunication; 
Embedded software architectures; etc. 

September 10-12 17th European Symposium on Research in Computer Security (ESORICS'2012), Pisa, Italy. Topics 
include: accountability, information hiding, information flow control, integrity, formal security methods, 
language-based security, risk analysis and management, security verification, software security, etc. 

☺ Sep 10-13 41st International Conference on Parallel Processing (ICPP'2012), Pittsburgh, PA, USA. Topics 
include: all aspects of parallel and distributed computing, such as Architecture; Programming Models, 
Languages & Environments; Compilers and Run-Time Systems; Applications; etc. 

Sep 10 5th International Workshop on Parallel Programming Models and Systems 
Software for High-End Computing (P2S2’2012).   

Sep 13 International Workshop on Embedded Multicore Systems (EMS’2012). Topics 
include: Compilers for heterogeneous embedded multi-core systems; Programming 
models for embedded multi-core systems; Embedded OS designs and performance 
tuning tools; Formal method for embedded systems; etc. 

September 10-13 8th International Conference on Open Source Systems (OSS'2012), Hammamet, Tunisia. Theme: 
"Long-Term Sustainability with OSS". Deadline for submissions: May 25, 2012 (panels, tutorials). 
Deadline for early registration: June 15, 2012. 

September 11-13 19th International Static Analysis Symposium (SAS'2012), Deauville, France. Topics include: abstract 
interpretation, bug detection, data flow analysis, model checking, new applications, program 
verification, security analysis, type checking, etc. 

September 18-20 12th International Workshop on Automated Verification of Critical Systems (AVoCS'2012), 
Bamberg, Germany. Topics include: Specification and Refinement, Verification of Software and 
Hardware, Verification of Security-Critical Systems, Real-Time Systems, Dependable Systems, Verified 
System Development, Industrial Applications, etc. Deadline for submissions: June 1, 2012 (full papers), 
July 23, 2012 (short papers). Deadline for registration: July 30, 2012. 

September 19-20 6th International Symposium on Empirical Software Engineering and Measurement (ESEM'2012), 
Lund, Sweden. Topics include: qualitative methods, empirical studies of software processes and 
products, industrial experience and case studies, evaluation and comparison of techniques and models, 
reports on the benefits / costs associated with using certain technologies, empirically-based decision 
making, quality measurement and assurance, software project experience and knowledge management, 
etc. Deadline for submissions: May 20, 2012 (short papers, posters). 

☺ Sep 19-23 21st International Conference on Parallel Architectures and Compilation Techniques (PACT'2012), 
Minneapolis, Minnesota, USA. Topics include: Parallel architectures and computational models; 
Compilers and tools for parallel computer systems; Support for correctness in hardware and software 
(especially with concurrency); Parallel programming languages, algorithms and applications; 
Middleware and run time system support for parallel computing; Applications and experimental systems 
studies; etc. 

September 23-30 28th IEEE International Conference on Software Maintenance (ICSM'2012), Riva del Garda, Trento, 
Italy. Topics include: reverse engineering and re-engineering, program and system comprehension, 
static and dynamic analysis, software migration and renovation, mining software repositories, 
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maintenance and evolution processes, run-time evolution and update, empirical studies in software 
maintenance and evolution, testing in relation to maintenance (i.e., regression testing), etc. Deadline for 
submissions: April 15, 2012 (research track abstracts), April 20, 2012 (research track), May 31, 2012 
(doctoral symposium), June 25, 2012 (early research achievements track), June 27, 2012 (industry track, 
tool demo track). 

September 25-28 5th International Conference on Software Language Engineering (SLE'2012), Dresden, Germany. 
Topics include: Formalisms used in designing and specifying languages and tools that analyze such 
language descriptions; Language implementation techniques; Program and model transformation tools; 
Language evolution; Approaches to elicitation, specification, or verification of requirements for 
software languages; Language development frameworks, methodologies, techniques, best practices, and 
tools for the broader language lifecycle; Design challenges in SLE; Applications of languages including 
innovative domain-specific languages or "little" languages; etc. Deadline for submissions: June 4, 2012 
(abstracts), June 11, 2012 (papers). 

September 26-28 11th International Conference on Intelligent Software Methodologies, Tools and Techniques 
(SoMeT'2012), Genoa, Italy. Topics include: software methodologies, and tools for robust, reliable, non-
fragile software design; software developments techniques and legacy systems; software evolution 
techniques; agile software and lean methods; formal methods for software design; software 
maintenance; software security tools and techniques; formal techniques for software representation, 
software testing and validation; software reliability, and software diagnosis systems; Model Driven 
Development (DVD), code centric to model centric software engineering; etc. 

October 01-04 14th International Symposium on Stabilization, Safety, and Security of Distributed Systems 
(SSS'2012), Toronto, Canada. Topics include: Fault-Tolerance and Dependable Systems, Safety and 
Security, Formal Methods, etc. Deadline for submissions: April 16, 2012 (abstracts), April 23, 2012 
(papers). 

October 01-05 10th International Conference on Software Engineering and Formal Methods (SEFM'2012), 
Thessaloniki, Greece. Topics include: programming languages, program analysis and type theory; 
formal methods for real-time, hybrid and embedded systems; formal methods for safety-critical, fault-
tolerant and secure systems; light-weight and scalable formal methods; tool integration; applications of 
formal methods, industrial case studies and technology transfer; education and formal methods; etc. 
Deadline for submissions: April 19, 2012 (papers). 

October 08-11 31st IEEE International Symposium on Reliable Distributed Systems (SRDS'2012), Irvine, 
California, USA. Topics include: distributed systems design, development and evaluation, with 
emphasis on reliability, availability, safety, security, trust and real time; high-confidence and safety-
critical systems; distributed objects and middleware systems; formal methods and foundations for 
dependable distributed computing; evaluations of dependable distributed systems; etc. Deadline for 
submissions: June 25, 2012 (workshop papers). 

☺ October 19-26 ACM Conference on Systems, Programming, Languages, and Applications: Software for 
Humanity (SPLASH'2012), Tucson, Arizona, USA. Topics include: the intersection of programming, 
programming languages, and software engineering; areas such as programming methods, design and 
analysis, testing, concurrency, program analysis, empirical studies, and new programming languages; all 
aspects of software construction and delivery, all factions of programming technologies. Deadline for 
submissions: April 13, 2012 (OOPSLA research papers, Onward! papers, Onward! essays, Wavefront, 
Wavefront Experience, workshops, panels); July 9, 2012 (posters, ACM Student Research competition, 
Doctoral Symposium); July 11, 2012 (Dynamic Languages Symposium); July 15, 2012 
(demonstrations). 

November 12-16 14th International Conference on Formal Engineering Methods (ICFEM'2012), Kyoto, Japan. Topics 
include: abstraction and refinement; software verification; program analysis; formal methods for 
robotics, cyber-physical systems, medical devices, aeronautics, railway; formal methods for software 
safety, security, reliability and dependability; experiments involving verified systems; formal model-
based development and code generation; etc. Deadline for submissions: April 16, 2012 (full papers). 

November 18-23 7th International Conference on Software Engineering Advances (ICSEA'2012), Lisbon, Portugal. 
Topics include: Advances in fundamentals for software development; Advanced mechanisms for 
software development; Advanced design tools for developing software; Software security, privacy, 
safeness; Specialized software advanced applications; Open source software; Agile software techniques; 
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Software deployment and maintenance; Software engineering techniques, metrics, and formalisms; 
Software economics, adoption, and education; etc. Deadline for submissions: July 7, 2012. 

♦ Dec 02-06 ACM SIGAda Annual International Conference, Boston, Massachusetts, USA. 

December 05-07 33rd IEEE Real-Time Systems Symposium (RTSS’2012), San Juan, Porto Rico. RTSS provides a 
forum for the presentation of high-quality, original research covering all aspects of real-time systems 
design, analysis, implementation, evaluation, and experiences. Deadline for submissions: May 15, 2012.  

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day! 

December 18-21 19th IEEE International Conference on High Performance Computing (HiPC'2012), Pune, India. 
Topics include: Parallel and Distributed Algorithms/Systems, Parallel Languages and Programming 
Environments, Hybrid Parallel Programming with GPUs and Accelerators, Scheduling, Fault-Tolerant 
Algorithms and Systems, Scientific/Engineering/Commercial Applications, Compiler Technologies for 
High-Performance Computing, Software Support, etc. Deadline for submissions: May 16, 2012 (papers), 
September 16, 2012 (student symposium). Deadline for early registration: November 14, 2012. 

2013 
 
☺ January 20-22 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2013), 

Rome, Italy. Topics include: fundamental principles and important innovations in the design, definition, 
analysis, transformation, implementation and verification of programming languages, programming 
systems, and programming abstractions. Deadline for submissions: April 22, 2012 (co-located events). 

March 25-29 12th International Conference on Aspect-Oriented Software Development (AOSD'2013), Fukuoka, 
Japan. Topics include: Complex systems; Software design and engineering (evolution, economics, 
composition, methodology, ...); Programming languages (language design, compilation and 
interpretation, verification and static program analysis, formal languages, execution environments and 
dynamic weaving, ...); Varieties of modularity (model-driven development, generative programming, 
software product lines, contracts and components, ...); Tools (evolution and reverse engineering, 
crosscutting views, refactoring, ...); Applications (distributed and concurrent systems, middleware, 
runtime verification, ...); etc. Deadline for submissions: May 7, 2012 (round 1), July 23, 2012 (round 2), 
October 8, 2012 (round 3). 
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17t h International Conference on Reliable Software Technologies 

Ada-Europe 2012 
11-15 June 2012, Stockholm, Sweden 

www.ada-europe.org/conference2012
 

Advance Information 
The 17th International Conference on Reliable Software Technologies (Ada-
Europe 2012) will take place in Stockholm, Sweden. This conference is the 
latest in a series of annual international conferences started in the early 
80's, under the auspices of, and organization by, Ada-Europe, the 
international organization that promotes the knowledge and use of Ada 
and reliable software in general into academia, research and industry.  
 

Ada-Europe 2012 provides a unique opportunity for dialogue and 
collaboration between academics and industrial practitioners interesting in 
reliable software. 
 

Following tradition, the conference will span a full week, including tutorials and a central three-day technical 
program with the latest advances in reliable software technologies and Ada. The core program features 3 
keynote talks, 15 refereed scientific papers on topics in the conference theme, 9 industrial presentations and 2 
discussion panels. Participants will have ample choice of half-day and full-day tutorials on Monday and Friday. 
Tutorials consist of courses given by recognised experts on topics concerning state-of-the-art methods and 
technologies for the development of reliable software. A session “Ada in Motion” is also planned to show off 
cases of Ada being used in moving equipment, such as Lego Mindstorms robots or Arduino based devices. 
 

Program Highlights 
Each day of the core program will open with a keynote talk delivered by one the following eminent speakers:  

• Bertrand Meyer, ETH Zurich, Switzerland, Chief Architect of Eiffel Software, “Life with Contracts” 
• Göran Backlund, Combitech, Sweden, “What is the Mission of a Software Developer?” 
• Jean-Loup Terraillon, ESTEC/ESA, the Netherlands, “Multicore Processors - the Next Generation 

Computer for ESA Space Missions”. 

The program also features two discussion panels, scheduled in the afternoons of the Tuesday and the 
Wednesday of the conference week: 

• Panel 1 (Tuesday): “What is Language Technology in Our Time?”, with Tullio Vardanega (University of 
Padua) as moderator, in which the invited language specialists will discuss how in their view the role, 
nature and contents of language technology has currently become, what the drivers of the change have 
been and can be expected to be, and how Ada should respond to them. 

• Panel 2 (Wednesday): “Reliable Software, a Perspective from Industry”, with Jørgen Bundgaard (Rovsing 
A/S) as moderator, in which the invited panellists will discuss what they see as the most pressing and 
challenging industrial needs in the way of software technology to facilitate the production of reliable 
software.  

Both panel sessions will allow and include open interaction with the conference participants. 
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About the Venue 

Stockholm, one of the most beautiful capitals in the world, is built 
on 14 islands around one of Europe’s largest and best-preserved 
mediaeval city centres, located by the Baltic Sea coast. Stockholm is 
also Scandinavia’s financial center with the largest gross regional 
product and largest presence of international companies. 
 
