

Ada User Journal Volume 33, Number 2, June 2012

ADA
USER
JOURNAL

Volume 33
Number 2
June 2012

Contents
Page

Editorial Policy for Ada User Journal 70

Editorial 71

Quarterly News Digest 73

Conference Calendar 94

Forthcoming Events 99

Press Release
“Ada 2012 Language Standard Submitted to ISO” 103

Special Contribution

 J. G. P. Barnes
“Rationale for Ada 2012: 3 Structure and visibility” 106

Articles from the Industrial Track of Ada-Europe 2012

 S. Palm
“Use of Model Driven Code Generation on the ASIM Project” 115

Ada-Europe 2012 Tutorials

 T. J. Jennings
“The Benefits of Using SPARK for High-Assurance Software” 124

 T. J. Jennings
“The Use of Proof and Generics in SPARK” 127

Ada Gems 132

Ada-Europe Associate Members (National Ada Organizations) 136

Ada-Europe 2012 Sponsors Inside Back Cover

70

Volume 33, Number 2, June 2012 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 71

Ada User Journal Volume 33, Number 2, June 2012

Editorial

The June issue of the Ada User Journal was finalized after the successful Ada-Europe conference, which took place in
Stockholm this June. I would like to highlight the enthusiastic mood of the conference, which was felt both on the technical
(and non-technical) sessions and on the networking environment during the breaks, lunches and banquet. It was really
enjoyable, and worthwhile the effort. An effort that also caused some delays in producing this issue of the Journal; we will
get back to the regular publication schedule already in the next issue.

Concerning contents, this issue starts as usual with the News Digest (the first solo issue of the new News Editor, Jacob Sparre
Andersen), Calendar and Forthcoming Events sections. In the latter, the reader will find the advance information of the 2012
SIGAda High Integrity Language Technology conference, and the preliminary call for papers for the 18th International
Conference on Reliable Software Technologies – Ada-Europe 2013 that will take place next year in Berlin, Germany. We
also print the joint press release of the Ada Resource Association (ARA) and Ada-Europe, on the Ada 2012 language
standard being submitted to ISO.

The technical contents of the Journal start with another installment of the Ada 2012 Rationale, with the chapter on the
changes on structure and visibility arising in the new standard. Probably the most noticeable change is that functions may
now have parameters of all modes, but the chapter also describes the changes to incomplete types, use clauses and extended
return statements.

Afterwards we start publishing the Proceeding of the Industrial Track of Ada-Europe 2012, with a paper by Steen Palm, from
Terma A/S, Denmark, describing the approach used in the development of software for instruments on a payload of the
International Space Station. Continuing with material derived from the conference, the issue also provides extended abstracts
of two tutorials on SPARK, by Trevor J. Jennings, from Altran-Praxis, UK.

Finally, we conclude with the usual Ada Gems section, with one gem by Thomas Quinot, of AdaCore, with a new installment
of the Ada DSA Gems series, and two gems by Christoph Grein, of Ada Magic, presenting some advantages that Ada 2005
and Ada 2012 bring to references in containers.

 Luís Miguel Pinho
Porto

June 2012
 Email: AUJ_Editor@Ada-Europe.org

 73

Ada User Journal Volume 33, Number 2, June 2012

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Organizations 73
Ada-related Events 73
Ada-related Resources 74
Ada-related Tools 80
Ada-related Products 80
Ada and GNU/Linux 81
Ada and Microsoft 84
Ada Inside 85
Ada in Context 87

Ada-related
Organizations
The AdaIC web site
From: Randy Brukardt
Date: Wed, 16 May 2012 18:14:17 -0500
Subject: AdaIC news: news submission
Newsgroups: comp.lang.ada
The AdaIC news feed is going to be
revamped in response to feedback that
we've received (including some from
here). As part of that, we've established a
new e-mail address: news@adaic.org
Any Ada-related news items will be
eligible, whether they are from
community projects or from commercial
vendors, and whether they're from ARA
members or non-members. (The posting
criteria will be different for members and
for non-members, of course; recall that
any organization [it doesn't have to be
commercial] can join the ARA.)
In particular, we encourage those of you
who post announcements here to also
send those announcements to the
news@adaic.org e-mail address. (If you're
currently sending announcements to the
webmaster address, you don't have to
change, but please send the
announcements to only one or the other
address, since they both go to the same
people.)
From: Randy Brukardt
Date: Wed, 16 May 2012 18:17:27 -0500
Subject: AdaIC news: short user survey
Newsgroups: comp.lang.ada
As part of our ongoing efforts to improve
the AdaIC website, we're conducting a
short survey of Ada users to guide
possible improvements to the site. Find
the survey at:
http://www.adaic.org/survey/
P.S. You'll need to have Javascript
enabled to access the survey, as I found
out when I tried it. :-)

Ada-related Events

[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
— sparre]

Video of FOSDEM keynote
by Robert Dewar
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 14 Mar 2012 06:09:57 -0700
Subject: Robert Dewar at FOSDEM 2012:

video available
Newsgroups: comp.lang.ada
In case you didn't notice, Robert Dewar's
keynote speech has been available in
video for a month thanks to the
outstanding work of the FOSDEM video
team:
http://video.fosdem.org/2012/maintracks/
janson/Free_Software__A_Viable_Model
_for_Commercial_Success.webm
Enjoy!
In case you ask: no, the presentations in
the Ada developers' room were not
filmed.
From: roderick.chapman@googlemail.com
Date: Wed, 14 Mar 2012 12:40:08 -0700
Subject: Re: Robert Dewar at FOSDEM

2012: video available
Newsgroups: comp.lang.ada
[…]
A small factual correction to Robert's talk:
Praxis is part of the Altran Group, not
Alcatel...

Open Ada-DK Meetings
From: Ada in Denmark
Date: Mon, 12 Mar 2012 14:40:35 +0000
Subject: Ada in Denmark: The March 2012

Open Ada-DK Meeting
URL: http://ada-dk.org/2012/03/

the-march-2012-open-ada-dk-meeting/
March 13th. 2012 from 1730 -> ? marks
the day and time when the sixteenth open
Ada-DK meeting is being held.
The “open” part means that the meeting is
not a members-only affair, but that
anybody interested in Ada is welcome, so
feel free to invite whomever you might

believe could be interested in spending an
evening talking about Ada programming.
If you’re interested in participating, feel
free to send us an email and we’ll inform
you of the when and where. You can also
ping me at Google+
(https://plus.google.com/u/0/
112815721307813813920/posts),
identi.ca (http://identi.ca/thomaslocke) or
join the Freenode IRC #ada channel and
look for ThomasLocke.
The meeting is of course free.
[Also open Ada-DK meetings April 3rd,
May 8th and June 5th. —sparre]

Ada-Belgium Spring 2012
Event
From: dirk@vana.cs.kuleuven.be. (Dirk

Craeynest)
Date: Sun, 6 May 2012 22:20:36 +0000
Subject: Ada-Belgium Spring 2012 Event

incl. Ada workshop
Newsgroups:

comp.lang.ada,fr.comp.lang.ada,be.
comp.os.linux,be.comp.programming

Ada-Belgium Spring 2012 Event

Saturday, May 12, 2012, 12:00-19:00

Wavre area, south of Brussels, Belgium
including at 15:00

2012 Ada-Belgium General Assembly
and at 15:45

Ada Workshop
<http://www.cs.kuleuven.be/~dirk/

ada-belgium/events/local.html>

Announcement

The next Ada-Belgium event will take
place on Saturday, May 12, 2012 in the
Wavre area, south of Brussels.
For the fifth year in a row, Ada-Belgium
decided to organize their "Spring Event",
which starts at noon, runs until 7pm, and
includes an informal barbecue, a key
signing party, the 19th General Assembly
of the organization, and a two-part
workshop consisting of a recorded
presentation by Robert Dewar on Ada,
and practical hands-on experience on
packaging Ada software for Debian with
Ludovic Brenta, principal maintainer of
Ada in Debian.

74 Ada-related Resources

Volume 33, Number 2, June 2012 Ada User Journal

Schedule

- 12:00 welcome and getting started

(please be there!)
- 12:15 informal barbecue
- 14:45 key signing party
- 15:00 Ada-Belgium General Assembly
- 15:45 recorded Ada presentation by

Robert Dewar
- 16:30 workshop on creating Debian

packages of Ada software
- 19:00 end
[…]

Ada Europe 2012 (a quote)
Subject: Notices tagged with ae2012
URL: http://identi.ca/tag/ae2012
[Software] “Engineers _serve_ other
people” - Göran Backlund

Ada-related Resources
AdaCommons website
moved
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Wed, 28 Mar 2012 21:19:57 +0300
Subject: AdaCommons (Re: AdaRocks.com)
Newsgroups: comp.lang.ada
[…]
The new address of AdaCommons is
http://commons.ada.cx/

Currently maintained Ada
libraries
From: i3text@gmail.com
Date: Thu, 14 Jun 2012 20:51:31 -0700
Subject: Listing currently maintained

libraries for Ada
Newsgroups: comp.lang.ada
When searching for Ada libraries, it is
discouraging to find mostly dead links or
links to dead projects. So I decided to
make a list of all the libraries I could find
that seem to be still active projects. To be
listed, a library must have seen some
maintenance activity within the last year.
I generally ingored things that are already
part of the GNAT distribution.
At first, I wanted to list just libraries of
production quality, but I figured I couldn't
reliably evaluate that. So, a lot of the
things here are alpha quality. Of course,
there are libraries that haven't seen any
work for several years but still get
downloaded a lot. But I wanted a listing
of libraries where I could reasonably
expect help and bug-fixes.
Do you know any I've missed?

Ada 2005 Math Extensions -- Additions
to the GNAT libraries.
http://sourceforge.net/projects/
gnat-math-extn/
Ada 95 Booch Components -- Container
library.
http://sourceforge.net/projects/booch95/
ada-ado -- Mapping for object-relational
databases.
http://code.google.com/p/ada-ado/
ada-asf -- Ada Server Faces.
http://code.google.com/p/ada-asf/
ada-awa -- Ada Web Application.
http://code.google.com/p/ada-awa/
adabindinggmpmpfr -- Binding to the
GNU GMP and MPFR.
http://code.google.com/p/
adabindinggmpmpfr/
Ada Class Library -- Scripting tools.
http://sourceforge.net/projects/adacl/
Ada Cryptographic Objects -- Library of
crypto primitives.
http://www.assembla.com/code/acrypto/
subversion/nodes
ada-el -- A expression languge like JSP.
http://code.google.com/p/ada-el/
ada-gen -- Dynamo, a aid for web
applications.
http://code.google.com/p/ada-gen/
ada-security -- Ada web security
framework.
http://code.google.com/p/ada-security/
Ada Spawn Manager -- Control for
spawing processes.
http://www.codelabs.ch/spawn-
manager/index.html
ada-util -- Ada Utility Library.
http://code.google.com/p/ada-util/
Ahven -- A simple unit testing library for
Ada 95.
http://sourceforge.net/projects/ahven/
aicwl -- Industrial control GUI widgets.
http://www.dmitry-kazakov.de/ada/
aicwl.htm
ARM-Ada -- Some libraries for compiling
to ARM.
http://sourceforge.net/projects/arm-ada/
Basil -- MIME library for Ada 2005.
http://hafdconsulting.com/projects/basil/
components -- Misc objects.
http://www.dmitry-kazakov.de/ada/
components.htm
Config -- A package for parsing
configuration files.
http://sourceforge.net/projects/ini-files/
Debug -- Trace support for multitasking
programs.

http://www.adalog.fr/compo2.htm
Deepend -- A storage pool with subpool
capabilities for Ada 2005.
http://sourceforge.net/projects/deepend/
dequesterity -- Deque/buffer generics in
Ada 2005.
http://sourceforge.net/projects/
dequesterity/
EWS -- Embedded Web Server.
http://sourceforge.net/projects/
embed-web-srvr/
Excel_Out -- A package for writing Excel
files.
http://sourceforge.net/projects/
excel-writer/
Florist -- Ada POSIX binding.
http://sourceforge.net/projects/
gnat-florist/
fuzzy -- Fuzzy sets for Ada 2005.
http://www.dmitry-kazakov.de/ada/
fuzzy.htm
Generic Image Decoder -- Package for
image decoding.
http://sourceforge.net/projects/
gen-img-dec/
GLOBE_3D -- Real-time 3D engine
based on OpenGL.
http://sourceforge.net/projects/globe3d/
GNADE -- GNat Ada 95 Database
Environment.
http://sourceforge.net/projects/gnade/
gtkada_contributions -- Extras for
GtkAda.
http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm
GWindows -- GUI framework for
Windows.
http://sourceforge.net/projects/gnavi/
intervals -- Interval arithmetic library.
http://www.dmitry-kazakov.de/ada/
intervals.htm
KOW -- Framework for database
management.
http://framework.kow.com.br/
libadanix -- A POSIX binding for GNAT.
http://code.google.com/p/libadanix/
libredave -- Library for using Simatic
S5/S7.
http://sourceforge.net/projects/librdave/
libsparkcrypto -- A verified cryptographic
library in SPARK.
http://senier.net/libsparkcrypto/
match -- Pattern matching library.
http://www.dmitry-kazakov.de/match/
match.htm
Mathpaqs -- Various math packages.
http://sourceforge.net/projects/mathpaqs/

Ada-related Resources 75

Ada User Journal Volume 33, Number 2, June 2012

Matreshka -- Text, database, and web
framework.
http://forge.ada-ru.org/matreshka
ORBit-Ada -- Binding to the ORBit
Corba ORB.
http://sourceforge.net/projects/orbitada/
OS_Services -- Access to common
operating system features.
http://www.adalog.fr/compo2.htm
paraffin -- Ada 2005 generics to support
parallelism.
http://sourceforge.net/projects/paraffin/
PCSC/Ada -- Bindings to PC/SC
middleware.
http://www.codelabs.ch/pcscada/
player-ada -- Bindings for the player
robotic platform.
https://github.com/mosteo/player-ada
plplot -- Bindings to the PLplot plotting
library.
http://plplot.sourceforge.net/
PNG_IO -- Ada 95 coder/decoder for
PNG files.
http://sourceforge.net/projects/png-io/
portaudioada -- Binding to PortAudio.
http://code.google.com/p/portaudioada/
Protection -- Protection for semaphores
and procedures.
http://www.adalog.fr/compo2.htm
QtAda -- Bindings to the Qt GUI
framework.
http://www.qtada.com/
SOCI-Ada -- Wrapper for the SOCI
database library.
http://www.inspirel.com/soci-ada/
Storage_Stream -- Write data of any type
at any location.
http://www.adalog.fr/compo2.htm
strings_edit -- Strings library with UTF-8
and pattern matching.
http://www.dmitry-kazakov.de/ada/
strings_edit.htm
tables -- Search in tables with string keys.
http://www.dmitry-kazakov.de/ada/
tables.htm
TclAdaShell -- Binding to Tcl/Tk.
http://sourceforge.net/projects/tcladashell/
Templates_Parser -- Library for
generating HTML.
http://www.obry.net/
units -- Library for handling units of
measurement.
http://www.dmitry-kazakov.de/ada/
units.htm
v8a -- Binding to V8 JavaScript engine.
http://code.google.com/p/v8a/

Variable_String -- Support for variable
length strings.
http://www.adalog.fr/compo2.htm
VTKAda -- Ada 2012 bindings to
Visualization Toolkit.
http://users1.jabry.com/adastudio/vtkada/
vtkada.html
[…]
YAMI4 -- Messaging library for
distributed systems.
http://www.inspirel.com/yami4/
[…]
ZanyBlue -- A framework for finite
element analysis.
http://sourceforge.net/projects/zanyblue/
Zip-Ada -- A library for .zip archives.
http://sourceforge.net/projects/unzip-ada/
From: Jeffrey Carter

<spam.jrcarter.not@spam.not.acm.org>
Date: Thu, 14 Jun 2012 22:37:59 -0700
Subject: Re: Listing currently maintained

libraries for Ada
Newsgroups: comp.lang.ada
[…]
Your criteria are somewhat strange. A
mature library will be useful but see no
"maintenance activity" because there is no
longer anything to change. For example,
the PragmAda Reusable Components are
very much alive and supported, but have
not been changed recently:
http://pragmada.x10hosting.com/
From: i3text@gmail.com
Date: Fri, 15 Jun 2012 13:04:02 -0700
Subject: Re: Listing currently maintained

libraries for Ada
Newsgroups: comp.lang.ada
[…]
This is actually the first time I've seen
someone take this position, so I've been
thinking about when it might be true.
One the one hand, I agree that this list is
unsatisfactory as a collection of all
libraries that one might want to use. An
old but well crafted library could still be
valuable, especially if it covers something
important and there is no alternative.
However, my "activity" criterion was
chosen for two reasons. First, I take it as
axiomatic that no software achieves
perfection. If it is being used, people will
report bugs and rough edges, prompting
the developer to tweak things, even if it is
just the documentation. Second, a large
portion of libraries interact with other
things that continue to evolve, so
compatibility at one point doesn't imply
compatibility forever.
I have not done embedded systems work,
but I've heard that it is easier than doing
desktop applications since you are
developing for a restricted, stable
environment. In the field of embedded

systems, is it a common attitude that
software *can- be developed to a point
where it no longer needs any attention?
I'm wondering how this might affect how
Ada is received by application developers.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Fri, 15 Jun 2012 17:41:04 -0400
Subject: Re: Listing currently maintained

libraries for Ada
Newsgroups: comp.lang.ada
> This is actually the first time I've seen

someone take this position, so I've been
thinking about when it might be true.

That's kind of a sad commentary on the
state of the art, isn't it? If you're not
constantly fixing bugs (and adding new
ones?) people consider your project
"dead".
[…]
From: "Nasser M. Abbasi"

<nma@12000.org>
Date: Fri, 15 Jun 2012 17:58:25 -0500
Subject: Re: Listing currently maintained

libraries for Ada
Newsgroups: comp.lang.ada
[…]
I do not believe that a software library can
ever not go continuous maintenance.
There is always more testing to be done,
more features to add, make the software
more robust, test against new changes
outside of the control of the library.
Software that does not change, means it is
not used much. Software that is used by
many, means there is always new
functionality needed, enhancement
requests, bug fixes, test cases added, etc...
Software for me is a living thing. Stop
taking care of it, stop feeding it, stop
growing it, it will die soon.
If it does not die on its own, something
better will come along, with better
features, and replace it.
From: "J-P. Rosen" <rosen@adalog.fr>
Date: Sat, 16 Jun 2012 08:11:04 +0200
Subject: Re: Listing currently maintained

libraries for Ada
Newsgroups: comp.lang.ada
[…]
Counter-example: my "debug" package.
I didn't change anything for years. It does
its job, full stop.
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Fri, 15 Jun 2012 23:35:46 -0700
Subject: Re: Listing currently maintained

libraries for Ada
Newsgroups: comp.lang.ada
AXMPP - implementation of XMPP
protocol
http://forge.ada-ru.org/axmpp
From: Jeffrey Carter

<spam.jrcarter.not@spam.not.acm.org>
Date: Fri, 15 Jun 2012 23:47:25 -0700

76 Ada-related Resources

Volume 33, Number 2, June 2012 Ada User Journal

Subject: Re: Listing currently maintained
libraries for Ada

Newsgroups: comp.lang.ada
[…]
Right. I know of projects using the
PragmARCs. There are probably others I
don't know of. But there hasn't been an
error report or enhancement request for
years.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Sat, 16 Jun 2012 09:24:52 -0400
Subject: Re: Listing currently maintained

libraries for Ada
Newsgroups: comp.lang.ada
> When searching for Ada libraries, it is

discouraging to find mostly dead links
or links to dead projects. So I decided
to make a list of all the libraries I could
find that seem to be still active projects.
To be listed, a library must have seen
some maintenance activity within the
last year.

That's a little short, but you do need some
cutoff.
A related criteria would be postings on a
dedicated mailing list, or here.
> Do you know any I've missed?
mine: http://stephe-leake.org/
But I understand why; I haven't posted a
new version of SAL since 2009! It really
is time to update; I use these libraries all
the time at work, and there is new stuff. I
get very little feedback from users, so I
tend to forget about the website.
From: "RasikaSrinivasan@gmail.com"

<RasikaSrinivasan@gmail.com>
Date: Sat, 16 Jun 2012 07:04:27 -0700

(PDT)
Subject: Re: Listing currently maintained

libraries for Ada
Newsgroups: comp.lang.ada
Not for production, but for learning:
Mine: projectlets.sourceforge.net

Ada Crypto Library
Author: Christian Forler

<cforler@gmx.de>
Date: Tuesday, 12-Jun-12 16:03:34
Subject: Welcome to the Ada Crypto Library

(ACL) aka libadacrypt-0.5.x
URL: https://github.com/cforler/Ada-

Crypto-Library
This library is an ongoing project with the
goal to provide "strong" and clean coded
cryptography library for Ada.
[…]
Implemented Features:
- Symmetric Cryptography
 o Blockciphers: AES, Twofish, 3DES,

Serpent
 o Modes of Operation : BPS, CFB, Ctr,

OFB

 o Tweakable Blockcipher Modes:
CMT, XT

 o Hash functions: SHA-1 (broken),
SHA-256, (SHA-384), SHA-512,
Whirlpool

 o MACs: RMAC, HMAC, CMAC
 o Authenticated Encryption schemes:

OCB, SIV and McOE
- Big (unsigned) number library
 o Primary cyclic group arithmetic

(Z_p)
 o Binary Field arithmetic support.
 o Elliptic Curve arithmetic
 o Supersingular Elliptic Curves Over

Binary Fields (SS-BF)
 o Non-Supersingular Elliptic Curves

Over Binary Fields (NSS-BF)
 o Elliptic Curves Over Z_p (EC-Z_P)
- Asymmetric Cryptography
 o Probabilistic primality testing
 o DSA signature scheme
 o OEAP-RSA
 o ECDSA, ECDH
- Nonce Generator Support: Random,

Counter, Mixed
- AUnit-3.4 based Test suite
The library has been tested on the
following platforms:
- Linux debian 3.1.0-1-amd64 (i5 CPU)
[…]

Ada Database Objects
From: Stephane Carrez
Date: May 12 2012, 22:17
Subject: Ada Database Objects 0.3.0 is

available
URL: http://blog.vacs.fr/index.php?post/

2012/05/12/Ada-Database-Objects-
0.3.0-is-available

The Ada Database Objects is an Object
Relational Mapping for the Ada 2005
programming language. It allows to map
database objects into Ada records and
access databases easily. Most of the
concepts developed for ADO come from
the Java Hibernate ORM. ADO supports
MySQL and SQLite databases.
The new version brings:
- Support to update database records when

a field is really modified,
- Customization of the SQLite database

connection by using SQLite PRAGMAs,
- Escape of MySQL or SQLite reserved

keywords,
- Support for blob type.
This version can be downloaded at
http://code.google.com/p/ada-ado/
downloads/list

Industrial Control Widget
Library
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 13 May 2012 21:16:43 +0200
Subject: ANN: Ada industrial control widget

library v1.3
Newsgroups: comp.lang.ada
The library is based on GtkAda and
cairoada, Ada bindings to GTK+ and
cairo. The key features of the library:
- Widgets composed of transparent layers

drawn by cairo;
- Fully scalable graphics;
- Support of time controlled refresh policy

for real-time and heavy-duty
applications;

- Caching graphical operations;
- Stream I/O support for serialization and

deserialization;
- Ready-to-use gauge, meter, oscilloscope

widgets;
- Editor widget for WYSIWYG design of

complex dashboards.
http://www.dmitry-kazakov.de/
ada/aicwl.htm
[…]

Ada Server Faces
From: Stephane Carrez

<Stephane.Carrez@gmail.com>
Date: Fri, 11 May 2012 23:38:24 +0200
Subject: [Ann]: Ada Server Faces 0.4.0 is

available
Newsgroups: comp.lang.ada
Ada Server Faces is a web framework
which uses the Java Server Faces design
patterns.
This new version brings a serious step
ahead towards JSF compatibility. This
new version provides:
- Support for shared or static build

configuration,
- Support for file upload,
- New components <h:inputFile>,

<f:metadata>, <f:viewParam>,
<f:viewAction>,

- New EL function util:hasMessage,
- ASF now Implements the JSF phase

events and phase listeners,
- Implements the JSF/Ruby on Rails flash

context,
- Adds the pre-defined JSF beans:

initParam, flash,
- Support for locales and honors the

Accept-Language,
- New demos are available in French and

English
It has been compiled and ported on Linux,
Windows and Netbsd (gcc 4.4, GNAT
2011, gcc 4.6.2). You can download this

Ada-related Resources 77

Ada User Journal Volume 33, Number 2, June 2012

new version at http://code.google.com/p/
ada-asf/downloads/list.
A live demo is available at:
http://demo.vacs.fr.
Feel free to play with the OpenID stuff!!!

Ada Utility Library
From: Stephane Carrez

<Stephane.Carrez@gmail.com>
Date: Thu, 10 May 2012 08:03:36 +0200
Subject: [Ann]: Ada Utility Library 1.5.0 is

available
Newsgroups: comp.lang.ada
Ada Utility Library is a collection of
utility packages for Ada 2005. A new
version is available which provides:
- Concurrent fifo queues and arrays
- Changed Objects.Maps to use a String

instead of an Unbounded_String as the
key

- Support for shared or static build
configuration

- Implementation of input/output/error
redirection to a file for process launch

It has been compiled and ported on Linux,
Windows and Netbsd (gcc 4.4, GNAT
2011, gcc 4.6.2). You can download this
new version at http://code.google.com/p/
ada-util/downloads/list.

Paraffin
From: Brad Moore

<brad.moore@shaw.ca>
Date: Wed, 14 Mar 2012 21:44:17 -0600
Subject: ANN: Paraffin 3.2
Newsgroups: comp.lang.ada
I am pleased to announce the availability
of Paraffin 3.2
I know it's only been a few days since the
3.1 release, but I applied the same
technique that improved iterative work
stealing to iterative work seeking, and
found some somewhat improved results,
plus a bigger improvement in ease of use.
More details below.
Paraffin is a set of Ada 2005 generics that
may be used to add parallelism to iterative
loops and recursive code.
Paraffin also includes a suit of useful
parallel utilities that utilize the Paraffin
generics. These include generics for;
- integrating a function in parallel
- applying quicksort algorithm in parallel

to an array
- applying fast fourier transform to an

array of data.
- Red-Black tree container that performs

some operations in parallel.
- function to solve matrices using Gauss-

Jordan Elimination
The latest stable release and older releases
may be downloaded from:

https://sourceforge.net/projects/paraffin/
files/
For those who want the current
development versions of the source they
can download using git (http://git-
scm.com/) by issuing the following
commands;
 mkdir sandbox
 cd sandbox
 git clone git://paraffin.git.sourceforge.
 net/gitroot/paraffin/paraffin
[…]

OAuth 2.0 and Ada
Programming
From: Ada in Denmark
Date: Wed, 06 Jun 2012 07:55:31 +0000
Subject: OAuth 2.0 and Ada Programming
URL: http://ada-dk.org/2012/06/oauth-2-0-

and-ada-programming/
So you need to flex the power of the
OAuth 2.0 framework and and you want
to use Ada to get the job done, […]
Well today is your lucky day then, as the
ever productive Stephane Carrez just
churned out an article about OAuth 2.0
and Ada:
http://blog.vacs.fr/index.php?post/2012/
06/03/Using-the-Facebook-API
"Through this article you will learn how
to use the OAuth 2.0 framework to let an
application access service provider APIs
such as Facebook API, Google+ API and
others. Althought this article uses Ada as
programming language and Facebook as
service provider, most part also applies to
other programming languages and other
service providers."
The article goes into great detail, so it’s a
pretty good read even if you just want to
understand how OAuth 2.0 works. If you
already know all about OAuth 2.0 and just
want to get cracking on some code, how
about taking a closer look at Stephane’s
Ada Security package?
http://code.google.com/p/ada-security/

Strings_Edit library
From: Dmitry A. Kazakov
Date: Wed, 4 Apr 2012 13:49:30 +0200
Subject: ANN: Strings_Edit 2.8
Newsgroups: comp.lang.ada
The library provides means for formatting
and editing strings:
- Generic axis scales support;
- Integer numbers (generic, package

Integer_Edit);
- Integer sub- and superscript numbers;
- Floating-point numbers (generic,

package Float_Edit);
- Roman numbers (the type Roman);
- Strings;

- Ada-style quoted strings;
- UTF-8 encoded strings;
- Unicode maps and sets;
- Wildcard pattern matching.
http://www.dmitry-kazakov.de/ada/
strings_edit.htm
The new version 2.8 includes the package
Strings_Edit.Lexicographical_Order for
lexicographically comparisons of strings
containing chains of digits treated as
decimal numbers. These can be used to
compare and order file names like abc-
123.txt, e.g. for creating sets of such
strings etc.

GtkAda contributions
From: Dmitry A. Kazakov
Date: Sun, 13 May 2012 16:41:00 +0200
Subject: ANN: GtkAda contributions v2.13
Newsgroups: comp.lang.ada
A contribution to GtkAda dealing with the
following issues:
- Tasking support;
- Custom models for tree view widget;
- Custom cell renderers for tree view

widget;
- Multi-columned derived model;
- Extension derived model (to add

columns to an existing model);
- Abstract caching model for directory-

like data;
- Tree view and list view widgets for

navigational browsing of abstract
caching models;

- File system navigation widgets with
wildcard filtering;

- Resource styles;
- Capturing resources of a widget;
- Embeddable images;
- Some missing subprograms and bug

fixes;
- Measurement unit selection widget and

dialogs;
- Improved hue-luminance-saturation

color model;
- Simplified image buttons and buttons

customizable by style properties;
- Controlled Ada types for GTK+ strong

and weak references;
- Simplified means to create lists of

strings;
- Spawning processes synchronously and

asynchronously with pipes;
- Capturing asynchronous process

standard I/O by Ada tasks and by text
buffers;

- Source view widget support.
http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm

78 Ada-related Resources

Volume 33, Number 2, June 2012 Ada User Journal

From: Patrick
<patrick@spellingbeewinnars.org>

Date: Sun, 13 May 2012 08:38:52 -0700
Subject: Re: ANN: GtkAda contributions

v2.13
Newsgroups: comp.lang.ada
I have been playing with gtk ada but I was
discouraged when I read about tasking in
the documentation. It seemed like it was
not fully supported. Could you give me
some feedback on tasking support in gtk
ada? could you tell me more about your
tasking contributions?
From: Dmitry A. Kazakov
Date: Tue, 15 May 2012 09:00:46 +0200
Subject: Re: ANN: GtkAda contributions

v2.13
Newsgroups: comp.lang.ada
[…]
GTK is not thread-safe, that means if you
would call any Gtk (and thus GtkAda)
subprogram form the thread different
from the main thread (more accurately,
from the thread running the GTK
messages loop), it will most certainly
crash.
[…]
GtkAda contributions provide means for
an Ada task to engage a rendezvous with
the main task. It is safe to use any GTK
operations from there. It could be done
either in the traditional OO way by
overriding a primitive "visitor" operation,
or per a generic package instantiation and
passing a "service" callback.
GtkAda contributions also provide
convenience operations for opening
simple message boxes from any Ada task.
Further GtkAda contributions provide
task-safe tracing facilities for debugging
GtkAda programs. Which supports call
stack tracing, visual navigation of the call
stack, breaking upon GTK errors and
warnings, jumping to the source location
using the GPS.
For further information read this:
http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm#1
The subdirectory test_gtkada contains
test_gtk_tasking.adb which illustrates
usage of tasking support.

