

Ada User Journal Volume 33, Number 3, September 2012

ADA
USER
JOURNAL

Volume 33

Number 3

September 2012

Contents
Page

Editorial Policy for Ada User Journal 138

Editorial 139

Quarterly News Digest 141

Conference Calendar 165

Forthcoming Events 170

Press Release
“First ‘Ada Way’ Award Winners and ‘Try and Beat Me’ Challenge” 175

Special Contribution

 J. G. P. Barnes
“Rationale for Ada 2012: 4 Tasking and Real-Time” 178

Ada-Europe 2012 Panels

 T. Vardanega, F. Gasperoni, E. Plödereder, J. M. Martínez Rodríguez, B. Meyer, A. Llemosí
“What is language technology in our time” 187

 J. Bundgaard, A. Rodríguez, S. Palm, R. E. Sward, J. Ruiz
“Reliable software, a perspective from industry” 204

Ada Way Report

 R. Aguirre Reyes, A. Graziano, M. Teoli, A. Zuccato
“The Ada Way: development of a soccer simulator” 212

Articles from the Industrial Track of Ada-Europe 2012

 F. Dordowsky, R. Bridges, H. Tschöpe
“Combining Code Generation and Ada Generics to implement a Software Product Line” 217

Ada Gems 227

Ada-Europe Associate Members (National Ada Organizations) 230

Ada-Europe 2012 Sponsors Inside Back Cover

138

Volume 33, Number 3, September 2012 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 News and miscellany of interest to
the Ada community.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Reviews of publications in the
field of software engineering.

 Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 139

Ada User Journal Volume 33, Number 3, September 2012

Editorial

The Ada User Journal is produced by a group of hard working volunteers, which dedicate some of their time to guarantee that
the Journal continues its quality production in a (as much as possible) timely manner, so it is important, and pleasant, when
we have the opportunity to enlarge this group with new and motivated helping hands. It is thus with contentment that I inform
that starting with this issue, Patricia López Martínez, from the University of Cantabria, Spain, takes the role of Assistant
Editor in the Editorial Board of the Journal. Patrícia is, since last August, assisting in the production of the Journal,
successfully and smoothly taking much of the production tasks. I take the opportunity to welcome her and wish her a very
successful term.

And the term started with really an impressive issue. These 94 pages (the largest issue in my term as Editor-in-Chief of the
Journal) provide a very interesting and diversified set of contents, which, I am sure, will draw the attention and please the
reader.

First we are glad to publish the announcement, made at the Ada-Europe 2012 conference, of the winners of the Ada Way
contest, a team from the University of Padua, Italy, formed by Ricardo Aguirre Reyes, Andrea Graziano, Marco Teoli, and
Alberto Zuccato. We are glad that these students have also accepted our invitation, and provided to the Journal a report on the
main design decisions and difficulties found in developing the simulator. The contest enters now a “try and beat me”
challenge, where any team can attempt to improve over this reference implementation.

We also continue the publication of the Ada 2012 Rationale, by John Barnes, with the chapter describing the changes in the
tasking and real-time domain, of which possibly the most relevant is the mechanism to control the allocation of tasks on
multiprocessors. The emergence and challenges of these architectures require that languages consider new ways to control
and schedule tasks, in order to fully utilize the available parallel power. The Ada concurrency model has always been an
important mark of the language and it is thus important that Ada continues to be in the forefront of concurrency, and now
parallelism, support. Ada 2012 already incorporates some of these features, but more work is undoubtedly still necessary.
And, although a coincidence, it is a pleasure that I note that this issue provides the announcement and call for papers for the
next IRTAW; the 16th International Real-Time Ada Workshop will take place April 2013 in the beautiful scenery of York, in
the UK. IRTAW is the main forum dedicated to the advances of Ada in the tasking and real-time domain and has provided
many of the advances in this area in the language revisions.

The issue also provides the position papers and summary for the two panels that took place in the Ada-Europe 2012
conference. The first of these, entitled “What is Language Technology in Our Time?”, addressed the increasingly important
issue of a language needing an eco-system of frameworks and tools around it in order to reach out to prospective users. This
panel was moderated by Tullio Vardanega, from the University of Padua, Italy, and included as panelists Bertrand Meyer,
Eiffel Software, Switzerland; Franco Gasperoni, AdaCore, France; Erhard Plödereder, University of Stuttgart, Germany; and
José María Martínez, Cassidian, Spain. This issue includes the position papers of moderator and panelists, as well as a
summary of the panel discussion by Albert Llemosí, Universitat de les Illes Balears, Spain.

The second panel, entitled “Reliable Software, a Perspective from Industry”, discussed the industrial perspective on the
software technology for reliable software. It was moderated by Jørgen Bundgaard, Ada in Denmark, and included as panelists
Ana Rodríguez, GMV, Spain; Steen Palm, Terma A/S, Denmark and Rick Sward, MITRE, USA. The issue provides their
position papers as well as the summary of the panel by José Ruiz, AdaCore, France.

Continuing with Ada-Europe 2013, we also publish a paper derived from its industrial track, from Frank Dordowsky (ESG,
Germany) and Richard Bridges and Holger Tschöpe (Eurocopter, Germany), presenting the design of the I/O data interface of
the NH90 software, using Ada generics.

As usual, the issue also provides the News Digest and Calendar sections, by Jacob Sparre Andersen and Dirk Craeynest, their
respective editors. The Forthcoming Events section provides, apart from the IRTAW announcement, the advance program of
the SIGAda High Integrity Language Technology (HILT 2012) conference and the call for papers for the 18th International
Conference on Reliable Software Technologies – Ada-Europe 2013. To finalize, the Ada Gems section provides two gems on
Iterators in Ada 2012 by Emmanuel Briot, from AdaCore.

 Luís Miguel Pinho
Porto

September 2012
 Email: AUJ_Editor@Ada-Europe.org

 141

Ada User Journal Volume 33, Number 3, September 2012

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Organizations 141
Ada-related Events 142
Ada-related Resources 142
Ada-related Tools 143
Ada-related Products 146
Ada and MAC OS X 147
References to Publications 148
Ada Inside 148
Ada in Context 150

Ada-related
Organizations

Ada 2012 Language
Standard Submitted to ISO

From: Dirk Craeynest
<dirk@vana.cs.kuleuven.be>

Date: Mon, 11 Jun 2012 23:59:02 +0000
Subject: Press Release - Ada 2012

Language Standard Submitted to ISO
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Ada 2012 Language Standard Submitted
to ISO Language revision adds contract-
based programming, multicore support,
and other advanced features

STOCKHOLM, SWEDEN, June 12, 2012
- At the Ada-Europe 2012 conference in
Stockholm, the Ada Resource Association
(ARA) and Ada-Europe today announced
the completion of the design of the latest
version of the Ada programming language
and the submission of the reference
manual to the International Organization
for Standardization (ISO) for approval.
The language revision, known as
Ada 2012, is under the auspices of
ISO/IEC JTC1/SC22/WG9 and was
conducted by the Ada Rapporteur Group
(ARG) subunit of WG9, with sponsorship
in part from the ARA and Ada-Europe.

Ada 2012 brings significant
enhancements to Ada, most notably in the
area of "contract-based programming."
New features here include the ability to
specify preconditions and postconditions
for subprograms, and invariants for
private (encapsulated) types. These take
the form of Boolean expressions that can
be interpreted (under programmer control)
as run-time conditions to be checked. The
contract-based programming features fit
in smoothly with Ada's Object-Oriented
Programming model, and support the type
substitutability guidance supplied in the
Object-Oriented Technologies and

Related Techniques Supplement (DO-
332) to the new avionics software safety
standard DO-178C / ED-12C.

Other new features in Ada 2012 include
enhancements to the containers library,
additional expressiveness through features
such as conditional expressions and more
powerful iterators, and support for
multicore platforms (task affinities, and
the extension of the Ravenscar profile -
standardized in Ada 2005 as an efficient
and predictable tasking subset for high-
integrity real-time systems - to
multiprocessor and multicore
environments).

"Ada 2012 is a major advance in the state
of the art," said Dr. Edmond Schonberg,
Rapporteur of the ARG. "The new
features answer real user needs, and help
cement Ada's reputation as a language of
choice for systems where reliability,
safety, and security are needed."

"The Ada Rapporteur Group did an
excellent job of carrying out the language
revision," said Dr. Joyce Tokar, Convenor
of WG9.

"Special thanks to Randy Brukardt for his
editorial work on the Language Reference
Manual, and to Ed Schonberg and all the
other ARG members. Ada 2012 is a
significant technical accomplishment."

Formal ISO approval of the Ada 2012
revision is expected in late 2012.

With the growing complexity of software
systems in most aspects of our daily
professional and personal life, program
correctness is a paramount concern.
Ada 2012 provides outstanding solutions
to that end, which can be applied both in
industry for production software
development, and in academia for
teaching and research.

Ada-Europe Announces 1st
Ada Way Award Winners

From: Dirk Craeynest
<dirk@vana.cs.kuleuven.be>

Date: Mon, 30 Jul 2012 21:03:06 +0000
Subject: Ada-Europe Announces 1st Ada

Way Award Winners and Try-and-Beat-
Me Challenge

Newsgroups: comp.lang.ada,
fr.comp.lang.ada, comp.lang.misc

Ada-Europe Announces First "Ada Way"
Award Winners and "Try and Beat Me"
Challenge.

Brussels, Belgium (July 30, 2012) - Ada-
Europe, www.ada-europe.org, the

international organization that promotes
the knowledge and use of the Ada
programming language in European
academia, research and industry, launched
"The Ada Way" annual student
programming contest in September 2010.
The first challenge was to build a
software simulator of a football (soccer)
match. The submitted code had to include
a software core implementing the logic of
the simulation, and read-write graphical
panels for interactive team management.

The evaluation committee chose one of
the submissions made until April 2012,
which at the recent Ada-Europe 2012
conference in Stockholm was proclaimed
the reference implementation. The
winning student team, formed by Ricardo
Aguirre Reyes, Andrea Graziano, Marco
Teoli, and Alberto Zuccato, received a
laminated Ada Way Award donated by
Ada-Europe to commend the outstanding
quality of their submission.

In evaluating the authors' submission the
evaluation committee reported: "This
implementation of the Ada Way Soccer
Simulation reveals extraordinary care and
engineering skill, and represents a
working, scalable, well-documented, and
well-structured solution. From reading the
technical documentation, it is clear that
the development team faced many
challenges, and in every case determined
an appropriate solution through a
combination of thoughtful analysis,
experimentation, and clever design." The
story of their implementation will be told
in a forthcoming issue of the Ada User
Journal, the quarterly magazine of Ada-
Europe. In due course, the winning team
will receive all elements of the prize
attached to their fine achievement.

Today, Ada-Europe is pleased to
announce that the full source of the
reference implementation is posted on the
Ada Way page, www.ada-
europe.org/AdaWay, along with its
accompanying technical specification,
user manual and build instructions, a short
demo video clip and an image of the
award.

The reference implementation is now
proposed for a "Try and Beat Me" open-
ended challenge: any student team willing
to take that challenge is invited to make a
submission that attempts to improve over
the reference implementation under any
of the evaluation criteria listed on the Ada
Way page. On 15 May of every year, any
such new submission will be evaluated
and the best one will be awarded a minor

142 Ada-related Resources

Volume 33, Number 3, September 2012 Ada User Journal

prize and will replace the previous
reference submission in the continuation
of the try-and-beat-me challenge.

The evaluation will be performed by a
team of distinguished Ada experts
comprised of: John Barnes (author of the
famous Programming in Ada books), S.
Tucker Taft (leader of the Ada 95
language revision), Pascal Leroy (leader
of the Ada 2005 language revision), Ed
Schonberg(co-author of the open-source
GNAT Ada compiler and toolset), Joyce
Tokar (convenor of the ISO working
group on the Ada language standards),
etc.

The winning team will be announced at
the Ada-Europe yearly conference
subsequent to the cut-off date at which
submissions entered the challenge. The
prize for this challenge includes a framed
award, an Ada book of choice, visibility
in electronic and printed media, one free
registration and a monetary grant of up to
EUR 1000 for the winning team to use for
collective participation at any future Ada-
Europe conference of choice within two
calendar years after selection for the
prize.

Ada-Europe wants the competition to be
fun and instructive. The implementation
does not need to be 100% Ada, but the
essence must of course be. Tullio
Vardanega, president of Ada-Europe,
stated: "The winning submission must be
a reference for good Ada programming,
software design, and innovation."

For all details, please refer to the official
web page of “The Ada Way”, www.ada-
europe.org/AdaWay.

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

Open Ada-DK Meetings

From: Thomas Løcke <tl@ada-dk.org>
Date: Mon, 02 Jul 2012 10:56:49 +0200
Subject: The July 2012 Open Ada-DK

Meeting
Newsgroups: ada-dk.misc

July 3rd 2012 from 1730 -> ? marks the
day and time when the twentieth open
Ada-DK meeting is being held.

The “open” part means that the meeting is
not a members-only affair, but that
anybody interested in Ada is welcome, so
feel free to invite whomever you might
believe could be interested in spending an
evening talking about Ada programming.

Participation in the meeting is of course
free.

[Also open Ada-DK meetings August 7th
and September 4th. —sparre]

Public Ada Courses in
Carlsbad, CA

From: Ed Colbert <colbert@abssw.com>
Date: Mon, 16 Jul 2012 19:04:37 -0700
Subject: [Announcing] Public Ada Courses

20-24 August 2012 in Carlsbad CA
Newsgroups: comp.lang.ada

Absolute Software will be holding a
public Ada course during the week of 20
August in Carlsbad, CA. You can find a
full description and registration form on
our web-site, www.abssw.com. Click the
Public Courses button in the left margin.

[also in 1-5 October 2012 —sparre]

Ada-related Resources

Clean out those dead links

From: wrp <i3text@gmail.com>
Date: Sat, 9 Jun 2012 15:11:11 -0700

Subject: Clean out those dead links
Newsgroups: comp.lang.ada

I'm currently searching online for Ada
resources. What impresses me most so far
is the number of dead links I find.

When I find a page listing Ada resources,
I'm finding that usually about 80% of the
links are dead. It creates a pretty bad
impression to see that so many projects
have been abandoned. What's even worse,
though, is to see that people who once
cared enough about Ada to promote it on
their web site now don't think about it,
and probably haven't for several years.

Don't you agree that can give people a
really bad impression of the state of Ada?

So, if you have an Ada page, why don't
you spend a few minutes to clean it up?

From: Patrick
<patrick@spellingbeewinnars.org>

Date: Sat, 9 Jun 2012 15:36:40 -0700
Subject: Re: Clean out those dead links
Newsgroups: comp.lang.ada

As someone new to Ada. I have found
this very discouraging at the beginning. I
only gained confidence to make an
investment in the language once I realized
it would play nice with C and that
compiler support was likely to continue
for 10-20 more years.

Even Adacore's site has a lot of dead
links. The trouble is how can we the
people who care, get those who don't to
update their sites? Easier said than done.

From: Nasser M. Abbasi
 <nma@12000.org>
Date: Sat, 09 Jun 2012 18:47:16 -0500
Subject: Re: Clean out those dead links
Newsgroups: comp.lang.ada

“So, if you have an Ada page, why don't
you spend a few minutes to clean it up?”

Agree. But it does really take more than
few minutes. When I cleaned the links on
my Ada links page:
http://12000.org/my_notes/ada/
original_web_page.htm

I record the time that the link was check
to be valid, and if the link is broken,
search the net for where the link gone
(this takes time) so that to update it, and
there is no alternative link to be found,
then remove it.

I remember it took me few long hrs to do
the whole page.

I guess many are busy with work and
family, not everyone has time. But your
point is valid. I have the same experience.
This reminds me, I need to go check my
Ada links now. I see I last validated them
in 2005.

:)

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Sun, 10 Jun 2012 11:22:00 -0400
Subject: Re: Clean out those dead links
Newsgroups: comp.lang.ada

webcheck can help here
(http://www.stephe-leake.org/ada/
webcheck.html).

It scans a web site, checking the validity
of each link, and outputs a list of the
broken ones.

That automates the first step, at least.

DIY Operating system
in Ada

From: Ada in Denmark
Date: Mon, 25 Jun 2012 09:26:39 +0000
Subject: DIY Operating system using in Ada
URL: http://ada-dk.org/2012/06/

diy-operating-system-using-in-ada/

Ada in Denmark: DIY Operating system
using in Ada:

The Bare bones tutorial over at OSDev
[1] has been ported to Ada!

It supports x86 targets ATM, but will –
according to the author – be extended to
ARM (with the Raspberry Pi in mind).

The tutorial can be found at [2] and the
source test is located at GitHub [3].

[1] http://wiki.osdev.org/Bare_Bones

[2] http://wiki.osdev.org/Ada_Bare_bones

[3] https://github.com/
Lucretia/bare_bones

Ada 2012 Rationale

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 2 Jul 2012 19:12:34 -0500
Subject: New Ada 2012 Rationale Edition

available
Newsgroups: comp.lang.ada

A new edition of the Ada 2012 Rationale
is available at:

Ada-related Tools 143

Ada User Journal Volume 33, Number 3, September 2012

http://www.ada-auth.org/standards/
rationale12.html

This edition of the Rationale combines the
first three chapters of the Rationale into a
single document, fixes a number of errors,
adds an index, and adds discussion of
various details of Ada 2012 that were
changed since the original publication of
these chapters in the Ada User Journal.
We expect that additional chapters will be
added to this edition about every three
months.

The Rationale for Ada 2012 provides an
overview of new Ada 2012 features,
examples of their use, compatibility with
Ada 95 and 2005, and more. It was
written by John Barnes, and was
sponsored in part by the Ada Resource
Association. This is an unofficial
description of the language; refer to the
proposed Ada 2012 standard for detailed
language rules.

Ada-related Tools

Fuzzy machine learning
framework

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 28 May 2012 12:08:38 +0200
Subject: ANN: Fuzzy machine learning

framework v1.2
Newsgroups: comp.lang.ada

The software is a library as well as a GTK
GUI front-end for machine learning
projects. Features:

- Based on intuitionistic fuzzy sets and the
possibility theory;

- Features are fuzzy;

- Fuzzy classes, which may intersect and
can be treated as features;

- Numeric, enumeration features and ones
based on linguistic variables;

- Derived and evaluated features;

- Classifiers as features for building
hierarchical systems;

- User-defined features;

- An automatic classification refinement
in case of dependent features;

- Incremental learning;

- Object-oriented software design;

- Features, training sets and classifiers are
extensible objects;

- Automatic garbage collection;

- Generic data base support (through
ODBC);

- Text I/O and HTML routines for
features, training sets and classifiers;

- GTK+ widgets for features, training sets
and classifiers;

- Examples of use.

This release is packaged for Windows,
Fedora (yum) and Debian (apt). The
software is public domain (licensed under
GM GPL).

http://www.dmitry-kazakov.de/ada/
fuzzy_ml.htm

Turbo Pascal 7 library port

From: Blady <p.p11@orange.fr>
Date: Sun, 10 Jun 2012 01:55:47 -0700
Subject: [ANN] TP7 emulation V2.6 with

GTK-Ada
Newsgroups: comp.lang.ada

The Turbo Pascal 7 library port in Ada is
intended to assist when porting Turbo
Pascal programs to Ada. It can be
combined with P2Ada translator [1]. The
implementation is based on GtkAda.

It can be used as a basic multi-purpose
library for simple graphic stuff. Basic but
quite complete and easy to use as the
original library was ;-) By the way, it
provides an embedded text console.

With only few lines you can operate a full
text terminal:

with TP7.System;

with TP7.Crt; -- if you comment this line then

 -- I/O use stdinout;

procedure Hello_GtkAda is

 use TP7, TP7.System;

 N : Byte;

begin

 Write ("How many hello ? ");

 Readln (N);

 for I in 1 .. N loop

 Writeln ("Hello with GtkAda console.");

 end loop;

end Hello_GtkAda;

See screenshot at [2].

Complete source code at [3].

[1] http://sourceforge.net/projects/p2ada/

[2] http://blady.pagesperso-orange.fr/
telechargements/tp-ada/tp7ada-mini.png

[3] http://p2ada.svn.sourceforge.net/
viewvc/p2ada/extras/tp7ada/current/

QtAda

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Sat, 23 Jun 2012 06:52:12 -0700
Subject: Announce: QtAda 3.2.0 preview
Newsgroups: comp.lang.ada

We are pleased to announce preview of
next major version of QtAda 3.2.0.

It includes new GPS integration plugin,
extended support of Qt's classes, as well
as bug fixes. Source code and binary
packages for Microsoft Windows can be
downloaded from QtAda site:

http://www.qtada.com/en/download.html

QtAda is an Ada 2005 bindings to the Qt
framework's libraries. It allows to create
powerful cross-platform GUI applications
with native look-and-feel for UNIX/
Linux, Microsoft Windows, Mac OS X
and embedded devices.

ZanyBlue

From: Michael Rohan
<michael@zanyblue.com>

Date: Sun, 1 Jul 2012 20:42:07 -0700
Subject: ANN: ZanyBlue v1.1.0 Beta
Available

Newsgroups: comp.lang.ada

A new release of ZanyBlue is now
available: 1.1.0 Beta. This is an Ada
library currently targeting localization
support for Ada (along the lines of Java
properties) with supporting message
formatting and built-in localization for
about 20 locales. The properties files are
compiled into Ada sources built with your
application and use to access application
messages at run-time. The run-time locale
is used to select localized messages, if
they are available.

Please see the project page on Source
Forge for download links, documentation,
etc, http://zanyblue.sourceforge.net

This project is licensed under a simple
BSD style license.

Math Extensions

From: Simon Wright
<simon@pushface.org>

Date: Thu, 12 Jul 2012 20:44:46 +0100
Subject: ANN: Ada 2005 Math Extensions

20120712
Newsgroups: comp.lang.ada

I'm pleased to announce the 20120712
release of the Ada 2005 Math Extensions.

Changes in this release:

The GNAT Project file is now in the top
directory of the distribution.

The tests expect AUnit 3 to be installed.

Different releases of LAPACK may alter
the sign of eigenvectors returned by the
generalized eigensystem code (remember
that the generalized eigensystem is Av =
lBv, where l is an eigenvalue and v is the
corresponding eigenvector). This only
affected the tests.

Testing on Debian 6 required an increase
in the test limit for complex general
eigenvalues tests for Float.

In GNAT GPL 2012 and GCC 4.7,
LAPACK and BLAS are no longer used,
and therefore aren't provided as part of
GNAT on platforms where they aren't
natively available. This package requires
LAPACK and BLAS to be installed (it
links with "-llapack -lblas").

Download:
https://sourceforge.net/projects/
gnat-math-extn/files/20120712/

144 Ada-related Tools

Volume 33, Number 3, September 2012 Ada User Journal

Matreshka

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Fri, 13 Jul 2012 12:50:37 -0700
Subject: Announce: Matreshka 0.3.0
Newsgroups: comp.lang.ada

We are pleased to announce availability
of new major release of Matreshka 0.3.0.
It includes:

- Firebird/Interbase driver for SQL
module;

- extensions for AMF module to process
UML Testing Profile, OCL and MOF
Extensions;

- text codecs for ISO-8859-5 and ASCII
character encodings;

- API improvement, bug fixes and
performance improvements;

- GNAT GPL 2012 support.

Matreshka is framework for development
of information systems in Ada. It
provides:

- localization, internationalization and
globalization support;

- XML processor;

- FastCGI support;

- SQL database access;

- UML processing module.

http://forge.ada-ru.org/matreshka/wiki

From: Patrick
<patrick@spellingbeewinnars.org>

Date: Sun, 15 Jul 2012 22:35:42 -0700
Subject: Non-GPL xml library ?
Newsgroups: comp.lang.ada

Is there an XML library that is not GPL?

From: Simon Wright
<simon@pushface.org>

Date: Mon, 16 Jul 2012 08:25:12 +0100
Subject: Re: Non-GPL xml library ?
Newsgroups: comp.lang.ada

Matreshka [1] supports SAX processing.

[1] http://forge.ada-ru.org/matreshka

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Tue, 17 Jul 2012 00:59:40 -0700
Subject: Re: Non-GPL xml library ?
Newsgroups: comp.lang.ada

> “Can you decouple the XML part of
Matreshka from the rest of the project?”

Yes, you can.

From: Maxim Reznik
<reznikmm@gmail.com>

Date: Wed, 18 Jul 2012 04:45:25 -0700
Subject: Re: Non-GPL xml library ?
Newsgroups: comp.lang.ada

> “Is it widely used?”

We use it (strings API, XML read and
write API, SQL API). It's nice. Now we
are implementing an Ada code generator
from UML using Matreshka's Ada
Modelling Framework.

Sound recording API for
Linux

From: Jacob Sparre Andersen
<sparre@nbi.dk>

Date: 17 Jul 2012
Subject: Ada sound recording API
URL: http://repositories.jacob-sparre.dk/

alsa-binding

Implemented features:

 + 16-bit mono recording (Linux)

 + 16-bit mono playback (Linux)

 + 16-bit stereo recording (Linux)

[With WAV file recording demonstration
applications. —sparre]

VTKAda

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Fri, 27 Jul 2012 07:46:31 -0700
Subject: ANN: VTKAda version 5.10 free

edition release 01/08/2012
Newsgroups: comp.lang.ada

I'm pleased to announce VTKAda version
5.10 free edition release 01/08/2012.

VTKAda is an Ada-2012 port to VTK
(Visualization Toolkit by Kitware, Inc)
and Qt4 application and UI framework by
Nokia.

Package was tested with GNAT GPL
2012 (-gnat12 option) in Windows XP
Sp3 32bit, Windows 7 Sp1 64bit,
Fedora16 and Debian 5 x86.

As a role Ada is used in embedded
systems, but with VTKAda(+QtAda) you
can build any desktop applications with
powerful 2D/3D rendering and imaging
(games, animations, emulations) GUI,
Database connection, server/client,
internet browsing and many others things.

Current state of VTKAda is 42064
procedures and function distributed in 672
packages. 135 examples.

Current state of QtAda is 11925
procedures and function distributed in 324
packages.

There are many new packages and
examples in this release.

VTKAda you can use without QtAda
subsystem.

QtAda is an Ada port of the Qt4
framework and can be used as an
independent system.

VTKAda and QtAda for Windows and
Linux (Unix) free edition are available
from http://users1.jabry.com/adastudio/
index.html

As a role, Ada is used in embedded
systems, but for desktop applications are
used C/C++/C# or JAVA. With
VTKAda(+QtAda) all project (included
desktop part) can be written on pure Ada-
2012.

Ada source code obfuscator

From: Oliver Kellogg
<okellogg@users.sourceforge.net>

Date: Sun, 29 Jul 2012 07:57:30 -0700
Subject: Re: Ada source code obfuscator

update
Newsgroups: comp.lang.ada

After the release of version 0.6, a number
of bugs were found and fixed so I decided
to release version 0.7, see
http://www.okellogg.de/x.html

This version was successfully used on a
system consisting of 180,000 lines of Ada
code.

Changes wrt version 0.6 are:

- Extend @do_not mangle and add a note
about its incompleteness.

- In sub mangled_name, add the name
component onto $result unmangled if no
mangling was performed on it.

- Rename sub pkg_mname to unit_mname
and rename @packages to @units.

- At sub nexttoken, add optional arg
$join_compound_name (default: false;
this is set true on processing unit names)

- New sub skip to_first_of permits
skipping to any of multiple given
tokens; skipping ends on encountering
the first of the given tokens.

- In main program:

 - fix iteration over @lex by replacing the
"for" loop incrementing $lndx by a
"while" loop employing sub nexttoken

 - fix bug in processing of task and
protected declarations (the comparison
against 'body' was broken)

 - detect keyword "use" so that "use type"
is out of the way (otherwise the type
declaration circuitry is erroneously
triggered.)

- In sub wregex, change search pattern to
exclude preceding ' (tic) to avoid
substituting attributes.

- In sub unit_mname and main program,
change unit prefix to "U".

IDE for newcomers to Ada

From: Dufr <dufriz@gmail.com>
Date: Tue, 31 Jul 2012 04:26:19 -0700
Subject: Which compiler / IDE do you

recommend for a beginner?
Newsgroups: comp.lang.ada

Which compiler / IDE do you recommend
for a beginner?

As I understand it, the top priority for the
beginner would be choosing an
environment conducive to learning. This
requires of course requires reduced
complexity, and possibly well explained
error messages.

Which Ada compiler / environment is the
best in this regard?

Ada-related Tools 145

Ada User Journal Volume 33, Number 3, September 2012

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Tue, 31 Jul 2012 11:36:09 -0400
Subject: Re: Which compiler / IDE do you

recommend for a beginner?
Newsgroups: comp.lang.ada

I think GNAT gives very good error
messages. In my opinion they are
significantly above average compared to
messages from other compilers I've used.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 31 Jul 2012 17:42:32 +0200
Subject: Re: Which compiler / IDE do you

recommend for a beginner?
Newsgroups: comp.lang.ada

[…]

Give GPS a second try. It is very good
and more productive to use than AdaGide
(which is very nice too and was the first
choice before GPS matured).

One thing about GPS. Create and edit
your project files manually you will have
no problems whatsoever.

From: francois_fabien@hotmail.com
Date: Tue, 31 Jul 2012 11:02:36 -0700
Subject: Re: Which compiler / IDE do you

recommend for a beginner?
Newsgroups: comp.lang.ada

GNAT/GPS (Adacore has a GPL version)
is a nice and matured IDE to start with. At
the start, you must set up project, but the
wizard is very helpful.

To get acquainted with the language you
have plenty (500+) of code samples at
RosettaCode [1].

When you will have bigger projects with
many libraries, the remark of Dmitry is
true: you must handle project files outside
GPS.

[1] http://rosettacode.org/wiki/
Category:Ada

From: Britt <britt.snodgrass@gmail.com>
Date: Tue, 31 Jul 2012 18:55:38 -0700
Subject: Re: Which compiler / IDE do you

recommend for a beginner?
Newsgroups: comp.lang.ada

 […]

gpr files are easy to understand and very
powerful (just read the users guide). A
brief (2 to 10 line) project file may be all
you initially need. It would be a Good
Thing if other Ada vendors would adopt a
gpr-like project structure.