In 2010, Stockholm was the first city to receive the European Green 
Capital award, an initiative of the European Commission, and is 
ranked the fourth in the "Cities of Opportunity" analysis, ranking 
first in intellectual capital and innovation, health, safety and security 
demographics and liveability. 
 

The Ada-Europe 2012 conference will take place at 
Näringslivets Hus c, a modern conference centre 
situated in the very heart of Stockholm, located near the 
Östermalmstorg metro station and close to the Gamla 
Stan historic district.  
 
The program of the conference will offer ample time for 
interaction and networking, with extensive lunch and 
coffee periods, and a banquet being held on Wednesday, 
at Östermalms Saluhall d, a marketplace food hall in a 
magnificent building from 1888. 
 
Ada-Europe 2012 will build on the success of the 2011 
event, in Edinburgh, UK, on June 20-24, which attracted 
over 130 delegates coming from Belgium, Brazil, Canada, 

Denmark, Egypt, Finland, France, Germany, Israel, Italy, Norway, Poland, Portugal, Russia, Slovakia, South Africa, 
Spain, Sweden, Switzerland, The Netherlands, UK and USA, representing more than 20 universities and 50 
companies. 
 

Further Information 

The conference website at www.ada-europe.org/conference2012 provides full and up-to-date details of 
the program, venue and social program, registration, accommodation and travel advice.  
 
For exhibiting and sponsoring details please contact the Conference Chair, Ahlan Marriott, at  
ahlan@ada-switzerland.ch.  
 
For local information please contact the Local Chair, Rei Stråhle, at rei@ada-sweden.org. 
 

                                                   
                                                                                              
 

                                                                                                                                                   

                SIGAda, SIGBED, SIGPLAN 
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ACM SIGAda Annual International Conference 
 

High Integrity Language Technology  
HILT 2012 

Call for Technical Contributions 

 

Developing and Certifying Critical Software 
 

Boston, Massachusetts, USA 
December 2-6, 2012  

Sponsored by ACM SIGAda 
SIGAda.HILT2012@acm.org 

http://www.sigada.org/conf/hilt2012 

SUMMARY 
High integrity software must not only meet correctness and performance criteria but also satisfy stringent safety 
and/or security demands, typically entailing certification against a relevant standard. A significant factor affecting 
whether and how such requirements are met is the chosen language technology and its supporting tools: not just 
the programming language(s) but also languages for expressing specifications, program properties, domain 
models, and other attributes of the software or overall system. 
HILT 2012 will provide a forum for experts from academia/research, industry, and government to present the 
latest findings in designing, implementing, and using language technology for high integrity software. To this end 
we are soliciting technical papers, experience reports (including experience in teaching), and tutorial proposals on 
a broad range of relevant topics. 
POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:  
• New developments in formal methods 
• Multicore and high integrity systems 
• Object-Oriented Programming in high integrity systems 
• High-integrity languages (e.g., SPARK) 
• Use of high reliability profiles such as Ravenscar 
• Use of language subsets (e.g., MISRA C, MISRA C++) 
• Software safety standards (e.g., DO-178B and DO-178C) 
• Typed/Proof-Carrying Intermediate Languages 
• Contract-based programming (e.g., Ada 2012) 
• Model-based development for critical systems 
• Specification languages (e.g., Z) 
• Annotation languages (e.g., JML) 

• Teaching high integrity development 
• Case studies of  high integrity systems  
• Real-time networking/quality of service guarantees  
• Analysis, testing, and validation 
• Static and dynamic analysis of code 
• System Architecture and Design including  

Service-Oriented Architecture and Agile Development 
• Information Assurance 
• Security and the Common Criteria /  

Common Evaluation Methodology 
• Architecture design languages (e.g., AADL) 
• Fault tolerance and recovery 

KINDS OF TECHNICAL CONTRIBUTIONS  

TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically 10-
20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings and 
in ACM Ada Letters. The Proceedings will be entered into the widely consulted ACM Digital Library accessible 
online to university campuses, ACM’s 100,000 members, and the software community. 

EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature. If 
your abstract is accepted, a full paper is required and will appear in the proceedings. Extended abstracts will be 
double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its relationship with previous work 
by you and others (with bibliographic references), results to date, and future directions. 
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EXPERIENCE REPORTS present timely results and “lessons learned”. Submit a 1-2 page description of the 
project and the key points of interest. Descriptions will be published in the final program or proceedings, but a 
paper will not be required. 

PANEL SESSIONS gather groups of experts on particular topics. Panelists present their views and then exchange 
views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic, 
coordinator, and potential panelists. 

INDUSTRIAL PRESENTATIONS Authors of industrial presentations are invited to submit a short overview (at 
least 1 page in size) of the proposed presentation and, if selected, a subsequent abstract for a 30-minute talk. The 
authors of accepted presentations will be invited to submit corresponding articles for ACM Ada Letters. 

WORKSHOPS are focused sessions that allow knowledgeable professionals to explore issues, exchange views, 
and perhaps produce a report on a particular subject. Workshop proposals, up to 5 pages in length, will be selected 
based on their applicability to the conference and potential for attracting participants. 

TUTORIALS can address a broad spectrum of topics relevant to the conference theme. Submissions will be 
evaluated based on applicability, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial 
proposals should include the expected level of experience of participants, an abstract or outline, the qualifications 
of the instructor(s), and the length of the tutorial (half day or full day).  

HOW TO SUBMIT: Send in Word, PDF, or text format: 
 

Submission Deadline Send to 
Technical articles, extended abstracts, 
experience reports, panel session 
proposals, or workshop proposals 

June 29, 2012 Jeff Boleng, Program Chair 
jeff@boleng.com 

Industrial presentation proposals August 1, 2012 (overview)
October 1, 2012 (abstract) 

Tutorial proposals June 29, 2012 John McCormick, Tutorials Chair 
mccormick@cs.uni.edu 

 

At least one author is required to register and make a presentation at the conference. 

FURTHER INFORMATION  
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to 
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and 
university curricula. The Conference welcomes a grant application from anyone whose goals meet this 
description. The benefits include full conference registration with proceedings and registration costs for 2 days of 
conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students from 
GNAT Academic Program member institutions, which can be combined with conference grants. For more details 
visit the conference web site or contact Prof. Michael B. Feldman (MFeldman@gwu.edu) 

OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper 
selected by the program committee as the outstanding student contribution to the conference. 

SPONSORS AND EXHIBITORS: Please contact Alok Srivastava (asrivastava@yahoo.com) to learn the 
benefits of becoming a sponsor and/or exhibitor at HILT 2012. 

IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be particularly 
aware and careful about visa requirements, and should plan travel well in advance. Visit the conference website 
for detailed information pertaining to visas. 

ANY QUESTIONS? 
Please send email to SIGAda.HILT2012@acm.org, or contact the Conference Chair (Ben Brosgol, 
brosgol@adacore.com), SIGAda’s Vice-Chair for Meetings and Conferences (Alok Srivastava, 
asrivastava@yahoo.com), or SIGAda’s Chair (Ricky E. Sward, rsward@mitre.org).  
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Rationale for Ada 2012: 2 Expressions 
John Barnes 
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email: 
jgpb@jbinfo.demon.co.uk 

 

Abstract 
This paper describes the introduction of more flexible 
forms of expressions in Ada 2012. 
There are four new forms of expressions. If 
expressions and case expressions define a value and 
closely resemble if statements and case statements. 
Quantified expressions take two forms using for all 
and for some to return a Boolean value. Finally, 
expression functions provide a simple means of 
parameterizing an expression without the formality of 
providing a function body.  
These more flexible forms of expressions will be found 
invaluable in formulating contracts such as 
preconditions. It is interesting to note that Ada now 
has conditional expressions over 50 years after their 
introduction in Algol 60. 
Keywords: rationale, Ada 2012. 

1   Overview of changes 
One of the key areas identified by the WG9 guidance 
document [1] as needing attention was improving the 
ability to write and enforce contracts. These were discussed 
in detail in the previous paper. 

When defining the new aspects for preconditions, 
postconditions, type invariants and subtype predicates it 
became clear that without more flexible forms of 
expressions, many functions would need to be introduced 
because in all cases the aspect was given by an expression. 

However, declaring a function and thus giving the detail of 
the condition, invariant or predicate in the function body 
makes the detail of the contract rather remote for the human 
reader. Information hiding is usually a good thing but in 
this case, it just introduces obscurity. 

Four forms are introduced, namely, if expressions, case 
expressions, quantified expressions and expression 
functions. Together they give Ada some of the flexible feel 
of a functional language. 

In addition, membership tests are generalized to allow 
greater flexibility which is particularly useful for subtype 
predicates. 

The following Ada issues cover the key changes and are 
described in detail in this paper: 

  3  Qualified expressions and names 

147  Conditional expressions 

158  Generalizing membership tests 

176  Quantified expressions 

177  Expression functions 

188  Case expressions 

These changes can be grouped as follows. 

First there are conditional expressions which come in two 
forms, if expressions and case expressions, which have a 
number of features in common (147, 188). 

Then there is the introduction of quantified expressions 
which use for all to describe a universal quantifier and for 
some to describe an existential quantifier. Note that some 
is a new reserved word (176). 

Next comes the fourth new form of expression which is the 
expression function (177). 

Finally, membership tests are generalized (158) and there is 
a minor change regarding qualified expressions (3). 

2   If expressions 
It is perhaps very surprising that Ada does not have if 
expressions as well as if statements. In order to provide 
some background context we briefly look at two historic 
languages that are perhaps the main precursors to modern 
languages; these are Algol 60 [2] and CPL [3]. 

Algol 60 had conditional expressions of the form 

Z := if X = Y then P else Q 

which can be contrasted with the conditional statement 

if X = Y then 
   Z := P 
else 
   Z := Q 

Conditional statements in Algol 60 allowed only a single 
statement in each branch, so if several were required then 
they had to be grouped into a compound statement thus 

if X = Y then 
   begin 
      Z := P;  A := B 
   end 
else 
   begin 
      Z := Q;  A := C 
   end 

It may be recalled that statements were not terminated by 
semicolons in Algol 60 but separated by them. However, a 
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null statement was simply nothing so the effect of adding 
an extra semicolon in some cases was harmless. However, 
accidentally writing 

if X = Y then ; 
   begin 
      Z := P;  A := B 
   end; 

results in a disaster because the test then just covers a null 
statement and the assignments to Z and A always take 
place. The complexity of compound statements did not 
arise with conditional expressions. 

The designers of Algol 68 [4] sensibly recognized the 
problem and introduced closing brackets thus 

if X = Y then 
   Z := P; A := B; 
fi; 

where fi matches the if. Conditional expressions in Algol 68 
were similar 

Z := if X = Y then P else Q fi; 

An alternative shorthand notation was  

Z := (X = Y | P | Q); 

which was perhaps a bit too short. 

The next major language in this series was Pascal [5]. The 
designers of Pascal rejected everything that had been learnt 
from Algol 68 and foolishly continued the Algol 60 style 
for compound statements and also dropped conditional 
expressions. Only with Modula did they realise the need for 
bracketing rather than compounding. 

The other foundation language was CPL [3]. Conditional 
statements in CPL took the following form 

if X = Y then do Z := P 

if X = Y then do § Z := P; A := B §|          

where compound statements were delimited by section 
symbols (note that the closing symbol has a vertical line 
through it). 

From CPL came BCPL, B and C. Along the way, the 
expressive := for assignment got lost in favour of = which 
then meant that = had to be replaced by == for equality. 
And the section brackets became { and } so in C the above 
conditional statements become 

if (X == Y) Z = P; 

if (X == Y) {Z = P;  A = B;} 

This suffers from the same stray semicolon problem 
mentioned above with reference to Algol 60.  

Steelman [6] did not require Ada to have conditional 
expressions and since they were not required they were not 
provided (the requirements were treated with considerable 
reverence). A further influence might have been that the 
new language had to be based on one of Pascal, Fortran and 

PL/I and Ada is based on Pascal which did not have 
conditional expressions as mentioned above. 

Moreover, the Ada designers felt that the Algol 68 style 
with reversed keywords such as fi (or worse esac) for 
conditional statements would not be acceptable to the 
USDoD or the public at large and so we have end if as the 
closing bracket thus 

if X = Y then 
   Z := P; 
   A := B; 
end if; 

Remember that semicolons terminate statements in Ada 
and so those above are all required. Moreover, since null 
statements in Ada have to be given explicitly, placing a 
stray semicolon after then gives a compiler error. 

