

30 Ada in Context

Volume 33, Number 1, March 2012 Ada User Journal

 Command : constant String :=
 "USERNAME";
 Answer_Ptr : constant
 Interfaces.C.Strings.chars_ptr :=
 GetEnv (Command);
 Answer : constant String :=
 Interfaces.C.Strings.Value
 (Answer_Ptr);
begin
 return Answer;
end GetUsername;

Not pure Ada, but fits very well.
Thank to all suggestions.
From: Pablo Rego <pvrego@gmail.com>
Date: Wed, 9 Nov 2011 17:16:51 -0800
Subject: Re: Read Windows login username

in Ada 95
Newsgroups: comp.lang.ada
> For a pure Ada version why not use

Ada.Environment_Variables?
The problem is that
Ada.Environment_Variables is an Ada
2005 package, cannot use it.
From: Adam Beneschan

<adam@irvine.com>

Date: Wed, 9 Nov 2011 16:02:51 -0800
Subject: Re: Read Windows login username

in Ada 95
Newsgroups: comp.lang.ada
> In Windows, you can call function

GetEnvironmentVariable and get the
value of the environment variable
"USERNAME".

Doesn't always work (and neither does
using Ada.Environment_Variables).
I just tried it and found that GetUserName
returns my login name, while
Ada.Environment_Variables says that
"USERNAME" doesn't exist.
It may be an unusual setup--I'm logging
into an Windows XP system remotely
through the GoodTech telnet server. But
you may as well use the function that
works more reliably.
This worked for me, but it could use more
error checking:

with Text_IO;
procedure Print_User_Name is
 subtype Buffer_Type is String
 (1 .. 200);

 function GetUserName (
 lpBuffer : access Buffer_Type;
 lpnSize : access Integer)
 return Integer;
 pragma Import (StdCall,
 GetUserName, "GetUserNameA");

 Buf : aliased Buffer_Type;
 Size : aliased Integer;
 Result : Integer;
begin
 Size := Buffer_Type'Length;
 Result := GetUserName (Buf'Access,
 Size'Access);
 Text_IO.Put_Line (Buf (1 .. Size - 1));
end Print_User_Name;

StdCall is how we import Windows API
functions with ICC Ada. Don't know how
GNAT does it--probably the same. Result
should be checked for errors, but I didn't
bother. GetUserName sets Size to the size
of the result including the null terminator,
which is why the next line uses Size - 1.

32

Volume 33, Number 1, March 2012 Ada User Journal

Conference Calendar
Dirk Craeynest
K.U.Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2012

April 03-05 4th NASA Formal Methods Symposium (NFM'2012), Norfolk, Virginia, USA. Topics include:

identifying challenges and providing solutions to achieving assurance in mission- and safety-critical
systems; formal verification, including theorem proving, model checking, and static analysis; model-
based development; techniques and algorithms for scaling formal methods, such as abstraction and
symbolic methods, parallel and distributed techniques, ...; code generation from formally verified
models; significant applications of formal methods to aerospace systems; etc.

April 10-13 7th European Conference on Computer Systems (EuroSys'2012), Bern, Switzerland. Topics include:
all areas of operating systems and distributed systems, including systems aspects of dependable
computing, distributed computing, parallel and concurrent computing, programming-language support
and runtime systems, real-time and embedded systems, security, etc.

☺ April 11-13 15th IEEE International Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC'2012), Shenzhen, China. Topics include: Programming and system engineering
(languages, model-driven development of high integrity applications, specification, design, verification,
validation, maintenance, ...); System software (real-time kernels, middleware support for ORC,
extensibility, synchronization, scheduling, fault tolerance, security, ...); Applications (embedded systems
(automotive, avionics, consumer electronics, etc), real-time object-oriented simulations, ...); System
evaluation (timeliness, worst-case execution time, dependability, end-to-end QoS, fault detection and
recovery time, ...); etc.

April 11-13 19th Annual IEEE International Conference and Workshops on the Engineering of Computer
Based Systems (ECBS'2012), Novi Sad, Serbia. Topics include: Dependability, Safety, and Security;
Distributed Systems Design & Architecture; ECBS Infrastructure (Tools, Platforms); Embedded Real-
Time Software Systems; Model-based System Development; Verification & Validation; Reengineering
& Reuse; Evolution & Change; etc.

April 17-19 25th Conference on Software Engineering Education and Training (CSEET'2012), Nanjing, China.
Topics include: Technology Transfer; Student projects and internships; Industry-academia collaboration
models; Software engineering professionalism; Education & training for "real-world" Software
Engineering practices; Evaluation of SE Curricula: Are We Still Relevant?; Training models in industry;
Systems and Software Engineering; Teaching the Business of Software Engineering; etc.

April 23-26 24th Annual Systems and Software Technology Conference (SSTC'2012), Salt Lake City, UT, USA.

May 08-11 9th European Dependable Computing Conference (EDCC'2012), Sibiu, Romania. Topics include:
Hardware and software architecture of dependable systems, Safety critical systems, Embedded and real-
time systems, Impact of manufacturing technology on dependability, Testing and validation methods,
etc.

☺ May 21-25 26th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2012), Shanghai,
China. Topics include: all areas of parallel and distributed processing, such as Parallel and distributed
algorithms; Applications of parallel and distributed computing; Parallel and distributed software,
including parallel and multicore programming languages and compilers, runtime systems, parallel
programming paradigms, programming environments and tools, etc.

Conference Calendar 33

Ada User Journal Volume 33, Number 1, March 2012

☺ May 25 Workshop on Multithreaded Architectures and Applications (MTAAP'2012).
Topics include: programming frameworks for multithreading in the form of languages
and libraries, compilers, analysis and debugging tools to increase the programming
productivity.

May 25 13th International Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDSEC-12). Topics include: parallel and distributed
computing techniques and codes; practical experiences using various parallel and
distributed systems; loop and task parallelism; scheduling; compiler issues for scientific
and engineering computing; scientific and engineering computing on parallel computers,
multicores, GPUs, FPGAs, ...; etc.

☺ May 29-31 50th International Conference on Objects, Models, Components, Patterns (TOOLS Europe'2012),
Prague, Czech Republic. Topics include: Object technology, programming techniques, languages, tools;
Language implementation techniques, compilers, run-time systems; Distributed and concurrent object
systems, multicore programming; Program verification and analysis techniques; Trusted, reliable and
secure components; Component-based programming, modeling, tools; Model-driven development;
Empirical studies on programming models and techniques; Domain specific languages and language
design; Industrial-strength experience reports; Real-time object-oriented programming and design; etc.

May 31- Jun 1 International Conference on Multicore Software Engineering, Performance, and
Tools (MSEPT'2012). Topics include: from small-scale systems to large-scale parallel
systems; from writing new applications to reengineering legacy applications;
frameworks and libraries for multicore software; parallel software architectures;
modeling techniques for multicore software; programming models for multicore; testing
and debugging of parallel applications; verification techniques for multicore software;
software reengineering for parallelism; development environments and tools for
multicore software; compiler techniques and auto-parallelization on multicore; multicore
software issues in scientific computing; multicore software on mobile and embedded
devices; experience reports; etc.

☺ June 02-09 34th International Conference on Software Engineering (ICSE'2012), Zurich, Switzerland. Theme:
"Sustainable Software for a Sustainable World". Deadline for early registration: April 22, 2012.

June 01 5th Workshop on Refactoring Tools (WRT'2012). Topics include: refactoring engines,
program analyses for refactoring tools, tools for suggesting refactorings, medium- and
large-scale refactorings (e.g., package- or component-level), refactoring for concurrency
and parallelism, etc.

June 02-03 9th International Working Conference on Mining Software Repositories
(MSR'2012). Topics include: mining of repositories across multiple projects;
characterization, classification, and prediction of software defects based on analysis of
software repositories; techniques to model reliability and defect occurrences; search
techniques to assist developers in finding suitable components and code fragments for
reuse, and software search engines; analysis of change patterns and trends to assist in
future development; empirical studies on extracting data from repositories of large long-
lived and/or industrial projects; mining execution traces and logs; etc.

☺ June 09 5th Workshop on Exception Handling (WEH'2012). Topics include: Exceptions in the
software life-cycle (specifications, architectural design, modelling and programming,
verification, debugging, testing, refactoring, variability management, static analysis,
etc); Exception handling for and with new software artefacts (aspects, components, etc);
Exception handling in today's applications (distributed, web-based, cloud, etc);
Empirical studies of exception handling; Design patterns and anti-patterns, architectural
styles, and good programming practice; etc.

June 07-08 4th USENIX Workshop on Hot Topics in Parallelism (HotPar'2012), Berkeley, CA, USA.

June 07-10 21st International Workshop on Algebraic Development Techniques (WADT'2012), Salamanca,
Spain. Topics include: other approaches to formal specification; specification languages, methods, and
environments; model-driven development; integration of formal specification techniques; quality
assurance, validation, and verification; etc.

34 Conference Calendar

Volume 33, Number 1, March 2012 Ada User Journal

♦ June 11-15 17th International Conference on Reliable Software Technologies - Ada-
Europe'2012, Stockholm, Sweden. Sponsored by Ada-Europe, in cooperation with
ACM SIGAda, SIGBED, SIGPLAN.

☺ June 11-16 26th European Conference on Object-Oriented Programming (ECOOP'2012), Beijing, China. Topics
include: all areas of object technology and related software development technologies, such as Analysis
and design methods; Concurrent, parallel, distributed, and real-time systems; Language design and
implementation; Modularity, aspects, features, components, services; Software development
environments and tools; Static and dynamic software analysis; Type systems, formal methods; Software
evolution; etc.

☺ June 13 International Workshop on Languages for the Multi-core Era (LaME'2012). Topics
include: programming language support for concurrency; the development of innovative
or improved concurrency models, languages, run-time systems, libraries and tools for
multicore programming. Deadline for submissions: April 15, 2012 (regular papers), May
20, 2012 (position papers, programming challenge).

June 11-16 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'2012),
Beijing, China. Events also includes: 3rd Workshop on Experimental Evaluation of Software and
Systems in Computer Science (Evaluate), ACM SIGPLAN 7th Workshop on Programming Languages
and Analysis for Security (PLAS), 2nd ACM SIGPLAN Software Security and Protection Workshop
(SSP), etc.

☺ June 14 1st Asia-Pacific Programming Languages and Compilers Workshop (APPLC'2012).
Topics include: Language designs and extensions; Static and dynamic analysis of
programs; Domain-specific languages and tools; Type systems and program logics;
Checking or improving the security or correctness of programs; Memory management;
Parallelism, both implicit and explicit; Novel programming models; Debugging
techniques and tools; Interaction of compilers and run-time systems with underlying
systems; etc.

June 13-15 37th USENIX Annual Technical Conference (USENIX ATC'2012), Boston, MA, USA. Topics
include: Distributed and parallel systems; Embedded systems; Reliability, availability, and scalability;
Security, privacy, and trust; etc.

June 13-16 7th International Federated Conferences on Distributed Computing Techniques (DisCoTec'2012),
Stockholm, Sweden. Includes the COORDINATION, DAIS, and FMOODS & FORTE conferences.

June 18-22 9th International Conference on Integrated Formal Methods (iFM'2012), Pisa, Italy. Topics include:
the combination of (formal and semi-formal) methods for system development, covering all aspects
from language design through verification and analysis techniques to tools and their integration into
software engineering practice.

June 21-22 Symposium on Languages, Applications and Technologies (SLATE'2012), Braga, Portugal. Topics
include: Programming language concepts and methodologies; Design of novel language constructs and
their implementation; Domain Specific Languages design and implementation; Programming tools;
Programming, refactoring and debugging environments; Dynamic and static analysis: Program Slicing
Compilation and interpretation techniques; Code generation and optimization; Runtime techniques and
Memory management; etc.

June 25-27 11th International Conference on Mathematics of Program Construction (MPC'2012), Madrid,
Spain. Topics of interest range from algorithmics to support for program construction in programming
languages and systems, such as type systems, program analysis and transformation, programming-
language semantics, security, etc.

June 25-28 Federated Events on Component-Based Software Engineering and Software Architecture
(CompArch'2012), Bertinoro, Italy.

June 26-28 3rd International Symposium on Architecting Critical Systems (ISARCS'2012).
Topics include: architectural support for evolution; automotive and avionic systems;
component-based development; critical infrastructures; embedded, mobile, and
ubiquitous systems; industrial case studies, challenges, problems, and solutions;
integrators (wrappers) for dependability; model-driven development; runtime checks;
survivability and error confinement; type checking techniques; etc.

Conference Calendar 35

Ada User Journal Volume 33, Number 1, March 2012

June 27-29 12th International Conference on Application of Concurrency to System Design (ACSD'2012),
Hamburg, Germany. Topics include: (industrial) case studies of general interest, gaming applications,
automotive systems, (bio-)medical applications, internet and grid computing, etc.; synthesis and control
of concurrent systems, (compositional) modeling and design, (modular) synthesis and analysis,
distributed simulation and implementation, ...; etc.

July 01-03 24th International Conference on Software Engineering and Knowledge Engineering (SEKE'2012),
Redwood City, California, USA. Topics include: Integrity, Security, and Fault Tolerance; Reliability;
Component-Based Software Engineering; Embedded Software Engineering; Reverse Engineering;
Programming Languages and Software Engineering; Program Understanding; Software Assurance;
Software dependability; Software economics; Software Engineering Tools and Environments; Software
Maintenance and Evolution; Software product lines; Software Quality; Software Reuse; Software
Safety; Software Security; Software Engineering Case Study and Experience Reports; etc. Deadline for
early registration: May 10, 2012.

☺ July 09-11 GNU Tools Cauldron 2012, Prague, Czech Republic. Sponsored by: AdaCore, Google, IBM. Topics
include: gathering of GNU tools developers.

☺ July 10-13 10th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA'2012), Madrid, Spain. Topics include: Parallel and Distributed Algorithms, and Applications;
High-performance scientific and engineering computing; Middleware and tools; Reliability, fault
tolerance, and security; Parallel/distributed system architectures; Tools/environments for
parallel/distributed software development; Novel parallel programming paradigms; Compilers for
parallel computers; Distributed systems and applications; etc.

☺ July 11-13 24th Euromicro Conference on Real-Time Systems (ECRTS’2012), Pisa, Italy. Topics include:
avionics, aerospace, automotive applications; embedded devices; hardware/software co-design; compiler
support; component-based approaches; middleware and distribution technologies; programming
languages and operating systems; modelling and formal methods; etc.