From: Nicholas Paul Collin Gloucester
<Colin_Paul_Gloster@acm.org>

Date: Thu, 2 Aug 2012 11:12:13 +0000
Subject: Re: Which compiler / IDE do you

recommend for a beginner?
Newsgroups: comp.lang.ada

PowerAda from OC Systems.

LAPACK and BLAS
binding

From: Nasser M. Abbasi
<nma@12000.org>

Date: Tue, 31 Jul 2012 01:37:05 -0500
Subject: fyi, small update to Ada LAPACK

and BLAS binding
Newsgroups: comp.lang.ada

I've added more documentation and made
a little cleanup of the current Ada
LAPACK and BLAS bindings.

As per earlier thread, this snap shot of the
LAPACK binding now uses one package
to interface to LAPACK so it is easier to
use.

The location is still the same as before,
and with more documentation now how to
use the bindings.

http://12000.org/my_notes/ada/index.htm

I have a zip file the LAPACK and BLAS
updates I made there with links to the
original versions

AVR-Ada 1.2 release
candidate

From: Rolf Ebert <rolf.ebert.gcc@gmx.de>
Date: Wed, 01 Aug 2012 21:41:10 +0200
Subject: Tentative release of v1.2.0
Mailing-list: AVR-Ada <avr-ada-

devel@lists.sourceforge.net>

I am currently uploading the source and
windows binary release V1.2.0.

As I will leave tonight for business and
holiday trips, I won't be able to correct
any issues. Nevertheless I encourage you
to try the new version and report any
problems.

Although the new wiki is quite a mess
right now, I also invite you to document
your experience and install issues in the
wiki.

GtkAda contributions

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 11 Aug 2012 08:31:33 +0200
Subject: ANN: GtkAda contributions v2.14
Newsgroups: comp.lang.ada

The library is a contribution to GtkAda,
an Ada bindings to GTK+ toolkit. It deals
with the following issues: tasking support;
custom models for tree view widget;
custom cell renderers for tree view
widget; multi-columned derived model;
an extension derived model (to add
columns to an existing model); an abstract
caching model for directory-like data; tree
view and list view widgets for
navigational browsing of abstract caching
models; file system navigation widgets
with wildcard filtering; resource styles;
capturing the resources of a widget;
embeddable images; some missing sub-
programs and bugfixes; a measurement
unit selection widget and dialogs; an

improved hue-luminance-saturation color
model; simplified image buttons and
buttons customizable by style properties;
controlled Ada types for GTK+ strong
and weak references; and a simplified
means to create lists of strings.

http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm

[see also “GtkAda contributions “, in AUJ
33-2 (June 2012), p.77 —sparre]

Industrial control widget
library

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 11 Aug 2012 08:39:57 +0200
Subject: ANN: Ada industrial control widget

library v1.4
Newsgroups: comp.lang.ada

AICWL is an Ada library that is intended
for designing high-quality industrial
control widgets for Ada applications. The
widgets are composed of transparent
layers drawn by cairo. The widgets are
fully scalable graphics. A time controlled
refresh policy is supported for real-time
and heavy-duty applications. The library
supports caching graphical operations and
stream I/O for serialization and
deserialization. Ready-to-use gauge and
meter widgets are provided as samples as
well as an editor widget for WYSIWYG
design of complex dashboards. The
software is based on GtkAda and
cairoada, the Ada bindings to GTK+ and
cairo.

http://www.dmitry-kazakov.de/ada/
aicwl.htm

Simple components

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 11 Aug 2012 08:19:51 +0200
Subject: ANN: Simple components for Ada

v3.19
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, stacks, tables,
string editing, unbounded arrays,
expression analyzers, lock-free data
structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support. Tables
management and strings editing are
described in separate documents see
Tables and Strings edit. The library is
kept conform to both Ada 95 and
Ada 2005 language standards.

http://www.dmitry-kazakov.de/ada/
components.htm.

146 Ada-related Products

Volume 33, Number 3, September 2012 Ada User Journal

Deepend

From: Brad Moore
<brad.moore@shaw.ca>

Date: Mon, 27 Aug 2012 23:17:24 -0600
Subject: ANN: Deepend 3.2 Storage Pools
Newsgroups: comp.lang.ada

I am pleased to announce the availability
of Deepend version 3.2.

Deepend is a suite of dynamic storage
pools with subpool capabilities for
Ada 95, Ada 2005, and Ada 2012.

Bounded and unbounded storage pools
types are provided. Storage pools with
subpool capabilities allow all objects in a
subpool to be reclaimed all at once,
instead of requiring each object to be
individually reclaimed one at a time.
Deepend storage pools are more efficient
and safer than other schemes and can
eliminate the need for
Unchecked_Deallocations. A Dynamic
Pool may have any number of subpools.

Deepend can be downloaded from;

https://sourceforge.net/projects/deepend/fi
les/

[Deepend 3.1 was announced 6 July 2012.
See also “Deepend 2.6” in AUJ 32-4
(December 2011), p.216 —sparre]

AdaControl

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 29 Aug 2012 16:14:42 +0200
Subject: AdaControl 1.14 released
Newsgroups: comp.lang.ada

Adalog is pleased to announce the release
of AdaControl 1.14. As usual, this release
features new controls (meter says 421!),
new features, bug fixes…

More importantly, it compiles with
GNAT GPL 2012! A change in the ASIS
interface prevented the previous version
from compiling with the latest versions of
GNAT. AdaControl is now provided in
two flavors, one for the "old" GNAT, and
one for the recent one. Features are the
same, except that some controls related to
Ada 2005/2012 are not available with the
"old" version.

As usual, AdaControl can be downloaded
from:

http://www.adalog.fr/adacontrol2.htm

Ada-related Products

GNAT GPL 2012 and
SPARK GPL 2012

From: Jamie Ayre <ayre@adacore.com>
Date: Tue, 26 Jun 2012 11:56:09 +0200
Subject: [AdaCore] Announcing the

availability of GNAT and SPARK GPL
2012

Mailing-list: libre-news@lists.adacore.com

Dear GNAT and SPARK GPL user,

We are pleased to announce the release of
GNAT GPL 2012, the integrated Ada, C,
and C++ toolset for academic users and
FLOSS developers. This new edition
provides many new features and
enhancements in all areas of the
technology. The most notable ones are:

 - Full support for Ada 2012;

 - Tool enhancements:

 - GPS 5.1 (improved support for C/C++,
centralized handling of VCS menus,
improved automatic code fixes, more
intuitive handling of the MDI)

 - GtkAda 2.24 (bindings upgraded to
Gtk 2.24, support for printing, support of
the Glade-3 GUI builder and the
Gtk_Builder approach)

 - GNATbench 2.6 (ergonomic
improvements, additional tooltip
functionality)

 - A dimensionality checking system for
physical units

 - Improvements to GNATpp and
GNATmetric

 - Support for unloading Ada plug-ins

 - Improved Ada/C++ integration

 - New warnings and better error
messages

 - Support for encapsulated shared
libraries with no external dependencies

 - New unit GNAT.Expect.TTY for
advanced terminal interaction

We are also pleased to announce the
release of SPARK GPL 2012, the
integrated static analysis and verification
toolset for academic users and FLOSS
developers.

This new edition provides many new
features and enhancements to both the
SPARK language and toolset. The most
notable ones are:

 - Support for generic subprograms

 - Annotated and refined proof functions

 - Fully-modelled function calls in proof
contexts

 - Assume statements

 - Full-range subtypes for all types

 - Automatic data flow analysis mode

 - Improved Examiner options for
platform-independence and easier
makefile integration

 - Improved use of types & subtypes in
FDL

 - Improved Simplifier rules and tactics

 - Extension of SPARKBridge to
accommodate other SMT solvers:
CVC3, Yices and Z3

GNAT GPL 2012 and SPARK GPL 2012
can be downloaded from the

"Download" section on
https://libre.adacore.com.

GNATprove available for
download

From: Jamie Ayre <ayre@adacore.com>
Date: Mon, 23 Jul 2012 10:15:45 +0200
Subject: [AdaCore] Availability of

GNATprove
Mailing-list: libre-news@lists.adacore.com

Following the recent release of GNAT
GPL (see http://libre.adacore.com/) we
are happy to announce the first GPL
release of the GNATprove. This tool is
used for formal verification of Ada
programs and is being developed as part
of the Hi-Lite project. We provide binary
distributions for x86 Linux, x86 windows
and x86-64 bit Linux. More details can be
found on the following page:

http://www.open-do.org/projects/
hi-lite/gnatprove/

For questions, remarks, or issues please
contact us on

<hi-lite-discuss@lists.forge.open-do.org>

Atego acquires IBM
Rational Ada Developer
products

From: Martin Dowie
<martin@thedowies.com>

Date: Wed, 25 Jul 2012 00:17:14 -0700
Subject: Atego acquires IBM Rational Ada

Developer products
Newsgroups: comp.lang.ada

http://www-01.ibm.com/support/
docview.wss?uid=swg21605950&
myns=swgrat&mynp=OCSSMMQY&
mynp=OCSSSGSH&mync=E

Further rationalization in the Ada
market… (pun intended :)

From: Britt <britt.snodgrass@gmail.com>
Date: Thu, 16 Aug 2012 18:49:44 -0700
Subject: Re: IBM (Rational) Ada now owned

by Atego!
Newsgroups: comp.lang.ada

[http://www-01.ibm.com/software/
rational/info/apex-ada —sparre]

I think it is good news since Apex was a
very good (though costly) development
environment. I used it from 1996-2002.
However IBM hadn't changed it much in
recent years. I hope Atego can revitalize
Apex and make it competitive again.
While I'm currently a great fan (and
supported customer) of AdaCore and
GNAT Pro, I know it is not good for the
Ada language and the Ada user
community to have only one healthy
compiler vendor.

AdaCore has taken over the commercial
Ada market because they (in my opinion)
do everything right with their support
subscription based business model, their
proactive development of supporting

Ada and Mac OS X 147

Ada User Journal Volume 33, Number 3, September 2012

technologies, their early implementation
of new Ada standards, and by strongly
promoting the Ada language itself rather
that just selling tools. If not for what
AdaCore has done over the last 17 years
or so, there would be much less use of
Ada today. So while I wish Atego success
with both Apex and ObjectAda, I don't
think they will regain much market-share
unless they choose to become more like
AdaCore. If they do then I think there will
be enough business for all.

From: Martin Dowie
<martin@thedowies.com>

Date: Fri, 17 Aug 2012 00:38:09 -0700
Subject: Re: IBM (Rational) Ada now owned

by Atego!
Newsgroups: comp.lang.ada

Wouldn't it be bizarre (but rather brilliant)
if Atego opened up ObjectAda and/or
Apex to the single-user/small company
market? How about a $100 / £100 /
Euro100 per year subscription model?.

GNATprove distinguished at
VerifyThis competition

From: Yannick Moy
Date: September 3, 2012
Subject: GNATprove Distinguished at

VerifyThis Competition
URL: http://www.open-do.org/2012/09/03/

gnatprove-distinguished-at-verifythis-
competition/

I participated last week in the VerifyThis
Verification Competition, which took
place on Thursday afternoon during the
Formal Methods 2012 conference in
Paris. The goal was to apply verification
tools to three small challenge programs,
to compare approaches and learn from
each other’s tools.

I used Ada 2012 as a programming and
specification language (using
preconditions and postconditions to
specify contracts for subprograms) and
our prototype GNATprove, a proof tool
developed in project Hi-Lite, to formal
verify that the code implements its
contract and does not raise run-time errors
(integer overflows, array index out of
bounds, etc.) I completed challenge 1 and
I did a part of challenge 2, but I had not
enough time to complete it or start on
challenge 3.

The competition was followed on Friday
by a very interesting explanation session
where each team showed how it addressed
the problems with its tools. It was
particularly interesting to see different
solutions from teams using the same
language (for example, the two teams
using Why3 had quite different solutions
for challenge 2), as well as the interaction
between the user and the proof tool in
KIV, KeY, Why3, etc. I think the
problems and their solutions will be added
soon to the VerifyThis repository, but if
you cannot wait, you can also ask the

organizers for a tarball of the
submissions.

To come to the title of this post, the
organizers awarded a distinction to
GNATprove for its integration of proving
and run-time assertion checking, of which
I’m very proud. As I explained them, this
integration was essential in helping me
during the competition:

* For the first problem, I was stuck with a
postcondition that I could not prove, and I
did not manage to figure out why. So I
decided to write a small test to make sure
at least that the code and the contract were
not contradictory. I executed it, and it
raised an exception saying the
postcondition was wrong! (because
Ada 2012 contracts are executable, the
compiler can transform them into run-
time assertions, including quantifiers that
are transformed in loops) It was then easy
to pinpoint the root cause of the problem,
the use of “<" instead of "<=" in the test
of the main loop.

* For the second problem, I decided to
implement the iterative version of the
algorithm, which is more complex to
specify and verify than the recursive one,
but also more representative of critical
embedded software. The algorithm is
divided in two passes, each one
performing two nested loops on the input
array, with loop invariants to write for the
proof to go through. Being able to
execute these loop invariants as regular
assertions made me quite confident that I
had not written wrong assertions, before I
even start proving something.

Hope to see even more participants at the
next software verification competition,
either VSTTE’s one or VerifyThis!

Ada and Mac OS X

GtkAda on Mac OS X

From: Emmanuel Briot
<briot@adacore.com>

Date: Thu, 26 Jul 2012 09:22:59 +0200
Subject: Re: Patch: Remove a remnant of

the Glade support.
Mailing-list: gtkada@lists.adacore.com

We do check that GtkAda works on OsX
(in fact most of the GtkAda developers
are on that platform), but this isn't an
officially supported platform and building
a release requires a lot of resources. We
are indeed very interested in user
feedback for various aspects of GtkAda.

In fact, the API in gtk+3 has change
significantly, and of course so has the one
in GtkAda. Porting is not difficult, but is
not a simple matter of recompiling either.
So this is a good opportunity for us to
improve areas of GtkAda that haven't
changed in the last 12 years. In particular,
we are rethinking the handling of signals
for instance.

OS X 10.8 Mountain Lion
and GNAT GPL 2012

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: Mon, 30 Jul 2012 20:51:40 +0100
Subject: OS X 10.8 Mountain Lion and

GNAT GPL 2012
Newsgroups: comp.lang.ada

Mountain Lion needs Xcode 4.4, which
does not install by default the command
line tools /usr/bin{as, ld, make} needed
by GNAT.

It is necessary to invoke:

 Xcode > Preferences… > Downloads >
Command Line Tools: Install

It's about a 115MB download.

Once completed, GNAT GPL 2012 is
restored to sanity.

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: Mon, 30 Jul 2012 23:40:41 +0100
Subject: Re: OS X 10.8 Mountain Lion and

GNAT GPL 2012
Newsgroups: comp.lang.ada

I suspect the GCC tools are now an
optional download because Apple have
adopted LLVM in place of GCC as the
standard compilation toolset. I can't see
them ever making it impossible to use
GCC.

GtkAda and more for Snow
Leopard

From: Pascal <p.p14@orange.fr>
Date: Sun, 2 Sep 2012 18:37:45 +0200
Subject: [ANN] XAdaLib binaries for SL

including GtkAda and more.
Newsgroups: gmane.comp.lang.ada.macosx

This is XAdaLib 2012 built on Mac OS X
Snow Leopard for X11 including:

 - GTK Ada 2.24.2 with GTK+ 2.24.5
complete,

 - Glade 3.8.2,

 - GNATColl 2012,

 - Florist 2012,

 - AICWL 1.3,

Then see documentation and examples in
share directory and enjoy.

See the instructions which have produced
the libraries on Blady web site:

http://blady.pagesperso-orange.fr/
creations.html#gtkada

XAdaLib binaries have been post on
Source Forge:

http://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2012-snow-leopard/

148 Ada Inside

Volume 33, Number 3, September 2012 Ada User Journal

References to
Publications

New SPARK book

From: Mark Lorenzen
<mark.lorenzen@gmail.com>

Date: Fri, 29 Jun 2012 09:51:37 -0700
Subject: New SPARK book available for

pre-order
Newsgroups: comp.lang.ada

The new SPARK book "SPARK: The
Proven Approach to High Integrity
Software" seems to be available for pre-
order at Amazon UK. Publication date is
stated to be July 2012.

http://www.amazon.co.uk/Spark-Proven-
Approach-Integrity-Software/dp/
0957290500

A New Language for Safe
and Secure Software

From: Benjamin M. Brosgol
Date: July 2012
Subject: Ada 2012: A New Language for

Safe and Secure Software
URL: http://cotsjournalonline.com/articles/

view/102810

Building on a tradition of success in
mil/areo systems, a new version of the
Ada language has emerged. It features
"contract-based programming" that blends
well with the requirements-based world of
military programs.

[…]

Ada Inside

The ideal programming
language?

From: Colin Walls
Date: Aug 1, 2011
Subject: The ideal programming language?
URL: http://go.mentor.com/w6n9

I recently wrote about programming
languages and discussed which ones are
common for embedded applications.
Among the responses to that posting was
a message from Robert Dewar from
AdaCore. He makes the following points:

“It’s interesting to note that you omitted
one language mentioned in the VDC
report, namely Ada. Ada is interesting
because, as you noted, all the other
languages do not share Ada’s important
characteristic that it was designed for
embedded use. For example, the
recognition that multi-threading is
fundamental in most embedded
programming, and therefore
comprehensive features for handling this
are an important part of the Ada language
design. Other languages have no support
at all for threading in the language itself

(C, C++), or very rudimentary support
(Java) that falls far short of what is
needed (a fact recognized by the attempt
to extend Java for real time use).

The usage of Ada mentioned in the VDC
report is listed as 3%, but that number
may be deceptive in that it misses the fact
that Ada’s predominant use is in large-
scale safety- and security-critical systems.
Significant parts of the avionics of many
new planes are written in Ada, and also a
number of other critical systems, such as
air traffic control systems. I suspect that if
you counted lines of code, and weighted
the results by the significance of the
applications involved, Ada would come
quite a bit higher on the list.”

Robert is, of course, completely correct.
Although not unique in its incorporation
of multi-threading in the language, Ada is
probably the only widely used language
that was really designed for embedded
applications. I think that my own lack of
experience with Ada meant that I did not
give it due consideration. I wonder if Ada
usage is declining, stable or growing?

SmartSide Adopts Ada and
GNAT Pro for Smart
Devices Platform

From: AdaCore Press Center
Date: June 20, 2012
Subject: SmartSide Adopts Ada and GNAT

Pro for Smart Devices Platform
URL: http://www.adacore.com/press/

smartside-adopts-ada-gnat-pro/

PARIS, NEW YORK, June 20, 2012 - SG
PARIS 2012 Conference - AdaCore today
announced that SmartSide, a Paris-based
company providing Smart Metering and
Smart Grid management solutions, has
adopted the Ada programming language
and AdaCore's GNAT Pro development
environment for the implementation of
their Smart Devices platform. SmartSide
offers multi-energy meter data
management systems. Distribution
Network Operators use SmartSide
technology to optimize their Smart Grid
networks through the secure, reliable,
highly-interoperable and business-
oriented Smart Energy Core platform.

"In our relentless search for quality and
performance, Ada has come up as the
most efficient technology for writing
reliable, secure and scalable code that is
also easily maintainable," said David
Dhéux, SmartSide CTO. "GNAT Pro is
our framework of choice for writing Ada
code. Its all-in-one development
environment allows us to handle activities
ranging from initial development to static
analysis and testing. It reduces our time-
to-market and gives us the edge we need
in today's competitive environment. We
also selected AdaCore for the high quality
and responsiveness of its support team.
Finally, we chose to work with AdaCore
because their product roadmap is

particularly well-suited to ours, with tools
and language evolution focused on
reliability."

The system consists of two primary
components:

* The generic core, which acts as the
intelligence of the system and performs
the major work (data collection,
processing, analysis). This part of the
system is sufficiently generic and
configurable to process all kinds of
energy and environmental data.

* The user interfaces, which are separate
from the core, are very flexible and easy
to adapt. They are easily configurable to
reflect specific business needs.

The infrastructure of the Smart Devices
platform is designed to be scalable,
reliable and fault resistant. GNAT Pro and
the Ada programming language were
chosen because of their long and
successful track record in the aerospace
and defense industries, where high levels
of reliability are critical. SmartSide
thoroughly evaluated several other
languages, but none matched the reliabilty
and data-handling qualities of Ada.

"SmartSide's diligence in searching for an
appropriate programming language led
them to Ada, which is especially
pleasing," said Jamie Ayre, Marketing
Director of AdaCore Europe. "Ada has
made a name for itself as a language for
programming reliable, safe and secure
systems. With the advent of Ada 2012 and
the new features it introduces, it has
become the benchmark for the
development of these systems."

Telecom ParisTech third in
robotic cup

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 22 Jun 2012 19:03:54 +0200
Subject: Telecom ParisTech third in robotic

cup
Newsgroups: comp.lang.ada

against 140, and you guess it, their robot
is in Ada-Ravenscar.

See f.e. http://libre.adacore.com/
academia/projects-single/robotics-cup.

If you want to see the pictures, you'll have
to go through sites in French… (google
"telecom robotique")

TeXCAD

From: Gautier
gautier_niouzes@hotmail.com

Date: Fri, 6 Jul 2012 06:55:54 -0700 (PDT)
Subject: Ann: TeXCAD 4.3
Newsgroups: comp.lang.ada

After a long time of inactivity, here is the
4.3 version of TeXCAD, a 100% Ada
software.

 http://texcad.sf.net

Ada Inside 149

Ada User Journal Volume 33, Number 3, September 2012

TeXCAD is a picture editor for pure
LaTeX or, at will, some extensions.

No support yet for fancy packages like
PSTricks or TikZ, but perhaps, one day…

On the other hand, TeXCAD allows to
make very portable vectorial pictures, and
even to rework pictures made with some
no more supported extensions like
emlines and save them without those
extensions. The TeXCAD underlying
library is OS-independent and can be used
to make batch converters to various mix
of LaTeX graphics packages, or to apply
various graphics user interface layers.

AWS inside

From: Pascal Obry <pascal@obry.net>
Date: Sat, 07 Jul 2012 09:38:07 +0200
Subject: Re: so talk to me about aws:

anyone got a site? any e commerce? fun?
Newsgroups: comp.lang.ada

A photo critic Web site (in French):

 http://v2p.fr.eu.org

This is based on AWS using most of the
fun stuff in it, it was a test bed for the
Web_Block support.

It is OpenSource:
https://github.com/TurboGit/vision2pixels

From: Manuel Gomez
<mgrojo@gmail.com>

Date: Mon, 09 Jul 2012 20:59:22 +0200
Subject: Re: so talk to me about aws:

anyone got a site? any e commerce? fun?
Newsgroups: comp.lang.ada

Since this is a recurrent question I have
compiled a list of sample websites
implemented in AWS and added it to
AdaCommons wiki. Everyone is invited
to add any other site to the list.

http://commons.ada.cx/Ada_Web_Server

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Thu, 12 Jul 2012 14:18:17 -0700
Subject: Re: so talk to me about aws:

anyone got a site? any e commerce? fun?
Newsgroups: comp.lang.ada

Perhaps not fun, but I find them cool

<http://www.youtube.com/watch?v=3Diy
VDMp2bL9c>

I communicate with them via AWS, http
POST. No I don't control each one of
them independently, but provide them
with assignments, like 'take bin 1, 3, 4,
and 5 and put them in port 2. tell me when
you deliver each one of them.'

Our installation has conveyors at the port,
giving the pickstation a 10 bin buffer.

This is within a Warehouse Control
System.

We also use AWS as a web server within
our Warehouse management system,
making the operator at infeed take a photo
of bad/broken pallets at goods reception
with a handheld device, uploading via

AWS, for further treatment in WMS/ERP
-i.e. tell the transporter to be more careful.

At some site we, use AWS as a message
broker, providing web-service interface in
one end, and inhouse format in the other
end.

Great product.

We use it on Windows and AIX.

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Fri, 13 Jul 2012 10:03:59 -0700
Subject: Re: so talk to me about aws:

anyone got a site? any e commerce? fun?
Newsgroups: comp.lang.ada

“Is the whole system (or some high
proportion) Ada?” The autostore system
itself is probably c :-((Would be nice to
redo it in Ada though)

The Warehouse Control System (WCS),
that tells them to do, on a higher level is
all Ada. That system talks to conveyors
(usually PLCs) stacker cranes, labelizers,
AGVs, LGVs (auto trucks), selects
locations to store goods within a
warehouse and of course talks to
WMS/ERP systems. (where we use AWS
sometimes) In this case we have

 ERP|WMS|WCS|Conveyer + Autostore
where the WCS is all Ada. Sattmate WCS
in Ada

<http://www.consafelogistics.com/Our%2
0offer/Warehouse%20Management/SattM
ate%20WCS> there is also a combined
WCS/WMS that is all Ada (Except the
gui, in both cases) SattStore, WMS/WCS
in Ada

<http://www.consafelogistics.com/Our%2
0offer/Warehouse%20Management/SattSt
oreWMS>

Sledgehammer Indexing
Tools

From: Erich <john@peppermind.com>
Date: Mon, 6 Aug 2012 11:36:03 -0700
Subject: Sledgehammer Indexing Tools
Newsgroups: comp.lang.ada

I've just released some document indexing
tools for GNU/Linux on launchpad which
are written in Ada:

https://launchpad.net/sledgehammer

They come with a makefile and a GPS
project file. They heavily depend on
external converters, so please check the
dependencies in the Readme file before
trying the indexer out.

Comments and suggestions for
improvement are welcome. Please bear in
mind that I'm a hobbyist and this is only
the second Ada program I've ever written,
though, so please don't be too harsh with
your criticisms. :-)

Perhaps someone finds part if this useful.

Adagio

From: Shark8
<onewingedshark@gmail.com>

Date: Sun, 12 Aug 2012 13:22:04 -0700
Subject: Ada networking (Adagio)
Newsgroups: comp.lang.ada

Hey, I was hoping to get a bit more
familiar with using Ada for networking
programs; I found referenced to Adagio,
which is supposed to be (or have been, it's
inactive now) a Gnutella2 program.

The project is inactive and none of the
files appear to have been
archived/downloadable. The last known
source was contained in a zipfile adagio-
src.2.1.e.zip, which I cannot find for
download either.

I was wondering if anyone on this thread
might have a copy laying around on their
HD.

From: Mosteo <alejandro@mosteo.com>
Date: Mon, 20 Aug 2012 10:59 +0200
Subject: Re: Ada networking (Adagio)
Newsgroups: comp.lang.ada

I'm not sure how good a resource it is for
learning from; I did learn a lot about
blocking and non-blocking sockets when
programming that (I experimented with
both approaches -- IIRC a stack size
related thread limit in Windows prompted
me to abandon blocking IO in the end),
but the code more or less grew up with
little foreplanning.

From: Mosteo <alejandro@mosteo.com>
Date: Wed, 29 Aug 2012 13:08:11 +0200
Subject: Re: Ada networking (Adagio)
Newsgroups: comp.lang.ada

I've rescued my last version. The story
seems missing though. I've made a push
to github at:

https://github.com/mosteo/adagio

Project file is adagio.gpr. There are others
for related projects that never got
anywhere, so I'm leaving these for later.

From: Mosteo <alejandro@mosteo.com>
Date: Thu, 30 Aug 2012 11:18:15 +0200
Subject: Re: Ada networking (Adagio)
Newsgroups: comp.lang.ada

> Not surprising. I'm not sure if sockets
are the best way to handle networking
in-general -- though they certainly are
the most popular.

I've used Yarp (mandated in a project)
and came to hate it. But I'm pretty sure
that there are better middlewares out
there. From the point of view of ready for
use with Ada I'm curious about YAMI4
and zeromq.

DrDobbs Longing For Code
Correctness

From: Andrew Binstock
<alb@drdobbs.com>

Date: August 26, 2012
Subject: Longing For Code Correctness

150 Ada In Context

Volume 33, Number 3, September 2012 Ada User Journal

URL: http://www.drdobbs.com/
architecture-and-design/longing-for-
code-correctness/240005803

Longing For Code Correctness

By Andrew Binstock, August 26, 2012

The longer I write code, the more I yearn
for code correctness. Despite the work
this extra step presents, commercial
ventures, especially Wall Street, would do
well to embrace it.

When I was young and first got into
programming seriously, I reveled in
working at the lowest levels of code. I
loved (loved!) assembly language and
could think of no greater happiness than
doing clever things with registers and
writing tight, fast code that squeezed into
the minimum amount of RAM and
delivered great performance. The second
alternative is to use languages that
strongly support correctness.

There are not many. Ada goes farther than
Java in this regard. And Eiffel perhaps
farther yet. But probably the one that does
the most is SPARK, an Ada subset.
Developed in the U.K., SPARK uses a
system of annotations that are embedded
in comments at the start of each method.
The code can then be verified by assorted
tools that check it against the annotations.
Free and commercial versions of SPARK
tools exist today.

[Andrew Binstock is Editor-in-Chief at
DrDobbs —sparre].

Ada in Context

Ada to C translator for small
microcontrollers

From: Tomi Saarnio
<kalvin.news@gmail.com>

Date: Mon, 26 Mar 2012 05:48:47 -0700
Subject: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

As there exists at least one free decent C
cross-compiler for smaller 8-bit and 16-
bit architectures (Pic, Avr, 8051 etc.), but
none Ada compiler that I know of, I was
wondering whether there is a demand for
an Ada to C translator, that would
implement some sort of Ada subset and
output corresponding ANSI C source
code. I am not a compiler or Ada expert,
so I cannot really estimate the effort how
hard this would be.

As far as I can see the problem, the first
thing is to identify a suitable subset(s) to
be implemented, and then to come up
with the corresponding C source idioms.