Fuzzy Machine Learning
Framework
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Date: Mon, 28 May 2012 12:08:38 +0200
Subject: ANN: Fuzzy machine learning

framework v1.2
Newsgroups: comp.lang.ada
The software is a library as well as a GTK
GUI front-end for machine learning
projects. Features:
- Based on intuitionistic fuzzy sets and the

possibility theory;

- Features are fuzzy;
- Fuzzy classes, which may intersect and

can be treated as features;
- Numeric, enumeration features and ones

based on linguistic variables;
- Derived and evaluated features;
- Classifiers as features for building

hierarchical systems;
- User-defined features;
- An automatic classification refinement

in case of dependent features;
- Incremental learning;
- Object-oriented software design;
- Features, training sets and classifiers are

extensible objects;
- Automatic garbage collection;
- Generic data base support (through

ODBC);
- Text I/O and HTML routines for

features, training sets and classifiers;
- GTK+ widgets for features, training sets

and classifiers;
- Examples of use.
This release is packaged for Windows,
Fedora (yum) and Debian (apt). The
software is public domain (licensed under
GM GPL).
http://www.dmitry-kazakov.de/
ada/fuzzy_ml.htm

Fuzzy Sets
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Date: Mon, 9 Apr 2012 10:41:52 +0200
Subject: ANN: Fuzzy sets for Ada v5.6
Newsgroups: comp.lang.ada
The current version includes distributions
of string edit, interval arithmetic and
simple components packages. It provides
implementations of:
- Confidence factors with the operations

not, and, or, xor, +, *;
- Classical fuzzy sets with the set-

theoretic operations and the operations
of the possibility theory;

- Intuitionistic fuzzy sets with the
operations on them;

- Fuzzy logic based on the intuitionistic
fuzzy sets and the possibility theory;

- Fuzzy numbers both integer and
floating-point ones with conventional
arithmetical operations;

- Dimensioned fuzzy numbers;
- Fuzzy linguistic variables and sets of

linguistic variables with operations on
them;

- Dimensioned fuzzy linguistic variables
and sets;

- String-oriented I/O is supported;

- GUI interface based on GTK+ (The
GIMP Toolkit) with fuzzy set editors,
truth values widgets and renderers,
linguistic variables sets editors.

http://www.dmitry-kazakov.de/ada/
fuzzy.htm

Simple Components for Ada
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Date: Mon, 28 May 2012 12:03:15 +0200
Subject: ANN: Simple components for Ada

3.17
Newsgroups: comp.lang.ada
The current version provides
implementations of smart pointers,
directed graphs, sets, maps, stacks, tables,
string editing, unbounded arrays,
expression analyzers, lock-free data
structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support. Tables
management and strings editing are
described in separate documents see
Tables and Strings edit. The library is
kept conform to both Ada 95 and Ada
2005 language standards.
http://www.dmitry-kazakov.de/ada/
components.htm
[…]

VTKAda
From: Leonid Dulman

<leonid.dulman@gmail.com>
Date: Sun, 27 May 2012 02:08:40 -0700
Subject: I'm pleased to announce VTKAda

version 5.10 free edition release
01/06/2012

Newsgroups: comp.lang.ada
I'm pleased to announce VTKAda version
5.10 free edition release 01/06/2012.
VTKAda is Ada-2012 port to VTK
(Visualization Toolkit by Kitware, Inc)
and Qt4 application and UI framework by
Nokia ParaView 3.14.0 (VTK version
5.10.0), Qt version 4.8.1 open source and
qt4c.dll(libqt4c.so) were builded with
Microsoft Visual Studio 2010 in
Windows and gcc in Linux x86.
Package was tested with gnat gpl 2011
ada compiler (-gnat12 option) in
Windows XP Sp3 32bit, Windows 7 Sp1
64bit and Debian 5 x86.
VTKAda is powerful 2D and 3D
rendering and imaging system and works
inside Qt4 application.
Current state of VTKAda is 39549
procedures and function distributed in 634
packages. 134 examples.
Current state of QTAda is 11925
procedures and function distributed in 324

Ada-related Resources 79

Ada User Journal Volume 33, Number 2, June 2012

packages. There are many new packages
and examples in this release.
VTKAda you can use without QTAda
subsystem. QTAda is an Ada port to Qt4
framework and can be used as
independent system.
VTKAda and QtAda for Windows and
Linux (Unix) free edition are available
from http://users1.jabry.com/adastudio/
index.html
I have a dream: to take a part in CNNC
nuclear reactor project. I think, it's a great
project of 21TH centure and visualization
is a big part of this project, but I can not
connect them.
Sources and prebuild VTK 5.10.0 and Qt
4.8.1 for win32 and x86 , you can found
on my DVD "ADASTUDIO 2012" ,if you
are interested to get this DVD tell me
know

Dequesterity
From: Brad Moore

<brad.moore@shaw.ca>
Date: Sat, 07 Apr 2012 23:22:21 -0600
Subject: ANN: Dequesterity v1.2
Newsgroups: comp.lang.ada
I am pleased to announce the release of
version 1.2 of Dequesterity.
Dequesterity is a set of Ada 2005 generics
that provide various forms of general
purpose buffer containers. Buffers are
circular data structures and may be used
as deques, queues, ring buffers, stacks,
double ended stacks, vectors, and similar
abstractions.
Simpler buffer forms are intended for use
non-concurrently, while higher level
forms provide concurrency support.
Some of the buffers are stream buffers
that allow heterogeneous objects to be
stored in the buffer. There are also
Ravenscar Stream buffers, that allow a
writer and a reader task to safely stream
heterogeneous objects to the same buffer.
Buffers may be accessed remotely, and
can be persistent. There are also indefinite
buffers that can store variable sized
objects such as strings.
There currently exist 40 generic buffers
types, 10 stream buffer types, and 25
preinstantiated string buffer types.
The most significant changes since the
previous release are;
- Saving/Loading buffers from files, and

Persistent Buffers were not working
under Linux. The low level
Preelaborated IO had some portability
issues in the area of determining the size
of a file. The Linux test executable,
test_buffers now works as it should.

- Prelaborated_IO Size now returns a long
integer instead of Integer. (Which
would be 64 bits on 64 bit OS's) This
allows buffers to work with much larger

files, if buffer content is to be stored
persistently.

- Only one project file needed for an
executable, that builds for both
Windows and Linux

- Cleaned up compiler warnings
- Created a Buffer Demo executable,

which is stripped down to demonstrate
some buffer concepts.

- Ravenscar example exits after 30
seconds, instead of executing
indefinitely.

- Persistent Stream Buffers do not need to
be instantiated, similar to the other
Stream Buffer types.

- Fixed bug in Unbounded Buffer, if
vector to read into is a zero element
array, the Read routine does not generate
a constraint error.

- Fixed bug in indefinite Unbounded
buffers. When finalizing the buffer if the
internal buffer is null, don't attempt to
dereference the null value.

The latest stable release and older releases
may be downloaded from;
https://sourceforge.net/projects/
dequesterity/files/

Ada Web Application
Framework
From: Stephane Carrez

<Stephane.Carrez@gmail.com>
Date: Thu, 24 May 2012 23:01:55 +0200
Subject: [Ann] Ada Web Application 0.2.0 is

available
Newsgroups: comp.lang.ada
Ada Web Application is a framework to
build web applications easily on top of
Ada Server Faces, Ada Database Objects
and Ada Web Server.
The new version of the framework
provides:
- A new event framework with

configurable action listeners,
- Persistent event queues for the event

framework,
- A new blog module and wiki engine

supporting Google Wiki, Creole,
MediaWiki, phpPP and Dotclear syntax,

- New mail UI components allowing to
generate and send email easily with the
ASF presentation pages,

- A new Javascript plugin Markedit with
jQuery Markedit (MIT License)

This new version can be downloaded at
http://code.google.com/p/
ada-awa/downloads/list (downloading the
awa-all package is recommended to get
the project and its dependencies).
A demo of an AWA application is
available at http://demo.vacs.fr/atlas/

You may also look at a short video at
http://youtu.be/2VOZ4_p7h2o to learn
building an application in 5 minutes.

ZanyBlue localization
library
From: Michael Rohan

<michael@zanyblue.com>
Date: Sun, 29 Apr 2012 23:20:25 -0700
Subject: ANN: ZanyBlue v1.0.0 Beta

Available
Newsgroups: comp.lang.ada
After quite a while, a new release of
ZanyBlue is now available. This is an
Ada library currently targeting
localization support for Ada (along the
lines of Java properties) with supporting
message formatting (with built-in
localization for about 20 locales).
The major changes from the initial release
are
- Message accessors to make using

messages safer (the Ada compiler can
check for argument types and number).

- Change of licensing from GPLv2 to
simple BSD.

- A simple regression testing application
for command line utilities.

- A parameter storage package (internally
used for command line and for
parameter storage during regression
tests).

Please see the the project page on Source
Forge for download links, documentation,
etc,
http://zanyblue.sourceforge.net

Turbo Pascal 7 library
From: Blady <p.p11@orange.fr>
Date: Sun, 10 Jun 2012 01:55:47 -0700
Subject: [ANN] TP7 emulation V2.6 with

GTK-Ada
Newsgroups: comp.lang.ada
Hello, here is Turbo Pascal 7 library port
in Ada.
The very first aim was to provide a help
for porting Turbo Pascal programs in
Ada. Thus it can be combined with
P2Ada translator.
http://sourceforge.net/projects/p2ada/
The version 1 was based on Mac bindings
Carbon-Ada. http://www.macada.org/
macada/Downloads.html
The version 2 is based on graphic library
GTK-Ada GPL 2011, then it is multi-
plateform ;-) See http://libre.adacore.com/
tools/gtkada/
More over it can be used as a basic multi-
purpose library for simple graphic stuff.
Basic but quite complete and easy to use
as the original library was ;-)
By the way, it provides an embedded text
console.

80 Ada-related Products

Volume 33, Number 2, June 2012 Ada User Journal

With only few lines you can operate a full
text terminal:
1 with TP7.System;
2 with TP7.Crt; - - if you comment this
 line then I/O use stdinout
3
4 procedure Hello_GTKAda is
5 use TP7, TP7.System;
6 N : Byte;
7
8 begin
9 Write ("How many hello ? ");
10 Readln (N);
11 for I in 1 .. N loop
12 Writeln ("Hello with GTKAda
 console.");
13 end loop;
14 end Hello_GTKAda;

See: http://blady.pagesperso-orange.fr/
telechargements/tp-ada/tp7ada-mini.png
The complete code is here:
http://p2ada.svn.sourceforge.net/viewvc/
p2ada/extras/tp7ada/current/
[…]
See screen copies on:
http://blady.pagesperso-orange.fr/
tp7ada.html
See also (in French):
http://blady.pagesperso-orange.fr/
creations.html#ada_tp7
All TP7 features are not completely
functional, see current status:
http://p2ada.svn.sourceforge.net/viewvc/
p2ada/extras/tp7ada/current/
TurboPascal7.0-Ada.html
All Pascal source codes were translated in
Ada with P2Ada translator:
http://sourceforge.net/projects/p2ada/

Game Programming
From: Patrick

<patrick@spellingbeewinnars.org>
Date: Tue, 3 Apr 2012 09:57:05 -0700
Subject: Ada game programming or other

sound solutions?
Newsgroups: comp.lang.ada
I am still having trouble getting my
project started. Sorry for cluttering the list
with more dumb questions.
I have abandoned my hopes of creating a
gstreamer binding and I am trying to
focus on smaller simpler solutions. I
basically need to draw pictures to a screen
and have keys create sounds as a child
types, low latency is import to me.
I was thinking about using the ada-gtk
binding and writing a small binding to a
sound library. I have been able to to
create some small bindings that compiled
but I have hit several dead ends as the
underlying Linux sound system seem like
a murky world. For instances I was able
to create a thin binding for both pulse-
audio and portaudio but then I could not

figure out how to write a program as there
is very little documentation even in C.
So my question is, is there anyone
building open source games in Ada that
use sound? Could someone refer me to
some sample code?
If anyone has any general feedback on
creating sounds with Ada that would be
great too. I have read the chapter in big
book of Ada linux programming
From: Gautier write-only

<gautier_niouzes@hotmail.com>
Date: Tue, 3 Apr 2012 11:09:48 -0700
Subject: Re: Ada game programming or

other sound solutions?
Newsgroups: comp.lang.ada
About sounds/music: did you consider
OpenAL [1] ?
There is or was a binding (OpenALAda).
For the graphics you might consider
OpenGL. There are Ada-aware bindings
and a 3D framework in the GLOBE_3D
project [2]. IIRC OpenGL is supported
by GTK.
[…]
[1] http://en.wikipedia.org/wiki/OpenAL
[2] http://globe3d.sf.net
From: Jeffrey Carter

<spam.jrcarter.not@spam.not.acm.org>
Date: Tue, 03 Apr 2012 13:46:23 -0700
Subject: Re: ada game programming or

other sound solutions?
Newsgroups: comp.lang.ada
[…]
In simple cases under Linux, spawning a
process that executes ogg123 will play an
Ogg Vorbis file. Latency could be an
issue with this approach.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Sat, 07 Apr 2012 13:12:20 +0200
Subject: Re: Ada game programming or

other sound solutions?
Newsgroups: comp.lang.ada
[…]
See a largish example of how to use
AdaSDL here:
http://www.ada-france.org:8081/branch/
changes/org.ludovic-brenta.defendguin
I wrote that to teach myself Ada and SDL
a few years ago :)

Ada-related Tools
Ahven Unit Test Framework
From: Ada in Denmark
Date: Tue, 13 Mar 2012 08:57:55 +0000
Subject: Ahven 2.2 released
Newsgroups: rss.cx.ada.planet
Tero Koskinen recently released version
2.2 of his Ahven unit testing library:
http://sourceforge.net/projects/ahven/

“This (2.2) is long overdue bug fix release
for Ahven. Ahven.XML_Runner had
same bug as Ahven.Text_Runner and this
release fixes it. Now your XML test result
files should have skipped tests correctly
reported. Another bigger change is API
documentation generator change from
Adabrowse to Sphinx”
Project: http://sourceforge.net/
projects/ahven/
Download: http://sourceforge.net/projects/
ahven/files/latest/download

ColdFrame UML to Ada
translator
From: Simon Wright

<simon@pushface.org>
Date: Tue, 27 Mar 2012 17:41:12 +0100
Subject: ANN: ColdFrame 20120324
Newsgroups: comp.lang.ada
This announces release 20120324 of
ColdFrame, which generates Ada code
frameworks from UML models in
ArgoUML.
Changes from previous releases can be
seen at the Files link.
Project: https://sourceforge.net/projects/
coldframe/
Web: http://coldframe.sourceforge.net/
Files: https://sourceforge.net/projects/
coldframe/files/coldframe/20120324/

Ada-related Products
Rational R1000 series 400
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: Fri, 01 Jun 2012 10:02:55 +0200
Subject: Software for Rational R1000 series

400?
Newsgroups: comp.lang.ada
The Danish Computing History
Association (DDHF) has received a
Rational R1000 series 400 from Terma.
I was invited to assist in opening the crate
and inspect the hardware and
documentation yesterday.
Apparently the disks in the machine have
been erased before the machine left
Terma, so DDHF is looking for a source
for the operating system software for the
R1000/400. Since the disks in the
machine seem to be plain SCSI disks, we
hope that a raw disk copy will be enough
to get it up and running again.
Please contact me or Poul-Henning Kamp
("phk" & Ada.Characters.Latin_1.
Commercial_At & "phk.freebsd.dk"), if
you have any information regarding
software for the Rational R1000 series
400.
[photos from the initial inspection at
http://datamuseum.dk/wiki/Rational/
R1000s400 —sparre]

Ada and GNU/Linux 81

Ada User Journal Volume 33, Number 2, June 2012

Ada and GNU/Linux
Ada environment on
Slackware
From: "Zhu Qun-Ying"

<zhu.qunying@gmail.com>
Date: Thu, 19 Apr 2012 10:43:20 -0700
Subject: My little work on building an Ada

evnvironment on Slackware
Newsgroups: comp.lang.ada
I have done some work to build an Ada
development environment on
Slackware64 with gcc 4.7.0. It is based on
Ludovic's work on Debian, with some
tweaks.
I hope it might be helpful to some one
that like to do the same thing.
http://zhuqy.wordpress.com/2012/04/15/
building-an-ada-development-
environment-using-fsf-gcc-for-slackware/
From: Thomas Løcke

<thomas@12boo.net>
Date: Fri, 20 Apr 2012 08:18:19 +0200
Subject: Re: My little work on building an

Ada evnvironment on Slackware
Newsgroups: comp.lang.ada
[…]
Personally I just grab the packages from
libre.adacore.com and install them. I've
never really felt any need for turning them
into specific Slackware packages, as they
are so dead simple to get going.
I actually did 5 short videos on the
process a while ago:
http://youtu.be/9LcDyUG2loE (part 1 -
the compiler)
http://youtu.be/IZCLBKn9-7o (part 2 -
florist)
http://youtu.be/N27lK6Fg8Ek (part 3 -
XML/Ada)
http://youtu.be/tVFRK2nIPRw (part 4 -
GNATColl)
http://youtu.be/wzbKDaLb76s (part 5 -
AWS)
From: qunying <zhu.qunying@gmail.com>
Date: Fri, 20 Apr 2012 23:06:17 -0700
Subject: Re: My little work on building an

Ada evnvironment on Slackware
Newsgroups: comp.lang.ada
As you suggested, I setup a git repository
to host the build scripts at
https://github.com/qunying/
ada-4-slackware

GNAT on Debian ARM
From: tonyg <tonythegair@gmail.com>
Date: Fri, 9 Mar 2012 08:19:26 -0800
Subject: gnat on debian arm
Newsgroups: comp.lang.ada
Does anyone know if gnat is fully ported
to debian ARM and its status?

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Fri, 09 Mar 2012 19:00:21 +0100
Subject: Re: gnat on debian arm
Newsgroups: comp.lang.ada
 […]
Fully ported to armel (this is ARM in
little-endian mode).
Not ported yet to armhf (this is ARM with
hardware floating-point).
This is true of both gnat-4.4 and gnat-4.6.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 13 Mar 2012 07:13:23 -0700
Subject: Re: gnat on debian arm
Newsgroups: comp.lang.ada
[…]
Interesting thread, very informative,
starting at http://lists.debian.org/
debian-arm/2012/03/msg00002.html.
The Raspbery Pi uses an ARMv6
processor running in little-endian mode
(ARM supports both big-endian and little-
endian modes) with hardware floating
point. This is quite a unique combination;
processors with hardware floating point
are usually ARMv7; the armhf port of
Debian requires ARMv7.
Debian armel works on the Raspberry Pi
but does not take advantage of the
floating point hardware. Note that if
you're going to program in Ada on such a
machine, you might find that 256 MiB of
RAM is very limited. You probably don't
want gnat-gps or emacs as your IDE on
such a machine.
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Tue, 13 Mar 2012 17:36:27 +0100
Subject: Re: gnat on debian arm
Newsgroups: comp.lang.ada
[…]
I had thought that 256 MiB is plenty of
RAM for editing text and running a
compiler. Editing without a "GUI" using
a capable text editor, including Emacs,
should well be possible.
256 MiB is about the amount of RAM
that were supposedly necessary to
translate a compiler for some O-O
language in the early 1990s. But I am
sure I was happily running Editors,
including Emacs, in a lot less than that. In
fact, I didn't know anyone who had access
to a computer with such an amount of
RAM.
Running OS/2 on a PCs equipped with
that "limited" amount of RAM went
rather smoothly, or is my memory
blurred?
From: "Randy Brukardt"

randy@rrsoftware.com
Date: Tue, 13 Mar 2012 13:04:49 -0500
Subject: Re: gnat on debian arm
Newsgroups: comp.lang.ada

[…]
I think your memory of memory is fine.
:-) The original version of Janus/Ada
worked fine on a 48K Z-80 machine (just
a subset of Ada, though).
The first validated (Ada 83) version was
for original 640K IBM PCs. Even today,
the memory footprint of Janus/Ada never
exceeds 16Mb.
Claw programs are "huge" by our
standards, but they too tend to have a
footprint in the 16Mb range. So 256MB
would be plenty for program development
(depending on the OS size; we might only
use 32MB but Windows of course uses a
heck of a lot more).
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 13 Mar 2012 20:44:30 +0100
Subject: Re: gnat on debian arm
Newsgroups: comp.lang.ada
[…]
Maybe I'm biased towards large-scale
development. I have fond memories of
my old IBM ThinkPad T22 with 256 MiB
RAM and a Pentium III processor running
at 900 MHz. The performance of that
machine should be quite similar to that of
a modern Raspberry Pi. Compiling gnat
3.15p (400 kSLOC C, 300 kSLOC Ada)
on that machine was OK but when I
started work on GCC 4.1 (2.6 MSLOC), a
three-stage bootstrap with tests took an
entire night. And building the other large
package, gnat-gps, took 220 minutes on
that machine and 17 minutes on its
successor which is stil my current
machine. Most of the difference was due
to the increase in RAM (256 MiB to 2
GiB).
http://bugs.debian.org/cgi-bin/
bugreport.cgi?msg=100;bug=393636
[…]
Oh, you're bringing memories back... I
started running OS/2 2.0 when it was
released on 4 MiB (very slow) and
upgraded my machine to 8 (okay-ish) then
12 then 24 MiB, which *was- smooth.
Yes, the architecture was quite good and I
was also a fan :)
I feel like a dinosaur now :)
From: Rolf

<rolf.ebert_nospam_@gmx.net>
Date: Wed, 14 Mar 2012 03:02:14 -0700
Subject: Re: gnat on debian arm
Newsgroups: comp.lang.ada
[…]
I run Debian armel on a Seagate Dockstar
[1] with only 128MB RAM. It was sold in
2010 for around 20€, unfortunately it isn't
available anymore. Emacs runs just fine
on that machine. And I remember that I
once bootstrapped gcc (4.6.x?) on it (all
three stages, no test runs, >> 1 day)
[1] http://ahsoftware.de/dockstar/

82 Ada and GNU/Linux

Volume 33, Number 2, June 2012 Ada User Journal

From: Álex R. Mosteo
<alejandro@mosteo.com>

Date: Wed, 28 Mar 2012 12:49:51 +0200
Subject: Re: gnat on debian arm
Newsgroups: comp.lang.ada
I had the impression that recent gcc
versions are quite memory hungry (when
doing optimization?). Also particularly
gnat when compiling generics. I might be
wrong though.
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: Tue, 17 Apr 2012 21:15:49 +0200
Subject: GNAT on Raspberry Pi (Was: gnat

on debian arm)
Newsgroups: comp.lang.ada
Basic text I/O and tasking works fine with
the Debian GNAT package on Raspberry
Pi. (I just tested on the real thing a few
minutes ago.)
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: Wed, 18 Apr 2012 13:57:18 +0200
Subject: Re: GNAT on Raspberry Pi
Newsgroups: comp.lang.ada
[…]
I've compiled and tested various old Ada
applications of mine on a Raspberry Pi
running Debian/stable. Use of tasking,
text I/O, random numbers, floating point
calculations and the POSIX Ada API has
been tested. So far I haven't found any
problems.
From: Lucretia

<laguest9000@googlemail.com>
Date: Wed, 25 Apr 2012 08:41:46 -0700
Subject: Re: gnat on debian arm
Newsgroups: comp.lang.ada
[…]
Debian ARM is actually arm-eabi, The
current ARM GNAT's exception handling
uses SJLJ which is not part of the EABI
standard; the standard uses ZCX in
DWARF2 tables, which has not been
ported to ARM yet, I've tried and got
stuck/confused.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 25 Apr 2012 08:48:52 -0700
Subject: Re: gnat on debian arm
Newsgroups: comp.lang.ada
[…]
IIUC, that means that pure Ada programs
work perfectly well but that exceptions
cannot cross language boundaries, i.e. if
your Ada program uses some C++ library
that raises exceptions, then you cannot
handle the exception in Ada? Big deal.
Otherwise, could you please elaborate on
what you mean by "stuck/confused"?
From: Lucretia

<laguest9000@googlemail.com>
Subject: Re: gnat on debian arm
Date: Wed, 25 Apr 2012 09:03:11 -0700
Newsgroups: comp.lang.ada
[…]

It'll be slower than ZCX as well, that is a
big deal.
> Otherwise, could you please elaborate

on what you mean by
"stuck/confused"?

Ever looked at the exception code?
Understand the exception tables? Nope,
me neither.
I posted a patch to gcc ml with my
progress a while back, it works to a point,
but there needs to be code to set up the
actual ARM exception also. I just got
confused with it all tbh.
From: roderick.chapman@googlemail.com
Date: Wed, 30 May 2012 03:58:35 -0700
Subject: Re: gnat on debian arm
Newsgroups: comp.lang.ada
My Raspberry Pi arrived this morning, so
a port of the SPARK Examiner might be
on the cards next... :-)
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 30 May 2012 06:53:40 -0700
Subject: Re: gnat on debian arm
Newsgroups: comp.lang.ada
[…]
Already done IIUC, simply say:
aptitude install spark
on Debian testing or unstable on your
Raspberry Pi
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Thu, 31 May 2012 18:58:01 +0300
Subject: Re: gnat on debian arm
Newsgroups: comp.lang.ada
[…]
Spark does not seem to work on my
Gumstix Overo with Debian sid/armhf:
[15:54 gumstix:21] ~/tmp/s
% file /usr/bin/spark
[…]

[15:54 gumstix:22] ~/tmp/s
% spark
zsh: killed spark

[15:55 gumstix:23] ~/tmp/s
% gdb spark
[…]

Temporary breakpoint 1 (main) pending.
Starting program: /usr/bin/spark
During startup program terminated with
signal SIGKILL, Killed.
(gdb)

% apt-cache show spark
[…]

'checker' works:

[15:56 gumstix:25] ~/tmp/s
% checker
SPARK Proof Checker GPL 2011
Copyright (C) 2011 Altran Praxis Limited,
Bath, U.K.

Please type filename, without extension, in
lowercase, within single
quotes if it is not in this directory, followed by
a full-stop.
FILENAME.vcg and FILENAME.fdl will be
read.
Filename? abc.
No .vcg file of this name exists.
List of .vcg files in current region:
 <THERE ARE NONE>Please try again.
Please type filename, without extension, in
lowercase, within single
quotes if it is not in this directory, followed by
a full-stop.
FILENAME.vcg and FILENAME.fdl will be
read.
Filename? .
errorStream user_input:10:18 Syntax error:
Unexpected end of clause

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Fri, 1 Jun 2012 01:02:46 -0700
Subject: Re: gnat on debian arm
Newsgroups: comp.lang.ada
> Spark does not seem to work on my

Gumstix Overo with
> Debian sid/armhf:
[...]
> % gdb spark
[...]
> (gdb) run
> Starting program: /usr/bin/spark
> During startup program terminated with

signal
> SIGKILL, Killed.
Does it work on armel (as opposed to
armhf)?
I reported this problem to the spark
maintainer, please followup at
http://bugs.debian.org/675385.
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Tue, 13 Mar 2012 20:43:28 +0200
Subject: GNAT on armhf
Mailing-list: debian-ada@lists.debian.org
[…]
What is missing from GNAT for armhf
platform? I have ARM hardfp ABI (armhf
in Debian terms) capable device
(Gumstix/OMAP3), and I could do some
testing/development if needed.
I don't remember any calling convention
specific things in GNAT or its runtime, so
is it just a simple matter of compiling the
compiler for armhf?
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 13 Mar 2012 20:54:14 +0100
Subject: Re: GNAT on armhf
Mailing-list: debian-ada@lists.debian.org
[…]

Ada and GNU/Linux 83

Ada User Journal Volume 33, Number 2, June 2012

There is a specific calling convention, in
particular as regards floating point
registers, but I think the compiler deals
with that by itself. Also, IIUC, the ABI
for ARMv7 supports only the Thumb
instruction format whereas ARMv6
allows both Thumb and the older, less
densely packed, format. It is this calling
convention and format that prevent
software compiled for armhf from
running on ARMv6 hardware. So, I think
what's needed at this point is "just"
someone to bootstrap the compiler on the
appropriate hardware. If you could do
that you'd deserve a star on the walk of
fame :) I haven't really researched this
issue, so take everything I said with a
kilogram of salt, as I may be entirely
wrong.
After this bootstrapping, it would be nice
to tune Ada.Numerics to use BLAS and
LAPACK compiled with hardware
floating point.
Thanks for your offer. I appreciate it
because we're not short of people with
ideas, we're short of experts with free time
and energy :)
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Wed, 18 Apr 2012 22:25:34 +0300
Subject: Re: GNAT on armhf
Mailing-list: debian-ada@lists.debian.org
[…]
I managed to create some preliminary
GNAT binary, which runs on Debian
armhf and generates Debian armhf
binaries from Ada source code.
I also did a armhf cross-compiler, which
runs on 64-bit Fedora x86_64 platform.
Links to gnat binaries:
Cross-compiler, runs on Fedora x86_64:
http://iki.fi/tero.koskinen/debian/armhf/
ada-armhf-crosstools-on-
fedora16_x86_64_host.tar.gz
Actual arm-linux-gnueabihf compiler,
runs on Debian armhf:
http://iki.fi/tero.koskinen/debian/armhf/
ada-armhf-gcc-debian-sid-armhf.tar.gz
This (second link) is compiled on x86_64
using the compiler in the first link.
I haven't managed to do native build
(compile armhf GNAT on Debian armhf
using above armhf compiler), since gcc
compilation dies to segfault on qemu-arm,
and I haven't had time to try it on real
hardware yet.
In related news, GNAT on Debian armel
seems to work pretty ok on Gumstix.
Only problem is that, I cannot compile my
modified ACATS test suite (where all
tests go into a single binary), since GNAT
dies to out-of-memory error after a while
(Gumstix has 256MB ram + 100MB swap
on sd-card, qemu-arm kills GNAT when
it has comsumed more than 400MB
memory).

[…]

Debian transition to
GNAT-4.6
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 13 Apr 2012 08:44:34 +0000
Subject: Re: Transition to gnat-4.6 current

status
Mailing-list: debian-ada@lists.debian.org
This is a status update about the transition
to gnat-4.6. The previous status update is
at http://lists.debian.org/debian-
ada/2012/02/msg00021.html
adabrowse OK
adacgi OK
adacontrol OK
adasockets OK
ahven OK
apq OK
apq-postgresql OK
asis OK
dh-ada-library OK
gnade OK
gnat OK
gnat-gps OK
gprbuild OK
libaws OK
libalog OK
libaunit OK
libflorist OK
libgmpada OK
libgtkada OK
liblog4ada OK
libncursesada OK
libtemplates-parser OK
libtexttools OK
libxmlada OK
libxmlezout OK
music123 OK
narval
opentoken OK
pcscada OK
polyorb
python-gnatpython OK
spark OK
topal OK

As you can see, all packages except for
polyorb and narval have now completed
the transition to gnat-4.6. dh-ada-library
is a new package that Nicolas Boulenguez
wrote and submitted. No other package
build-depends on dh-ada-library yet but
this will happen in due course; Nicolas
has already made changes to some
packages in the version control system so
that their next uploads will use dh-ada-
library.
So it is time to think about the migration
of all packages to testing. polyorb and
narval have been removed from unstable
and testing[1] per request of the QA
people, so they are not blocking the
migration of any other packages. It seems
the only package blocking the migration

is libgtkada2 (ancestor of libgtkada). I
will request its removal and hope that the
migration to testing takes place soon.
[1] http://bugs.debian.org/662165
Xavier, please tell us whether you plan to
revive polyorb and narval in Debian or
not.
From: Svante Signell

<svante.signell@telia.com>
Date: Fri, 13 Apr 2012 11:16:43 +0200
Subject: Re: Transition to gnat-4.6 current

status
Mailing-list: debian-ada@lists.debian.org
[…]
What about ghdl? It currently depends on
gnat-4.4. I assume it does not build with
gnat-4.6. It was built on most buildds
more than a year ago.
From: Xavier Grave

<xavier.grave@ipno.in2p3.fr>
Date: Fri, 13 Apr 2012 11:50:34 +0200
Subject: Re: Transition to gnat-4.6 current

status
Mailing-list: debian-ada@lists.debian.org
[…]
I have version compatible with gnat-4.6
for both, but I'm hitting a testsuite
problem in polyorb due to the change
from Ada to python.
I'm quite busy with some others stuffs for
the moment but the packages build fine
and as soon as this testsuite problem is
solved I think we can upload polyorb and
narval to unstable.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 13 Apr 2012 13:55:35 +0000
Subject: Re: Transition to gnat-4.6 current

status
Mailing-list: debian-ada@lists.debian.org
[…]
ghdl does not build-depend on gnat, only
on gnat-4.4, so it will not block the
transition. You may see the lack of a
build-dependency on gnat as a policy
violation but ghdl is not a library, does
not produce a -dev package, and so cannot
adversely affect other packages.
Also, ghdl has 10 outstanding bugs, one
of them serious (FTBFS with recent gcc
while bootstrapping its own gcc back-
end), so I'll let the maintainer deal with
the package and not bother him further. If
the maintainer is MIA, the QA people will
remoe ghdl from Debian.