The absence of conditional expressions is a pain. It leads to 
unnecessary duplication such as having to write 

if X > 0 then 
   P(A, B, D, E); 
else 
   P(A, C, D, E); 
end if; 

where all parameters but one are the same. This can even 
lead to disgusting coding using the fact that 
Boolean'Pos(True) is 1 whereas Boolean'Pos(False) is 0. 
Thus (assuming that B and C are of type Integer) the above 
could be written as a single procedure call thus 

P(A, Boolean'Pos(X>0)*B+Boolean'Pos(X<=0)*C, D, E); 

So it is a great relief in Ada 2012 to be able to write 

P(A, (if X>0 then B else C), D, E); 

A worse problem was when a static expression was 
required such as the initial value for a named number as in 
the following gruesome code 

Febdays: constant :=  
       Boolean'Pos(Leap)*29 + Boolean'Pos(not Leap)*28; 

which we can now thankfully write as 

Febdays: constant := (if Leap then 29 else 28); 

Note carefully that there is no end if. One reason is simply 
that it is logically unnecessary since there can be only a 
single expression after else and also end if would have 
been obtrusively heavy (compared say with fi of Algol 68). 
However, it was felt that some demarcation was required to 
aid clarity and so a conditional expression is always 
enclosed in parentheses. If the context already has 
parentheses then additional ones are not required. Thus in 
the case of a positional call with a single parameter we just 
write 

P(if X > 0 then B else C); 

but if we use named notation then extra parentheses are 
required 

P(Para => (if X > 0 then B else C)); 
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Note carefully that the term conditional expression in Ada 
2012 embraces both if expressions and case expressions 
(which are discussed in the next section). 

As expected, a series of tests can be done using elsif thus 

P(if X > 0 then B elsif X < 0 then C else D); 

and expressions can be nested 

P(if X > 0 then (if Y > 0 then B else C) else D); 

Without the rule requiring enclosing parentheses this could 
be written as 

P(if X > 0 then if Y > 0 then B else C else D);  -- illegal 

which seems more than a little confusing. 

There is a special rule if the type of the expression is 
Boolean (that is of the predefined type Boolean or derived 
from it). In that case a final else part can be omitted and is 
taken to be true by default. Thus the following are 
equivalent 

P(if C1 then C2 else True); 

P(if C1 then C2); 

Such abbreviations appear frequently in preconditions as 
was illustrated in the Introduction where we had 

Pre => (if P1 > 0 then P2 > 0); 

which has the obvious meaning that the precondition 
requires that if P1 is positive then P2 must be positive as 
well but if P1 is not positive then all is well and we don't 
care about P2. 

This abbreviated form has the same effect as an implies 
operation.  

R := C1 implies C2; -- not Ada! 

with the following truth table 

 

 C1 = False C1 = True 

C2 = False R = True R = False 

C2 = True R = True R = True 

 

Some consideration was given to including such an 
operation in Ada 2012 (it existed in Algol 60). However, 
this is exactly the same as 

R := not C1 or C2; 

and so somewhat unnecessary. Moreover, although implies 
might appeal to some programmers it could lead to 
maintenance problems since it might be considered 
incomprehensible by many others. 

There are important rules regarding the types of the various 
dependent expressions in the branches of an if expression. 
Basically they have to all be of the same type or convertible 
to the same expected type. But there are some interesting 
situations. 

If the conditional expression is the argument of a type 
conversion then effectively the conversion is considered 
pushed down to the dependent expressions. Thus 

X := Float(if P then A else B); 

is equivalent to 

X := (if P then Float(A) else Float(B)); 

As a consequence we can write 

X := Float(if P then 27 else 0.3); 

and it doesn't matter that 27 and 0.3 are not of the same 
type. 

If the expected type is class wide, perhaps giving the initial 
value for a class wide variable V, then the individual 
dependent expressions have that same expected class wide 
type but they need not all be of the same specific type 
within the class. Thus we might write 

V: Object'Class := (if B then A_Circle else A_Triangle); 

where A_Circle and A_Triangle are objects of specific types 
Circle and Triangle which are themselves descended from 
the type Object.  

If the expected type is a specific tagged type then various 
situations can arise regarding the various branches which 
are similar to the rules for calling a subprogram with 
several controlling operands. Either they all have to be 
dynamically tagged (that is class wide) or all have to be 
statically tagged. They might all be tag indeterminate in 
which case the conditional expression as a whole is also tag 
indeterminate. 

Some obscure curiosities arise. Remember that the 
controlling condition for an if statement can be any 
Boolean type. Consider 

type My_Boolean is new Boolean; 

My_Cond: My_Boolean := ... ; 

if (if K > 10 then X = Y else My_Cond) then   -- illegal 
   ... 
end if; 

The problem here is that X = Y is of type Boolean but 
My_Cond is of type My_Boolean. Moreover, the expected 
type for the condition in the if statement is any Boolean 
type so it cannot make up its mind. We could overcome this 
foolishness by putting a type conversion around the if 
expression. 

There are also rules regarding staticness. If all branches are 
static then a conditional expression as a whole is static as in 
the example of Febdays above. Thus the definition of a 
static expression has been extended to permit the inclusion 
of static conditional expressions. 

The avid reader of the Reference Manual will find that the 
term statically unevaluated has been introduced. This 
relates to situations where expressions are not evaluated 
because a prior expression is static. Consider 

X := (if B then P else Q); 
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If B, P and Q are all static then the conditional expression 
as a whole is static. If B is true then the answer is P and 
there is not any need to even look at Q. We say that Q is 
statically unevaluated and indeed it does not matter that if 
Q had been evaluated it would have raised an exception. 
Thus we might write 

Average := (if Count = 0 then 0.0 else Total/Count); 

and there is no risk of dividing by zero. 

Similar rules regarding being statically unevaluated apply 
to short circuit conditions, case expressions, and 
membership tests. 

As might be expected there are rules regarding access types 
and accessibility. The accessibility level of a conditional 
expression is simply that of the chosen dependent 
expression and thus (generally) determined dynamically. 

Readers might feel that Ada has embarked on a slippery 
slope by introducing more flexibility thereby possibly 
damaging Ada's reputation for reliability. Certainly a 
number of additional rules have been required but from the 
users' point of view these are almost intuitive. It should be 
remembered that the difficulties in C stem from a 
combination of things 

▪ that assignment is permitted as an expression, 

▪ that integer values are used as Booleans, 

▪ that null statements are invisible. 

None of these applies to Ada so all is well.  

3   Case expressions 
Case expressions have much in common with if 
expressions and the two are collectively known as 
conditional expressions. 

Thus given a variable D of the familiar type Day, we can 
assign the number of hours in a working day by 

Hours := (case D is 
  when Mon .. Thurs => 8, 
  when Fri => 6, 
  when Sat | Sun => 0); 

A slightly more adventurous example involving nested if 
expressions is  

Days := (case M is 
 when September | April | June | November => 30, 
 when February =>  
  (if Year mod 100 = 0 then  
     (if Year mod 400 =0 then 29 else 28) 
   else  
     (if Year mod 4 = 0 then 29 else 28)), 
 when others => 31); 

The reader is invited to improve this! 

Note the similarity to the rules for if expressions. There is 
no closing end case. Case expressions are always enclosed 
in parentheses but they can be omitted if the context 
already provides parentheses.  

If M and Year are static then the case expression as a whole 
is also static. If M is static and equal to September, April, 
June or November then the value is statically known to be 
30 so that the expression for February is statically 
unevaluated even if Year is not static. Note that the various 
choices are evaluated in order. 

The rules regarding the types of the dependent expressions 
are exactly as for if expressions. Thus if the case expression 
is the argument of a type conversion then the conversion is 
effectively pushed down to the dependent expressions.  

It is always worth emphasizing that an important advantage 
of case constructions is that they give a coverage check. 
Thus in the previous paper we had 

subtype Pet is Animal 
   with Static_Predicate => 
      (case Pet is 
                when Cat | Dog | Horse => True, 
                when Bear | Wolf => False); 

which is much more reliable than 

subtype Pet is Animal 
   with Static_Predicate => Pet in Cat | Dog | Horse; 

because when we add Rabbit to the type Animal, we are 
forced to include it in one branch of the case expression 
whereas it is all too easy to forget it using an if expression. 

4   Quantified expressions 
Another new form of expression in Ada 2012 is the 
quantified expression. The syntax is 

quantified_expression ::=  
for quantifier loop_parameter_specification => predicate 
| for quantifier iterator_specification => predicate 

quantifier ::= all | some 

predicate ::= boolean_expression 

The form involving iterator_specification concerns 
generalized iterators and will be found particularly useful 
with containers; it will be discussed in detail in a later 
paper. Here we will concentrate on the use of the familiar 
loop parameter specification. 

The type of a quantified expression is Boolean. So we 
might write 

B := (for all K in A'Range => A(K) = 0); 

which assigns true to B if every component of the array A 
has value 0. We might also write 

B := (for some K in A'Range => A(K) = 0); 

which assigns true to B if some component of the array A 
has value 0. 

Note that the loop parameter is almost inevitably used in 
the predicate. A quantified expression is very much like a 
for statement except that we evaluate the expression after 
=> on each iteration rather than executing one or more 
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statements. The iteration is somewhat implicit and the 
words loop and end loop do not appear.  

The expression is evaluated for each iteration in the 
appropriate order (reverse can be inserted of course) and 
the iteration stops as soon as the value of the expression is 
determined. Thus in the case of for all, as soon as one value 
is found to be False, the overall expression is False 
whereas in the case of for some as soon as one value is 
found to be True, the overall expression is True. An 
iteration could raise an exception which would then be 
propagated in the usual way. 

Like conditional expressions, a quantified expression is 
always enclosed in parentheses which can be omitted if the 
context already provides them, such as in a procedure call 
with a single positional parameter. 

Incidentally, predicate is a fancy word meaning Boolean 
expression. Older folk might recall that it also means the 
part of a sentence after the subject. Thus in the sentence "I 
love Ada", the subject is "I" and the predicate is "love 
Ada". 

The forms for all and for some are technically known as 
the universal quantifier and existential quantifier 
respectively.  

Note that some is a new reserved word (the only one in 
Ada 2012). There were five new ones in Ada 95 (aliased, 
protected, requeue, tagged and until) and three new ones 
in Ada 2005 (interface, overriding and synchronized). 
Hopefully we are converging. 

The type of a quantified expression can be any Boolean 
type (that is the predefined type Boolean or perhaps 
My_Boolean derived from Boolean). The predicate must be 
of the same type as the expression as a whole. Thus if the 
predicate is of type My_Boolean then the quantified 
expression is also of type My_Boolean. 

The syntax for quantified expressions uses => to introduce 
the predicate. This is similar to the established notation in 
SPARK [7]. Consideration was given to using a vertical bar 
which is common in mathematics but that would have been 
confusing because of its use in membership tests and other 
situations with multiple choices. 

As illustrated in the Introduction, quantified expressions 
will find their major uses in pre- and postconditions. Thus a 
procedure Sort on an array A of type Atype such as  

type Atype is array (Index) of Float; 

might have specification 

procedure Sort(A: in out Atype) 
   with 
      Post => A'Length < 2 or else 
             (for all K in A'First .. Index'Pred(A'Last) => 
   A(K) <= A(Index'Succ(K))); 

where we are assuming that the index type need not be an 
integer type and so we have to use Succ and Pred. Note 
how the trivial cases of a null array or an array with a 
single component are dismissed first. 

Quantified expressions can be nested. So we might check 
that all components of a two-dimensional array are zero by 
writing 

B := (for all I in AA'Range(1) => 
 (for all J in AA'Range(2) => AA(I, J) = 0)); 

This can be done rather more neatly using the syntactic 
form  

   for quantifier iterator_specification => predicate 

as will be discussed in detail in a later paper. We just write 

B := (for all E of AA => E = 0); 

which iterates over all elements of the array AA however 
many dimensions it has.  