From: Rego, P. <pvrego@gmail.com>
Date: Mon, 26 Mar 2012 06:44:51 -0700
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

For AVR, now you know…

http://libre.adacore.com/libre/download2?
config=avr-elf-windows&version=2011

Actually you also have AVR-Ada. For
RTOSes, RTEMS and MarteOS have
support for Ada.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Mon, 26 Mar 2012 17:14:00 +0300
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

SofCheck (www.sofcheck.com) provides
such an Ada (95) compiler, a version of
their AdaMagic front-end.

“I am not a compiler or Ada expert, so I
cannot really estimate the effort how hard
this would be.”

Quite large, I think, unless you take a very
small subset. But one would really like
the subset to provide most of the compile-
time advantages of Ada: packages, user-
defined types, type attributes, generics.

I think the realistic approach for an open-
source implementation would be to take
the existing GNAT front-end and try to
generate C code from the intermediate
representation, either the gcc IR or the
llvm IR.

In the GNAT-based approach that I
suggest above, the bottleneck is in the IR-
to-C translator. I don't know much about
the gcc or llvm IRs, but I would expect
the subset to be defined by the limitations
of whatever IR-to-C translator is created,
and it may not be easy to define the
corresponding subset on the Ada level. In
any case, it seems simpler to start building
an IR-to-C translator and accept whatever
limitations it turns out to have.

There are some "Ada to C/C++"
translators that work on the pure source-
to-source "idiom" basis, but I believe they
are intended to help porting Ada projects
from Ada to C or C++, and probably
require manual assistance to finish the
translation. The SofCheck tool is a fully
automatic, real compiler that generates
complete and finished C source.

From: Ludovic Brenta
 <ludovic@ludovic-brenta.org>
Date: Mon, 26 Mar 2012 08:48:55 -0700
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

That's a good thought. LLVM already
comes with a C backend (i.e. a code
generator that emits C rather than
assembly). I wonder how easy it would be
to configure a toolchain based on the
GNAT Ada front-end and this C back-
end, bound together by LLVM's
DragonEgg GCC plug-in.

From: Simon Wright
<simon@pushface.org>

Date: Mon, 26 Mar 2012 17:20:27 +0100

Subject: Re: Ada to C translator for small
microcontrollers

Newsgroups: comp.lang.ada

Hmm, from [1], "The C backend has
numerous problems and is not being
actively maintained. Depending on it for
anything serious is not advised."

[1] http://llvm.org/docs/
ReleaseNotes.html#knownproblems

From: kalvin.news@gmail.com
Date: Tue, 27 Mar 2012 02:46:00 -0700
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

[...]

There is also GPL Ada to C/C++
translator[1], but I have not looked at this
yet. It seems that this tool is mainly aimed
to aid the process of translating existing
Ada source code to C/C++. However, the
GPL'd source code is available.

[1] http://adatoccpptranslator.free.fr/

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Wed, 28 Mar 2012 19:36:37 +0300
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

“Full language translators are mostly used
to move a project away from one
language to another more accessible
language. So, why use Ada in the first
place.”

Because it is so much better than C, of
course :-)

I know of more than one project that used
Ada as a high-level design and
specification language, and then
implemented the design in some lower-
level language (in one case, an assembly
language). In some cases, the Ada code
was complete and runnable and could be
used as a test oracle for the lower-level
implementation.

“How large a software project needs to be
in order to benefit from implementing it
in Ada?”

IMO, basically there is no lower limit,
with the possible exception of the null
program.

“Why bother with Ada as we already have
(free) C compiler available.”

We also have a free Ada compiler
available, for many platforms -- but not
for many small processors, I grant.

But many projects developing in C for
microcontrollers use non-free,
commercial compilers, IDEs, and other
expensive tools (in-circuit debuggers,
etc.) The question IMO is not whether
there is a benefit from using the Ada
language; the question is if the benefit can
be convincingly quantified in money and
schedule terms.

Ada in Context 151

Ada User Journal Volume 33, Number 3, September 2012

“If the project is a small one, and you
don't have to share the code with others, C
is just fine.”

No! C is a like a Model-T Ford that for
some strange reason is allowed on modern
roads. You can survive and not be too
uncomfortable on short trips, but you
should really consider changing to a better
car.

IMO the only reasons that would make
me use C instead of Ada are:

- No Ada compiler available within my
budget

- Need to use large C libraries/APIs for
which no Ada binding exists.

From: KK6GM
<mjsilva@scriptoriumdesigns.com>

Date: Wed, 28 Mar 2012 10:56:34 -0700
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

[…]

The free vs not-free issue should not be
discounted. People who would be open to
trying Ada on small platforms need to be
able to get it into their hands easily. Free
now to help make the sale, pay later for
support. It would be fabulous, IMO, if the
SofCheck Ada->C product would be
made available in some free form. I know
I would start using it immediately, and
start trying to convert my organization to
Ada. There is so much sub $5-$10
hardware now that could run Ada code
very effectively, but continues to be
programmed in C/C++ in part because of
the inertia of the free or very low cost
compilers available.

[…]

"The 1980s will probably be remembered
as the decade in which programmers took
a gigantic step backwards by switching
from secure Pascal-like languages to
insecure C-like languages. I have no
rational explanation for this trend." -Per
Brinch Hansen.

From: KK6GM
<mjsilva@scriptoriumdesigns.com>

Date: Wed, 28 Mar 2012 07:29:41 -0700
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

[…]

Even the smallest microcontroller projects
could greatly benefit from Ada's real-time
and concurrency features.

From: kalvin.news@gmail.com
Date: Sat, 31 Mar 2012 08:46:08 -0700

(PDT)
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

Yes, the translator should be implemented
so, that it would be compatible with the
target C ie. no support for 64-bit integers

etc. if the target C compiler doesn't
support that.

Nested procedures are also a bit tricky to
implement in C, as the local stack frame
needs to made visible to the inner
procedure. This is doable with the struct
of pointers passed as parameters for the
"inner procedure", I guess. It is up to
target C compiler optimization how much
penalty there will be.

From: kalvin.news@gmail.com
Date: Sun, 1 Apr 2012 04:23:37 -0700
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

P2C (Pascal-to-C) might also be a viable
starting point for the translator.

However, in order to take advantage of
mature GNAT compiler front-end, the
GCC looks tempting path. GCC seems to
be quite complicated beast, but maybe it
can be tamed for the purpose.

From: BrianG <me@null.email>
Date: Mon, 02 Apr 2012 22:08:40 -0400
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

If the target has a GCC port, it is not that
difficult to create a cross-compiler from
GNAT, using No_Run_Time (i.e. no
tasking, etc; you have to build your own
binding to the target libraries or registers).
I did this once for a uC board I have there
was an in-work Ada project at the time,
but I only used their instructions for
building the cross-compiler). I have no
compiler or GCC experience, and was
able to get it working - not sure if I could,
or want to, do it again.

I wonder if it's possible to create a C-
target back end? :-)

From: Georg Bauhaus
 <rm.dash-bauhaus@futureapps.de>
Date: Tue, 03 Apr 2012 11:29:39 +0200
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

“I wonder if it's possible to create a C-
target back end? :-)”

Won't it be a lot easier, and more flexible
for industry, if there is some commonly
accepted intermediate language for
µControllers that supports C well, but also
supports other languages?

The intermediate language then removes
the need (and cost!) for implementers to
implement the complicated C stuff
correctly.

OTOH, the makers of C compilers will
not be happy, I guess, if there is a solution
that makes switching languages easy. Oh
well, I guess the makers of Ada compilers
will feel the same.

From: kalvin.news@gmail.com
Date: Mon, 21 May 2012 03:35:51 -0700
Subject: Re: Ada to C translator for small

microcontrollers

Newsgroups: comp.lang.ada

I found this paper "No Assembly
Required: Compiling Standard ML to
C"[1] which presents some ideas and
experience in using the C as compiler
target language.

The Standard ML differs quite a lot from
C, and "The generated code achieves an
execution speed that is about a factor of
two slower than a native code compiler".
However, as Ada is closer to C, the
resulting overhead is supposed be less.
Also, implementing only a carefully
selected subset of Ada language might
help in creating better translation to target
C language.

[1] http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.70.154&rep=rep1&
type=pdf

From: Georg Bauhaus
 <rm.dash-bauhaus@futureapps.de>
Date: Mon, 21 May 2012 14:27:07 +0200
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

Eiffel also generates C; there is a GPL
edition of the compiler. Don't know
whether it is suitable for µControllers,
though.

From: Marco
Date: Sat, 2 Jun 2012 08:27:06 -0700
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

SmartEiffel

http://en.wikipedia.org/wiki/SmartEiffel

http://smarteiffel.loria.fr/

Could be used for ideas on creating a
subset Ada to C "compiler".

From: kalvin.news@gmail.com
Date: Tue, 5 Jun 2012 02:18:11 -0700
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

As Niklas Holsti suggested sometime
above, the translation from GNAT IR to C
might be the easiest way. I thought about
this, and as there exists a GNAT Ada
Pretty Printer, and if I have understood it
correctly, it uses GNAT IR for recreating
the source code. This might be the easiest
way to create the translator, as rewriting
the source code formatting rules to
produce C source instead.

From: Marco
<prenom_nomus@yahoo.com>

Date: Sun, 10 Jun 2012 08:41:38 -0700
Subject: Re: Ada to C translator for small

microcontrollers
Newsgroups: comp.lang.ada

Create a small Ada program with some
short procedures and functions (skip tasks
and IO) and try to "hack up" the GNAT
Ada Pretty Printer to output equivalent C
to see if this is a viable option forward. At

152 Ada In Context

Volume 33, Number 3, September 2012 Ada User Journal

the very least you will learn more about
GNAT.

Ada.Storage_IO

From: Micronian Coder
<micronian2@gmail.com>

Date: Sat, 9 Jun 2012 01:18:05 -0700
Subject: Ada.Storage_IO. Anyone use it?
Newsgroups: comp.lang.ada

I was looking through the Ada RM and
came across the generic package
Ada.Storage_IO. I'm not sure what the
benefits are to using it. It states that it
could automatically flatten out the data
representation if necessary. For example,
say a discriminant record has an array
field that is sized based on the
discriminant value:

type Buffer(Length : Positive) is

 record

 Bytes: Byte_Array(1 .. Length);

 end record;

The implementation chosen by the
compiler could have Bytes dynamically
allocated rather than embedded (I believe
Randy said the Janus/Ada compiler would
always have the arrays of this type of
record dynamically allocated). Using
Ada.Storage_IO would store all the data
into a buffer as if it was all together and
when read back it could recreate the
multi-part representation.

Did anyone find this package useful in
practice rather than define their own IO
routines (e.g. define stream operations to
read and write their data)? I'm really
curious.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 9 Jun 2012 10:36:39 +0200
Subject: Re: Ada.Storage_IO. Anyone use

it?
Newsgroups: comp.lang.ada

You cannot instantiate Ada.Storage_IO
with this type, because Buffer is
indefinite. But since Ada.Storage_IO look
totally useless (see A.9(11), too!)
anyway…

[…]

1. For specifically storage I/O I am using
memory pools. Instead of Write I do
"new", instead of Read I use an access
type. This is cleaner, more efficient, and
no generics involved.

 = Pool, backed by a container, e.g. a
segmented memory stack

2. For data exchange I am using streams. I
always redefine stream operations
because built-in ones are unusable for
data exchange, which dictates certain
representation. Again, no generics, no any
limitations of elements, reusable with
different stream backends.

 = Stream, backed by a container.

It is worth to mention that there are three
major distinct cases, which get
permanently confused in the context of
I/O:

A. Marshaling objects (true I/O,
persistency, serialization)

B. Formatted I/O and rendering (dealing
with human readable representations)

C. Garbage collection of objects (e.g.
arena allocators etc)

From: Georg Bauhaus
 <rm.dash-bauhaus@futureapps.de>
Date: Sat, 09 Jun 2012 16:09:25 +0200
Subject: Re: Ada.Storage_IO. Anyone use

it?
Newsgroups: comp.lang.ada

Ada.Storage_IO is as useful or useless as
the other traditional *_IO packages. For
an example of usefulness, I can declare
one or any number of Buffer_Type
objects to put items on hold that were just
read form a file ("ungetc"), or will be
written to another file when some
condition becomes true. Or, more
generally, I can use Ada.Storage_IO for
in-memory buffering *without- leaving
the traditional IO framework. Like when
sorting with three "tapes".

The formal Element_Type is definite, but
discriminated records might still work just
fine, with defaults. A wrapped array of
bytes with implementation-defined
Positive'Last being the maximum number
of elements seems an unnatural example
for use with traditional *_IO packages.

For other types such as database records,
or anything that isn't a huge in-memory
representation of the universe and
everything, Ada.Storage_IO should be
fine.

type Count is range 0 .. 400;

type List_Of_Things is array (Count range

<>) of T;

type Item_to_Store (Length: Count := 42) is

record

 Things : List_of_Things (1 .. Length);

end record;

There are compilers that do have a
working implementation of
Ada.Storage_IO.

Practicalities of Ada for
desktop applications

From: wrp <i3text@gmail.com>
Date: Fri, 8 Jun 2012 13:48:40 -0700
Subject: Practicalities of Ada for app

development
Newsgroups: comp.lang.ada

What would you say about using Ada for
developing desktop applications? I like
what I have read in descriptions of the
language, but I have concerns about the
practicality of using it.

I develop small to medium sized tools.
Tasks are mostly limited to text

processing, database management, and
simple visualization. I have no need for
high precision calculation or support for
distributed, concurrent, or real-time
control. You can picture for example the
size and scope of the traditional Unix
utilities. Sometimes I build something
larger with a GUI.

For considerations of size and
performance, I'm planning to shift from
scripting to a compiled language. I
develop on Linux but also target
Windows and OS X. After trying to
consider everything available, I feel that
the only serious candidates for me are C
and Ada.

1. To begin with, I've heard it said that
Ada, designed for embedded system
building, is simply not suited to apps for a
general computing platform. That's rather
vague and I haven't seen any detailed
justification of that claim. What would
you say?

2. I don't need tools to be free, but they
have to be affordable to a small shop. If
I'm targeting x86-64 (and possibly ARM)
is GNAT the only compiler option I have?

3. How about the quality and availablity
of supporting tools like debuggers and
profilers?

4. How about production quality, open
source libraries for things like Unicode
support, sockets, network communication,
GUIs, etc? The stuff at www.dmitry-
kazakov.de looks good, but most of what
I have seen online is from the 1980s and
pretty rough to begin with.

5. How well is incremental development
supported? I'm thinking of things like
modular compiling and speed of the edit-
compile-test cycle.

6. Size and latency are sometimes an
issue. I've heard that since GNAT is
oriented to building larger systems, the
executables it produces are comparatively
bulky. What is the situation relative to C
in that regard?

7. What advanced tutorial material is
there for using Ada in this way? Say that I
have Norman Cohen's _Ada as a Second
Language_. What more advanced material
is available on subjects other than
concurrency, distributed processing, or
real-time systems? On a related note,
what projects would you recommend
looking at as examples of great code?

From: Jeffrey Carter
<spam.jrcarter.not@spam.not.acm.org>

Date: Fri, 08 Jun 2012 14:35:55 -0700
Subject: Re: Practicalities of Ada for app

development
Newsgroups: comp.lang.ada

“1.” I would say everything you've heard
is wrong. Ada is a general-purpose
language that has been used successfully
in every application domain. Ada is the
language of choice for S/W that must be
correct. Since I want all my S/W to be

Ada in Context 153

Ada User Journal Volume 33, Number 3, September 2012

correct, I always use Ada. Examples of
small Ada applications I've written
include one to choose the signature (like
the one at the end of this message), one to
choose the sound to be played next time I
log in (next time it will say, "What is your
favorite color?"), and one to display a
quote in a dialog window (today's is, "If
you think you got a nasty taunting this
time, you ain't heard nothing yet!"). There
seems to be a theme there.

A larger application is the Mine Detector
game: http://pragmada.x10hosting.com/
mindet.html

At work we have a large, concurrent,
distributed, soft-real-time, web-accessible
call-center application, but large parts of
it do DB access and things that would be
common in the kind of applications you
want to make.

“2.” RR Software's Janus/Ada (for
Windows) is reasonably priced. You
might also look at Atego. Note that most
compiler are for Ada 95. Only 3 of 7
compilers I'm aware of support the entire
language in the current standard
(published in 2007). GNAT is the only
compiler I'm aware of that supports
features from the next standard (hopefully
published this year).

Ada 95 is a very good language, so that
might not be a concern. (Even Ada 83 is a
better language than most of the
competition.)

“3.” One nice thing about Ada is not
needing to use a debugger.

“4.” There are plenty of libraries
available. You can find many through
adaic.org.

“5.” Unlike C, Ada has modules
("packages"). with them, stubs, and
separate compilation, incremental
development is supported well.

“6.” As I've said, everything you've heard
is wrong. Equivalent programs in Ada and
C create executables of about the same
size using gcc (the key word is
"equivalent"). Robert Dewar of AdaCore
claims to have a collection of equivalent
Ada and C programs that produce
identical object code using gcc.

“7.” Cohen is a pretty good book; I'm not
sure that you need anything else. Note
that even small applications can
sometimes benefit from concurrency.
Since Ada tasking is high-level and safe,
it would a mistake not to learn about it so
you can use it when warranted. Barne's
book is a good choice. You might want to
look at "Ada Distilled" by Richard Riehle.
Again, adaic.org has a list of texts and
tutorials.

From: Adam Beneschan
<adam@irvine.com>

Date: Fri, 8 Jun 2012 17:40:58 -0700
Subject: Re: Practicalities of Ada for app

development
Newsgroups: comp.lang.ada

“One nice thing about Ada is not needing
to use a debugger.”

I don't get this comment. Ada is a lot nicer
than some languages at preventing you
from making certain kinds of mistakes,
but no language is able to prevent logic
errors and certain dumb typos. And if you
make this kind of error and the program
doesn't work, just the fact of its being
written in Ada doesn't help you much.
There may less need for a debugger
because Ada will prevent certain types of
errors and things like constraint checks
will catch some others that would cause
havoc in C.

But it can't catch everything, and even if it
does find an index that's out of range it
won't tell you why the index was out of
range. I mean, Ada is a much better
language than certain others for writing
correct code, but this seems like a gross
overstatement.

Or maybe I'm just being parochial here
because I designed and wrote the Ada
debugger that comes with Irvine
Compiler's product. And yes, I do use it to
help track down problems. (Including
errors in the debugger itself.)

From: BrianG <me@null.email>
Date: Sat, 09 Jun 2012 00:30:49 -0400
Subject: Re: Practicalities of Ada for app

development
Newsgroups: comp.lang.ada

“1.” I've used GNAT to build small
"Unix-like" utilities (simple to moderate
processing, standard-in to standard-out
filters, …) for around 18 years. Mostly for
DOS/Windows, but I used some, and
created some, on Linux. Mostly just
whatever I need.

“2.” Isn't there still ObjectAda? There's a
limited free version that comes with the
Barnes Ada 95 book (but not the
Ada 2005 book).

I doubt I've ever (yet) used any 2005
features for this type of stuff. I have (long
ago) had to back-port some to Ada 83 (old
VAX Ada).

“One nice thing about Ada is not needing
to use a debugger.”

But it's available - command line gdb or
the GPS IDE for GNAT. (I've used it
more for confirming code works as I
expect than for tracking down bugs).

“6." These stories usually come from
creating simple programs without any
thought applied to actual "equivalence",
or how they're built (if gcc by default uses
dynamic libraries and GNAT uses static).

From: Jeffrey Carter
<spam.jrcarter.not@spam.not.acm.org>

Date: Fri, 08 Jun 2012 23:38:27 -0700
Subject: Re: Practicalities of Ada for app

development
Newsgroups: comp.lang.ada

I haven't used a debugger for a long time.
Usually Ada gives an idea of the kind of

error and its location, and I can easily
figure out what the problem is. In the rare
case that that isn't true, it's quicker to stick
in a few Put_Lines than to learn to use the
debugger again. This is a self-reinforcing
situation, of course.

From: Gautier
gautier_niouzes@hotmail.com

Date: Fri, 8 Jun 2012 23:55:47 -0700
Subject: Re: Practicalities of Ada for app

development
Newsgroups: comp.lang.ada

Since I develop desktop applications for
both my job and for hobby, and GUI apps
and command-line apps, my answer is:
"yes, you can!".

[…]

For 5, I've never seen an Ada
development system that was *not-
incremental.

It's probably because Ada is modular from
day one (really modular, not the hacks
with "include"'s).

Dynamic accessibility

From: sbelmont700@gmail.com
Date: Wed, 13 Jun 2012 14:31:29 -0700
Subject: Dynamic accessibility
Newsgroups: comp.lang.ada

Does anyone have any insight or
historical perspective as to why it is that
access parameters carry a dynamic
lifetime along with them, whereas access
discriminants do not? I cannot think of a
good reason why you would want to try
and explicitly typecast an access
parameter anyway, so it would seem
easier on everyone had parameters been
defined statically as discriminants are (i.e.
lifetime as being declared inside the
subprogram, so that it is checked by the
compiler and forbids all attempts at
typecasting).

On the other hand, if there is a good
reason for doing it, then it would seem
appropriate that one would need the same
ability for access discriminants as well;
i.e. carry along the dynamic lifetime so
that someone could explicitly typecast it
and save it somewhere else, exactly like
an access parameter.

Is there some sort of esoteric accessibility
conundrum that requires the rules be like
this, or is it a judgment call? Was it just
that the implementation of discriminants
would be more costly than that of
parameters? Was the intention to provide
a mechanism for both, so that a
programmer could choose either way? Or
is it just that the lack of out parameters for
functions and inability to dispatch on
named access types required a backdoor
in case an unlucky programmer was
forced into an access parameter, but
needed to get back the 'real' type of
controlling operand?

154 Ada In Context

Volume 33, Number 3, September 2012 Ada User Journal

Thanks for any opinions, rants, or special
secrets anyone might know.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 21 Jun 2012 13:43:06 -0500
Subject: Re: Dynamic accessibility
Newsgroups: comp.lang.ada

Well, this comes up from time-to-time --
it surely would be better if access
discriminants had dynamic accessibility.
However, the last time the idea was
brought up, it was determined that
dynamic accessibility would not work at
all for discriminants. I forget the details,
sorry, but my recollection was that it was
impossible to implement.

BTW, there is concern that the dynamic
accessibility of Ada 2005 and Ada 2012 is
in fact unimplementable as well.
(AdaCore has not yet managed to do so.)
The main problem is that we can't quite
imagine what the alternative is, so it
might have to be done in a very expensive
manner.

Thus is good that you can avoid dynamic
accessibility by avoiding access
parameters; use "aliased in out" in
Ada 2012 instead and you get the *right
accessibility. ("in out" acts as local;
"aliased in out" acts as if the accessibility
is the point of the call -- this sounds
hardly different, but it makes a huge
difference in practice, as you cannot
return the first but you can return the
second.)

Note that dynamic accessibility is always
a bad idea, in that it provides "tripping
hazard" -- you might get an exception
from a few calls, but not others. It's
especially bad as calls from unit tests
most likely will work (they're not nested)
while ones in actual programs might (calls
in nested subprograms are much more
common).

I've become convinced that the entire idea
of accessibility checks isn't worth the
headaches (both in language definition
and in practice). I virtually always use
'Unchecked_Access in my code, so the
net effect is that I pay overhead for
accessibility checks, but they never
actually have any effect (positive or
negative). 'Access will almost always fail
on a parameter, so it doesn't even make
sense to try to use it -- and it's very rare to
have anything that is not encapsulated
(the only time 'Access can be used.

From: sbelmont700@gmail.com
Date: Thu, 21 Jun 2012 17:43:23 -0700
Subject: Re: Dynamic accessibility
Newsgroups: comp.lang.ada

["tripping hazard"]

This was my real concern with the access
parameter accessibility; the exception
depends entirely on what the client passes
in (though the rumor in Ada 2012 is that
there exists a mechanism to compare
accessibility levels, so that one might be

able to conditionally typecast an access
parameter…?). It would seem a named
type is preferable to an access parameter
in any case in which assignment was
necessary, especially in 2012 where there
is not the 'in' parameter restriction for
functions. I'm sure there is an example I
cannot think of, but what are the
legitimate reasons someone would want
to pass an access parameter and have
occasion to cast it? It seems backwards to
provide a mechanism for ensuring
assignment does not happen, and then
implementing a workaround to allow it.

As always Mr. Brukardt, your responses
are insightful and greatly appreciated;
thank you for your continued help and
support.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 22 Jun 2012 15:03:35 -0500
Subject: Re: Dynamic accessibility
Newsgroups: comp.lang.ada

Membership on access types in Ada 2012
includes the accessibility check. So you
can write a precondition:

 Pre => Param in My_Access_Type

which will fail if the accessibility check
would fail.

“… what are the legitimate reasons
someone would want to pass an access
parameter and have occasion to cast it?”

I don't think there are any in Ada 2012. In
Ada 95, you sometimes had to do that as a
replacement for the missing "in out"
parameter for a tagged object. Usually the
trick was to "strip off" the accessibility
check:

 Param.all'Unchecked_Access

as you would have had to if the parameter
was an "in out" parameter in a procedure.
Note that "aliased" parameters help a bit
here (they're guaranteed to live as long as
the result of the function call, which is a
bit longer than a "normal" parameter).

SPARK and aggregates

From: Ben Hocking
<benjaminhocking@gmail.com>

Date: Thu, 14 Jun 2012 05:43:42 -0700
Subject: Having problem with SPARK Ada

complaining that 'No EXPRESSION can
start with reserved word "OTHERS".'

Newsgroups: comp.lang.ada

The following is a simple test program to
demonstrate the issue.

test.ads:

package Test is

 type QState is (Off, On, Both);

 subtype Z4 is Integer range 0 .. 3;

 -- 0, 1, 2, or 3

 type Ensemble is array (Z4) of QState;

 procedure Foo;

end Test;

test.adb:

package body Test is

 procedure Foo

 is

 SomeQState : Ensemble := (others =>

Off);

 begin

 null;

 end Foo;

end Test;

When I use SPARK->Examine File (from
GPS), I get the following message:

 4:33 Syntax Error No EXPRESSION
can start with reserved word "OTHERS".

I get the same error if I type "spark
test.adb" from the terminal window (I'm
on Mac OS X 10.6.8).

From: Phil Thornley
<phil.jpthornley@gmail.com>

Date: Thu, 14 Jun 2012 14:37:43 +0100
Subject: Re: Having problem with SPARK

Ada complaining that 'No EXPRESSION
can start with reserved word
"OTHERS".'

Newsgroups: comp.lang.ada

In SPARK all aggregates must be
qualified with the type:

 SomeQState : Ensemble :=

 Ensemble'(others => Off);

This isn't particularly clear in any of the
documentation, but see Section 4.3 of the
SPARK LRM or page 110 of the book
(High Integrity Software by John Barnes).

From: roderick.chapman@googlemail.com
Date: Thu, 14 Jun 2012 14:48:24 -0700
Subject: Re: Having problem with SPARK

Ada complaining that 'No EXPRESSION
can start with reserved word
"OTHERS".'

Newsgroups: comp.lang.ada

In the documents that come with the GPL
edition, see section 4.3 of
SPARK_LRM.pdf - the rules are clearly
stated there.

SPARK substitution rules

From: Ben Hocking
<benjaminhocking@gmail.com>

Date: Wed, 20 Jun 2012 11:30:53 -0700
Subject: Need help understanding SPARK

substitution rules
Newsgroups: comp.lang.ada

I have the following math.ads:

package Math is

 function IsPositive (InVal : in Integer)

 return Boolean;

 -- # return (InVal > 0);

 function IsNegative (InVal : in Integer)

 return Boolean;

 --# return (InVal < 0);

 function AlwaysTrue (InVal : in Integer)

 return Boolean;

Ada in Context 155

Ada User Journal Volume 33, Number 3, September 2012

 --# return True;

end Math;

and math.adb:

package body Math is

 function IsPositive (InVal : in Integer)

 return Boolean is

 begin

 return (InVal > 0);

 end IsPositive;

 function IsNegative (InVal : in Integer)

 return Boolean is

 begin

 return (InVal < 0);

 end IsNegative;

 function AlwaysTrue (InVal : in Integer)

 return Boolean is

 begin

 --# check not (InVal > 0) -> InVal <= 0;

 --# check not IsPositive(InVal) -> InVal <=

 0;

 --# check not (InVal < 0) -> InVal >= 0;

 --# check not IsNegative(InVal) -> InVal

 >= 0;

 return (not IsPositive(InVal) or not

 IsNegative(InVal));

 end AlwaysTrue;

end Math;

The statement "check not (InVal > 0) ->
InVal <= 0" is proven easily enough, but
the next line ("check not IsPositive(InVal)
-> InVal <= 0") is not, even though it's
functionally equivalent. If I put the
following line in math.rlu:

math_ispositive: ispositive(inval)
may_be_replaced_by (inval > 0)

It now can prove it, and if I do the same
thing with is negative, the whole thing
proves out (with the "return True"
component being proven by ViCToR).

However, this seems like a very fragile
way of assuring code correctness, so it
reeks from "code smell". What is a better
way of achieving this?

From: Phil Thornley
<phil.jpthornley@gmail.com>

Date: Thu, 21 Jun 2012 09:47:20 +0100
Subject: Re: Need help understanding

SPARK substitution rules
Newsgroups: comp.lang.ada

What you need is for the Examiner to
include the return expressions in the
hypotheses - it does (now) do this, but
only for VCs generated for code that
follows the function call. (See Proof
Manual Section 8.4.9 - bullet point 4)

So if you change your code to

function AlwaysTrue (InVal : in Integer)

return Boolean is

 Result : Boolean;

begin

 Result := (not IsPositive(InVal) or not

 IsNegative(InVal));

 --# check not (InVal > 0) -> InVal <= 0;

 --# check not IsPositive(InVal) -> InVal <=

 0;

 --# check not (InVal < 0) -> InVal >= 0;

 --# check not IsNegative(InVal) -> InVal

 >= 0;

 return Result;

end AlwaysTrue;

then the VCs generated for the check
annotations include hypotheses such as:

H7: ispositive(inval) <-> (inval > 0) .

Now the only VC left unproven by the
Simplifier is the last one (which you note
is proved by Victor).