Ada on Arch Linux
IRC-network: irc.freenode.net
IRC-channel: #Ada
2012-03-09:19:10 #ada: < oenone>
upgrade was smooth:
https://aur.archlinux.org/packages.php?ID
=54949
2012-03-12:21:58 #ada: < oenone> btw,
just finished ncurses-ada pkgbuild:

84 Ada and Microsoft

Volume 33, Number 2, June 2012 Ada User Journal

https://aur.archlinux.org/packages.php?ID
=57546
2012-04-05:15:32 #ada: * oni-work uses
Arch Linux
2012-04-05:15:35 #ada: < aod>
HalfMadDad: i use arch linux ;)
2012-04-11:21:15 #ada: < pamphoon> I
use archlinux or openbsd mostly
2012-05-15:16:13 #ada: < hellsend> oni-
work> i never got GPS to work on
Archlinux :(
2012-05-15:16:13 #ada: < oni-work> oh,
why?
2012-05-15:16:13 #ada: < hellsend> the
AUR package seems to be broken
2012-05-15:16:13 #ada: < oni-work>
https://aur.archlinux.org/packages.php?ID
=28415
2012-05-15:16:13 #ada: < oni-work> ?
2012-05-15:16:29 #ada: < hellsend> oni-
work> yeah, the compiling of gnat-gps in
Archlinux still outputs an error - but it's
changed since I'd tried it :D - today it
shows : "toolchains-parsers.ads:197:10:
current instance must be a limited type -
Error 4"
2012-05-26:15:04 #ada: < oenone> fixed
gnat-gps package
2012-05-26:15:04 #ada: < oenone> for
arch linux
2012-05-26:15:05 #ada: < oenone> seems
like a few things changed with update
from 4.6.3 to 4.7.0

Ada and Microsoft
Building gnat-gpl-2011-avr-
windows
From: "Rego, P." <pvrego@gmail.com>
Date: Sun, 8 Apr 2012 20:18:28 -0700
Subject: Building gnat-gpl-2011-avr-

windows from scratch in GPS
Newsgroups: comp.lang.ada
I am trying to build the gnat-gpl-2011-
avr-windows toolchain in GPS with a
simple project (which I do not expect to
run on an AVR chip for now). So I have
installed on Windows 7 machine the gnat-
gpl-2011-i686-pc-mingw32-bin.exe and
the AVR gnat-gpl-2011-avr-windows-bin
on c:\GNAT\2011.
I configured a GPS project file as
project Test is
 package Compiler is
 for Default_Switches ("ada")
 use ("-gnat05");
 end Compiler;

 package Ide is
 for Gnat use "avr-gnat";
 for Gnatlist use "avr-gnatls";

 for Debugger_Command
 use "avr-gdb";
 end Ide;

 for Source_Dirs use (".", "src");
 for Main use ("main.adb");
end Test;

When I try to build, it returns me
avr-gnatmake -f -d -PC:\test\test.gpr
main.adb
avr-gcc -c -gnat05 -I- -gnatA
C:\test\src\main.adb
avr-gnatbind -I- -x C:\test\main.ali
avr-gnatlink C:\test\main.ali -o C:\test\main
c:/gnat/2011/bin/../lib/gcc/avr/4.5.3/../../../../av
r/bin/ld.exe: cannot find -lc
collect2: ld returned 1 exit status
avr-gnatlink: error when calling
C:\GNAT\2011\bin\avr-gcc.exe
avr-gnatmake: **- link failed.

[2012-04-09 00:13:05] process exited with
status 4 (elapsed time: 00.25s)

So I included in GPS project file some
options:
 package Linker is
 for Default_Switches ("ada")
 use ("-O", "-mmcu=3Davr6",
 "-nostdlib", "-lgcc",
 "-Wl,-mavr6,
 -Tdata=3D0x00800200");
 end Linker;

and now when I try to build it returns me
avr-gnatmake -f -d -PC:\test\test.gpr
main.adb
avr-gcc -c -gnat05 -I- -gnatA
C:\test\src\main.adb
avr-gnatbind -I- -x C:\test\main.ali
avr-gnatlink C:\test\main.ali -O -
mmcu=3Davr6 -nostdlib -lgcc -Wl,-mavr6,-
Tdata=3D0x00800200 -o C:\test\main
c:/gnat/2011/bin/../lib/gcc/avr/4.5.3/../../../../av
r/bin/ld.exe: avr architecture of input file
`b~main.o' is incompatible with avr:6 output
c:/gnat/2011/bin/../lib/gcc/avr/4.5.3/../../../../av
r/bin/ld.exe: avr architecture of input file
`C:\test\main.o' is incompatible with avr:6
output
collect2: ld returned 1 exit status
avr-gnatlink: error when calling
C:\GNAT\2011\bin\avr-gcc.exe
avr-gnatmake: **- link failed.

[2012-04-09 00:15:00] process exited with
status 4 (elapsed time: 00.25s)

Thus, what did I miss in setup? I just want
to generate a .hex file for a dummy
main.adb.
From: Simon Wright

<simon@pushface.org>
Date: Mon, 09 Apr 2012 08:23:07 +0100
Subject: Re: Building gnat-gpl-2011-avr-

windows from scratch in GPS
Newsgroups: comp.lang.ada

That looks like an incompatibility
between -mmcu=avr6 which you've set in
package Linker and the default options
used elsewhere.
I _think_ that there may be a way of
saying this sort of thing globally, but as is
frequently the case the GPR
documentation isn't easy to get to grips
with (I guess that people don't post bug
reports about it enough to let AdaCore
know how difficult it can be to use? I
know I didn't when I worked for a paying
customer).
Is there a worked example with the
toolchain?
From: "Rego, P." <pvrego@gmail.com>
Date: Wed, 11 Apr 2012 15:06:38 -0700
Subject: Re: Building gnat-gpl-2011-avr-

windows from scratch in GPS
Newsgroups: comp.lang.ada
[…]
No. I could not find any example that I
could run yet. But googling today I found
this tutorial by Maciej Kucia:
http://student.agh.edu.pl/~mkucia/wiki/
doku.php?id=avrada
which looks to be very interesting. The
tutorial requires GNAT AVR + GPS +
WinAVR GNU gcc tools and libraries for
AVR + Atmel AVR Studio 5. I use all of
them frequently, so that's no problem, but
I'd expect that I could use just GNAT
AVR + GPS to build the .hex. However
sure it can be a very good starting point. I
will try it.
From: Rolf

<rolf.ebert_nospam_@gmx.net>
Date: Sun, 15 Apr 2012 09:02:31 -0700
Subject: Re: Building gnat-gpl-2011-avr-

windows from scratch in GPS
Newsgroups: comp.lang.ada
[…]
AdaCore's AVR compiler comes with a
sample application somewhere (I don't
remember where).

When using gcc for AVR you have to
specify the target MCU at the compile
and link steps with the option -
mmcu=<name of mcu>. In your example
you missed that option in the compile
step.
[…]

AVR-Ada /= AdaCore's AVR compiler.

AVR-Ada V1.1 still uses gcc-4.3.x,
AdaCore's AVR compiler is based on gcc-
4.5. That version has a serious problem if
you use locally renamed variables of the
MCU's registers. Either use AVR-Ada
V1.1 or wait a few days/weeks for AVR-
Ada V1.2 which will use gcc-4.7
From: Brian Drummond

<brian@shapes.demon.co.uk>
Date: Tue, 17 Apr 2012 16:58:51 +0000

Ada Inside 85

Ada User Journal Volume 33, Number 2, June 2012

Subject: Re: Building gnat-gpl-2011-avr-
windows from scratch in GPS

Newsgroups: comp.lang.ada
[…]
I have just successfully (as far as I know!)
built gcc-4.7 prerelease version
(20120302) for AVR, and verified it
makes the "Blinky" project
http://sourceforge.net/apps/mediawiki/
avr-ada/index.php?title=USB_Boarduino
#Blinky_in_Ada which works with
appropriate changes on three platforms.
I have also added a switch and modified
the example along the lines :
 Sw : Boolean renames
 MCU.PinB_Bits(1);
...
 MCU.DDRB_Bits :=
 (1 => DD_Input,
 others => DD_Output);
...
 LED <= not Sw;

and the fact that it works as expected
suggests to me that the GCC4.5 bug with
renamed registers has been fixed.
One of the platforms I tried,
http://www.pjrc.com/teensy/ uses the
Atmega32U4 which isn't in the list of
AVRAda 1.1 supported devices.
(however, mcu=atmega328p worked for
this example) Are there any guidelines
how to add support for a new CPU,
perhaps by modifying the 32u6 sources?
From: Simon Wright

<simon@pushface.org>
Date: Tue, 17 Apr 2012 20:29:05 +0100
Subject: Re: Building gnat-gpl-2011-avr-

windows from scratch in GPS
Newsgroups: comp.lang.ada
[…]
Is that http://gcc.gnu.org/bugzilla/
show_bug.cgi?id=46192 ? If so, it's
certainly fixed in 4.7.0 and should be in
4.5, 4.6 too (releases after 21 January
2012; SVN revisions 18336[567]).
From: Brian Drummond

<brian@shapes.demon.co.uk>
Date: Tue, 17 Apr 2012 21:19:53 +0000
Subject: Re: Building gnat-gpl-2011-avr-

windows from scratch in GPS
Newsgroups: comp.lang.ada
That's the one. Glad it's fixed!

Ada Inside
SparForte
From: Master of Magic

<koburtch@gmail.com>
Date: Thu, 15 Mar 2012 18:32:07 -0700
Subject: ANN: SparForte 1.3
Newsgroups: comp.lang.ada
SparForte 1.3
Type : Programming Language

Platforms: Linux i386/x86_64/Alpha (and
FreeBSD)
License: GPL
Home URL:
http://www.pegasoft.ca/sparforte.html
Downloads: http://www.pegasoft.ca/
sparforte-down.html
SparForte is an Ada-based command
shell, template engine and scripting
language. It natively interprets Bourne
shell commands and basic database
commands at the command prompt and
has an integrated debugger. There are 23
built-in packages including MySQL,
PostgreSQL, CGI and Memcache and
over 80 example scripts.
[this is the former Business Shell/BUSH
—sparre]

Session Chair Timer
From: "J-P. Rosen" <rosen@adalog.fr>
Date: Mon, 26 Mar 2012 14:50:19 +0200
Subject: [Ann] SC_Timer 2.0, the Session

Chair Timer
Newsgroups: comp.lang.ada
Adalog is pleased to announce the release
of SC_Timer 2.0, with a completely new
interface and much more possibilities than
1.0.
In addition, it is a nice example of what
can be accomplished with GTK-Ada and
Glade (to the non-believers: yes, it was
fully designed with Glade ;-)).
SC_Timer is a very convenient timer for
session chairs in conferences who need to
manage the presentation time of speakers.
The chair enjoys a rich pannel to manage
talk time (screenshot) and a secondary
display to let the speaker know the
remaining time, prompt messages, etc
(screenshot). The display turns yellow -
for example- ten minutes before time is
over, then turns red five minutes before
the end. When the presentation time is
over, it displays a big red flashing "Off".
Alternatively, the timer can be set to
count up (from 0 to programmed time)
instead of down. Other features allow to
manage various special cases (pauses,
increasing or reducing talk time...). There
is also a regular clock in the upper right
corner that tells you the current time.
Of course, the program is really a general
count-down timer, and you can use it for
all your count-down needs!
[download from http://www.adalog.fr/
progs2.htm —sparre]

New AWS-based website
From: Maciej Sobczak

<see.my.homepage@gmail.com>
Date: Tue, 10 Apr 2012 15:10:51 -0700
Subject: New AWS-based website
Newsgroups: comp.lang.ada
I'm pleased to announce the launch of a
new Ada-based website:

http://www.vetoteka.pl/
This website is intended for veterinary
doctors and their patients and is supposed
to provide new communication channels
between them. The majority of its
functionality is hidden behind logins and
passwords, but some part of it is available
to general public as well - well, at least to
those who understand Polish. ;-)
The website was implemented with the
following software stack: Debian +
PostgreSQL + AWS. This stack has
proved to be a very solid foundation and
the implementation of the complete
website was a very easy-going
experience, except for a few small bumps
at the beginning of the road. I believe that
the support that these technologies give to
the programmer have no equivalent in the
web development ecosystem. In
particular, the myth that dynamically
typed languages are better for web due to
the fast turn-around (no compilation
needed) is irrelevant when the actual turn-
around of the Ada-based solution is
observed in practice. I can recommend
this solution to anybody who attempts to
implement a web service from the ground
up.
Please feel free to use this website as a
positive example of the Ada-based (AWS
in particular) web development.
I will be happy to share the insight and
experience that was gained during the
development of this website - feel free to
contact me here or privately in case of any
questions.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 11 Apr 2012 00:42:20 +0200
Subject: Re: New AWS-based website
Newsgroups: comp.lang.ada
[…]
Thanks a lot for that report. I have two
questions:
- what interface did you use between Ada

and PostgreSQL?
- did you use the Debian packages, GNAT

GPL or a supported GNAT?
From: Jeffrey Carter

<spam.jrcarter.not@spam.not.acm.org>
Date: Tue, 10 Apr 2012 18:15:35 -0700
Subject: Re: New AWS-based website
Newsgroups: comp.lang.ada
[…]
blazedialer.com is also AWS. Not much
to look at without a login, I'm afraid.
From: tonyg <tonythegair@gmail.com>
Subject: Re: New AWS-based website
Date: Wed, 11 Apr 2012 00:15:56 -0700
Newsgroups: comp.lang.ada
[…]
I am doing a website using the debian
gnat, aws, gnade, with Dmitry Kazonovs
database access package (which really
simplifies the db stuff).

86 Ada Inside

Volume 33, Number 2, June 2012 Ada User Journal

From: Maciej Sobczak
<see.my.homepage@gmail.com>

Date: Wed, 11 Apr 2012 00:21:36 -0700
Subject: Re: New AWS-based website
Newsgroups: comp.lang.ada
> - what interface did you use between

Ada and PostgreSQL?
My own. The PostgreSQL API is very
simple and easy to bind - I had a working
thick wrapper from previous experiments
and it worked very well.
The other alternative that I would take
into account is SOCI-Ada, but to be frank
it would be unnecessarily big for what
was needed. I strongly oppose any idea
of using ODBC-based solutions.
> - did you use the Debian packages,

GNAT GPL or a supported GNAT?
All relevant components above the base
system (GNAT, PostgreSQL and AWS)
are regular Debian packages.
This was actually related to the "initial
bump" that I have mentioned - the
development started on a different system
with most recent AWS version, while the
package available on the target machine
was a bit older and missing one or two
features related to cookie setting or such.
Fortunately these are simple functions,
and were easily implemented separately.
No other issues were found and the
development work was in general
problem-free.
From: Maciej Sobczak

<see.my.homepage@gmail.com>
Date: Thu, 12 Apr 2012 00:35:46 -0700
Subject: Re: New AWS-based website
Newsgroups: comp.lang.ada
[Why choose PostgreSQL? —sparre]
The reasons are its maturity, run-time
stability, excellent and readable
documentation, stress on data integrity
and independence from short-term
licensing/politics/ownership issuess (I
find other databases to be missing in at
least one and sometimes even all of these
categories).
Oh, wait - aren't they the reasons to use
Ada, too?
I just find that they fit each other very
well.
From: Thomas Locke

<thomas@12boo.net>
Date: Thu, 12 Apr 2012 09:45:34 +0200
Subject: Re: New AWS-based website
Newsgroups: comp.lang.ada
[…]
Very nice! It's always a pleasure seeing
this in the response headers:
Server: AWS (Ada Web Server) v2.7.0w
[…]
Is there any chance of getting to see the
source code?

Did you use templates_parser for the
HTML, or something else?
From: Maciej Sobczak

<see.my.homepage@gmail.com>
Date: Thu, 12 Apr 2012 07:07:43 -0700
Subject: Re: New AWS-based website
Newsgroups: comp.lang.ada
> Did you use templates_parser for the

HTML,
No, I don't see any benefit from it
(ironically, this is how PHP was born!).
> or something else?
The HTML that is returned to the client is
a combination of:
- static constants,
- generated (computed or obtained from

the database or various local data
structures) content,

- files.
It depends on the expected frequency of
changes in the given content, but since
each page is composed of elements from
different categories, it is always some
combination of these. There are no strictly
static pages.
I also did not use the AWS session
management, as I find it not very
convincing. Any nontrivial session-based
operation requires the implementation of
additional data structures, which can
easily accommodate the complete session
handling. There is no reason to use
multiple layers of mapping data structures
for something that is a consistent
functional block. Also, no SOAP.
In other words, considering that there are
significant functionality areas of AWS
which I did not use, I would very
welcome a streamlined or core version of
the library that provides only the most
essential features. Let's call it "AWS
Express Edition" or something like that...
;-)
From: Thomas Locke

<thomas@12boo.net>
Date: Thu, 12 Apr 2012 16:28:16 +0200
Subject: Re: New AWS-based website
Newsgroups: comp.lang.ada
[AWS templates parser —sparre]
I think it's nice when you have a few
dedicated HTML people, who you'd
rather not have mucking around in the
Ada code. You can agree on a set of tags
and leave them to work their magic on the
GUI side of things.
At least that's how I've used templating
systems in the past (primarily XSLT
based). It's a model I feel works very well.
I've yet to use templates_parser for
anything "serious". The only thing I've
done with it is the AWS status page and
some basic tests.
[…]
Ahh yes, the AWS session management
system. I too feel that it would be nice if it

were a bit more "flexible", for lack of a
better word.
[…]
From: mockturtle <framefritti@gmail.com>
Date: Thu, 12 Apr 2012 13:31:15 -0700
Subject: Re: New AWS-based website
Newsgroups: comp.lang.ada
[…]
Well, I never thought about it, but now
that you say that... Yes, in my (small)
experience of SW for web, what made the
PHP code an horrible mess was to try to
maintain a status between two different
visits of the same site.
From: Maciej Sobczak

<see.my.homepage@gmail.com>
Date: Fri, 13 Apr 2012 00:35:49 -0700
Subject: Re: New AWS-based website
Newsgroups: comp.lang.ada
[…]
I fully agree with it - if there was such a
need, I would divide the work between
XML served directly from the server
(very likely as a combination of sources
as described previously) and the XSLT
transformations, which would be under
responsibility of other dedicated
developers. CSS is on the same side.
That's why I see no place for template
parsers built into AWS - in other words,
between generating HTML directly and
generating XML (that is transformed by
XSLT on the client side) there is no space
left and therefore server-side template
parser is a solution to the problem that
does not exist.
> I've yet to use templates_parser for

anything "serious".
Exactly.
> Ahh yes, the AWS session management

system. I too feel that it would be nice
if it were a bit more "flexible", for lack
of a better word.

I think it does not need to be. Doing it
properly (that is, flexibly enough to cover
all needs) would be a huge amount of
work and it would always be a wrong
solution for some purpose. Considering
that doing it right in the actual context of
the target system is not difficult at all
(support for cookies is all that is
neededd), there is again no problem to
solve with the library-based solution.
In other words - if the session
management can be done entirely in
memory, then a screenful of code does the
job and the library has little added value;
and if it requires support from the
database, then the general-purpose library
feature will not be adequate anyway.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 13 Apr 2012 01:05:11 -0700
Subject: Re: New AWS-based website
Newsgroups: comp.lang.ada
[…]

Ada in Context 87

Ada User Journal Volume 33, Number 2, June 2012

I too like PostgreSQL but my first choice
of database would be SQLite because it
avoids all the network and administrative
overhead associated with a database
server. I would use PostgreSQL as a
second choice if I really needed to run the
database and the web server on different
machines or if there were more than one
client connecting to the same database. Is
that your case?
(Oh and in case you ask: you do not need
ODBC to talk to an SQLite database).
From: Maciej Sobczak

<see.my.homepage@gmail.com>
Date: Fri, 13 Apr 2012 06:50:02 -0700
Subject: Re: New AWS-based website
Newsgroups: comp.lang.ada
[…]
There are already several clients
connecting, as there are some batch
processing jobs running in the
background. They are managed separately
from the main server process, so having
them as tasks/threads within the server
was not an option.
A "real" RDBMS has lots of useful
features that we intend to benefit from
and SQLite is not a valid choice.
To be frank, SQLite belongs to the same
category of solutions as template parsers
mentioned previously - they are not
needed in hello world programs and they
don't offer anything adequate in complex
systems either.
[…]
From: Thomas_Locke

<thomas@12boo.net>
Date: Fri, 13 Apr 2012 16:11:29 +0200
Subject: Re: New AWS-based website
Newsgroups: comp.lang.ada
> That's why I see no place for template

parsers built into AWS - in other words,
between generating HTML directly and
generating XML (that is transformed by
XSLT on the client side) there is no
space left and therefore server-side
template parser is a solution to the
problem that does not exist.

Client side XSLT transformations is not a
trivial matter, especially not if you're
targetting browsers. It's more or less
impossible to write XSL that will work
the same across a great many browsers
(and versions), and you cannot be sure
that XSLT is even properly supported by
all browsers.
So more often than not, you will have to
do the transformation on the server, in
which case templates_parser might do the
job just as well, while also being a lot
faster. Most XSLT processors are heavy
beasts.
From my meager tests templates_parser is
very fast, so there might just be a few
situations where it could come in handy.
> I think it does not need to be. Doing it

properly (that is, flexibly enough to

cover all needs) would be a huge
amount of work and it would always be
a wrong solution for some purpose.
Considering that doing it right in the
actual context of the target system is
not difficult at all (support for cookies
is all that is neededd), there is again no
problem to solve with the library-based
solution.

 In other words - if the session
management can be done entirely in
memory, then a screenful of code does
the job and the library has little added
value; and if it requires support from
the database, then the general-purpose
library feature will not be adequate
anyway.

You're probably right. I guess I'm just too
used to thinking about sessions and
cookies in the context of PHP. Old (and
bad) habits are hard to kill.
Maybe the AWS.Session package could
be made a bit more useful if we could
register our own create/destroy/read/write
procedures?
From: Shark8

<onewingedshark@gmail.com>
Date: Thu, 12 Apr 2012 13:00:23 -0700
Subject: Re: New AWS-based website
Newsgroups: comp.lang.ada
[…]
Slightly off-topic, but it's my general
impression that a lot of cruft/difficulty in
web-development stems from the attempt
to impose state on what was developed to
be stateless. Would you agree?
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: Fri, 13 Apr 2012 10:14:43 +0200
Subject: [OT] Re: New AWS-based website
Newsgroups: comp.lang.ada
[…]
Definitely!
And now that you've got me started; why
do most web developers insist on keeping
the details of my state hidden inside their
system, instead of storing the state in
cookies? (It would avoid the whole mess
of sessions timing out for no apparent
reason. And it would allow the more
adventurous visitors to adjust the state as
needed.)
From: Pascal Obry <pascal@obry.net>
Date: Fri, 13 Apr 2012 18:09:29 +0200
Subject: Re: [OT] Re: New AWS-based

website
Newsgroups: comp.lang.ada
[…]
Because cookies are limited in size and
are sent with every request. So to save
bandwidth it is far far better to not use
cookie for session management. It is
better to use them as id management and
then store the session data into an internal
structure in the server.

BTW, using the Web Block support in
AWS it is quite easy to build complex
templeted system with Ajax with an
elegant session named context. Give it a
try!

Saab Electronic Defence
Systems Adopts CodePeer
From: AdaCore Press Center
Date: June 12th, 2012
Subject: Saab Electronic Defence Systems

Adopts CodePeer
URL: http://www.adacore.com/press/

saab-electronic-defence-systems-adopts-
codepeer/

PARIS, NEW YORK, and GÖTEBORG.
June 12th, 2012 – Ada Europe
Conference – AdaCore today announced
that Saab Electronic Defence Systems
(Sweden) has adopted the CodePeer static
analyzer tool for use on the GIRAFFE
project. This advanced static analysis tool
helps developers detect potential run-time
and logic errors in Ada programs. By
mathematically analyzing every line of
software, and considering every possible
input and every path through the program,
CodePeer can be used very early in the
development lifecycle to identify
problems when defects are much less
costly to correct.
CodePeer is fully integrated into the
GNAT Pro development environment and
comes with a number of complementary
static analysis tools common to the
technology – a coding standard
verification tool (GNATcheck), a source
code metric generator (GNATmetric), a
semantic analyzer, and a document
generator that can be invoked through the
GNAT Programming Studio (GPS)
Integrated Development Environment
(IDE).
[…]

Ada in Context
Ada 2012: for … of … loop
From: Martin <martin@thedowies.com>
Date: Tue, 29 May 2012 07:29:41 -0700
Subject: Ada 2012 : In praise of 'for ... of ...

loop'...
Newsgroups: comp.lang.ada
This addition to Ada is brilliant...I've just
been refactoring some Ada 2005 into Ada
2012 and this just makes the code so
much clearer! No more nested
subprograms (of nested subprograms (of
nested ...)).
From: Martin <martin@thedowies.com>
Date: Wed, 30 May 2012 01:10:22 -0700
Subject: Re: Ada 2012 : In praise of 'for ...

of ... loop'...
Newsgroups: comp.lang.ada
[…]

88 Ada in Context

Volume 33, Number 2, June 2012 Ada User Journal

Here's a very small example... what we
have now:
 procedure Save (
 This : in out Configuration;
 Filename : String;
 Header_Comments:
 String_Vectors.Vector :=
 String_Vectors.Empty_Vector;
 Include_Last_Saved_Time :
 Boolean := False) is
 use type String_Vectors.Vector;
 File : File_Type;
 begin
 begin
 Create (File, Out_File, Filename);
 exception
 when others =>
 Open (File, Out_File, Filename);
 end;
 for Comment of Header_Comments
 loop
 Put_Line (File,
 Comment_Str & Comment);
 end loop;
 if Include_Last_Saved_Time then
 Put_Line (File, Comment_Str &
 "Last saved: " &
 Image (Date => Clock));
 end if;
 for Section of This.Sections loop
 Put_Line (File, "[" &
 To_String (Section.Name) & "]");
 for Pair of Section.Pairs loop
 Put_Line (File,
 To_String (Pair.Key) &
 "=" &
 To_String (Pair.Value));
 end loop;
 end loop;
 Close (File);
 exception
 - - implementation detail
 end Save;

what we used to have (mocked up!):
 procedure Save (
 This : in out Configuration;
 Filename : String;
 Header_Comments :
 String_Vectors.Vector :=
 String_Vectors.Empty_Vector;
 Include_Last_Saved_Time :
 Boolean := False) is
 use type String_Vectors.Vector;
 File : File_Type;

 -- Write --

 procedure Write (
 C : Section_Vectors.Cursor) is

 -- Write_Comment --

 procedure Write_Comment (
 C : String_Vectors.Cursor) is

 begin
 Put_Line (File, Comment_Str &
 String_Vectors.Element (C));
 end Write_Comment;

 -- Write --

 procedure Write (
 C : Key_Value_Pair_Vectors.Cursor)
 is
 Pair : constant Key_Value_Pair :=
 Key_Value_Pair_Vectors.Element (C);
 begin
 Put_Line (File, To_String (Pair.Key) &
 "=" & To_String (Pair.Value));
 end Write;

 This_Section : constant Section :=
 Section_Vectors.Element (C);
 begin
 Put_Line (File, "[" &
 To_String (This_Section.Name)
 & "]");
 This_Section.Pairs.Iterate
 (Write'Access);
 end Write;

 begin
 begin
 Create (File, Out_File, Filename);
 exception
 when others =>
 Open (File, Out_File, Filename);
 end;
 Header_Comments.Iterator
 (Write_Comment'Access);
 if Include_Last_Saved_Time then
 Put_Line (File, Comment_Str &
 "Last saved: " &
 Image (Date => Clock));
 end if;
 This.Sections.Iterate (Write'Access);
 Close (File);
 exception
 -- implementation detail
 end Save;

That's 54 lines down to 29 lines, no
'Access and it's perfectly clear what's
happening and it happens in a single
subprogram. No need to talk about Cursor
or calls to Element (C)...
...It also enhances the value of other
nested subprograms - they're probably
doing something more interesting, so I
don't mind the comment-box headers for
them as much as I used to.
All thanks to a little syntatic sugar.
To my eyes, this a big win.
From: Jeffrey Carter

<spam.jrcarter.not@spam.not.acm.org>
Date: Wed, 30 May 2012 12:30:21 -0700
Subject: Re: Ada 2012 : In praise of 'for ...

of ... loop'...
Newsgroups: comp.lang.ada
 […]

While this is a nice feature, I don't think
it's worth the added language complexity.
In general, using "for" loops will be
clearer than using iterators. In the case of
vectors (or unbounded arrays, to use their
correct name), one can iterate over them
using "for" loops, and the use of iterators
for an array abstraction is a questionable
practice:
for I in Header_Comments.First_Index ..
 Header_Comments.Last_Index loop
 Put_Line (File, Comment_Str &
 Header_Comments.Element (I));
end loop;

if ... then
 ...
end if;

for I in This.Sections.First_Index ..
 This.Sections.Last_Index loop
 Section := This.Sections.Element (I);
 Put_Line ...

 for J in Section.Pairs.First_Index ..
 Section.Pairs.Last_Index loop
 Pair := Section.Pairs.Element (J);
 Put_Line ...
 end loop;
end loop;

I think this is equally clear and requires
no additional language complexity.
Had your example used sets or maps it
would have been a stronger argument.
From: Pascal Obry <pascal@obry.net>
Date: Wed, 30 May 2012 22:54:14 +0200
Subject: Re: Ada 2012 : In praise of 'for ...

of ... loop'...
Newsgroups: comp.lang.ada
[…]
No I think you missed one point. In the
case of:
 for Item of <array or containers> loop
 ...
 end loop;

Item can be read and written in-place.
This can be achieved currently without a
callback.
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Thu, 31 May 2012 00:26:02 +0200
Subject: Re: Ada 2012 : In praise of 'for ...

of ... loop'...
Newsgroups: comp.lang.ada
 […]
To my eyes also. It is really nice that
Iterate and the "loop body subprograms"
are not torn apart. That seems to outweigh
the loss of naming opportunities.
I'm still unsure if sweetening adds clarity
when one has to write for "the other side"
of syntax sugar. For example, when
providing a concrete Forward_Iterator
from Ada.Iterator_Interfaces. However,

Ada in Context 89

Ada User Journal Volume 33, Number 2, June 2012

because writing a Forward_Iterator seems
to require more types (and packaging) in
place of juggling subprograms from the
container types, that might be a win too,
even at the price of added LOC.
As an example, I have tried a "functional"
Reduce function written in 2005 style and
in 2012 style, special in that it is required
to operate on a span of the values only,
not the whole container, mimicking Floor
and Ceiling. In pseudo code,

 "+"/(First .. Last),

While the 2012 version of Reduce is
pleasantly clear and a little shorter,
writing the "backstage stuff" had, at first,
seemed to spoil the effort.
In Ada 2012, there is an Iterate function in
the 2012 Vectors that takes a parameter
Start : Cursor, but not a corresponding
Finish : Cursor.
So I made a Forward_Iterator that would
know Start and Finish. It has a
construction function and overriding First
and Next. This made the whole program
quite a bit longer. Not necessarily worse,
I think, but longer. Perhaps more
"rigorous", or "typish"?
I hope the any unnecessary lengthening is
caused by my limited understanding. Or
that the type centric approach of 2012
Forward_Iterator is better, more clear, and
more modular in the end.
Package Iterations_05 below is the 2005
version of the Reduce part. I think the
approach follows standard STL style
programming.
generic
 type Element_Type is private;
 type Cursor is private;
 with function Next (Position : Cursor)
return Cursor is <>;
 with function Element (Position : Cursor)
return Element_Type is <>;
package Iterations_05 is

 generic
 Zero : in Element_Type;
 with function Binop (
 Left, Right : in Element_Type)
 return Element_Type;
 function Reduce_05 (
 First, One_After : Cursor)
 return Element_Type;
end Iterations_05;

package body Iterations_05 is
 function Reduce_05 (
 First, One_After : Cursor)
 return Element_Type is
 Result : Element_Type;
 Position : Cursor;
 begin
 Result := Zero;
 Position := First;
 loop

 exit when Position = One_After;
 Result := Binop (Result,
 Element (Position));
 Position := Next (Position);
 end loop;
 return Result;
 end Reduce_05;
end Iterations_05;

After instantiating the two generics, one
picks cursors for the endpoints of the
"intervals" to be taken from a container.
(At 1 and 50, and 51 and 100 in this case.)
with Ada.Text_IO;
with Iterations_05;
with Num_Types, Num_Vecs;
procedure Test_Iterations_05 is

 use Num_Vecs;

 package Functional is
 new Iterations_05
 (Element_Type => Num_Types.Nat,
 Cursor => Num_Vecs.Cursor);

 use type Num_Types.Nat;

 function Sum is
 new Functional.Reduce_05
 (Zero => 0,
 Binop => "+");

 package Num_IO is
 new Ada.Text_IO.Integer_IO
 (Num_Types.Nat);

 List : Num_Vecs.Vector;
begin
 for K in Num_Types.Nat
 range 1 .. 100 loop
 List.Append (K);
 end loop;
 Num_IO.Put (Sum (First => First (List),
 One_After => Next (To_Cursor
 (List, 50))));
 Num_IO.Put (Sum (First => To_Cursor
 (List, 51),
 One_After => Next (
 Last (List))));
end Test_Iterations_05;

That's it.
The 2012 version of the "functional" part
Iterations_2012 is just a little shorter than
its 2005 counterpart. The body of the
Reduce function uses a sweetened for
loop:
with Ada.Iterator_Interfaces;
generic
 type Element_Type is private;
 with package Iteration is
 new Ada.Iterator_Interfaces (<>);
 with
 function Element (Position :
 Iteration.Cursor)
 return Element_Type;

package Iterations_2012 is

 generic
 Zero : in Element_Type;
 with function
 Binop (Left, Right : in Element_Type)
 return Element_Type;
 function Reduce_2012 (
 Span : Iteration.Forward_Iterator'class)
 return Element_Type;

end Iterations_2012;

package body Iterations_2012 is
 function Reduce_2012 (
 Span : Iteration.Forward_Iterator'class)
 return Element_Type is
 Result : Element_Type;
 begin
 Result := Zero;
 for k in Span loop
 Result := Binop (Result, Element (k));
 end loop;
 return Result;
 end Reduce_2012;

end Iterations_2012;

Since a sweetened for loop should be used,
I though that passing a "slice" of a
container could only be achieved by a
Forward_Iterator. Is this correct? Note the
lengthy package called Splitting that
provides it.
with Ada.Iterator_Interfaces;
with Num_Types, Num_Vecs;
with Iterations_2012;
with Ada.Text_IO;
procedure Test_Iterations_2012 is
 use Num_Vecs;

 package Split_Iterators is
 new Ada.Iterator_Interfaces
 (Cursor => Num_Vecs.Cursor,
 Has_Element =>
 Num_Vecs.Has_Element);

 package Splitting is
 use Split_Iterators;

 type Split_Iterator is limited
 new Split_Iterators.Forward_Iterator
 with record
 First, One_After:Num_Vecs.Cursor;
 end record;

 function Make_Iterator (
 First, One_After : Num_Vecs.Cursor)
 return Split_Iterator;
 overriding function First (
 Object : Split_Iterator) return Cursor;
 overriding function Next (
 Object : Split_Iterator; Position: Cursor)
 return Cursor;
 end Splitting;

90 Ada in Context

Volume 33, Number 2, June 2012 Ada User Journal

 package body Splitting is
 function Make_Iterator (
 First, One_After : Num_Vecs.Cursor)
 return Split_Iterator is
 begin
 return (Split_Iterators.Forward_Iterator
 with First, One_After);
 end Make_Iterator;

 overriding function First (
 Object : Split_Iterator) return Cursor is
 begin
 return Object.First;
 end First;

 overriding function Next (
 Object : Split_Iterator;
 Position: Cursor) return Cursor is
 begin
 if Position = Object.One_After then
 return Num_Vecs.No_Element;
 else
 return Num_Vecs.Next (Position);
 end if;
 end Next;
 end Splitting;

 package Functional is
 new Iterations_2012
 (Element_Type => Num_Types.Nat,
 Element => Num_Vecs.Element,
 Iteration => Split_Iterators);

 use type Num_Types.Nat;

 function Sum is
 new Functional.Reduce_2012
 (Zero => 0,
 Binop => "+");

 package Num_IO is
 new Ada.Text_IO.Integer_IO (
 Num_Types.Nat);

 List : Num_Vecs.Vector;
begin
 for K in Num_Types.Nat
 range 1 .. 100 loop
 List.Append (K);
 end loop;

 Num_IO.Put (Sum (Splitting.Make_Iterator
 (First => First (List),
 One_After => Next (
 To_Cursor (List, 50)))));

 Num_IO.Put (Sum (Splitting.Make_Iterator
 (First => To_Cursor (List, 51),
 One_After => Next (Last (List)))));
end Test_Iterations_2012;

Is Splitting written in the way we should,
when using Ada 2012?
From: Martin <martin@thedowies.com>
Date: Thu, 31 May 2012 07:09:38 -0700

Subject: Re: Ada 2012 : In praise of 'for ...
of ... loop'...