5   Expression functions 
The final new form to be discussed is the expression 
function. As outlined in the Introduction, an expression 
function provides the effect of a small function without the 
formality of introducing a body. It is important to 
appreciate that strictly speaking an expression function is 
basically another form of function and not another form of 
expression. But it is convenient to discuss expression 
functions in this paper because like conditional expressions 
and quantified expressions they arose for use with aspect 
clauses such as pre- and postconditions. 

The syntax is 

expression_function_declaration ::= 
[overriding_indicator] 
function_specification is 
   (expression) 
   [aspect_specification] ; 

As an example we can reconsider the type Point and the 
function Is_At_Origin thus 

package P is 
   type Point is tagged 
      record 
         X, Y: Float := 0.0; 
      end record; 

   function Is_At_Origin(P: Point) return Boolean is 
      (P.X = 0.0 and P.Y = 0.0) 
         with Inline; 

   ... 
end P; 

The expression function Is_At_Origin is a primitive 
operation of Point just as if it were a normal function with a 
body. If a type My_Point is derived from Point then 
Is_At_Origin would be inherited or could be overridden 
with a normal function or another expression function. 
Thus an expression function can be prefixed by an 
overriding indicator as indicated by the syntax. 

Expression functions can have an aspect clause and since 
by their very nature they will be short, this will frequently 
be with Inline as in this example. 
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The result of an expression function is given by an 
expression in parentheses. The parentheses are included to 
immediately distinguish the structure from a normal body 
which could start with an arbitrary local declaration. The 
expression can be any expression having the required type. 
It could for example be a quantified expression as in the 
following 

function Is_Zero(A: Atype) return Boolean is 
   (for all J in A'Range => A(J) = 0); 

This is another example of a situation where the quantified 
expression does not need to be enclosed in its own 
parentheses because the context supplied by the expression 
function provides parentheses. 

Expression functions can be completions as well as 
standing alone and this introduces a number of possibilities. 
Remember that many declarations require completing. For 
example an incomplete type such as 

type Cell;   -- an incomplete type 

is typically completed by a full type declaration later on 

type Cell is 
   record ... end record;   -- its completion 

Completion also applies to subprograms. Typically the 
declaration (that is the specification plus semicolon) of a 
subprogram appears in a package specification thus 

package P is 
   function F(X: T);  -- declaration 
   ... 
end P; 

and then the body of F which completes it appears in the 
body of P thus 

package body P is 
   function F(X: T) is  -- completion 
   begin 
      ... 
   end F; 
   ... 
end P; 

A function body cannot appear in a package specification. 
The only combinations are 

 

function declaration F function body F 

in spec of P in body of P 

in body of P in body of P 

None in body of P 

 

Remember that mutual recursion may require that a body 
be given later so it is possible for a distinct declaration of F 
to appear in the body of P before the full body of F. In 
addition to the above the function body could be replaced 

by a stub and the proper body compiled separately but that 
is another story. 

The rules regarding expression functions are rather 
different. An expression function can be declared alone as 
in the example of Is_At_Origin above; or it can be a 
completion of a function declaration and that completion 
can be in either the package specification or body. A 
frequently useful combination occurs with a private type 
where we need to make a function visible so that it can be 
used in a precondition and the expression function then 
occurs in the private part as a completion thus 

package P is 
   type Point is tagged private; 
   function Is_At_Origin(P: Point) return Boolean 
      with Inline; 
   procedure Do_It(P: in Point; ... ) 
      with Pre => not Is_At_Origin; 

private 

   type Point is tagged 
      record 
         X, Y: Float := 0.0; 
      end record; 

function Is_At_Origin(P: Point) return Boolean is 
   (P.X = 0.0 and P.Y = 0.0); 

   ... 
end P; 

Note that we cannot give an aspect specification on an 
expression function used as a completion, so it is given on 
the function specification; this makes it visible to the user. 
(This rule applies to all completions such as subprogram 
bodies and is not special to expression functions.) 

An expression function can also be used in a package body 
as an abbreviation for 

function Is_At_Origin(P: Point) return Boolean is 
begin 
   return P.X = 0.0 and P.Y = 0.0; 
end Is_At_Origin; 

The possible combinations regarding a function in a 
package are 

 

function declaration F expression function F 

in spec of P in spec or body of P 

in body of P in body of P 

None in spec or body of P 

 

We perhaps naturally think of an expression function used 
as a completion to be in the private part of a package. But 
we could declare a function in the visible part of a package 
and then an expression function to complete it in the visible 
part as well. This is illustrated by the following interesting 
example of two mutually recursive functions.  
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package Hof is 

   function M(K: Natural) return Natural; 
   function F(K: Natural) return Natural; 

   function M(K: Natural) return Natural is 
      (if K = 0 then 0 else K – F(M(K–1))); 

   function F(K: Natural) return Natural is 
      (if K =0 then 1 else K – M(F(K–1))); 

end Hof; 

These are the Male and Female functions described by 
Hofstadter [8]. They are inextricably intertwined and both 
are given with completions for symmetry. 

Almost inevitably, at least one of the expression functions 
in a mutually recursive pair will include an if expression (or 
else or else) otherwise the recursion will not stop. 

Expression functions can also be declared in subprograms 
and blocks (they are basic declarative items). Moreover, an 
expression function that completes a function can also be 
declared in the subprogram or block. 

This is illustrated by the following Gauss-Legendre 
algorithm which computes π  to an amazing accuracy 
determined by the value of the constant K. 

with Ada.Text_IO; use Ada.Text_IO; 
with Ada.Long_Long_Float_Text_IO; 
use Ada.Long_Long_Float_Text_IO; 
with Ada.Numerics.Long_Long_Elementary_Functions; 
use Ada.Numerics.Long_Long_Elementary_Functions; 
procedure Compute_Pi is 

   function B(N: Natural) return Long_Long_Float; 

   function A(N: Natural) return Long_Long_Float is 
      (if N = 0 then 1.0 else (A(N–1)+B(N–1))/2.0); 

   function B(N: Natural) return Long_Long_Float is 
     (if N = 0 then Sqrt(0.5) else Sqrt(A(N–1)*B(N–1))); 

   function T(N: Natural) return Long_Long_Float is 
      (if N = 0 then 0.25 else  
           (T(N–1)–2.0**(N–1)*A(N–1)–A(N))**2); 

   K: constant := 5;  -- for example 
   Pi: constant Long_Long_Float := 
  ((A(K) + B(K))**2 / (4.0*T(K)); 
begin 
   Put(Pi, Exp => 0); 
   New_Line; 
end Compute_Pi; 

With luck this will output 3.14159265358979324 
(depending on the accuracy of Long_Long_Float). 

The functions A and B give successive arithmetic and 
geometric means. They call each other and so B is given as 
a function specification which is then completed by the 
function expression.  

I am grateful to Brad Moore and to Ed Schonberg for these 
instructive examples. 

The rules regarding null procedures (introduced in Ada 
2005 primarily for use with interfaces) are modified in Ada 
2012 to be uniform with those for expression functions 
regarding completion. Thus  

procedure Nothing(X: in T) is null; 

can be used alone as a declaration of a null operation for a 
type or as a shorthand for a traditional null procedure thus 
possibly completing the declaration 

procedure Nothing(X: in T); 

Expression functions and null procedures do not count as 
subprogram declarations and so cannot be declared at 
library level. Nor can they be used as proper bodies to 
complete stubs. Library subprograms are mainly intended 
for use as main subprograms and to use an expression 
function in that way would be somewhat undignified! 

Thus if we wanted to declare a useful function to compute 
sin 2x from time to time, we cannot write 

with Ada.Numerics.Elementary_Functions; 
use Ada.Numerics.Elementary_Functions; 
function Sin2(X: Float) is          -- illegal 
   (2.0 * Sin(X) * Cos(X)); 

but either have to write it out the long way or wrap the 
expression function in a package. 

6   Membership tests 
Membership tests in Ada 83 to Ada 2005 are somewhat 
restrictive. They take two forms 

▪ to test whether a value is in a given range, or 

▪ to test whether a value is in a given subtype. 

Examples of these are 

if M in June .. August then 

if I in Index then 

However, the restrictions are annoying. If we want to test 
whether it is safe to eat an oyster (there has to be an R in 
the month) then we would really like to write 

if M in Jan .. April | Sep .. Dec then -- illegal in Ada 2005 

whereas we are forced to write something like 

if M in Jan .. April or M in Sep .. Dec then 

which means repeating M and then perhaps worrying about 
whether to use or or or else. Or in this case we could do 
the test the other way 

if M not in May .. Aug then 

What we would really like to do is use the vertical bar as in 
case statements and aggregates to select a combination of 
ranges, subtypes, and values. 

Ada 2012 is much more flexible in this area. To see the 
differences it is probably easiest to look at the old and new 
syntax. The relevant old syntax for Ada 2005 is 
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relation ::= 
 simple_expression [relational_operator simple_expression] 
| simple_expression [not] in range 
| simple_expression [not] in subtype_mark 

where the last two productions define membership tests. 
The syntax regarding choices in aggregates and case 
statements in Ada 2005 is  

discrete_choice_list ::= discrete_choice { | discrete_choice} 

discrete_choice ::= expression | discrete_range | others 

discrete_range ::= discrete_subtype_indication | range 

The syntax in Ada 2012 is rather different and changes 
relation to use new productions for membership_choice_list 
and membership_choice (this enables the vertical bar to be 
used in membership tests). And then membership_test in 
turn uses choice_expression and choice_relation as follows 

relation ::= 
 simple_expression [relational_operator simple_expression] 
| simple_expression [not] in membership_choice_list 

membership_choice_list ::=  
           membership_choice { | membership_choice} 

membership_choice ::=  
           choice_expression | range | subtype_mark 

choice_expression ::=  
    choice_relation {and choice_relation} 
  | choice_relation {or choice_relation} 
  | choice_relation {xor choice_relation} 
  | choice_relation {and then choice_relation} 
  | choice_relation {or else choice_relation} 

choice_relation ::=  
 simple_expression [relational_operator simple_expression] 

The difference between a choice_relation and a relation is 
that the choice_relation does not include membership tests. 
Moreover, discrete_choice is changed to 

discrete_choice ::= choice_expression 
      | discrete_subtype_indication | range | others 

the difference being that a discrete_choice now uses a 
choice_expression rather than an expression as one of its 
possibilities. 

The overall effect of the changes is to permit the vertical 
bar in membership tests without getting too confused by 
nesting membership tests.  

Here are some examples that are now permitted in Ada 
2012 but were not permitted in Ada 2005 

if N in 6 | 28 | 496 then           -- N is small and perfect! 

if M in Spring | June | October .. December then 
 -- combination of subtype, single value and range 

if X in 0.5 .. Z | 2.0*Z .. 10.0 then  -- not discrete or static 

if Obj in Triangle | Circle then -- with tagged types 

if Letter in 'A' | 'E' | 'I' | 'O' | 'U' then -- characters 

Membership tests are permitted for any type and values do 
not have to be static. There is no change here but it should 
be remembered that existing uses of the vertical bar in case 
statements and aggregates do require the type to be discrete 
and the values to be static. 

Another important point about membership tests is that the 
membership choices are evaluated in order and as soon as 
one is found to be true (or false if not is present) then the 
relation as a whole is determined and the other membership 
choices are not evaluated. This is therefore the same as 
using short circuit forms such as or else and so gives 
another example of expressions which are statically 
unevaluated. 

There is one very minor incompatibility. In Ada 2005 we 
can write 

X: Boolean := ... 
case X is 
   when Y in 1 .. 10  => F(10); 
   when others => F(5); 
end case; 

This is rather peculiar. The discrete choice Y in 1 .. 10 must 
be static. Suppose Y is 5, so that Y in 1 .. 10 is true; then if 
X is True, we call F(10) whereas if X is false we call F(5). 
And vice versa for values of Y not in the range 1 to 10. 

This is syntactically illegal in Ada 2012 because a discrete 
choice can no longer be an expression and so be a 
membership test. This was imposed because otherwise we 
might have been tempted to write 

X: Boolean := ... 
case X is 
   when Y in 1 .. 10 | 20 => F(10); 
   when others => F(5); 
end case; 

and this is syntactically ambiguous because it might be 
parsed as (Y in 1 .. 10) | 20 rather than Y in (1 .. 10) | 20. 
Although it would be rejected anyway because of the type 
mismatch. However, syntactic ambiguities are disliked in 
Ada. 