July 16-20 36th Annual International Computer Software and Applications Conference (COMPSAC'2012),
Izmir, Turkey. Topics include: Software life cycle, evolution, and maintenance; Formal methods;
Software architecture and design; Reliability, metrics, and fault tolerance; Security; Real-time and
embedded systems; Education and learning; Applications; etc. Deadline for submissions: April 20, 2012
(fast abstracts, posters, doctoral symposium papers).

July 18-20 17th Annual IEEE International Conference on the Engineering of Complex Computer Systems
(ICECCS'2012), Paris, France. Topics include: Verification and validation, Model-driven development,
Reverse engineering and refactoring, Design by contract, Agile methods, Safety-critical & fault-tolerant
architectures, Real-time and embedded systems, Tools and tool integration, Industrial case studies, etc.
Deadline for early registration: May 30, 2012.

☺ August 27-28 17th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2012),
Paris, France. Co-located with FM'2012. Topics include: Design, specification, code generation and
testing based on formal methods; Methods, techniques and tools to support automated analysis,
certification, debugging, learning, optimization and transformation of complex, distributed, real-time
systems and embedded systems; Verification and validation methods that address shortcomings of
existing methods with respect to their industrial applicability (e.g., scalability and usability issues);
Tools for the development of formal design descriptions; Case studies and experience reports on
industrial applications of formal methods, focusing on lessons learned or identification of new research
directions; Impact of the adoption of formal methods on the development process and associated costs;
Application of formal methods in standardization and industrial forums.

August 27-28 12th International Conference on Quality Software (QSIC'2012), Xi'an, China. Theme: "Engineering
of Quality Software". Deadline for submissions: April 23, 2012 (papers).

August 27-31 18th International Symposium on Formal Methods (FM'2012), Paris, France. Theme:
"Interdisciplinary Formal Methods". Topics include: Interdisciplinary formal methods (techniques, tools
and experiences demonstrating formal methods in interdisciplinary frameworks); Formal methods in
practice (industrial applications of formal methods, experience with introducing formal methods in
industry, tool usage reports, etc); Tools for formal methods (advances in automated verification and
model-checking, integration of tools, environments for formal methods, etc); Role of formal methods in
software and systems engineering (development processes with formal methods, usage guidelines for

36 Conference Calendar

Volume 33, Number 1, March 2012 Ada User Journal

formal methods, method integration, qualitative or quantitative improvements); Theoretical foundations
(all aspects of theory related to specification, verification, refinement, and static and dynamic analysis);
Teaching formal methods (original contributions that provide insight, courses of action regarding the
teaching of formal methods, teaching experiences, educational resources, integration of formal methods
into the curriculum, etc).

September 05-08 38th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2012),
Cesme, Izmir, Turkey. Topics include: information technology for software-intensive systems. Deadline
for application: April 13, 2012 (PhD Symposium).

☺ Sep 05-08 Track on Embedded Software Engineering (ESE’2012). Topics include: Design and
implementation of embedded software; Programming methodologies and languages for
embedded software; Model-based and component-based approached to embedded
software development; Embedded software verification and validation; Testing and
certification of embedded software; Software-intensive systems applications, e.g., in
automotive, avionics, energy, industrial automation, health care, and telecommunication;
Embedded software architectures; etc.

September 10-12 17th European Symposium on Research in Computer Security (ESORICS'2012), Pisa, Italy. Topics
include: accountability, information hiding, information flow control, integrity, formal security methods,
language-based security, risk analysis and management, security verification, software security, etc.

☺ Sep 10-13 41st International Conference on Parallel Processing (ICPP'2012), Pittsburgh, PA, USA. Topics
include: all aspects of parallel and distributed computing, such as Architecture; Programming Models,
Languages & Environments; Compilers and Run-Time Systems; Applications; etc.

Sep 10 5th International Workshop on Parallel Programming Models and Systems
Software for High-End Computing (P2S2’2012).

Sep 13 International Workshop on Embedded Multicore Systems (EMS’2012). Topics
include: Compilers for heterogeneous embedded multi-core systems; Programming
models for embedded multi-core systems; Embedded OS designs and performance
tuning tools; Formal method for embedded systems; etc.

September 10-13 8th International Conference on Open Source Systems (OSS'2012), Hammamet, Tunisia. Theme:
"Long-Term Sustainability with OSS". Deadline for submissions: May 25, 2012 (panels, tutorials).
Deadline for early registration: June 15, 2012.

September 11-13 19th International Static Analysis Symposium (SAS'2012), Deauville, France. Topics include: abstract
interpretation, bug detection, data flow analysis, model checking, new applications, program
verification, security analysis, type checking, etc.

September 18-20 12th International Workshop on Automated Verification of Critical Systems (AVoCS'2012),
Bamberg, Germany. Topics include: Specification and Refinement, Verification of Software and
Hardware, Verification of Security-Critical Systems, Real-Time Systems, Dependable Systems, Verified
System Development, Industrial Applications, etc. Deadline for submissions: June 1, 2012 (full papers),
July 23, 2012 (short papers). Deadline for registration: July 30, 2012.

September 19-20 6th International Symposium on Empirical Software Engineering and Measurement (ESEM'2012),
Lund, Sweden. Topics include: qualitative methods, empirical studies of software processes and
products, industrial experience and case studies, evaluation and comparison of techniques and models,
reports on the benefits / costs associated with using certain technologies, empirically-based decision
making, quality measurement and assurance, software project experience and knowledge management,
etc. Deadline for submissions: May 20, 2012 (short papers, posters).

☺ Sep 19-23 21st International Conference on Parallel Architectures and Compilation Techniques (PACT'2012),
Minneapolis, Minnesota, USA. Topics include: Parallel architectures and computational models;
Compilers and tools for parallel computer systems; Support for correctness in hardware and software
(especially with concurrency); Parallel programming languages, algorithms and applications;
Middleware and run time system support for parallel computing; Applications and experimental systems
studies; etc.

September 23-30 28th IEEE International Conference on Software Maintenance (ICSM'2012), Riva del Garda, Trento,
Italy. Topics include: reverse engineering and re-engineering, program and system comprehension,
static and dynamic analysis, software migration and renovation, mining software repositories,

Conference Calendar 37

Ada User Journal Volume 33, Number 1, March 2012

maintenance and evolution processes, run-time evolution and update, empirical studies in software
maintenance and evolution, testing in relation to maintenance (i.e., regression testing), etc. Deadline for
submissions: April 15, 2012 (research track abstracts), April 20, 2012 (research track), May 31, 2012
(doctoral symposium), June 25, 2012 (early research achievements track), June 27, 2012 (industry track,
tool demo track).

September 25-28 5th International Conference on Software Language Engineering (SLE'2012), Dresden, Germany.
Topics include: Formalisms used in designing and specifying languages and tools that analyze such
language descriptions; Language implementation techniques; Program and model transformation tools;
Language evolution; Approaches to elicitation, specification, or verification of requirements for
software languages; Language development frameworks, methodologies, techniques, best practices, and
tools for the broader language lifecycle; Design challenges in SLE; Applications of languages including
innovative domain-specific languages or "little" languages; etc. Deadline for submissions: June 4, 2012
(abstracts), June 11, 2012 (papers).

September 26-28 11th International Conference on Intelligent Software Methodologies, Tools and Techniques
(SoMeT'2012), Genoa, Italy. Topics include: software methodologies, and tools for robust, reliable, non-
fragile software design; software developments techniques and legacy systems; software evolution
techniques; agile software and lean methods; formal methods for software design; software
maintenance; software security tools and techniques; formal techniques for software representation,
software testing and validation; software reliability, and software diagnosis systems; Model Driven
Development (DVD), code centric to model centric software engineering; etc.

October 01-04 14th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS'2012), Toronto, Canada. Topics include: Fault-Tolerance and Dependable Systems, Safety and
Security, Formal Methods, etc. Deadline for submissions: April 16, 2012 (abstracts), April 23, 2012
(papers).

October 01-05 10th International Conference on Software Engineering and Formal Methods (SEFM'2012),
Thessaloniki, Greece. Topics include: programming languages, program analysis and type theory;
formal methods for real-time, hybrid and embedded systems; formal methods for safety-critical, fault-
tolerant and secure systems; light-weight and scalable formal methods; tool integration; applications of
formal methods, industrial case studies and technology transfer; education and formal methods; etc.
Deadline for submissions: April 19, 2012 (papers).

October 08-11 31st IEEE International Symposium on Reliable Distributed Systems (SRDS'2012), Irvine,
California, USA. Topics include: distributed systems design, development and evaluation, with
emphasis on reliability, availability, safety, security, trust and real time; high-confidence and safety-
critical systems; distributed objects and middleware systems; formal methods and foundations for
dependable distributed computing; evaluations of dependable distributed systems; etc. Deadline for
submissions: June 25, 2012 (workshop papers).

☺ October 19-26 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2012), Tucson, Arizona, USA. Topics include: the intersection of programming,
programming languages, and software engineering; areas such as programming methods, design and
analysis, testing, concurrency, program analysis, empirical studies, and new programming languages; all
aspects of software construction and delivery, all factions of programming technologies. Deadline for
submissions: April 13, 2012 (OOPSLA research papers, Onward! papers, Onward! essays, Wavefront,
Wavefront Experience, workshops, panels); July 9, 2012 (posters, ACM Student Research competition,
Doctoral Symposium); July 11, 2012 (Dynamic Languages Symposium); July 15, 2012
(demonstrations).

November 12-16 14th International Conference on Formal Engineering Methods (ICFEM'2012), Kyoto, Japan. Topics
include: abstraction and refinement; software verification; program analysis; formal methods for
robotics, cyber-physical systems, medical devices, aeronautics, railway; formal methods for software
safety, security, reliability and dependability; experiments involving verified systems; formal model-
based development and code generation; etc. Deadline for submissions: April 16, 2012 (full papers).

November 18-23 7th International Conference on Software Engineering Advances (ICSEA'2012), Lisbon, Portugal.
Topics include: Advances in fundamentals for software development; Advanced mechanisms for
software development; Advanced design tools for developing software; Software security, privacy,
safeness; Specialized software advanced applications; Open source software; Agile software techniques;

38 Conference Calendar

Volume 33, Number 1, March 2012 Ada User Journal

Software deployment and maintenance; Software engineering techniques, metrics, and formalisms;
Software economics, adoption, and education; etc. Deadline for submissions: July 7, 2012.

♦ Dec 02-06 ACM SIGAda Annual International Conference, Boston, Massachusetts, USA.

December 05-07 33rd IEEE Real-Time Systems Symposium (RTSS’2012), San Juan, Porto Rico. RTSS provides a
forum for the presentation of high-quality, original research covering all aspects of real-time systems
design, analysis, implementation, evaluation, and experiences. Deadline for submissions: May 15, 2012.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

December 18-21 19th IEEE International Conference on High Performance Computing (HiPC'2012), Pune, India.
Topics include: Parallel and Distributed Algorithms/Systems, Parallel Languages and Programming
Environments, Hybrid Parallel Programming with GPUs and Accelerators, Scheduling, Fault-Tolerant
Algorithms and Systems, Scientific/Engineering/Commercial Applications, Compiler Technologies for
High-Performance Computing, Software Support, etc. Deadline for submissions: May 16, 2012 (papers),
September 16, 2012 (student symposium). Deadline for early registration: November 14, 2012.

2013

☺ January 20-22 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2013),

Rome, Italy. Topics include: fundamental principles and important innovations in the design, definition,
analysis, transformation, implementation and verification of programming languages, programming
systems, and programming abstractions. Deadline for submissions: April 22, 2012 (co-located events).

March 25-29 12th International Conference on Aspect-Oriented Software Development (AOSD'2013), Fukuoka,
Japan. Topics include: Complex systems; Software design and engineering (evolution, economics,
composition, methodology, ...); Programming languages (language design, compilation and
interpretation, verification and static program analysis, formal languages, execution environments and
dynamic weaving, ...); Varieties of modularity (model-driven development, generative programming,
software product lines, contracts and components, ...); Tools (evolution and reverse engineering,
crosscutting views, refactoring, ...); Applications (distributed and concurrent systems, middleware,
runtime verification, ...); etc. Deadline for submissions: May 7, 2012 (round 1), July 23, 2012 (round 2),
October 8, 2012 (round 3).

40 Forthcoming Events

Volume 33, Number 1, March 2012 Ada User Journal

17t h International Conference on Reliable Software Technologies

Ada-Europe 2012
11-15 June 2012, Stockholm, Sweden

www.ada-europe.org/conference2012

Advance Information
The 17th International Conference on Reliable Software Technologies (Ada-
Europe 2012) will take place in Stockholm, Sweden. This conference is the
latest in a series of annual international conferences started in the early
80's, under the auspices of, and organization by, Ada-Europe, the
international organization that promotes the knowledge and use of Ada
and reliable software in general into academia, research and industry.

Ada-Europe 2012 provides a unique opportunity for dialogue and
collaboration between academics and industrial practitioners interesting in
reliable software.

Following tradition, the conference will span a full week, including tutorials and a central three-day technical
program with the latest advances in reliable software technologies and Ada. The core program features 3
keynote talks, 15 refereed scientific papers on topics in the conference theme, 9 industrial presentations and 2
discussion panels. Participants will have ample choice of half-day and full-day tutorials on Monday and Friday.
Tutorials consist of courses given by recognised experts on topics concerning state-of-the-art methods and
technologies for the development of reliable software. A session “Ada in Motion” is also planned to show off
cases of Ada being used in moving equipment, such as Lego Mindstorms robots or Arduino based devices.

Program Highlights
Each day of the core program will open with a keynote talk delivered by one the following eminent speakers:

• Bertrand Meyer, ETH Zurich, Switzerland, Chief Architect of Eiffel Software, “Life with Contracts”
• Göran Backlund, Combitech, Sweden, “What is the Mission of a Software Developer?”
• Jean-Loup Terraillon, ESTEC/ESA, the Netherlands, “Multicore Processors - the Next Generation

Computer for ESA Space Missions”.

The program also features two discussion panels, scheduled in the afternoons of the Tuesday and the
Wednesday of the conference week:

• Panel 1 (Tuesday): “What is Language Technology in Our Time?”, with Tullio Vardanega (University of
Padua) as moderator, in which the invited language specialists will discuss how in their view the role,
nature and contents of language technology has currently become, what the drivers of the change have
been and can be expected to be, and how Ada should respond to them.

• Panel 2 (Wednesday): “Reliable Software, a Perspective from Industry”, with Jørgen Bundgaard (Rovsing
A/S) as moderator, in which the invited panellists will discuss what they see as the most pressing and
challenging industrial needs in the way of software technology to facilitate the production of reliable
software.