Newsgroups: comp.lang.ada
[…]
Aside from the benefits Pascal mentions,
the new syntax offers both readability
and writability which is a bit of a
departure for the language ;-)
From: "Randy Brukardt"

<randy@rrsoftware.com>
Date: Wed, 6 Jun 2012 19:19:53 -0500
Subject: Re: Ada 2012 : In praise of 'for ...

of ... loop'...
Newsgroups: comp.lang.ada
> “In Ada 2012, there is an Iterate

function in the 2012 Vectors that takes
a parameter Start : Cursor, but not a
corresponding Finish : Cursor.”

You don't really need one, because you
can use "exit" in the for loop in order to
stop the iteration early. And doing that
explicitly does not suffer from the
confusion that could occur if Finish is not
actually after Start (in such a case, you'll
probably iterate all the way to the end of
the container; checking that Finish is
somewhere after Start in the container is
expensive in general so it isn't something
that we wanted to do. So we left this
operation out on purpose.
This does require using the cursor version
of the iterator, so it is bit more wordy:
 for Cur in My_Vector.Iterate(Start) loop
 -- Operation code here, probably using
 My_Vector.Reference(Cur)
 -- to access and modify the element
 in place.
 exit when Cur = Finish;
 end loop;

The advantage here is that it is obvious
what happens if Finish doesn't designate
an element after Start in My_Vector: the
iteration just goes to the end of My_Vector
and stops.
> “So I made a Forward_Iterator that

would know Start and Finish. It has a
construction function and overriding
First and Next. This made the whole
program quite a bit longer. Not
necessarily worse, I think, but longer.
Perhaps more "rigorous", or "typish"?”

Certainly possible, but not the
recommended way to write such an
iteration. Do you check for the error case
of Finish not following Start in the
container?
From: Georg Bauhaus <rm.dash-

bauhaus@futureapps.de>
Date: Thu, 07 Jun 2012 14:42:05 +0200
Subject: Re: Ada 2012 : In praise of 'for ...

of ... loop'...
Newsgroups: comp.lang.ada
In the case of generic algorithms, the
situation is a bit reversed, since "it can
stop the iteration early", where "it" is the
generic algorithm that has the for loop in

its body. Using Ada 2005, the generic
algorithm need knowledge of a Cursor
type and an Element function:
 loop
 exit when Cur = One_After;
 Result := Binop (Result, Element
(Cur));
 Cur := Next (Cur);
 end loop;

Using Ada 2012, the following looks nice,
but might not (currently?) be possible,
because Cursor (detailed below) is an
incomplete tagged formal type of
Iterator_Interfaces, and can't be used here:

for Cur in Span loop -- Span :
 Forward_Iterator'Clas
 exit when Cur = One_After;

 Result := Binop (Result,
 Element (Cur));
 end loop;

It also felt a little odd to have to pass both
a Forward_Iterator and a Cursor so that the
loop could be stopped early. If the
following attempt is a possible solution at
all.
The full algorithm below is adapted for
use with Forward_Iterator as you suggested
(such as the one returned by function
Vectors.Iterate) IIUC. GNAT complains
about invalid use and premature use of
Iteration.Cursor, more so in case I write
"use type Iteration.Cursor". (I have omitted
testing for One_After "<=" Start.)
with Ada.Iterator_Interfaces;

generic
 type Element_Type is private;
 with package Iteration is
 new Ada.Iterator_Interfaces (<>);
 with function Element (
 Position : Iteration.Cursor)
 return Element_Type;
package Iterations_2012 is
 generic
 Zero : in Element_Type;
 with function Binop (
 Left, Right : in Element_Type)
 return Element_Type;
 function Reduce_2012 (
 Span : in
 Iteration.Forward_Iterator'Class;
 One_After : in Iteration.Cursor) --!
 return Element_Type;
 -- Apply Binop to the sequence of
 elements in Span, excluding every
 -- element starting at One_After
end Iterations_2012;

package body Iterations_2012 is

 function Reduce_2012
 (Span : Iteration.Forward_Iterator'Class;
 One_After : Iteration.Cursor)
 return Element_Type is
 Result : Element_Type;

Ada in Context 91

Ada User Journal Volume 33, Number 2, June 2012

 use Iteration; --use type Iteration.Cursor;
 begin
 Result := Zero;
 for Cur in Span loop
 exit when Cur = One_After; --!
 Result := Binop (Result,
 Element (Cur));
 end loop;
 return Result;
 end Reduce_2012;

end Iterations_2012;

A typical scenario I have in mind is divide
and conquer: there are tasks that will
perform some algorithm on
(sub)sequences of elements from just any
container.

Linking in an externally
compiled .o file with
gnatmake
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: Mon, 11 Jun 2012 12:06:17 +0200
Subject: Linking in an externally compiled

.o file with gnatmake?
Newsgroups: comp.lang.ada
I'm working on a binding to the Linux
sound API ALSA
(http://repositories.jacob-sparre.dk/
alsa-binding). As a part of the binding, I
need to access a C macro. I do that by
turning the macro into a C function:
% cat alsa_macros.c
#include <alsa/asoundlib.h>
void allocate_alsa_hardware_parameters
(snd_pcm_hw_params_t **hwparams_ptr) {
 snd_pcm_hw_params_alloca
(hwparams_ptr);
};

Compiling "alsa_macros.c" to
"alsa_macros.o" is not a problem, but how
can I get gnatmake to link
"alsa_macros.o" into the final program?
Or maybe into "sound-alsa.o" as it is
package Sound.ALSA which imports the
function.
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: Mon, 11 Jun 2012 12:14:29 +0200
Subject: Re: Linking in an externally

compiled .o file with gnatmake?
Newsgroups: comp.lang.ada
[…]
Adding "alsa_macros.o" to the linker
switches does the job:
 package Linker is
 for Default_Switches ("ada")
 use ("-lasound", "alsa_macros.o");
 end Linker;

Thanks to tkoskine on the Ada IRC
channel for a quick response.

Ada on embedded devices
From: Natasha Kerensikova

<lithiumcat@gmail.com>
Date: Fri, 27 Apr 2012 18:56:10 +0000
Subject: Ada on Nintendo DS ?
Newsgroups: comp.lang.ada
I have been desiring getting a try at
developing for embedded platforms for a
while now.
Moreover, I just happen to own a device
that probably qualifies as embedded, with
two ARM CPUs (one ARM7 and one
ARM9), 4 MB RAM and a few DSPs.
The device is known as Nintendo DS lite.
So how do I compile code suitable to run
on such a device?
I haven't been able to find anything that
perform such a task, but I have missed it?
As far as I can tell, devkitARM is a
toolchain derived from GCC that targets
my hardware (it seems there is also some
libraries to deal with DSPs and stuff, but I
can care about this later on). On the other
end, gnatdroid seems to successfully
translate Ada code into binary that can be
fed to ARM CPUs. So unless I'm missing
something, there is nothing new to
discover, I would only need to merge both
derivations.
Would anyone have an estimation or a
bound on how difficult it can be?
I have never built a compiler myself
(except gnat-aux ports, but it just works,
so I have no actual experience of making
a compiler code build), so I'm not sure
exactly how much of a task it is.
Maybe I should start with smaller steps,
like writing C stuff going through
devkitARM, and then only start aiming at
Ada?
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Sat, 28 Apr 2012 03:19:40 -0400
Subject: Re: Ada on Nintendo DS ?
Newsgroups: comp.lang.ada
 […]
It should be straight-forward to include
Ada in that toolchain. The hard part will
be the Ada runtime library; it assumes
some operating system, similar to POSIX.
It is possible to use no runtime, but then
you lose some features of Ada
(exceptions, fixed point, tasking,
new/free, etc).
Is there an OS on the Nintendo?
[…]
gnatdroid is intended for Android, a
specific operating system. It might be
useful as an example.
[…]
If Nintendo has a decent operating
system, Ada should Just Work (similar to
the ports you describe doing)

But if it doesn't, the level of difficulty
really depends on your level of
experience; since you seem to be new at
configuring compilers, it will be hard and
confusing :(.
Definitely set a goal of a runtimeless
compiler, and see if you can make that
work. Then think about what parts of the
Ada runtime you really need.
> Maybe I should start with smaller steps,

like writing C stuff going through
devkitARM, and then only start aiming
at Ada?

That can be useful just to understand how
all the tools work together. In particular,
writing a simple program in C, and the
same in Ada, can be instructive in finding
out why the Ada compiler isn't doing the
right thing.
But it also leads to the Dark Side :). (as in,
"I know I can do this simple program in
C; I'll put off porting Ada just a little
longer").
From: Brian Drummond

<brian@shapes.demon.co.uk>
Date: Sat, 28 Apr 2012 09:22:14 +0000
Subject: Re: Ada on Nintendo DS ?
Newsgroups: comp.lang.ada
[…]
Me too, though I haven't had all the
success I would like, so far! But I hope a
beginner's viewpoint (at building gcc)
may be of some interest...
In my case I want to be able to build the
same version of gcc for native x86/x64,
AVR (Arduino etc), Android, Raspberry
Pi. I have managed the first two of these
last month,(got stuck on Arm/Android last
summer, moving house keeps getting in
the way)
SO some comments that may help...
apologies if the details are inaccurate, my
notes are on another machine.
(1) Building GCC "should be
straightforward" as Stephen Leake says.
However it probably took me three weeks
for x86 and AVR...
(a) Read the prerequisites but they may
not be entirely accurate, and differ for
different gcc versions, and Ada support in
crosscompilers is a less explored corner...
My starting point,
gcc_4.7.0_rc1_20120302 failed to build
with one version of mpfr, and then failed
another "prerequisite" (ppl or ploog) when
I turned on Ada language support. I
backtracked a version on the first, and
omitted the second (which turned out to
be an optional prerequisite).
The prerequisites gmp, mpc, mpfr are
essential, others seem to be optional so
far.
(b) Do not build in the source dir. The
FAQ isn't kidding about this.

92 Ada in Context

Volume 33, Number 2, June 2012 Ada User Journal

(c) Script the process. Helps to repeat it in
the same order each time. I made many
errors not doing so. Safest to delete the
"build" directory each time (but slowest).
(d) Build a native version first. Then build
it again, using itself as the compiler. If it
can build itself, THEN use it to build a
crosscompiler. Build the crosscompiler
with C support only first, then build the C
library, then turn on Ada support and
build again.
(e) If it goes wrong, the gcc build system
is so obscure that I found it difficult to
make any progress, and sometimes had to
do things the completely *wrong- way to
move forward, intending to learn the right
way later. e.g. patching a Makefile each
time from the script, because I don't
understand how to make the
autoconfigure tools generate it correctly
in the first place...
(f) Building gcc crosscompilers with Ada
support definitely feels lonely...
I must say gcc4.7 rc1 seemed to build
with fewer problems than the gcc4.6
version I was trying to build last summer.
But having a working compiler (or using
gnatdroid) is only part of the problem...
[ARM7 + ARM9 + 4 MB RAM + a few
DSPs = Nintendo DS lite —sparre]
I know nothing about the runtime support
on that system. There are probably 2
levels of problem : (1) how to get a basic
executable to run (gnatdroid produces
console apps that run successfully on the
Android) and (2) how to tap into the
machine's higher level facilities, gamepad,
GUI etc. This still seems to be a sticking
point with Gnatdroid/Android let alone
the Nintendo...
[…]
If its source is available, building it with
Ada support may be possible. But what
version of gcc? Bad BAD bad things
happen when building gcc4.3.3 with
gcc4.5 for example - like negative
enumerations (which 4.3 uses and 4.5
rejects as errors!
Or the runtime system (libc, interface to
GUI etc) may be portable to a newer
GCC. Or you may be able to substitute
the right version of GCC, separately built,
with Ada support. But any of these may
fail to build unless you can find or
recreate the correct patches. IMO gcc is
frighteningly fragile...
> On the other end, gnatdroid seems to

successfully translate Ada code into
binary that can be fed to ARM CPUs.
So unless I'm missing something, there
is nothing new to discover, I would
only need to merge both derivations.

A promising approach, I think. Where I
fell over was combining gnatdroid's
output into the Android NDK build
system to use anything more sophisticated
than the console - i.e. open a simple

window and display "Hello World". (I
could get it through the linker, but the
resulting executable didn't work)
I can imagine similar problems with the
Nintendo.
> Maybe I should start with smaller steps,

like writing C stuff going through
devkitARM, and then only start aiming
at Ada?

Definitely. This is an essential part of the
process, so you have a "known good"
chain to compare the Ada chain to, step
by step. Can I substitute my Ada .o for
this C .o into the linker? If not, what is
different between them?
> Would anyone have an estimation or a

bound on how difficult it can be?
Difficult. But IMO the more people
building Ada for embedded platforms, the
easier it will become, if we share
information and feed back fixes into the
process. (Which I have not been doing,
mainly because what I see as an obstacle,
probably arises from my own
blockheadedness rather than a genuine
bug in gcc. And I have felt reluctant to
submit them to sanity checks before
passing any potential bugs upstream -
mainly because there don't seem t be
many of us trying it, so where to submit
them? Clearly there are some, as Jacob
Sparre Andersen recently reported success
on Raspberry Pi If you think my
notes/scripts so far may be useful, I'll pass
them on.)
Consider having another platform
available as another way of moving
forward. (This works on the Raspberry Pi
but not the Nintendo... what is different
between them?)
From: Natasha Kerensikova

<lithiumcat@gmail.com>
Date: Sat, 28 Apr 2012 13:43:18 +0000
Subject: Re: Ada on Nintendo DS ?
Newsgroups: comp.lang.ada
> It should be straight-forward to include

Ada in that toolchain. The hard part
will be the Ada runtime library; it
assumes some operating system, similar
to POSIX. It is possible to use no
runtime, but then you lose some
features of Ada (exceptions, fixed
point, tasking, new/free, etc).

Well, that's encouraging for a start :-)
Is there some "official" list of what does
not have to be supported on an RTL-less
system? The C Standard has the notion of
"freestanding" and "hosted"
environments, which basically means
without or with libc (which is quite
weaker than POSIX); is there something
similar in Ada RM? Or is it up to the
compiler provider to decide what belong
to RTL and what is code generated on
bare metal?
For example I'm a bit surprised to see
fixed point in the list, when I would have

naively thought appropriate inline code
generation would be enough (exactly like
when I did fixed point "by hand" in 386
assembly).
> Is there an OS on the Nintendo?
I would have to double check, but as far
as I remember no. There is only a
bootloader that transfers binary code from
cartridge storage to memory and jump to
it, and that's it.
An even more fuzzy memory of mine
says Nintendo sells a SDK that comes
with most of what you would expect from
an OS, but that's not exactly within
hobbyist financial reach.
On the other hand, devkitARM comes
with a libnds that might take care of a
reasonable amount of stuff.
>> On the other end, gnatdroid seems to

successfully translate Ada code into
binary that can be fed to ARM CPUs.

> gnatdroid is intended for Android, a
specific operating system. It might be
useful as an example.

That's all I expected from it, really.
My reasoning was that devkitARM is an
example of
C --(1)--> GCC internals --(2)-->
Nintendo DS
while gnatdroid is an example of
Ada --(3)--> GCC internals --(4)--> native
Android
What I need is just arrows (2) and (3), and
I chose gnatdroid for the argument to
lower the risk of stumbling on platform-
related variation in "GCC internals" part.
Both are ARM code, and that's the closed
target I have found.
[…]
That was most definitely my plan. First
make RTL-less Ada run (which might not
be that easy considering "proving"
something runs involves an output, that
require going through DSPs or direct
access to LCD or speakers), then bind
divkitARM's libnds, and then the parts of
libada I miss, then celebration about the
projet reaching such an incredibly mature
stage, then the rest of libada.
[…]
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Sun, 29 Apr 2012 09:55:47 -0400
Subject: Re: Ada on Nintendo DS ?
Newsgroups: comp.lang.ada
> Is there some "official" list of what does

not have to be supported on an RTL-
less system? […]

No. Some of the annexes are optional,
but that's not really analogous to C's
"freestanding". An "Ada" without any
run-time libraries is almost certainly not
Ada -- it might be a subset of Ada.

Ada in Context 93

Ada User Journal Volume 33, Number 2, June 2012

> ... Or is it up to the compiler provider to
decide what belong to RTL and what is
code generated on bare metal?

Yes. The same is true of C, by the way,
and I suppose any other high-level
language. Language definitions are in the
business of telling compiler writers what
to do, not how to get it done.
Note that the line is kind of fuzzy in the
case of GNAT, because some features are
implemented as RTL calls, but those calls
can sometimes be inlined.
From: Rugxulo <rugxulo@gmail.com>
Date: Sun, 29 Apr 2012 11:29:10 -0700
Subject: Re: Ada on Nintendo DS ?
Newsgroups: comp.lang.ada
[…]
You could always check this mailing list:
http://sourceware.org/ml/crossgcc/
[…]
Okay, so here's the real tip I wanted to
pass along, though it's far from secret:
FreePascal's website claims that their
ARM support covers Linux, WinCE,
GBA, and NDS. So there. I know it's not
quite "Ada" per se, but close enough to be
comfortable (or at least moreso than C,
right?). And it doesn't need (barely any)
GNU tools to build or use, i.e. no
complex GCC / POSIX muck (no
offense!). So it should be self-contained
and easy to use (though I've not tried, I
neither have nor want a NDS).
http://sourceforge.net/projects/freepascal/
files/NDS/2.6.0/
arm-nds-fpc-2.6.0.i386-win32.zip
 2011-12-31 15.6 MB
Hmmm, I'm surprised it doesn't have
Linux host binaries, but I blindly assume
it's easy to build as FPC is pretty darn
portable.
From: Micronian Coder

<micronian2@gmail.com>
Date: Mon, 30 Apr 2012 22:34:37 -0700
Subject: Re: Ada on Nintendo DS ?
Newsgroups: comp.lang.ada
Have you considered looking into
RTEMS?
http://wiki.rtems.org/wiki/index.php/
RTEMSAda
There is a Nintendo DS BSP
(http://wiki.rtems.org/wiki/index.php/
Nds) that has support for some low level
functions (e.g. LCD access). The Ada
compiler for RTEMS was updated quite
often last time I tried it (at least 3 years
ago). When I experimented with Ada on
RTEMS I built a cross compiler for the
Nintendo GameBoy Advance on a
Slackware Linux machine. Instead of
running on real hardware, I ran the binary

output in a GBA emulator (I forgot which
one, and it wasn't maintained any longer
when I found it). I only got as far as
printing a Hello World program and
translated a C pong game example into
Ada that ran very well. There was an
issue with exceptions not getting caught,
but it looks like that may have been fixed
in more recent version of GCC for
RTEMS (see http://gcc.gnu.org/bugzilla/
show_bug.cgi?id=3D35143)
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: Thu, 03 May 2012 14:37:28 +0200
Subject: Ada on embedded devices (Was:

Ada on Nintendo DS ?)
Newsgroups: comp.lang.ada
[…]
You might want to follow the AVR-Ada
mailing list/newsgroup
(nntp+news.gmane.org:gmane.comp.hard
ware.avr.ada), even if your primary
embedded platform is a different one.
[…]
- MSP430 (TI Launchpad) - GCC but no

Ada reported yet (according to Google).
One known Ada project targeting the
MSP430 used AdaMagic as a front-end to
a C compiler targeting MSP430. Not my
favourite solution, but definitely a
possible solution.
- Atmel (Arduino etc.) - AVR-Ada works

but without much of a run-time system.
We are actively using AVR-Ada on a
commercial project I'm working on.
- ARM (various boards) - GNAT works

(apparently) flawlessly on
Debian/Squeeze on Raspberry Pi. Tero
Koskinen is doing some work to get
Gumstix modules to the same level of
Ada support as the Raspberry Pi. ACT
has a cool demo of GNAT with a
Ravenscar run-time running on
Mindstorms NXT (I have some LEGO
here in the office too ;-).

[…]
From: Brian Drummond

<brian@shapes.demon.co.uk>
Date: Fri, 4 May 2012 09:12:41 +0000
Subject: Re: Ada on embedded devices

(Was: Ada on Nintendo DS ?)
Newsgroups: comp.lang.ada
[working AVR-Ada —sparre]
Good to know. I have the "Blinky"
example running on 3 platforms (Arduino,
Teensy (where the LED is on a different
port) and the Evil Mad Scientist
breadboard... Working on stepper control
through the Arduino MotorShield.
[…]

R-Pi is getting a LOT of publicity at the
moment, and it's a shame that Ada isn't
riding on that wave yet. Especially since
Ada has a good role as a teaching
language, and the R-Pi is marketed as an
educational product.
Don't forget Android. A touchscreen
tablet could replace a lot of embedded
systems in industry (DRO/CNC
readouts/controllers for a start) Gnatdroid
on DragonflyBSD is a good start but its
executables are not really integrated with
the Android system.
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Fri, 4 May 2012 19:36:59 +0300
Subject: Re: Ada on embedded devices

(Was: Ada on Nintendo DS ?)
Newsgroups: comp.lang.ada
[…]
If you end up ordering something from
Adafruit, don't forget to buy Ada
Lovelace stickers:
https://www.adafruit.com/products/701
https://www.adafruit.com/products/696
From: Tero Koskinen tero.koskinen@iki.fi
Date: Fri, 4 May 2012 19:42:20 +0300
Subject: Re: Ada on embedded devices

(Was: Ada on Nintendo DS ?)
Newsgroups: comp.lang.ada
[…]
To be more precise: Gumstix Overo
devices can run same Debian armel
distribution as Raspberry Pi devices. In
addition, Overo can run Debian armhf
(which Raspberry Pi cannot).
Debian armhf does not contain GNAT
yet. I have been working on the issue, but
compiling full GCC package with all
languages is somewhat slow on 720MHz
machine... (I have GNAT for armhf done,
but it is cross-compiled on x86_64
machine, fully native build is not done
yet.)
From: Lucretia

<laguest9000@googlemail.com>
Date: Sat, 5 May 2012 07:25:34 -0700
Subject: Re: Ada on embedded devices

(Was: Ada on Nintendo DS ?)
Newsgroups: comp.lang.ada
If you go to
https://github.com/Lucretia/tamp and
follow the instructions for building gcc
there, you'll find that I've already done the
work to get a bare metal compiler going
on ARM using a custom and very bare
RTS without any nasty hacks in the
makefiles.
[…]

94

Volume 33, Number 2, June 2012 Ada User Journal

Conference Calendar
Dirk Craeynest
K.U.Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2012

July 01-03 24th International Conference on Software Engineering and Knowledge Engineering (SEKE'2012),

Redwood City, California, USA. Topics include: Integrity, Security, and Fault Tolerance; Reliability;
Component-Based Software Engineering; Embedded Software Engineering; Reverse Engineering;
Programming Languages and Software Engineering; Program Understanding; Software Assurance;
Software dependability; Software economics; Software Engineering Tools and Environments; Software
Maintenance and Evolution; Software product lines; Software Quality; Software Reuse; Software
Safety; Software Security; Software Engineering Case Study and Experience Reports; etc.

☺ July 09-11 GNU Tools Cauldron 2012, Prague, Czech Republic. Sponsored by: AdaCore, Google, IBM. Topics
include: gathering of GNU tools developers.

☺ July 10-13 10th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA'2012), Madrid, Spain. Topics include: Parallel and Distributed Algorithms, and Applications;
High-performance scientific and engineering computing; Middleware and tools; Reliability, fault
tolerance, and security; Parallel/distributed system architectures; Tools/environments for
parallel/distributed software development; Novel parallel programming paradigms; Compilers for
parallel computers; Distributed systems and applications; etc.

☺ July 11-13 24th Euromicro Conference on Real-Time Systems (ECRTS'2012), Pisa, Italy. Topics include:
avionics, aerospace, automotive applications; embedded devices; hardware/software co-design; compiler
support; component-based approaches; middleware and distribution technologies; programming
languages and operating systems; modelling and formal methods; etc.

July 16-20 36th Annual International Computer Software and Applications Conference (COMPSAC'2012),
Izmir, Turkey. Topics include: Software life cycle, evolution, and maintenance; Formal methods;
Software architecture and design; Reliability, metrics, and fault tolerance; Security; Real-time and
embedded systems; Education and learning; Applications; etc.

July 18-20 17th Annual IEEE International Conference on the Engineering of Complex Computer Systems
(ICECCS'2012), Paris, France. Topics include: Verification and validation, Model-driven development,
Reverse engineering and refactoring, Design by contract, Agile methods, Safety-critical & fault-tolerant
architectures, Real-time and embedded systems, Tools and tool integration, Industrial case studies, etc.

☺ August 27-28 17th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2012),
Paris, France. Co-located with FM'2012. Topics include: Design, specification, code generation and
testing based on formal methods; Methods, techniques and tools to support automated analysis,
certification, debugging, learning, optimization and transformation of complex, distributed, real-time
systems and embedded systems; Verification and validation methods that address shortcomings of
existing methods with respect to their industrial applicability (e.g., scalability and usability issues);
Tools for the development of formal design descriptions; Case studies and experience reports on
industrial applications of formal methods, focusing on lessons learned or identification of new research
directions; Impact of the adoption of formal methods on the development process and associated costs;
Application of formal methods in standardization and industrial forums.

Conference Calendar 95

Ada User Journal Volume 33, Number 2, June 2012

August 27-28 12th International Conference on Quality Software (QSIC'2012), Xi'an, China. Theme: "Engineering
of Quality Software".

August 27-31 18th International Symposium on Formal Methods (FM'2012), Paris, France. Theme:
"Interdisciplinary Formal Methods". Topics include: Interdisciplinary formal methods (techniques, tools
and experiences demonstrating formal methods in interdisciplinary frameworks); Formal methods in
practice (industrial applications of formal methods, experience with introducing formal methods in
industry, tool usage reports, etc); Tools for formal methods (advances in automated verification and
model-checking, integration of tools, environments for formal methods, etc); Role of formal methods in
software and systems engineering (development processes with formal methods, usage guidelines for
formal methods, method integration, qualitative or quantitative improvements); Theoretical foundations
(all aspects of theory related to specification, verification, refinement, and static and dynamic analysis);
Teaching formal methods (original contributions that provide insight, courses of action regarding the
teaching of formal methods, teaching experiences, educational resources, integration of formal methods
into the curriculum, etc).

September 05-08 38th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2012),
Cesme, Izmir, Turkey. Topics include: information technology for software-intensive systems.

☺ Sep 05-08 Track on Embedded Software Engineering (ESE'2012). Topics include: Design and
implementation of embedded software; Programming methodologies and languages for
embedded software; Model-based and component-based approaches to embedded
software development; Embedded software verification and validation; Testing and
certification of embedded software; Software-intensive systems applications, e.g. in
automotive, avionics, energy, industrial automation, health care, and telecommunication;
Embedded software architectures; etc.

September 10-12 17th European Symposium on Research in Computer Security (ESORICS'2012), Pisa, Italy. Topics
include: accountability, information hiding, information flow control, integrity, formal security methods,
language-based security, risk analysis and management, security verification, software security, etc.

☺ September 10-13 41st International Conference on Parallel Processing (ICPP'2012), Pittsburgh, PA, USA. Topics
include: all aspects of parallel and distributed computing, such as Architecture; Programming Models,
Languages & Environments; Compilers and Run-Time Systems; Applications; etc.

September 10 5th International Workshop on Parallel Programming Models and Systems
Software for High-end Computing (P2S2'2012).

September 13 International Workshop on Embedded Multicore Systems (EMS'2012). Topics
include: Compilers for heterogeneous embedded multi-core systems; Programming
models for embedded multi-core systems; Embedded OS designs and performance
tuning tools; Formal methods for embedded systems; etc.

September 10-13 8th International Conference on Open Source Systems (OSS'2012), Hammamet, Tunisia. Theme:
"Long-Term Sustainability with OSS". Deadline for early registration: August 10, 2012.

September 11-13 19th International Static Analysis Symposium (SAS'2012), Deauville, France. Topics include: abstract
interpretation, bug detection, data flow analysis, model checking, new applications, program
verification, security analysis, type checking, etc.

September 18-20 12th International Workshop on Automated Verification of Critical Systems (AVoCS'2012),
Bamberg, Germany. Topics include: Specification and Refinement, Verification of Software and
Hardware, Verification of Security-Critical Systems, Real-Time Systems, Dependable Systems, Verified
System Development, Industrial Applications, etc. Deadline for submissions: July 23, 2012 (short
papers). Deadline for registration: July 30, 2012.

September 19-20 6th International Symposium on Empirical Software Engineering and Measurement (ESEM'2012),
Lund, Sweden. Topics include: qualitative methods, empirical studies of software processes and
products, industrial experience and case studies, evaluation and comparison of techniques and models,
reports on the benefits / costs associated with using certain technologies, empirically-based decision
making, quality measurement and assurance, software project experience and knowledge management,
etc.

September 19-23 21st International Conference on Parallel Architectures and Compilation Techniques (PACT'2012),
Minneapolis, Minnesota, USA. Topics include: Parallel architectures and computational models;

96 Conference Calendar

Volume 33, Number 2, June 2012 Ada User Journal

Compilers and tools for parallel computer systems; Support for correctness in hardware and software
(especially with concurrency); Parallel programming languages, algorithms and applications;
Middleware and run time system support for parallel computing; Applications and experimental systems
studies; etc.

September 23-30 28th IEEE International Conference on Software Maintenance (ICSM'2012), Riva del Garda, Trento,
Italy. Topics include: reverse engineering and re-engineering, program and system comprehension,
static and dynamic analysis, software migration and renovation, mining software repositories,
maintenance and evolution processes, run-time evolution and update, empirical studies in software
maintenance and evolution, testing in relation to maintenance (i.e., regression testing), etc.

September 25-28 5th International Conference on Software Language Engineering (SLE'2012), Dresden, Germany.
Topics include: Formalisms used in designing and specifying languages and tools that analyze such
language descriptions; Language implementation techniques; Program and model transformation tools;
Language evolution; Approaches to elicitation, specification, or verification of requirements for
software languages; Language development frameworks, methodologies, techniques, best practices, and
tools for the broader language lifecycle; Design challenges in SLE; Applications of languages including
innovative domain-specific languages or "little" languages; etc.