For those of us who (so far) find Victor (I
loathe that casing they've adopted) not
practicable for anything other than trivial
code snippets, the one remaining VC can
be proved by the rule:

boolean(1): not A or not B
may_be_deduced_from [A <-> X > 0,
B <-> X < 0] .

which has the merit of being universally
true and avoiding any "code smell".

Furthermore this rule can then be
validated by proving the corresponding
VC:

H1: a <-> x > 0 .

H2: b <-> x < 0

->

C1: not a or not b .

(There are hints that this approach to
validating rules will be described in the
next version of the SPARK book).

Dimension checking with
GNAT

From: AdaMagica
 <christ-usch.grein@t-online.de>
Date: Sat, 30 Jun 2012 22:53:57 -0700
Subject: GNAT and Dimension Checking
Newsgroups: comp.lang.ada

I see that GNAT now has added packages
System.Dim.- for dimension checking.
However I cannot find any other
documentation about these packages,
neither in GNAT_UG nor in GNAT_RM.

Is there any?

From: Nasser M. Abbasi
<nma@12000.org>

Date: Sun, 01 Jul 2012 01:25:21 -0500
Subject: Re: GNAT and Dimension

Checking
Newsgroups: comp.lang.ada

"Performing Dimensionality Analysis in
GNAT"[1,2] "Documentation for GNAT
dimensionality checking system"[3]

The ads file for this package is s-sim.ads
in the sources.

[1] http://gcc.gnu.org/onlinedocs/
gnat_ugn_unw/Performing-
Dimensionality-Analysis-in-GNAT.html

[2] http://docs.adacore.com/gnat-unw-
docs/html/gnat_ugn_28.html

[3] http://www.mail-archive.com/gcc-
patches@gcc.gnu.org/msg26036.html

From: yogeshwarsing@gmx.com
Date: Sun, 1 Jul 2012 03:44:19 -0700
Subject: Re: GNAT and Dimension

Checking
Newsgroups: comp.lang.ada

This feature is rather limited though. For
example one cannot do conversions. If
you have to work with an "irregular" unit,
you will have to do the conversion
yourself e.g.

with System.Dim.MKS;

use System.Dim.Mks;

with System.Dim.Mks_IO;

use System.Dim.Mks_IO;

with Text_IO; use Text_IO;

procedure Free_Fall3 is

 subtype Acceleration is Mks_Type

 with Dimension => ("m/s^2", Meter => 1,

 Second => -2, others => 0);

 G : constant acceleration := 127137.6-

 km/(hour ** 2) ;

 T : Time := 10.0/3600.0- hour;

 Distance : length;

 begin

 Put ("Gravitational constant: ");

 Put (G, Aft => 2, Exp => 0); Put_Line ("");

 Put ("Time: ");

 Put (T, fore => 4, Aft => 4, Exp => 0);

 Put_Line ("");

 Distance := 0.5- G * T ** 2;

 Put ("distance travelled in 10 seconds (or

 10/3600 hour) of free fall ");

 Put (Distance, fore => 4, Aft => 4,

 Exp => 0);

 Put_Line ("");

end Free_Fall3;

You will still get the outputs in the default
MKS units. So basically, it is just
checking if your dimensions are right.

And I do not think that you are able to
deal with record constructs such as

 type Motion_Parameter is record

 Radius: Length := 0.0- m;

 Speed : Velocity := 0.0- m/s;

 Time_Step : Time := 0.0- s;

 Number_Of_Revolutions : Float := 0.0;

end record;

since Motion Parameter will need to have
a specific dimension in terms of MKS and
having different MKS units in the record
structure makes this impossible.

From: AdaMagica <christ-usch.grein@t-
online.de>

Date: Sun, 1 Jul 2012 08:18:37 -0700

156 Ada In Context

Volume 33, Number 3, September 2012 Ada User Journal

Subject: Re: GNAT and Dimension
Checking

Newsgroups: comp.lang.ada

Thanks for the chapter - I just overlooked
it.

The documentation, though, is rather
terse. It doesn't tell you the syntax of the
aspect clauses nor anything else than the
most basic things.

All in all it looks promising - it's a very
clever way to use the new aspects.

What I found out:

 G : constant acceleration :=

 127137.6- km/(hour ** 2);

 Put (Sqrt (G), Aft => 2, Exp => 0);

 Put_Line ("");

yields 3.13 m**(1/2).s**(-1), so it handles
fractional powers (at least 1/2).

Math functions except sqrt need
dimensionless parameters. However, sin
(t, t0) should be allowed as long as t and
t0 have the same dimension. It is not.
Also arctan (x, y) is only allowed for
dimensionless parameters.

We'll see how it turns out when applied to
more complicated formulae, especially
with those where parts have fractional
dimensions (in SI, there are no items with
fractional units, but intermediate ones do).

CGS cannot do without fractions.

Perhaps with some refinement, this could
be a theme for Ada 2020 :-)

PS: Anyone interested in dimensional
arithmetics in Ada should have a look at:

http://www.christ-usch-grein.homepage.t-
online.de/Ada/Dimension.html

From: Anh Vo <anhvofrcaus@gmail.com>
Date: Mon, 2 Jul 2012 13:42:04 -0700
Subject: Re: GNAT and Dimension

Checking
Newsgroups: comp.lang.ada

I may be off track here. That is I thought I
understood aspect syntax until I browsed
to the definition of
System.Dim.Mks.Mks_Type type.

 type Mks_Type is new Long_Long_Float

 with

 Dimension_System => (

 (Unit_Name => Meter, Unit_Symbol

 => 'm', Dim_Symbol => 'L'),

 (Unit_Name => Kilogram, Unit_Symbol

 => "kg", Dim_Symbol => 'M'),

 (Unit_Name => Second, Unit_Symbol

 => 's', Dim_Symbol => 'T'),

 (Unit_Name => Ampere, Unit_Symbol

 => 'A', Dim_Symbol => 'I'),

 (Unit_Name => Kelvin, Unit_Symbol

 => 'K', Dim_Symbol => "Theta"),

 (Unit_Name => Mole, Unit_Symbol

 => "mol", Dim_Symbol => 'N'),

 (Unit_Name => Candela, Unit_Symbol

 => "cd", Dim_Symbol => 'J'));

Can anyone point me to the ARM 2012
paragraph(s) which supports this syntax in
general.

From: Adam Beneschan
<adam@irvine.com>

Date: Mon, 2 Jul 2012 13:58:41 -0700
Subject: Re: GNAT and Dimension

Checking
Newsgroups: comp.lang.ada

13.1.1(38): "Implementations may
support implementation-defined aspects.
The aspect specification for an
implementation-defined aspect may use
an implementation-defined syntax for the
aspect definition, and may follow
implementation-defined legality and
semantics rules."

From: AdaMagica <christ-usch.grein@t-
online.de>

Date: Fri, 6 Jul 2012 03:47:58 -0700
Subject: Re: GNAT and Dimension

Checking
Newsgroups: comp.lang.ada

I would like to invite all of you interested
in dimensional algebra to a lively
discussion about the findings in packages
provided by GNAT.

I played around a bit and here are mine.

 GNAT Dimension_System Findings

Very clever use of the new aspect facility.

Should be considered for standardisation
in next Ada generation.

Currently very poorly documented.

There are a few minor problems and some
(in my honest opinion) more severe ones
in output.

The following is based on the (Gaussian)
CGS system.

type CGS_Gauss is new Long_Long_Float

 with Dimension_System => ((Centimeter,

 "cm"),(Gram , 'g'), (Second , 's'));

package CGS_Gauss_IO is new

 System.Dim.Float_IO (CGS_Gauss);

 use CGS_Gauss_IO;

 subtype Length is CGS_Gauss

 with Dimension => ("cm",

 Centimeter => 1,

 others => 0);

 subtype Mass is CGS_Gauss

 with Dimension => ("g",

 Gram => 1,

 others => 0);

 subtype Time is CGS_Gauss

 with Dimension => ("s",

 Second => 1,

 others => 0);

 cm: constant Length := 1.0;

 g : constant Mass := 1.0;

 s : constant Time := 1.0;

0. The syntax of aspects
Dimension_System and Dimension is not
documented.

It might seem obvious, but documentation
is needed nevertheless.

In Dimension_System, up to 7 base
dimensions may be defined (more lead to

a compilation error, less are tolerated).

1. How to define objects for dimensions
without name?

Imagine you have some charge, but not
defined a subtype Charge.

Q: CGS_Gauss := 40.0*cm**(3/2)*g**(1/2)/s;

-- ???

This fails with

 dimensions mismatch in object
 declaration

 object type is dimensionless

 object expression has dimensions (3/2,
 1/2, -1)

It's no problem to define the subtype

 subtype Charge is CGS_Gauss

 with Dimension => ("esu",

 Centimeter => 3/2,

 Gram => 1/2,

 Second => -1);

and then write

 Q: Charge := 40.0- cm**(3/2)*g**(1/2)/s;

but it is often the case that some
intermediate value has to be stored with
an unnamed dimension. Very
inconvenient if you have to locally define
a subtype for this.

** Dimension should be taken from the
initial expression! **

2. Obviously GNAT can handle fractional
dimensions.

This is very comfortable.

 Q: Charge := 40.0- cm**(3/2)*g**(1/2)/s;

 R: Length := 10.0- cm;

 Put (Q**2/R**2 , Aft => 2, Exp => 0);

 New_Line;

 Put (Q**2/R**2 , Aft => 2, Exp => 0,

 Symbols => "dyn");

 New_Line;

 Put ((Q/R)**(5/7), Aft => 2, Exp => 0);

 New_Line;

 16.00 cm.g.s**(-2)

 2.69 cm**(5/14).g**(5/14).s**(-5/7)

However, I cannot find where

function (Left: Dim_Type; Right: Rational)

return Dim_Type;

is defined, let alone the type Rational.

The definition of Rational is flawed.

Don't write

 (8.0*cm)**(1/3+2/3)

Ada in Context 157

Ada User Journal Volume 33, Number 3, September 2012

this has the value 1. This, however, is
correct:

 (8.0*cm)**((1+2)/(5-2)) = 8.0*cm

(Admittedly, who would write such
nonsense? Dimension checking is only
done for static expressions.)

Ahem - be careful:

 8.0**(1/3) = 1

 8.0**(1/3)*cm = 2.0*cm

 (8.0*cm)**(1/3) = 2.0*cm**(1/3)

You need a dimensioned value to give the
correct result:

One: constant CGS_Gauss := 1.0; -
- dimension 1, i.e. "dimensionless"

 8.0**(1/3)*One = 2.0

(In SI, results never have fractional
dimensions, but intermediate values may.
So this is important also for SI.)

3. System.Dim.Float_IO is only output.

Values are correctly output with their
dimension, very nice.

However, the name Float_IO is a lie,
there is no dimensional input.

Input would be hard to achieve with the
output syntax as produced now because
how to determine whether a dimension to
read follows a number or not since there
is a separating space. We would need a
multiplication sign instead.

 Put (Q**2/R**2, Aft => 2, Exp => 0);

results in

 16.00 cm.g.s**(-2) <=== How to read this

 back in?
Also the exponent in an output like 1.0
m**2.s could be taken as the floating
point number 2.0 when trying to read it in
again (in input, missing fore or aft is
allowed).

Compare with

 16.00*cm.g.s**(-2) <=== This is

 dimensioned.
So checking the input for syntactic and
semantic correctness is not easy.

Adding a symbol for the output is not
checked! You can write any nonsense.

 Put (Q**2/R**2, Aft => 2, Exp => 0, Symbols

 => "dyn");

 New_Line;

 Put (Q**2/R**2, Aft => 2, Exp => 0, Symbols

 => "m/s");

 New_Line;

 16.00dyn <=== space missing (dyn

 undefined)!

 16.00m/s <=== nonsense!

 R: Length := 10.0- cm;

 Put (R, Aft => 2, Exp => 0);

 New_Line;

 Put (R, Aft => 2, Exp => 0, Symbols =>

 "km");

 New_Line;

 10.00 cm <=== OK

 10.00km <=== Surprise, surprise!

This behaviour is apt to lead to confusion
and program bugs!

4. Mathematics is included!

package Math is new Ada.Numerics.

 Generic_Elementary_Functions

 (CGS_Gauss);

 use Math;

Any function requires dimensionless
parameters and returns a dimensionless
result, except Sqrt, which correctly
calculates the root of the dimension.

However:

function Sin (X, Cycle : Float_Type'Base)

return Float_Type'Base;

(Cos, Tan, Cot) should allow dimensioned
parameters when both have the same
dimension.

function Arcsin (X, Cycle : Float_Type'Base)

return Float_Type'Base;

(Arccos) should request X dimensionless
and the return value should be
dimensioned like Cycle.

function Arctan (Y: Float_Type'Base;

 X: Float_Type'Base := 1.0[;

 Cycle : Float_Type'Base])

return Float_Type'Base;
(Arccot) should allow X and Y with the
same dimension [and be dimensioned like
Cycle].

Any thoughts, other nice features or
awkward shortcomings?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 8 Jul 2012 13:37:16 +0200
Subject: Re: GNAT and Dimension

Checking
Newsgroups: comp.lang.ada

[…] Actually, static-only dimension
checks have almost no use for
engineering. Scientific computations
might be different, however require more
than just dimensioned scalars, e.g.
dimensioned vectors, matrices etc. I think
they just choose a units system and don't
care about dimension analysis.

From: Jacob Sparre Andersen
<sparre@nbi.dk>

Date: Sun, 08 Jul 2012 20:47:07 +0200
Subject: Re: GNAT and Dimension

Checking
Newsgroups: comp.lang.ada

Some of us are patiently waiting for
Ludovic et al. to merge the relevant
patches into the Debian GNAT packages.

I find it interesting that AdaCore seem to
have found a general solution to the
problem, but for the moment I manage

fine with a slightly modified version of
Macks and statically generated checks.

From: Martin Dowie
<martin@thedowies.com>

Date: Mon, 9 Jul 2012 01:20:53 -0700
Subject: Re: GNAT and Dimension

Checking
Newsgroups: comp.lang.ada

I really like the idea of attempting this
analysis via aspects. I remember you had
a few examples of why Tucker's attempt
via signature packages came up short, are
many of the same issues present in the
aspect solution?

From: AdaMagica <christ-usch.grein@t-
online.de>

Date: Mon, 9 Jul 2012 04:19:39 -0700
Subject: Re: GNAT and Dimension

Checking
Newsgroups: comp.lang.ada

See Ada 95 Issue 324 for Tucker's
packages and discussion.

No, all those problems with the
combinatorial explosion of functions are
gone with this really ingenious use of
aspects.

The method keeps a record of the
(possibly fractional) dimension of each
item at compile-time just like my
packages[1] do at run-time. It's very easy
to use and dimensioned literals look nice.

[1] http://www.christ-usch-
grein.homepage.t-online.de/Ada/SI.html

SPARK GPL 2012 and
generic

From: hugues@soekris-1.pinkyoogx.org
Date: 08 Jul 2012 10:17:10
Subject: SPARK GPL 2012 and generic, any

hint?
Newsgroups: comp.lang.ada

 I tried SPARK GPL 2012 with a small
example for generic, but I keep getting
syntax error, do I miss something
obvious?

The documentation lacks a complete
example that can be processed, all I could
find was limited code snippet :(

Here is the code source (code taken from
SPARK GPL 2012 documentation, I
simply added package stuff around)

package Test is

 generic

 type T1 is range <>;

 type T2 is range <>;

 --# check T1’Last- T1’Last <= T2’Last and

 --# T1’First- T1’First <= T2’Last and

 --# T1’First- T1’First >= T2’First;

 function Square (X : T1) return T2;

 --# return R => R = T2 (X- X);

end Test;

and the result for the Examiner

Examiner GPL 2012

158 Ada In Context

Volume 33, Number 3, September 2012 Ada User Journal

Copyright (C) 2012 Altran Praxis
Limited, Bath, U.K.

DATE : 08-JUL-2012 12:22:29.763
generic^

**- Syntax Error : reserved word "IS"
cannot be followed by reserved word
"GENERIC" here.

--- Warning :430: SLI
generation abandoned owing to syntax or
semantic errors or multiple units in a
single source file.

From: Phil Thornley
<phil.jpthornley@gmail.com>

Date: Sun, 8 Jul 2012 16:31:22 +0100
Subject: Re: SPARK GPL 2012 and generic,

any hint?
Newsgroups: comp.lang.ada

The instantation check isn't supported yet,
and the subprogram must be at library
level.

The following code examines OK:

generic

 type T1 is range <>;

 type T2 is range <>;

 function Square (X : T1) return T2;

 --# return R => R = T2 (X- X);

Subroutine signatures
duplicated in interfaces and
bodies

From: Nasser M. Abbasi
<nma@12000.org>

Date: Sat, 07 Jul 2012 18:08:53 -0500
Subject: on the need to duplicate code for

procedure signature in both body and
interface files

Newsgroups: comp.lang.ada

Basic question from an Ada newbie.

One thing that always bothered me in Ada
is the need to physically duplicate the
code that represents the API of the
package procedures and functions in both
the interface and the body files (.ads and
.adb).

I do not like duplicating code at all. Even
if it is only for the signature of the API,
and even though the Ada compiler will
catch any difference (assuming one
changes the .ads and forget to update the
.adb for example).

Was there no other alternatives to avoid
this situation when Ada was originally
designed in order to keep the same good
concept of separating the interface from
the body, but somehow at the same time,
eliminate the need to duplicate by hand
the API definition code in 2 separate
places?

I am using GNAT. I Assume this is the
same in other Ada implementations.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sun, 08 Jul 2012 07:21:07 +0300

Subject: Re: on the need to duplicate code
for procedure signature in both body
and interface files

Newsgroups: comp.lang.ada

[…]

That is a language property that applies to
the source-code files. If you use some
kind of CASE tool or IDE, it can hide the
duplication by synchronizing the text in
the spec and body. For example, I think
GPS/GNAT has the ability to generate a
dummy body (.adb) from a given spec
(.ads) (but not to maintain the connection
if the spec changes). Possibly the Ada
mode of emacs can do that too.

Several years ago I used an Ada CASE
tool called HoodNICE, based on the
HOOD design method. In this tool, one
wrote the Ada code once, and the tool
generated the spec and body files.
However, the design method was based
on packages as "objects", and
dependencies were basically managed on
the object level *without- separation of
spec and body, so one had to take some
special ugly action to show that "object"
A depended on "object" B only because
the *body- of package A needed a "with"
clause for package B, while the *spec- of
A did *not* need such a clause.

(To be fair, the HOOD design method
tried to enforce a strict layering with no
mutual dependencies through bodies. But
this is a very limiting rule, and we
violated it in most projects.)

[…]

The important reason for "duplicating" the
code (signature) is that one needs some
way to show which body belongs to
which declaration when the subprogram
names are overloaded (same name,
different signature).

Duplicating the text that defines the
signature is IMO the simplest and most
readable way to show this connection,
when the declaration and body are in
different files. in a sense, there is no more
"duplication" here than when we
"duplicate" the subprogram name and
parameter names in the calls to the
subprograms.

Keeping the spec and body in the same
file would mess up "make" logic based on
file time-stamps. Changing the body code
should normally not force recompilation
of clients of the spec.

[…]

Given the copy/paste abilities of good text
editors, I don't see this as a problem at all.
In my spec files, most of the text is
comments (ooh how I hate that
misleading word!) that describe what the
stuff means and how it works; the actual
Ada code is a small fraction, and of this
code, only the subprogram signatures are
duplicated in the body. (Of course there
are comments in the body, too, but on
different issues.)

No doubt one could devise an Ada
compilation system, similar to the
HoodNICE method, in which only body
files exist, with some mark-up to show
which parts of these files are "public"
(belong in the spec). A dedicated tool
could then generate the spec files, and
also avoid updating the time-stamp of the
spec when the contents of the file do not
change. But as I said, I don't feel that this
(apparent) duplication is a problem.

[…]

I wonder how the Rational Ada
environment worked, on this issue. I'm
sure someone on this group remembers.

From: Jeffrey Carter
<spam.jrcarter.not@spam.not.acm.org>

Date: Sat, 07 Jul 2012 23:09:52 -0700
Subject: Re: on the need to duplicate code

for procedure signature in both body and
interface files

Newsgroups: comp.lang.ada

[…]

Consider the following:

package P is

 function F (I : Integer) return Integer;

 type Integer_List is array (Integer range

 <>) of Integer;

 function F return Integer_List;

end P;

How are you going to write the body of P
so the compiler knows which body
implements which function F without
repeating the parameter list and return
type profile, which is what distinguishes
these 2 overloaded functions?

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Sun, 08 Jul 2012 03:38:50 -0400
Subject: Re: on the need to duplicate code

for procedure signature in both body and
interface files

Newsgroups: comp.lang.ada

“I do not like duplicating code at all.”

Why?

“… even though the Ada compiler will
catch any difference”

That covers the main objection I'm aware
of; that duplicated code quickly becomes
wrong.

From: Britt <britt.snodgrass@gmail.com>
Date: Sun, 8 Jul 2012 18:48:09 -0700
Subject: Re: on the need to duplicate code

for procedure signature in both body and
interface files

Newsgroups: comp.lang.ada

This topic was recently discussed in the
"Ada Programming Language" LinkedIn
group in a thread titled "Imaginary
proposal for the next Ada standard: Ada
compilers will automatically generate
Package Specification from Package
Body".

Ada in Context 159

Ada User Journal Volume 33, Number 3, September 2012

The discussion started as a poll and most
respondents (including me) strongly
dislike the idea.

Edward Colbert just posted a nice
summary there.

Thin/medium/thick bindings

From: Nasser M. Abbasi
<nma@12000.org>

Date: Thu, 02 Aug 2012 03:30:27 -0500
Subject: questions on Ada openGL binding

in the GLOBE3D packages
Newsgroups: comp.lang.ada

I was trying to make a small Ada openGL
program using the openGL bindings in the
GLOBE3D packages downloaded from

http://globe3d.sourceforge.net/

I was simply trying to do the same as I did
with Fortran openGL, where I took a C
example from the openGL red book, and
did 1-1translation of the API and build it.

But the first thing I noticed once I started
looking more at the Ada binding, is that
with the Ada openGL binding the C
function names have been changed a little
in the Ada binding.

This is not really good. Unless I am
overlooking something or looking at the
wrong files.

The binding in a thin binding, and hence
the function names in the Ada side should
be 100% the same as the C names. This
makes it very easy to port C open GL to
Ada, and to use the C openGL books
since the API has the same calls.

For example, looking at the file
binding/gl.ads that is part of the
GLOBE3D binding, I see the following:

pragma Import (Stdcall, GL_Begin,

"glBegin");

pragma Import (Stdcall, GL_End, "glEnd");

Why the name was changed? This should
be

 pragma Import (Stdcall, glBegin, "glBegin");

 pragma Import (Stdcall, glEnd, "glEnd");

And the 'gl' was removed from all the
function names from the rest of the calls.
For example

pragma Import (Stdcall, Vertex2d,

"glVertex2d");

pragma Import (Stdcall, Vertex2f,

"glVertex2f");

These should be

pragma Import (Stdcall, glVertex2d,

"glVertex2d");

pragma Import (Stdcall, glVertex2f,

"glVertex2f");

It does not matter that these are already
defined in 'gl' package. I can choose to
write

 with gl;

 gl.glVertex2d(…)

or

 with gl; use gl;

 glVertex2d(…)

The point is, the binding should be the
same name as the C name.

My questions:

How hard is it to fix all this to make the
Ada openGL binding names consistent
with the C names? I can help in doing
these changes to all the files. (should not
be that hard I would think?, unless there
are other hidden issues I am not seeing).

Also, on a side note, I noticed that
glutInit() is on the body of the glut
packages, but it is not in the specification
of the glut package for some reason.

And on a final note, even though Ada is
not case sensitive like C, I think these
binding should also be written in mixed
case in the same way as the C standard
shows them. Even though it makes no
difference on the Ada side of things, it
makes the Ada code using the openGL
API look the same as the C code, which
means it is easier for read since that is
how the OPENGL standard looks like.

From: Egil Høvik
<egilhovik@hotmail.com>

Date: Thu, 2 Aug 2012 01:50:19 -0700
Subject: Re: questions on Ada openGL

binding in the GLOBE3D packages
Newsgroups: comp.lang.ada

So no, the names in an Ada-binding does
not have to exactly match the C version.
As for GL_Begin and GL_End, they
should have been called just Begin and
End, but those are reserved words in Ada.

From: Nasser M. Abbasi
<nma@12000.org>

Date: Thu, 02 Aug 2012 04:14:15 -0500
Subject: Re: questions on Ada openGL

binding in the GLOBE3D packages
Newsgroups: comp.lang.ada

I know they do NOT HAVE TO be the
same as C. That is my point.

They do NOT have to, yes, but it is
better if they DO. Why not keep the
names the same?

It will make it easier to program this in
Ada if the binding is the same.

[…]

NO, they should have been called the
same as C. glBegin and glEnd. No need to
make up new names. The names are
already defined. Why chop off anything.

Btw, I just downloaded at the other Ada
openGL now

http://adaopengl.sourceforge.net/downloa
ds.php

and I see that the binding there is the
SAME as C binding, which is good. So I
am looking at it now.

Here is an example from the file
adaopengl\opengl.ads in the above zip
file:

…

 pragma Import (C, glBegin, "glBegin");

 pragma Import (C, glEnd, "glEnd");

 pragma Import (C, glVertex2d,

 "glVertex2d");

 pragma Import (C, glVertex2f,

 "glVertex2f");

You can see, the Ada binding above
matchs the same as the C API. Even with
the mixed case on the Ada side.

I would have liked to use the GLOBE3D
openGL binding, because my
understanding it is more updated than the
David Holm one which was last updated
in 2002. But it is more important for me
to use a binding which has the same exact
names as C as I use C book to learn
openGL and I like the code to look the
same.

This was the case with the Fortran
binding as well, it have the same exact
API naming as C. So, I see no reason at
all to change the name of the functions,
even though I know it is allowed.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Thu, 02 Aug 2012 13:19:56 +0300
Subject: Re: questions on Ada openGL

binding in the GLOBE3D packages
Newsgroups: comp.lang.ada

“They do NOT have to, yes, but it is
better if they DO.”

Subjective opinion and matter of taste.

FWIW, I prefer the Ada-style names. The
changes (at least in the examples you
showed) are so systematic and simple that
it is easy to translate in one's mind, when
necessary.

“Why not keep the names the same?”

The C-style names are needlessly long
and tedious. The "gl" prefix is necessary
(well, almost) in C, for name-space
reasons, but unnecessary in Ada. If you
like, in your Ada code you can include the
prefix by using the GL package name to
qualify the names. Adding a period to
change glVertex2d into GL.Vertex2d is
hardly difficult.

IMO, it is neater and less trouble to use
the same style of identifiers for my native
Ada code and for the bound libraries from
other languages. I think that is one of the
desirable features of a binding, even a thin
binding

From: Nasser M. Abbasi
<nma@12000.org>

Date: Thu, 02 Aug 2012 05:46:35 -0500

160 Ada In Context

Volume 33, Number 3, September 2012 Ada User Journal

Subject: Re: questions on Ada openGL
binding in the GLOBE3D packages

Newsgroups: comp.lang.ada

[…]

Why not keep things standard? The
standard is there. No reason to change the
names just because you do not like this
name and I do not like that name.

When one looks at C code, all the calls
are the same everywhere.

“The C-style names are needlessly long
and tedious.”

It does not matter really. It is the standard.
It makes the code easier to understand if
the same names are used in Ada and C
and Fortran and in any other language.
The same exact names.

Anyway, that is what I think. We agree to
disagree I guess.

I'll use the 2002 openGL binding to learn
a little bit of Ada openGL from, since it
matches the C API. So, I am all set now :)

From: Egil Høvik
<egilhovik@hotmail.com>

Date: Thu, 2 Aug 2012 04:12:51 -0700
Subject: Re: questions on Ada openGL

binding in the GLOBE3D packages
Newsgroups: comp.lang.ada

“Why not keep things standard? The
standard is there.”

You seem to be confused. What you call
"the standard" is just the C binding. The
standard explicitly states that example
syntax is in C, and that other languages
with better namespace handling and
subprogram overloading can do things
differently.

Writing GL.Vertex is more readable than
GL.glVertex2d. Let the compiler figure
out the types of your parameters, and how
many, you specify. It will complain if it
can't find a match.

Some people complain about Ada being
too verbose; In this case, I would say C is
more verbose, why should that be a bad
thing for Ada?

From: Georg Bauhaus
 <rm.dash-bauhaus@futureapps.de>
Date: Thu, 02 Aug 2012 13:56:03 +0200
Subject: Re: questions on Ada openGL

binding in the GLOBE3D packages
Newsgroups: comp.lang.ada

Perception provides for a valid argument:
If books about OpenGL, and other
material considered relevant, use the
names and example syntax, this creates an
expectation. To dispel the power of
expectations, you'd need to name a few
killer features, features that warrant
deviation from what everybody else is
perceived to be doing. Or you'd
demonstrate, convincingly, that a
significantly perceivable number of
relevant teams do *not- use the expected
names and syntax.

There were two bindings to the OS/2 API.
One binding copied IBM's names exactly,
as they were used in IBM's
documentation, reflecting the names in
the C based O-O system: DosXyz123,
GpiSomeThing, WinEtcFoo. The other
binding made Dos, Gpi, Win, … into
packages. Not everyone agreed with the
second approach. The argument against
package might be stronger in this case
because IBM's O-O design was written in
C, IIUC, so these were the "real" names.

It there a strong technical argument in
favor of using package software instead of
names implying packages? Better
visibility control? Better compilation
performance due to separation? Better
change management by modularization?

From: "Vasiliy Molostov"
<molostoff@gmail.com>

Date: Thu, 02 Aug 2012 16:01:23 +0400
Subject: Re: questions on Ada openGL

binding in the GLOBE3D packages
Newsgroups: comp.lang.ada

“Some people complain about Ada being
too verbose; In this case, I would say C is
more verbose, why should that be a bad
thing for Ada?”