Both panel sessions will allow and include open interaction with the conference participants.

Forthcoming Events 41

Ada User Journal Volume 33, Number 1, March 2012

About the Venue

Stockholm, one of the most beautiful capitals in the world, is built
on 14 islands around one of Europe’s largest and best-preserved
mediaeval city centres, located by the Baltic Sea coast. Stockholm is
also Scandinavia’s financial center with the largest gross regional
product and largest presence of international companies.

In 2010, Stockholm was the first city to receive the European Green
Capital award, an initiative of the European Commission, and is
ranked the fourth in the "Cities of Opportunity" analysis, ranking
first in intellectual capital and innovation, health, safety and security
demographics and liveability.

The Ada-Europe 2012 conference will take place at
Näringslivets Hus c, a modern conference centre
situated in the very heart of Stockholm, located near the
Östermalmstorg metro station and close to the Gamla
Stan historic district.

The program of the conference will offer ample time for
interaction and networking, with extensive lunch and
coffee periods, and a banquet being held on Wednesday,
at Östermalms Saluhall d, a marketplace food hall in a
magnificent building from 1888.

Ada-Europe 2012 will build on the success of the 2011
event, in Edinburgh, UK, on June 20-24, which attracted
over 130 delegates coming from Belgium, Brazil, Canada,

Denmark, Egypt, Finland, France, Germany, Israel, Italy, Norway, Poland, Portugal, Russia, Slovakia, South Africa,
Spain, Sweden, Switzerland, The Netherlands, UK and USA, representing more than 20 universities and 50
companies.

Further Information

The conference website at www.ada-europe.org/conference2012 provides full and up-to-date details of
the program, venue and social program, registration, accommodation and travel advice.

For exhibiting and sponsoring details please contact the Conference Chair, Ahlan Marriott, at
ahlan@ada-switzerland.ch.

For local information please contact the Local Chair, Rei Stråhle, at rei@ada-sweden.org.

 SIGAda, SIGBED, SIGPLAN

12

42 Forthcoming Events

Volume 33, Number 1, March 2012 Ada User Journal

ACM SIGAda Annual International Conference

High Integrity Language Technology
HILT 2012

Call for Technical Contributions

Developing and Certifying Critical Software

Boston, Massachusetts, USA
December 2-6, 2012

Sponsored by ACM SIGAda
SIGAda.HILT2012@acm.org

http://www.sigada.org/conf/hilt2012

SUMMARY
High integrity software must not only meet correctness and performance criteria but also satisfy stringent safety
and/or security demands, typically entailing certification against a relevant standard. A significant factor affecting
whether and how such requirements are met is the chosen language technology and its supporting tools: not just
the programming language(s) but also languages for expressing specifications, program properties, domain
models, and other attributes of the software or overall system.
HILT 2012 will provide a forum for experts from academia/research, industry, and government to present the
latest findings in designing, implementing, and using language technology for high integrity software. To this end
we are soliciting technical papers, experience reports (including experience in teaching), and tutorial proposals on
a broad range of relevant topics.
POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:
• New developments in formal methods
• Multicore and high integrity systems
• Object-Oriented Programming in high integrity systems
• High-integrity languages (e.g., SPARK)
• Use of high reliability profiles such as Ravenscar
• Use of language subsets (e.g., MISRA C, MISRA C++)
• Software safety standards (e.g., DO-178B and DO-178C)
• Typed/Proof-Carrying Intermediate Languages
• Contract-based programming (e.g., Ada 2012)
• Model-based development for critical systems
• Specification languages (e.g., Z)
• Annotation languages (e.g., JML)

• Teaching high integrity development
• Case studies of high integrity systems
• Real-time networking/quality of service guarantees
• Analysis, testing, and validation
• Static and dynamic analysis of code
• System Architecture and Design including

Service-Oriented Architecture and Agile Development
• Information Assurance
• Security and the Common Criteria /

Common Evaluation Methodology
• Architecture design languages (e.g., AADL)
• Fault tolerance and recovery

KINDS OF TECHNICAL CONTRIBUTIONS

TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically 10-
20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings and
in ACM Ada Letters. The Proceedings will be entered into the widely consulted ACM Digital Library accessible
online to university campuses, ACM’s 100,000 members, and the software community.

EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature. If
your abstract is accepted, a full paper is required and will appear in the proceedings. Extended abstracts will be
double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its relationship with previous work
by you and others (with bibliographic references), results to date, and future directions.

Forthcoming Events 43

Ada User Journal Volume 33, Number 1, March 2012

EXPERIENCE REPORTS present timely results and “lessons learned”. Submit a 1-2 page description of the
project and the key points of interest. Descriptions will be published in the final program or proceedings, but a
paper will not be required.

PANEL SESSIONS gather groups of experts on particular topics. Panelists present their views and then exchange
views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic,
coordinator, and potential panelists.

INDUSTRIAL PRESENTATIONS Authors of industrial presentations are invited to submit a short overview (at
least 1 page in size) of the proposed presentation and, if selected, a subsequent abstract for a 30-minute talk. The
authors of accepted presentations will be invited to submit corresponding articles for ACM Ada Letters.

WORKSHOPS are focused sessions that allow knowledgeable professionals to explore issues, exchange views,
and perhaps produce a report on a particular subject. Workshop proposals, up to 5 pages in length, will be selected
based on their applicability to the conference and potential for attracting participants.

TUTORIALS can address a broad spectrum of topics relevant to the conference theme. Submissions will be
evaluated based on applicability, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial
proposals should include the expected level of experience of participants, an abstract or outline, the qualifications
of the instructor(s), and the length of the tutorial (half day or full day).

HOW TO SUBMIT: Send in Word, PDF, or text format:

Submission Deadline Send to
Technical articles, extended abstracts,
experience reports, panel session
proposals, or workshop proposals

June 29, 2012 Jeff Boleng, Program Chair
jeff@boleng.com

Industrial presentation proposals August 1, 2012 (overview)
October 1, 2012 (abstract)

Tutorial proposals June 29, 2012 John McCormick, Tutorials Chair
mccormick@cs.uni.edu

At least one author is required to register and make a presentation at the conference.

FURTHER INFORMATION
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and
university curricula. The Conference welcomes a grant application from anyone whose goals meet this
description. The benefits include full conference registration with proceedings and registration costs for 2 days of
conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students from
GNAT Academic Program member institutions, which can be combined with conference grants. For more details
visit the conference web site or contact Prof. Michael B. Feldman (MFeldman@gwu.edu)

OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper
selected by the program committee as the outstanding student contribution to the conference.

SPONSORS AND EXHIBITORS: Please contact Alok Srivastava (asrivastava@yahoo.com) to learn the
benefits of becoming a sponsor and/or exhibitor at HILT 2012.

IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be particularly
aware and careful about visa requirements, and should plan travel well in advance. Visit the conference website
for detailed information pertaining to visas.

ANY QUESTIONS?
Please send email to SIGAda.HILT2012@acm.org, or contact the Conference Chair (Ben Brosgol,
brosgol@adacore.com), SIGAda’s Vice-Chair for Meetings and Conferences (Alok Srivastava,
asrivastava@yahoo.com), or SIGAda’s Chair (Ricky E. Sward, rsward@mitre.org).

 45

Ada User Journal Volume 33, Number 1, March 2012

Rationale for Ada 2012: 2 Expressions
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract
This paper describes the introduction of more flexible
forms of expressions in Ada 2012.
There are four new forms of expressions. If
expressions and case expressions define a value and
closely resemble if statements and case statements.
Quantified expressions take two forms using for all
and for some to return a Boolean value. Finally,
expression functions provide a simple means of
parameterizing an expression without the formality of
providing a function body.
These more flexible forms of expressions will be found
invaluable in formulating contracts such as
preconditions. It is interesting to note that Ada now
has conditional expressions over 50 years after their
introduction in Algol 60.
Keywords: rationale, Ada 2012.

1 Overview of changes
One of the key areas identified by the WG9 guidance
document [1] as needing attention was improving the
ability to write and enforce contracts. These were discussed
in detail in the previous paper.

When defining the new aspects for preconditions,
postconditions, type invariants and subtype predicates it
became clear that without more flexible forms of
expressions, many functions would need to be introduced
because in all cases the aspect was given by an expression.

However, declaring a function and thus giving the detail of
the condition, invariant or predicate in the function body
makes the detail of the contract rather remote for the human
reader. Information hiding is usually a good thing but in
this case, it just introduces obscurity.

Four forms are introduced, namely, if expressions, case
expressions, quantified expressions and expression
functions. Together they give Ada some of the flexible feel
of a functional language.

In addition, membership tests are generalized to allow
greater flexibility which is particularly useful for subtype
predicates.

The following Ada issues cover the key changes and are
described in detail in this paper:

 3 Qualified expressions and names

147 Conditional expressions

158 Generalizing membership tests

176 Quantified expressions

177 Expression functions

188 Case expressions

These changes can be grouped as follows.

First there are conditional expressions which come in two
forms, if expressions and case expressions, which have a
number of features in common (147, 188).

Then there is the introduction of quantified expressions
which use for all to describe a universal quantifier and for
some to describe an existential quantifier. Note that some
is a new reserved word (176).

Next comes the fourth new form of expression which is the
expression function (177).

Finally, membership tests are generalized (158) and there is
a minor change regarding qualified expressions (3).

2 If expressions
It is perhaps very surprising that Ada does not have if
expressions as well as if statements. In order to provide
some background context we briefly look at two historic
languages that are perhaps the main precursors to modern
languages; these are Algol 60 [2] and CPL [3].

Algol 60 had conditional expressions of the form

Z := if X = Y then P else Q

which can be contrasted with the conditional statement

if X = Y then
 Z := P
else
 Z := Q

Conditional statements in Algol 60 allowed only a single
statement in each branch, so if several were required then
they had to be grouped into a compound statement thus

if X = Y then
 begin
 Z := P; A := B
 end
else
 begin
 Z := Q; A := C
 end

It may be recalled that statements were not terminated by
semicolons in Algol 60 but separated by them. However, a

46 Rat ionale for Ada 2012: 2 Expressions

Volume 33, Number 1, March 2012 Ada User Journal

null statement was simply nothing so the effect of adding
an extra semicolon in some cases was harmless. However,
accidentally writing

if X = Y then ;
 begin
 Z := P; A := B
 end;

results in a disaster because the test then just covers a null
statement and the assignments to Z and A always take
place. The complexity of compound statements did not
arise with conditional expressions.

The designers of Algol 68 [4] sensibly recognized the
problem and introduced closing brackets thus

if X = Y then
 Z := P; A := B;
fi;

where fi matches the if. Conditional expressions in Algol 68
were similar

Z := if X = Y then P else Q fi;

An alternative shorthand notation was

Z := (X = Y | P | Q);

which was perhaps a bit too short.

The next major language in this series was Pascal [5]. The
designers of Pascal rejected everything that had been learnt
from Algol 68 and foolishly continued the Algol 60 style
for compound statements and also dropped conditional
expressions. Only with Modula did they realise the need for
bracketing rather than compounding.

The other foundation language was CPL [3]. Conditional
statements in CPL took the following form

if X = Y then do Z := P

if X = Y then do § Z := P; A := B §|

where compound statements were delimited by section
symbols (note that the closing symbol has a vertical line
through it).

From CPL came BCPL, B and C. Along the way, the
expressive := for assignment got lost in favour of = which
then meant that = had to be replaced by == for equality.
And the section brackets became { and } so in C the above
conditional statements become

if (X == Y) Z = P;

if (X == Y) {Z = P; A = B;}

This suffers from the same stray semicolon problem
mentioned above with reference to Algol 60.

Steelman [6] did not require Ada to have conditional
expressions and since they were not required they were not
provided (the requirements were treated with considerable
reverence). A further influence might have been that the
new language had to be based on one of Pascal, Fortran and

PL/I and Ada is based on Pascal which did not have
conditional expressions as mentioned above.

Moreover, the Ada designers felt that the Algol 68 style
with reversed keywords such as fi (or worse esac) for
conditional statements would not be acceptable to the
USDoD or the public at large and so we have end if as the
closing bracket thus

if X = Y then
 Z := P;
 A := B;
end if;

Remember that semicolons terminate statements in Ada
and so those above are all required. Moreover, since null
statements in Ada have to be given explicitly, placing a
stray semicolon after then gives a compiler error.

The absence of conditional expressions is a pain. It leads to
unnecessary duplication such as having to write

if X > 0 then
 P(A, B, D, E);
else
 P(A, C, D, E);
end if;

where all parameters but one are the same. This can even
lead to disgusting coding using the fact that
Boolean'Pos(True) is 1 whereas Boolean'Pos(False) is 0.
Thus (assuming that B and C are of type Integer) the above
could be written as a single procedure call thus

P(A, Boolean'Pos(X>0)*B+Boolean'Pos(X<=0)*C, D, E);

So it is a great relief in Ada 2012 to be able to write

P(A, (if X>0 then B else C), D, E);

A worse problem was when a static expression was
required such as the initial value for a named number as in
the following gruesome code

Febdays: constant :=
 Boolean'Pos(Leap)*29 + Boolean'Pos(not Leap)*28;

which we can now thankfully write as

Febdays: constant := (if Leap then 29 else 28);

Note carefully that there is no end if. One reason is simply
that it is logically unnecessary since there can be only a
single expression after else and also end if would have
been obtrusively heavy (compared say with fi of Algol 68).
However, it was felt that some demarcation was required to
aid clarity and so a conditional expression is always
enclosed in parentheses. If the context already has
parentheses then additional ones are not required. Thus in
the case of a positional call with a single parameter we just
write

P(if X > 0 then B else C);

but if we use named notation then extra parentheses are
required

P(Para => (if X > 0 then B else C));

J. G. P. Barnes 47

Ada User Journal Volume 33, Number 1, March 2012

Note carefully that the term conditional expression in Ada
2012 embraces both if expressions and case expressions
(which are discussed in the next section).

As expected, a series of tests can be done using elsif thus

P(if X > 0 then B elsif X < 0 then C else D);

and expressions can be nested

P(if X > 0 then (if Y > 0 then B else C) else D);

Without the rule requiring enclosing parentheses this could
be written as

P(if X > 0 then if Y > 0 then B else C else D); -- illegal

which seems more than a little confusing.

There is a special rule if the type of the expression is
Boolean (that is of the predefined type Boolean or derived
from it). In that case a final else part can be omitted and is
taken to be true by default. Thus the following are
equivalent

P(if C1 then C2 else True);

P(if C1 then C2);

Such abbreviations appear frequently in preconditions as
was illustrated in the Introduction where we had

Pre => (if P1 > 0 then P2 > 0);

which has the obvious meaning that the precondition
requires that if P1 is positive then P2 must be positive as
well but if P1 is not positive then all is well and we don't
care about P2.