September 26-28 11th International Conference on Intelligent Software Methodologies, Tools and Techniques
(SoMeT'2012), Genoa, Italy. Topics include: software methodologies, and tools for robust, reliable, non-
fragile software design; software developments techniques and legacy systems; software evolution
techniques; agile software and lean methods; formal methods for software design; software
maintenance; software security tools and techniques; formal techniques for software representation,
software testing and validation; software reliability, and software diagnosis systems; Model Driven
Development (DVD), code centric to model centric software engineering; etc.

October 01-04 14th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS'2012), Toronto, Canada. Topics include: Fault-Tolerance and Dependable Systems, Safety and
Security, Formal Methods, etc.

October 01-05 10th International Conference on Software Engineering and Formal Methods (SEFM'2012),
Thessaloniki, Greece. Topics include: programming languages, program analysis and type theory;
formal methods for real-time, hybrid and embedded systems; formal methods for safety-critical, fault-
tolerant and secure systems; light-weight and scalable formal methods; tool integration; applications of
formal methods, industrial case studies and technology transfer; education and formal methods; etc.

October 08-11 31st IEEE International Symposium on Reliable Distributed Systems (SRDS'2012), Irvine,
California, USA. Topics include: distributed systems design, development and evaluation, with
emphasis on reliability, availability, safety, security, trust and real time; high-confidence and safety-
critical systems; distributed objects and middleware systems; formal methods and foundations for
dependable distributed computing; evaluations of dependable distributed systems; etc.

☺ October 19-26 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2012), Tucson, Arizona, USA. Topics include: the intersection of programming,
programming languages, and software engineering; areas such as programming methods, design and
analysis, testing, concurrency, program analysis, empirical studies, and new programming languages; all
aspects of software construction and delivery, all factions of programming technologies. Deadline for
submissions: July 9, 2012 (posters, ACM Student Research competition, Doctoral Symposium); July 11,
2012 (Dynamic Languages Symposium); July 15, 2012 (demonstrations), August, 2012 (workshop
papers).

☺ October 21 4th Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU'2012). Topics include: methods, metrics and techniques for evaluating the
usability of languages and language tools, such as empirical studies of programming
languages, methodologies and philosophies behind language and tool evaluation,
software design metrics and their relations to the underlying language, user studies of
language features and software engineering tools, critical comparisons of programming
paradigms, tools to support evaluating programming languages, etc. Deadline for
submissions: August 10, 2012. Deadline for early registration: September 21, 2012.

November 10-17 20th ACM SIGSOFT International Symposium on the Foundations of Software Engineering
(FSE'2012), Research Triangle Park, North Carolina, USA. Topics include: Architecture and design;

Conference Calendar 97

Ada User Journal Volume 33, Number 2, June 2012

Components, services, and middleware; Distributed, parallel and concurrent software; Embedded and
real-time software; Empirical studies of software engineering; Formal methods; Reverse engineering
and maintenance; Security, safety and reliability; Software tools and development environments;
Specification and verification; etc. Deadline for submissions: July-September, 2012 (workshop papers).

November 12-16 14th International Conference on Formal Engineering Methods (ICFEM'2012), Kyoto, Japan. Topics
include: abstraction and refinement; software verification; program analysis; formal methods for
robotics, cyber-physical systems, medical devices, aeronautics, railway; formal methods for software
safety, security, reliability and dependability; experiments involving verified systems; formal model-
based development and code generation; etc.

☺ November 14-15 Automotive - Safety & Security 2012, Karlsruhe, Germany. Organized by Gesellschaft für Informatik
mit den Fachgruppen Ada, etc, and Ada-Deutschland. Topics include (in German): Zuverlässigkeit und
Sicherheit für betriebskritische Software und IT-Systeme; Evaluation u. Qualifikation von
Sicherheitseigenschaften automobiler Plattform- und Applikationssoftware; Werkzeuge zur
Verbesserung der Zuverlässigkeit im Software Life Cycle; Multi-Core-Architekturen; Fortschritte bei
Normen und Standardisierungen; etc.

* November 18-23 7th International Conference on Software Engineering Advances (ICSEA'2012), Lisbon, Portugal.
Topics include: Advances in fundamentals for software development; Advanced mechanisms for
software development; Advanced design tools for developing software; Software security, privacy,
safeness; Specialized software advanced applications; Open source software; Agile software techniques;
Software deployment and maintenance; Software engineering techniques, metrics, and formalisms;
Software economics, adoption, and education; etc. Deadline for submissions: July 18, 2012.

♦ Dec 02-06 ACM SIGAda Annual International Conference on High Integrity Language
Technology (HILT'2012), Boston, Massachusetts, USA. Deadline for submissions:
August 1, 2012 (industrial presentations).

☺ December 05-07 33th IEEE Real-Time Systems Symposium (RTSS'2012), San Juan, Porto Rico. Topics include: all
aspects of real-time systems design, analysis, implementation, evaluation, and experiences.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

☺ December 14-16 13th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2012), Beijing, China. Topics include: all areas of parallel and distributed
computing; Reliability, and fault-tolerance; Formal methods and programming languages; Software
tools and environments; Parallelizing compilers; Component-based and OO Technology;
Parallel/distributed algorithms; Task mapping and job scheduling; etc. Deadline for submissions: July 1,
2012 (workshops, tutorials), July 20, 2012 (papers).

☺ December 17-19 18th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2012),
Singapore. Topics include: Parallel and Distributed Applications and Algorithms; Multi-core and
Multithreaded Architectures; Security and Privacy; Dependable and Trustworthy Computing and
Systems; Real-Time Systems; Embedded systems; etc.

December 18-21 19th IEEE International Conference on High Performance Computing (HiPC'2012), Pune, India.
Topics include: Parallel and Distributed Algorithms/Systems, Parallel Languages and Programming
Environments, Hybrid Parallel Programming with GPUs and Accelerators, Scheduling, Fault-Tolerant
Algorithms and Systems, Scientific/Engineering/Commercial Applications, Compiler Technologies for
High-Performance Computing, Software Support, etc. Deadline for submissions: September 16, 2012
(student symposium). Deadline for early registration: November 14, 2012.

2013

☺ January 23-25 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2013),

Rome, Italy. Topics include: fundamental principles and important innovations in the design, definition,
analysis, transformation, implementation and verification of programming languages, programming
systems, and programming abstractions. Deadline for submissions: July 6, 2012 (paper registration),
July 10, 2012 (papers).

98 Conference Calendar

Volume 33, Number 2, June 2012 Ada User Journal

Feb 27 – Mar 01 5th International Symposium on Engineering Secure Software and Systems (ESSoS'2013), Paris,
France. Topics include: security architecture and design for software and systems; specification
formalisms for security artifacts; verification techniques for security properties; systematic support for
security best practices; programming paradigms for security; processes for the development of secure
software and systems; support for assurance, certification and accreditation; etc. Deadline for
submissions: September 30, 2012 (papers).

Feb 27 – Mar 01 21st Euromicro International Conference on Parallel, Distributed and Network-Based Computing
(PDP'2013), Belfast, Northern Ireland, UK. Topics include: embedded parallel and distributed systems,
multi- and many-core systems, programming languages and environments, runtime support systems,
dependability and survivability, advanced algorithms and applications, etc. Deadline for submissions:
July 30, 2012 (papers).

March 18-22 28th ACM Symposium on Applied Computing (SAC'2013), Coimbra, Portugal.

☺ Mar 18-22 Track on Programming Languages (PL'2013). Topics include: Compiling
Techniques, Formal Semantics and Syntax, Garbage Collection, Language Design and
Implementation, Languages for Modeling, Model-Driven Development New
Programming Language Ideas and Concepts, Practical Experiences with Programming
Languages, Program Analysis and Verification, Programming Languages from All
Paradigms, etc. Deadline for submissions: September 21, 2012 (full papers)

☺ Mar 18-22 Track on Object-Oriented Programming Languages and Systems (OOPS'2013).
Topics include: Aspects and components; Distribution and concurrency; Formal
verification; Integration with other paradigms; Interoperability, versioning and software
evolution and adaptation; Language design and implementation; Modular and generic
programming; Static analysis; Type systems; etc. Deadline for paper submissions:
September 21, 2012 (papers), October 31, 2012 (research abstracts).

March 25-29 12th International Conference on Aspect-Oriented Software Development (AOSD'2013), Fukuoka,
Japan. Topics include: Complex systems; Software design and engineering (evolution, economics,
composition, methodology, ...); Programming languages (language design, compilation and
interpretation, verification and static program analysis, formal languages, execution environments and
dynamic weaving, ...); Varieties of modularity (model-driven development, generative programming,
software product lines, contracts and components, ...); Tools (evolution and reverse engineering,
crosscutting views, refactoring, ...); Applications (distributed and concurrent systems, middleware,
runtime verification, ...). Deadline for submissions: July 23, 2012 (round 2), October 8, 2012 (round 3).

May 18-26 35th International Conference on Software Engineering (ICSE'2013), San Francisco, USA. Theme:
"Software Engineering Ideas to Change the World". Deadline for submissions: August 17, 2012
(technical research papers), November 2, 2012 (workshop proposals tutorial proposals software
engineering in practice papers software engineering education papers new ideas and emerging results
papers doctoral symposium submissions formal demonstrations), December 17, 2012 (ACM Student
Competition), January 30, 2013 (SCORE full project submission).

♦ June 10-14 18th International Conference on Reliable Software Technologies –
Ada-Europe'2013, Berlin, Germany. Deadline for submissions: December 3, 2012
(papers, tutorials, workshops), January 14, 2013 (industrial presentations).

☺ September 10-13 International Conference on Parallel Computing 2013 (ParCo'2013), München, Germany. Topics
include: all aspects of parallel computing, including applications, hardware and software technologies as
well as languages and development environments, in particular Parallel programming languages,
compilers, and environments; Tools and techniques for generating reliable and efficient parallel code;
Best practices of parallel computing on multicore, manycore, and stream processors; etc.

Forthcoming Events 99

Ada User Journal Volume 33, Number 2, June 2012

ACM SIGAda Annual International Conference

High Integrity Language Technology
HILT 2012

Preliminary Announcement / Call for Technical Contributions

Developing and Certifying Critical Software

Hyatt Regency Boston
Boston, Massachusetts, USA

December 2-6, 2012
Sponsored by ACM SIGAda
SIGAda.HILT2012@acm.org

http://www.sigada.org/conf/hilt2012

SUMMARY
High integrity software must not only meet correctness and performance criteria but also satisfy stringent safety
and/or security demands, typically entailing certification against a relevant standard. A significant factor affecting
whether and how such requirements are met is the chosen language technology and its supporting tools: not just
the programming language(s) but also languages for expressing specifications, program properties, domain
models, and other attributes of the software or overall system.
HILT 2012 will provide a forum for experts from academia/research, industry, and government to present the
latest findings in designing, implementing, and using language technology for high integrity software. To this end
we are soliciting technical papers, experience reports (including experience in teaching), and tutorial proposals on
a broad range of relevant topics.
POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:
• New developments in formal methods
• Multicore and high integrity systems
• Object-Oriented Programming in high integrity systems
• High-integrity languages (e.g., SPARK)
• Use of high reliability profiles such as Ravenscar
• Use of language subsets (e.g., MISRA C, MISRA C++)
• Software safety standards (e.g., DO-178B and DO-178C)
• Typed/Proof-Carrying Intermediate Languages
• Contract-based programming (e.g., Ada 2012)
• Model-based development for critical systems
• Specification languages (e.g., Z)

• Annotation languages (e.g., JML)
• Case studies of high integrity systems
• Analysis, testing, and validation
• Static and dynamic analysis of code
• System Architecture and Design including

Service-Oriented Architecture and Agile Development
• Information Assurance
• Security and the Common Criteria /

Common Evaluation Methodology
• Architecture design languages (e.g., AADL)
• Fault tolerance and recovery

KEYNOTE SPEAKERS
HILT 2012 will feature internationally recognized experts:

Kathleen Fisher
DARPA

Nancy Leveson
MIT

Barbara Liskov
MIT

Greg Morrisett
Harvard Univ.

Guy Steele
Oracle Labs

100 Forthcoming Events

Volume 33, Number 2, June 2012 Ada User Journal

KINDS OF TECHNICAL CONTRIBUTIONS
TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically 10-
20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings and
in ACM Ada Letters. The Proceedings will be entered into the widely consulted ACM Digital Library.

EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature. If
your abstract is accepted, a full paper is required and will appear in the proceedings. Extended abstracts will be
double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its relationship with previous work
by you and others (with bibliographic references), results to date, and future directions.

EXPERIENCE REPORTS present timely results and “lessons learned”. Submit a 1-2 page description of the
project and the key points of interest, for publication in the proceedings. A paper will not be required.

PANEL SESSIONS gather groups of experts to discuss/debate particular topics. Panel proposals should be 1-2
pages in length, identifying the topic, coordinator, and potential panelists.

INDUSTRIAL PRESENTATIONS Submit a short overview (at least 1 page in length) of the proposed
presentation. Authors of accepted presentations will be invited to submit full articles for ACM Ada Letters.

WORKSHOPS are focused sessions on particular subjects. Workshop proposals, up to 5 pages in length, will be
selected based on their applicability to the conference and potential for attracting participants.

TUTORIALS can address a broad spectrum of topics relevant to the conference theme. Submissions will be
evaluated based on applicability, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial
proposals should include the expected level of experience of participants, an abstract or outline, the qualifications
of the instructor(s), and the length of the tutorial (half day or full day).

HOW TO SUBMIT: Send in Word, PDF, or text format:

Submission Deadline Send to
Technical articles, extended abstracts,
experience reports, panel session
proposals, or workshop proposals

June 29, 2012
Program Co-Chairs
Jeff Boleng – jeff@boleng.com
 or
Tucker Taft –
taft@adacore.com Industrial presentation proposals August 1, 2012 (overview)

October 1, 2012 (abstract)

Tutorial proposals June 29, 2012 John McCormick, Tutorials Chair
mccormick@cs.uni.edu

At least one author for each accepted submission needs to register for and commit to presenting at the conference.

FURTHER INFORMATION
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and
university curricula. The benefits include full conference and tutorial registration. For details please visit the
conference web site or contact Prof. Michael B. Feldman (MFeldman@gwu.edu)

OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper
selected by the program committee as the outstanding student contribution to the conference.

SPONSORS AND EXHIBITORS: Please contact Alok Srivastava (asrivastava@yahoo.com) to learn the
benefits of becoming a sponsor and/or exhibitor at HILT 2012.

ANY QUESTIONS?
Please send email to SIGAda.HILT2012@acm.org, or contact:

• HILT 2012 Conference Chair (Ben Brosgol, brosgol@adacore.com),
• SIGAda Vice-Chair for Meetings and Conferences (Alok Srivastava, asrivastava@yahoo.com), or
• SIGAda Chair (Ricky E. Sward, rsward@mitre.org).

Forthcoming Events 101

Ada User Journal Volume 33, Number 2, June 2012

First Call for Papers
18t h International Conference on

Reliable Software Technologies
Ada-Europe 2013

10-14 June 2013, Berlin, Germany

http://www.ada-europe.org/conference2013

 Special Interest
Group Ada of the German
Informatics Society (GI FG Ada)

Conference and Program
 Co-Chairs

Hubert B. Keller
Karlsruhe Institute of Technology
hubert.keller@kit.edu
Erhard Plödereder
University of Stuttgart
ploedere@iste.uni-stuttgart.de

Tutorial Chair

Jürgen Mottok
Regensburg University of Applied
Sciences
Juergen.Mottok@hs-
regensburg.de

Industrial Chair

Jørgen Bundgaard
Ada in Denmark
jb@ada-dk.org

Exhibition Chair

Peter Dencker
ETAS GmbH
peter.dencker@etas.com

Publicity Chair

Dirk Craeynest
Ada-Belgium & KU Leuven
Dirk.Craeynest@cs.kuleuven.be

Local Chair

Raúl Rojas
FU Berlin
Raul.Rojas@fu-berlin.de

Local Organizer

Christine Harms
christine.harms@ccha.de

In cooperation (requests
pending) with

ACM SIGAda, SIGBED, SIGPLAN

General Information

The 18th International Conference on Reliable Software Technologies – Ada-Europe 2013 will
take place in Berlin, Germany. Following its traditional style, the conference will span a full
week, including, from Tuesday to Thursday, three days of parallel scientific, technical and
industrial sessions, along with parallel tutorials and workshops on Monday and Friday.

Schedule

Topics
The conference has successfully established itself as an international forum for providers,
practitioners and researchers into reliable software technologies. The conference
presentations will illustrate current work in the theory and practice of the design,
development and maintenance of long-lived, high-quality software systems for a variety of
application domains. The program will allow ample time for keynotes, Q&A sessions, panel
discussions and social events. Participants will include practitioners and researchers
representing industry, academia and government organizations active in the promotion and
development of reliable software technologies.

To mark the completion of the Ada 2012 standard revision process, contributions are sought
that discuss experiences with the revised language.
Topics of interest to this edition of the conference include but are not limited to:
• Multicore Programming: Reliable Parallel Software, Scheduling on Multi-Core Systems,

Compositional Parallelism Models, Performance Modelling, Deterministic Debugging.
• Real-Time and Embedded Systems: Real-Time Software, Architecture Modelling, HW/SW Co-

Design, Reliability and Performance Analysis.
• Theory and Practice of High-Integrity Systems: Distribution, Fault Tolerance, Security,

Reliability, Trust and Safety, Languages Vulnerabilities.
• Software Architectures: Design Patterns, Frameworks, Architecture-Centered Development,

Component and Class Libraries, Component-based Design and Development.
• Methods and Techniques for Software Development and Maintenance: Requirements

Engineering, Object-Oriented Technologies, Model-driven Architecture and Engineering, Formal
Methods, Re-engineering and Reverse Engineering, Reuse, Software Management Issues.

• Enabling Technologies: Compilers, Support Tools (Analysis, Code/Document Generation,
Profiling), Run-time Systems, Distributed Systems, Ada and other Languages for Reliable Systems.

• Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis,
Verification, Validation, Testing of Software Systems.

• Mainstream and Emerging Applications: Manufacturing, Robotics, Avionics, Space, Health
Care, Transportation, Energy, Games and Serious Games, etc.

• Experience Reports in Reliable System Development: Case Studies and Comparative
Assessments, Management Approaches, Qualitative and Quantitative Metrics.

• Experiences with Ada and its Future: New language features, implementation and use issues;
positioning in the market and in education; where should Ada stand in the software engineering
curriculum; lessons learned on Ada Education and Training Activities with bearing on any of the
conference topics.

3 December 2012 Submission of regular papers, tutorial and workshop proposals
14 January 2013 Submission of industrial presentation proposals

11 February 2013 Notification of acceptance to all authors
10 March 2013 Camera-ready version of regular papers required

11 May 2013 Industrial presentations, tutorial and workshop material required

102 Forthcoming Events

Volume 33, Number 2, June 2012 Ada User Journal

Program Committee
Ted Baker, US National Science

Foundation, USA
Johann Blieberger, Technische

Universität Wien, Austria
Bernd Burgstaller, Yonsei University,

Korea
Alan Burns, University of York, UK
Rod Chapman, Altran Praxis Limited,

UK
Dirk Craeynest, Ada-Belgium &

KU Leuven, Belgium
Juan A. de la Puente, Universidad

Politécnica de Madrid, Spain
Franco Gasperoni, AdaCore, France
Michael González Harbour,

Universidad de Cantabria, Spain
Christoph Grein, Ada Germany,

Germany
Peter Hermann, Universität Stuttgart,

Germany
Jérôme Hugues, ISAE Toulouse,

France
Pascal Leroy, Google, Switzerland
Albert Llemosí, Universitat de les Illes

Balears, Spain
Franco Mazzanti, ISTI-CNR Pisa,

Italy
John McCormick, University of

Northern Iowa, USA
Stephen Michell, Maurya Software,

Canada
Luís Miguel Pinho, CISTER Research

Centre/ISEP, Portugal
Jürgen Mottok, Regensburg University

of Applied Sciences, Germany
Manfred Nagl, RWTH Aachen

University, Germany
Laurent Pautet, Telecom ParisTech,

France
Jorge Real, Universitat Politècnica de

València, Spain
Jean-Pierre Rosen, Adalog, France
Ed Schonberg, AdaCore, USA
Tucker Taft, AdaCore, USA
Theodor Tempelmeier, Univ. of

Applied Sciences Rosenheim,
Germany

Tullio Vardanega, Università di
Padova, Italy

Industrial Committee
to be announced

Call for Regular Papers
Authors of regular papers which are to undergo peer review for acceptance are invited to submit
original contributions. Paper submissions shall be in English, complete and not exceeding 14
LNCS-style pages in length. Authors should submit their work via the EasyChair conference system
(http://www.easychair.org/conferences/?conf=adaeurope2013). The format for submission is
solely PDF. For any remaining questions, please contact a Program Co-Chair.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS)
series by Springer, and will be available at the start of the conference. The authors of accepted
regular papers shall prepare camera-ready submissions in full conformance with the LNCS style,
not exceeding 14 pages and strictly by March 10, 2013. For format and style guidelines authors
should refer to the following URL: http://www.springer.de/comp/lncs/authors.html. Failure to
comply and to register for the conference by that date will prevent the paper from appearing in
the proceedings.
The conference is ranked class A in the CORE ranking, is among the top quarter of CiteSeerX
Venue Impact Factor, and listed in DBLP, SCOPUS and the Web of Science Conference
Proceedings Citation index, among others.

Awards

Ada-Europe will offer honorary awards for the best regular paper and the best presentation.
Call for Industrial Presentations

The conference also seeks industrial presentations which deliver value and insight, but may not fit
the selection process for regular papers. Authors of industrial presentations are invited to submit
an overview (at least 1 full page in length) of the proposed presentation by January 14, 2013.
Please follow the submission instructions on the conference website. The Industrial Committee
will review the proposals and make the selection. The authors of selected presentations shall
prepare a final short abstract and submit it by May 13, 2013, aiming at a 20-minute talk. The
authors of accepted presentations will be invited to submit corresponding articles for publication
in the Ada User Journal, which will host the proceedings of the Industrial Program of the
Conference. For any further information please contact the Industrial Chair directly.

Call for Tutorials

Tutorials should address subjects that fall within the scope of the conference and may be
proposed as either half- or full-day events. Proposals should include a title, an abstract, a
description of the topic, a detailed outline of the presentation, a description of the presenter's
lecturing expertise in general and with the proposed topic in particular, the proposed duration
(half day or full day), the intended level of the tutorial (introductory, intermediate, or advanced),
the recommended audience experience and background, and a statement of the reasons for
attending. Proposals should be submitted by e-mail to the Tutorial Chair. The authors of accepted
full-day tutorials will receive a complimentary conference registration as well as a fee for every
paying participant in excess of 5; for half-day tutorials, these benefits will be accordingly halved.
The Ada User Journal will offer space for the publication of summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be
submitted for half- or full-day events, to be scheduled at either end of the conference week.
Workshop proposals should be submitted to a Conference Co-Chair. The workshop organizer shall
also commit to preparing proceedings for timely publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the three days of the main conference. Vendors and
providers of software products and services should contact a Conference Co-Chair for information
and for allowing suitable planning of the exhibition space and time.

Grant for Reduced Student Fees

A limited number of sponsored grants for reduced fees is expected to be available for students
who would like to attend the conference or tutorials. Contact a Conference Co-Chair for details.

Press Release 103

Ada User Journal Volume 33, Number 2, June 2012

FOR IMMEDIATE RELEASE

Ada 2012 Language Standard Submitted to ISO
Language revision adds contract-based programming, multicore support, and other

advanced features

STOCKHOLM, SWEDEN, June 12, 2012 – At the Ada-Europe 2012 conference in
Stockholm, the Ada Resource Association (ARA) and Ada-Europe today announced
the completion of the design of the latest version of the Ada programming language
and the submission of the reference manual to the International Organization for
Standardization (ISO) for approval. The language revision, known as Ada 2012, is
under the auspices of ISO/IEC JTC1/SC22/WG9 and was conducted by the Ada
Rapporteur Group (ARG) subunit of WG9, with sponsorship in part from the ARA and
Ada-Europe.

Ada 2012 brings significant enhancements to Ada, most notably in the area of
“contract-based programming.” New features here include the ability to specify
preconditions and postconditions for subprograms, and invariants for private
(encapsulated) types. These take the form of Boolean expressions that can be
interpreted (under programmer control) as run-time conditions to be checked. The
contract-based programming features fit in smoothly with Ada’s Object-Oriented
Programming model, and support the type substitutability guidance supplied in the
Object-Oriented Technologies and Related Techniques Supplement (DO-332) to the
new avionics software safety standard DO-178C / ED-12C.

Other new features in Ada 2012 include enhancements to the containers library,
additional expressiveness through features such as conditional expressions and
more powerful iterators, and support for multicore platforms (task affinities, and the
extension of the Ravenscar profile – standardized in Ada 2005 as an efficient and
predictable tasking subset for high-integrity real-time systems – to multiprocessor
and multicore environments).

“Ada 2012 is a major advance in the state of the art,” said Dr. Edmond Schonberg,
Rapporteur of the ARG. “The new features answer real user needs, and help cement
Ada’s reputation as a language of choice for systems where reliability, safety, and
security are needed.”

“The Ada Rapporteur Group did an excellent job of carrying out the language
revision,” said Dr. Joyce Tokar, Convenor of WG9. “Special thanks to
Randy Brukardt for his editorial work on the Language Reference Manual, and to

C r i t i c a l S y s t e m s a n d S o f t w a r e D e v e l o p m e n t S o l u t i o n s

Esterel Technologies is the worldwide leader of
model-based design, verification and code generation tools

for critical system and software development.

Esterel Technologies’ SCADE® product family provides complete
solutions that easily integrate, allowing for development

optimization and increased communication among team members.

SCADE Suite®
Control and Logic Application Development

SCADE Display®
Display and HMI Development

SCADE SystemTM
System Architecture Design

SCADE LifeCycleTM
Application Lifecycle Management

SCADE Solutions for ARINC 661 Compliant Systems
ARINC 661-compliant avionics displays

SCADE qualified/certified
code generators produce C and Ada

Visit www.esterel-technologies.com to learn more.
Esterel Technologies SA - 8, rue Blaise Pascal - Parc Euclide - 78990 Elancourt

Phone: +33 1 30 68 61 60 - sales@esterel-technologies.com

106

Volume 33, Number 2, June 2012 Ada User Journal

Rationale for Ada 2012: 3 Structure and visibility
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract
This paper describes various improvements in the
areas of structure and visibility for Ada 2012.
Perhaps the most amazing change is that functions
may now have parameters of all modes. In earlier
versions of Ada, functions could only have parameters
of mode in and so could not change variables
explicitly passed as parameters; however, they could
silently manipulate global variables in any way
whatsoever. In order to ameliorate any risks of
foolishness with this new freedom, there are new rules
regarding order dependence.
There are also important improvements to incomplete
types which make them much more useful; these
include completion by a private type, their use as
parameters and a new form of generic parameter.
Other improvements include a new form of use clause
and changes to extended return statements.
Keywords: rationale, Ada 2012.

1 Overview of changes
The WG9 guidance document [1] does not specifically
identify problems in this area other than through a general
exhortation to remedy shortcomings.

The following Ada Issues cover the relevant changes and
are described in detail in this paper:

 15 Constant return objects

 19 Primitive subprograms are frozen with a tagged type

 32 Extended return statements for class-wide functions

 53 Aliased views of unaliased objects

142 Explicitly aliased parameters

143 In out parameters for functions

144 Detecting dangerous order dependencies

150 Use all type clause

151 Incomplete types as parameters and result

162 Incomplete types completed by partial views

213 Formal incomplete types

214 Default discriminants for limited tagged types

235 Accessibility of explicitly aliased parameters

277 Aliased views of extended return objects

296 Freezing of subprograms with incomplete parameters

These changes can be grouped as follows.

First there is the exciting business of allowing parameters
of all modes for functions (143) and the associated rules to
prevent certain order dependences (144). Another change
concerning parameters is permitting explicitly aliased
parameters (142, 235).

There are then a number of improvements in the area of
incomplete types (151, 162) including the ability to permit
them as formal generic parameters (213, 296). There are
also related changes to the freezing rules (19).

There is also a minor change regarding discriminants (214).

The existing two forms of use clause (use package clause
and use type clause) are augmented by a third form: the use
all type clause (150).

Finally, there are a number of changes (corrections really)
to extended return statements which were introduced in
Ada 2005 (15, 32, 277). An associated change is the
introduction of the idea of an immutably limited type (53).

2 Subprogram parameters
The main topic here is the fact that functions (but not
operators) in Ada 2012 can have parameters of any mode.

This is a topic left over from Ada 2005. The epilogue to the
Rationale for Ada 2005 [2] discusses a number of topics
that were abandoned and in the case of function modes
says:

"Clearly, Ada functions are indeed curious. But strangely
this AI (that is AI95-323) was abandoned quite early in the
revision process on the grounds that it was 'too late'.
(Perhaps too late in this context meant 25 years too late.)"
It was not possible to agree on a way forward and so effort
was devoted to other topics.

But mists clear with time. The big concern was that
allowing parameters of all modes might open the door to
dangerous programming practices but a solution to that was
found in the introduction of stricter rules preventing many
order dependences.

It is instructive to quickly go through the various historical
documents.

A probably little known document is one written in 1976 by
David Fisher of the Institute for Defense Analyses [3]
which provided the foundation for the requirements for the
development of a new language. It doesn't seem to
distinguish between procedures and functions; it does

J. G. P. Barnes 107

Ada User Journal Volume 33, Number 2, June 2012

mention the need for parameters which are constant and
those which effectively rename a variable. Moreover, it
does say (item C1 on page 81): Side effects which are
dependent on the evaluation order among the arguments of
an expression will be evaluated left-to-right. This does not
actually require left-to-right evaluation but the behaviour
must be as if it were. I have always thought it tragic that
this was not observed.

This document was followed by a series known as
Strawman, Woodenman, Tinman, Ironman [4] and
finishing with Steelman [5].

The requirement on left-to-right evaluation remained in
Tinman and was even stronger in Ironman but was
somewhat weakened in Steelman to allow instrumentation
and ends with a warning about being erroneous.

Further requirements are introduced in Ironman which
requires both functions and procedures as we know them.
Moreover, Ironman has a requirement about assignment to
variables non-local to a function; they must be encapsulated
in a region that has no calls on the function; this same
requirement notes that it implies that functions can only
have input parameters. This requirement does not seem to
have carried forward to Steelman.

However, Ironman also introduces a requirement on
restrictions to prevent aliasing. One is that the same actual
parameter of a procedure cannot correspond to more than
one input-output parameter. This requirement does survive
into Steelman. But, it only seems to apply to procedures
and not to functions and Steelman appears not to have
noticed that the implied requirement that functions can only
have input parameters has vanished.

It interesting to then see what was proposed in the sequence
of languages leading to Ada 83, namely, Preliminary Green
[6], Green [7], Preliminary Ada [8], and Ada [9]. Note that
Preliminary Green was based on Ironman whereas Green
was based on Steelman.

In Preliminary Green we find procedures and functions.
Procedures can have parameters of three modes, in, out and
access (don't get excited, access meant in out). Functions
can only have parameters of mode in. Moreover,

 side effects to variables accessible at the function call
are not allowed. In particular, variables that are global to
the function body may not be updated in the function
body. The rationale for Preliminary Green makes it quite
clear that functions can have no side effects whatsoever.

In Green we find the three modes in, out, and in out. But
the big difference is that as well as procedures and
functions as in preliminary Green, there are now value
returning procedures such as

procedure Random return Real range –1.0 .. 1.0;

The intent is that functions are still free of all side effects
whereas value returning procedures have more flexibility.
However, value returning procedures can only have
parameters of mode in and

 assignments to global variables are permitted within
value returning procedures. Calls of such procedures are
only valid at points of the program where the
corresponding variables are not within the scope of their
declaration. The order of evaluation of these calls is
strictly that given in the text of the program. Calls to
value returning procedures are only allowed in
assignment statements, initializations and procedure
calls.

The rationale for Green notes that if you want to instrument
a function then use a pragma. It also notes that functions

 with arbitrary side effects would undermine the
advantage of the functional approach to software. In
addition it would complicate the semantics of all
language structures where expressions involving such
calls may occur. Hence this form of function is not
provided.

And now we come to Ada herself. There are manuals dated
July 1979 (preliminary Ada), July 1980 (draft mil-std), July
1982 (proposed ANSI standard), and January 1983 (the
ANSI standard usually known as Ada 83).

In Preliminary Ada, we have procedures, functions and
value returning procedures exactly as in Green. Indeed, it
seems that the only difference between Green and
Preliminary Ada is that the name Green has been converted
to Ada.