It seems that you probably right - there is
a good reason to keep things convenient
to Ada related environment. Perhaps,
interface of some sort of C that lie on C
naming is indeed a mangled names used
to import, and is not going to be human
convenient.

BTW, initially GL library from MS had
no gl prefix.

Do we need operate mangled names in a
high level language?

Which standard we should apply here?

From: "Vasiliy Molostov"
<molostoff@gmail.com>

Date: Thu, 02 Aug 2012 16:12:17 +0400
Subject: Re: questions on Ada openGL

binding in the GLOBE3D packages
Newsgroups: comp.lang.ada

Do we need use name prefixes while
having high level tools to organize
imported procedures in a way we decide
by self?

Prefix is a C "necessity", and when
imported it then has nothing common
with C.

It seems, that a good binding can provide
many benefits when imports being
organized in an Ada-way, only if you are
not going to provide low-level direct 1:1
mapping to what people use in C.

Is there a benefit using 1:1 C in Ada?

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Thu, 2 Aug 2012 12:13:09 +0000
Subject: Re: questions on Ada openGL

binding in the GLOBE3D packages
Newsgroups: comp.lang.ada

[…]

"Making code look the same as C" is …
not unambiguously better!

“It will make it easier to program this in
Ada if the binding is the same.”

No, but I'd agree it will make learning by
following C examples a little bit easier.
Which is important, up to a point.

Actually programming, and reading and
maintaining such a program, is likely to
be that much harder, as the names are
longer, uglier and therefore less readable.

I confess I didn't watch this year's Tour de
France. But I wonder, how many of the
competitors used training wheels?

Just a point of view…

There is a long tradition among C
programmers, of uglifying names as a
poor substitute for properly indicating
their type. But there is less than no reason
to follow that tradition in Ada, where
types and packages can be used to
properly distinguish different entities.

So I would agree with Niklas' suggestion :
if you must mimic the look of the C
programs, substitute '.' for '_' and use
qualified names. Ditto where there is any
real danger of confusing a gl.Vertex2d
with any other type of Vertex2d. But
otherwise, the cleanest and simplest style
will be best in the long run.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Thu, 02 Aug 2012 11:01:50 -0400
Subject: Re: questions on Ada openGL

binding in the GLOBE3D packages
Newsgroups: comp.lang.ada

“"Making code look the same as C" is …
not unambiguously better!”

But sticking closely to the C does have
the advantage that the binding doesn't
need a whole lot of documentation (which
must be maintained) -- you can just refer
to the C docs. A thick binding requires a
lot of documentation.

IMHO, the name changes are so
systematic in this case, that it's close
enough -- you can still refer to the C docs,
and do the trivial translation in your head.
And the Ada names really are more
readable. I think it's the right choice,
especially since the standard actually
suggests doing it this way in languages
that have a proper module system.

What if you had a system originally
written in Ada (with appropriate use of
overloading), and you wanted to make a C
binding? In that case it would be
impossible to make the names the same.

I once wrote an Ada binding to some C
code where every C function returned an
'int' as an error code, with 0 meaning
"success". I did it in two layers. A thin
binding that worked the same way,
returning Interfaces.C.int. Then a layer on
top of that that turned the error codes into
raising an exception. The second layer is
such a systematic change that I think it

Ada in Context 161

Ada User Journal Volume 33, Number 3, September 2012

can still be considered "thin" -- thin
enough that the C documentation still
makes sense.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 2 Aug 2012 15:59:52 -0500
Subject: Re: questions on Ada openGL

binding in the GLOBE3D packages
Newsgroups: comp.lang.ada

“IMO, it is neater and less trouble to use
the same style of identifiers for my native
Ada code and for the bound libraries from
other languages. I think that is one of the
desirable features of a binding, even a thin
binding.”

Not to mention that automated style-
checking tools would reject/modify names
in mixed case style. (It's a clear violation
of pretty much every Ada style guide I've
ever seen.

And personally, whenever I type
identifiers, they naturally come out in the
Ada style. On the rare occasions when
they need to be in some other style (as in
specifying link names in interfacing
pragmas), I usually have to type them
several times.

Ergo, if you want a binding to be useful to
the experienced Ada programmer, it has
to use identifiers that fit the style of
experienced Ada programmers.

IMHO, I do agree with you that a binding
that changes the names is not a "thin"
binding. "Thin" bindings are unusable;
they should only be used for temporary
(one-off) code. Anything else needs at
least what I call a "medium" binding:
routines with similar semantics to the
original ones, but an Ada-ized interface
with better names, far fewer pointers, and
exceptions rather than error codes. (The
project that became Claw was originally
intended to produce a "medium" binding
for Win32. Eventually it morphed into
Claw, a classic "thick" binding.)

(I don't want any of my code to *ever-
look anything like C -- I want clean,
elegant code, not barely intelligible
symbols and loads of dangerous pointers.

YMMV. :-)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 2 Aug 2012 16:12:49 -0500
Subject: Re: questions on Ada openGL

binding in the GLOBE3D packages
Newsgroups: comp.lang.ada

Many of us write almost exclusively in
Ada, and mixed case C names are a lot
harder to understand than properly
formatted Ada names. You want our code
to be much harder to understand (by us
and our colleagues) so that it is easier to
read C code.

Sorry, as soon as an Ada programmer has
to read C code in order to get their work
done, Ada has lost. That programmer
would probably have been better off

writing the code in C in the first place.
The effort of building a binding is not just
the binding (that's usually pretty easy),
but also the effort of creating/translating
examples (and testing them), and
preferably, creating Ada-specific
documentation as well.

Given that we are forced into a mixed-
language world, there's little point in
trying to write C in Ada. Either write Ada
in Ada or C in C -- and interface *those*
larger parts.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 2 Aug 2012 16:18:05 -0500
Subject: Re: questions on Ada openGL

binding in the GLOBE3D packages
Newsgroups: comp.lang.ada

“… Then a layer on top of that that turned
the error codes into raising an exception.
The second layer is such a systematic
change that I think it can still be
considered "thin" -- thin enough that the C
documentation still makes sense.”

I think calling that "thin" is dubious. I call
the technique "medium" for a lack of a
better term, and it has to include
normalizing the names, adding
appropriate defaults, and using Ada
parameter modes appropriately (along
with raising exceptions). But I agree that
it makes reading C documentation easier
than for a true "thick" binding -- the
problem being, that no one should be
forcing Ada programmers to read C
documentation. Cost considerations of
course make that necessary sometimes,
but even then I would hope that there
would at least be some Ada-specific
documentation covering common use-
cases.

Run-time error for integer
division with non-zero
remainder

From: Nasser M. Abbasi
<nma@12000.org>

Date: Sat, 11 Aug 2012 20:14:42 -0500
Subject: can Ada give run-time error or

warning for integer division with non-
zero remainder?

Newsgroups: comp.lang.ada

In Ada when dividing 2 integers, the
result is an integer with the remainder
ignored. […]

Now, suppose I want to know that a
division between 2 integers has resulted in
nonzero remainder that was thrown away.
Maybe because my algorithm is meant to
work only for even values and an odd
value means there was a bug somewhere
and I want to know about it.

Is there any kind of run-time switch to tell
it to check for this? I know I can always
add logic myself to check for this in the
code, using rem for example (which
might be the better solution actually) but I

was just wondering if there is a run-time
switch for this.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Sun, 12 Aug 2012 07:45:52 +0200
Subject: Re: can Ada give run-time error or

warning for integer division with non-
zero remainder?

Newsgroups: comp.lang.ada

Fortunately not!

Dividing integers uses the integer
division. If you want something else,
don't use integer division.

Having the outcome of an operation
depend on a switch would imply that you
cannot predict the result of a program by
reading it!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 12 Aug 2012 08:45:03 +0200
Subject: Re: can Ada give run-time error or

warning for integer division with non-
zero remainder?

Newsgroups: comp.lang.ada

It is not integer division then. You could
use integer interval division instead:
[3, 3] / [2, 2] = [1, 2].

From: Per Sandberg
<per.sandberg@sandat.dyndns.org>

Date: Sun, 12 Aug 2012 09:16:58 +0200
Subject: Re: can Ada give run-time error or

warning for integer division with non-
zero remainder?

Newsgroups: comp.lang.ada

If you want an new behaviour for "/" on
an integer type you could always make a
new integer type with the required
properties:

package Integers is

 type Integer is new Standard.Integer;

 overriding function "/" (L : Integer; R :

 Integer) return Integer;

 function "/" (L : Standard.Integer; R :

 Integer) return Integer;

 function "/" (L : Integer; R :

 Standard.Integer) return Integer;

end Integers;

package body Integers is

 overriding function "/" (L : Integer; R :

 Integer) return Integer is

 begin

 return Ret : Integer do

 Ret := Integer (Standard.Integer

 (Standard.Integer (L) /

 Standard.Integer (R)));

 if Ret- R /= L then

 raise Constraint_Error

 with L'Img & "/" & R'Img &

 " gives reminder.";

 end if;

 end return;
 end "/";

162 Ada In Context

Volume 33, Number 3, September 2012 Ada User Journal

 function "/" (L : Standard.Integer; R :

 Integer) return Integer is

 begin

 return Ret : Integer do

 Ret := Integer (L) / R;

 end return;

 end "/";

 function "/" (L : Integer; R :

 Standard.Integer) return Integer is

 begin

 return Ret : Integer do

 Ret := L / Integer (R);

 end return;

 end "/";

end Integers;

From: Brad Moore
<brad.moore@shaw.ca>

Date: Sun, 12 Aug 2012 08:03:35 -0600
Subject: Re: can Ada give run-time error or

warning for integer division with non-
zero remainder?

Newsgroups: comp.lang.ada

Or you could simplify this further using
some new Ada 2012 features, and
eliminate the body.

package Integers is

 type Integer is new Standard.Integer;

 overriding function "/" (L : Integer;

 R : Integer) return Integer is

 (Integer (Standard.Integer (L) /

 Standard.Integer (R)))

 with Post => "/"'Result- R = L;

 function "/" (L : Standard.Integer;

 R : Integer) return Integer is

 (Integer (L / Standard.Integer (R)))

 with Post => "/"'Result- R = Integer (L);

 function "/" (L : Integer;

 R : Standard.Integer) return Integer is

 (Integer (Standard.Integer (L) / R))

 with Post => "/"'Result- Integer (R) = L;

end Integers;

Using .rlu files in SPARK

From: Ben Hocking
<benjaminhocking@gmail.com>

Date: Mon, 13 Aug 2012 07:00:59 -0700
Subject: Using .rlu files in SPARK Ada
Newsgroups: comp.lang.ada

I've been unable to satisfy the following
check statement:

 a2 := x3 - x1;

 b := y3 - y1;

 --# check b < a2 -> (b rem a2 = b);

It generates the following VC:

y3 - y1 < x3 - x1 -> y3 - y1 - (y3 - y1) div
(x3 - x1)- (x3 - x1) = y3 - y1

In my .rlu file (which I know is being read
because other rules are being applied, and
I see it mentioned in my .slg file), I have:

small_rem: y3 - y1 - (y3 - y1) div (x3 -
x1)- (x3 - x1) = (y3 - y1)
may_be_deduced_from [y3 - y1 < x3 -
x1].

(Note that I originally had:
small_rem: x rem y = x
may_be_deduced_from [x < y]. However,
in an effort to rule out any possible source
of confusion, I expanded it to exactly
what I was seeing in the .siv file.)

Am I doing something incorrectly, or is
there some limitation of SPARK here?

From: Phil Thornley
<phil.jpthornley@gmail.com>

Date: Mon, 13 Aug 2012 16:46:04 +0100
Subject: Re: Using .rlu files in SPARK Ada
Newsgroups: comp.lang.ada

To avoid any additional complications, I'll
start by assuming that a2 and b are
guaranteed to be Positive (and there
should really be something in the rule for
that).

For a deduction rule to work, the formula
that is deduced has to match the
conclusion and the side conditions have to
match hypotheses (or be provable from
the hypotheses).

This rule would work if the equality was
the conclusion and

y3 - y1 < x3 - x1 were a hypothesis.

Since the conclusion is an implication,
that is what the rule must be.

So you can either use:

small_rem: y3 - y1 < x3 - x1 -> y3 - y1 -
(y3 - y1) div (x3 - x1)- (x3 - x1) = (y3 -
y1) may_be_deduced or change the code
to:

 a2 := x3 - x1;

 b := y3 - y1;

 if b < a2 then

 --# check b rem a2 = b;

 null;

 end if;

(I have occasionally used null conditional
statements to avoid complex
implications.)

> (Note that I originally had:

 small_rem: x rem y = x
may_be_deduced_from [x < y].

 However, in an effort to rule out any
possible source of confusion, I
expanded it to exactly what I was
seeing in the .siv file.)

 Am I doing something incorrectly, or is
there some limitation of SPARK here?

This never had a chance of working
because rem is not an FDL operator
(which is why the Examiner expands it
out.)

However you also need to understand the
use of wildcards in rules. This is covered
in Section 7 of the Simplifier User
Manual, but, briefly, anything in lower

case in a rule formula has to match the
text of the VC precisely (so the above rule
would not work if you changed any of x1,
x3, y1, y3 to something else).

Any name in a rule that starts with an
upper-case character is a wild-card (aka
'Prolog variable') that can be matched to
any expression within a VC, so the ideal
rule for your present code is probably:
small_rem: A < B -> A - A div B- B = A
may_be_deduced .or, to make sure it
doesn't get used incorrectly anywhere
else:

small_rem: A < B -> A - A div B- B = A
may_be_deduced_from[A >= 0, B > 0,
goal(checktype(A, integer)),
goal(checktype(B, integer))] .

(and there's probably another for negative
A and B as well).

Warning: all above expressions typed
without any checking with SPARK tools.

An original designer of Ada
speaks

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: Wed, 15 Aug 2012 22:29:22 +0100
Subject: An original designer of Ada speaks
Newsgroups: comp.lang.ada

… on comp.arch, in the thread

"Re: Have the Itanium critics all been
proven wrong?"

Ivan Godard criticizes his work (on
Green, I presume) and compares Ada's
type system unfavourably with Algol 68.

I have been defending the Lady's honour.
8-)

Networking

From: Shark8
<onewingedshark@gmail.com>

Date: Sun, 12 Aug 2012 13:26:23 -0700
Subject: Ada Networking (General/Design)
Newsgroups: comp.lang.ada

In a related, though only tangential, vein
to my other Ada-networking thread, I
thought it would be good to ask what [you
find] the best way to handle network-
communication is.

Is it using Streams? Wrapping up sockets
in their own interface-packages and using
those? Something I'm not even thinking
of? (In short, I'm curious as to how other
Ada programmers approach it.)

From: sbelmont700@gmail.com
Date: Sun, 12 Aug 2012 17:10:22 -0700
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

Depending on its applicability to your
situation, the DSA is perhaps the most
elegant solution; simply take the whole
thing to the next level higher, and avoid
network programming altogether.

Ada in Context 163

Ada User Journal Volume 33, Number 3, September 2012

From: Shark8
<onewingedshark@gmail.com>

Date: Sun, 12 Aug 2012 17:25:24 -0700
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

LOL -- True; I *really- like the
underlying ideas for the DSA. (That
doesn't mean that I really understand the
bits-n-pieces/nitty-gritty… but you have
to start somewhere.)
Though there's a lot of programs (or it
would be more correct to say 'networks')
that aren't DSA but might be useful. Say
something like SETI@Home, or
EDonkey/Gnutilla/BitTorrent --I know for
certain there are Bittorrents being used to
distribute people's software, probably
most prominently certain Linux flavors--
and they are likely going to need some
interfacing support… I really don't see
how it would be possible to "overlay the
DSA" such that it enables you to treat
those as part of your local system.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 13 Aug 2012 09:11:07 +0200
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada
Depends on the protocol, load and QoS
requirements. E.g. in one case we must
handle 200K+ connections, in another
80µs is the response time limit.

> “Is it using Streams?”

Rarely. Most network protocols are
packet-oriented.

> “Wrapping up sockets in their own
interface-packages and using those?”

Certainly. There will be many packages
reflecting at least the protocol layers,
encapsulating OS-dependent stuff etc.

From: Dmitry A. Kazakov
Date: Mon, 13 Aug 2012 15:11:54 +0200
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

> “Does anyone have a favourite
approach to TCP/IP?”

TCP vs. UDP changes little (when point
to point). You still have packet even when
sent over TCP stream. It is difficult to
outline a universal solution for all case.

There are a reader and a writer tasks
encapsulated into I/O objects. There are
packages implementing protocol layers.
Each layer object derives from or
otherwise uses the lower level object in a
mix-in. Lower layers provide operations
for the higher levels and define abstract
operations or callback to override. Two
tasks have the advantage of having it full-
duplex (performance, deadlock prevention
upon protocol errors), being able to use
blocking calls. It may impose some
difficulties as you would likely have to
route actions from the writer to the reader
task.

From: Marc C
<mc.provisional@gmail.com>

Date: Mon, 13 Aug 2012 06:12:23 -0700
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

> “Does anyone have a favourite
approach to TCP/IP?”

After years of working with TCP/IP
sockets, my favorite approach now
is…not to. Not directly anyway.

There are higher-level messaging
protocols that handle most, if not all, of
the socket management details for you.

Among them are ZeroMQ[1], along with
its Ada binding [2] and YAMI4 [3].

I collected ZeroMQ, AMQP, and STOMP
together into a set of text-oriented
messaging interfaces called
TOMI_4_Ada [4].

While you still have to be cognizant of
things like host names and port numbers,
by and large that's about the extent of
what you need to be aware of when using
these high-level protocols.

If I never have to write another
setsockopt(), c_select(), and accept()
again, I'll be very happy :-)

[1] http://www.zeromq.org
[2] http://www.zeromq.org/bindings:ada
[3] http://www.inspirel.com/yami4
[4] http://sourceforge.net/

projects/tomi4ada/

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 13 Aug 2012 15:31:31 +0200
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

Hmm, there is not that many things you
needed to manage sockets. Setting or
clearing TCP_NO_DELAY is not a huge
problem, or?

[ZeroMQ —sparre]

Does this really implement protocols, e.g.
DLMS, ModBus etc? I didn't read the
documentation, but it looks rather like
some text messaging or middleware stuff
on top of some transport like TCP, than a
protocol implementation generator tool (if
that were possible).

> “If I never have to write another
setsockopt(), c_select(), and accept()
again, I'll be very happy :-)”

If Ada provided higher level socket
library with an integrated support of
protected objects and tasks…

From: Dmitry A. Kazakov
Date: Mon, 13 Aug 2012 18:19:19 +0200
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

> “What do you mean?”

The most difficult and unavoidable part
about socket programming is tasking. We

need reader and writer tasks or else
socket-select-driven co-routines. The
reader and writer parts have to
communicate each other in some intricate
way because it is two tasks but one
protocol state machine, or one task and
many state machines in the case of socket
select. There is the issue of blocking
socket I/O non-abortable by Ada means.
All this incredibly complicates design.

If Ada ever have to support sockets it
should be a high level Ada tasking-
friendly abstraction, which I am not ready
to outline.

From: Patrick
<patrick@spellingbeewinnars.org>

Date: Mon, 13 Aug 2012 09:30:18 -0700
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

Could you recommend a software project
that gets socket programming done right?

From: Marc C
<mc.provisional@gmail.com>

Date: Mon, 13 Aug 2012 10:54:35 -0700
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

While I'd extract the socket code from an
earlier project for reuse, it always needed
to be modified a bit to get integrated into
the new one. It just gets tedious after
awhile. So adopting a more abstract, pre-
existing transport protocol just eliminated
the need to deal with that.

> “Does this really implement protocols,
e.g. DLMS, ModBus etc?”

Nope, ZeroMQ is essentially just a
transport layer, which is all the
functionality I wanted of it, so that I could
stop having to mess around with sockets.

TOMI_4_Ada essentially arose out of my
desire to have a simple, consistent Ada
library for text-oriented message
interfaces. My projects rarely have any
need for extensive or high performance
protocols, so a nice clean set of
client/server and topic-supportive
publish/subscribe services meets my
needs.

From: Dmitry A. Kazakov
Date: Mon, 13 Aug 2012 20:18:58 +0200
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

[Scientific instruments. RS232 / GPIB /
TCP/IP. —sparre]

We are using a middleware for that. It
abstracts industrial devices and their
protocols away, so that the application(s)
would not care where the process
variables read and written come from. But
it is a commercial product.

And of course RS232, GPIB, TCP/IP is as
much telling as ISA, PCI, PCIe. The
proper description should include the
application level and everything down to

164 Ada In Context

Volume 33, Number 3, September 2012 Ada User Journal

the transport, e.g. Steale autopilot, AK
(list of commands, their semantics), over
TCP/IP.

If you want to communicate industrial
devices, TCP/IP would be your least
problem. You need a middleware to
decouple device-specific stuff from the
application logic.

> “Could you recommend a software
project that gets socket programming
done right?”

I guess there exists some Open Source
examples, e.g. AWS (though I did see its
sources.

From: Dmitry A. Kazakov
Date: Mon, 13 Aug 2012 20:28:22 +0200
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

> “Nope, ZeroMQ is essentially just a
transport layer,”

I see. Then it is probably not what the OP
wanted.

BTW, did you evaluate the distributed
systems Annex vs. this stuff? I am
interested in an opinion, because we are
using other technology, so that I had no
opportunity to evaluate the Annex. Was it
too heavy-weight for you?

From: Marc C
<mc.provisional@gmail.com>

Date: Mon, 13 Aug 2012 11:59:42 -0700
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

Essentially the DSA was ruled out
because the systems with which I would
be communicating are very unlikely to be
done in Ada. And, while I could supply an
Ada-implemented "client" with
Languages-Other-Than-Ada bindings to
it, by offering a "native" client that sends,
say JSON across ZeroMQ, it removes a
source of hesitancy. In fact, just saying
"here's a ZeroMQ port, send me a JSON
object with these fields (or an XML doc
passing this schema)" and let them go off
and build it themselves makes the
developers happy. They don't have to
depend, then, on *my- API
implementation working correctly.

In addition, by employing a standard-ish
transport medium--ZeroMQ, AMQP for
now--it's much easier to tie in other
systems. So long as my system is
network-accessible, anyone can get to it--
they don't need any client code from me.
This therefore enhances interoperability
since I supply the only platform-
dependent piece, and whoever talks to me
can be running whatever OS/HW
platform they want.

From: tmoran@acm.org
Date: Mon, 13 Aug 2012 19:11:30 +0000
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

The Claw.Sockets package has a simple
Socket_Type with

procedure Open(

 Socket: in out Socket_Type;

 -- or Server_Type

 Domain_Name: in String;

 -- or Network_Address_Type

 Port: in Port_Type;

 Timeout: in Duration := 30.0);

and Text_IO style Get/Put for Strings,
Input/Output for streams, etc.

It also has a non-blocking
Async_Socket_Type with overridable
When_Connect, When_Readable, etc
routines, but I find using blocking sockets
with tasks whose structure encodes the
state machine is much simpler. All the
blocking socket routines allow a timeout
parameter, so they in effect poll for data -
or a Please_Quit request. (The non-
blocking routines are of course also
polling, via the Windows message loop.)
There are also ftp, pop3, smtp, http, etc
packages built on top.
From: Dmitry A. Kazakov
Date: Mon, 13 Aug 2012 22:03:16 +0200
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

[Claw.Sockets —sparre]

In an Ada friendly way they should be
entry calls, with the semantics of
canceling the request when a timed entry
call gets timed out. That is when the
socket is blocking:

 select

 Socket.Receive (Packet);

 or delay 10.0; -- Failed to read

 or terminate; -- Yes I know, it is illegal to

 -- have terminate + delay

 end select;

Or maybe other way round, they should
be "entry points" to which socket I/O
could call to.

For non-blocking I/O there should be a
way to have a pseudo-task ran by the
events on the socket, rather than
scheduled.

From: tmoran@acm.org
Date: Mon, 13 Aug 2012 20:28:58 +0000
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

“Or maybe other way round, they should
be "entry points" to which socket I/O
could call to.”

 Get(Socket, Timeout => 10.0,

 Item => Buffer, Last => Last);
where Last = Buffer'first-1 on timeout,
seems simpler to me.

“For non-blocking I/O there should be a
way to have a pseudo-task ran by the
events on the socket, rather than
scheduled.”

That's what overidable procedures
When_Connect, When_Readable,
When_Disconnect, etc are for. They are
called when the event occurs.

From: Maciej Sobczak
Date: Tue, 14 Aug 2012 01:39:59 -0700
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

[…]

Or managing multiple transmissions to
several targets concurrently? Or having it
done in background? Or dealing with
serialization across different hardware
platforms? Or having the possibility to
intermix high-priority traffic with low-
priority one? Or having it all integrated
with the language so that you can use
standard tasking features to wait, time out,
etc. on your communication activities? Or
raising the conceptual level to data-centric
communication where data providers only
care about providing data instead of
messing with irrelevant low-level stuff?
Or…

There's a lot more to networking than
sockets and this is where higher-level
solutions can be very helpful.

“If Ada provided higher level socket
library with an integrated support of
protected objects and tasks…”

YAMI4 does provide this level of
language integration.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 14 Aug 2012 12:14:01 +0200
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

[When_Connect, When_Readable,
When_Disconnect, etc., —sparre]

No, that is upside-down. The point is to
write I/O code as if it were synchronous
and half-duplex:

 send
 receive
 process
 send
 …

Compare it with Ada task. You write a
task as if it didn't share the processor, you
don't hook at timer interrupts.

From: tmoran@acm.org
Date: Tue, 14 Aug 2012 17:57:24 +0000

(UTC)
Subject: Re: Ada Networking

(General/Design)
Newsgroups: comp.lang.ada

Sorry, I misunderstood "pseudo-task ran
by the events on the socket" to mean
roughly "interrupt-driven". Claw.Sockets
has "Async_Socket_Type and procedures
When_xxx for that. I agree that it's
usually easier to "write I/O code as if it
were synchronous and half-duplex:" with
the simple Socket_Type and Put, Get,
Process, Put...

 165

Ada User Journal Volume 33, Number 3, September 2012

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2012

October 01-04 14th International Symposium on Stabilization, Safety, and Security of Distributed Systems

(SSS'2012), Toronto, Canada. Topics include: Fault-Tolerance and Dependable Systems, Safety and
Security, Formal Methods, etc.

Oct 01-05 Absolute Software - Public Ada Course, Carlsbad, CA, USA.

October 01-05 10th International Conference on Software Engineering and Formal Methods (SEFM'2012),
Thessaloniki, Greece. Topics include: programming languages, program analysis and type theory;
formal methods for real-time, hybrid and embedded systems; formal methods for safety-critical, fault-
tolerant and secure systems; light-weight and scalable formal methods; tool integration; applications of
formal methods, industrial case studies and technology transfer; education and formal methods; etc.

October 08-11 31st IEEE International Symposium on Reliable Distributed Systems (SRDS'2012), Irvine,
California, USA. Topics include: distributed systems design, development and evaluation, with
emphasis on reliability, availability, safety, security, trust and real time; high-confidence and safety-
critical systems; distributed objects and middleware systems; formal methods and foundations for
dependable distributed computing; evaluations of dependable distributed systems; etc.

October 12-13 35th IEEE Software Engineering Workshop (SEW-35), Heraclion, Crete, Greece. Topics include:
metrics and experience reports; software quality assurance; formal methods and formal approaches to
software development; software engineering processes and process improvement; real-time software
engineering; software maintenance, reuse, and legacy systems; etc.

October 15-18 19th Working Conference on Reverse Engineering (WCRE'2012), Kingston, Ontario, Canada. Topics
include: theory and practice of recovering information from existing software and systems, such as
program comprehension, mining software repositories, empirical studies in reverse engineering,
redocumenting legacy systems, reverse engineering tool support, reengineering to distributed
architectures, software architecture recovery, program analysis and slicing, reengineering patterns,
program transformation and refactoring, etc.

 October 19-26 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2012), Tucson, Arizona, USA. Topics include: the intersection of programming,
programming languages, and software engineering; areas such as programming methods, design and
analysis, testing, concurrency, program analysis, empirical studies, and new programming languages; all
aspects of software construction and delivery, all factions of programming technologies.

 October 21 4th Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU'2012). Topics include: methods, metrics and techniques for evaluating the
usability of languages and language tools, such as empirical studies of programming
languages, methodologies and philosophies behind language and tool evaluation,
software design metrics and their relations to the underlying language, user studies of
language features and software engineering tools, critical comparisons of programming
paradigms, tools to support evaluating programming languages, etc.

October 21 Workshop on Relaxing Synchronization for Multicore and Manycore Scalability
(RACES'2012).

166 Conference Calendar

Volume 33, Number 3, September 2012 Ada User Journal

October 25-27 14th IEEE International High Assurance Systems Engineering Symposium (HASE'2012), Omaha,
Nebraska, USA. Topics include: integrated approaches for assuring reliability, availability, integrity,
privacy, confidentiality, safety, and real-time performance of complex systems; and methods for
assessing assurance levels of these systems to a high degree of confidence.

October 29-31 12th Annual International Conference on New Technologies of Distributed Systems
(NOTERE'2012), Anglet, France. Topics include: distributed systems and middleware, particularly
those based on objects, components, agents, including real time and embedded; modeling Languages or
DSL dedicated to distributed systems; modeling, formal and semi-formal methods, and tools for
distributed systems; reliability and scalability of distributed systems; etc.

November 10-16 25th International Conference for High Performance Computing, Networking, Storage and
Analysis (SC'2012), Salt Lake City, Utah, USA. Topics include: Applications, Languages, and
Programming Environments; Innovation in HPC and Emerging Technologies; etc.

November 10-17 20th ACM SIGSOFT International Symposium on the Foundations of Software Engineering
(FSE'2012), Research Triangle Park, North Carolina, USA. Topics include: Architecture and design;
Components, services, and middleware; Distributed, parallel and concurrent software; Embedded and
real-time software; Empirical studies of software engineering; Formal methods; Reverse engineering
and maintenance; Security, safety and reliability; Software tools and development environments;
Specification and verification; etc.