This is clearly very unlikely to be a problem. Case 
statements over Boolean types are pretty rare anyway. 

7   Qualified expressions 
We conclude this discussion of expressions by considering 
some points regarding names and primaries.  

In Ada 2005 we have 

name ::= 
     direct_name | explicit_dereference | indexed_component 
  | slice | selected_component | attribute_reference 
  | type_conversion | function_call | character_literal 

primary ::=  
     numeric_literal | null | string_litreral | aggregate | name 
  | qualified_expression | allocator | (expression) 

And in Ada 2012 we have 



J. G. P. Barnes 53  

Ada User Journal Volume 33, Number 1, March 2012 

name ::= 
     direct_name | explicit_dereference | indexed_component 
  | slice | selected_component | attribute_reference 
  | type_conversion | function_call | character_literal 
  | qualified_expression | generalized_reference 
  | generalized_indexing 

primary ::=  
     numeric_literal | null | string_litreral | aggregate | name 
  | allocator | (expression) 
  | (conditional_expression) | (quantified_expression) 

The important thing to observe here is that 
qualified_expression has moved from being a form of 
primary to being a name. 

We also note the addition of conditional_expression and 
quantified_expression (both in parentheses) as forms of 
primary as discussed earlier in this paper and the addition 
of generalized_reference and generalized_indexing as 
forms of name. These are used in the new forms of iterator 
briefly alluded to at the end of the discussion on quantified 
expressions and which will be discussed in a later paper. 

Returning to qualified expressions, the main reason for 
allowing them as names is to avoid unnecessary 
conversions as mentioned in the Introduction. 

Consider 

A: T;        -- object of type T 
type Art is array (1 .. 10) of T;     -- array of type T 
function F(X: Integer) return Art; 

A function call can be used as a prefix and so a call 
returning an array can be indexed as in 

A := F(3)(7); 

which assigns to A the value of the 7th component of the 
array returned by the call of F. 

Now suppose that F is overloaded so that F(3) is 
ambiguous. The normal solution to such ambiguities is to 
use qualification and write Art'(F(3)) as in 

A := Art'(F(3))(7); -- illegal in Ada 2005 

but this is illegal in Ada 2005 because a qualified 
expression is not a name and so cannot be used as a prefix. 
What one has to do in Ada 2005 is either copy the wretched 
array (really naughty) or add a type conversion (a type 
conversion is a name) thus 

A := Art(Art'(F(3)))(7); 

This is really gruesome; but in Ada 2012, qualification is 
permitted as a name so we can simply write 

A := Art'(F(3))(7); -- OK in Ada 2012 

Although a qualified expression is now classed as a name 
rather than a primary, a qualified variable is not considered 
to be a variable. As a consequence, a qualified variable 
cannot be used as the destination of an assignment or as an 
actual parameter corresponding to an out or in out 
parameter. This would have added complexity for no useful 
purpose. Ambiguity generally involves calls on overloaded 
functions, and the result of a function call is always a 
constant, so ambiguous names of variables are unlikely! 

Other uses might involve strings which can also give rise to 
ambiguities. For example 

("a string")'Length 

is ambiguous (it could be a String or Wide_String). But now 
we can write 

String'("a string")'Length 

which was not permitted in Ada 2005. 
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Abstract 
Entity-life modeling (ELM) is a design approach for 
multitask reactive software, which must respond to 
events in the environment as they occur. The 
abundant computing power now afforded by 
multiprocessors allows us to design such software 
differently than in the past. With ELM, the architect 
identifies threads of event occurrences in the problem 
domain that unfold independently or nearly so, and 
bases tasks on such event threads. ELM also provides 
design patterns for modeling tasks on activities 
defined for state machines, and event-thread patterns 
for problems that involve the sharing of problem-
domain resources.  
Keywords: multitasking, entity-life modeling, 
multiprocessors, event threads, resource sharing, 
design of multitask software, multithreading, task 
architecture, reactive systems. 

1   Introduction 
Tasking has long been used in certain kinds of software 
such as servers and real-time systems. The new abundance 
of processors allows us to design such software in more 
elegant ways that makes it more understandable and 
maintainable.  

We are interested here in systems that exhibit a reactive 
behavior [12]. Their reactions to events in the problem 
domain can be captured in state models. Taken in a broad 
sense, reactive systems include telephone switches, 
embedded control systems, and interactive systems ranging 
from ATMs to travel-reservation systems [25].   

This article presents entity-life modeling (ELM) as a design 
approach for reactive software [19, 20, 22]. ELM proposes 
certain architectural styles and suggests heuristics for 
finding task architectures in those styles. As there is often 
little time for upfront designing, ELM produces a task 
architecture directly, without first modeling objects or 
mapping out a data flow. ELM does not address the 
parallelization of algorithms but in no way precludes it; 
tasks computing concurrently on different processors are 
very much in ELM’s spirit.  

While the book Design of Multithreaded Software [22] 
defines ELM, this article applies the design approach to 
tasking in Ada and uses Ada terminology. It also introduces 
a UML diagram showing ELM’s conceptual apparatus 
(Figure 1), which is not found in the book. The term 

“essential event” is introduced. The garage-door example in 
section 2 is new as well.  

1.1   Traditional task architectures 
Traditionally, multitask reactive software has been 
designed around the need to husband limited processor 
resources. It is often structured as a set of periodic tasks 
with periodic, hard deadlines, and each task’s priority is set 
to ensure that it meets its deadlines. Schemes such as rate-
monotonic scheduling can establish a priori whether all 
deadlines will be met [13]. The number of missed deadlines 
is used as a performance metric. Each input/stimulus visits 
one periodic task after the other, and may itself have a hard 
deadline. The periodic deadlines must be chosen so that 
deadline is also met.  

Besides hard deadlines, we also talk about soft deadlines. 
Missing a soft deadline is no disaster but may degrade 
performance. In a cruise controller for example, which 
must adjust the throttle at consistent intervals for a smooth 
ride, the planned time for each adjustment can be a soft 
deadline [21, 22]. And interactive systems must be 
responsive to human input but again without hard 
deadlines. In such systems the mean and variance of the 
response or service time may be the best performance 
metric.  

With additional cores and processors, inputs can still have 
associated deadlines, but there is much more processing 
time to go around: As many computations as there are 
processors or cores can proceed simultaneously. For many 
applications, the design need no longer center on processor 
availability as the overshadowing constraint.  

This does not mean that we can blithely assume that 
abundant processes and cores will make all resource 
conflicts just go away. Even if an input is processed on a 
dedicated processor, it can miss its deadline because other 
tasks hold on to a shared resource too long. And in some 
“cyber-physical systems”, computation may be “deeply 
embedded in and interacting with physical processes” 
imposing precise timing constraints on the software [16].  

Thus, even absent the need for each input to visit one task 
after another, we must design multitask reactive software 
carefully. Undisciplined tasking can create “wild 
nondeterminism” and deadlock [15]. While a sequential 
program can be checked against an exhaustive set of test 
cases this is not so with tasking where some bugs may 
show up only in rare runtime situations that a tester cannot 
easily recreate. No less important, there are also general 
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software-engineering goals such as simplicity, 
modifiability, and maintainability. 

1.2 Entity-life modeling 
Entity-life modeling (ELM) is a disciplined design approach 
for multitask reactive software. It is dedicated to the 
proposition that each essential event occurrence should be 
processed to completion by a single task – or by an 
event/interrupt handler. This does not mean that a new task 
is started for each event occurrence. Having processed one 
to completion, a task can go on to handle another 
occurrence of the same or a different event and indeed a 
whole series of occurrences provided they are not too close 
together. For this, ELM defines an event thread as a 
chronological sequence of problem-domain event 
occurrences that are separated in time.1  
The term “event” is taken from state modeling. In a garage-
door controller, click may be the event where a homeowner 
hits a clicker button, and top may be where the door hits the 
ceiling. Each event has any number of occurrences, as 
when the owner of a particular home clicks the button at a 
particular time. Such an occurrence is normally followed 
by an occurrence of top seconds later.   
ELM stipulates that every task must be based on an event 
thread. This justifies the task’s existence. But if all the 
thread’s occurrences are processed by handlers, no task is 
needed.  
An ELM architecture is meant to be independent of the 
number of processors available. Thus it can use as many 
processors as there are tasks, or, at the other extreme, all 
tasks can run on a single processor. Clearly, the 
performance can be quite different but the architecture does 
not have to change. 
The relationship between event-thread models and task 
architectures is illustrated schematically in Figure 1, which 
also shows that tasks have priorities. ELM assumes that 
their scheduling is preemptive so that a higher-priority task 
in need of a processor can take it over from a lower-priority 
task immediately.  
1.2.1   Event-thread models and task architectures 
Figure 1 shows an event-thread model of a given problem 
as a set of event threads. The threads partition the set of 
problem-domain event occurrences: Each occurrence 
belongs to exactly one event thread. There may be multiple 
ways to view a problem, each with its own event-thread 
model. 

Also shown in Figure 1, a task architecture consists of 
tasks and protected objects. It is often called the process or 
concurrency view of the full software architecture [7, 14]. 
ELM uses “task architecture” both for brevity and to 
emphasize that it can be quite an independent artifact. It is 
self-contained because – except for event/interrupt handling 
                                                           
 
1  How far apart the occurrences must be is a matter of engineering 
judgment [22]. 

– every instruction must be executed by a task. Each ELM 
task architecture is based on an event-thread model.  

 
Figure 1  Basic ELM concepts shown as a UML class diagram 

A protected object has protected operations with built-in 
exclusion synchronization: each task locks the object before 
operating on it. Because an object that is locked for any 
length of time can become a bottleneck, every protected 
operation in a reactive system should be nearly 
instantaneous. Thus no task should keep a protected object 
locked while performing a long computation. If all 
operations cannot be short, the design must account for 
wait states explicitly (2.1). Handlers for interrupts and 
timing events are protected procedures in Ada.  

Protected objects can also have entries, which provide 
condition synchronization: A protected entry let tasks block 
on a condition [1]. ELM uses protected objects in various 
ways. Thus monitor and semaphore protected objects use 
condition synchronization to control the access to problem-
domain resource (3.1, 4.3). We return to state-machine 
protected objects in 2.3. Protected objects can also be used 
as pragmatic engineering devices. 

1.2.2   Event threads and entities 
It is not enough for a set of event threads to partition the 
occurrences in a problem domain; we must also ensure that 
the event-thread model and the task architecture make 
sense. For that we need to find event threads that are 
intuitively meaningful and easy to grasp and describe. Here 
are some examples: 

• In a garage-door controller for a home [2], the process 
of opening and closing defines an event thread where 
the user clicks a remote controller, the door reaches the 
top or bottom of its frame, etc. The control software is 
built around a single main state machine.   

• The cruise controller [21, 22] also has a single main 
state machine. It has one event thread related to the 
human driver. In addition, it has a thread of time 
events governing the actions on the throttle. (A time 
event is the event that a certain time has passed since 
some other event occurrence.) 

• In an elevator bank in a hotel or office building, each 
cabin is an instance of an elevator entity type. It travels 
up and down, stops, opens and closes its doors, etc.  

• In a flexible manufacturing system (FMS), jobs visit 
workstations according to their process plans. Much of 
a job’s life consists of waiting for exclusive access to a 
workstation or a vehicle (Section 4). 
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As a matter of heuristics, it is often useful to look for 
entities in the problem domain such that each entity’s life 
history is an event thread. In the examples above, a car 
driver, an elevator, and a job are such entities (or entity 
types). Naming an event thread after an entity creates a 
common set of expectations of how it should work so if 
entities are carefully chosen, we can agree on what belongs 
in each event thread. While an entity such as car driver can 
be helpful intuitively, it must also be very clear that we are 
only talking about the driver’s interaction with a particular 
software system and no other doings. Because entities are 
auxiliary, the association with event thread is shown 
informally in Figure 1. 

2   Analysis and design 
In ELM analysis and design, event-thread modeling 
logically comes first and leads to a task architecture. The 
process is never linear, but an idealized flow is as follows: 

1. Consider one or more possible event-thread models, 
each including all event occurrences in the problem 
domain. Capture event threads in state diagrams as 
needed (2.1).  

2. Validate the feasibility of each model by ensuring that 
it covers all event occurrences in the problem (4.2, 
5.1). Choose one model. 