But the 1980 Ada manual omits value returning procedures
and any mention of any restrictions on what you can do in a
function. And by 1982 we find that we are warned that
parameters can be evaluated in any order and so on.

The Rationale for Ada 83 [10] didn't finally emerge until
1986 and discusses briefly the reason for the change which
is basically that benevolent side effects are important. It
concludes by quoting from a paper regarding Algol 60 [11]

 The plain fact of the matter is (1) that side-effects are
sometimes necessary, and (2) programmers who are
irresponsible enough to introduce side-effects
unnecessarily will soon lose the confidence of their
colleagues and rightly so.

However, an interesting remark in the Rationale for Ada 83
in the light of the change in Ada 2012 is

 The only limitation imposed in Ada on functions is that
the mode of all parameters must be in: it would not be
logical to allow in out and out parameters for functions
in a language that excludes nested assignments within an
expression.

Hmm. That doesn't really seem to follow. Allowing
assignments in expressions as in C is obnoxious and one of
the sources of errors in C programs. It is not so much that
permitting side-effects in expressions via functions is
unwise but more that treating the result of an assignment as
a value nested within an expression is confusing. Such
nested constructions are naturally still excluded from Ada
2012 and so it is very unlikely that the change will be
regretted.

108 Rat ionale for Ada 2012: 3 Structure and vis ib i l i ty

Volume 33, Number 2, June 2012 Ada User Journal

Now we must turn to the question of order dependences.
Primarily, to enable optimization, Ada does not define the
order of evaluation of a number of constructions. These
include

▪ the parameters in a subprogram or entry call,

▪ the operands of a binary operator,

▪ the destination and value in an assignment,

▪ the components in an aggregate,

▪ the index expressions in a multidimensional name,

▪ the expressions in a range,

▪ the barriers in a protected object,

▪ the guards in a select statement,

▪ the elaboration of library units.

The expressions involved in the above constructions can
include function calls. Indeed, as AI-144 states "Arguably,
Ada has selected the worst possible solution to evaluation
order dependences (by not specifying an order of
evaluation), it does not detect them in any way, and then
says that if you depend upon one (even if by accident), your
code will fail at some point in the future when your
compiler changes. Something should be done about this."

It is far too late to do anything about specifying the order of
evaluation so the approach taken is to prevent as much
aliasing as possible since aliasing is an important cause of
order of evaluation problems. Ada 2012 introduces rules
for determining when two names are "known to denote the
same object".

Thus they denote the same object if

▪ both names statically denote the same stand-alone object
or parameter; or

▪ both names are selected components, their prefixes are
known to denote the same object, and their selector
names denote the same component.

and so on with similar rules for dereferences, indexed
components and slices. There is also a rule about renaming
so that if we have

C: Character renames S(5);

then C and S(5) are known to denote the same object. The
index naturally has to be static.

A further step is to define when two names "are known to
refer to the same object". This covers some cases of
overlapping. Thus given a record R of type T with a
component C, we say that R and R.C are known to refer to
the same object. Similarly with an array A we say that A
and A(K) are known to refer to the same object (K does not
need to be static in this example).

Given these definitions we can now state the two basic
restrictions.

The first concerns parameters of elementary types:

▪ For each name N that is passed as a parameter of mode
in out or out to a call of a subprogram S, there is no
other name among the other parameters of mode in out
or out to that call of S that is known to denote the same
object.

Roughly speaking this comes down to saying two or more
parameters of mode out or in out of an elementary type
cannot denote the same object. This applies to both
functions and procedures.

This excludes the example given in the Introduction which
was

procedure Do_It(Double, Triple: in out Integer) is
begin
 Double := Double * 2;
 Triple := Triple * 3;
end Do_It;

with

Var: Integer := 2;
...
Do_It(Var, Var); -- illegal in Ada 2012

The key problem is that parameters of elementary types are
always passed by copy and the order in which the
parameters are copied back is not specified. Thus Var might
end up with either the value of Double or the value of
Triple.

The other restriction concerns constructions which have
several constituents that can be evaluated in any order and
can contain function calls. Basically it says:

▪ If a name N is passed as a parameter with mode out or
in out to a function call that occurs in one of the
constituents, then no other constituent can involve a
name that is known to refer to the same object.

Constructions cover many situations such as aggregates,
assignments, ranges and so on as listed earlier.

This rule excludes the other example in the Introduction,
namely, the aggregate

(Var, F(Var)) -- illegal in Ada 2012

where F has an in out parameter.

The rule also excludes the assignment

Var := F(Var); -- illegal

if the parameter of F has mode in out. Remember that the
destination of an assignment can be evaluated before or
after the expression. So if Var were an array element such
as A(I) then the behaviour could vary according to the
order. To encourage good practice, it is also forbidden even
when Var is a stand-alone object.

Similarly, the procedure call

Proc(Var, F(Var)); -- illegal

is illegal if the parameter of F has mode in out. Examples
of overlapping are also forbidden such as

J. G. P. Barnes 109

Ada User Journal Volume 33, Number 2, June 2012

ProcA(A, F(A(K)); -- illegal

ProcR(R, F(R.C)); -- illegal

assuming still that F has an in out parameter and that ProcA
and ProcR have appropriate profiles because, as explained
above, A and A(K) are known to refer to the same object as
are R and R.C.

On the other hand

Proc(A(J), F(A(K)); -- OK

is permitted provided that J and K are different objects
because this is only a problem if J and K happen to have the
same value.

For more details the reader is referred to the AI. The intent
is to detect situations that are clearly troublesome. Other
situations that might be troublesome (such as if J and K
happen to have the same value) are allowed, since to
prevent them would make many programs illegal that are
not actually dubious. This would cause incompatibilities
and upset many users whose programs are perfectly correct.

The other change in Ada 2012 concerning parameters is
that they may be explicitly marked aliased thus

procedure P(X: aliased in out T; ...);

As a consequence within P we can write X'Access. Recall
that tagged types were always considered implicitly aliased
anyway and always passed by reference. If the type T is a
by-copy type such as Integer, then adding aliased causes it
to be passed by reference. (So by-copy types are not always
passed by copy!)

The possibility of permitting explicitly aliased function
results such as

function F(...) return aliased T; -- illegal Ada 2012

was considered but this led to difficulties and so was not
pursued.

The syntax for parameter specification is modified thus

parameter_specification ::=
 defining_identifier_list: [aliased] mode [null exclusion]
 subtype_mark [:= default_expression]
| defining_identifier_list: access_definition
 [:= default_expression]

showing that aliased comes first as it does in all contexts
where it is permitted.

The rules for mode conformance are modified as expected.
Two profiles are only mode conformant if both or neither
are explicitly marked as aliased. Although adding aliased
for a tagged type parameter makes little difference since
tagged types are implicitly aliased, if this is done for a
subprogram declaration then it must be done for the
corresponding body as well.

There are (of course) rules regarding accessibility; these are
much as expected although a special case arises in function
return statements. As usual, if the foolish programmer does

something silly, the compiler will draw attention to the
error.

Explicitly aliased parameters were largely introduced to
overcome problems in the container library. Examples will
be given in the paper addressing containers.

3 Incomplete types
Incomplete types in Ada 83 were very incomplete. They
were mostly used for the traditional linked list such as

type Cell; -- incomplete
type Cell_Ptr is access Cell;

type Cell is -- the completion
 record
 Next: Cell_Ptr;
 Element: Pointer;
 end record;

The incomplete type could only be used in the declaration
of an access type. Moreover, the incomplete declaration
and its completion had to be in the same list of declarations.
However, if the incomplete declaration is in a private part
then the completion can be deferred to the body; this is the
so-called Taft Amendment added to Ada 83 at the last
minute.

Ada 95 introduced tagged types and generalized access
types and so made the language much more flexible but
made no changes to incomplete types as such. However, it
soon became clear that the restrictive nature of incomplete
types was a burden regarding mutually dependent types and
was a key issue in the requirements for Ada 2005.

The big step forward in Ada 2005 was the introduction of
the limited with clause. This enables a package to have an
incomplete view of a type in another package and solves
many problems of mutually recursive types.

However, the overall rule remained that an incomplete type
could only be completed by a full type declaration and,
moreover, a parameter could not (generally) be of an
incomplete type. This latter restriction encouraged the use
of access parameters.

As mentioned in the Introduction, the first rule prevented
the following

type T1;
type T2 (X: access T1) is private;
type T1 (X: access T2) is private; -- illegal in Ada 2005

since the completion of T1 could not be by a private type.

This is changed in Ada 2012 so that an incomplete type can
be completed by any type (other than another incomplete
type). Note especially that an incomplete type can be
completed by a private extension as well as by a private
type.

The other major problem in Ada 2005 was that with
mutually dependent types in different packages we could
not use incomplete types as parameters because it was not
known whether they were by-copy or by-reference. Of

110 Rat ionale for Ada 2012: 3 Structure and vis ib i l i ty

Volume 33, Number 2, June 2012 Ada User Journal

course, if they were tagged then we did know they were by
reference but that was a severe restriction.

The need to know whether parameters are by reference or
by copy was really a red herring. The model used for
parameter passing in versions of Ada up to and including
Ada 2005 was basically that at the point of the declaration
of a subprogram we need to have all the information
required to call the subprogram. Thus we needed to know
how to pass parameters and so whether they were by
reference or by copy.

But this is quite unnecessary; we don't need to know the
mechanisms involved until a point where the subprogram is
actually called or the body itself is encountered since it is
only at those points that the parameter mechanism is really
required. It is only at those points that the compiler has to
grind out the code for the call or for the body.

So the rules in Ada 2012 are changed to use this "when we
need to know" model. This is discussed in AI-19 which is
actually a binding interpretation and thus retrospectively
applies to Ada 2005 as well. This is formally expressed by
the difference between freezing a subprogram and freezing
its profile. This was motivated by a problem with tagged
types whose details need not concern us.

As a highly benevolent consequence, we are allowed to use
incomplete types as both parameters and function results
provided that they are fully defined at the point of call and
at the point where the body is defined.

But another consequence of this approach is that we cannot
defer the completion of an incomplete type declared in a
private part to the corresponding body. In other words,
parameters of an incomplete type are allowed provided the
Taft Amendment is not used for completing the type.

The other exciting change regarding incomplete types is
that in Ada 2012 they are allowed as generic parameters. In
Ada 2005 the syntax is

formal_type_declaration ::=
 type defining_identifier [discriminant_part] is
 formal_type_definition ;

whereas in Ada 2012 we have

formal_type_declaration ::=
 formal_complete_type_declaration
 | formal_incomplete_type_declaration

formal_complete_type_declaration ::=
 type defining_identifier [discriminant_part] is
 formal_type_definition ;

formal_incomplete_type_declaration ::=
 type defining_identifier [discriminant_part] [is tagged] ;

So the new kind of formal generic parameter has exactly
the same form as the declaration of an incomplete type. It
can be simply type T; or can require that the actual be
tagged by writing type T is tagged; – and in both cases a
discriminant can be given.

A formal incomplete type can then be matched by any
appropriate incomplete type. If the formal specifies tagged,
then so must the actual. If the formal does not specify
tagged then the actual might or might not be tagged. Of
course, a formal incomplete type can also be matched by an
appropriate complete type. And also, in all cases, any
discriminants must match as well.

An example of the use of a formal incomplete type occurs
in the package Ada.Iterator_Interfaces whose generic
formal part is

generic
 type Cursor;
 with function Has_Element(Position: Cursor)
 return Boolean;
package Ada.Iterator_Interfaces is ...

The formal type Cursor is incomplete and can be matched
by an actual incomplete type. The details of this package
will be described in a later paper.

Another example is provided by a signature package as
mentioned in the Introduction. We can write

generic
 type Element;
 type Set;
 with function Empty return Set is <>;
 with function Unit(E: Element) return Set is <>;
 with function Union(S, T: Set) return Set is <>;
 with function Intersection(S, T: Set) return Set is <>;
 ...
package Set_Signature is end;

Such a signature generic can be instantiated with an actual
set type and then the instance can be passed into other
generics that have a formal package such as

generic
 type VN is private;
 type VN_Set is private;
 with package Sets is
 new Set_Signature(Element => VN, Set => VN_Set,
 others => <>);
 ...
package Analyse is ...

This allows the construction of a generic that needs a Set
abstraction such as a flow analysis package. Remember that
the purpose of a signature is to group several entities
together and to check that various relationships hold
between the entities. In this case the relationships are that
the types Set and Element do have the various operations
Empty, Unit and so on.

The set generic could be included in a set container
package thus

generic
 type Element is private;
package My_Sets is
 type Set is tagged private;

 function Empty return Set;

J. G. P. Barnes 111

Ada User Journal Volume 33, Number 2, June 2012

 function Unit(E: Element) return Set;
 function Union(S, T: Set) return Set;
 function Intersection(S, T: Set) return Set;
 ...
 package My_Set is new Set_Signature(Element, Set);
private
 ...
end My_Sets;

The key point is that normally an instantiation freezes a
type passed as a generic parameter. But in the case of a
formal incomplete untagged type, this does not happen.
Hence the actual in the instantiation of Set_Signature in the
generic package My_Sets can be a private type such as Set.

This echoes back to the earlier discussion of changing the
freezing rules. We cannot call a subprogram with untagged
incomplete parameters (whether formal or not) because we
do not know whether they are to be passed by copy or by
reference. But we can call a subprogram with tagged
incomplete parameters because we do know that they are
passed by reference (and this has to remain true for
compatibility with Ada 2005). So just in case the actual
subprogram in the tagged case is called within the generic,
the instantiation freezes the profile. But in the untagged
case, we know that the subprogram cannot be called and so
there is no need to freeze the profile.

This means that the type Set should not be given as tagged
incomplete in the package Set_Signature since we could
not then use the signature in the package My_Sets.

If a subprogram has both tagged and untagged formal
incomplete parameters then the untagged incomplete
parameters win and the subprogram cannot be called.

(If this is all too confusing, do not worry, the compiler will
moan at you if you make a mistake.)

Another rule regarding incomplete formal types is that the
controlling type of a formal abstract subprogram cannot be
incomplete.

4 Discriminants
There is one minor change in this area which was
mentioned in the Introduction.

In Ada 2005, a discriminant can only have a default if it is
not tagged. But in Ada 2012, a default is also permitted in
the case of a limited tagged type.

Ada typically uses defaults as a convenience so that in
many cases standard information can be omitted. Thus it is
convenient that the procedure New_Line has a default of 1
since it would be boring to have to write New_Line(1); all
the time.

In the case of discriminants however, a default as in

type Polynomial(N: Index := 0) is
 record
 A: Integer_Vector(0 .. N);
 end record;

also indicates that the type is mutable.

However, tagged types in Ada 2005 never have defaults
because we do not want tagged types to be mutable. On the
other hand if a tagged type is limited then it is immutable
anyway. And so it was concluded that there is no harm in
permitting a limited tagged type to have a default
discriminant.

This may seem rather academic but the problem arose in
designing containers for queues. It was felt desirable that
the protected type Queue should have a discriminant giving
its ceiling priority and that this should have a default for
convenience. As illustrated in the Introduction this resulted
in a structure as follows

generic
 with package Queue_Interfaces is new ...
 Default_Ceiling: Any_Priority := Priority'Last;
package AC.Unbounded_Synchronized_Queues is
 ...
 protected type Queue(Ceiling: Any_Priority :=
 Default_Ceiling)
 with Priority => Ceiling
 is new Queue_Interfaces.Queue with ...

Now the problem is that a protected type such as Queue
which is derived from an interface is considered to be
tagged because interfaces are tagged. On the other hand a
protected type is always limited and its discriminant
provides a convenient way of providing the ceiling priority.
So there was a genuine need for a change to the rule.

Note incidentally that the default is itself provided with the
default value of Priority'Last since it is a generic parameter
with its own default.

5 Use clauses
Ada 2012 introduces a further form of use clause. In order
to understand the benefit it is perhaps worth just recalling
the background to this topic.

The original use clause in Ada 83 made everything in a
package directly visible. Consider the following package

package P is
 I, J, K: Integer;

 type Colour is (Red, Orange, Yellow, Green, Blue, ...);
 function Mix(This, That: Colour) return Colour;

 type Complex is
 record
 Rl, Im: Float;
 end record;
 function "+"(Left, Right: Complex) return Complex;
 ...
end P;

Now suppose we have a package Q which manipulates
entities declared in P. We need a with clause for P, thus

with P;
package Q is ...

112 Rat ionale for Ada 2012: 3 Structure and vis ib i l i ty

Volume 33, Number 2, June 2012 Ada User Journal

With just a with clause for P we have to refer to entities in
P using the prefix P. So we get statements and declarations
in Q such as

P.I := P.J + P.K;

Mucky: P.Colour := P.Mix(P.Red, P.Green);

W: P.Complex := (1.0, 2.0);
Z: P.Complex := (4.0, 5.0);
D: P.Complex := P."+"(W, Z);

This is generally considered tedious especially if the
package name is not P but A_Very_Long_Name. However,
adding a package use clause to Q thus

with P; use P;
package Q...

enables the P prefix to be omitted and in particular allows
infix notation for operators so we can now simply write

D: Complex := W + Z;

But as is well known, the universal use of such use clauses
introduces ambiguity (if the same identifier is in two
different packages and we have a use clause for both),
obscurity (you can't find the wretched declaration of Red)
and possibly a maintenance headache (another package is
added which duplicates some identifiers). So there is a
school of thought that use clauses are bad for you.

However, although the prefix denoting the package is
generally beneficial it is a pain to be forced to always use
the prefix notation for operators. So in Ada 95, the use type
clause was added enabling us to write

with P; use type P.Complex;
package Q is ...

This has the effect that only the primitive operators of the
type Complex are directly visible. So we can now write

D: P.Complex := W + Z;

Note that the type name Complex is not itself directly
visible so we still have to write P.Complex in the
declaration of D.

However, some users still grumbled. Why should only
those primitive operations that happen to be denoted by
operators be visible? Why indeed? Why cannot Mucky be
declared similarly without using the prefix P for Mix, Red
and Green?

It might be worth briefly recalling exactly which operations
of a type T are primitive operations of T. They are basically

▪ predefined operations such as "=" and "+",

▪ subprograms declared in the same package as T and
which operate on T,

▪ enumeration literals of T,

▪ for a derived type, inherited or overridden subprograms.

The irritation is solved in Ada 2012 by the use all type
clause which makes all primitive operations visible. (Note
another use for the reserved word all.)

So we can write

with P; use all type P.Colour;
package Q is ...

and now within Q we can write

Mucky: P.Colour := Mix(Red, Green);

Thus the enumeration literals such as Red are made directly
visible as well as obvious primitive subprograms such as
Mix.

Another impact concerns tagged types and in particular
operations on class wide types.

Remember that subprograms with a parameter (or result) of
type T'Class are not primitive operations unless they also
have a parameter (or result of type T) as well.

Actually it is usually very convenient that operations on a
class wide type are not primitive operations because it
means that they are not inherited and so cannot be
overridden. Thus we are assured that they do apply to all
types of the class.

So, suppose we have

package P is
 type T is tagged private;
 procedure Op1(X: in out T);
 procedure Op2(Y: in T; Z: out T);
 function Fop(W: T) return Integer;
 procedure List(TC: in T'Class);
private
 ...
end P;

Then although List is not a primitive operation of T it will
certainly look to many users that it belongs to T in some
broad sense. Accordingly, writing use all type P.T; makes
not only the primitive operations such as Op1, Op2 and
Fop, visible but it also makes List visible as well.

Note that this is the same as the rule regarding the prefixed
form of subprogram calls which can also be used for both
primitive operations and class wide operations. Thus given
an object A of type T, as well as statements A.Op1; and
A.Op2(B); and a function call A.Fop we can equally write

A.List; -- prefixed call of class wide procedure

Moreover, suppose we declare a type NT in a package NP
thus

package NP is
 type NT is new T with ...
 ...
end NP;

If we have an object AN of type NT then not only can we
use prefixed calls for inherited and overridden operations
but we can also use prefixed calls for class wide operations
in ancestor packages such as P. So we can write

AN.List; -- prefixed call of List in ancestor package

J. G. P. Barnes 113

Ada User Journal Volume 33, Number 2, June 2012

Similarly, writing use all type NP.NT; on Q makes the
inherited (or overridden) operations Op1, Op2 and Fop
visible and also makes the class wide operation List
declared in P visible. We do not also have to write use all
type P.T; on Q as well.

We conclude by remarking that the maintenance problem
of name clashes really only applies to use package clauses.
In the case of use type and use all type clauses, the entities
made visible are overloadable and a clash only occurs if
two have the same profile which is very unlikely and
almost inevitably indicates a bug.

6 Extended return statements
The final topic in this paper is the extended return
statement. This was introduced in Ada 2005 largely to
solve problems with limited types. However, some glitches
have come to light and these are corrected in Ada 2012.

A description of the reasons for and general properties of
the extended return statement will be found in [2].

The syntax for extended return statement in Ada 2005 as
found in [12] is

extended_return_statement ::=
 return defining_identifier: [aliased]
 return_subtype_indication {:= expression] [do
 handled_sequence_of_statements
 end return] ;

Before going further, it should be mentioned that there was
some confusion regarding limited types and so the term
immutably limited was introduced in the course of the
maintenance of Ada 2005. There were various problems.
Basically, limitedness is a property of a view of a type.
Thus even in Ada 83 a private type might be limited but the
full view found in the private part would not be limited.
Ada 95 introduced explicitly limited types. Ada 2005
introduced coextensions and these could even include such
obviously limited things as task types thus adding a limited
part to what was otherwise a seemingly nonlimited type. It
became clear that it was necessary to introduce a term
which meant that a type was really and truly limited and
could not subsequently become nonlimited for example in a
private part or in a child unit. So a type is immutably
limited if

▪ it is an explicitly limited record type,

▪ it is a task type, protected type or synchronized
interface,

▪ it is a non-formal limited private type that is tagged or
has an access discriminant with a default expression,

▪ it is derived from an immutably limited type.

It was then realised that there were problems with extended
return statements containing an explicit aliased.
Consequently, it was decided that there was really no need
for aliased if there was a rule that immutably limited return
objects were implicitly aliased. So aliased was removed
from the syntax. However, some users had already written
aliased and this would have introduced an irritating

incompatibility. So finally it was decided that aliased
could be written but only if the type were immutably
limited.

Another small problem concerned constants. Thus we
might write

return X: T do
 ... -- compute X
end return;

However, especially in the case of a limited type LT, we
might also give the return object an initial value, thus

return X: LT := (A, B, C) do
 ... -- other stuff
end return;

Now it might be that although the type as a whole is limited
one or more of its components might not be and so could be
manipulated in the sequence of statements. But if we want
to ensure that this does not happen, it would be appropriate
to indicate that X was constant. But, almost surely by an
oversight, we cannot do that since it is not permitted by the
syntax. So the syntax needed changing to permit the
addition of constant.

To aid the description the syntax in Ada 2012 is actually
written as two productions as follows

extended_return_object_declaration ::=
 defining_identifier: [aliased] [constant]
 return_subtype_indication {:= expression]

extended_return_statement ::=
 return extended_return_object_declaration [do
 handled_sequence_of_statements
 end return] ;

The other small change to the extended return statement
concerns the subtype give in the profile of the function and
that in the extended return statement itself. The result type
of the function can be constrained or unconstrained but that
given in the extended return statement must be constrained.

This can be illustrated by considering array types. (These
examples are from [2].) Suppose we have

type UA is array (Integer range <>) of Float;
subtype CA is UA(1 .. 10);

then we can write

function Make(...) return CA is
begin
 ...
 return R: UA(1 .. 10) do -- statically matches
 ...
 end return;
end Make;

This is allowed because the subtypes statically match.

If the subtype in the function profile is unconstrained then
the result must be constrained either by its subtype or by its
initial value. For example

114 Rat ionale for Ada 2012: 3 Structure and vis ib i l i ty

Volume 33, Number 2, June 2012 Ada User Journal

function Make(...) return UA is
begin
 ...
 return R: UA(1 .. N) do
 ...
 end return;
end Make;

and here the result R is constrained by its subtype. A
similar situation can arise with records with discriminants.
Thus we can have

type Person(Sex: Gender) is ... ;

function F(...) return Person is
begin
 if ... then
 return R: Person(Sex => Male) do
 ...
 end return;
 else
 return R: Person(Sex => Female) do
 ...
 end return;
 end if;
end F;

which shows that we have the possibility of returning a
person of either gender.

However, what is missing from Ada 2005 is that we can
have analogous situations with tagged types in that a
function might wish to return a value of some type in a
class.

So we would like to write things such as

function F(...) return Object'Class is
begin
 if ... then
 return C: Circle do
 ...
 end return;
 elsif ... then
 return S: Square do
 ...
 end return;
 end if;
end F;

This is not permitted in Ada 2005 which required the types
to be the same. This can be overcome by writing

return C: Object'Class := Circle_Func do
 ...
end return;

where Circle_Func is some local function that returns the
required object of type Circle.

This is all rather irksome so the wording is changed in Ada
2012 to say that in this situation the subtype in the extended
return statement need not be the same as that in the profile
but simply must be covered by it. There are also related
slight changes to the accessibility rules.

References
[1] ISO/IEC JTC1/SC22/WG9 N412 (2002) Instructions

to the Ada Rapporteur Group from SC22/WG9 for
Preparation of the Amendment.

[2] John Barnes (2008) Ada 2005 Rationale, LNCS 5020,
Springer-Verlag.

[3] David Fisher (1976) A Common Programming
Language for the Department of Defense –
Background and Technical Requirements, Institute for
Defense Analyses, Arlington, Virginia.

[4] Defense Advanced Research Projects Agency (1977)
Department of Defense Requirements for High Order
Computer Programming Languages – Revised
IRONMAN, USDoD.

[5] Defense Advanced Research Projects Agency (1978)
Department of Defense Requirements for High Order
Computer Programming Languages – STEELMAN,
USDoD.

[6] Jean Ichbiah et al (1978) Preliminary Reference
Manual for the Green Programming Language,
Honeywell Inc.

[7] Jean Ichbiah et al (1979) Reference Manual for the
Green Programming Language, Honeywell Inc.

[8] ACM (1979) Preliminary Ada Reference Manual,
SIGPLAN Notices, Vol 14, No 6.

[9] ANSI / Mil–Std 1815A (1983) Ada Reference Manual.

[10] Jean Ichbiah, John Barnes, Robert Firth, Mike
Woodger (1986) Rationale for the Design of the Ada
Programming Language, Honeywell & Alsys.

[11] B Higman (1963) What everybody should know about
Algol, Computer Journal, vol 6, no 1, pp 50-56.

[12] S. T. Taft et al (eds) (2007) Ada 2005 Reference
Manual, LNCS 4348, Springer-Verlag.

© 2012 John Barnes Informatics.

 115

Ada User Journal Volume 33, Number 2, June 2012

Use of Model Driven Code Generation on
the ASIM Project
Steen Palm
Terma A/S, Vasekær 12, 2730 Herlev, Denmark; Tel: +45 4594 9665; email: sup@terma.com

Abstract
This paper describes the approach used for the
development of software controlling two instruments
on a payload that will be placed on the International
Space Station. The development approach is based on
the principles of SAVOIR and ASSERT. For each of
the two instruments, a UML component design is
constructed where interfaces are decorated with
stereotypes like ‹‹cyclic›› and ‹‹sporadic›› defining
their concurrency behaviour. From the design of an
instrument application (the Interface View) and Ada
packages implementing the sequential behaviour of
the interfaces (the Functional View), a final
Ravenscar compliant implementation of the
instrument software (the Concurrency View) is
automatically generated.
Keywords: SAVOIR, ASSERT, TASTE, ASIM, UML,
Ada.

1 Introduction
Terma has developed mission-critical software for several
satellites and manned space missions. The software has
been used for numerous mission-critical tasks such as
control of the European Robotic Arm (ERA) on the
International Space Station and attitude and orbit control of
the satellites Ørsted, SAC-C, Herschel and Planck.

On the ASIM project, Terma is responsible for the
development of the software to control two instruments:
MXGS and MMIA. Terma is Prime on the project and is
consequently also responsible for deciding on methods and
tools to be used on the project. We have utilized this unique
opportunity to select new and promising technologies that
we have worked with in ESA (European Space Agency)
technology development projects. More specifically, we
have picked SAVOIR FAIRE [1] and ASSERT [2] as the
foundation for the design and implementation of the
software controlling the two instruments.

ASIM (Atmosphere-Space Interactions Monitor) is a
payload that will be placed on the Columbus module of the
International Space Station (ISS). ASIM consists of:

• MMIA (Modular Multispectral Imaging Array) is
intended to study the high-altitude electrical
discharges in the stratosphere and mesosphere
above severe thunderstorms, the so-called red
sprites, blue jets, and elves

• MXGS (Modular X and Gamma ray Sensor) will
observe the terrestrial gamma flashes associated
with severe thunderstorms

• Supporting Systems for Data Handling and Power
Distribution

1.1 SAVOIR FAIRE
SAVOIR (Space Avionics Open Interface aRchitecture) is
an initiative to improve the way that the European space
community builds avionics subsystems. SAVOIR FAIRE
(SAVOIR Fair Architecture and Interface Reference
Elaboration) is an industrial working group, who is
working towards the definition of a reference architecture
for software on-board spacecraft platforms. The reference
architecture is intended to facilitate specification of
building blocks that can be developed, qualified and
composed into compliant avionics software systems. Terma
is member of the SAVOIR FAIRE working group and has
also participated in a number of projects under the ESA
technology development programmes aiming at improving
and validating the proposed software reference architecture.
The architectural principles are strongly influenced by the
outcome of the ASSERT project.

1.2 ASSERT
The ASSERT (Automated proof-based System and Software
Engineering for Real-Time systems) project was an
integrated project partially funded by the European
Commission and coordinated by ESA. The ASSERT
consortium included Terma as well as 27 other partners
representing the space industry, research laboratories,
software houses and tool developers. The project started in
September 2004 and ended in December 2007. The
ASSERT process aims to enhance the system & software
engineering activities by means of model-driven and
property-preserving methods and automation tools. A main
feature of the ASSERT process is that the software design
is Ravenscar compliant by construction, implying for
instance that timing properties of the system can be
analysed by means of a schedulability analysis.

ASSERT describes the system from different perspectives
(called views), thereby supporting separation of concerns.
For instance, the designer can concentrate entirely on the
sequential behaviour of operations when defining the
Functional View without being concerned with
concurrency aspects, which are dealt with in the Interface
View. When using ASSERT, a platform independent

116 Use of Model Dr iven Code Generat ion on the ASIM Project

Volume 33, Number 2, June 2012 Ada User Journal

component model is constructed containing the following
views:

• The Functional View: Specifies the functional
services provided by components and expresses
their sequential behaviour.

• The Interface View: Characterizes the provided
and required services of components and declares
their intended concurrent behaviour. In this view,
a provided service can be specified to execute, for
example, as a cyclic operation.

• The Deployment View: Specifies the physical
architecture of the system and the way in which
components are to be deployed on it.

From the platform independent specification, a platform
dependent model is automatically constructed (by vertical
transformation) containing the single view:

• The Concurrency View: Specifies the concurrent
architecture of the system needed to implement
the platform independent specification of it; this
view is designed to be compliant with the
Ravenscar Computational Model by construction.

1.3 TASTE
A tool chain called TASTE [3] (The Assert Set of Tools for
Engineering) supporting the ASSERT process has been
developed by ESA, together with a set of partners from the
space industry. TASTE allows software designers to
integrate heterogeneous pieces of code produced either
manually (in C or Ada) or automatically by external
modelling tools such as Matlab Simulink, SCADE, or Real-
Time Developer Studio. Consistency of the integration is
ensured through the use of two formal modelling and
specification languages: AADL and ASN.1. Terma has
applied TASTE on a number of ESA technology
development projects.

2 The Terma Modelling Tool Chain
2.1 Overview
TASTE was the top candidate as the tool chain to be
selected for the development of the instrument software on
ASIM. However, TASTE had to be abandoned for the
following reasons:

• TASTE does not support the target platform
(GNAT Pro for LEON3 Bare Board with GNAT
Ravenscar run-time libraries).

• It is not possible to model communication with
device drivers in TASTE, e.g. no support for
modelling interrupt handling.

Therefore, Terma has developed its own modelling tool
chain based on SAVOIR/ASSERT principles, which will
secure a Ravenscar compliant implementation:

• The design will be expressed as a component
model in UML. Components may be composite or
simple (leaf components). Enterprise Architect

from Sparx Systems has been selected as UML
tool.

• The Interface View is supported by specific UML
stereotypes (like ‹‹protected›› and ‹‹cyclic››) that
can be used to decorate interfaces provided by
model components. The stereotypes are
complemented with real-time attributes like worst-
case execution time and period, which are
supplied as UML tagged values associated with
the provided interfaces.

Compared to TASTE, the Interface View has been
extended with stereotypes supporting interaction
with device drivers (e.g. ‹‹interrupt sporadic››).
Extensions have been introduced in a way that
ensures that the generated Concurrency View is
Ravenscar compliant.