November 12-16 14th International Conference on Formal Engineering Methods (ICFEM'2012), Kyoto, Japan. Topics
include: abstraction and refinement; software verification; program analysis; formal methods for
robotics, cyber-physical systems, medical devices, aeronautics, railway; formal methods for software
safety, security, reliability and dependability; experiments involving verified systems; formal model-
based development and code generation; etc.

November 12 1st International Workshop on Formal Techniques for Safety-Critical Systems
(FTSCS'2012). Topics include: case studies and experience reports on the use of formal
methods for analyzing safety-critical systems, including avionics, automotive, medical,
and other kinds of safety-critical and QoS-critical systems; methods, techniques and
tools to support automated analysis, certification, debugging, etc., of complex
safety/QoS-critical systems; etc.

 November 14-15 Automotive - Safety & Security 2012, Karlsruhe, Germany. Organized by Gesellschaft für Informatik
mit den Fachgruppen Ada, etc, and Ada-Deutschland. Topics include (in German): Zuverlässigkeit und
Sicherheit für betriebskritische Software und IT-Systeme; Evaluation u. Qualifikation von
Sicherheitseigenschaften automobiler Plattform- und Applikationssoftware; Werkzeuge zur
Verbesserung der Zuverlässigkeit im Software Life Cycle; Multi-Core-Architekturen; Fortschritte bei
Normen und Standardisierungen; etc.

 November 16 SC2012 - 5th International Workshop on Multi-Core Computing Systems (MuCoCoS'2012), Salt
Lake City, Utah. Theme: "Performance Portability and Tuning". Topics include: portable programming
models, languages and compilation techniques; case studies highlighting performance portability and
tuning; etc. Deadline for registration: October 17, 2012.

November 18-23 7th International Conference on Software Engineering Advances (ICSEA'2012), Lisbon, Portugal.
Topics include: Advances in fundamentals for software development; Advanced mechanisms for
software development; Advanced design tools for developing software; Software security, privacy,
safeness; Specialized software advanced applications; Open source software; Agile software techniques;
Software deployment and maintenance; Software engineering techniques, metrics, and formalisms;
Software economics, adoption, and education; etc

November 27-30 23rd IEEE International Symposium on Software Reliability Engineering (ISSRE'2012), Dallas,
Texas, USA. Topics include: reliability, availability, and safety of software systems; validation,
verification, testing and dynamic analysis; software quality and productivity; software security;
dependability, survivability, and resilience of software systems; open source software reliability
engineering; supporting tools and automation; industry best practices; empirical studies; etc.

November 29-30 Many-core Applications Research Community Symposium (MARC'2012), Aachen, Germany.
Topics include: dealing with legacy software on novel many-core architectures; experiences porting,

Conference Calendar 167

Ada User Journal Volume 33, Number 3, September 2012

running, or developing applications; traditional and new programming models for novel many-core
hardware; etc.

 Dec 02-06 ACM SIGAda Annual International Conference on High Integrity Language
Technology (HILT'2012), Boston, Massachusetts, USA.

December 04-07 19th Asia-Pacific Software Engineering Conference (APSEC'2012), Hong Kong, China. Theme:
"Software Engineering for the Evolving World". Topics include: Software architecture and design, SE
methodologies, Software analysis and understanding, Software verification and validation, Software
maintenance and evolution, Software quality, Software process and standards, Software security and
reliability, SE environments and tools, SE education, Distributed and parallel software systems,
Embedded and real-time software systems, Component based SE, Product-line SE, Formal methods in
SE, Emerging SE methods, etc.

 December 05-07 33th IEEE Real-Time Systems Symposium (RTSS'2012), San Juan, Porto Rico. Topics include: all
aspects of real-time systems design, analysis, implementation, evaluation, and experiences.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

December 13-15 10th Asian Symposium on Programming Languages and Systems (APLAS'2012), Kyoto, Japan.
Topics include: both foundational and practical issues in programming languages and systems, such as
semantics, design of languages, type systems, compilers, program analysis, verification, software
security, concurrency, parallelism, tools for programming, verification, and implementation, etc.

 December 14-16 13th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2012), Beijing, China. Topics include: all areas of parallel and distributed
computing; Reliability, and fault-tolerance; Formal methods and programming languages; Software
tools and environments; Parallelizing compilers; Component-based and OO Technology;
Parallel/distributed algorithms; Task mapping and job scheduling; etc.

 December 17-19 18th IEEE International Conference on Parallel and Distributed Systems (ICPADS'2012),
Singapore. Topics include: Parallel and Distributed Applications and Algorithms; Multi-core and
Multithreaded Architectures; Security and Privacy; Dependable and Trustworthy Computing and
Systems; Real-Time Systems; Embedded systems; etc.

December 18-21 19th IEEE International Conference on High Performance Computing (HiPC'2012), Pune, India.
Topics include: Parallel and Distributed Algorithms/Systems, Parallel Languages and Programming
Environments, Hybrid Parallel Programming with GPUs and Accelerators, Scheduling, Fault-Tolerant
Algorithms and Systems, Scientific/Engineering/Commercial Applications, Compiler Technologies for
High-Performance Computing, Software Support, etc. Deadline for early registration: November 14,
2012.

2013

 January 23-25 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2013),

Rome, Italy. Topics include: fundamental principles and important innovations in the design, definition,
analysis, transformation, implementation and verification of programming languages, programming
systems, and programming abstractions.

Jan 20-21 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM'2013). Topics include: Program and model manipulation techniques (such as:
partial evaluation, slicing, symbolic execution, refactoring, ...); Program analysis
techniques that are used to drive program/model manipulation (such as: abstract
interpretation, termination checking, type systems, ...); Techniques that treat
programs/models as data objects (including: metaprogramming, generative
programming, model-driven program generation and transformation, ...); etc.
Application of the above techniques including case studies of program manipulation in
real-world (industrial, open-source) projects and software development processes,
descriptions of robust tools capable of effectively handling realistic applications,
benchmarking.

Jan 29 - Feb 01 11th Australasian Symposium on Parallel and Distributed Computing (AusPDC'2013), Adelaide,
South Australia. Topics include: multicore systems; GPUs and other forms of special purpose

168 Conference Calendar

Volume 33, Number 3, September 2012 Ada User Journal

processors; middleware and tools; parallel programming models, languages and compilers; runtime
systems; reliability, security, privacy and dependability; applications; etc.

January 21-23 6th India Software Engineering Conference (ISEC'2013), New Delhi, India. Topics include: static
analysis, specification and verification, model driven software engineering, software architecture and
design, tools and environments, maintenance and evolution, component based software engineering,
object-oriented technology, distributed software development, software engineering education, software
security, mining software repositories, embedded and real-time systems, etc.

 January 23-27 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP'2013), Shenzhen, China. Topics include: formal analysis and verification; parallel programming
languages; compilers and runtime systems; development, analysis, or management tools; concurrent
data structures; synchronization and concurrency control; software engineering for parallel programs;
software issues for multicore and multithreaded processors; task mapping and scheduling; etc.

Feb 27 – Mar 01 5th International Symposium on Engineering Secure Software and Systems (ESSoS'2013), Paris,
France. Topics include: security architecture and design for software and systems; specification
formalisms for security artifacts; verification techniques for security properties; systematic support for
security best practices; programming paradigms for security; processes for the development of secure
software and systems; support for assurance, certification and accreditation; etc.

Feb 27 – Mar 01 21st Euromicro International Conference on Parallel, Distributed and Network-Based Computing
(PDP'2013), Belfast, Northern Ireland, UK. Topics include: embedded parallel and distributed systems,
multi- and many-core systems, programming languages and environments, runtime support systems,
dependability and survivability, advanced algorithms and applications, etc.

March 06-09 44th ACM Technical Symposium on Computer Science Education (SIGCSE'2013), Denver,
Colorado, USA.

March 18-22 28th ACM Symposium on Applied Computing (SAC'2013), Coimbra, Portugal.

 Mar 18-22 Track on Programming Languages (PL'2013). Topics include: Compiling
Techniques, Formal Semantics and Syntax, Garbage Collection, Language Design and
Implementation, Languages for Modeling, Model-Driven Development New
Programming Language Ideas and Concepts, Practical Experiences with Programming
Languages, Program Analysis and Verification, Programming Languages from All
Paradigms, etc.

 Mar 18-22 Track on Object-Oriented Programming Languages and Systems (OOPS'2013).
Topics include: Aspects and components; Distribution and concurrency; Formal
verification; Integration with other paradigms; Interoperability, versioning and software
evolution and adaptation; Language design and implementation; Modular and generic
programming; Static analysis; Type systems; etc. Deadline for paper submissions:
October 31, 2012 (research abstracts).

March 18-22 Track on Software Verification and Testing (SVT'2013). Topics include: tools and
techniques for verification of large scale software systems, real world applications and
case studies applying software verification, static and run-time analysis, refinement and
correct by construction development, software certification and proof carrying code, etc.

March 18-22 6th IEEE International Conference on Software Testing, Verification and Validation (ICST'2013),
Luxembourg. Topics include: domain specific testing, security testing, embedded-software testing,
testing concurrent software, testing large-scale distributed systems, testing in multi-core environments,
quality assurance, empirical studies, agile/iterative/incremental testing processes, testing of open source
and third-party software, software reliability, formal verification, experience reports, etc. Deadline for
submissions: November 14, 2012 (Ph.D. symposium), February 9, 2013 (posters).

March 25-29 12th International Conference on Aspect-Oriented Software Development (AOSD'2013), Fukuoka,
Japan. Topics include: Complex systems; Software design and engineering (evolution, economics,
composition, methodology, ...); Programming languages (language design, compilation and
interpretation, verification and static program analysis, formal languages, execution environments and
dynamic weaving, ...); Varieties of modularity (model-driven development, generative programming,
software product lines, contracts and components, ...); Tools (evolution and reverse engineering,

Conference Calendar 169

Ada User Journal Volume 33, Number 3, September 2012

crosscutting views, refactoring, ...); Applications (distributed and concurrent systems, middleware,
runtime verification, ...); etc.

April 01-05 6th Latin-American Symposium on Dependable Computing (LADC'2013), Rio de Janeiro, Brazil.
Deadline for submissions: January 18, 2013 (fast abstracts, student forum and industrial track).

 April 17-19 16th International Real-Time Ada Workshop (IRTAW'2013), York, England.
Deadline for position paper submissions: February 1, 2013.

 May 18-26 35th International Conference on Software Engineering (ICSE'2013), San Francisco, USA. Theme:
"Software Engineering Ideas to Change the World". Deadline for submissions: November 2, 2012
(workshop proposals tutorial proposals software engineering in practice papers software engineering
education papers new ideas and emerging results papers doctoral symposium submissions formal
demonstrations), December 17, 2012 (ACM Student Competition), January 30, 2013 (SCORE full
project submission).

 May 20-24 27th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2013), Boston-
Cambridge, USA. Topics include: all areas of parallel and distributed processing, such as parallel and
distributed algorithms, applications of parallel and distributed computing, parallel and distributed
software, including parallel and multicore programming languages and compilers, runtime systems,
parallel programming paradigms, and programming environments and tools, etc.

 June 10-14 18th International Conference on Reliable Software Technologies –
Ada-Europe'2013, Berlin, Germany. Sponsored by Ada-Europe, in cooperation with
ACM SIGAda, SIGBED, SIGPLAN (requests pending). Deadline for submissions:
December 3, 2012 (papers, tutorials, workshops), January 14, 2013 (industrial
presentations).

July 01-03 18th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2013), Canterbury, Kent, UK.

 September 10-13 International Conference on Parallel Computing 2013 (ParCo'2013), München, Germany. Topics
include: all aspects of parallel computing, including applications, hardware and software technologies as
well as languages and development environments, in particular Parallel programming languages,
compilers, and environments; Tools and techniques for generating reliable and efficient parallel code;
Best practices of parallel computing on multicore, manycore, and stream processors; etc. Deadline for
submissions: February 28, 2013 (extended abstracts), March 31, 2013 (mini-symposia).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

HILT 2012: HIGH INTEGRITY LANGUAGE TECHNOLOGY
ACM SIGAda’s Annual International Conference

December 2– 6, 2012 / Boston, Massachusetts / Advance Program

High integrity software must not only meet correctness and performance criteria but also
satisfy stringent safety and/or security demands, typically entailing certification against a
relevant standard.

A significant factor affecting whether and how such requirements are met is the chosen
language technology and its supporting tools: not just the programming language(s) but
also languages for expressing specifications, program properties, domain models, and other
attributes of the software or overall system.

HILT 2012 provides a forum for the leading experts from academia/research, industry, and
government to present their latest findings in designing, implementing, and using language
technology for high integrity software.

Sponsored by SIGAda, ACM’s Special Interest Group on the Ada Programming Language, in
cooperation with SIGCSE, SIGPLAN, SIGSOFT, SIGBED, Ada-Europe, and the Ada Resource Association.

KEYNOTE TOPICS / FEATURED SPEAKERS CORPORATE SPONSORS

High-Assurance Cyber Military Systems
(HACMS): High-Assurance Vehicles
KATHLEEN FISHER
DARPA Information Innovation Office

Challenges for Safety-Critical Software
NANCY LEVESON
Massachusetts Institute of Technology
Department of Aeronautics and Astronautics
Engineering Systems Division

Programming the Turing Machine
BARBARA LISKOV
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

Hardening Legacy C/C++ Code
GREG MORRISETT
Harvard University
School of Engineering and Applied Sciences

Programming Language Life Cycles
GUY L. STEELE, JR.
Oracle Labs

PLATINUM LEVEL

SILVER LEVEL

TECHNICAL PROGRAM / December 4 – 6

TUESDAY
Analyzing and
Proving Programs

9:00 AM–10:30 AM
Greetings

SIGAda and Conference Officers
Keynote Address

Barbara Liskov,
Massachusetts Institute of Technology
Programming the Turing Machine

10:30 AM–11:00 AM Break / Exhibits

11:00 AM–12:30 PM
Program Verification at Compile-Time

K. Rustan M. Leino
Program Proving Using Intermediate
Verification Languages (IVLs) like
Boogie and Why3

C. Dross, J. Känig, and E. Schonberg
Hi-Lite: The Convergence of Compiler
Technology and Program Verification

Industrial/Sponsor Presentation

12:30 PM–2:00 PM Break / Exhibits

2:00 PM–3:30 PM
Keynote Address

Greg Morrisett, Harvard University
Hardening Legacy C/C++ Code

3:30 PM–4:00 PM Break / Exhibits

4:00 PM–5:30 PM
Advancing Compilation Technology

V. Pucci and E. Schonberg
The Implementation of Compile-Time
Dimensionality Checking

H. Kirtchev
A Robust Implementation of Ada’s
Finalizable Controlled Types

5:30 PM–7:00 PM Break

7:00 PM–10:00 PM
Social Event / Dinner

WEDNESDAY
Security and Safety

9:00 AM–10:30 AM
Announcements
SIGAda Awards

Ricky E. Sward, SIGAda Chair
Keynote Address

Kathleen Fisher, DARPA
HACMS: High-Assurance Vehicles

10:30 AM–11:00 AM Break / Exhibits

11:00 AM–12:30 PM
Languages and Security

M. Norrish
Formal Verification of the seL4 Microkernel

D. S. Hardin
DSL for Cross-Domain Security

Industrial/Sponsor Presentation

12:30 PM–2:00 PM Break / Exhibits

2:00 PM–3:30 PM
Keynote Address

Nancy Leveson,
Massachusetts Institute of Technology
Challenges for Safety-Critical Software

3:30 PM–4:00 PM Break

4:00 PM–5:30 PM
Languages and Safety

TRACK 1
Industrial Session on Safety

K. Nilsen
Real-Time Java in the Modernization
of the Aegis Weapon System

J. O’Leary
Software for FAA’s Automatic Data Comm
Between Air Traffic Controller and Pilot

Industrial/Sponsor Presentation

Industrial/Sponsor Presentation

TRACK 2
Real Time Systems

G. Bosch
Synchronization Cannot Be a Library

S. Li et al.
Applicability of RT Schedulability Analysis
on a Software Radio Protocol

Industrial/Sponsor Presentation

5:30 PM–7:00 PM Break

7:00 PM–10:00 PM
Workshops /
Birds-of-a-Feather Sessions

THURSDAY
Designing and
Implementing Languages

9:00 AM–10:30 AM
Announcements
Best Paper and Student Paper Awards

Jeff Boleng, HILT 2012 Program Co-Chair
Keynote Address

Guy L. Steele, Jr., Oracle Labs
Programming Language Life Cycles

10:30 AM–11:00 AM Break

11:00 AM–1:00 PM
Compiler Certification Issues

D. Eilers and T. Koskinen
Adapting ACATS for Use with Run-Time
Checks Suppressed

Panel on Compiler Certification
L. Berringer (CompCert), R. Brukardt
(Ada), T. Plum (C, C++, Java)

Announcements
(Ada-Europe 2013, SIGAda 2013)

Closing Remarks and
Conference Adjournment

To register online, and for more information and updates, visit

www.sigada.org/conf/hilt2012

PRE-CONFERENCE TUTORIALS / December 2–3

SUNDAY
Pre-Conference Tutorials

SF1— Full Day / 9:00 AM–5:30 PM
Bo I. Sandén /
Colorado Technical University
Design of Multitask Software:
The Entity-Life Modeling Approach

SA1—Morning / 9:00 AM–12:30 PM
Jason Belt, Patrice Chalin, John Hatcliff,
and Robby / Kansas State University
Leading-Edge Ada Verification
Technologies: Highly Automated Ada
Contract Checking Using Bakar Kiasan

SA2—Morning / 9:00 AM–12:30 PM
Ed Colbert / Absolute Software
Ada 2012 Contracts and Aspects

SP1—Afternoon / 2:00 PM–5:30 PM
Johannes Känig / AdaCore
Leading-Edge Ada Verification
Technologies: Combining Testing
and Verification with GNATTest and
GNATProve — The Hi-Lite Project

SP2—Afternoon / 2:00 PM–5:30 PM
Ed Colbert / Absolute Software
Object-Oriented Programming with
Ada 2005 and 2012

MONDAY
Pre-Conference Tutorials

MF1—Full Day / 9:00 AM–5:30 PM
Nancy Leveson, Cody Fleming,
and John Thomas /
Massachusetts Institute of Technology
Safety of Embedded Software

MA1—Morning / 9:00 AM–12:30 PM
K. Rustan M. Leino / Microsoft Research
Developing Verified Programs
with Dafny

MA2—Morning / 9:00 AM–12:30 PM
Ricky E. Sward / The MITRE Corporation
Jeff Boleng /
Software Engineering Institute
Service-Oriented Architecture (SOA)
Concepts and Implementations

MP1 —Afternoon / 2:00 PM–5:30 PM
Tucker Taft / AdaCore
Multicore Programming using
Divide-and-Conquer and Work Stealing

MP2—Afternoon / 2:00 PM–5:30 PM
Kevin Nilsen / Atego
Understanding Dynamic Memory
Management in Safety Critical Java

172 Forthcoming Events

Volume 33, Number 3, September 2012 Ada User Journal

16TH INTERNATIONAL REAL-TIME ADA WORKSHOP

(IRTAW 2013)

17-19 April 2013 – Kings Manor, York, England

http://www.cs.york.ac.uk/~andy/IRTAW2013/

CALL FOR PAPERS

Since the late Eighties the International Real-Time Ada Workshop series

has provided a forum for identifying issues with real-time system support in
Ada and for exploring possible approaches and solutions, and has attracted
participation from key members of the research, user, and implementer
communities worldwide. Recent IRTAW meetings have significantly
contributed to the Ada 2005 and Ada 2012 standards, especially with respect to
the tasking features, the real-time and high-integrity systems annexes, and the
standardization of the Ravenscar profile..

In keeping with this tradition, the goals of IRTAW-16 will be to:

 review the current status of the Ada 2012 Issues that are related with
the support of real-time systems;

 examine experiences in using Ada for the development of real-time
systems and applications, especially – but not exclusively – those using concrete implementation of the new Ada
2012 real-time features;

 report on or illustrate implementation approaches for the real-time features of Ada 2012;
 consider the added value of developing other real-time Ada profiles in addition to the Ravenscar profile;
 examine the implications to Ada of the growing use of multiprocessors in the development of real-time systems,

particularly with regard to predictability, robustness, and other extra-functional concerns;
 examine and develop paradigms for using Ada for real-time distributed systems, with special emphasis on

robustness as well as hard, flexible and application-defined scheduling;
 consider the definition of specific patterns and libraries for real-time systems development in Ada;
 identify how Ada relates to the certification of safety-critical and/or security-critical real-time systems;
 examine the status of the Real-Time Specification for Java and other languages for real-time systems development,

and consider user experience with current implementations and with issues of interoperability with Ada in embedded
real-time systems;

 consider the lessons learned from industrial experience with Ada and the Ravenscar Profile in actual real-time
projects;

 consider the language vulnerabilities of the Ravenscar and full language definitions..

Participation at IRTAW-16 is by invitation following the submission of a position paper addressing one or more of the
above topics or related real-time Ada issues. Alternatively, anyone wishing to receive an invitation, but for one reason or
another is unable to produce a position paper, may send in a one-page position statement indicating their interests. Priority
will, however, be given to those submitting papers.

Submission requirements

Position papers should not exceed ten pages in typical IEEE conference layout, excluding code inserts. All accepted
papers will appear, in their final form, in the Workshop Proceedings, which will be published as a special issue of Ada
Letters (ACM Press). Selected papers will also appear in the Ada User Journal.

Please submit position papers, in PDF format, to the Program Chair by e-mail: alan.burns@york.ac.uk

Important Dates

Receipt of Position Paper: 1 February 2013
Notification of Acceptance: 1 March 2013

Final Copy of Paper: 1 April 2013
Workshop Date: 17-19 April 2013

Forthcoming Events 173

Ada User Journal Volume 33, Number 3, September 2012

Call for Papers

18th International Conference on

Reliable Software Technologies

Ada‐Europe 2013

10‐14 June 2013, Berlin, Germany

http://www.ada‐europe.org/conference2013

Special Interest
Group Ada of
theGerman
Informatics
Society

Conference and Program
 Co‐Chairs

Hubert B. Keller
Karlsruhe Institute of Technology
hubert.keller@kit.edu

Erhard Plödereder
University of Stuttgart
ploedere@iste.uni-stuttgart.de

Tutorial Chair

Jürgen Mottok
Regensburg University of Applied
Sciences
Juergen.Mottok@hs‐
regensburg.de

Industrial Chair

Jørgen Bundgaard
Ada in Denmark
jb@ada‐dk.org

Exhibition Chair

Peter Dencker
ETAS GmbH
peter.dencker@etas.com

Publicity Chair

Dirk Craeynest
Ada‐Belgium & KU Leuven
Dirk.Craeynest@cs.kuleuven.be

Local Chair

Raúl Rojas
FU Berlin
Raul.Rojas@fu‐berlin.de

Local Organizer

Christine Harms
christine.harms@ccha.de

In cooperation (requests

pending) with
ACM SIGAda, SIGBED, SIGPLAN

General Information
The 18th International Conference on Reliable Software Technologies – Ada‐Europe 2013 will
take place in Berlin, Germany. Following its traditional style, the conference will span a full
week, including, from Tuesday to Thursday, three days of parallel scientific, technical and
industrial sessions, along with parallel tutorials and workshops on Monday and Friday.

Schedule

Topics
The conference has successfully established itself as an international forum for providers,
practitioners and researchers into reliable software technologies. The conference
presentations will illustrate current work in the theory and practice of the design,
development and maintenance of long‐lived, high‐quality software systems for a variety of
application domains. The program will allow ample time for keynotes, Q&A sessions, panel
discussions and social events. Participants will include practitioners and researchers
representing industry, academia and government organizations active in the promotion and
development of reliable software technologies.

To mark the completion of the Ada 2012 standard revision process, contributions are sought
that discuss experiences with the revised language.

Topics of interest to this edition of the conference include but are not limited to:

 Multicore Programming: Reliable Parallel Software, Scheduling on Multi‐Core Systems,

Compositional Parallelism Models, Performance Modelling, Deterministic Debugging.

 Real‐Time and Embedded Systems: Real‐Time Software, Architecture Modelling, HW/SW Co‐

Design, Reliability and Performance Analysis.
 Theory and Practice of High‐Integrity Systems: Distribution, Fault Tolerance, Security,

Reliability, Trust and Safety, Languages Vulnerabilities.
 Software Architectures: Design Patterns, Frameworks, Architecture‐Centered Development,

Component and Class Libraries, Component‐based Design and Development.
 Methods and Techniques for Software Development and Maintenance: Requirements

Engineering, Object‐Oriented Technologies, Model‐driven Architecture and Engineering, Formal
Methods, Re‐engineering and Reverse Engineering, Reuse, Software Management Issues.

 Enabling Technologies: Compilers, Support Tools (Analysis, Code/Document Generation,

Profiling), Run‐time Systems, Distributed Systems, Ada and other Languagesfor Reliable Systems.
 Software Quality: Quality Management and Assurance, Risk Analysis, Program Analysis,

Verification, Validation, Testing of Software Systems.
 Mainstream and Emerging Applications: Manufacturing, Robotics, Avionics, Space, Health

Care, Transportation, Energy, Games and Serious Games, etc.
 Experience Reports in Reliable System Development: Case Studies and Comparative

Assessments, Management Approaches, Qualitative and Quantitative Metrics.
 Experiences with Ada and its Future: New Language Features, Implementation and Use

Issues; Positioning in the Market and in Education; where should Ada stand in the Software
Engineering Curriculum; Lessons Learned on Ada Education and Training Activities with bearing on
any of the conference topics.

3 December 2012 Submission of regular papers, tutorial and workshop proposals
14 January 2013 Submission of industrial presentation proposals

11 February 2013 Notification of acceptance to all authors
10 March 2013 Camera‐ready version of regular papers required
11 May 2013 Industrial presentations, tutorial and workshop material required

174 Forthcoming Events

Volume 33, Number 3, September 2012 Ada User Journal

Program Committee
Ted Baker, US National Science

Foundation, USA
Johann Blieberger, Technische

Universität Wien, Austria
Bernd Burgstaller, Yonsei University,

Korea
Alan Burns, University of York, UK
Rod Chapman, Altran Praxis Ltd, UK
Dirk Craeynest, Ada-Belgium&

KU Leuven, Belgium
Juan A. de la Puente, Universidad

Politécnica de Madrid, Spain
Franco Gasperoni, AdaCore, France
Michael González Harbour, Universidad

de Cantabria, Spain
Xavier Grave, Centre National de la

Recherche, France
Christoph Grein, Ada Germany,

Germany
J. Javier Gutiérrez, Universidad de

Cantabria, Spain
Peter Hermann, Universität Stuttgart,

Germany
Jérôme Hugues, ISAE Toulouse, France
Pascal Leroy, Google, Switzerland
Albert Llemosí, Universitat de les

IllesBalears, Spain
Kristina Lundqvist, Mälardalen

University, Sweden
Franco Mazzanti, ISTI-CNR Pisa, Italy
John McCormick, University of Northern

Iowa, USA
Stephen Michell, Maurya Software,

Canada
Luís Miguel Pinho, CISTER Research

Centre/ISEP, Portugal
Jürgen Mottok, Regensburg University of

Applied Sciences, Germany
Manfred Nagl, RWTH Aachen

University, Germany
Laurent Pautet, Telecom ParisTech,

France
Jorge Real, UniversitatPolitécnica de

València, Spain
Jean-Pierre Rosen, Adalog, France
José Ruiz, AdaCore, France
Ed Schonberg, AdaCore, USA
Tucker Taft, AdaCore, USA
Theodor Tempelmeier, Univ. of Applied

Sciences Rosenheim, Germany
Elena Troubitsyna, Åbo Akademi

University, Finland
Tullio Vardanega, Università di Padova,

Italy
Juan Zamorano, Universidad Politécnica

de Madrid, Spain

Indutrial Committee
JørgenBundgaard, Rambøll Danmark,

Denmark
Jacob Sparre Andersen, JSA, Denmark
Jamie Ayre, AdaCore, France
Ian Broster, Rapita Systems, UK
Rod Chapman, Altran Praxis Ltd, UK
Dirk Craeynest, Ada-Belgium&

KU Leuven, Belgium
Michael Friess, AdaCore, France
Ismael Lafoz, Airbus Military, Spain
Ahlan Marriott, White-Elephant GmbH,

Switzerland
Steen Ulrik Palm, Terma, Denmark
Paolo Panaroni, Intecs, Italy
Paul Parkinson, Wind River, UK
Ana Isabel Rodríguez, GMV, Spain
Jean-Pierre Rosen, Adalog, France
AlokSrivastava, TASC Inc, USA
Claus Stellwag, Elektrobit AG, Germany
Jean-Loup Terraillon, European Space

Agency, The Netherlands
Rod White, MBDA, UK

Call for Regular Papers

Authors of regular papers which are to undergo peer review for acceptance are invited to submit
original contributions. Paper submissions shall be in English, complete and not exceeding 14
LNCS‐style pages in length. Authors should submit their work via the EasyChair conference system
(http://www.easychair.org/conferences/?conf=ae13). The format for submission is solely PDF. For
any remaining questions, please contact aProgram Co‐Chair.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS)
series by Springer, and will be available at the start of the conference. The authors of accepted
regular papers shall prepare camera‐ready submissions in full conformance with the LNCS style,
not exceeding 14 pages and strictly by March 10, 2013. For format and style guidelines authors
should refer to the following URL: http://www.springer.de/comp/lncs/authors.html. Failure to
comply and to register for the conference by that date will prevent the paper from appearing in
the proceedings.

The conference is ranked class A in the CORE ranking, is among the top quarter of CiteSeerX
Venue Impact Factor, and listed in DBLP, SCOPUS and the Web of Science Conference Proceedings
Citation index, among others.