3. Realize the event-thread model by implementing each 
thread either as a task or by means of event/interrupt 
handling (2.3).  

The next subsections elaborate on these steps. 

2.1   Identifying event-thread models  
We start by discussing how to identify event threads in a 
single state diagram. Entities stand out more clearly in 
complex problems, but there too, the life of an entity or 
entity type can be captured in a state diagram.  

Figure 2 is a state diagram of an automated garage door for 
a home [2]. It shows how the complete system with 
software embedded must react to various events created by 
a user clicking a remote and by sensors around the physical 
door.  

At each point in time, the door exists in exactly one state 
such as Closed (marked as the initial state) or Opening. In 
Stopped-opening and Stopped-closing, the door has been 
halted partway up or down. Sensing is a superstate with the 
substates Closing, Stopped-opening and Opened.  

An event such as click can cause a transition to another 
state. The event break is when a light beam near the floor is 
broken; bottom is when the door reaches its closed position, 
etc. (We assume for now that click, break, top, and bottom 
create interrupts.)  

Besides state transitions, events can also trigger actions. 
Thus click/stop indicates that–in certain states–the event 
click stops the door motor. The time event S sec in state 
Stopped-closing triggers automatic opening after the door 
has been still for S seconds.  

Conceptually, an action is instantaneous, that is, it takes no 
time. For purposes of software design, it is nearly 
instantaneous, that is, short enough that no events happen 
during the action. What is short enough is an engineering-
judgment call.  

Many an action impacts the problem domain irreversibly 
and cannot be undone readily; for instance, start down 
could make the door crash into some obstacle.  

 
Figure 2  State diagram of a home garage door 

State transitions and actions can be conditional: In Figure 2, 
click [clear]/start down triggers the action start down and a 
transition to Closing only if the light beam across the 
garage-door frame indicates that the passage is clear. (For 
simplicity, the diagram omits events and event-condition 
combinations causing neither transitions nor actions.)  

If the system’s reaction to an event is not nearly 
instantaneous it must be considered an activity, not an 
action. An activity continues throughout a state. It is 
indicated by the keyword do as with check optical sensor in 
the superstate Sensing: Throughout the superstate, the 
sensor is checked say every P seconds to ensure that the 
passage is clear. That activity starts immediately as the 
superstate is entered and stops upon the occurrence of an 
event – such as break – that causes a transition from 
Sensing.  

In general, other possible activity types include lengthy 
computations. Also, ELM considers the wait for a resource 
an activity. This is because an activity is often implemented 
by a task, which can block on a protected object until the 
resource becomes available.  

It is necessary in ELM to distinguish between “software” 
activities and others. A software activity is one that requires 
software involvement throughout its state; a lengthy 
computation and a wait for a resource are examples. 
Software activities require tasks.  

Other activities are called nominal and consist of discrete 
actions that can be dealt with by interrupt/event handlers. 
An activity such as check optical sensor is nominal if it is 
handled by means of timing events, and a software activity 
if implemented as a task. 

2.1.1   Essential events  
Because ELM uses event threads to justify the task 
architecture, the events in the threads must be essential to 
the problem and not figments of a particular design. Most 
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essential events occur in the problem domain and are 
shared with the software; click, break, top, and bottom are 
examples. Time events such as S sec are essential if they 
are significant in the problem domain no matter the 
software design. Time events that trigger the sampling of 
problem-domain quantities are essential, for example. 

Some essential events occur in the software. If the software 
controls domain-resource sharing they include allocation 
events, which are where a domain entity acquires a 
resource. The completion of a lengthy computation that is 
necessary no matter the design is also an essential event. 

Note. “Essential event” is a more general term than “shared 
event” but is not used in the book [22]. It is clear, however, 
that some essential events are not intuitively shared. An 
allocation event, for example, is not shared with the 
domain, especially if the resource user simply goes on to 
wait for another resource. 

2.2   Identifying event threads and thread models 
In straightforward cases such as the garage door, a single 
state model covers the whole problem, and the event 
threads can be identified from the state diagram. For 
example, we might let a thread clicks include all 
occurrences of click, another, bottoms, include the 
occurrences of bottom, and a third, tops, the occurrences of 
top. The various click occurrences are indeed separated in 
time as are the occurrences of bottom and top. A fourth 
thread, timer, can include the occurrence of the event S sec.  

It is immediately clear though that these event threads are 
interdependent. In ELM terms, the threads bottoms and tops 
do not co-occur. Here is a definition: Two or more event 
threads in a thread model co-occur iff we can find an 
arbitrarily short time interval where each of them may have 
an event occurrence. For practical purposes, event threads 
co-occur if there is a time when, by chance, each can have 
an event occurring [20, 22]. ELM recommends that the 
designer optimize the event-thread model by combining 
non-co-occurring threads. Thus in the garage door, one 
event thread door-operation can include the occurrences of 
top, bottom, and S sec. 

The event thread clicks presents a little practical problem. 
While it does not co-occur with door-operation normally, a 
user could certainly hit the button just as the door reaches 
the top or bottom. Because this situation is exceptional we 
include the event click in door-operation. We could also 
keep clicks as a separate event thread, but ELM is not out 
to force more threads on the designer or make too much of 
some trivial aspect of the problem.  

Another event thread, sensor-checking, is associated with 
the activity check optical sensor where the sensor is polled 
every P seconds. The time event P sec is essential, and its 
occurrences form the event thread. The threads door-
operation and sensor-checking co-occur: the sensor might 
be polled at the same time as the user clicks the remote or 
the door hits the floor or ceiling.   

An optimal event-thread model is one where all the threads 
co-occur. Its threads are as many as the maximum number 

of events that can ever occur at once. This number is the 
concurrency level of the problem. The garage-door 
problem’s concurrency level is two, so a model consisting 
of the threads door-operation and sensor-checking is 
optimal. (Strictly, this is true only in the superstate Sensing; 
elsewhere the level is one.)  

ELM does not require optimality because the concurrency 
level cannot always be determined readily. Besides, the 
designer is free to choose a nonoptimal model that is useful 
and intuitive even if some tasks should spend most of their 
time waiting for each other. Still, the concurrency level 
often has value as a benchmark. For example, if someone 
should propose a garage-door solution with five tasks, it is 
reasonable to ask whether five event occurrences need ever 
be handled at once.  

2.3   Realizing an event-thread model in software 
In an architecture based on an event-thread model, event 
threads can be implemented in two different ways: 
according to the concurrent-activities pattern or according 
to the sequential-activities pattern. (These are called 
design patterns [22], which seems consistent with the 
pattern community’s usage [8], but “implementation 
patterns” might be intuitively clearer.) 

In the concurrent-activities pattern, a state-machine 
protected object (Figure 1) keeps the current state, 
typically in a private variable. When an event occurs, an 
event handler is called. It is one of the object’s operations, 
which updates the state variable as necessary and takes any 
action triggered by the event.  

An activity task is associated with a state-machine 
protected object. It implements a software activity (or two 
or more non-co-occurring activities). In addition to event 
handlers, it can call other operations on the state-machine 
object to query the current state or to block until a certain 
state is entered. Each co-occurring activity needs its own 
activity task. In Figure 1, a dashed line informally shows 
that activity tasks are associated with state-machine objects. 
If there are no activities at all, the protected object alone 
represents the state machine. No tasks are needed. 

The garage-door problem fits this pattern. Its state-machine 
protected object has handlers for click, top, bottom, and 
break, and a timing-event handler for S sec. The polling of 
the optical sensor has two possible implementations: 

• A single, periodic activity task, check-sensor, blocks 
on the state-machine object until the superstate Sensing 
is entered. Within that state, it calls break to report 
each light-beam breach.  

• The state-machine protected object has a timing-event 
handler for P sec. This architecture degenerates to a 
protected object without tasks. 

The sequential-activities pattern works for activities that 
do not co-occur. They are arranged one after the other in a 
single sequential-activities task (Figure 1). It differs from 
an activity task in that it keeps track of the state, which can 
often be implicit in the logic rather than kept in a state 
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variable. Such task logic can read neatly from top to bottom 
like a main program, and can rely on the programming 
language’s block structure, scoping rules, and exception 
handling as appropriate. Variables are allocated on the 
task’s stack.  

Like other patterns, those of ELM can “dovetail and 
intertwine” [8] in many ways. For instance, an activity task 
for a superstate can also be a sequential-activities task and 
keep track of the current substate within the superstate. 
This happens in the cruise controller. It has a state-machine 
protected object and a single activity task that controls the 
throttle. In state Cruising, the task repeatedly compares the 
current speed with the target speed and actuates on the 
throttle when needed. In state Accelerating, it maintains 
constant acceleration [21, 22]. This makes for smooth state 
changes. (If the driver’s inputs do not create interrupts, an 
additional sampler task is needed.) 

3   Event-thread patterns 
The concurrent-activities and sequential-activities 
design/implementation patterns yield simple software 
solutions for many single-state-machine problems such as 
the garage door and the cruise controller. In more complex 
problems, we identify event threads and/or entities in the 
problem domain.  

In the elevator-bank controller, for example, the life of an 
elevator entity can be shown in a state diagram. All cabins 
share a repository of out-standing requests for service, 
which is populated by sampling as travelers press buttons 
[18, 22]. Figure 3 shows a solution where each elevator 
task also has a separate repository for calls from its cabin 
buttons.  

 
Figure 3  Communication diagram of the elevator software  

This is an example of an event-thread pattern, a group of 
interacting entities, some of which enter data in a repository 
while others act on the data. The repository is consulted as 
a cabin approaches and leaves a floor. This pattern 
conforms in spirit to an architectural style called repository 
[10]. An event-thread pattern is a way to look at the 
problem and should not be confused with a 
design/implementation pattern, which deals with 
programming practicalities. Some even-thread patterns also 
map neatly onto the sequential-activities or concurrent-
activities pattern, however 

3.1   Event-thread patterns for resource sharing 
Two event-thread patterns related to the important issue of 
domain-resource sharing have proven quite productive. If 
each resource user needs no more than one resource at a 
time, the event occurrences can be threaded either by 
resource or by resource user. ELM forces us to choose one 

view because otherwise, event occurrences involving a 
resource-user and a resource would belong to two event 
threads. In other words, there are two distinct event-thread 
patterns for resource sharing, the resource-user-thread 
pattern and the resource-guard-thread pattern as follows 
[22]: 

A resource-user event thread is the life history of a 
resource-user entity in the problem domain and includes 
allocation events and events involving the shared resources. 
In the FMS problem for instance, jobs are resource-user 
entities. So are the elevator entities. 

A resource-user event thread is typically implemented as a 
sequential-activities task, some of whose activities consist 
of waiting for resources. (This relationship is shown 
informally in Figure 1.) As the entities’ surrogates, these 
tasks call operations on monitor and/or semaphore 
protected objects representing resources (Figure 1) and 
block until a resource becomes available.  

Each resource-guard event thread represents the life 
history of a resource entity that services requests one by 
one. That leads to an implementation where resource-guard 
tasks are stations on a kind of assembly line where one task 
forwards an object representing the resource user to the 
next task. Queues implemented as protected objects 
connect the stations.  

The two patterns are dual in that we can choose either a 
resource-guard-thread model or a resource-user-thread 
model of a given problem. No matter which model we 
think of first, it is a good mental habit always to work out 
its dual, which may turn out to be radically better [22].  

Comparing different possible designs is essential in 
engineering [2, 9, 17, 23], and a discussion of alternatives 
considered should be part of the rationale for the solution 
ultimately chosen. Finding an alternative solution often 
takes imagination though, and we cannot even be sure that 
one exists [3]. But when the resource-sharing patterns 
apply, we can normally produce dual solutions. 

4   Ex.: Flexible manufacturing system  
The FMS problem illustrates problem-domain resource 
sharing. Flexible manufacturing differs from production 
lines in that each type of job visits its own series of 
workstations as defined by its process plan. In a particular 
FMS, multiple workstations of different types are 
connected by automated guided vehicles (AGVs) on a 
factory floor as shown in Figure 4 [6, 18, 19, 22]. Each 
workstation has an in-stand (I), an out-stand (O), and a 
robot arm (R) for moving the workpiece between an AGV, 
the stands, and the workstation tool. 