• The Functional View is implemented as passive
Ada packages. For each leaf component in the
design, there will be a corresponding Ada package
that defines the sequential behaviour of the
operations provided by the component.

• The Deployment View is not supported. As the
instrument software is running on a single node, a
Deployment View was considered superfluous.

• The Concurrency View (obtained by vertical
transformation) is automatically generated from
the UML design (more precisely, from an
exported XMI file). The Concurrency View
consists of Ada tasks and protected objects, which
will call the passive Ada subprograms defined in
the Functional View. In fact, the Concurrency
View constitutes the final implementation.

Ada was chosen as implementation language for the
following reasons:

• The stereotypes (like ‹‹cyclic›› and ‹‹protected››)
of operation interfaces can easily be transformed
to Ada built-in language constructs (like tasks and
protected objects).

• The vertical transformation to the Concurrency
View is operating system independent. The
generated Ada packages only contain standard
Ada language constructs.

• The Ravenscar profile is defined as a restricted
usage of Ada features, thus making Ada the
natural choice. Also, Ada compilers can check an
Ada program for compliance with the profile.

2.2 The Technical Details
This paper will focus entirely on the Terma modelling tool
chain and the associated software development process.
The actual designs for the instrument software will not be
presented. Instead, consider the design in Figure 1 of a toy
system called Micro OBOSS. The name has been chosen to
indicate that the toy system is a micro version of the Terma
development framework called OBOSS (On-Board

S. Palm 117

Ada User Journal Volume 33, Number 2, June 2012

Operations Support Software). Micro OBOSS consists of
three main components: The Spacelink component receives
telecommand packets (TCs) from the environment and
sends back telemetry packets (TMs). The Router
component routes received TCs to application processes
based on destination information in the TCs. In the
example, only a single application process exists, namely
the Display_Manager component. More specifically, Micro
OBOSS behaves as follows (starting from the upper left
corner of the figure):

• The blocking sporadic operation Deliver_TC
provided by the component Space_Uplink calls the
required (blocking) interface Get_Line1 and waits
for the user to supply a name string. When a name
string is supplied, Deliver_TC will construct a TC
destined for the Display_Manager and forward the
TC to the Router component by calling the
required interface Forward_TC

• Via the interface connectors, the call of
Forward_TC will lead to a call of the sporadic
operation Receicve_TC provided by the
TC_Router component. This operation will
determine the destination for the TC (always the
Display_Manager in this example) and pass on the
TC to the destination by calling the required
interface Handle_Display_TC

• Via the interface connectors, the call of
Handle_Display_TC will lead to a call of the
passive operation Handle_TC provided by the
TC_Handler component. This operation will save
the name included in the TC by calling the
required interface Set_Name

• Every half second, the cyclic operation Display
provided by the Displayer component will retrieve
the saved name by calling the required interface
Get_Name and check if the saved name is non-
empty. If so, it will send the string "Hello
<name>" as a TM to the Router component by
calling the required interface Forward_TM

• Via the interface connectors, the call of
Forward_TM will lead to a call of the passive
operation Receive_TM provided by the
TM_Router component. This operation will pass
on the TM to the Space_Downlink component by
calling the required interface Forward_TM

• Finally, the passive Receive_TM operation
provided by the Space_Downlink component will
output the TM (a string) on standard out by calling
the required (hardware) interface Put_Line 1

1 The subprograms Get_Line and Put_Line belong to the Ada standard
package Text_IO.

The Interface View
The UML model in Figure 1 constitutes the Interface View.
It consists of the following elements:

• Components: Components may be composite or
simple (leaf components). Only leaf components
can perform functions. Composite components
merely serve as containers supporting the
structuring of the system to be designed.
Components are further divided into regular
components (with stereotypes ‹‹composite›› and
‹‹leaf››) and driver components (with stereotypes
‹‹driver composite›› and ‹‹driver leaf››). Driver
components are intended to interface with the
environment, for instance for interacting with
hardware drivers. Blocking sporadic operations
and interrupt sporadic operations (see below) must
only be provided by driver components.

• Interfaces: Two types of interfaces exist: Provided
interfaces () and required interfaces ().
The provided interfaces constitute the services
provided by a component to other components,

Figure 1 Micro OBOSS example

cmp Micro_OBOSS

«composite»
Micro_OBOSS

Forward_TC

«driver composite»
Spacelink

Forward_TC «passive»
Receive_TM

Forward_TM

Handle_Display_TC

«composite»
Router

«sporadic»
Receive_TC Forward_TM

Handle_Display_TC «passive»
Receive_TM

Forward_TM

«composite»
Display_Manager

«passive»
Handle_TC Forward_TM

«blocking»
Get_Line

Forward_TC

«driver leaf»
Space_Uplink

«blocking sporadic»
Deliver_TC

«blocking»
Get_Line

Forward_TC

«hardware»
Put_Line

«driver leaf»
Space_Downlink

«hardware»
Put_Line

«passive»
Receive_TM

Handle_Display_TC

«leaf»
TC_Router

«sporadic»
Receive_TC

Handle_Display_TC

Forward_TM

«leaf»
TM_Router

Forward_TM

«passive»
Receive_TM

Set_Name

«leaf»
TC_Handler

«passive»
Handle_TC

Set_Name Get_Name

Forward_TM

«leaf»
Displayer

«cyclic»
Display

Get_Name

Forward_TM

«leaf»
Person«protected»

Set_Name
«protected»
Get_Name

«delegate»«delegate»

«delegate»«delegate»

«delegate»«delegate»

«delegate»«delegate»

118 Use of Model Dr iven Code Generat ion on the ASIM Project

Volume 33, Number 2, June 2012 Ada User Journal

whilst the required interfaces represent the
services needed to implement the provided
interfaces. Interfaces are further described below.

• Connectors: Two types of connectors exist:
Dependency connectors and delegate connectors.

Dependency connectors are used to connect
required interfaces to provided interfaces in order
to provide the functionality required by a
component.

Delegate connectors are used to show how the
provided functionality of a composite component
is delegated to its constituent components and how
the required functionality of its constituent
components is delegated to the required interfaces
of the composite component.

The UML model does not explicitly identify concurrency
constructs such as periodic tasks or sporadic tasks, but
focuses on the functional behaviour of the provided
interfaces and thereby the functional behaviour of
components. However, provided interfaces have
stereotypes uniquely specifying their concurrency
behaviour. These stereotypes thus render the need for
tasking components in the design superfluous. The
translation from stereotypes to actual Ada tasks and
protected objects is done by the automatic transformation
into the Concurrency View.

Table 1 defines the stereotypes of provided interfaces.

The provided interfaces also have a number of real-time
attributes associated, such as WCET (worst-case execution
time), MIAT (minimal inter-arrival time), Deadline, Queue
size (number of requests that a sporadic operation must be
able to store during a burst of requests), Period, and
Interrupt ID, as shown in the table. These attributes must all
be supplied by the designer.

Based on the stereotypes and the associated real-time
attributes, the Terma modelling tool chain can perform a
schedulability analysis of the system. The analysis is a so-
called response time analysis, which calculates the worst-
case response time for each task and compares it with the
deadline for the task; see for instance [4].

Note that ‹‹cyclic›› and ‹‹blocking sporadic›› operations
cannot be called. A ‹‹cyclic›› operation is automatically
triggered when its period expires, while a ‹‹blocking
sporadic›› operation is triggered when the called
‹‹blocking›› operation returns.

The required interfaces of a component collectively define
the functionality required by the component in order for the
component to provide the guaranteed functionality.

Required interfaces on regular components have no
stereotypes. The reason is that a required interface specifies
needed functionality and this is not dependent on the
stereotype of the interface.

Stereotype Meaning Attributes

‹‹sporadic›› An operation performed at
sporadic intervals.

Its appearance on a ‹‹leaf››
component specifies that the

component contains a
separate thread of execution.

WCET
MIAT
Deadline
Queue size

‹‹cyclic›› An operation performed at
fixed intervals.

Its appearance on a ‹‹leaf››
component specifies that the

component contains a
separate thread of execution.

WCET
Period
Deadline

‹‹protected›› An operation granted
exclusive access to some

state.

WCET

‹‹passive›› A regular operation -

‹‹interrupt
sporadic››

An interrupt service routine.
An ‹‹interrupt sporadic››
operation must only be

provided by a driver
component.

WCET
MIAT
Deadline
Interrupt ID

‹‹blocking
sporadic››

An operation that repeatedly
handles data from the

environment that it gets by
calling a ‹‹blocking››

required interface.
Its appearance on a ‹‹leaf››

component specifies that the
component contains a

separate thread of execution.
A ‹‹blocking sporadic››
operation must only be

provided by a driver
component.

WCET
MIAT
Deadline

Table 1 Stereotypes of provided interfaces

On driver components, the ‹‹hardware›› required interface
and the ‹‹blocking›› required interface can be used. These
two interface types both represent interaction with the
environment. As opposed to all other required interfaces,
‹‹hardware›› and ‹‹blocking›› required interfaces shall not
be connected to other interfaces (see Get_Line and
Put_Line in Figure 1).

The ‹‹hardware›› required interface simply denotes the use
of a regular subprogram provided by the environment, e.g.
the reading of a hardware register.

The ‹‹blocking›› required interface denotes the call of a
blocking subprogram provided by the environment, i.e. a
subprogram that hangs until it has data to return to the
caller (the procedure Text_IO.Get_Line is an example of
such a subprogram). A component with a ‹‹blocking››
required interface must also have a ‹‹blocking sporadic››
provided interface (and vice versa).

Enterprise Architect allows the designer to specify
signatures for the provided and required interfaces in the
model. However, these signatures are Java/C specific and
cannot be used to specify signatures for Ada subprograms.

S. Palm 119

Ada User Journal Volume 33, Number 2, June 2012

Therefore, it has been decided to abandon signatures in the
model and instead create two Ada specifications for each
leaf component: One that defines the provided interfaces
and one that defines the required interfaces. As an example
consider the two Ada specifications for the TC_Router
component (compare with Figure 1).

Ada specification for the provided interfaces of TC_Router:

with Data_View;
package Micro_OBOSS.Router.TC_Router is
 procedure Receive_TC(TC : in Data_View.TC_T);
end Micro_OBOSS.Router.TC_Router;

Ada specification for the required interfaces of TC_Router:

with Data_View;
package Micro_OBOSS.Router.TC_Router_Required
 is procedure Handle_Display_TC(
 TC : in Data_View.TC_T);
end Micro_OBOSS.Router.TC_Router_Required;

The Functional View
The functional view defines the sequential behaviour of the
provided interfaces. This implies, that for each leaf
component, an Ada body must be supplied that implements
the Ada specification for the provided interfaces of the
component by using the Ada specification for the required
interfaces of the component. As an example consider the
Ada body for the TC_Router component:

with Micro_OBOSS.Router.TC_Router_Required;
package body Micro_OBOSS.Router.TC_Router is
 package RI renames
 Micro_OBOSS.Router.TC_Router_Required;
 procedure Receive_TC(TC : in Data_View.TC_T) is
 begin
 case TC.Destination is
 when Data_View.DISPLAYER =>
 RI.Handle_Display_TC(TC);
 when others =>
 null;
 end case;
 end Receive_TC;
end Micro_OBOSS.Router.TC_Router;

The implementation must be completely independent of the
connectors and only use the required interfaces
(Handle_Display_TC in the example) to achieve its goal 2.

Although, the designer only provides implementations for
leaf components, the Functional View is in essence an Ada
package hierarchy, which is structured in exactly the same
way as the UML model. The parent packages are
automatically created by the vertical transformation into the
Concurrency View in order to relieve the designer from this
trivial task.

2 In addition to the required interfaces, the implementation can of course
make use of Ada packages defining (abstract) types for the parameters
used in the signatures for the provided and required interfaces.

The Concurrency View
The designer develops the Interface View and the
Functional View of the system. The Concurrency View is
then automatically generated from these two views. The
Concurrency View constitutes the final implementation of
the system.

Before the vertical transformation can be initiated, the
UML design must be exported to an XMI 2.1 file 3. The
vertical transformation is implemented as an XSLT
stylesheet that transforms the exported XMI file into the
Concurrency View Ada package hierarchy.

The vertical transformation will perform the following:

• Create the Ada specifications in the Functional
View Ada package hierarchy for composite
components

• Determine the deadline monotonic priority-
ordering between tasks (including interrupt
routines) and save the result to a file. In case the
designer wants a different priority ordering, (s)he
can simply re-order the tasks within the file.

• Determine an optimal priority ordering between
all tasks and protected objects in the system based
on the task priority-ordering and the call pattern
between tasks and protected operations (given by
the connectors in the UML model).

• Create an Ada specification Tasking_Properties
containing information on all tasks and protected
objects in the system

• Create an Ada main program

• Create Ada tasks and protected objects based on
the real-time properties of provided interfaces on
leaf components

• Implement the provided interfaces on composite
components based on delegate connectors to
provided interfaces on constituent components

• Implement the Ada specifications of required
interfaces based on the originating connectors.

Like the Functional View, the Concurrency View is an Ada
package hierarchy with the same structure as the UML
model. However, an artificial top level package called CV
has been added to the Concurrency View package hierarchy
to enable the Ada compiler to distinguish between
Concurrency View Ada packages and Functional View Ada
packages.

For each leaf component in the UML model, the vertical
transformation will create an Ada package in the
Concurrency View Ada package hierarchy. The
specification of the Ada package will in most cases be

3 The XML Metadata Interchange (XMI) is an Object Management Group
(OMG) standard for exchanging metadata information via XML.

120 Use of Model Dr iven Code Generat ion on the ASIM Project

Volume 33, Number 2, June 2012 Ada User Journal

identical to the corresponding specification in the
Functional View 4. However, the implementation given in
the Ada body will take into account the stereotypes and
attributes of the provided interfaces. Basically, the
implementation adds a layer 5 ensuring correct invocation
of the interfaces according to their real-time properties.
Upon correct invocation of an interface, the sequential
implementation of the operation in the Functional View
will be executed. As an example consider the generated
Ada packages for the TC_Router component.

Ada specification for the TC_Router:

with Data_View;
package CV.Micro_OBOSS.Router.TC_Router is
 procedure Receive_TC(TC : in Data_View.TC_T);
end CV.Micro_OBOSS.Router.TC_Router;

Ada body for the TC_Router:

with Micro_OBOSS.Router.TC_Router;
with Tasking_Properties;
with Sporadic_Task;
package body CV.Micro_OBOSS.Router.TC_Router is
 package Spo_Task is new Sporadic_Task
 (Deadline =>
 Tasking_Properties.
 CV_Micro_OBOSS_Router_TC_
 Router_Receive_TC.Deadline,
 ...
 Parameter_T =>
 Data_View.TC_T,
 Operation =>
 Standard.Micro_OBOSS.Router.
 TC_Router.Receive_TC);
 procedure Receive_TC(TC : in Data_View.TC_T) is
 begin
 if not Spo_Task.Request_Sporadic_Operation(TC)
 then
 - - protected queue full
 ...
 end if;
 end Receive_TC;
end CV.Micro_OBOSS.Router.TC_Router;

The subprogram specification of the provided interface
Receive_TC in the Concurrency View Ada specification is
identical to the one in the Functional View Ada
specification.

In the Concurrency View Ada body, Receive_TC inserts a
request in a protected queue by calling
Spo_Task.Request_Sporadic_Operation. The Ada package
Spo_Task is an instantiation of the generic package
Sporadic_Task, which creates a protected request queue

4 Operations with stereotype ‹‹cyclic›› or ‹‹blocking sporadic›› have no
signatures in the Concurrency View
5 This layer is called Container in the SAVOIR FAIRE Reference
Architecture

and a sporadic task handling requests added to the queue.
Arguments to the instantiation are real-time properties for
Receive_TC such as deadline, MIAT, size of protected
queue object, priority of sporadic task, and priority of
protected queue object. These properties are located in the
Tasking_Properties Ada package. In addition, the sporadic
operation Micro_OBOSS.Router.TC_Router.Receive_TC
defined in the Functional View as well as its parameter type
Data_View.TC_T are used to instantiate the Sporadic_Task.
This sequential implementation of Receive_TC will by the
task be used to handle requests received from the protected
queue.

In summary, the Concurrency View adds a layer consisting
of a task and a protected queue object. Within this layer,
the Functional View implementation of the Receive_TC
interface is executed. The layer implements the sporadic
properties of the operation by separating the request for the
execution of the operation (performed by the calling thread
by inserting the request in a protected queue) from the
actual execution of the operation (performed by a different
thread when the request has been extracted from the
queue).

The Ada body for the generic package Sporadic_Task is
listed below:

with Protected_Queue;
package body Sporadic_Task is
 package Request_Queue is new
Protected_Queue(...);
 function Request_Sporadic_Operation(Parameter : in
Parameter_T)
 return Boolean is
 begin
 return Request_Queue.Deposit(Parameter);
 end Request_Sporadic_Operation;
 task body Sporadic_Thread is
 ...
 begin
 loop
 - - Wait for a request to be available
 Request := Request_Queue.Extract;
 - - If the request was inserted during a burst,
 - - i.e. the queue was not empty
 if Request.Burst then
 - - The start time is the end time for
 - - the previous request
 Start_Time := End_Time;
 else
 - - The start time is the time at which the request
 - - was inserted into the queue
 Start_Time := Request.Time;
 end if;
 - - The end time is MIAT time units after start time
 End_Time := Start_Time + MIAT;
 - - Perform sporadic operation
 Operation(Request.Parameter);
 - - Check if the deadline has been missed
 Response_Time := Real_Time.Clock –
 Start_Time;

S. Palm 121

Ada User Journal Volume 33, Number 2, June 2012

 if Response_Time > Deadline then
 ...
 end if;
 - - Guarantee minimal inter-arrival time
 delay until End_Time;
 end loop;
 exception
 when The_Exception: others =>
 ...
 end Sporadic_Thread;
end Sporadic_Task;

For each composite component in the UML model, the
vertical transformation will:

• Create a Concurrency View Ada package
(specification and body) for the composite
component. In this package, the provided
interfaces will be implemented by means of
renaming declarations based on the delegate
connectors from the provided interfaces of the
composite component to provided interfaces of the
constituent components. As an example, consider
the generated Ada body for Router:

with CV.Micro_OBOSS.Router.TC_Router;
with CV.Micro_OBOSS.Router.TM_Router;
package body CV.Micro_OBOSS.Router is
 procedure Receive_TC(TC : in Data_View.TC_T)
 renames CV.Micro_OBOSS.Router.
 TC_Router.Receive_TC;
 procedure Receive_TM(TM : in Data_View.TM_T)
 renames CV.Micro_OBOSS.Router.
 TM_Router.Receive_TM;
end CV.Micro_OBOSS.Router;

• For each constituent component, create an Ada
body implementing the (Functional View) Ada
specification for the required interfaces. The
implementation of a required interface depends on
the type of the originating connector:

o For a delegate connector, the implementation
will be a renaming declaration based on the
connection to a required interface on the
composite component. As an example,
consider the generated Ada body for the Ada
specification for the required interfaces on
TC_Router:

with Micro_OBOSS.Router_Required;
package body Micro_OBOSS.Router.
 TC_Router_Required is
 procedure Handle_Display_TC(
 TC : in Data_View.TC_T)
 renames Micro_OBOSS.Router_Required.
 Handle_Display_TC;
end Micro_OBOSS.Router.TC_Router_Required;

o For a dependency connector, the
implementation will be a renaming
declaration based on the connection to a
provided interface on a sibling constituent
component. As an example, consider the
generated Ada body for the Ada specification
for the required interfaces on Router:

with CV.Micro_OBOSS.Spacelink;
with CV.Micro_OBOSS.Display_Manager;
package body Micro_OBOSS.Router_Required is
 procedure Forward_TM(TM : in Data_View.TM_T)
 renames
 CV.Micro_OBOSS.Spacelink.Receive_TM;
 procedure Handle_Display_TC(
 TC : in Data_View.TC_T)
 renames CV.Micro_OBOSS.Display_
 Manager.Handle_TC;
end Micro_OBOSS.Router_Required;

As can be seen from the examples, connectors are
implemented as renaming declarations. It is worthwhile
noticing, that the implementation of a dependency
connector is always a renaming from a Functional View
specification of a required interface to a subprogram for a
provided interface in the Concurrency View. Thus, a
subprogram in the Functional View can call subprograms in
the Concurrency View (as a result of dependency
connectors in the UML design), but never call a
subprogram in the Functional View.

Although the transformation to the Concurrency View has
been based on an example of a sporadic interface, the idea
is hopefully clear: The Concurrency View provides the
layer implementing the real-time properties of provided
interfaces, while the Functional View provides the
sequential implementation of the interfaces.

cmp Gen_EDLF_Tranceiv er

Data_Transmitted Data_Received

«driver composite»
Gen_EDLF_Tranceiv er

«protected»
Transmit_Data Data_Transmitted Data_Received

Data_Transmitted

«driver leaf»
EDLF_Transmission_Decoupler

«sporadic»
Frame_Transmitted

Data_Transmitted Data_Received

«driver leaf»
EDLF_Reception_Decoupler

Data_Received

«sporadic»
Frame_Received

Frame_ReceivedFrame_Transmitted

«hardware»
UART2CTR

«hardware»
UART2SCR

«hardware»
UART2DTR

«hardware»
UART2STR

«driver leaf»
EDLF_UART_Handler :Gen_EDLF_UART_Handler

Frame_ReceivedFrame_Transmitted

«protected»
Transmit_Frame

«hardware»
UART2CTR

«hardware»
UART2SCR

«hardware»
UART2DTR

«hardware»
UART2STR

«interrupt sporadic»
UART2INTR

«delegate»

«delegate»

«delegate»

Figure 2 UML model of Gen_EDLF_Tranceiver

122 Use of Model Dr iven Code Generat ion on the ASIM Project

Volume 33, Number 2, June 2012 Ada User Journal

3 Extension of ASSERT
Compared to ASSERT and TASTE, the Terma modelling
tool chain has been augmented with a number of features
facilitating the modelling of components interacting with
hardware, while still ensuring that the resulting
Concurrency View is Ravenscar compliant.

The most important extension is the stereotype ‹‹interrupt
sporadic›› that allows the designer to model interrupt
service routines. Figure 2 shows a common component
Gen_EDLF_Tranceiver shared between the two ASIM
instrument designs. This component provides high level
interfaces for sending and receiving so-called EDLF frames
(telemetry frames), while leaving the low level byte
handling to the child component EDLF_UART_Handler,
whose ‹‹interrupt sporadic›› interface UART2INTR handles
interrupts for reception and transmission of bytes via a
UART. It would not be possible to model this behaviour in
ASSERT.

The Terma modelling tool chain has also been extended to
support a Watchdog protocol for securing aliveness of the
tasks in the system.

All cyclic tasks will call a subprogram Heartbeat_Response
as part of their invocation. All Ada packages containing a
sporadic task will provide a subprogram
Request_Heartbeat, which will request the embedded task
to call the subprogram Heartbeat_Response. The
subprogram Heartbeat_Response is a formal parameter to
the generic packages creating cyclic and sporadic tasks (see
description of Concurrency View above) and the designer
is free to choose the actual subprogram to be called. The
Concurrency View also provides a subprogram
Distribute_Heartbeat_Requests, which will call the
Request_Heartbeat subprogram in all Ada packages
containing a sporadic task.

Figure 3 shows an example of how the Watchdog support
can be utilized in a design. With a period large enough to
allow all tasks to respond, the cyclic operation
Verify_Task_Aliveness will: End the current verification
session by calling Get_Heartbeat_Responses and checking
if all tasks in the system have responded, and then start a
new verification session by calling Start and
Distribute_Heartbeat_Requests. The component
Task_Aliveness_State keeps track of tasks that have
responded. When Start is called, the set of responders is set
to empty, and each time a task calls Heartbeat_Response,
the task is added to the set of responders. The operation

Get_Heartbeat_Responses simply returns the set of
responding tasks.

4 Current Status of the Development
At the time of writing (May 2012), a design of the software
for each instrument has been constructed. These two
designs have not yet any Functional Views. Still, the
constructed component models have been used for:

• Requirements tracing: Software requirements have
been imported into the UML models from
DOORS, and the designers have traced
components to requirements by setting up links.
This trace information has been automatically
extracted from the component models as trace
matrices, which have been checked for
completeness and included in the design
documentation.

• Rule compliance validation: A number of rules
have been set up for the constructed designs. For
instance, all provided and required interfaces on
leaf components must have a description. A
validation tool has been developed that validates
these rules.

• Completeness checking: Completeness properties
of the designs are automatically validated by the
validation tool, e.g. that all required interfaces are
connected to provided interfaces.

• Consistency checking: The consistency of the
designs is automatically checked by the validation
tool, e.g. that a provided interface is not connected
to another provided interface.

• Schedulability analysis: Based on the Interface
Views of the designs, which include specified
real-time attributes and estimated worst-case
execution times, schedulability analyses have been
performed showing that all Ada tasks in the
instrument software will meet their deadlines.

The implementation of the vertical transformation from the
component model (containing both the Interface View and
the Functional View) to the Concurrency View is almost
finished.
It is considered a key issue that the generated Ada packages
are easy to read and understand. This is necessary because
the automatically generated code will be tested as if it was
manually coded. In fact, unit testing, integration testing and
system testing will be performed as though all source files
were manually coded.

5 Conclusion
The Terma modelling tool chain has been developed
gradually as part of the design of the ASIM instrument
software. The most powerful part, namely the
transformation of the Interface View and Functional View
into the Concurrency View has not yet been utilized,
because the Functional Views for the ASIM instrument
designs have not yet been completed. The transformation
has been tested on a number of simple models (like the
Micro OBOSS model) and the tests show that the generated

cmp Micro_OBOSS

«leaf»
Task_Aliv eness_State

«protected»
Heartbeat_Response

«protected»
Start

«protected»
Get_Heartbeat_Responses

Start_Verification

Ditribute_Heartbeat_Requests

Get_Heartbeat_Responses

«leaf»
Task_Aliv eness_Checker

Start_Verification

Ditribute_Heartbeat_Requests

«cyclic»
Verify_Task_Aliveness

Get_Heartbeat_Responses

Figure 3 Example of Watchdog protocol

S. Palm 123

Ada User Journal Volume 33, Number 2, June 2012

code will compile, link, and run successfully. However, it
should be noted that the tool set represents work in
progress.

So far, the designs have benefitted from tool support for
generation of trace matrices, rule compliance validation,
completeness checking, consistency checking, and
schedulability analysis. This has undoubtedly led to a
higher quality of the designs compared to what would have
been possible without tool support.

The effort that has gone into the development of the tool set
has not been measured separately, but has been accounted
as design work. To some extent, the tools development has
been integration of existing pieces. For the vertical
transformation, the generic task packages that are used for
the generation of cyclic and sporadic tasks were taken from
the OBOSS framework. Terma has a schedulability

analysis tool developed on another project. This tool was
adapted to be able to take input extracted from a design.

In summary, the Terma modelling tool chain has improved
the quality of the ASIM instrument designs at a reasonable
low development cost. Furthermore, the tool chain will
reduce the time for the source code production, because the
concurrency layer consisting of Ada tasks and protected
objects is automatically generated.

References
[1] SAVOIR-FAIRE On-board software reference

architecture, issue 1.0, 10. June 2010

[2] ASSERT Project, http://www.assert-project.net/

[3] TASTE, http://www.assert-project.net/-TASTE-

[4] A. Burns & A. Wellings (2001), Real-Time Systems
and Programming Languages, Addison-Wesley

124

Volume 33, Number 2, June 2012 Ada User Journal

The Benefits of Using SPARK for
High-Assurance Software
Trevor J. Jennings
Altran Praxis Ltd., 20 Manvers Street, Bath, UK, BA1 1 PX.; Tel: +44 1225 466991;
email: Trevor.Jennings@altran-praxis.com

Abstract
SPARK is a contract-based subset of Ada which is
unambiguous and suitable for rigorous static
analysis. It has been extensively used in industrial
applications where safety and security are
paramount. We will consider the benefits of using
SPARK and how its features and supporting tools aid
in the development and delivery of high-assurance
software.
SPARK supports formal verification of program
properties, for instance the proof of the absence of
run-time exceptions or the proof that a program
satisfies a security policy. Credit can be taken for
mathematical proof as an alternative to testing in
DO-178C and we consider how the SPARK tools can
be used in this context.
Keywords: Ada, SPARK, Static Analysis, Formal
Verification, Program Proof, DO-178C.

1 Introduction
This article is a summary of a tutorial to be given at Ada
Europe 2012.

High-assurance software typically has the following
characteristics:

• Zero tolerance of defects in-the-field

• Potential for catastrophic loss

• Presence of a regulator and/or legal liability

• Need to generate evidence of fitness-for-purpose
before first deployment

• “Patch it later” is not possible!

This is totally different from systems which can evolve
ultra-reliability over many years and upgrades.

In the past, we have managed to tolerate defective software
in safety-critical systems because, to some extent, software
is part of a larger engineering system that is inherently
redundant and fault-tolerant, e.g. a commercial aircraft – 4
engines, 2 wings, 3 hydraulic systems, stable glide
behaviour, etc.

Hitherto, the environment has not been considered
malicious but the “playing field” is changing. In the world
of secure systems, a different set of assumptions apply:

• We are programming “Satan’s computer” not
“Murphy’s computer” [1]

• Systems are increasingly networked and
connected, leading to a sharp rise in complexity

• The system will be attacked by an arbitrarily
intelligent and well-resourced opponent.

Defective software does not stand up well in this
environment. Consider, for example, the commonly-
occurring “buffer overflow” problem.

There are systems written in many different programming
languages which are highly reliable, for instance the Linux
Kernel, Apache, and LaTeX. Such systems tend to evolve
ultra-reliability over many years and releases but this
approach does not scale very well and is not good enough if
we want high-assurance at first deployment.

Just testing a program extensively is not a complete answer.
For a start it is not generally possible for most programs as
their state space is vast; testing only ever touches a tiny
fraction of the paths and input values. To claim a statistical
reliability of N, how much testing to you need to do? For
example, commercial aircraft aim for 1 failure in 109 flying
hours: how much testing is required for this level of
reliability?

2 Two Independent Views
“Those who want really reliable software will find that they
must find means of avoiding the majority of bugs to start
with, and as a result the programming process will become
cheaper”, [2] Dijkstra in 1972.

 “Some people argue that the easy defects are found by
inspections and the difficult ones are left for testing, but I
have seen no data to support this. The PSP data show that,
for every defect type and for every language measured,
defect-repair costs are highest in testing and during
customer use. Anyone who seeks to reduce development
cost or time must focus on preventing or removing every
possible defect before they start testing.”, [3] Humphrey in
2005.

It is interesting to note that nothing much changed in the 33
years that elapsed between these two quotes.

But how can you prevent and detect defects before testing
or “observation-based” (dynamic) verification? By using
static methods – analysis of design artefacts prior to

T. J. Jennings 125

Ada User Journal Volume 33, Number 2, June 2012

deployment or testing. This is identical to everyday
practice in all mature engineering disciplines.

Data from the SEI indicates that project cost-overrun and
schedule-overrun both correlate strongly with pre-test
defect rate. This should be a massive incentive to reduce
defects early, regardless of assurance level.

At high-assurance levels the situation is more pronounced,
since “late” defects are more expensive and time-
consuming to fix.

3 SPARK and Static Analysis
Static analysis, also known as static verification, is the
verification of system properties based on analysis of
design artefacts (e.g. source code), without observation or
“testing” of the running system. It helps prevent mistakes
and discovers mistakes sooner rather than later (i.e., during
testing). Static analysis and verification cover a broad
range of activities; it may be done manually or be tool
supported and to varying depths of analysis. Examples in
increasing level of depth are:

• Enforcing your coding standard

• Fagan inspections

• Code review

• Automated detection of runtime errors

• Proof of code properties; for instance, compliance
with a security policy

Ideally, static verification should deliver analyses which
are:

• Deep (it tells you something useful)

• Sound (with no false-negatives)

• Fast (it tells you now)

• Complete (with as few false-positives as possible)

• Modular and Constructive (it works on incomplete
programs so that it can be applied early)

A well defined static analysis will find all cases where a
program does not satisfy the criteria being checked by the
analysis, on all paths, for all possible input values. It is an
analysis rather than testing for specific values.

However there is a catch, the ability to deliver accurate,
deep and sound static verification critically depends on the
language that is being analysed. Most languages were not
designed with static verification as a primary design goal.
And it shows! With contemporary unsubsetted languages,
you just can’t deliver all of the above 5 goals.

Static analysis is used to answer questions of the sort:

“What does this program mean?” Or, more specifically,
“Does my program have property X?” (e.g. “no buffer
overflows”). There should be only one answer; a tool that
is unable to determine the answer is of limited use and one
that silently gives you the wrong answer cannot be trusted.