Awards

Ada‐Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Industrial Presentations

The conference also seeks industrial presentations which deliver value and insight, but may not fit
the selection process for regular papers. Authors of industrial presentations are invited to submit
an overview (at least 1 full page in length) of the proposedpresentation by January 14, 2013, via
the EasyChair conference system (http://www.easychair.org/conferences/?conf=ae13).The
Industrial Committee will review the proposals and make the selection. The authors of selected
presentations shall prepare a final short abstract and submit it by May 13, 2013, aiming at a 20‐
minute talk. The authors of accepted presentations will be invited to submit corresponding
articles for publication in the Ada User Journal, which will host the proceedings of the Industrial
Program of the Conference. For any further information please contact the Industrial Chair
directly.

Call for Tutorials

Tutorials should address subjects that fall within the scope of the conference and may be
proposed as either half‐ or full‐day events. Proposals should include a title, an abstract, a
description of the topic, a detailed outline of the presentation, a description of the presenter's
lecturing expertise in general and with the proposed topic in particular, the proposed duration
(half day or full day), the intended level of the tutorial (introductory, intermediate, or advanced),
the recommended audience experience and background, and a statement of the reasons for
attending. Proposals should be submitted by e‐mail to the Tutorial Chair. The authors of accepted
full‐day tutorials will receive a complimentary conference registration as well as a fee for every
paying participant in excess of 5; for half‐day tutorials, these benefits will be accordingly halved.
The Ada User Journal will offer space for the publication of summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be
submitted for half‐ or full‐day events, to be scheduled at either end of the conference week.
Workshop proposals should be submitted to aConference Co‐Chair. The workshop organizer shall
also commit to preparing proceedings for timely publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the three days of the main conference. Vendors and
providers of software products and services should contact aConference Co‐Chairfor information
and for allowing suitable planning of the exhibition space and time.

Grant for Reduced Student Fees

A limited number of sponsored grants for reduced fees is expected to be available for students
who would like to attend the conference or tutorials. Contact a Conference Co‐Chair for details.

Press Release 175

Ada User Journal Volume 33, Number 3, September 2012

FOR IMMEDIATE RELEASE

Ada-Europe Announces First “Ada Way” Award Winners and “Try and
Beat Me” Challenge

Brussels, Belgium (July 30, 2012) – Ada-Europe, www.ada-europe.org, the
international organization that promotes the knowledge and use of the Ada
programming language in European academia, research and industry, launched "The
Ada Way" annual student programming contest in September 2010. The first challenge
was to build a software simulator of a football (soccer) match. The submitted code had
to include a software core implementing the logic of the simulation, and read-write
graphical panels for interactive team management.

The evaluation committee chose one of the submissions made until April 2012, which
at the recent Ada-Europe 2012 conference in Stockholm was proclaimed the reference
implementation. The winning student team, formed by Ricardo Aguirre Reyes, Andrea
Graziano, Marco Teoli, and Alberto Zuccato, received a laminated Ada Way Award
donated by Ada-Europe to commend the outstanding quality of their submission.

In evaluating the authors’ submission the evaluation committee reported: “This
implementation of the Ada Way Soccer Simulation reveals extraordinary care and
engineering skill, and represents a working, scalable, well-documented, and well-
structured solution. From reading the technical documentation, it is clear that the
development team faced many challenges, and in every case determined an
appropriate solution through a combination of thoughtful analysis, experimentation, and
clever design.” The story of their implementation will be told in a forthcoming issue of
the Ada User Journal, the quarterly magazine of Ada-Europe. In due course, the
winning team will receive all elements of the prize attached to their fine achievement.

Today, Ada-Europe is pleased to announce that the full source of the reference
implementation is posted on the Ada Way page, www.ada-europe.org/AdaWay, along
with its accompanying technical specification, user manual and build instructions, a
short demo video clip and an image of the award.

The reference implementation is now proposed for a “Try and Beat Me” open-ended
challenge: any student team willing to take that challenge is invited to make a
submission that attempts to improve over the reference implementation under any of
the evaluation criteria listed on the Ada Way page. On 15 May of every year, any such
new submission will be evaluated and the best one will be awarded a minor prize and
will replace the previous reference submission in the continuation of the try-and-beat-
me challenge.

176 Press Release

Volume 33, Number 3, September 2012 Ada User Journal

The evaluation will be performed by a team of distinguished Ada experts comprised of:
John Barnes (author of the famous Programming in Ada books), S. Tucker Taft (leader
of the Ada 95 language revision), Pascal Leroy (leader of the Ada 2005 language
revision), Ed Schonberg (co-author of the open-source GNAT Ada compiler and
toolset), Joyce Tokar (convenor of the ISO working group on the Ada language
standards), etc.

The winning team will be announced at the Ada-Europe yearly conference subsequent
to the cut-off date at which submissions entered the challenge. The prize for this
challenge includes a framed award, an Ada book of choice, visibility in electronic and
printed media, one free registration and a monetary grant of up to EUR 1000 for the
winning team to use for collective participation at any future Ada-Europe conference of
choice within two calendar years after selection for the prize.

Ada-Europe wants the competition to be fun and instructive. The implementation does
not need to be 100% Ada, but the essence must of course be. Tullio Vardanega,
president of Ada-Europe, stated: “The winning submission must be a reference for
good Ada programming, software design, and innovation.”

For all details, please refer to the official web page of “The Ada Way”, www.ada-
europe.org/AdaWay.

About Ada-Europe

Ada-Europe is the international non-profit organization that promotes the knowledge
and use of the Ada programming language in academia, research and industry in
Europe. Its flagship event is the annual international Ada-Europe conference on
reliable software technologies, a high-quality technical and scientific event that has
been successfully running in the current format for the last 17 years. Ada-Europe has
member organizations all over the continent, in Belgium, Denmark, France, Germany,
Spain, Sweden, and Switzerland, as well as individual members in many other
countries. For more information about Ada-Europe, its charter, activities and sponsors,
please visit its web site.

A PDF version of this press release is available at www.ada-europe.org.

Press contact
Dirk Craeynest, Ada-Europe Vice-President, Dirk.Craeynest@cs.kuleuven.be

178

Volume 33, Number 3, September 2012 Ada User Journal

Rationale for Ada 2012: 4 Tasking and Real-Time
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract

This paper describes various improvements in the
tasking and real-time areas for Ada 2012.

The most important is perhaps the recognition of the
need to provide control over task allocation on
multiprocessor architectures.

There are also various improvements to the
scheduling mechanisms and control of budgets with
regard to interrupts.

An interesting addition to the core language is the
ability to specify restrictions on how a procedure of a
synchronized interface is to be implemented.

Keywords: rationale, Ada 2012.

1 Overview of changes

The WG9 guidance document [1] identifies real-time
systems as an important application area for Ada. In
particular it says that attention should be paid to

 improving the capabilities of Ada on multicore and
multiprocessor architectures.

Ada 2012 does indeed address the issues of multiprocessors
as well as other real-time improvements.

The following Ada Issues cover the relevant changes and
are described in detail in this paper:

 30 Requeue on synchronized interfaces

117 Memory barriers and Volatile objects

166 Yield for non-preemptive dispatching

167 Affinities for programs on multiprocessor platforms

168 Extended suspension objects

169 Group budgets for multiprocessors

170 Monitoring time spent in interrupt handlers

171 Pragma CPU and Ravenscar profile

174 Implement task barriers in Ada

215 Pragma Implemented should be an aspect

278 Set_CPU called during a protected action

These changes can be grouped as follows.

First there are a number of improvements and additions to
the scheduling mechanisms (166, 168, 174). These are in
the Real-Time Systems annex (D).

A number of additions recognise the importance of the
widespread introduction of multiprocessors and provide
mechanisms for associating tasks with particular CPUs or
groups of CPUs known as dispatching domains (167, 171,
278). There is an associated change to group budgets which
were introduced in Ada 2005 (169). These changes also
concern Annex D.

Other changes concerning budgets relate to the time spent
in interrupt handlers (170). In some systems it may be
possible to account for time spent in individual interrupts
whereas in others it might only be possible to account for
time spent in interrupts as a whole. Again this concerns
Annex D.

The definition of Volatile is updated to take account of
multiprocessors (117).

Finally, there are changes to the core language regarding
synchronized interfaces and requeue (30, 215).

2 Scheduling

Ada 83 was remarkably silent about the scheduling of
tasks. It muttered about tasks being implemented on
multiprocessors or using interleaved execution on a single
processor. But it said nothing about how such interleaving
might be achieved. It also indicated that a single Ada task
might be implemented using several actual processors if the
effect would be the same.

Ada 83 introduced the pragma Priority and stated

 if two task with different priorities are both eligible for
execution ... then it cannot be the case that the task with
the lower priority is executing while the task with the
higher priority is not.

The Rationale for Ada 83 says that this rule requires
preemptive scheduling. But it says nothing about what
happens if several tasks have the same priority. It does
however have a dire warning

 Priorities are provided as a tool for indicating relevant
degrees of urgency and on no account should their
manipulation be used as a technique for attempting to
obtain mutual exclusion.

So, apart from the existence of priorities, implementations
were free to use whatever scheduling algorithms they liked
such as Round Robin time slicing or simply running until
blocked.

There was also a bit of a mystery about the delay statement.
On the one hand Ada 83 says

J. G. P. Barnes 179

Ada User Journal Volume 33, Number 3, September 2012

 suspends execution of the task for at least the duration
specified.

The words "at least" caused much confusion. The intent
was simply a reminder that a task might not get the
processor back at the end of the interval because another
task might have become eligible for execution meanwhile.
It did not mean that the implementation could willy-nilly
delay execution for a longer time.

Another mystery surrounded the meaning of

delay 0.0;

Ada 83 did state that delay with a negative value is
equivalent to a delay statement with a zero value. But it did
not say what a delay with a zero value meant. The
Rationale remained mute on the topic as well.

However, a general convention seemed to arise that delay
0.0; indicated that the task was willing to relinquish the
processor and so force a scheduling point.

Ada 95 brought some clarity to the situation in the new
Real-Time Systems annex by introducing the pragma
Task_Dispatching_Policy and the standard argument of
FIFO_Within_Priorities. But the core language did not
clarify the effect of a delay of zero. It does say that a delay
causes a task to be blocked but if the expiration time has
already passed, the task is not blocked. So clearly a
negative delay does not block. However, it still has the note
that a negative delay is equivalent to delay zero so we
could deduce that delay zero does not block and so cannot
force scheduling.

But help is at hand in the Real-Time Systems annex where
it clearly states that even if a delay does not result in
blocking, nevertheless the task goes to the end of the ready
queue for its active priority. But that is only for the
standard policy of FIFO_Within_Priorities. If a malevolent
vendor introduces a curious policy called perhaps
Dodgy_Scheduling then it need not follow this rule.

Ada 2005 added further policies namely

 Non_Preemptive_FIFO_Within_Priorities

 Round_Robin_Within_Priorities

 EDF_Across_Priorities

In the case of Non_Preemptive_FIFO_Within_Priorities a
non-blocking delay also sends the task to the end of the
ready queue for its active priority. However, a non-
blocking delay has absolutely no effect in the case of
Round_Robin_Within_Priorities and EDF_Across_Priorities.

The introduction of non-preemptive dispatching revealed a
shortcoming that is cured in Ada 2012. The problem is that
in such a system there is a need to be able to indicate that a
task is willing to be preempted by a task of a higher priority
but not by one of the same priority. So somehow we need
to say Yield_To_Higher.

Moreover, some felt that it was time to get rid of this
strange habit of writing delay 0.0; to indicate a scheduling

point. Those restricted to the Ravenscar profile, had been
forced to write something really gruesome such as

delay until Ada.Real_Time.Time_First;

Accordingly, the procedure Yield is added to the package
Ada.Dispatching so that it becomes

package Ada.Dispatching is
 pragma Preelaborate(Dispatching);
 procedure Yield;
 Dispatching_Policy_Error: exception;
end Ada.Dispatching;

Calling Yield is exactly equivalent to delay 0.0; and
similarly causes a bounded error if called from within a
protected operation.

There is also a new child package thus

package Ada.Dispatching.Non_Preemptive is
 pragma Preelaborate(Non_Preemptive);
 procedure Yield_To_Higher;
 procedure Yield_To_Same_Or_Higher renames Yield;
end Ada.Dispatching.Non_Preemptive;

Calling Yield_To_Higher provides the additional facility
required for non-preemptive scheduling. Note that, unlike
Yield, it can be called from within a protected operation and
does not cause a bounded error.

The pedantic programmer can call the precisely named
Yield_To_Same_Or_Higher which simply renames Yield in
the parent package.

Incidentally, note that since Yield has a side effect,
Ada.Dispatching has been downgraded to preelaborable
whereas it was pure in Ada 2005.

We now turn to consider an interaction between suspension
objects introduced in Ada 95 and EDF scheduling
introduced in Ada 2005.

Remember that suspension objects are manipulated by the
following package

package Ada.Synchronous_Task_Control is
 type Suspension_Object is limited private;
 procedure Set_True(S: in out Suspension_Object);
 procedure Set_False(S: in out Suspension_Object);
 function Current_State(S: Suspension_Object)
 return Boolean;
 procedure Suspend_Until_True
 (S: in out Suspension_Object);
private
 ...
end Ada.Synchronous_Task_Control;

The state of a suspension object can be set by calls of
Set_True and Set_False. The key feature is that the
procedure Suspend_Until_True enables a task to be
suspended until the suspension object is set true by some
other task. Thus this provides a neat mechanism for
signalling between tasks.

180 Rat ionale for Ada 2012: 4 Tasking and Real-Time

Volume 33, Number 3, September 2012 Ada User Journal

Earliest Deadline First (EDF) scheduling is manipulated by
the following child package of Ada.Dispatching introduced
in Ada 2005 (with use clauses added to save space)

with Ada.Real_Time; with Ada.Task_Identification;
use Ada.Real_Time; use Ada.Task_Identification;
package Ada.Dispatching.EDF is
 subtype Deadline is Ada.Real_Time.Time;
 Default_Deadline: constant Deadline := Time_Last;

 procedure Set_Deadline(D: in Deadline;
 TT: in Task_Id := Current_Task);
 procedure Delay_Until_And_Set_Deadline(
 Delay_Until_Time: in Time;
 Deadline_Offset: in Time_Span);
 function Get_Deadline(T: Task_Id := Current_Task)
 return Deadline;
end Ada.Dispatching.EDF;

The procedure Delay_Until_And_Set_Deadline is the key
feature. It enables a task to be blocked until the time given
by the parameter Delay_Until_Time and sets the deadline so
that it is Deadline_Offset after that.

But what is missing in Ada 2005 is the ability for a
sporadic task triggered by a suspension object to have its
deadline set in a similar manner. This is remedied in Ada
2012 by the addition of the following child package

with Ada.Real_Time;
package Ada.Synchronous_Task_Control.EDF is
 procedure Suspend_Until_True_And_Set_Deadline(
 S: in out Suspension_Object;
 TS: in Ada.Real_Time.Span);
end Ada.Synchronous_Task_Control.EDF;

This enables a task to be blocked until the suspension
object S is set true; it then becomes ready with a deadline
of Ada.Real_Time.Clock + TS.

The other new feature concerning scheduling in Ada 2012
is the addition of a package Ada.Synchronous_Barriers.
This enables many tasks to be blocked and to be released
together.

The rationale for needing this facility is explained in the AI
concerned. As general purpose computing is moving to
parallel architectures and eventually to massively parallel
machines, there is a need to efficiently schedule many tasks
using barrier primitives. The POSIX OS interface provides
a barrier primitive where N tasks wait on a barrier and are
released simultaneously when all are ready to execute.

There are many situations where the release of N tasks is
required to execute an algorithm in parallel. Often the
calculation is relatively small for each task on each
iteration but the number of tasks is relatively high. As an
example consider the solution of partial differential
equations where one task is allocated to each node of a
grid; there might easily be several thousand nodes. Such an
example is outlined in [2]. The cost of linearly scheduling
and releasing them could remove almost all gains made
through parallelization in the first place.

The new package is

package Ada.Synchronous_Barriers is
 pragma Preelaborate(Synchronous_Barriers);

 subtype Barrier_Limit is
 range 1 .. implementation-defined;
 type Synchronous_Barrier
 (Release_Threshold: Barrier_Limit) is
 limited private;
 procedure Wait_For_Release(
 The_Barrier: in out Synchronous_Barrier;
 Notified: out Boolean);
private
 ...
end Ada.Synchronous_Barriers;

The type Synchronous_Barrier has a discriminant whose
value indicates the number of tasks to be waited for. When
an object of the type is declared its internal counter is set to
zero. Thus we might write

SB: Synchronous_Barrier(Release_Threshold => 100);

When a task calls the procedure Wait_For_Release thus

Wait_For_Release(SB, My_Flag);

then the task is blocked and the internal counter in SB is
incremented. If the counter is then equal to the release
threshold for that object (100 in this example), then all the
tasks are released. Just one task will have the parameter
Notified set to true (the mechanism for selecting the chosen
task is not defined). This specially chosen task is then
expected to do some work on behalf of all the others.
Typically all the tasks will be of the same task type so the
code of that type might have

Wait_For_Release(SB, My_Flag);
if My_Flag then -- Gosh, I am the chosen one
 ... -- do stuff
end if;

Once all the tasks are released, the counter in SB is reset to
zero so that the synchronous barrier can be used again.

Care is needed regarding finalization, aborting tasks and
other awkward activities. For example, if a synchronous
barrier is finalized, then any tasks blocked on it are released
and Program_Error is raised at the point of the call of
Wait_For_Release.

Many embedded real-time programs, such as those
conforming to the Ravenscar profile, run forever. However,
there are soft multitasking programs which are hosted on
systems such as Windows or Linux and these require
closing down in an orderly manner. There are also
programs that have mode changes in which the set of tasks
involved can be changed dramatically. In such situations it
is important that synchronous barriers are finalized neatly.

3 Multiprocessors

In recent years the cost of processors has fallen
dramatically and for many applications it is now more
sensible to use several individual processors rather than one
high performance processor.

J. G. P. Barnes 181

Ada User Journal Volume 33, Number 3, September 2012

Moreover, society has got accustomed to the concept that
computers keep on getting faster. This makes them
applicable to more and more high volume but low quality
applications. But this cannot go on. The finite value of the
velocity of light means that increase in processor speed can
only be achieved by using devices of ever smaller size. But
here we run into problems concerning the nonzero size of
Planck's constant. When devices get very small, quantum
effects cause problems with reliability.

No doubt, in due course, genuine quantum processors will
emerge based perhaps on attributes such as spin. But
meanwhile, the current approach is to use multiprocessors
to gain extra speed.

One special feature of Ada 2012 aimed at helping to use
multiprocessors is the concept of synchronous barriers
which were described above. We now turn to facilities for
generally mapping tasks onto numbers of processors.

The key feature is a new child package of System thus

package System.Multiprocessors is
 pragma Preelaborate(Multiprocessors);

 type CPU_Range is range 0 .. implementation-defined;
 Not_A_Specific_CPU: constant CPU_Range := 0;
 subtype CPU is CPU_Range
 range 1 .. CPU_Range'Last;

 function Number_Of_CPUs return CPU;
end System.Multiprocessors;

Note that this is a child of System rather than a child of
Ada. This is because System is generally used for hardware
related features.

Processors are given a unique positive integer value from
the subtype CPU. This is a subtype of CPU_Range which
also includes zero; zero is reserved to mean not allocated or
unknown and for clarity is the value of the constant
Not_A_Specific_CPU.

The total number of CPUs is determined by calling the
function Number_Of_CPUs. This is a function rather than a
constant because there could be several partitions with a
different number of CPUs on each partition. And moreover,
the compiler might not know the number of CPUs anyway.

Since this is not a Remote Types package, it is not intended
to be used across partitions. It follows that a CPU cannot be
used by more than one partition. The allocation of CPU
numbers to partitions is not defined; each partition could
have a set starting at 1, but they might be numbered in
some other way.

Tasks can be allocated to processors by an aspect
specification. If we write

task My_Task
 with CPU => 10;

then My_Task will be executed by processor number 10. In
the case of a task type then all tasks of that type will be
executed by the given processor. The expression giving the
processor for a task can be dynamic.

Moreover, in the case of a task type, the CPU can be given
by a discriminant. So we can have

task type Slave(N: CPU_Range)
 with CPU => N;

and then we can declare

Tom: Slave(1);
Dick: Slave(2);
Harry: Slave(3);

and Tom, Dick and Harry are then assigned CPUs 1, 2 and 3
respectively. We could also have

Fred: Slave(0);

and Fred could then be executed by any CPU since 0 is
Not_A_Specific_CPU.

The aspect can also be set by a corresponding pragma CPU.
(This is an example of a pragma born obsolescent as
explained in the paper on contracts and aspects.) The aspect
CPU can also be given to the main subprogram in which
case the expression must be static.

Further facilities are provided by the child package
System.Multiprocessors.Dispatching_Domains as shown
below. Again we have added use clauses to save space and
also have often abbreviated Dispatching_Domain to D_D.

with Ada.Real_Time; with Ada.Task_Identification;
use Ada.Real_Time; use Ada.Task_Identification;
package System.Multiprocessors.Dispatching_Domains is
 pragma Preelaborate(Dispatching_Domains);

 Dispatching_Domain_Error: exception;

 type Dispatching_Domain(<>) is limited private;
 System_Dispatching_Domain: constant D_D;

 function Create(First, Last: CPU) return D_D;
 function Get_First_CPU(Domain: D_D) return CPU;
 function Get_Last_CPU(Domain: D_D) return CPU;
 function Get_Dispatching_Domain(
 T: Task_Id := Current_Task) return D_D;

 procedure Assign_Task(
 Domain: in out Dispatching_Domain;
 CPU: in CPU_Range := Not_A_Specific_CPU;
 T: in Task_Id := Current_Task);

 procedure Set_CPU(CPU: in CPU_Range;
 T: in Task_Id := Current_Task);

 function Get_CPU(T: in Task_Id := Current_Task)
 return CPU_Range;

 procedure Delay_Until_And_Set_CPU(
 Delay_Until_Time: in Time;
 CPU: in CPU_Range);
private
 ...
end System.Multiprocessors.Dispatching_Domains;

The idea is that processors are grouped together into
dispatching domains. A task may then be allocated to a

182 Rat ionale for Ada 2012: 4 Tasking and Real-Time

Volume 33, Number 3, September 2012 Ada User Journal

domain and it will be executed on one of the processors of
that domain.

Domains are of the type Dispatching_Domain. This has
unknown discriminants and consequently uninitialized
objects of the type cannot be declared. But such an object
can be initialized by the function Create. So to declare
My_Domain covering processors from 10 to 20 inclusive
we can write

My_Domain: Dispatching_Domain := Create(10, 20);

All CPUs are initially in the System_Dispatching_Domain.
A CPU can only be in one domain. If we attempt to do
something silly such as create overlapping domains by for
example also writing

My_Domain_2: Dispatching_Domain := Create(20, 30);

then Dispatching_Domain_Error is raised because in this
case, CPU number 20 has been assigned to both
My_Domain and My_Domain_2.

The environment task is always executed on a CPU in the
System_Dispatching_Domain. Clearly we cannot move all
the CPUs from the System_Dispatching_Domain other wise
the environment task would be left high and dry. Again an
attempt to do so would raise Dispatching_Domain_Error.

A very important rule is that Create cannot be called once
the main subprogram is called. Moreover, there is no
operation to remove a CPU from a domain once the domain
has been created. So the general approach is to create all
domains during library package elaboration. This then sets
a fixed arrangement for the program as a whole and we can
then call the main subprogram.

Each partition has its own scheduler and so its own set of
CPUs, dispatching domains and so on.

Tasks can be assigned to a domain in two ways. One way is
to use an aspect

task My_Task
 with Dispatching_Domain => My_Domain;

If we give both the domain and an explicit CPU thus

task My_Task
 with CPU => 10, Dispatching_Domain => My_Domain;

then they must be consistent. That is the CPU given must
be in the domain given. If it is not then task activation fails
(hands up all those readers who thought it was going to
raise Dispatching_Domain_Error). If for some reason we
write

task My_Task
 with CPU => 0, Dispatching_Domain => My_Domain;

then no harm is done. Remember that there is not a CPU
with number zero but zero simply indicates
Not_A_Specific_CPU. In such a case it would be better to
write

task My_Task
 with CPU => Not_A_Specific_CPU,
 Dispatching_Domain => My_Domain;

The other way to assign a task to a domain is by calling the
procedure Assign_Task. Thus the above examples could be
written as

Assign_Task(My_Domain, 10, My_Task'Identity);

giving both domain and CPU, and

Assign_Task(My_Domain, T => My_Task'Identity);

which uses the default value Not_A_Specific_CPU for the
CPU.

Similarly, we can assign a CPU to a task by

Set_CPU(A_CPU, My_Task'Identity);

Various checks are necessary. If the task has been assigned
to a domain there is a check to ensure that the new CPU
value is in that domain. If this check fails then
Dispatching_Domain_Error is raised. Of course, if the new
CPU value is zero, that is Not_A_Specific_CPU then it
simply means that the task can then be executed on any
CPU in the domain.

To summarize the various possibilities, a task can be
assigned a domain and possibly a specific CPU in that
domain. If no specific CPU is given then the scheduling
algorithm is free to use any CPU in the domain for that
task.

If a task is not assigned to a specific domain then it will
execute in the domain of its activating task. In the case of a
library task the activating task is the environment task and
since this executes in the System_Dispatching_Domain, this
will be the domain of the library task.

The domain and any specific CPU assigned to a task can be
set at any time by calls of Assign_Task and Set_CPU. But
note carefully that once a task is assigned to a domain other
than the system dispatching domain then it cannot be
assigned to a different domain. But the CPU within a
domain can be changed at any time; from one specific
value to another specific value or maybe to zero indicating
no specific CPU.

It is also possible to change CPU but for the change to be
delayed. Thus we might write

Delay_Until_And_Set_CPU(
 Delay_Until_Time => Sometime,
 CPU => A_CPU);

Recall we also have Delay_Until_And_Set_Deadline in
Ada.Dispatching.EDF mentioned earlier.

Note that calls of Set_CPU and Assign_Task are defined to
be task dispatching points. However, if the task is within a
protected operation then the change is deferred until the
next task dispatching point for the task concerned. If the
task is the current task then the effect is immediate unless it
is within a protected operation in which case it is deferred
as just mentioned. Finally, if we pointlessly assign a task to
the system dispatching domain when it is already in that
domain, then nothing happens (it is not a dispatching
point).

J. G. P. Barnes 183

Ada User Journal Volume 33, Number 3, September 2012

There are various functions for interrogating the situation
regarding domains. Given a domain we can find its range
of CPU values by calling the functions Get_First_CPU and
Get_Last_CPU. Given a task we can find its domain and
CPU by calling Get_Dispatching_Domain and Get_CPU. If
a task is not assigned a specific CPU then Get_CPU
naturally returns Not_A_Specific_CPU.

In order to accommodate interrupt handling the package
Ada.Interrupts is slightly modified and now includes the
following function

function Get_CPU(Interrupt: Interrupt_Id)
 return Systems.Multiprocessors.CPU_Range;

This function returns the CPU on which the handler for the
given interrupt is executed. Again the returned value might
be Not_A_Specific_CPU.

The Ravenscar profile is now defined to be permissible
with multiprocessors. However, there is a restriction that
tasks may not change CPU. Accordingly the definition of
the profile now includes the following restriction

No_Dependence =>
 System.Multiprocessors.Dispatching_Domains

In order to clarify the use of multiprocessors with group
budgets the package Ada.Execution_Time.Group_Budgets
introduced in Ada 2005 is slightly modified. The Ada 2005
version is

with System;
package Ada.Execution_Time.Group_Budgets is

 type Group_Budget is tagged limited private;

...type Group_Budget_Handler is access
 protected procedure (GB: in out Group_Budget);

... ... -- and so on
private
 ...
end Ada.Execution_Time.Group_Budgets;

However, in Ada 2012 the type Group_Budget has a
discriminant giving the CPU thus

type Group_Budget(
 CPU: System.Multiprocessors.CPU :=
 System.Multiprocessors.CPU'First)
 is tagged limited private;

This means that a group budget only applies to a single
processor. If a task in a group is executed on another
processor then the budget is not consumed. Note that the
default value for CPU is CPU'First which is always 1.

4 Interrupt timers and budgets

It will be recalled that Ada 2005 introduced three packages
for monitoring the CPU time used by tasks. They are a root
package Ada.Execution_Time plus two child packages thus

Ada.Execution_Time – this is the root package and enables
the monitoring of execution time of individual tasks.

Ada.Execution_Time.Timers – this provides facilities for
defining and enabling timers and for establishing a
handler which is called by the run time system when the
execution time of the task reaches a given value.

Ada.Execution_Time.Group_Budgets – this enables several
tasks to share a budget and provides means whereby
action can be taken when the budget expires.

The execution time of a task, or CPU time, is the time spent
by the system executing the task and services on its behalf.
CPU times are represented by the private type CPU_Time
declared in the root package Ada.Execution_Time.

However, it was left implementation defined in Ada 2005
as to how the time spent in interrupts was to be accounted.
The Ada 2005 RM says

 It is implementation defined which task, if any, is
charged the execution time that is consumed by interrupt
handlers and run-time services on behalf of the system.

As noted in the AI, a common and simple implementation
will charge the time consumed by the interrupt handlers to
the task executing when the interrupt is generated. This is
done under the assumption that the effect of interrupt
handlers on the execution time clocks is negligible since
the interrupt handlers are usually very short pieces of code.
However, in real-time systems that undertake an intensive
use of interrupts, this assumption may not be realistic. For
example, Ada 2005 introduced timed events that can
execute handlers in interrupt context. The facility is
convenient and has low overheads, and therefore
programmers are tempted to put more code into these
handlers.

It is thus considered important to be able to measure time
spent in interrupts and so facilities to do this are added in
Ada 2012.

The root package is extended by the addition of two
Boolean constants, Interrupt_Clocks_Supported and
Separate_Interrupt_Clocks_Supported, and also a function
Clocks_For_Interrupts so in outline it becomes

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Real_Time; use Ada.Real_Time;
package Ada.Execution_Time is

 type CPU_Time is private;

 ...

 function Clock(T: Task_Id := Current_Task)
 return CPU_Time;

 ...