This abbreviated form has the same effect as an implies
operation.

R := C1 implies C2; -- not Ada!

with the following truth table

 C1 = False C1 = True

C2 = False R = True R = False

C2 = True R = True R = True

Some consideration was given to including such an
operation in Ada 2012 (it existed in Algol 60). However,
this is exactly the same as

R := not C1 or C2;

and so somewhat unnecessary. Moreover, although implies
might appeal to some programmers it could lead to
maintenance problems since it might be considered
incomprehensible by many others.

There are important rules regarding the types of the various
dependent expressions in the branches of an if expression.
Basically they have to all be of the same type or convertible
to the same expected type. But there are some interesting
situations.

If the conditional expression is the argument of a type
conversion then effectively the conversion is considered
pushed down to the dependent expressions. Thus

X := Float(if P then A else B);

is equivalent to

X := (if P then Float(A) else Float(B));

As a consequence we can write

X := Float(if P then 27 else 0.3);

and it doesn't matter that 27 and 0.3 are not of the same
type.

If the expected type is class wide, perhaps giving the initial
value for a class wide variable V, then the individual
dependent expressions have that same expected class wide
type but they need not all be of the same specific type
within the class. Thus we might write

V: Object'Class := (if B then A_Circle else A_Triangle);

where A_Circle and A_Triangle are objects of specific types
Circle and Triangle which are themselves descended from
the type Object.

If the expected type is a specific tagged type then various
situations can arise regarding the various branches which
are similar to the rules for calling a subprogram with
several controlling operands. Either they all have to be
dynamically tagged (that is class wide) or all have to be
statically tagged. They might all be tag indeterminate in
which case the conditional expression as a whole is also tag
indeterminate.

Some obscure curiosities arise. Remember that the
controlling condition for an if statement can be any
Boolean type. Consider

type My_Boolean is new Boolean;

My_Cond: My_Boolean := ... ;

if (if K > 10 then X = Y else My_Cond) then -- illegal
 ...
end if;

The problem here is that X = Y is of type Boolean but
My_Cond is of type My_Boolean. Moreover, the expected
type for the condition in the if statement is any Boolean
type so it cannot make up its mind. We could overcome this
foolishness by putting a type conversion around the if
expression.

There are also rules regarding staticness. If all branches are
static then a conditional expression as a whole is static as in
the example of Febdays above. Thus the definition of a
static expression has been extended to permit the inclusion
of static conditional expressions.

The avid reader of the Reference Manual will find that the
term statically unevaluated has been introduced. This
relates to situations where expressions are not evaluated
because a prior expression is static. Consider

X := (if B then P else Q);

48 Rat ionale for Ada 2012: 2 Expressions

Volume 33, Number 1, March 2012 Ada User Journal

If B, P and Q are all static then the conditional expression
as a whole is static. If B is true then the answer is P and
there is not any need to even look at Q. We say that Q is
statically unevaluated and indeed it does not matter that if
Q had been evaluated it would have raised an exception.
Thus we might write

Average := (if Count = 0 then 0.0 else Total/Count);

and there is no risk of dividing by zero.

Similar rules regarding being statically unevaluated apply
to short circuit conditions, case expressions, and
membership tests.

As might be expected there are rules regarding access types
and accessibility. The accessibility level of a conditional
expression is simply that of the chosen dependent
expression and thus (generally) determined dynamically.

Readers might feel that Ada has embarked on a slippery
slope by introducing more flexibility thereby possibly
damaging Ada's reputation for reliability. Certainly a
number of additional rules have been required but from the
users' point of view these are almost intuitive. It should be
remembered that the difficulties in C stem from a
combination of things

▪ that assignment is permitted as an expression,

▪ that integer values are used as Booleans,

▪ that null statements are invisible.

None of these applies to Ada so all is well.

3 Case expressions
Case expressions have much in common with if
expressions and the two are collectively known as
conditional expressions.

Thus given a variable D of the familiar type Day, we can
assign the number of hours in a working day by

Hours := (case D is
 when Mon .. Thurs => 8,
 when Fri => 6,
 when Sat | Sun => 0);

A slightly more adventurous example involving nested if
expressions is

Days := (case M is
 when September | April | June | November => 30,
 when February =>
 (if Year mod 100 = 0 then
 (if Year mod 400 =0 then 29 else 28)
 else
 (if Year mod 4 = 0 then 29 else 28)),
 when others => 31);

The reader is invited to improve this!

Note the similarity to the rules for if expressions. There is
no closing end case. Case expressions are always enclosed
in parentheses but they can be omitted if the context
already provides parentheses.

If M and Year are static then the case expression as a whole
is also static. If M is static and equal to September, April,
June or November then the value is statically known to be
30 so that the expression for February is statically
unevaluated even if Year is not static. Note that the various
choices are evaluated in order.

The rules regarding the types of the dependent expressions
are exactly as for if expressions. Thus if the case expression
is the argument of a type conversion then the conversion is
effectively pushed down to the dependent expressions.

It is always worth emphasizing that an important advantage
of case constructions is that they give a coverage check.
Thus in the previous paper we had

subtype Pet is Animal
 with Static_Predicate =>
 (case Pet is
 when Cat | Dog | Horse => True,
 when Bear | Wolf => False);

which is much more reliable than

subtype Pet is Animal
 with Static_Predicate => Pet in Cat | Dog | Horse;

because when we add Rabbit to the type Animal, we are
forced to include it in one branch of the case expression
whereas it is all too easy to forget it using an if expression.

4 Quantified expressions
Another new form of expression in Ada 2012 is the
quantified expression. The syntax is

quantified_expression ::=
for quantifier loop_parameter_specification => predicate
| for quantifier iterator_specification => predicate

quantifier ::= all | some

predicate ::= boolean_expression

The form involving iterator_specification concerns
generalized iterators and will be found particularly useful
with containers; it will be discussed in detail in a later
paper. Here we will concentrate on the use of the familiar
loop parameter specification.

The type of a quantified expression is Boolean. So we
might write

B := (for all K in A'Range => A(K) = 0);

which assigns true to B if every component of the array A
has value 0. We might also write

B := (for some K in A'Range => A(K) = 0);

which assigns true to B if some component of the array A
has value 0.

Note that the loop parameter is almost inevitably used in
the predicate. A quantified expression is very much like a
for statement except that we evaluate the expression after
=> on each iteration rather than executing one or more

J. G. P. Barnes 49

Ada User Journal Volume 33, Number 1, March 2012

statements. The iteration is somewhat implicit and the
words loop and end loop do not appear.

The expression is evaluated for each iteration in the
appropriate order (reverse can be inserted of course) and
the iteration stops as soon as the value of the expression is
determined. Thus in the case of for all, as soon as one value
is found to be False, the overall expression is False
whereas in the case of for some as soon as one value is
found to be True, the overall expression is True. An
iteration could raise an exception which would then be
propagated in the usual way.

Like conditional expressions, a quantified expression is
always enclosed in parentheses which can be omitted if the
context already provides them, such as in a procedure call
with a single positional parameter.

Incidentally, predicate is a fancy word meaning Boolean
expression. Older folk might recall that it also means the
part of a sentence after the subject. Thus in the sentence "I
love Ada", the subject is "I" and the predicate is "love
Ada".

The forms for all and for some are technically known as
the universal quantifier and existential quantifier
respectively.

Note that some is a new reserved word (the only one in
Ada 2012). There were five new ones in Ada 95 (aliased,
protected, requeue, tagged and until) and three new ones
in Ada 2005 (interface, overriding and synchronized).
Hopefully we are converging.

The type of a quantified expression can be any Boolean
type (that is the predefined type Boolean or perhaps
My_Boolean derived from Boolean). The predicate must be
of the same type as the expression as a whole. Thus if the
predicate is of type My_Boolean then the quantified
expression is also of type My_Boolean.

The syntax for quantified expressions uses => to introduce
the predicate. This is similar to the established notation in
SPARK [7]. Consideration was given to using a vertical bar
which is common in mathematics but that would have been
confusing because of its use in membership tests and other
situations with multiple choices.

As illustrated in the Introduction, quantified expressions
will find their major uses in pre- and postconditions. Thus a
procedure Sort on an array A of type Atype such as

type Atype is array (Index) of Float;

might have specification

procedure Sort(A: in out Atype)
 with
 Post => A'Length < 2 or else
 (for all K in A'First .. Index'Pred(A'Last) =>
 A(K) <= A(Index'Succ(K)));

where we are assuming that the index type need not be an
integer type and so we have to use Succ and Pred. Note
how the trivial cases of a null array or an array with a
single component are dismissed first.

Quantified expressions can be nested. So we might check
that all components of a two-dimensional array are zero by
writing

B := (for all I in AA'Range(1) =>
 (for all J in AA'Range(2) => AA(I, J) = 0));

This can be done rather more neatly using the syntactic
form

 for quantifier iterator_specification => predicate

as will be discussed in detail in a later paper. We just write

B := (for all E of AA => E = 0);

which iterates over all elements of the array AA however
many dimensions it has.

5 Expression functions
The final new form to be discussed is the expression
function. As outlined in the Introduction, an expression
function provides the effect of a small function without the
formality of introducing a body. It is important to
appreciate that strictly speaking an expression function is
basically another form of function and not another form of
expression. But it is convenient to discuss expression
functions in this paper because like conditional expressions
and quantified expressions they arose for use with aspect
clauses such as pre- and postconditions.

The syntax is

expression_function_declaration ::=
[overriding_indicator]
function_specification is
 (expression)
 [aspect_specification] ;

As an example we can reconsider the type Point and the
function Is_At_Origin thus

package P is
 type Point is tagged
 record
 X, Y: Float := 0.0;
 end record;

 function Is_At_Origin(P: Point) return Boolean is
 (P.X = 0.0 and P.Y = 0.0)
 with Inline;

 ...
end P;

The expression function Is_At_Origin is a primitive
operation of Point just as if it were a normal function with a
body. If a type My_Point is derived from Point then
Is_At_Origin would be inherited or could be overridden
with a normal function or another expression function.
Thus an expression function can be prefixed by an
overriding indicator as indicated by the syntax.

Expression functions can have an aspect clause and since
by their very nature they will be short, this will frequently
be with Inline as in this example.

50 Rat ionale for Ada 2012: 2 Expressions

Volume 33, Number 1, March 2012 Ada User Journal

The result of an expression function is given by an
expression in parentheses. The parentheses are included to
immediately distinguish the structure from a normal body
which could start with an arbitrary local declaration. The
expression can be any expression having the required type.
It could for example be a quantified expression as in the
following

function Is_Zero(A: Atype) return Boolean is
 (for all J in A'Range => A(J) = 0);

This is another example of a situation where the quantified
expression does not need to be enclosed in its own
parentheses because the context supplied by the expression
function provides parentheses.

Expression functions can be completions as well as
standing alone and this introduces a number of possibilities.
Remember that many declarations require completing. For
example an incomplete type such as

type Cell; -- an incomplete type

is typically completed by a full type declaration later on

type Cell is
 record ... end record; -- its completion

Completion also applies to subprograms. Typically the
declaration (that is the specification plus semicolon) of a
subprogram appears in a package specification thus

package P is
 function F(X: T); -- declaration
 ...
end P;

and then the body of F which completes it appears in the
body of P thus

package body P is
 function F(X: T) is -- completion
 begin
 ...
 end F;
 ...
end P;

A function body cannot appear in a package specification.
The only combinations are

function declaration F function body F

in spec of P in body of P

in body of P in body of P

None in body of P

Remember that mutual recursion may require that a body
be given later so it is possible for a distinct declaration of F
to appear in the body of P before the full body of F. In
addition to the above the function body could be replaced

by a stub and the proper body compiled separately but that
is another story.

The rules regarding expression functions are rather
different. An expression function can be declared alone as
in the example of Is_At_Origin above; or it can be a
completion of a function declaration and that completion
can be in either the package specification or body. A
frequently useful combination occurs with a private type
where we need to make a function visible so that it can be
used in a precondition and the expression function then
occurs in the private part as a completion thus

package P is
 type Point is tagged private;
 function Is_At_Origin(P: Point) return Boolean
 with Inline;
 procedure Do_It(P: in Point; ...)
 with Pre => not Is_At_Origin;

private

 type Point is tagged
 record
 X, Y: Float := 0.0;
 end record;

function Is_At_Origin(P: Point) return Boolean is
 (P.X = 0.0 and P.Y = 0.0);

 ...
end P;

Note that we cannot give an aspect specification on an
expression function used as a completion, so it is given on
the function specification; this makes it visible to the user.
(This rule applies to all completions such as subprogram
bodies and is not special to expression functions.)

An expression function can also be used in a package body
as an abbreviation for

function Is_At_Origin(P: Point) return Boolean is
begin
 return P.X = 0.0 and P.Y = 0.0;
end Is_At_Origin;

The possible combinations regarding a function in a
package are

function declaration F expression function F

in spec of P in spec or body of P

in body of P in body of P

None in spec or body of P

We perhaps naturally think of an expression function used
as a completion to be in the private part of a package. But
we could declare a function in the visible part of a package
and then an expression function to complete it in the visible
part as well. This is illustrated by the following interesting
example of two mutually recursive functions.

J. G. P. Barnes 51

Ada User Journal Volume 33, Number 1, March 2012

package Hof is

 function M(K: Natural) return Natural;
 function F(K: Natural) return Natural;

 function M(K: Natural) return Natural is
 (if K = 0 then 0 else K – F(M(K–1)));

 function F(K: Natural) return Natural is
 (if K =0 then 1 else K – M(F(K–1)));

end Hof;

These are the Male and Female functions described by
Hofstadter [8]. They are inextricably intertwined and both
are given with completions for symmetry.

Almost inevitably, at least one of the expression functions
in a mutually recursive pair will include an if expression (or
else or else) otherwise the recursion will not stop.

Expression functions can also be declared in subprograms
and blocks (they are basic declarative items). Moreover, an
expression function that completes a function can also be
declared in the subprogram or block.