Ambiguity in language definition hinders the ability to
reason, or just leads to unsoundness. The standard
definitions of all common unsubsetted programming
languages are ambiguous, e.g. unspecified and undefined
behaviours in C and implementation-dependent and
implementation-defined behaviours in Ada. The Standards
are important, because that’s what the compilers
implement.

Ambiguity is a terrible curse from the point of view of a
verification tool, since it impacts soundness and
completeness.

To gain market share, most tools have to analyse the “whole
language” or (worse) a dialect of a language; e.g. ISO 1990
C, or C “as implemented” by compilers X, Y and Z.

But everyone uses a subset! Has your project got a coding
standard? Does it say “you must use every language
feature”?

SPARK is a subset of Ada annotated with contracts. It is a
programming language designed to deliver static
verification that really is deep, sound, and as complete as
possible, fast, constructive, and modular. It is a
programming language with an unambiguous semantics.

To obtain the maximum benefits of using static analysis,
SPARK suggests and encourages the use of a design
philosophy for high-integrity software.

SPARK was specifically designed for use in embedded and
real-time systems with typical characteristics:

• Hard real-time requirements

• Little or no Operating System on target (no disk or
virtual memory)

• Fixed, known amount of storage

There are many industrial systems with these
characteristics written in SPARK, but the SPARK language
is increasingly being used to write software for much larger
and more dynamic systems working on top of full operating
systems.

The SPARK language also supports an annotated subset of
the Ravenscar profile, RavenSPARK, for concurrent
applications.

4 Abstraction and Refinement
The appropriate use of abstraction is the key to managing
complexity and the SPARK contract language adds
abstractions that are useful in static analysis and program
proof in particular. These abstractions are over and above
the computational abstractions provided by Ada.

The two main abstractions which are provided by SPARK
contracts are own variables, and proof functions.

 Additionally a global annotation completes the abstraction
of an Ada subprogram specification so that it can be
considered in isolation with the closure of all variables that
it reads and may update. The specification of a subprogram
may be further supplemented by formal pre and post
conditions. The post condition is effectively a mathematical

126 The Benef i ts of Using SPARK for High-Assurance Software

Volume 33, Number 2, June 2012 Ada User Journal

abstraction of the effect (or of at least certain properties) of
the subprogram.

Own variables are an abstraction of the internal state of a
package and its private children. A package may have
more than one own variable and the actual package
variables are a refinement of an own variable.

The own variable abstraction provides a single name to
represent possibly very many actual variables. In static
analysis, particularly with program proof, users of the
package declaring the own variable only refer to the own
variable rather than the detail within.

Own variables are also used as an abstraction for external
inputs and outputs, modelling them as mathematical
sequences. Without this model inputs and outputs (and
volatile variables in general) are difficult to reason about in
static analysis and in formal proofs.

Proof functions are logical functions which can only be
called within SPARK contracts. They allow properties of
own variables to be specified and facilitate the abstraction
of complex pre and post conditions, essential if significant
proof of properties is to be completed and be
understandable. Proof functions may also have an abstract
and refined view.

5 Program Proofs – Formal Verification
For the highest levels of assurance formal mathematical
proofs of a program’s properties may be performed on
SPARK programs. This is possible because the SPARK
language is unambiguous.

The sorts of properties that might be proven range from the
proof of absence of run-time exceptions, through safety or
security properties to proof of functional correctness.

To prove a property of a subprogram a formal specification
of the property is required which is placed within a post
condition contract. The SPARK tools can then analyse the
code of the subprogram and generate a set of theorems
(Verification Conditions, or VCs). These must be proven
to demonstrate that the subprogram meets is specification
for all input values that meet its precondition contract. The
SPARK toolset includes an automatic theorem prover, the
Simplifier, to assist in discharging these proofs.

In DO-178C [4] credit can be taken for formal proofs. This
can minimise the amount of testing and certainly reduce the
amount of re-testing required as the subprogram has been
proven to meet its specification.

6 Proof of Absence of Run-Time
Exceptions
In SPARK, the proofs of type safety and the absence of
run-time exceptions are particularly straightforward and
their proof gives great benefits and increased reliability in a
high-assurance system.

The Ada Language Reference Manual [5] specifies where a
type safety or other run-time check must be applied. These
check points define a formal specification which has been
incorporated in to the SPARK Tools. The VCs to prove

type safety and the absence of run-time exceptions are
generated automatically without the need to add post
condition contracts to describe these properties.

The proof of type safety and absence of run-time
exceptions generates a lot of VCs but generally they are
small and amenable to automatic proof. In industrial
applications, our experience with well written code is that
the Simplifier will prove over 95% of the type safety and
absence of run-time exception VCs automatically.

Generally, the Simplifier discharges the proofs quickly and
so we would recommend always performing these proofs,
even before code review.

7 Safety and Security Critical Software
The SPARK language and Toolset optionally support
information flow analysis. Information flow analysis
determines or checks the flow of information between
variables and can be particularly useful when analysing a
secure system where a classified input should not flow to
an unclassified output.

The information flow analysis can be enhanced by
annotating a criticality or confidentiality level to important
variables.

However, using post condition contracts one can do much
more and prove that the software satisfies a security policy
model.

7.1 Proof of a Security Policy
The Tokeneer Project, is an NSA-funded, highly secure
biometric software system implemented in SPARK to
conform to the Common Criteria EAL5 requirements.

The software implementation was proven to meet the
specified security policy using the SPARK Toolset.

The results of the Tokeneer project have been made
available by NSA to the software development and security
communities to demonstrate that it is possible to develop
secure systems rigorously in a cost effective manner.

More details can be found and the project artefacts may be
downloaded from:
http://www.adacore.com/sparkpro/tokeneer.

References
[1] R. Anderson and R. Needham, Programming Satan’s

Computer, Cambridge University Computer
Laboratory

[2] E. Dijkstra (1972), Turing Award Lecture.

[3] Watts Humphrey (2005), PSP – A Self-Improvement
Process for Software Engineers, Addison Wesley,
page 141.

[4] DO-333 Formal Methods supplement to DO-178C,
Software Considerations in Airborne Systems and
Equipment Certification (2012), RTCA.

International Standards Organisation, Ada 95
Reference Manual, ANSI/ISO/IEC-8652:1995

 127

Ada User Journal Volume 33, Number 2, June 2012

The Use of Proof and Generics in SPARK
Trevor J. Jennings
Altran Praxis Ltd., 20 Manvers Street, Bath, UK, BA1 1 PX.; Tel: +44 1225 466991;
email: Trevor.Jennings@altran-praxis.com

Abstract
SPARK is a contract-based subset of Ada which is
unambiguous and suitable for rigorous static
analysis. It has been extensively used in industrial
applications where safety and security are
paramount.
The SPARK language and Toolset support the formal
verification of programs - a mathematical proof that a
program satisfies its specification. We consider
simple examples of the proof of properties in SPARK
programs. In particular we will look at the proof of
absence of run-time exceptions. We describe the use
of SPARK contracts to specify the desired properties
of a subprogram and the proof tools used to prove the
resulting theorems, including the new counter-
example finding tool, Riposte.
The SPARK language and tools now support generics
which can be used to provide reusable components. A
SPARK generic unit only needs to be proved once but
may be used (instantiated) many times without
requiring further proof. SPARK generics support a
strategy of prove once and use many times.
Keywords: Ada, SPARK, Static Analysis, Formal
Verification, Program Proof, DO-178C, Generics,
Counter-examples.

1 Introduction
This article is a summary of a tutorial to be given at Ada
Europe 2012.

SPARK is a subset of Ada annotated with contracts. The
SPARK language is unambiguous and therefore code
written in SPARK may be verified, using a mathematical
proof, against a formal specification. A specification may
be written in the contract language of SPARK and the
SPARK toolset is then able to generate theorems. These
theorems take the form of verification conditions (VCs)
which have to be proven to show that the implemented
code satisfies the specification. The SPARK tools include
an automatic theorem prover to assist in discharging the
VCs.

In DO-178C [2] credit can be taken for formal verification
and so, increasingly, in the future we expect much more use
of proof techniques.

Formal verification may minimise the amount of testing
and certainly reduce the amount of re-testing required as
the subprogram has been proven to meet its specification.

2 Proof of Absence of Run-Time
Exceptions
The proof of absence of run-time exceptions is particularly
straightforward and gives great benefits in terms of
increased reliability in a high-assurance system.

The Ada Language Reference Manual [1] specifies where a
run-time check must be applied. These check points define
a formal specification which has been incorporated into the
SPARK Tools. The VCs to prove the absence of run-time
exceptions are generated automatically without the need to
add post condition contracts.

The proof of the absence of run-time exceptions generates
many VCs but generally they are small and amenable to
automatic proof. In industrial applications, our experience,
with well written code, is that over 95% of the VCs are
proven automatically.

Generally, the proofs are discharged quickly and so we
would recommend always performing these proofs, even
before code review.

3 Proofs of other Properties
To prove that a subprogram satisfies any property other
than absence of run-time exceptions requires the property
to be specified in a post condition contract. For example,
the specification of the functional properties of an integer
square root operation:

 procedure I_Sqrt_P (N : in Integer; Root : out integer);
--# pre N >= 0;
--# post Root * Root <= N and
--# (Root + 1) * (Root + 1) > N;

 Here the lines beginning with --# form the SPARK
contract (or annotation), and appear as a comment to an
Ada compiler. The specification is given by the post
contract. The SPARK tools will analyse the body of
I_Sqrt_P and generate VCs; if proven, these demonstrate
that the implementation satisfies the specification given in
the post contract for all input values which satisfy the pre
contract. Wherever I_Sqrt_P is called the SPARK tools
will generate a VC which has to be proven to show that the
actual parameter satisfies the pre contract placed on the
formal parameter.

We can avoid the need for a pre contract by using the Ada
type system. The operation can also be more naturally
expressed as a function:

128 The Use of Proof and Gener ics in SPARK

Volume 33, Number 2, June 2012 Ada User Journal

function I_Sqrt (X : Natural) return Natural;
--# return R => R * R <= X and
--# (R + 1) * (R + 1) > X;

In a function a return contract is used rather than a post
contract but it serves the same purpose. If I_Sqrt is called
with an argument not constrained to type Natural, e.g, an
Integer parameter, the SPARK tools will generate a VC to
prove that the value of the actual argument is in the range
of Natural.

4 Abstraction and Refinement
A specification such as the one in the last section is fine if
we have full visibility of the types of the parameters and
results but suppose we are dealing with an abstract data
type or a package containing state. To deal with these
situations SPARK has proof functions. Proof functions can
only be called within SPARK contracts.

4.1 Type Abstraction
Consider the following abstract type declaration:

package P is
type T is private;

--# function Is_Sorted (V : T) return Boolean;

 function Is_Member (V : T; N : Natural) return Boolean;
 --# pre Is_Sorted (V);
 procedure Init (V : out T);
 --# post Is_Sorted (V);

 procedure Add (V : in out T; N : in Natural);
 --# pre Is_Sorted (V);
 --# post Is_Sorted (V) and Is_Member (V, N);
private
 ... -- the private part
end P;
When an object is referenced in a pre-condition it refers to
the initial value of the object; when it appears in a post-
condition it refers to the final value of the object. It is
possible to refer to the initial value of an object in a post-
condition by appending a tilde to its name, e.g, V~.

In this example the Is_Sorted is a proof function which
describes a logical state of an object of type T. An Ada
function could be used rather than a proof function but it
might not ever be called in the actual Ada code and it may
be difficult to implement. The proof function Is_Sorted
may only be called within a SPARK contract, whereas the
Ada function Is_Member may be used in both SPARK
contracts and Ada code.

Proof functions may also be used to provide abstractions of
complex pre and post-conditions.

4.2 Data Abstraction
The same example may be cast as a data package.

package Q
--# own Abstract_State : A_Set;
is
 --# type A_Set is abstract;

 --# function Is_Sorted (S : A_Set) return Boolean;

 function Is_Member (N : Natural) return Boolean;
 --# global in Abstract_State;
 --# pre Is_Sorted (Abstract_State);

 procedure Init;
 --# global out Abstract_State;
 --# post Is_Sorted (Abstract_State);

 procedure Add (N : Natural);
 --# global in out Abstract_State;
 --# pre Is_Sorted (Abstract_State);
 --# post Is_Sorted (Abstract_State) and
 --# Is_Member (Abstract_State, N);
end Q;

The own variable Abstract_State is an abstraction of the
internal state of the package. The abstraction is a simple
variable but the internal state of the package could be
complex. The own variable may only be used within
SPARK contracts.

To declare proof functions to represent logical states of the
own variable requires that the own variable is given a type.
Here it has been given a SPARK abstract type declaration
because we do not want to reveal the internal structure of
the data in the package.

The abstract own variable has to be refined into its
constituent parts in the body of the package and the
function and procedure specifications refined accordingly.
The SPARK language provides the means to do these
refinements and prove correspondence between the abstract
and refined versions.

5 The SPARK Proof Tools
The SPARK Toolset contains a number of proof related
tools that work in conjunction:

• The Examiner analyses the program text and
generates the VCs and some axiomatic rules

• The Simplifier is an automatic theorem prover
which takes the VCs generated by the Examiner
and attempts to prove them but if it is unable to
prove a VC it leaves it in a simplified form

• SPARKBridge – built around the Victor tool –
converts the VCs generated by the Examiner into
SMT-Lib format which is used by many proof
tools

• Alt-Ergo is an SMT solver which uses different
techniques to the Simplifier in attempting an
automatic proof

• SPARKSimp is a tool which assists in
parallelising the proving of VCs. It determines
which VCs are to be proven and spawns multiple
instances of the Simplifier to prove them. If a VC
is not proven by the Simplifier it can spawn Victor
and henceforth Alt-Ergo to attempt the proof

T. J. Jennings 129

Ada User Journal Volume 33, Number 2, June 2012

• Riposte is a counter-example generator. If a VC is
not proven it may be because it is false. Given
such a VC, Riposte will find a counter- example –
that is, a set of values for which the VC is false

• The Proof Checker is an interactive theorem
prover which can be used to dispatch particularly
tricky proofs that need human insight

• POGS, a proof obligation summariser, collects the
results from VC generation and the outputs from
the provers to summarise which VCs have been
proven and by which tool. It also highlights any
false VCs.

As well as these tools shipped with the SPARK Toolset
there is an interface to the Isabelle generic proof assistant
[3], that takes the VCs generated by the Examiner and
translates them to the Isabelle format, HOL-SPARK [4].
The translator is part of the Isabelle package which can be
downloaded from

 http://www.cl.cam.ac.uk/research/hvg/isabelle/.

The documentation for HOL-SPARK is available form

http://isabelle.in.tum.de/library/HOL/HOL-Word/HOL-
SPARK/Manual/document.pdf

6 SPARK Generics
A new feature of the SPARK language is an annotated
subset of Ada generics which will facilitate the production
of reusable verified components. In particular it is planned
to provide a SPARK container library in the future.

SPARK generics excludes the features of Ada that are not
allowed in SPARK but still leaves a powerful subset. We
have ensured that the features required to support a
container library have been included in this subset. The
principal of prove once and use many times is fundamental
to the definition of SPARK generics.

6.1 Main Features
The main features of SPARK generics are:

• Library–level generic subprograms and packages
may be declared

• A generic declaration may also appear in the
visible part of a library-level generic package
declaration

• A generic subprogram instantiation may appear
anywhere a subprogram can legally be declared
in SPARK and similarly for a generic package
instantiation

• Additionally a generic package instantiation may
appear in the private part of a package (this is
already a legal place for a subprogram
declaration in SPARK)

• A generic declaration may have an instantiation
check

• A generic subprogram declaration and its
instantiation may have pre and post/return
annotations

6.2 Formal Generic Parameters
The formal generic parameters supported by SPARK are:

• Private and limited private types

• Discrete types (excluding Boolean)

• Signed integer types

• Modular types

• Floating and fixed point types

• Constrained and unconstrained array types

• Object parameters are supported but they must be
of mode in and instantiated with a SPARK
constant expression

• Subprogram parameters are supported but they
cannot refer to global variables

6.3 Proofs for Generics
A generic declaration may require proofs arising from
assumptions made in the declarative part; for instance:

generic
 type T is range <>;
 --# check T’First <=0 and T’Last >= 10;
package G is
 subtype Small_T is range 0 .. 10;
…
end G;

Here VCs have to be generated to show the 0 and 10 are in
the range of T. To prove the VCs the instantiation check is
required.

An instantiation check is declared on the generic but
checked at the point of instantiation by generating
appropriate VCs.

The body of a generic unit has to be proved in terms of the
properties of its generic parameters and the assumption that
the instantiation check of its declaration is True, but
otherwise it is no different to the proof of a non-generic
body.

Properties proven for a body of a generic hold for all
instantiations of a generic provided the instantiation check
is satisfied.

If an instantiation of a subprogram does not have its own
pre or post conditions then the corresponding pre or post
condition from the generic declaration applies.

If the instantiation of a subprogram has its own pre or post
conditions, then VCs are generated as appropriate to prove:

pre_instantiation => pre_generic

pre_instantiation and post_generic => post_instantiation.

If the generic declaration does not have a pre-condition it is
assumed to be True. If a generic procedure declaration

130 The Use of Proof and Gener ics in SPARK

Volume 33, Number 2, June 2012 Ada User Journal

does not have a post condition contract then it is also
considered to be True. If a generic function declaration
does not have a return contract then it is assumed to be
empty and the return contract from the instantiation is used
directly but with a warning that it cannot be checked.

6.4 Generic Subprogram Declaration
An example of a generic subprogram declaration:

generic
 type T1 is range <>;
 type T2 is range <>;
 --# check T1'Last * T1'Last <= T2'Last and
 --# T1’First * T1’First <= T2’Last;
function Square (X : T1) return T2;
--# return T2 (X * X);

Note the instantiation check, which must be satisfied by
every instantiation, and the return contract applied to the
subprogram specification.

6.5 Generic Subprogram Instantiation
The above example declaration may be instantiated as:

type Actual_T1 is range 0 .. 10;
type Actual_T2 is range 0 .. Actual_T1'Last * * 2;
function My_Square
--# pre X > 1;
--# return R => R = T2 (X * X) and R >= 4;
is new Square (T1 => Actual_T1, T2 => Actual_T2);
Note that the instantiation check is satisfied, and by
strengthening the pre-condition contract on the instantiation
we are able to also apply a stronger return contract.

6.6 Ada.Unchecked_Conversion

In SPARK the predefined function
Ada.Unchecked_Conversion is considered to have
the declaration:

generic
type Source is private;
type Target is private;
function Unchecked_Conversion (S : Source)
 return Target;

Note that the pre-condition contract is considered to be
True and the return contract to be empty.

An instantiation of Ada.Unchecked_Conversion may have
pre and return contracts applied:

type Byte is mod 256;
type Status is (S0, S1, S2, S3, S4);
subtype Running is Status range S1 .. S4;

function Byte_To_Status
--# pre S > 0 and S <= 4;
--# return R => R in Running; -- Generates a warning
is new Unchecked_Conversion
 (Source => Byte, Target => Status);

Here we have added the pre-condition that S > 0 and S <= 4
and given this pre-condition we assert that the result is in
Running. This will be assumed to be the case wherever
Byte_To_Status is called and the pre-condition is satisfied.

7 Summary
Large industrial projects have been written in SPARK, and
its proof tools have been successfully used to formally
verify properties of the resulting programs.

The credits available for formal verification in DO-178C
make the use of proof techniques increasingly attractive.

The addition of generics to SPARK facilitates the
production of reusable formally verified components.

References
[5] International Standards Organisation, Ada 95

Reference Manual, ANSI/ISO/IEC-8652:1995

[6] DO-333 Formal Methods supplement to DO-178C,
Software Considerations in Airborne Systems and
Equipment Certification (2012), RTCA.

[7] Tobias Nipkow, Lawrence C Paulson, Markus Wenzel
(2011), Isabelle HOL A Proof Assist for Higher-Order
Logic, Springer Verlag.

[8] Stefan Berghofer (2011), The HOL-SPARK Program
Verification Environment, Secunet Security Networks
AG.

132

Volume 33, Number 2, June 2012 Ada User Journal

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/adaanswers/gems.

Gem #111: The Distributed Systems
Annex, Part 5—Embedded Name
Server
Thomas Quinot, AdaCore

Abstract. This is the fifth in a series of Gems introducing the
facilities defined by the optional annex for Distributed
Systems of the Ada Reference Manual (Annex E). In the
previous instalment [published in AUJ Vol. 31, No 4,
December 2010 —lmp], we showed how to integrate DSA
code as a stand-alone Ada library in a C/C++ application.
In this installment, we show how the DSA name server can be
embedded in the main partition, rather than started as a stand-
alone process.

Let’s get started…
In the first installment in this series of DSA Gems, we used an
application managing a public bulletin board as a good
example of a client-server design. We used the following
configuration:

 configuration Dist_App is
 pragma Starter (None);
 -- User starts each partition manually

 ServerP : Partition := (Bulletin_Board);
 -- RCI package Bulletin_Board is on partition ServerP

 ClientP : Partition := ();
 -- Partition ClientP has no RCI packages

 for ClientP'Termination use Local_Termination;
 -- No global termination

 procedure Display_Messages is in ServerP;
 -- Main subprogram of master partition

 procedure Post_Message;
 for ClientP'Main use Post_Message;
 -- Main subprogram of slave partition
end Dist_App;

and we obtained two executables, one for each partition
(serverp and clientp), by issuing the following command:

po_gnatdist dist_app

With the above po_gnatdist configuration, running the
application requires three steps:

• Start po_cos_naming, the PolyORB name server. On
startup, an object reference is displayed, which must be
passed to all partitions in the environment variable

POLYORB_DSA_ NAME_SERVICE or through a
PolyORB configuration file.

• Start serverp, the server partition, which will register its
RCI package (Bulletin_Board) with the name server.

• Start clientp, the client partition, which will query the
name server for the location of the RCI.

Simplifying the process
To make this whole process easier, you can instead direct
po_gnatdist to embed the name server within the main
partition (serverp). This is achieved by saying:

 pragma Name_Server (Embedded);

 in the configuration file.
You can then start serverp without an external name server: it
is now included within the partition. You still need to convey
the location of the name server to clients. From within the
server partition, this information can be retrieved by querying
the PolyORB run-time parameters:

Put_Line ("ServerP started, embedded name server is at:");
Put_Line (PolyORB.Parameters.Get_Conf ("dsa",
 "name_service", ""));

This outputs a string of the form:

IOR:<...long series of hex digits>

which encodes all required information. You can then start the
client partition by specifying this value in the
POLYORB_DSA_NAME_SERVICE environment variable.
In Bourne shell syntax, this translates to:

POLYORB_DSA_NAME_SERVICE=IOR:<...> ./clientp

Using the Windows cmd shell, this would be:

set POLYORB_DSA_NAME_SERVICE=IOR:<...>
client

Passing the name server information in a file
POLYORB_DSA_NAME_SERVICE can also indicate a file
name, prefixed with the string "file:". So, if you modify
serverp to output the name service reference to a file "ns.txt",
you can start the client using

POLYORB_NAME_SERVICE=file:ns.txt ./clientp

Using a well-known port
Note: this requires the latest development version of PolyORB.
It is sometimes inconvenient to have to transport a string value
or a file from the server to the client, and to have to update it
each time the server is restarted. Using appropriate PolyORB
run-time configuration directives, you can force the server to
listen for network connections at a fixed location.
The following configuration forces the server to listen on port
8889:

Ada Gems 133

Ada User Journal Volume 33, Number 2, June 2012

[iiop]
polyorb.protocols.iiop.default_port=8889

Once this is set for the server, you can direct the client to that
location by setting POLYORB_DSA_NAME_SERVICE to:

corbaloc:iiop:1.2@<hostname>:8889/_NameService

The included 1start_server and start_client scripts provide a
demonstration of this facility.

Gem #107: Preventing Deallocation
for Reference-counted Types
Christoph Grein, Ada Magic

Abstract: This Gem was contributed as a followup to an
earlier Gem. Christoph explores ways in which the API for
reference-counted types can be made safer by taking
advantage of some Ada 2005 features.

Let’s get started…
In Gem #97 [published in AUJ Vol. 32, No 1, March 2011
—lmp], a reference-counting pointer was presented, where a
Get function returns an access to the data. This could be
dangerous, since the caller might want to free the data (which
should remain under control of the reference type). In this
Gem, we present a method to prevent the misuse of the result
of Get.
 Let's repeat the relevant declarations:

 type Refcounted is abstract tagged private;
 type Refcounted_Access is access Refcounted'Class;

 type Ref is tagged private; -- our smart pointer

 procedure Set (Self: in out Ref; Data: Refcounted'Class);
 function Get (Self: Ref) return Refcounted_Access;

private

 type Ref is new Ada.Finalization.Controlled with record
 Data: Refcounted_Access;
 end record;

The function Get lets us retrieve and modify the accessed
object. The problem with this function is that it compromises
the safety of the pointer type Ref, in that a caller might copy
the result access object and deallocate the accessed object:

 Copy: Refcounted_Access := Get (P);
 Free (Copy);

where Free is an appropriate instantiation of
Unchecked_Deallocation.
To cure the situation, we no longer return a direct access to the
data. Instead we define an accessor, a limited type with such
an access as a discriminant, and let Get return an object of
such a type:

1 Included in the Gem page at http://www.adacore.com/adaanswers/gems/
gem-111-the-distributed-systems-annex-part-5-embedded-name-server/

 type Accessor (Data: access Refcounted'Class) is
 limited null record;
 function Get (Self: Ref) return Accessor;

Making the type limited prevents copying, and access
discriminants are unchangeable. The discriminant also cannot
be copied to a variable of type Refcounted_Access. The
result is that the discriminant can be used only for reading and
writing the object, but not for deallocation. Thus we have
achieved our goal of making accesses safe.
A user might now declare some type derived from Refcounted
and change the value of the accessed object like so:

 declare
 type My_Refcount is new Refcounted with record
 I: Integer;
 end record;

 P: Ref;

 begin
 Set (P, My_Refcount'(Refcounted with I => -10));
 My_Refcount (Get (P).Data.all).I := 42;
 end;

This view conversion to My_Refcount will incur a tag check
that will succeed in this example. In general, you have to know
the type with which to view-convert in order to access the
relevant components. An alternative is to declare a generic
package like the following:

 generic
 type T is private;
 package Generic_Pointers is
 type Accessor (Data: access T) is limited private;
 type Smart_Pointer is private;
 procedure Set (Self: in out Smart_Pointer; Data: in T);
 function Get (Self: Smart_Pointer) return Accessor;
 private
 ... implementation not shown
 end Generic_Pointers;

Instantiate with type Integer and the last line becomes instead:

 Get (P).Data.all := 42;

So how do we implement the function Get? This is quite
straightforward in Ada 2005, using a function returning a
limited aggregate. (Note that in Ada 95, limited objects were
returned by reference, whereas in Ada 2005 limited function
results are built in place.)

 function Get (Self: Ref) return Accessor is
 begin
 return Accessor'(Data => Self.Data);
 end Get;

Alas, we are not yet completely safe. To see this, we have to
consider in detail the lifetime of the Accessor objects. In the
example above, the lifetime of Get (P) ends with the statement
and the accessor is finalized. That is, it ceases to exist (in Ada
vernacular, the master of the object is the statement). So,
tasking issues aside, nothing can happen to the accessed object
(the integer in our example) as long as the accessor exists.
Now consider a variant of the above. Imagine we have a
pointer P whose reference count is 1, and let's extend the
accessor's lifetime:

134 Ada Gems

Volume 33, Number 2, June 2012 Ada User Journal

 declare
 A: Accessor renames Get (P);
 begin
 Set (P, ...); - - allocate a new object
 My_Refcount (A.Data.all).I := 42; -- ?
 end; - - A's lifetime ends here

In this example, the master of the accessor is the block (and
there are other ways to make the lifetime as long as one
wishes). Now in the block, the pointer P is given a new object
to access. Since we said that P was the only pointer to the old
object, it's finalized with disastrous effect: A.Data is now a
dangling pointer granting access to a nonexistent object until
the end of the declare block.
(Note that this issue also existed in the original
GNATCOLL.Refcount implementation.)
To cure the situation, we have to prevent the deallocation. That
suggests increasing the reference count with the construction
of an accessor and decreasing the count when the accessor is
finalized again. The easiest way to accomplish this is to
piggyback upon the properties of the smart pointer type:

 type Accessor (Data: access Refcounted'Class)
 is limited record
 Hold: Ref;
 end record;

 function Get (Self: Ref) return Accessor is
 begin
 return Accessor'(Data => Self.Data, Hold => Self);
 end Get;

Incidentally, as a final note, the type Accessor should
probably be declared as limited private, to avoid the possibility
of clients constructing aggregates (which, by the way, would
be quite useless).

Gem #123: Implicit Dereferencing in
Ada 2012
Christoph Grein, Ada Magic

Abstract: This Gem discusses the use of features added in
Ada 2012 that simplify accessing and updating the elements of
containers.

Let’s get started…
In Gem #107, we presented an accessor for safely referencing
objects stored in a container. The example concerned a
reference-counted pointer, but such accessors can be defined
on any kind of container.
An advantage of using accessors rather than simple access
types is that the former cannot be used to deallocate the
designated object. However, safety always comes with a cost,
in this case in the form of awkward syntax. In this Gem, we
show how some features of Ada 2012 can be used to simplify
the syntax.
 Consider a prototypical container as an example:

 generic
 type Element is private;
 type Key is private;
 with function Key_of (E: Element) return Key;

 package Containers is

 type Container is private;

 type Accessor (Data: not null access Element)
 is limited private;

 procedure Put (C: in out Container; E: in Element);

 function Get (C: Container; K: Key) return Accessor;

 private
 ... implementation not shown
 end Containers;

The container holds elements that can be retrieved via some
kind of key. How elements are stored and retrieved is not of
interest here. What is important is that Get grants direct access
to the stored element (in other words, Get does not return a
copy). This is crucial if you have a big object and only want to
update a component:

 Get (Cont, My_Key).Data.Component := Some_Value;

 Note that if the discriminant were to be defined as

 not null access constant Element

then the accessor would allow only read access. Also, the null
exclusion guarantees that an accessor will always reference an
object.
This syntax is quite verbose, but Ada 2012 provides a new
feature that helps simplify it, namely the Implicit_Dereference
aspect.
Side Note: Ada 2012 has added a general mechanism called an
aspect specification that allows defining various characteristics
of declarations, called aspects, as part of the declaration itself.
For example, representation attributes can now be specified by
using an aspect specification rather than a separate attribute
definition.
Here is how the Implicit_Deference aspect would be specified
for our Accessor type:

type Accessor (Data: not null access Element)
 is limited private

 with Implicit_Dereference => Data;

 A type defined with this aspect is called a reference type, and
an object of such a type is a reference object. The use of this
aspect allows us to reduce the statement to:
 Get (Cont, My_Key).Component := Some_Value;
 Note that the call Get(Cont, My_Key) is overloaded: its result
can be interpreted as either an accessor value or the accessed
object itself, and the compiler resolves this based on the
context of the call. (This is the reason the
Implicit_Dereference aspect cannot be used on the reference-
counted pointer in Gem #107, where a type conversion is
needed, because the argument of a type conversion must be
resolved independently of the context.)
You might argue that this is not a significant simplification.
However, this is not the end of the story. We're not interested
so much in how to get an accessor value (the result of function
Get) as we are in getting to the elements themselves. It
happens that we can elide the call to Get by means of another

Ada Gems 135

Ada User Journal Volume 33, Number 2, June 2012

aspect, called Variable_Indexing, that's applied to the
Container type:
 type Container is tagged private
 with Variable_Indexing => Get;
The result type of the Variable_Indexing function must be a
reference type. It's worth noting that the name given in an
aspect specification may denote something declared later. In
this case it's a forward reference to Get, which is declared after
the type.
Also, the type to which the Variable_Indexing attribute is
applied must be tagged. Being a tagged type, this allows the
Object.Operation notation, leading to:

 Cont.Get (My_Key).Component := Some_Value;

Given the Variable_Indexing aspect that specifies Get, this
can now be further reduced to simply:

 Cont (My_Key).Component := Some_Value;

Effectively what we get is direct access to container elements,
as though the container were a kind of array indexed by the
key. In fact, it's possible to use the indexed name alone in a
context requiring a variable of the element type, such as an
assignment statement:
 Cont (My_Key) := Some_Element_Value;
So, by combining the new aspects Implicit_Dereference and
Variable_Indexing we get a concise and much more readable
syntax for manipulating container elements.
Incidentally, there's also a companion aspect to
Variable_Indexing called Constant_Indexing, that can be
used to grant read-only access to element values. In that case,
the associated function is not required to return a reference
type, because all functions return a constant result.

136

Volume 33, Number 2, June 2012 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Press Release
	Rationale for Ada 2012: 3 Structure and visibility
	Use of Model Driven Code Generation on the ASIM Project
	The Benefits of Using SPARK for High-Assurance Software
	The Use of Proof and Generics in SPARK
	Ada Gems
	National Ada Organizations