Each job processes a single workpiece, which starts out and 
ends up in a storage bin in the automated storage and 
retrieval systems (ASRS). The workpiece is also staged in 
its bin when its next workstation is busy. From the bin, a 
forklift takes the piece to a storage stand where an AGV 
can get it. The piece then visits various workstations. When 
it cannot proceed directly from out-stand to in-stand, it is 
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staged in its storage bin. We shall first look at the sharing 
of workstations only; we return to the vehicles in 4.3 

 
Figure 4  Layout of a simple FMS  

4.1   Resource-user threads representing jobs 
The job is a resource-user entity that acquires and releases 
exclusive control of workstations in competition with other 
jobs. Initially, the workpiece waits in its bin for access to 
the in-stand of a workstation of the right type. Once on the 
in-stand, it waits for the tool to become available. When 
done in the tool it moves onto the out-stand, if necessary 
after bumping the previous job off the stand. If completed 
or bumped, the job returns to its bin; otherwise it waits until 
the in-stand of its next workstation becomes available. The 
logic in pseudocode is as follows with assertions about the 
job’s whereabouts in italics: 

Get information about first job step    
    while (job not completed)    

Workpiece is in bin 
        Acquire workstation in-stand   
        while (True)    

Workpiece is on storage stand or out-stand 
            Travel to in-stand 
            Acquire access to tool 
            Wait for processing by tool  

Workpiece is being worked 
            If out-stand busy, bump previous job 

Wait for it to clear stand 
            Move to out-stand 
            Get information about the next job step 
            Break from inner loop if job completed 
            Attempt to acquire in-stand for next step 
            Wait until:   In-stand acquired 
            or Bumping prompt: Break from inner loop  
      Travel to storage bin  

The job tasks are sequential-activities tasks with implicit 
state representation. It is appropriate to state-diagram the 
life of a job, but unlike the state machine in Figure 2, this 
one describes a single entity and has no co-occurring 
activities–the co-occurrence is instead between different 
jobs.  

One difficulty inherent in the FMS problem is the situation 
where a job waits for either access to an in-stand or a 
bumping prompt, whichever comes first. A task 
representing the job can use an asynchronous select 
statement to block until either event occurs [6, 22].  

4.2   Resource-guard threads for workstations 
In a dual FMS solution, the jobs are passive, and each 
workstation has the following three resource-guard threads, 
collectively called workstation threads: 

1. An in-stand thread, which finds an eligible job and 
moves the workpiece to the workstation. (The 
pseudocode is shown in 4.3.2.)  

2. A tool thread, which waits for the workpiece to be 
done and moves it onto the out-stand. 

3. An out-stand thread, which sends a workpiece to 
storage if it is done, or else waits for an in-stand or the 
bumping prompt. In case of bumping, the thread takes 
the workpiece to storage. 

This is a valid event-thread model because every event 
occurrence (except job creation) is associated with a 
workstation. It is optimal because, at some instant, one 
workpiece can be on its way to the workstation, a second 
one can be done in the tool, and a third on its way to 
storage. Consequently, a situation–albeit unlikely–exists 
where all the threads have events occurring at the same 
time. This solution usually needs fewer tasks than the job-
thread solution because jobs in storage have none. 

4.3   Simultaneous exclusive access  
When entities need exclusive access to multiple resources 
at once, resource-user threads are often the best solution. 
An implementation with implicit state representation 
exposes the resource acquisition and release clearly.  
Simultaneous exclusive access can set the stage for 
deadlock, a circular situation where–in the simplest case–
each of two resource users waits indefinitely for a resource 
held by the other. In a system such as the FMS, the 
architect can use textbook deadlock prevention techniques 
to design the architecture to be deadlock free [22]. 

4.3.1 Deadlock prevention in the FMS example 
The bumping in the FMS prevents deadlock by eliminating 
indefinite waits. Without bumping, two workstations could 
each have a workpiece on its in-stand and out-stand and in 
its tool, and each workpiece on an out-stand could be 
waiting for the other in-stand. Bumping stops jobs from 
keeping an out-stand indefinitely and thereby prevents 
deadlock. 

Besides workstations, FMS jobs need transportation, which 
requires exclusive access to multiple resources at once, 
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such as an in-stand, a storage stand, and a forklift. We can 
eliminate circularity at this level by stipulating that each 
job acquire resources in a given order called a locking 
order. This is a partial order where R < S means that if a 
job needs exclusive access to resources R and S at once, R 
must be acquired before S. The order in-stand < storage 
stand < forklift, storage stand < AGV, and in-stand < AGV 
works for the FMS. Here is a more complete pseudocode 
for the job task type with the locking order observed:  

Get information about first job step    
while (job not completed)        

Workpiece is in bin 
    Acquire workstation in-stand      
    Acquire storage stand   
    Forklift.To_stand;  
    while (True)      
 Workpiece is on storage stand or out-stand 
        Acquire AGV; Travel by AGV to in-stand 
        Release AGV, and storage stand or out-stand  
        Wait for processing by tool  
 Workpiece is being worked 
        If out-stand busy, bump previous job, wait for it to clear 
             out-stand 
        Move to out-stand 
        Get information about the next job step 
        Break from inner loop if job completed 
        Attempt to acquire in-stand of workstation for next step 
        Wait until: In-stand acquired    
        or  Bumping prompt: Break from inner loop  
    Acquire storage stand    
    Acquire AGV; Travel to storage stand; Release AGV 
    Forklift.To_bin;    
    Release storage stand  
 
Semaphore protected objects (Figure 1) guard the 
workstations and AGVs. The Acquire and Release calls are 
in-line, making it plain to see which resources are held and 
enforce the locking order. The monitor protected object 
Forklift encapsulates entire moves in the operations 
To_stand and To_bin. (The AGVs could be handled 
similarly.) 

4.3.2   Solution with workstation threads 
A change from job tasks to workstation tasks barely affects 
the protected objects that control access to forklifts and 
AGVs. Those objects assume only that each calling task 
represents a job. This obviously holds with job tasks, and it 
holds with workstation tasks too: They acquire AGVs, etc., 
on jobs’ behalf. While the tasks are resource guards with 
respect to the workstations, they are resource-user tasks 
with respect to vehicles. As an example, here is the in-stand 
task in pseudocode: 

while (True) 
    Find eligible job  
    if job in storage then 
        Acquire storage stand 
        Forklift.To_stand 
   Acquire AGV; Take workpiece to in-stand;  
   Release AGV and storage/out-stand  

The next section discusses task architectures generally and 
uses the FMS example for illustration.  
5   Tasks as architectural elements   
Because the term “architecture” tends to make us think of 
buildings, “software architecture” may conjure up an image 
of a static module structure. But unlike a building, a 
reactive software system is a machine with dynamic 
characteristics [23]. Tasks capture those dynamics. They 
are not modules but still loosely coupled building blocks.  

ELM tasks can be thought about in problem-domain terms. 
For example, the form of each FMS architecture shows 
how it manages the real-world problem outside the 
software.  That way, the task architecture can expose 
important problem aspects much as the form given to 
physical device can bring out its function.   

Because task architecture defines the machinery of 
interacting tasks, it allows us to create early running 
prototypes with simplified logic to study performance. 
Additional scaffolding tasks can simulate the sources of 
external impulses and also respond to actions taken by the 
software. For example, a task that simulates an AGV can 
interact with job tasks or workstation tasks. Such 
scaffolding tasks can often be sequential-activities tasks 
with implicit state representation [18].   

5.1   Conceptual integrity and key ideas 
Software architecture is said to have conceptual integrity if 
all its parts serve one central purpose. Such architecture 
appears to flow from a single mind or perhaps two minds, 
“acting uno animo” [3, 4]. Conceptual integrity helps to 
make the architecture an “intellectually graspable model” 
and sometimes a “reusable and transferable abstraction” 
[2]. The integrity can often be manifest in a key idea.  

Conceptual integrity is perhaps nowhere more important 
than in task architectures. To this end, ELM prescribes 
certain styles, which can be significant also in what they 
exclude [23]. For example, an FMS architecture can have 
job tasks or workstation tasks–not both. Thus, within the 
ELM confines, an idea such as “a task per job” determines 
an architecture and distinguishes it from possible others.  

A simple key idea can carry much meaning because ELM 
architectures usually contain far fewer task types than there 
are classes in an object-oriented design or transforms in a 
dataflow model. Scale is achieved by instantiation, not by 
adding element types [17]. By twisting and turning an idea 
in our minds, we may come up with a better one; just 
figuring out the dual of a resource-sharing solution may 
open new, surprising vistas on a problem.  

If the key idea is clear enough, someone not involved in the 
original design effort can build on it. The FMS solution 
where each job pursues its completion came from students 
at the Wang Institute [18, 22]. Later, Rob Scott proposed 
that instead, workstations procuring jobs to work on could 
be seen as the driving forces. That idea together with 
ELM’s principles let us visualize such a solution and 
validate it as a consistent and worthwhile alternative.  
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6   Conclusion 
An abundance of computing power has created new 
conditions for the design of reactive software. History 
shows that new tools and materials ultimately make us 
design to their strengths. Factories once replaced central 
steam engines with central electric motors and thereby got 
the coal off the premises. But they made a quantum leap 
only when all over the plant, power lines to smaller motors 
replaced all the belts and pulleys [5].  

So it is with tasking. ELM exploits the new hardware to 
free tasking from practical constraints and base it instead 
on concurrency inherent in the problem. In the same 
manner, programming in general has evolved away from 
the computer’s physical structure and limitations [11]. 
Besides, the idea of arranging happenings in the problem 
domain into event threads also turns out to be quite 
teachable.  

We should make software architecture more understandable 
to stakeholders somewhat removed from the “code”. To 
reach that goal, we should strive to make software as 
transparent as clockwork. “[S]imple designs can be 
communicated easily; complex designs are hard to explain” 
[24]. A task architecture can reveal the software mechanics 
without much technical detail. Simple designs can boost 
correctness too, for the easier it is to study and discuss an 
architecture, the more flaws and inconsistencies we find. 
And having fully understood the architecture, a maintainer 
can repair and extend it in the style of the original without 
fear of upsetting some arcane, delicate balance.    
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Gem #113: Visitor Pattern in Ada 
Emmanuel Briot, AdaCore 
Date: 07 November 2011 
 
Abstract: The visitor pattern is a design pattern that provides 
a way to execute specific methods on an object (the visitor) 
depending on the type of another object. Since the exact 
subprogram called depends on both types of the objects, this 
pattern is often called double dispatching. 
 

Let’s get started… 
Imagine that you have a UML model and you want to generate 
code from it. A convenient approach is to have a “code 
generator” object, which has a set of subprograms to handle 
each kind of UML element (one that generates code for a 
class, one that generates code for an operation, etc.). 
One way to implement this is by using a big series of if 
statements, of the form if Obj in CClass’Class then, which is 
rather inelegant and inefficient. 
Another approach is to use discriminated types. A case 
statement on the discriminant is then efficient, and Ada will 
check that all discriminant values are covered. The problem is 
that then you would need to use case statements for all clients 
of the types in your application. Here, we prefer to use tagged 
types, to take advantage of Ada’s OOP capabilities, so the case 
statement cannot be used. 
Let’s consider a specific example. Again, taking the UML 
example, assume we have the following types. These are only 
very roughly similar to the actual UML metamodel, but will be 
sufficient for our purposes. In practice, these types would be 
automatically generated from the description of the UML 
metamodel. 

   type NamedElement is tagged private; 
   type CClass is new NamedElement with private; 
   type PPackage is new NamedElement with private; 
 
In addition, a visitor class is declared, which will be 
overridden by the user code, for instance, to provide a code 
generator, a model checker, and so on: 

   type Visitor is abstract tagged null record; 
 
   procedure Visit_NamedElement 
      (Self : in out Visitor; Obj : NamedElement'Class) is null; 
   --  No parent type, do nothing 
 
   procedure Visit_CClass (Self : in out Visitor;  
                                            Obj : CClass'Class) is 
   begin 
      --  In UML, a "Class" inherits from a "NamedElement". 
      --  Concrete implementations of the visitor might want 

      -- to work at the  "NamedElement" level (so that their  
      -- code applies to both a Class and a Package,  
      -- for instance), rather than duplicate the work for each 
      --  child of NamedElement. The default implementation 
      --  here is to call the parent type's operation. 
    