This is illustrated by the following Gauss-Legendre
algorithm which computes π to an amazing accuracy
determined by the value of the constant K.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Long_Long_Float_Text_IO;
use Ada.Long_Long_Float_Text_IO;
with Ada.Numerics.Long_Long_Elementary_Functions;
use Ada.Numerics.Long_Long_Elementary_Functions;
procedure Compute_Pi is

 function B(N: Natural) return Long_Long_Float;

 function A(N: Natural) return Long_Long_Float is
 (if N = 0 then 1.0 else (A(N–1)+B(N–1))/2.0);

 function B(N: Natural) return Long_Long_Float is
 (if N = 0 then Sqrt(0.5) else Sqrt(A(N–1)*B(N–1)));

 function T(N: Natural) return Long_Long_Float is
 (if N = 0 then 0.25 else
 (T(N–1)–2.0**(N–1)*A(N–1)–A(N))**2);

 K: constant := 5; -- for example
 Pi: constant Long_Long_Float :=
 ((A(K) + B(K))**2 / (4.0*T(K));
begin
 Put(Pi, Exp => 0);
 New_Line;
end Compute_Pi;

With luck this will output 3.14159265358979324
(depending on the accuracy of Long_Long_Float).

The functions A and B give successive arithmetic and
geometric means. They call each other and so B is given as
a function specification which is then completed by the
function expression.

I am grateful to Brad Moore and to Ed Schonberg for these
instructive examples.

The rules regarding null procedures (introduced in Ada
2005 primarily for use with interfaces) are modified in Ada
2012 to be uniform with those for expression functions
regarding completion. Thus

procedure Nothing(X: in T) is null;

can be used alone as a declaration of a null operation for a
type or as a shorthand for a traditional null procedure thus
possibly completing the declaration

procedure Nothing(X: in T);

Expression functions and null procedures do not count as
subprogram declarations and so cannot be declared at
library level. Nor can they be used as proper bodies to
complete stubs. Library subprograms are mainly intended
for use as main subprograms and to use an expression
function in that way would be somewhat undignified!

Thus if we wanted to declare a useful function to compute
sin 2x from time to time, we cannot write

with Ada.Numerics.Elementary_Functions;
use Ada.Numerics.Elementary_Functions;
function Sin2(X: Float) is -- illegal
 (2.0 * Sin(X) * Cos(X));

but either have to write it out the long way or wrap the
expression function in a package.

6 Membership tests
Membership tests in Ada 83 to Ada 2005 are somewhat
restrictive. They take two forms

▪ to test whether a value is in a given range, or

▪ to test whether a value is in a given subtype.

Examples of these are

if M in June .. August then

if I in Index then

However, the restrictions are annoying. If we want to test
whether it is safe to eat an oyster (there has to be an R in
the month) then we would really like to write

if M in Jan .. April | Sep .. Dec then -- illegal in Ada 2005

whereas we are forced to write something like

if M in Jan .. April or M in Sep .. Dec then

which means repeating M and then perhaps worrying about
whether to use or or or else. Or in this case we could do
the test the other way

if M not in May .. Aug then

What we would really like to do is use the vertical bar as in
case statements and aggregates to select a combination of
ranges, subtypes, and values.

Ada 2012 is much more flexible in this area. To see the
differences it is probably easiest to look at the old and new
syntax. The relevant old syntax for Ada 2005 is

52 Rat ionale for Ada 2012: 2 Expressions

Volume 33, Number 1, March 2012 Ada User Journal

relation ::=
 simple_expression [relational_operator simple_expression]
| simple_expression [not] in range
| simple_expression [not] in subtype_mark

where the last two productions define membership tests.
The syntax regarding choices in aggregates and case
statements in Ada 2005 is

discrete_choice_list ::= discrete_choice { | discrete_choice}

discrete_choice ::= expression | discrete_range | others

discrete_range ::= discrete_subtype_indication | range

The syntax in Ada 2012 is rather different and changes
relation to use new productions for membership_choice_list
and membership_choice (this enables the vertical bar to be
used in membership tests). And then membership_test in
turn uses choice_expression and choice_relation as follows

relation ::=
 simple_expression [relational_operator simple_expression]
| simple_expression [not] in membership_choice_list

membership_choice_list ::=
 membership_choice { | membership_choice}

membership_choice ::=
 choice_expression | range | subtype_mark

choice_expression ::=
 choice_relation {and choice_relation}
 | choice_relation {or choice_relation}
 | choice_relation {xor choice_relation}
 | choice_relation {and then choice_relation}
 | choice_relation {or else choice_relation}

choice_relation ::=
 simple_expression [relational_operator simple_expression]

The difference between a choice_relation and a relation is
that the choice_relation does not include membership tests.
Moreover, discrete_choice is changed to

discrete_choice ::= choice_expression
 | discrete_subtype_indication | range | others

the difference being that a discrete_choice now uses a
choice_expression rather than an expression as one of its
possibilities.

The overall effect of the changes is to permit the vertical
bar in membership tests without getting too confused by
nesting membership tests.

Here are some examples that are now permitted in Ada
2012 but were not permitted in Ada 2005

if N in 6 | 28 | 496 then -- N is small and perfect!

if M in Spring | June | October .. December then
 -- combination of subtype, single value and range

if X in 0.5 .. Z | 2.0*Z .. 10.0 then -- not discrete or static

if Obj in Triangle | Circle then -- with tagged types

if Letter in 'A' | 'E' | 'I' | 'O' | 'U' then -- characters

Membership tests are permitted for any type and values do
not have to be static. There is no change here but it should
be remembered that existing uses of the vertical bar in case
statements and aggregates do require the type to be discrete
and the values to be static.

Another important point about membership tests is that the
membership choices are evaluated in order and as soon as
one is found to be true (or false if not is present) then the
relation as a whole is determined and the other membership
choices are not evaluated. This is therefore the same as
using short circuit forms such as or else and so gives
another example of expressions which are statically
unevaluated.

There is one very minor incompatibility. In Ada 2005 we
can write

X: Boolean := ...
case X is
 when Y in 1 .. 10 => F(10);
 when others => F(5);
end case;

This is rather peculiar. The discrete choice Y in 1 .. 10 must
be static. Suppose Y is 5, so that Y in 1 .. 10 is true; then if
X is True, we call F(10) whereas if X is false we call F(5).
And vice versa for values of Y not in the range 1 to 10.

This is syntactically illegal in Ada 2012 because a discrete
choice can no longer be an expression and so be a
membership test. This was imposed because otherwise we
might have been tempted to write

X: Boolean := ...
case X is
 when Y in 1 .. 10 | 20 => F(10);
 when others => F(5);
end case;

and this is syntactically ambiguous because it might be
parsed as (Y in 1 .. 10) | 20 rather than Y in (1 .. 10) | 20.
Although it would be rejected anyway because of the type
mismatch. However, syntactic ambiguities are disliked in
Ada.

This is clearly very unlikely to be a problem. Case
statements over Boolean types are pretty rare anyway.

7 Qualified expressions
We conclude this discussion of expressions by considering
some points regarding names and primaries.

In Ada 2005 we have

name ::=
 direct_name | explicit_dereference | indexed_component
 | slice | selected_component | attribute_reference
 | type_conversion | function_call | character_literal

primary ::=
 numeric_literal | null | string_litreral | aggregate | name
 | qualified_expression | allocator | (expression)

And in Ada 2012 we have

J. G. P. Barnes 53

Ada User Journal Volume 33, Number 1, March 2012

name ::=
 direct_name | explicit_dereference | indexed_component
 | slice | selected_component | attribute_reference
 | type_conversion | function_call | character_literal
 | qualified_expression | generalized_reference
 | generalized_indexing

primary ::=
 numeric_literal | null | string_litreral | aggregate | name
 | allocator | (expression)
 | (conditional_expression) | (quantified_expression)

The important thing to observe here is that
qualified_expression has moved from being a form of
primary to being a name.

We also note the addition of conditional_expression and
quantified_expression (both in parentheses) as forms of
primary as discussed earlier in this paper and the addition
of generalized_reference and generalized_indexing as
forms of name. These are used in the new forms of iterator
briefly alluded to at the end of the discussion on quantified
expressions and which will be discussed in a later paper.

Returning to qualified expressions, the main reason for
allowing them as names is to avoid unnecessary
conversions as mentioned in the Introduction.

Consider

A: T; -- object of type T
type Art is array (1 .. 10) of T; -- array of type T
function F(X: Integer) return Art;

A function call can be used as a prefix and so a call
returning an array can be indexed as in

A := F(3)(7);

which assigns to A the value of the 7th component of the
array returned by the call of F.

Now suppose that F is overloaded so that F(3) is
ambiguous. The normal solution to such ambiguities is to
use qualification and write Art'(F(3)) as in

A := Art'(F(3))(7); -- illegal in Ada 2005

but this is illegal in Ada 2005 because a qualified
expression is not a name and so cannot be used as a prefix.
What one has to do in Ada 2005 is either copy the wretched
array (really naughty) or add a type conversion (a type
conversion is a name) thus

A := Art(Art'(F(3)))(7);

This is really gruesome; but in Ada 2012, qualification is
permitted as a name so we can simply write

A := Art'(F(3))(7); -- OK in Ada 2012

Although a qualified expression is now classed as a name
rather than a primary, a qualified variable is not considered
to be a variable. As a consequence, a qualified variable
cannot be used as the destination of an assignment or as an
actual parameter corresponding to an out or in out
parameter. This would have added complexity for no useful
purpose. Ambiguity generally involves calls on overloaded
functions, and the result of a function call is always a
constant, so ambiguous names of variables are unlikely!

Other uses might involve strings which can also give rise to
ambiguities. For example

("a string")'Length

is ambiguous (it could be a String or Wide_String). But now
we can write

String'("a string")'Length

which was not permitted in Ada 2005.

References
[1] ISO/IEC JTC1/SC22/WG9 N498 (2009) Instructions

to the Ada Rapporteur Group from SC22/WG9 for
Preparation of Amendment 2 to ISO/IEC 8652.

 [2] P. Naur (ed.), Revised Report on the Algorithmic
Language ALGOL 60 (1963) Communications of the
Association for Computing Machinery, Vol. 6, p. 1.

[3] D. W. Barron et al (1963) The main features of CPL,
Computer Journal vol. 6, pp 134-143.

[4] A. van Wijngaarden et al (eds) (1973) Revised Report
on the Algorithmic Language – ALGOL 68, Springer-
Verlag.

[5] K. Jensen and N. Wirth (1975) Pascal User Manual
and Report, Springer-Verlag.

[6] Defense Advanced Research Projects Agency (1978)
Department of Defense Requirements for High Order
Computer Programming Languages – STEELMAN,
USDoD.

[7] J. G. P. Barnes (2003) High Integrity Software, The
SPARK Approach to Safety and Security, Addison-
Wesley.

[8] D. R. Hofstadter (1980) Gödel, Escher, Bach: an
Eternal Golden Braid, Basic Books.

© 2012 John Barnes Informatics.

54

Volume 33, Number 1, March 2012 Ada User Journal

Entity-Life Modeling: Designing Reactive Software
Architectures to the Strengths of Tasks
Bo I Sandén
Colorado Technical U., 4435 N. Chestnut St., Colorado Springs, CO 80907, USA; email: bsanden@acm.org

Abstract
Entity-life modeling (ELM) is a design approach for
multitask reactive software, which must respond to
events in the environment as they occur. The
abundant computing power now afforded by
multiprocessors allows us to design such software
differently than in the past. With ELM, the architect
identifies threads of event occurrences in the problem
domain that unfold independently or nearly so, and
bases tasks on such event threads. ELM also provides
design patterns for modeling tasks on activities
defined for state machines, and event-thread patterns
for problems that involve the sharing of problem-
domain resources.
Keywords: multitasking, entity-life modeling,
multiprocessors, event threads, resource sharing,
design of multitask software, multithreading, task
architecture, reactive systems.

1 Introduction
Tasking has long been used in certain kinds of software
such as servers and real-time systems. The new abundance
of processors allows us to design such software in more
elegant ways that makes it more understandable and
maintainable.

We are interested here in systems that exhibit a reactive
behavior [12]. Their reactions to events in the problem
domain can be captured in state models. Taken in a broad
sense, reactive systems include telephone switches,
embedded control systems, and interactive systems ranging
from ATMs to travel-reservation systems [25].

This article presents entity-life modeling (ELM) as a design
approach for reactive software [19, 20, 22]. ELM proposes
certain architectural styles and suggests heuristics for
finding task architectures in those styles. As there is often
little time for upfront designing, ELM produces a task
architecture directly, without first modeling objects or
mapping out a data flow. ELM does not address the
parallelization of algorithms but in no way precludes it;
tasks computing concurrently on different processors are
very much in ELM’s spirit.

While the book Design of Multithreaded Software [22]
defines ELM, this article applies the design approach to
tasking in Ada and uses Ada terminology. It also introduces
a UML diagram showing ELM’s conceptual apparatus
(Figure 1), which is not found in the book. The term

“essential event” is introduced. The garage-door example in
section 2 is new as well.

1.1 Traditional task architectures
Traditionally, multitask reactive software has been
designed around the need to husband limited processor
resources. It is often structured as a set of periodic tasks
with periodic, hard deadlines, and each task’s priority is set
to ensure that it meets its deadlines. Schemes such as rate-
monotonic scheduling can establish a priori whether all
deadlines will be met [13]. The number of missed deadlines
is used as a performance metric. Each input/stimulus visits
one periodic task after the other, and may itself have a hard
deadline. The periodic deadlines must be chosen so that
deadline is also met.

Besides hard deadlines, we also talk about soft deadlines.
Missing a soft deadline is no disaster but may degrade
performance. In a cruise controller for example, which
must adjust the throttle at consistent intervals for a smooth
ride, the planned time for each adjustment can be a soft
deadline [21, 22]. And interactive systems must be
responsive to human input but again without hard
deadlines. In such systems the mean and variance of the
response or service time may be the best performance
metric.

With additional cores and processors, inputs can still have
associated deadlines, but there is much more processing
time to go around: As many computations as there are
processors or cores can proceed simultaneously. For many
applications, the design need no longer center on processor
availability as the overshadowing constraint.

This does not mean that we can blithely assume that
abundant processes and cores will make all resource
conflicts just go away. Even if an input is processed on a
dedicated processor, it can miss its deadline because other
tasks hold on to a shared resource too long. And in some
“cyber-physical systems”, computation may be “deeply
embedded in and interacting with physical processes”
imposing precise timing constraints on the software [16].

Thus, even absent the need for each input to visit one task
after another, we must design multitask reactive software
carefully. Undisciplined tasking can create “wild
nondeterminism” and deadlock [15]. While a sequential
program can be checked against an exhaustive set of test
cases this is not so with tasking where some bugs may
show up only in rare runtime situations that a tester cannot
easily recreate. No less important, there are also general

B. Sandén 55

Ada User Journal Volume 33, Number 1, March 2012

software-engineering goals such as simplicity,
modifiability, and maintainability.

1.2 Entity-life modeling
Entity-life modeling (ELM) is a disciplined design approach
for multitask reactive software. It is dedicated to the
proposition that each essential event occurrence should be
processed to completion by a single task – or by an
event/interrupt handler. This does not mean that a new task
is started for each event occurrence. Having processed one
to completion, a task can go on to handle another
occurrence of the same or a different event and indeed a
whole series of occurrences provided they are not too close
together. For this, ELM defines an event thread as a
chronological sequence of problem-domain event
occurrences that are separated in time.1
The term “event” is taken from state modeling. In a garage-
door controller, click may be the event where a homeowner
hits a clicker button, and top may be where the door hits the
ceiling. Each event has any number of occurrences, as
when the owner of a particular home clicks the button at a
particular time. Such an occurrence is normally followed
by an occurrence of top seconds later.
ELM stipulates that every task must be based on an event
thread. This justifies the task’s existence. But if all the
thread’s occurrences are processed by handlers, no task is
needed.
An ELM architecture is meant to be independent of the
number of processors available. Thus it can use as many
processors as there are tasks, or, at the other extreme, all
tasks can run on a single processor. Clearly, the
performance can be quite different but the architecture does
not have to change.
The relationship between event-thread models and task
architectures is illustrated schematically in Figure 1, which
also shows that tasks have priorities. ELM assumes that
their scheduling is preemptive so that a higher-priority task
in need of a processor can take it over from a lower-priority
task immediately.
1.2.1 Event-thread models and task architectures
Figure 1 shows an event-thread model of a given problem
as a set of event threads. The threads partition the set of
problem-domain event occurrences: Each occurrence
belongs to exactly one event thread. There may be multiple
ways to view a problem, each with its own event-thread
model.

Also shown in Figure 1, a task architecture consists of
tasks and protected objects. It is often called the process or
concurrency view of the full software architecture [7, 14].
ELM uses “task architecture” both for brevity and to
emphasize that it can be quite an independent artifact. It is
self-contained because – except for event/interrupt handling

1 How far apart the occurrences must be is a matter of engineering
judgment [22].

– every instruction must be executed by a task. Each ELM
task architecture is based on an event-thread model.

Figure 1 Basic ELM concepts shown as a UML class diagram

A protected object has protected operations with built-in
exclusion synchronization: each task locks the object before
operating on it. Because an object that is locked for any
length of time can become a bottleneck, every protected
operation in a reactive system should be nearly
instantaneous. Thus no task should keep a protected object
locked while performing a long computation. If all
operations cannot be short, the design must account for
wait states explicitly (2.1). Handlers for interrupts and
timing events are protected procedures in Ada.

Protected objects can also have entries, which provide
condition synchronization: A protected entry let tasks block
on a condition [1]. ELM uses protected objects in various
ways. Thus monitor and semaphore protected objects use
condition synchronization to control the access to problem-
domain resource (3.1, 4.3). We return to state-machine
protected objects in 2.3. Protected objects can also be used
as pragmatic engineering devices.

1.2.2 Event threads and entities
It is not enough for a set of event threads to partition the
occurrences in a problem domain; we must also ensure that
the event-thread model and the task architecture make
sense. For that we need to find event threads that are
intuitively meaningful and easy to grasp and describe. Here
are some examples:

• In a garage-door controller for a home [2], the process
of opening and closing defines an event thread where
the user clicks a remote controller, the door reaches the
top or bottom of its frame, etc. The control software is
built around a single main state machine.

• The cruise controller [21, 22] also has a single main
state machine. It has one event thread related to the
human driver. In addition, it has a thread of time
events governing the actions on the throttle. (A time
event is the event that a certain time has passed since
some other event occurrence.)

• In an elevator bank in a hotel or office building, each
cabin is an instance of an elevator entity type. It travels
up and down, stops, opens and closes its doors, etc.

• In a flexible manufacturing system (FMS), jobs visit
workstations according to their process plans. Much of
a job’s life consists of waiting for exclusive access to a
workstation or a vehicle (Section 4).

56 Ent i ty-Li fe Model ing: Designing Reactive Software Archi tectures

Volume 33, Number 1, March 2012 Ada User Journal

As a matter of heuristics, it is often useful to look for
entities in the problem domain such that each entity’s life
history is an event thread. In the examples above, a car
driver, an elevator, and a job are such entities (or entity
types). Naming an event thread after an entity creates a
common set of expectations of how it should work so if
entities are carefully chosen, we can agree on what belongs
in each event thread. While an entity such as car driver can
be helpful intuitively, it must also be very clear that we are
only talking about the driver’s interaction with a particular
software system and no other doings. Because entities are
auxiliary, the association with event thread is shown
informally in Figure 1.

2 Analysis and design
In ELM analysis and design, event-thread modeling
logically comes first and leads to a task architecture. The
process is never linear, but an idealized flow is as follows:

1. Consider one or more possible event-thread models,
each including all event occurrences in the problem
domain. Capture event threads in state diagrams as
needed (2.1).

2. Validate the feasibility of each model by ensuring that
it covers all event occurrences in the problem (4.2,
5.1). Choose one model.

3. Realize the event-thread model by implementing each
thread either as a task or by means of event/interrupt
handling (2.3).

The next subsections elaborate on these steps.

2.1 Identifying event-thread models
We start by discussing how to identify event threads in a
single state diagram. Entities stand out more clearly in
complex problems, but there too, the life of an entity or
entity type can be captured in a state diagram.

Figure 2 is a state diagram of an automated garage door for
a home [2]. It shows how the complete system with
software embedded must react to various events created by
a user clicking a remote and by sensors around the physical
door.

At each point in time, the door exists in exactly one state
such as Closed (marked as the initial state) or Opening. In
Stopped-opening and Stopped-closing, the door has been
halted partway up or down. Sensing is a superstate with the
substates Closing, Stopped-opening and Opened.

An event such as click can cause a transition to another
state. The event break is when a light beam near the floor is
broken; bottom is when the door reaches its closed position,
etc. (We assume for now that click, break, top, and bottom
create interrupts.)

Besides state transitions, events can also trigger actions.
Thus click/stop indicates that–in certain states–the event
click stops the door motor. The time event S sec in state
Stopped-closing triggers automatic opening after the door
has been still for S seconds.

Conceptually, an action is instantaneous, that is, it takes no
time. For purposes of software design, it is nearly
instantaneous, that is, short enough that no events happen
during the action. What is short enough is an engineering-
judgment call.

Many an action impacts the problem domain irreversibly
and cannot be undone readily; for instance, start down
could make the door crash into some obstacle.

Figure 2 State diagram of a home garage door

State transitions and actions can be conditional: In Figure 2,
click [clear]/start down triggers the action start down and a
transition to Closing only if the light beam across the
garage-door frame indicates that the passage is clear. (For
simplicity, the diagram omits events and event-condition
combinations causing neither transitions nor actions.)

If the system’s reaction to an event is not nearly
instantaneous it must be considered an activity, not an
action. An activity continues throughout a state. It is
indicated by the keyword do as with check optical sensor in
the superstate Sensing: Throughout the superstate, the
sensor is checked say every P seconds to ensure that the
passage is clear. That activity starts immediately as the
superstate is entered and stops upon the occurrence of an
event – such as break – that causes a transition from
Sensing.

In general, other possible activity types include lengthy
computations. Also, ELM considers the wait for a resource
an activity. This is because an activity is often implemented
by a task, which can block on a protected object until the
resource becomes available.

It is necessary in ELM to distinguish between “software”
activities and others. A software activity is one that requires
software involvement throughout its state; a lengthy
computation and a wait for a resource are examples.
Software activities require tasks.

Other activities are called nominal and consist of discrete
actions that can be dealt with by interrupt/event handlers.
An activity such as check optical sensor is nominal if it is
handled by means of timing events, and a software activity
if implemented as a task.

2.1.1 Essential events
Because ELM uses event threads to justify the task
architecture, the events in the threads must be essential to
the problem and not figments of a particular design. Most

B. Sandén 57

Ada User Journal Volume 33, Number 1, March 2012

essential events occur in the problem domain and are
shared with the software; click, break, top, and bottom are
examples. Time events such as S sec are essential if they
are significant in the problem domain no matter the
software design. Time events that trigger the sampling of
problem-domain quantities are essential, for example.

Some essential events occur in the software. If the software
controls domain-resource sharing they include allocation
events, which are where a domain entity acquires a
resource. The completion of a lengthy computation that is
necessary no matter the design is also an essential event.

Note. “Essential event” is a more general term than “shared
event” but is not used in the book [22]. It is clear, however,
that some essential events are not intuitively shared. An
allocation event, for example, is not shared with the
domain, especially if the resource user simply goes on to
wait for another resource.

2.2 Identifying event threads and thread models
In straightforward cases such as the garage door, a single
state model covers the whole problem, and the event
threads can be identified from the state diagram. For
example, we might let a thread clicks include all
occurrences of click, another, bottoms, include the
occurrences of bottom, and a third, tops, the occurrences of
top. The various click occurrences are indeed separated in
time as are the occurrences of bottom and top. A fourth
thread, timer, can include the occurrence of the event S sec.

It is immediately clear though that these event threads are
interdependent. In ELM terms, the threads bottoms and tops
do not co-occur. Here is a definition: Two or more event
threads in a thread model co-occur iff we can find an
arbitrarily short time interval where each of them may have
an event occurrence. For practical purposes, event threads
co-occur if there is a time when, by chance, each can have
an event occurring [20, 22]. ELM recommends that the
designer optimize the event-thread model by combining
non-co-occurring threads. Thus in the garage door, one
event thread door-operation can include the occurrences of
top, bottom, and S sec.

The event thread clicks presents a little practical problem.
While it does not co-occur with door-operation normally, a
user could certainly hit the button just as the door reaches
the top or bottom. Because this situation is exceptional we
include the event click in door-operation. We could also
keep clicks as a separate event thread, but ELM is not out
to force more threads on the designer or make too much of
some trivial aspect of the problem.

Another event thread, sensor-checking, is associated with
the activity check optical sensor where the sensor is polled
every P seconds. The time event P sec is essential, and its
occurrences form the event thread. The threads door-
operation and sensor-checking co-occur: the sensor might
be polled at the same time as the user clicks the remote or
the door hits the floor or ceiling.

An optimal event-thread model is one where all the threads
co-occur. Its threads are as many as the maximum number

of events that can ever occur at once. This number is the
concurrency level of the problem. The garage-door
problem’s concurrency level is two, so a model consisting
of the threads door-operation and sensor-checking is
optimal. (Strictly, this is true only in the superstate Sensing;
elsewhere the level is one.)

ELM does not require optimality because the concurrency
level cannot always be determined readily. Besides, the
designer is free to choose a nonoptimal model that is useful
and intuitive even if some tasks should spend most of their
time waiting for each other. Still, the concurrency level
often has value as a benchmark. For example, if someone
should propose a garage-door solution with five tasks, it is
reasonable to ask whether five event occurrences need ever
be handled at once.

2.3 Realizing an event-thread model in software
In an architecture based on an event-thread model, event
threads can be implemented in two different ways:
according to the concurrent-activities pattern or according
to the sequential-activities pattern. (These are called
design patterns [22], which seems consistent with the
pattern community’s usage [8], but “implementation
patterns” might be intuitively clearer.)

In the concurrent-activities pattern, a state-machine
protected object (Figure 1) keeps the current state,
typically in a private variable. When an event occurs, an
event handler is called. It is one of the object’s operations,
which updates the state variable as necessary and takes any
action triggered by the event.

An activity task is associated with a state-machine
protected object. It implements a software activity (or two
or more non-co-occurring activities). In addition to event
handlers, it can call other operations on the state-machine
object to query the current state or to block until a certain
state is entered. Each co-occurring activity needs its own
activity task. In Figure 1, a dashed line informally shows
that activity tasks are associated with state-machine objects.
If there are no activities at all, the protected object alone
represents the state machine. No tasks are needed.

The garage-door problem fits this pattern. Its state-machine
protected object has handlers for click, top, bottom, and
break, and a timing-event handler for S sec. The polling of
the optical sensor has two possible implementations:

• A single, periodic activity task, check-sensor, blocks
on the state-machine object until the superstate Sensing
is entered. Within that state, it calls break to report
each light-beam breach.

• The state-machine protected object has a timing-event
handler for P sec. This architecture degenerates to a
protected object without tasks.

The sequential-activities pattern works for activities that
do not co-occur. They are arranged one after the other in a
single sequential-activities task (Figure 1). It differs from
an activity task in that it keeps track of the state, which can
often be implicit in the logic rather than kept in a state

58 Ent i ty-Li fe Model ing: Designing Reactive Software Archi tectures

Volume 33, Number 1, March 2012 Ada User Journal

variable. Such task logic can read neatly from top to bottom
like a main program, and can rely on the programming
language’s block structure, scoping rules, and exception
handling as appropriate. Variables are allocated on the
task’s stack.

Like other patterns, those of ELM can “dovetail and
intertwine” [8] in many ways. For instance, an activity task
for a superstate can also be a sequential-activities task and
keep track of the current substate within the superstate.
This happens in the cruise controller. It has a state-machine
protected object and a single activity task that controls the
throttle. In state Cruising, the task repeatedly compares the
current speed with the target speed and actuates on the
throttle when needed. In state Accelerating, it maintains
constant acceleration [21, 22]. This makes for smooth state
changes. (If the driver’s inputs do not create interrupts, an
additional sampler task is needed.)

3 Event-thread patterns
The concurrent-activities and sequential-activities
design/implementation patterns yield simple software
solutions for many single-state-machine problems such as
the garage door and the cruise controller. In more complex
problems, we identify event threads and/or entities in the
problem domain.

In the elevator-bank controller, for example, the life of an
elevator entity can be shown in a state diagram. All cabins
share a repository of out-standing requests for service,
which is populated by sampling as travelers press buttons
[18, 22]. Figure 3 shows a solution where each elevator
task also has a separate repository for calls from its cabin
buttons.

Figure 3 Communication diagram of the elevator software

This is an example of an event-thread pattern, a group of
interacting entities, some of which enter data in a repository
while others act on the data. The repository is consulted as
a cabin approaches and leaves a floor. This pattern
conforms in spirit to an architectural style called repository
[10]. An event-thread pattern is a way to look at the
problem and should not be confused with a
design/implementation pattern, which deals with
programming practicalities. Some even-thread patterns also
map neatly onto the sequential-activities or concurrent-
activities pattern, however

3.1 Event-thread patterns for resource sharing
Two event-thread patterns related to the important issue of
domain-resource sharing have proven quite productive. If
each resource user needs no more than one resource at a
time, the event occurrences can be threaded either by
resource or by resource user. ELM forces us to choose one

view because otherwise, event occurrences involving a
resource-user and a resource would belong to two event
threads. In other words, there are two distinct event-thread
patterns for resource sharing, the resource-user-thread
pattern and the resource-guard-thread pattern as follows
[22]:

A resource-user event thread is the life history of a
resource-user entity in the problem domain and includes
allocation events and events involving the shared resources.
In the FMS problem for instance, jobs are resource-user
entities. So are the elevator entities.