      Self.Visit_NamedElement (Obj); 
   end Visit_Class; 
 
   procedure Visit_PPackage (Self : in out Visitor;  
                                                 Obj : PPackage'Class) is 
   begin 
      Self.Visit_NamedElement (Obj); 
   end Visit_PPackage; 
 
We then need to add one primitive Visit operation to each of 
the types created from the UML metamodel: 

   procedure Visit (Self : NamedElement;  
                               V : in out Visitor'Class) is 
   begin 
      --  First dispatching was on "Self" (done by the 
      -- compiler).  
      --  Second dispatching is simulated here by calling the 
      -- right primitive operation of V. 
 
      V.Visit_NamedElement (Self); 
   end Visit; 
 
   overriding procedure Visit (Self : CClass;  
                                                 V : in out Visitor'Class) is 
   begin 
      V.Visit_CClass (Self); 
   end Visit; 
 
   overriding procedure Visit (Self : PPackage;  
                                                 V : in out Visitor'Class) is 
   begin 
      V.Visit_PPackage (Self); 
   end Visit; 
 
All of the code described above is completely systematic, and 
as such could and should be generated automatically as much 
as possible. The “Visit” primitive operations should never be 
overridden in user code in the usual case. On the other hand, 
the “Visit_…” primitives of the visitor itself should be 
overridden when it makes sense. The default implementation 
is provided just so the user has the choice at which level do to 
the overriding. 
Now let’s see what a code generator would look like. We’ll 
assume that we are only interested, initially, in doing code 
generation for classes. Other types of elements (such as 
operations) will call the default implementation for their 
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visitor (Visit_Operation, for instance), which then calls the 
visitor for its parent (Visit_NamedElement) and so on, until 
we end up calling a Visit operation with a null body. So 
nothing happens for those, and we don’t need to deal with 
them explicitly. 
The code would be something like the following: 

   type CodeGen is new Visitor with private; 
 
   overriding procedure Visit_CClass 
      (Self : in out Codegen; Obj : CClass'Class) is 
   begin 
       ...;  --  Do some code generation 
   end Visit_CClass; 
 
   procedure Main is 
      Gen : CodeGen; 
   begin 
      for Element in All_Model_Elements loop   
          --  Pseudo code 
          Element.Visit (Gen);   --  Double dispatching 
      end loop; 
   end Main; 
 
If we wanted to do model checking, we would create a type 
Model_Checker, derived from Visitor, that overrides some of 
the Visit_* operations. The body of Main would not change, 
except for the type of Gen. 
When using this in practice, there are a few issues to resolve. 
For instance, the UML types need access to the Visitor type 
(because it appears as a parameter in their operations). But a 
visitor also needs to see the UML types for the same reason. 
One possibility is to put all the types in the same package. 
Another is to use “limited with” to give visibility on access 
types, and then pass an access to Visitor’Class as a parameter 
to Visit. 
Here is a full example. This example must be compiled with 
the “-gnat05″ switch since it uses Ada 2005 features such as 
the limited with clause and prefixed call notation. 

with UML;         use UML; 
with Visitors;    use Visitors; 
with Ada.Text_IO; use Ada.Text_IO; 
 
procedure Main is 
   type Code_Generator is new Visitor with null record; 
 
   overriding procedure Visit_CClass 
      (Self : in out Code_Generator;  
       Obj : in out CClass'Class) is 
   begin 
      Put_Line ("Visiting CClass"); 
   end Visit_CClass; 
 
   Tmp1 : NamedElement; 
   Tmp2 : CClass; 
   Tmp3 : PPackage; 
 
   Gen  : aliased Code_Generator; 
 
begin 
   Tmp1.Visit (Gen'Access);  --  No output 

   Tmp2.Visit (Gen'Access);  --  Outputs "Visiting CClass" 
   Tmp3.Visit (Gen'Access);  --  No output 
end Main; 
 
limited with Visitors; 
package UML is 
   type NamedElement is tagged null record; 
   procedure Visit 
      (Self        : in out NamedElement; 
       The_Visitor : access Visitors.Visitor'Class); 
 
   type CClass is new NamedElement with null record; 
   overriding procedure Visit 
      (Self        : in out CClass; 
       The_Visitor : access Visitors.Visitor'Class); 
 
   type PPackage is new NamedElement with null record; 
   overriding procedure Visit 
      (Self        : in out PPackage; 
       The_Visitor : access Visitors.Visitor'Class); 
end UML; 
 
with Visitors;  use Visitors; 
package body UML is 
 
   procedure Visit 
      (Self        : in out NamedElement; 
       The_Visitor : access Visitors.Visitor'Class) is 
   begin 
      The_Visitor.Visit_NamedElement (Self); 
   end Visit; 
 
   overriding procedure Visit 
      (Self        : in out CClass; 
       The_Visitor : access Visitors.Visitor'Class) is 
   begin 
      The_Visitor.Visit_CClass (Self); 
   end Visit; 
 
   overriding procedure Visit 
      (Self        : in out PPackage; 
       The_Visitor : access Visitors.Visitor'Class) is 
   begin 
      The_Visitor.Visit_PPackage (Self); 
   end Visit; 
 
end UML; 
 
with UML;  use UML; 
 
package Visitors is 
   type Visitor is abstract tagged null record; 
 
   procedure Visit_NamedElement 
      (Self : in out Visitor; Obj : in out NamedElement'Class); 
   procedure Visit_CClass 
      (Self : in out Visitor; Obj : in out CClass'Class); 
   procedure Visit_PPackage 
      (Self : in out Visitor; Obj : in out PPackage'Class); 
end Visitors; 
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package body Visitors is 
 
   procedure Visit_NamedElement 
      (Self : in out Visitor;  
       Obj : in out NamedElement'Class) is 
   begin 
      null; 
   end Visit_NamedElement; 
 
   procedure Visit_CClass 
      (Self : in out Visitor; Obj : in out CClass'Class) is 
   begin 
      Self.Visit_NamedElement (Obj); 
   end Visit_CClass; 
 
   procedure Visit_PPackage 
      (Self : in out Visitor; Obj : in out PPackage'Class) is 
   begin 
      Self.Visit_NamedElement (Obj); 
   end Visit_PPackage; 
 
end Visitors; 
 

Gem #117: Design Pattern: 
Overridable Class Attributes in  
Ada 2012 
Emmanuel Briot, of AdaCore 
Date: 30 January 2012 
 
Abstract: In this Gem we consider how to realize the 
capability of “class attributes” (such as supported in Python) 
using Ada. 
 

Let’s get started… 
Most object-oriented programming languages provide a 
facility for declaring variables that are shared by all objects of 
a given class. In C++, these are called “static members” (and 
use the “static” keyword), and similarly Python has the notion 
of “class attributes”. 
Let’s consider an example where this is useful. For instance, 
let’s say we want to define the notion of a block of text that is 
generated by expanding a template (perhaps after we replace 
some parameters in that template, as can be done with AWS’s 
templates parser, for instance). Once we have computed those 
parameters, we might want to generate multiple outputs (for 
instance HTML and CSV). Only the template needs to change, 
not the computation of the parameters. 
Typically, such as in Python, the template could be 
implemented as a class attribute of the Text_Block class. We 
can then create templates that need the same information but 
have a different output simply by extending that class: 

   class Text_Block(object): 
       template = "somefile.txt" 
       def render (self): 
           # ... compute some parameters 
           # Then do template expansion 
           print "processing %s" % self.__class__.template 
 

   class Html_Block(Text_Block): 
       template = "otherfile.html" 
 
In this example, we chose to use a class attribute rather than 
the usual instance attribute (self.template). This example 
comes from the implementation of GnatTracker: in the web 
server we create a new instance of Text_Block for every 
request we have to serve. For this, we use a registry that maps 
the URL to the class we need to create. It is thus easier to 
create a new instance without specifying the template name as 
a parameter, which would be required if the template name 
was stored in the instance. Another reason (though not really 
applicable here) is to save memory, which would be important 
in cases where there are thousands of instances of the class. 
Of course, the approach proposed in this Gem is not the only 
way to solve the basic problem, but it serves as a nice example 
of one of the new Ada 2012 features. 
C++, like Ada, does not provide a way to override a static 
class member, so it would use a similar solution as described 
below. 
Since Ada has no notion of an overridable class attribute, we’ll 
model it using a subprogram instead (the only way to get 
dispatching in Ada). The important point here is that we want 
to be able to override the template name in child classes, so we 
cannot use a simple constant in the package spec or body. 

   type Text_Block is tagged null record; 
   function Template (Self : Text_Block) return String; 
   function Render (Self : Text_Block) return String; 
 
   function Template (Self : Text_Block) return String is 
      pragma Unreferenced (Self); 
   begin 
      return "file_name.txt"; 
   end Template; 
 
The parameter Self is only used for dispatching (so that 
children of Text_Block can override this function). Since we 
prefer to compile with “-gnatwu” to get a warning on unused 
entities, we indicate to the compiler that it is expected that Self 
is unreferenced. 
We could make the function Template inlinable, which might 
be useful in a few cases (for instance if called from Render in 
a nondispatching call), but in general there will be no benefit 
because Template will be a dispatching call, which requires an 
indirect call and thus wouldn’t benefit from inlining. 
And that’s it. We have the Ada equivalent of a Python class 
member. 
But so far there is nothing new here, and this approach is 
rather heavy to write. For instance, the body of Render could 
contain code like: 

   pragma Ada95; 
 
   function Render (Self : Text_Block) return String is 
      T : constant String :=  
           Template (Text_Block'Class (Self)); 
   begin 
      ..  prepare the parameters for template expansion 
      ..  substitute in the template and return it 
   end Render; 
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Fortunately, Ada 2012 provides an easier way to write this, 
using the new feature of expression functions. Since Template 
is a function that returns a constant, we can declare that 
directly in the spec, and remove the body altogether. The spec 
will thus look like: 

   pragma Ada_2012; 
 
   type Text_Block is tagged null record; 
   function Template (Self : Text_Block) return String 
      is ("filename.txt"); 
   function Render (Self : Text_Block) return String; 
 
This is a much lighter syntax, and much closer to how one 
would do it in Python (except we use a function instead of a 
variable to represent a class member). A child of Text_Block 
would override Template using the same notation: 

   type Html_Block is new Text_Block with null record; 
   overriding function Template (Self : Html_Block)  
      return String is ("otherfile.html"); 
 
Compared to Python, this is in fact more powerful, because 
some of the children could provide a more complex body for 
Template, so we are not limited to using the value of a simple 
variable as in Python. In fact, we can do this in the spec itself, 
by using a conditional expression (another new feature of Ada 
2012): 

   pragma Ada_2012; 
 
   type Text_Block is tagged null record; 
   function Template (Self : Text_Block) return String 
       is (if Self.Blah then "filename.html" else "file2.json"); 
   function Render (Self : Text_Block) return String; 
 

Finally, we can also make the body of Render slightly more 
familiar (in terms of object-oriented notation) using the dotted 
notation introduced in Ada 2005: 

   function Render (Self : Text_Block) return String is 
      T : constant String := Text_Block'Class (Self).Template; 
   begin 
      ..  prepare the parameters for template expansion 
      ..  substitute in the template and return it 
   end Render; 
 
Now the call to Template looks closer to how it would appear 
in those languages that provide overridable class members. 
Some will argue that this doesn’t look like a function call and 
thus is less readable, since we don’t know that we are calling a 
function. This is a matter of taste, but at least we have the 
choice. 
There is one thing we have lost, temporarily, in the declaration 
of Template. If we compile with -gnatwu, the compiler will 
complain that Self is unreferenced. There is currently no way 
to add a pragma Unreferenced within an expression function. 
This has generated a discussion here at AdaCore and the issue 
is not resolved yet. The current two proposals are either to 
always omit the unused parameter warning when a function 
has a single parameter and it controls dispatching (precisely to 
facilitate this class member pattern), or else to use an Ada 
2012 aspect for this, as in the following: 

   function Template (Self : Text_Block) return String 
      is ("filename.html") 
   with Unreferenced => Self; 
 
Note also that the use of expression functions in this Gem 
requires a very recent version of GNAT: the expression 
function feature wasn’t available in older versions, and the 
initial implementation had some limitations. 
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