A resource-user event thread is typically implemented as a
sequential-activities task, some of whose activities consist
of waiting for resources. (This relationship is shown
informally in Figure 1.) As the entities’ surrogates, these
tasks call operations on monitor and/or semaphore
protected objects representing resources (Figure 1) and
block until a resource becomes available.

Each resource-guard event thread represents the life
history of a resource entity that services requests one by
one. That leads to an implementation where resource-guard
tasks are stations on a kind of assembly line where one task
forwards an object representing the resource user to the
next task. Queues implemented as protected objects
connect the stations.

The two patterns are dual in that we can choose either a
resource-guard-thread model or a resource-user-thread
model of a given problem. No matter which model we
think of first, it is a good mental habit always to work out
its dual, which may turn out to be radically better [22].

Comparing different possible designs is essential in
engineering [2, 9, 17, 23], and a discussion of alternatives
considered should be part of the rationale for the solution
ultimately chosen. Finding an alternative solution often
takes imagination though, and we cannot even be sure that
one exists [3]. But when the resource-sharing patterns
apply, we can normally produce dual solutions.

4 Ex.: Flexible manufacturing system
The FMS problem illustrates problem-domain resource
sharing. Flexible manufacturing differs from production
lines in that each type of job visits its own series of
workstations as defined by its process plan. In a particular
FMS, multiple workstations of different types are
connected by automated guided vehicles (AGVs) on a
factory floor as shown in Figure 4 [6, 18, 19, 22]. Each
workstation has an in-stand (I), an out-stand (O), and a
robot arm (R) for moving the workpiece between an AGV,
the stands, and the workstation tool.

Each job processes a single workpiece, which starts out and
ends up in a storage bin in the automated storage and
retrieval systems (ASRS). The workpiece is also staged in
its bin when its next workstation is busy. From the bin, a
forklift takes the piece to a storage stand where an AGV
can get it. The piece then visits various workstations. When
it cannot proceed directly from out-stand to in-stand, it is

B. Sandén 59

Ada User Journal Volume 33, Number 1, March 2012

staged in its storage bin. We shall first look at the sharing
of workstations only; we return to the vehicles in 4.3

Figure 4 Layout of a simple FMS

4.1 Resource-user threads representing jobs
The job is a resource-user entity that acquires and releases
exclusive control of workstations in competition with other
jobs. Initially, the workpiece waits in its bin for access to
the in-stand of a workstation of the right type. Once on the
in-stand, it waits for the tool to become available. When
done in the tool it moves onto the out-stand, if necessary
after bumping the previous job off the stand. If completed
or bumped, the job returns to its bin; otherwise it waits until
the in-stand of its next workstation becomes available. The
logic in pseudocode is as follows with assertions about the
job’s whereabouts in italics:

Get information about first job step
 while (job not completed)

Workpiece is in bin
 Acquire workstation in-stand
 while (True)

Workpiece is on storage stand or out-stand
 Travel to in-stand
 Acquire access to tool
 Wait for processing by tool

Workpiece is being worked
 If out-stand busy, bump previous job

Wait for it to clear stand
 Move to out-stand
 Get information about the next job step
 Break from inner loop if job completed
 Attempt to acquire in-stand for next step
 Wait until: In-stand acquired
 or Bumping prompt: Break from inner loop
 Travel to storage bin

The job tasks are sequential-activities tasks with implicit
state representation. It is appropriate to state-diagram the
life of a job, but unlike the state machine in Figure 2, this
one describes a single entity and has no co-occurring
activities–the co-occurrence is instead between different
jobs.

One difficulty inherent in the FMS problem is the situation
where a job waits for either access to an in-stand or a
bumping prompt, whichever comes first. A task
representing the job can use an asynchronous select
statement to block until either event occurs [6, 22].

4.2 Resource-guard threads for workstations
In a dual FMS solution, the jobs are passive, and each
workstation has the following three resource-guard threads,
collectively called workstation threads:

1. An in-stand thread, which finds an eligible job and
moves the workpiece to the workstation. (The
pseudocode is shown in 4.3.2.)

2. A tool thread, which waits for the workpiece to be
done and moves it onto the out-stand.

3. An out-stand thread, which sends a workpiece to
storage if it is done, or else waits for an in-stand or the
bumping prompt. In case of bumping, the thread takes
the workpiece to storage.

This is a valid event-thread model because every event
occurrence (except job creation) is associated with a
workstation. It is optimal because, at some instant, one
workpiece can be on its way to the workstation, a second
one can be done in the tool, and a third on its way to
storage. Consequently, a situation–albeit unlikely–exists
where all the threads have events occurring at the same
time. This solution usually needs fewer tasks than the job-
thread solution because jobs in storage have none.

4.3 Simultaneous exclusive access
When entities need exclusive access to multiple resources
at once, resource-user threads are often the best solution.
An implementation with implicit state representation
exposes the resource acquisition and release clearly.
Simultaneous exclusive access can set the stage for
deadlock, a circular situation where–in the simplest case–
each of two resource users waits indefinitely for a resource
held by the other. In a system such as the FMS, the
architect can use textbook deadlock prevention techniques
to design the architecture to be deadlock free [22].

4.3.1 Deadlock prevention in the FMS example
The bumping in the FMS prevents deadlock by eliminating
indefinite waits. Without bumping, two workstations could
each have a workpiece on its in-stand and out-stand and in
its tool, and each workpiece on an out-stand could be
waiting for the other in-stand. Bumping stops jobs from
keeping an out-stand indefinitely and thereby prevents
deadlock.

Besides workstations, FMS jobs need transportation, which
requires exclusive access to multiple resources at once,

60 Ent i ty-Li fe Model ing: Designing Reactive Software Archi tectures

Volume 33, Number 1, March 2012 Ada User Journal

such as an in-stand, a storage stand, and a forklift. We can
eliminate circularity at this level by stipulating that each
job acquire resources in a given order called a locking
order. This is a partial order where R < S means that if a
job needs exclusive access to resources R and S at once, R
must be acquired before S. The order in-stand < storage
stand < forklift, storage stand < AGV, and in-stand < AGV
works for the FMS. Here is a more complete pseudocode
for the job task type with the locking order observed:

Get information about first job step
while (job not completed)

Workpiece is in bin
 Acquire workstation in-stand
 Acquire storage stand
 Forklift.To_stand;
 while (True)
 Workpiece is on storage stand or out-stand
 Acquire AGV; Travel by AGV to in-stand
 Release AGV, and storage stand or out-stand
 Wait for processing by tool
 Workpiece is being worked
 If out-stand busy, bump previous job, wait for it to clear
 out-stand
 Move to out-stand
 Get information about the next job step
 Break from inner loop if job completed
 Attempt to acquire in-stand of workstation for next step
 Wait until: In-stand acquired
 or Bumping prompt: Break from inner loop
 Acquire storage stand
 Acquire AGV; Travel to storage stand; Release AGV
 Forklift.To_bin;
 Release storage stand

Semaphore protected objects (Figure 1) guard the
workstations and AGVs. The Acquire and Release calls are
in-line, making it plain to see which resources are held and
enforce the locking order. The monitor protected object
Forklift encapsulates entire moves in the operations
To_stand and To_bin. (The AGVs could be handled
similarly.)

4.3.2 Solution with workstation threads
A change from job tasks to workstation tasks barely affects
the protected objects that control access to forklifts and
AGVs. Those objects assume only that each calling task
represents a job. This obviously holds with job tasks, and it
holds with workstation tasks too: They acquire AGVs, etc.,
on jobs’ behalf. While the tasks are resource guards with
respect to the workstations, they are resource-user tasks
with respect to vehicles. As an example, here is the in-stand
task in pseudocode:

while (True)
 Find eligible job
 if job in storage then
 Acquire storage stand
 Forklift.To_stand
 Acquire AGV; Take workpiece to in-stand;
 Release AGV and storage/out-stand

The next section discusses task architectures generally and
uses the FMS example for illustration.
5 Tasks as architectural elements
Because the term “architecture” tends to make us think of
buildings, “software architecture” may conjure up an image
of a static module structure. But unlike a building, a
reactive software system is a machine with dynamic
characteristics [23]. Tasks capture those dynamics. They
are not modules but still loosely coupled building blocks.

ELM tasks can be thought about in problem-domain terms.
For example, the form of each FMS architecture shows
how it manages the real-world problem outside the
software. That way, the task architecture can expose
important problem aspects much as the form given to
physical device can bring out its function.

Because task architecture defines the machinery of
interacting tasks, it allows us to create early running
prototypes with simplified logic to study performance.
Additional scaffolding tasks can simulate the sources of
external impulses and also respond to actions taken by the
software. For example, a task that simulates an AGV can
interact with job tasks or workstation tasks. Such
scaffolding tasks can often be sequential-activities tasks
with implicit state representation [18].

5.1 Conceptual integrity and key ideas
Software architecture is said to have conceptual integrity if
all its parts serve one central purpose. Such architecture
appears to flow from a single mind or perhaps two minds,
“acting uno animo” [3, 4]. Conceptual integrity helps to
make the architecture an “intellectually graspable model”
and sometimes a “reusable and transferable abstraction”
[2]. The integrity can often be manifest in a key idea.

Conceptual integrity is perhaps nowhere more important
than in task architectures. To this end, ELM prescribes
certain styles, which can be significant also in what they
exclude [23]. For example, an FMS architecture can have
job tasks or workstation tasks–not both. Thus, within the
ELM confines, an idea such as “a task per job” determines
an architecture and distinguishes it from possible others.

A simple key idea can carry much meaning because ELM
architectures usually contain far fewer task types than there
are classes in an object-oriented design or transforms in a
dataflow model. Scale is achieved by instantiation, not by
adding element types [17]. By twisting and turning an idea
in our minds, we may come up with a better one; just
figuring out the dual of a resource-sharing solution may
open new, surprising vistas on a problem.

If the key idea is clear enough, someone not involved in the
original design effort can build on it. The FMS solution
where each job pursues its completion came from students
at the Wang Institute [18, 22]. Later, Rob Scott proposed
that instead, workstations procuring jobs to work on could
be seen as the driving forces. That idea together with
ELM’s principles let us visualize such a solution and
validate it as a consistent and worthwhile alternative.

B. Sandén 61

Ada User Journal Volume 33, Number 1, March 2012

6 Conclusion
An abundance of computing power has created new
conditions for the design of reactive software. History
shows that new tools and materials ultimately make us
design to their strengths. Factories once replaced central
steam engines with central electric motors and thereby got
the coal off the premises. But they made a quantum leap
only when all over the plant, power lines to smaller motors
replaced all the belts and pulleys [5].

So it is with tasking. ELM exploits the new hardware to
free tasking from practical constraints and base it instead
on concurrency inherent in the problem. In the same
manner, programming in general has evolved away from
the computer’s physical structure and limitations [11].
Besides, the idea of arranging happenings in the problem
domain into event threads also turns out to be quite
teachable.

We should make software architecture more understandable
to stakeholders somewhat removed from the “code”. To
reach that goal, we should strive to make software as
transparent as clockwork. “[S]imple designs can be
communicated easily; complex designs are hard to explain”
[24]. A task architecture can reveal the software mechanics
without much technical detail. Simple designs can boost
correctness too, for the easier it is to study and discuss an
architecture, the more flaws and inconsistencies we find.
And having fully understood the architecture, a maintainer
can repair and extend it in the style of the original without
fear of upsetting some arcane, delicate balance.

Acknowledgments
Many reviewers and in particular those associated with
Ada-Europe provided highly relevant and much appreciated
feedback.

References
[1] G. R. Andrews (2000), Foundations of Multithreaded,

Parallel, and Distributed Programming, Addison-
Wesley Longman.

[2] L. Bass, P. Clements, and R. Kazman (2003), Software
Architecture in Practice, 2nd Ed. Addison-Wesley.

[3] F. P. Brooks, Jr. (1995), The Mythical Man-Month,
Anniversary Ed., Addison-Wesley.

[4] F. P. Brooks, Jr. (2010), The Design of Design: Essays
from a Computer Scientist, Addison-Wesley.

[5] E. Brynjolfsson, P. Hofmann, and J. Jordan (2010).
Cloud Computing and Electricity: Beyond the Utility
Model, CACM, vol 53 no 5, pp 32-34.

[6] J. R. Carter, and B. I. Sandén (1998), Practical Uses of
Ada-95 Concurrency Features, IEEE Concurrency, vol
6 no 4, pp 47-56.

[7] B. P. Douglass (2009), Real-Time Agility: The
Harmony/ESW Method for Real-Time and Embedded
Systems Development, Addison-Wesley Professional.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides
(1995), Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

[9] D. Garlan and D. Perry (1995), Introduction to the
Special Issue on Software Architecture, IEEE
Transactions on Software Engineering, vol 23 no 4, pp
269-274.

[10] D. Garlan and M. Shaw (1996), Software Architecture:
Perspectives on an Emerging Discipline, Prentice-Hall.

[11] D. H. Gelernter (1998), Machine Beauty: Elegance
and the Heart of Technology, Basic Books.

[12] D. Harel and A. Pnueli (1995), On the Development of
Reactive Systems, in Logics and Models of Concurrent
Systems, K. R. Apt (ed.), Springer, 477-498.

[13] M. H. Klein, T. Ralya, W. Pollak, R. Obenza, and M.
Gonzalez-Harbour (1993), A Practitioner’s Handbook
for Real-Time Analysis: Guide to Rate Monotonic
Analysis for Real-Time Systems, Kluwer Academic
Publishers.

[14] Ph. Kruchten (1955), The 4+1 Model of Architecture,
IEEE Software, vol 12 no 6, pp 42-50.

[15] E. A. Lee (2006), The Problem with Threads, IEEE
Computer, vol 39 no 5, pp 33-42.

[16] E. A. Lee (2009), Computing Needs Time, CACM, vol
52 no 5, pp 70-79.

[17] D. E. Perry and A. L. Wolf (1992), Foundations for the
Study of Software Architecture, ACM Software
Engineering Notes vol 17 no 4, pp 40-52.

[18] B. I. Sandén (1994), Software Systems Construction
with examples in Ada, Prentice-Hall.

[19] B. I. Sandén (1997), Modeling Concurrent Software,
IEEE Software, vol 14 no 5, pp 93-100.

[20] B. I. Sandén (2003). Entity Life Modeling: Modeling a
Thread Architecture on the Problem Environment,
IEEE Software, vol 20 no 3, pp 70-78.

[21] B. I. Sandén and J. Zalewski. Designing state-based
systems with entity-life modeling. Journal of Systems
and Software, 79:1 (Jan. 2006), 69-78.

[22] B. I. Sandén (2011), Design of Multithreaded
Software: The Entity-Life Modeling Approach, IEEE
Computer Society Press/Wiley.

[23] R. N. Taylor, N. Medvidovic, and E. M. Dashofy
(2009), Software Architecture: Foundations, Theory,
and Practice, Wiley.

[24] J. Waldo (2006), On System Design. Proc.
OOPSLA’06, October 22-26, Portland, OR, pp 467-
479.

[25] R. J. Wieringa (2003), Design Methods for Reactive
Systems: Yourdon, Statemate, and the UML, Morgan
Kauffman.

 63

Ada User Journal Volume 33, Number 1, March 2012

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Gem #113: Visitor Pattern in Ada
Emmanuel Briot, AdaCore
Date: 07 November 2011

Abstract: The visitor pattern is a design pattern that provides
a way to execute specific methods on an object (the visitor)
depending on the type of another object. Since the exact
subprogram called depends on both types of the objects, this
pattern is often called double dispatching.

Let’s get started…
Imagine that you have a UML model and you want to generate
code from it. A convenient approach is to have a “code
generator” object, which has a set of subprograms to handle
each kind of UML element (one that generates code for a
class, one that generates code for an operation, etc.).
One way to implement this is by using a big series of if
statements, of the form if Obj in CClass’Class then, which is
rather inelegant and inefficient.
Another approach is to use discriminated types. A case
statement on the discriminant is then efficient, and Ada will
check that all discriminant values are covered. The problem is
that then you would need to use case statements for all clients
of the types in your application. Here, we prefer to use tagged
types, to take advantage of Ada’s OOP capabilities, so the case
statement cannot be used.
Let’s consider a specific example. Again, taking the UML
example, assume we have the following types. These are only
very roughly similar to the actual UML metamodel, but will be
sufficient for our purposes. In practice, these types would be
automatically generated from the description of the UML
metamodel.

 type NamedElement is tagged private;
 type CClass is new NamedElement with private;
 type PPackage is new NamedElement with private;

In addition, a visitor class is declared, which will be
overridden by the user code, for instance, to provide a code
generator, a model checker, and so on:

 type Visitor is abstract tagged null record;

 procedure Visit_NamedElement
 (Self : in out Visitor; Obj : NamedElement'Class) is null;
 -- No parent type, do nothing

 procedure Visit_CClass (Self : in out Visitor;
 Obj : CClass'Class) is
 begin
 -- In UML, a "Class" inherits from a "NamedElement".
 -- Concrete implementations of the visitor might want

 -- to work at the "NamedElement" level (so that their
 -- code applies to both a Class and a Package,
 -- for instance), rather than duplicate the work for each
 -- child of NamedElement. The default implementation
 -- here is to call the parent type's operation.

 Self.Visit_NamedElement (Obj);
 end Visit_Class;

 procedure Visit_PPackage (Self : in out Visitor;
 Obj : PPackage'Class) is
 begin
 Self.Visit_NamedElement (Obj);
 end Visit_PPackage;

We then need to add one primitive Visit operation to each of
the types created from the UML metamodel:

 procedure Visit (Self : NamedElement;
 V : in out Visitor'Class) is
 begin
 -- First dispatching was on "Self" (done by the
 -- compiler).
 -- Second dispatching is simulated here by calling the
 -- right primitive operation of V.

 V.Visit_NamedElement (Self);
 end Visit;

 overriding procedure Visit (Self : CClass;
 V : in out Visitor'Class) is
 begin
 V.Visit_CClass (Self);
 end Visit;

 overriding procedure Visit (Self : PPackage;
 V : in out Visitor'Class) is
 begin
 V.Visit_PPackage (Self);
 end Visit;

All of the code described above is completely systematic, and
as such could and should be generated automatically as much
as possible. The “Visit” primitive operations should never be
overridden in user code in the usual case. On the other hand,
the “Visit_…” primitives of the visitor itself should be
overridden when it makes sense. The default implementation
is provided just so the user has the choice at which level do to
the overriding.
Now let’s see what a code generator would look like. We’ll
assume that we are only interested, initially, in doing code
generation for classes. Other types of elements (such as
operations) will call the default implementation for their

64 Ada Gems

Volume 33, Number 1, March 2012 Ada User Journal

visitor (Visit_Operation, for instance), which then calls the
visitor for its parent (Visit_NamedElement) and so on, until
we end up calling a Visit operation with a null body. So
nothing happens for those, and we don’t need to deal with
them explicitly.
The code would be something like the following:

 type CodeGen is new Visitor with private;

 overriding procedure Visit_CClass
 (Self : in out Codegen; Obj : CClass'Class) is
 begin
 ...; -- Do some code generation
 end Visit_CClass;

 procedure Main is
 Gen : CodeGen;
 begin
 for Element in All_Model_Elements loop
 -- Pseudo code
 Element.Visit (Gen); -- Double dispatching
 end loop;
 end Main;

If we wanted to do model checking, we would create a type
Model_Checker, derived from Visitor, that overrides some of
the Visit_* operations. The body of Main would not change,
except for the type of Gen.
When using this in practice, there are a few issues to resolve.
For instance, the UML types need access to the Visitor type
(because it appears as a parameter in their operations). But a
visitor also needs to see the UML types for the same reason.
One possibility is to put all the types in the same package.
Another is to use “limited with” to give visibility on access
types, and then pass an access to Visitor’Class as a parameter
to Visit.
Here is a full example. This example must be compiled with
the “-gnat05″ switch since it uses Ada 2005 features such as
the limited with clause and prefixed call notation.

with UML; use UML;
with Visitors; use Visitors;
with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
 type Code_Generator is new Visitor with null record;

 overriding procedure Visit_CClass
 (Self : in out Code_Generator;
 Obj : in out CClass'Class) is
 begin
 Put_Line ("Visiting CClass");
 end Visit_CClass;

 Tmp1 : NamedElement;
 Tmp2 : CClass;
 Tmp3 : PPackage;

 Gen : aliased Code_Generator;

begin
 Tmp1.Visit (Gen'Access); -- No output

 Tmp2.Visit (Gen'Access); -- Outputs "Visiting CClass"
 Tmp3.Visit (Gen'Access); -- No output
end Main;

limited with Visitors;
package UML is
 type NamedElement is tagged null record;
 procedure Visit
 (Self : in out NamedElement;
 The_Visitor : access Visitors.Visitor'Class);

 type CClass is new NamedElement with null record;
 overriding procedure Visit
 (Self : in out CClass;
 The_Visitor : access Visitors.Visitor'Class);

 type PPackage is new NamedElement with null record;
 overriding procedure Visit
 (Self : in out PPackage;
 The_Visitor : access Visitors.Visitor'Class);
end UML;

with Visitors; use Visitors;
package body UML is

 procedure Visit
 (Self : in out NamedElement;
 The_Visitor : access Visitors.Visitor'Class) is
 begin
 The_Visitor.Visit_NamedElement (Self);
 end Visit;

 overriding procedure Visit
 (Self : in out CClass;
 The_Visitor : access Visitors.Visitor'Class) is
 begin
 The_Visitor.Visit_CClass (Self);
 end Visit;

 overriding procedure Visit
 (Self : in out PPackage;
 The_Visitor : access Visitors.Visitor'Class) is
 begin
 The_Visitor.Visit_PPackage (Self);
 end Visit;

end UML;

with UML; use UML;

package Visitors is
 type Visitor is abstract tagged null record;

 procedure Visit_NamedElement
 (Self : in out Visitor; Obj : in out NamedElement'Class);
 procedure Visit_CClass
 (Self : in out Visitor; Obj : in out CClass'Class);
 procedure Visit_PPackage
 (Self : in out Visitor; Obj : in out PPackage'Class);
end Visitors;

Ada Gems 65

Ada User Journal Volume 33, Number 1, March 2012

package body Visitors is

 procedure Visit_NamedElement
 (Self : in out Visitor;
 Obj : in out NamedElement'Class) is
 begin
 null;
 end Visit_NamedElement;

 procedure Visit_CClass
 (Self : in out Visitor; Obj : in out CClass'Class) is
 begin
 Self.Visit_NamedElement (Obj);
 end Visit_CClass;

 procedure Visit_PPackage
 (Self : in out Visitor; Obj : in out PPackage'Class) is
 begin
 Self.Visit_NamedElement (Obj);
 end Visit_PPackage;

end Visitors;

Gem #117: Design Pattern:
Overridable Class Attributes in
Ada 2012
Emmanuel Briot, of AdaCore
Date: 30 January 2012

Abstract: In this Gem we consider how to realize the
capability of “class attributes” (such as supported in Python)
using Ada.

Let’s get started…
Most object-oriented programming languages provide a
facility for declaring variables that are shared by all objects of
a given class. In C++, these are called “static members” (and
use the “static” keyword), and similarly Python has the notion
of “class attributes”.
Let’s consider an example where this is useful. For instance,
let’s say we want to define the notion of a block of text that is
generated by expanding a template (perhaps after we replace
some parameters in that template, as can be done with AWS’s
templates parser, for instance). Once we have computed those
parameters, we might want to generate multiple outputs (for
instance HTML and CSV). Only the template needs to change,
not the computation of the parameters.
Typically, such as in Python, the template could be
implemented as a class attribute of the Text_Block class. We
can then create templates that need the same information but
have a different output simply by extending that class:

 class Text_Block(object):
 template = "somefile.txt"
 def render (self):
 # ... compute some parameters
 # Then do template expansion
 print "processing %s" % self.__class__.template

 class Html_Block(Text_Block):
 template = "otherfile.html"

In this example, we chose to use a class attribute rather than
the usual instance attribute (self.template). This example
comes from the implementation of GnatTracker: in the web
server we create a new instance of Text_Block for every
request we have to serve. For this, we use a registry that maps
the URL to the class we need to create. It is thus easier to
create a new instance without specifying the template name as
a parameter, which would be required if the template name
was stored in the instance. Another reason (though not really
applicable here) is to save memory, which would be important
in cases where there are thousands of instances of the class.
Of course, the approach proposed in this Gem is not the only
way to solve the basic problem, but it serves as a nice example
of one of the new Ada 2012 features.
C++, like Ada, does not provide a way to override a static
class member, so it would use a similar solution as described
below.
Since Ada has no notion of an overridable class attribute, we’ll
model it using a subprogram instead (the only way to get
dispatching in Ada). The important point here is that we want
to be able to override the template name in child classes, so we
cannot use a simple constant in the package spec or body.

 type Text_Block is tagged null record;
 function Template (Self : Text_Block) return String;
 function Render (Self : Text_Block) return String;

 function Template (Self : Text_Block) return String is
 pragma Unreferenced (Self);
 begin
 return "file_name.txt";
 end Template;

The parameter Self is only used for dispatching (so that
children of Text_Block can override this function). Since we
prefer to compile with “-gnatwu” to get a warning on unused
entities, we indicate to the compiler that it is expected that Self
is unreferenced.
We could make the function Template inlinable, which might
be useful in a few cases (for instance if called from Render in
a nondispatching call), but in general there will be no benefit
because Template will be a dispatching call, which requires an
indirect call and thus wouldn’t benefit from inlining.
And that’s it. We have the Ada equivalent of a Python class
member.
But so far there is nothing new here, and this approach is
rather heavy to write. For instance, the body of Render could
contain code like:

 pragma Ada95;

 function Render (Self : Text_Block) return String is
 T : constant String :=
 Template (Text_Block'Class (Self));
 begin
 .. prepare the parameters for template expansion
 .. substitute in the template and return it
 end Render;

66 Ada Gems

Volume 33, Number 1, March 2012 Ada User Journal

Fortunately, Ada 2012 provides an easier way to write this,
using the new feature of expression functions. Since Template
is a function that returns a constant, we can declare that
directly in the spec, and remove the body altogether. The spec
will thus look like:

 pragma Ada_2012;

 type Text_Block is tagged null record;
 function Template (Self : Text_Block) return String
 is ("filename.txt");
 function Render (Self : Text_Block) return String;

This is a much lighter syntax, and much closer to how one
would do it in Python (except we use a function instead of a
variable to represent a class member). A child of Text_Block
would override Template using the same notation:

 type Html_Block is new Text_Block with null record;
 overriding function Template (Self : Html_Block)
 return String is ("otherfile.html");

Compared to Python, this is in fact more powerful, because
some of the children could provide a more complex body for
Template, so we are not limited to using the value of a simple
variable as in Python. In fact, we can do this in the spec itself,
by using a conditional expression (another new feature of Ada
2012):

 pragma Ada_2012;

 type Text_Block is tagged null record;
 function Template (Self : Text_Block) return String
 is (if Self.Blah then "filename.html" else "file2.json");
 function Render (Self : Text_Block) return String;

Finally, we can also make the body of Render slightly more
familiar (in terms of object-oriented notation) using the dotted
notation introduced in Ada 2005:

 function Render (Self : Text_Block) return String is
 T : constant String := Text_Block'Class (Self).Template;
 begin
 .. prepare the parameters for template expansion
 .. substitute in the template and return it
 end Render;

Now the call to Template looks closer to how it would appear
in those languages that provide overridable class members.
Some will argue that this doesn’t look like a function call and
thus is less readable, since we don’t know that we are calling a
function. This is a matter of taste, but at least we have the
choice.
There is one thing we have lost, temporarily, in the declaration
of Template. If we compile with -gnatwu, the compiler will
complain that Self is unreferenced. There is currently no way
to add a pragma Unreferenced within an expression function.
This has generated a discussion here at AdaCore and the issue
is not resolved yet. The current two proposals are either to
always omit the unused parameter warning when a function
has a single parameter and it controls dispatching (precisely to
facilitate this class member pattern), or else to use an Ada
2012 aspect for this, as in the following:

 function Template (Self : Text_Block) return String
 is ("filename.html")
 with Unreferenced => Self;

Note also that the use of expression functions in this Gem
requires a very recent version of GNAT: the expression
function feature wasn’t available in older versions, and the
initial implementation had some limitations.

68

Volume 33, Number 1, March 2012 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