 Interrupt_Clocks_Supported:
 constant Boolean := implementation-defined;
 Separate_Interrupt_Clocks_Supported:
 constant Boolean := implementation-defined;

 function Clocks_For_Interrupts return CPU_Time;

184 Rat ionale for Ada 2012: 4 Tasking and Real-Time

Volume 33, Number 3, September 2012 Ada User Journal

private
 ... -- not specified by the language
end Ada.Execution_Time;

The constant Interrupt_Clocks_Supported indicates whether
the time spent in interrupts is accounted for separately from
the tasks and then Separate_Interrupt_Clocks_Supported
indicates whether the time is accounted for each interrupt
individually.

The new function Clocks_For_Interrupts returns the
CPU_Time used over all interrupts. It is initialized to zero.

Time accounted for in interrupts is not also accounted for in
individual tasks. In other words there is never any double
accounting.

Calling the function Clocks_For_Interrupts if
Interrupt_Clocks_Supported is false raises Program_Error.
Note that the existing function Clock has a parameter giving
the task concerned whereas Clocks_For_Interrupts does not
since it covers all interrupts.

A new child package of Ada.Execution_Time is provided
for monitoring the time spent in individual interrupts. Note
that this package always exists even if the Boolean constant
Separate_Interrupt_Clocks_Supported is false. Its
specification is

package Ada.Execution_Time.Interrupts is
 function Clock(Interrupt: Ada.Interrupts.Interrupt_Id)
 return CPU_Time;
 function Supported(
 Interrupt: Ada.Interrupts.Interrupt_Id)
 return Boolean;
end Ada.Execution_Time.Interrupts;

The function Supported indicates whether the time for a
particular interrupt is being monitored. If it is then Clock
returns the accumulated CPU_Time spent in that interrupt
handler (otherwise it returns zero). However, if the overall
constant Separate_Interrupt_Clocks_Supported is false then
calling this function Clock for any particular interrupt raises
Program_Error.

The package Ada.Execution_Time.Timers is exactly the
same in Ada 2012. However, as mentioned earlier, the
package Ada.Execution_Time.Group_Budgets is now
defined to work on a single processor and the type
Group_Budget is modified to include a discriminant giving
the CPU concerned.

5 Volatile

This is a curious topic and created much debate. For the
collector of statistics the real part of the AI is less than two
pages but the appendix has nearly twenty pages of chatter!

The problem is all about sharing variables and ensuring that
things happen in the correct order. Moreover, we need to
avoid the overhead of protected objects particularly on
microprocessors where we might be using low level
features such as memory barriers discussed in Section 2
above.

Suppose we have two tasks A and B which access some
shared data perhaps in a nice package Common thus

package Common is
 ...
 Data: Integer;
 pragma Volatile(Data);
 Flag: Boolean;
 pragma Volatile(Flag);
 ...
end Common;

and in task A we write

with Common; use Common;
task A is
 ...
 Data := 42;
 Flag := True;
 ...
end A;

whereas in task B we have

with Common; use Common;
task B is
 Copy: Integer;
begin
 ...
 loop
 exit when Flag; -- spin
 end loop;
 Copy := Data;
 ...
end B;

The idea is that task A assigns some value to Data and then
indicates this to task B by setting Flag to true. Meanwhile,
task B loops checking Flag and when it is found to be true,
then reads the Data.

Does this work in Ada 2005? Hmm. Nearly. There are three
things that need to be ensured. One is that Flag gets
changed in one lump. Another is that the new value of Data
assigned by task A truly is updated when task B reads it.
And the third is that the actions happen sequentially. Well,
we should have applied pragma Atomic to Flag to ensure
the first but since it is of type Boolean we might get away
with it. And note that Atomic implies Volatile anyway. Also
Atomic ensures that the actions are sequential.

So, with the pragma Volatile changed to Atomic for Flag, it
does indeed work in Ada 2005 because Volatile ensures that
read and writes are to memory and so things do happen in
the correct order. However, this is overkill. It is not
necessary that all accesses are to memory; all that matters is
that they happen in the correct order so they could be to
some intermediate cache. Indeed, there might be nested
caches and as hardware evolves it is becoming more
difficult to make general statements about its structure;
hence we can really only make statements about the effect.

The possibility of introducing a new pragma Coherent was
debated for some time. However, it was ultimately

J. G. P. Barnes 185

Ada User Journal Volume 33, Number 3, September 2012

concluded that the definition of Volatile should be
weakened. In Ada 2005 it says

 For a volatile object all reads and updates of the object
as a whole are performed directly to memory.

In Ada 2012 it says

 All tasks of the program (on all processors) that read or
write volatile variables see the same order of updates to
the variables.

Of course, in Ada 2012, we use aspects so the package
Common becomes

package Common is
 ...
 Data: Integer
 with Volatile;
 Flag: Boolean
 with Atomic; -- Atomic implies Volatile
 ...
end Common;

where we have given Atomic for Flag. As mentioned above,
Atomic implies Volatile so it is not necessary to give both.
However, if we do have to give two aspects, it is much
neater that the one aspect specification does this whereas
two distinct pragmas would be necessary.

It is said that this change brings the meaning of volatile into
line with that in C. However, it has also been said that the
definition of volatile in C is unclear.

6 Synchronized interfaces and requeue

Ada 2005 introduced interfaces of various kinds: limited,
nonlimited, synchronized, task, and protected. These form a
hierarchy and in particular task and protected interfaces are
forms of synchronized interfaces. The essence of this was
to integrate the OO and real-time features of Ada. But a
problem was discovered regarding requeue as described in
a paper presented at IRTAW 2007 [3].

Some examples of interfaces will be found in [2] or [4]
where various implementations of the readers and writers
paradigm are explained.

The operations of a synchronized interface are denoted by
subprograms. Thus we might have

package Pkg is
 type Server is synchronized interface;
 procedure Q(S: in out Server; X: in Item) is abstract;
end Pkg;

We can then implement the interface by a task type or by a
protected type. This introduces several different ways of
implementing the operation Q. It can be by an entry, or by a
protected procedure or by a normal procedure. For example
using a task type we might have

package TP1 is
 task type TT1 is new Server with
 -- Q implemented by entry
 entry Q(X: in Item);

 end TT1;
end TP1;

or

package TP2 is
 task type TT2 is new Server with
 -- Q implemented by a normal procedure
 end TT2;
 procedure Q(S: in out TT2; X: in Item);
end TP2;

Similarly using a protected type we might have

package PP1 is
 protected type PT1 is new Server with
 -- Q implemented by entry
 entry Q(X: in Item);
 ...
 end PT1;
end PP1;

or

package PP2 is
 protected type PT2 is new Server with
 -- Q implemented by a protected procedure
 procedure Q(X: in Item);
 ...
 end PT2;
end PP2;

or

package PP3 is
 protected type PT3 is new Server with
 -- Q implemented by a normal procedure
 ...
 end PT3;
 procedure Q(X: In out PT3; X: in Item);
end PP3;

So the interface Server could be implemented in many
different ways. And as usual we could dispatch to any of
the implementations. We could have

Server_Ptr: access Server'Class := ...
...
Server_Ptr.Q(X => An_Item);

and this will dispatch to the implementation of Q
concerned.

So a call of Q could end up as a call of an entry in a task, an
entry in a protected object, a protected procedure in a
protected object, or an ordinary procedure.

Two curious situations arise. One concerns timed calls. We
could write a timed call such as

select
 Server_Ptr.Q(An_Item);
or
 delay Seconds(10);
end select;

186 Rat ionale for Ada 2012: 4 Tasking and Real-Time

Volume 33, Number 3, September 2012 Ada User Journal

and this will always be acceptable. It will dispatch to the
appropriate operation. If it is an entry then it will be a timed
call. But if it is not an entry then no time-out is possible and
so by default the call will always go ahead.

The other curious situation concerns requeue. In this case
there is no obvious default action. It is not possible to
requeue a procedure call since there is no queue on which
to hang it.

The first proposal to do something about this was simply
not to allow requeue at all on interfaces. And indeed this
was the solution adopted in Ada 2005.

However, this is not really acceptable as explained in [3].
The next idea was to raise some exception if it turned out
that the destination was not an entry. But this was
considered unsatisfactory.

So it was concluded that if we do a requeue then it must be
statically checked that it will dispatch to an entry so that the
requeue is possible. The next proposal was that there
should be a pragma Implemented giving requirements on
the operation. Thus we might have

procedure Q(S: in out Server; X: in Item) is abstract;
pragma Implemented(Q, By_Entry);

and the compiler would ensure that all implementations of
the interface Server did indeed implement Q by an entry so
that requeue would always work. The other possible values
for the pragma were By_Protected_Procedure and By_Any.

The world changed when the notion of an aspect was
invented and so after much discussion the final solution is
that we there is now an aspect Synchronization so we write

 procedure Q(S: in out Server; X: in Item) is abstract
 with Synchronization => By_Entry;

and we are now assured that we are permitted to do a
requeue on Q for any implementation of Server. The other
possible values for the aspect Synchronization are
By_Protected_Procedure and Optional.

In summary, if the property is By_Entry then the procedure
must be implemented by an entry, if the property is
By_Protected_Procedure then the procedure must be
implemented by a protected procedure, and if the property
is Optional then it can be implemented by an entry,

procedure or protected procedure. Naturally enough, the
aspect cannot be given for a function.

There are a number of rules regarding consistency. The
aspect Synchronization can be applied to a task interface or
protected interface as well as to a synchronized interface.
However, if it is applied to a task interface then the aspect
cannot be specified as By_Protected_Procedure for obvious
reasons.

If a type or interface is created by inheritance from other
interfaces then any Synchronization properties are also
inherited and must be consistent. Thus if one is By_Entry
then the others must also be By_Entry or Optional.

A final minor improvement mentioned in the Introduction
concerns renaming. Since the days of Ada 83 it has been
possible to rename an entry as a procedure thus

procedure Write(X: in Item) renames Buffer.Put;

where Put is an entry in a task Buffer. But in Ada 83 it was
not possible to do a timed call using Write. This was
corrected in Ada 2005 which allows a timed call on a
renaming.

Similarly, when requeue was introduced in Ada 95, it was
not possible to do a requeue using Write. This anomaly is
corrected in Ada 2012. So now both timed calls and
requeue are permitted using a renaming of an entry.

References

[1] ISO/IEC JTC1/SC22/WG9 N498 (2009) Instructions
to the Ada Rapporteur Group from SC22/WG9 for
Preparation of Amendment 2 to ISO/IEC 8652.

[2] J. Barnes (2006), Programming in Ada 2005, Addison-
Wesley.

[3] A. Burns and A. Wellings (2007), Integrating OOP
and Tasking – the missing requeue, from IRTAW
2007,www.ada-auth.org/ai-files/grab_bag/requeue.pdf.

[4] J. Barnes (2008), Ada 2005 Rationale, LNCS 5020,
Springer-Verlag.

© 2012 John Barnes Informatics

 187

Ada User Journal Volume 33, Number 3, September 2012

What is Language Technology in Our Time
Tullio Vardanega
University of Padova, Italy, tullio.vardanega@math.unipd.it

Abstract

For a language that had its trademark in safety and
robustness, discipline and control, in the last 20
years, Ada has steadily extended its wealth of
features and capabilities to a considerable extent,
yet within the bounds of its original mission.
However, perhaps because the industrial systems
written in Ada are unlike to evolve just to catch up
on new features, the pace of advancement in the Ada
language risks being faster than that of its users.
Traditional education and training are not going to
bridge the gap, because – for reasons that escape
common sense – Ada is often not in the software
engineering curriculum and the industrial
economics leave little room for training. Arguably, it
should be the language to reach out to prospective
users, more than the reverse. But this may need “the
language” to encompass more than a programming
language does in the traditional sense of the classic
compiler-debugger pair. It may be libraries,
patterns, frameworks, tutorials, and many other
elements that one way or another seem to belong in
the general concern of language technology in our
time, and make the fortune of far less solid
languages.

Why this panel

Not a language designer by education, I have had the
good fortune of taking part in the technical and procedural
activities that have given shape to the latest 20 years of
Ada evolution. Not that I had carried out design or
implementation activities myself. The way that work was
carried out made room for one technical lead, and a
number of equally competent experts, who were there to
discuss the wisdom of the language features being
proposed, their impact on backward compatibility, their
complexity in both implementation and use. Luckily in
fact, there was also room for a few other people with
much more vertical skills, who were there to represent
user community needs, requirements and proposals, in the
(often tentative) way of features and semantics. I have
been part of the latter segment of the group and I have
witnessed in awe the skills it takes to shape a
programming language and to direct its evolution steadily
and consistently.

Having a tendency to the philosophical side of things,
over the years I have grown deep in the belief that a
programming language is a view of the world that it aims
to represent (well, I should in fact say, design and
implement rather than represent, but I think you have
caught my drift). Perhaps, when the language sees itself

as general-purpose, then I should replace “is” by
“contains” on account of the possible presence of multiple
“worlds” in that language universe; yet this causes no
fundamental change – I think – to the point that I am
trying to make.

The reader should be advised that when I am saying
language, I am not especially interested in its syntax
(which is of course important in a number of ways, but
not to my argument here), but in what you would call
“expressive power”: what you can say with it, not how
you do it.

Wittgenstein said: “All I know is what I have words for”.
Following that, what the language allows saying exists
and what it can’t (fully or rightly) just doesn’t. This is
why I said that a language is a view of some world:
because it allows you to express your part of that world,
within the large yet finite set of entities that live in the
language ontology, but nothing proper (hence just
nothing) outside of it.

This observation – or claim if you will – is what caused
me to propose this panel. Let me explain you why. If a
programming language is a view of some world, then it
must be that the language designer is the primary owner
of that view and the technology that puts the expressive
power of that language into existence should conform to
that world view and project it toward the user. What do I
mean when I say that language technology should
conform to the world view of the language? I wish to
convey that the language technology should help the
programmer “see” the concepts that one can express,
whether simple or articulate, so that you can use them for
your own purpose, in the way the language design
intended them to.

My question is – actually, has long been – how can this
ever be done by language technology? What must the
language technology include to that end?

As a side digression, you will note a corollary of my
argument so far: if a programming language is what I
have just tried to explain, what is language teaching?
Probably, it should be more a description of the world
entities and the world rules that the language expresses (I
am tempted to call all of this collectively, the world
architecture according to the language) than most it is
taught today, which wanders between mustering syntax
(so that you can speak the language without necessarily
understanding it) and general abstract principles that
perhaps preside over numerous world architectures, but
are not any one particular instance of it.

188 What is Language Technology in Our Time

Volume 33, Number 3, September 2012 Ada User Journal

Of course at the basic level of language technology you
have a compiler and a debugger. You don’t go far without
a compiler, because it obviously is the compiler that
makes the language exist outside of the mind of the
language designer. Of course, novices also need a
debugger to help them make some sense of their errors.
And experts occasionally need debuggers too, though
normally for more sophisticated purposes.

Surely however, the world architecture according to the
language is not presented to the user from the compiler.
Where from then? From the language manual? Perhaps
so, but only a long time ago, when the language view of
the world was small and simple and there was a lesser gap
between the language elements and the world ontology
that they expressed. No single user today would use a
language manual to learn the world view of a language. In
fact, perhaps inevitably, language manuals have
progressively transmogrified into legalistic instruments
intended for developers of the language technology; less
and less, and finally no longer for users. There
undoubtedly is a large gap to fill there. And the question I

am asking is how and by what means this can be filled.
To help answer that question we should study what
factors determine the success of programming languages,
aside from hype and gravitational force of conformism.
One of the answers is surely that language technology in
those cases has taken a large and comprehensive
connotation: it is libraries, patterns, frameworks, tutorials,
and many other immaterial elements that contribute to
proclaiming and divulging the world view of the
language, and draw the user into it, by force of ease,
evidence and intellectual strength.

The purpose of this panel – in my original intent – is to
ask three leading figures, all of whom professionally
confronted with the challenge I am posing, what do they
see language technology in our time to be. I have sought
the opinion of a language designer, of a language
implementer, and of a language educator. I have of course
my own opinion, and I will fiercely voice it in the panel,
but the opinions of front-liners have to be heard first. For
this reason this text just serves as an introduction to the
position statements offered by the panellists.

 189

Ada User Journal Volume 33, Number 3, September 2012

Thoughts on Ada and Language Technology
in Our Time
Franco Gasperoni
AdaCore, gasperoni@adacore.com

It is fascinating to open the second edition of John
Barnes’ book “Programming in Ada”. If you are lucky to
own a copy I encourage you to read the “Foreword” by
Jean Ichbiah, the two prefaces, section 1.1 “History”, and
the last page in the “Finale”. John’s witty style makes the
reading very enjoyable. Upon completing the reading,
almost 20 years after my initial one, I emerged with a
number of thoughts described in the following pages that
could be summarized as follows:

 The first version of Ada (1983) was a language
that was way ahead of its time. Furthermore, Ada
suffered from the association with the US
Department of Defense whose reputation had
been tarnished by the Vietnam War.

 There are, broadly speaking, four target domains
for computing applications: casual programming,
enterprise software, mission-critical systems,
mobile apps for all kinds and shapes. A
programming language cannot be successful in
all of these domains.Ada is designed for mission-
critical industrial systems where it has a strong
track record. In this context we observe the
following challenges for today’s programming
languages:

o Modeling and “qualified” components;

o Security;

o Seamless programming of multi and many-
core machines.

 Ada 2012 and its follow-ons have many assets to
address the above challenges and continue
playing a key role in mission-critical systems of
the 21st century.

 The future of any language lies in the young
generations of programmers. To be vibrant the
Ada experience must be readily available to
digital natives.

 “Programming in Ada” by John Barnes,
2nd Edition, October 1983

Here are some interesting excerpts from John’s book:

From the Foreword by Jean Ichbiah: “Here is a major
contradiction in any design work. On the one hand, one
can only reach an harmonious integration of several
features by immersing oneself into the logic of the existing
parts; it is only in this way that one can achieve a perfect

combination. On the other hand, this perception of
perfection, and the implied acceptance of certain
unconscious assumptions, will prevent further progress.”

From the preface to the first edition: “This book is about
Ada, the new and powerful programming language
originally developed on behalf of the US Department of
Defense, for use in embedded systems. Typical of such
systems are those of process control, missile guidance or
even the sequencing of a dishwasher. […] Although
originally intended for embedded systems, it is a general
purpose language and could, in time, supersede
FORTRAN and even COBOL.”

From Section 1.1 “History” in the “Introduction”: “The
story of Ada goes back to about 1974 when the United
States Department of Defense realized that it was
spending far too much on software. It carried out a
detailed analysis of how its costs were distributed over
the various application areas and discovered that over
half of them were directly attributed to embedded systems.

Further analysis was directed towards the programming
languages in use in the various areas. It was discovered
that COBOL was the universal standard for data
processing and FORTRAN was a similar standard for
scientific and engineering computation. Although these
languages were not modern, the fact that they were
uniformly applied in their respective areas meant that
unnecessary and expensive duplication was avoided.

The situation with regard to embedded systems was
however quite different. The number of languages in use
was enormous. Not only did each of the three Armed
Services have their own favorite high level languages, but
they also used many assembly languages as well.
Moreover, the high level languages had spawned
variants. It seemed that successive contracts had
encouraged the development of special versions aimed at
different applications. The net result was that a lot of
money was being spent on an unnecessary number of
compilers. There were also all the additional costs of
training and maintenance associated with a lack of
standardization.”

Jean Ichbiah

Jean Ichbiah, the principle designer of Ada in the 70s and
early 80s, was French born (1940). Grandson of Greek
and Turkish immigrants, he was a brilliant student who
graduated from elite French colleges. He graduated from
the “École Polythechnique” and the “École des Ponts et

190 Thoughts on Ada and Language Technology in Our Time

Volume 33, Number 3, September 2012 Ada User Journal

Chaussées” one of the best civil engineering schools in
France. During his education he developed a strong sense
for aesthetics: for Ichbiah both form and function were
important (think Eiffel Tower). Moving on from civil
engineering he went to MIT in Boston where Ichbiah did
a thesis on syntactical analysis of programming
languages. Ichbiah’s sense for aesthetics and the equal
importance of form and function are very much present in
Ada and Ada’s form is one of the things that makes Ada
programs so readable years after the fact. On the less
positive side, Ichbiah’s former colleagues point out that
Jean was a “control freak” and a “nano-manager”. As we
will see below, this had an impact on the Ada program
library concept which was fixed by Richard Stallman and
Robert Dewar who are both at the extreme opposite of
“control mania” and “nano-management”.

Ada and the DoD
The US Department of Defense (DoD) was the sponsor of
Ada’s design in the 70s and was behind its adoption in the
80’s. This was both a boon and a handicap. Because of
the cold war era, the DoD had deep pockets.
Unfortunately, because of the Vietnam War which ended
in the mid-70s, the aura of the DoD wasn’t what it used to
be. Add to that the DoD mandate of the 80s to use Ada on
defense contracts and straight out of the cradle Ada was
seen as “un-cool” by the computing undercurrent.

Ada 1.0

Ada 1.0 (also known as Ada 83) was a language that was
way too powerful for its time. Compiling it for an 8 bit
microcontroller was a daunting task and never really
happened until recently when Ada 3.0 (Ada 2005) was
made available on Atmel’s 8-bit AVR.

In the mid-80s Ada was ahead of what compiler and
computer technology could do. This, for instance, lead
Alsys (the company founded by Jean Ichbiah), to pioneer
the use of virtual memory on x86 PCs and to bundle
memory cards with the compiler.

Another way that Ada was ahead of its time is that its
users were dealing with defense-related problems of a
complexity not generally encountered in the industry until
10-15 years later (remember Ronald Regan’s march 23,
1983 speech on the “Strategic Defense Initiative” later
known as Star Wars). Ada’s designers anticipated this
increase in complexity and added mandatory consistency
checks at various levels of the software construction
chain. Unfortunately, in doing this Ada 1.0 broke the
sociology of a fundamental element in collaborative
software development. Unlike its 1970s C predecessor,
Ada 1.0 had a collaboration bottleneck: the order-of-
compilation model and its centralized “program library
file” assumption. This is one of those “unconscious
assumptions” Jean Ichbiah talks about in the Foreword of
John’s 1983 book. From the Ada 1.0 reference manual:

10.4. The Program Library

Compilers are required to enforce the language
rules in the same manner for a program

consisting of several compilation units (and
subunits) as for a program submitted as a single
compilation. Consequently, a library file
containing information on the compilation units
of the program library must be maintained by the
compiler or compiling environment. This
information may include symbol tables and other
information pertaining to the order of previous
compilations.

A normal submission to the compiler consists of
the compilation unit(s) and the library file. The
latter is used for checks and is updated for each
compilation unit successfully compiled.

Today, programming languages foster the same
sociological “gestalt” for collaborative software
development: the sources, nothing-but the sources. Some
readers may not understand what I am talking about as
this is so obvious today. How could we have lived
through a take-your-turn-to-compile-and-if-your-
colleague-recompiles-you-may-have-to-recompile-too?
This started from a noble intention and a critical Ada
insight: type safety (type-checking) must operate on the
overall program, across “compilation units” in Ada’s
parlance. This was completely novel at the time. What
was unfortunate is the approach “à la Colbert1” that was
taken in Ada 1.0. In fact, instead of sticking to a purely
regulatory philosophy as it was subsequently done in Ada
2.0, Ada 1.0 strongly implied an implementation approach
to program-wide type safety. This implied approach was
sociologically broken. This unfortunate oversight was
fixed in the early 90s thanks to the intervention of Richard
Stallman and Robert Dewar. Richard Stallman was
adamant that Ada’s type-safety-across-the-program rule
did not create order of compilation dependencies (a
sociological bottleneck). Robert Dewar, leveraging on the
evolution of computers, found a way to achieve Ada’s
overall type safety rule with a pure source-based model.
Today we can have the cake and eat it too: C’s freedom
and Ada’s type safety.

Apart from this, Ada 1.0 was visionary on the
fundamental properties that a programming language for
industrial systems had to possess. Decade after decade
these properties pay back their dividends to users of Ada.
My favorite property is the ability to communicate to
other humans the key elements of what is being computed
and have the compiler check their consistent use. This

1 Jean-Baptiste Colbert served as the Minister of Finances of France
under King Louis XIV from 1665 to 1683. Colbert is referenced here
because of his doctrine in which the State exerts a strong directive
influence on the economy as opposed to a merely regulatory role. His
doctrine is also known as “Colbertism” or “dirigism”. If you are still
wondering why I mentioned Colbert in the context of the Ada 1.0
centralized program library, consider the following. Jean Ichbiah
graduated from elite French colleges both pure products of
“Colbertism”. The Ada 1.0 centralized program library assumption was
the approach “à la Colbert” towards ensuring that an Ada program was
type safe as a whole.

F. Gasperoni 191

Ada User Journal Volume 33, Number 3, September 2012

property has evolved and strengthened from Ada 1.0
(1983), to Ada 2.0 (1995), to Ada 3.0 (2005), to today’s
Ada 4.0 (2012).

General-Purpose Does Not Mean
Universal

When Ada 1.0 came about the DoD was the biggest
software contractor. Everything had to be programmed.
No spreadsheets. To compute a simple linear regression
we had to do it with pencil and paper and a hand
calculator. The luckier ones had access to statistical
packages on minicomputers or mainframes. Programming
languages were the heart of the matter: they were the only
way to get anything done with a large, bulky, slow,
expensive, unconnected computer. Programming was the
realm of mathematicians, physicists, chemists, engineers.
A programming language, a dumb editor, and a compiler
were all that was available then. No IDEs, no
components, no frameworks.

When “Green” was designed, the attitude towards
developing an embedded application was: let’s do it from
scratch using the best possible language, a language that
would decrease the chance of writing “wrong” code, a
language that would make abstractions clear, a language
that would facilitate the reading, use, and re-use of
software.

From the mid-50s onwards, computer scientists nurtured
the dream that a sound, general-purpose, programming
language would be the key to computing salvation. In the
60s general-purpose did not include embedded systems,
which were just starting to emerge. IBM’s PL/I effort was
focused around IBM’s concerns of the time and did not
have embedded systems in mind. A general-purpose
language targeting embedded systems was needed. In the
wildest of dreams that language could be used from
embedded real-time systems to accounting applications in
the DoD.

Ada substantiated the dream that a general-purpose
programming language could be used universally to
program all computing devices and applications. This idea
strengthened throughout the 80s, 90s, and a portion of this
century. After placing that hope on Ada 1.0, the
community placed its bets on C++ and then Java, hoping
to find the programming language that does it all. This
never happened.

The message of this section is that we cannot expect a
general-purpose programming language, be it Ada, C++,
or Java, to be used universally. The spread and usage of a
language is correlated with the economics and evolution
of the application domain which gave birth to that
language. In this respect some languages such as Ada and
C++ compete because their application domains overlap,
while neither is a serious contender in web-centric
applications.

Because there is no “universal language”, systems are
being written using several idioms and approaches. For
this to be viable, languages should be able to talk to each

other. Ada realized the importance of this in its 2.0 release
and today Ada interfaces well with subsystems written in
other languages. In the end what matters is being a good
play-mate: if you are, everyone wants to play with you.

Raising the Level of Abstraction: Model
It

The myth of a universal programming language is slowly
fading (I wrote universal not general-purpose).
Universality comes at the cost of expressivity. Imagine
doing math, physics, or engineering without mathematical
notation. Imagine having to spell everything out in plain
English. Sure we can do that. English is a general-purpose
(and as close as we can get universal) language. But how
expressive is it to talk math, physics, and engineering?
Likewise, how can a team of scientists and engineers
model a “phenomenon”? What language can the team use
to devise that model? The key is in the meaning of the
word ontology. From Wikipedia:

“In computer science and information science, an
ontology formally represents knowledge as a set of
concepts within a domain, and the relationships between
those concepts. It can be used to reason about the entities
within that domain and may be used to describe the
domain. In theory, an ontology is a “formal, explicit
specification of a shared conceptualization”. An ontology
renders shared vocabulary and taxonomy which models a
domain with the definition of objects and/or concepts and
their properties and relations. Ontologies are the
structural frameworks for organizing information and are
used in … as a form of knowledge representation about
the world or some part of it.”

Conventional programming languages such as
FORTRAN, COBOL, C … have been used to create,
express, maintain and evolve the ontology of the
“phenomenon” that we want to model. To identify and
communicate among humans the patterns of interactions
between the elements of the ontology there has been a
race to design the “best” high-level general-purpose
programming language: Ada, C++, Java …. These
languages have grown out of the Church–Turing
computability thesis. The Church-Turing thesis tells us
that to be processed mechanically a “phenomenon” must
be modeled as computable mathematical functions.
Although accurate, this view can limit the horizon of our
possibilities. In fact, to create a computable model of the
“phenomenon” we may want to use human-
understandable languages that are not computable.

To raise the level of abstraction beyond general-purpose
programming languages we could start from the ontology
of the application domain and model the “phenomenon”
using the language and symbols that are part of the
application domain, i.e. its “natural” ontology. We could
use that ontology to design, communicate, and convince
others and ourselves that our model of the “phenomenon”
is faithful. The last step would be to translate the model
into a language that machines can understand. This last
step could be done by humans, machines themselves, or a

192 Thoughts on Ada and Language Technology in Our Time

Volume 33, Number 3, September 2012 Ada User Journal

mixture of both. Welcome back domain-specific
languages (DSL) also known as modeling languages (and
4GL before that): UML, AADL, Simulink, Modelica …
As a side note, when human intervention is required to go
from the model to the machine the use of a high-level
programming language such as Ada keeps translation and
maintenance costs down.

When the ontology of our “phenomenon” is clearly
defined and well established in the application domain,
DSL are an attractive complement and even a substitute
for general-purpose programming languages. In
application domains without an obvious domain-specific
language to express the ontology, high-level general-
purpose programming languages are the best we have. In
fact, attempts at consensus establishing such ontologies,
which are human artifacts, lead to endless committees
meetings and large and fuzzy standards.

In many cases we need a mixture of domain-specific and
general-purpose programming languages. Note that a
DSL that is mechanically translatable to machine
language is nothing more than a high-level programming
language that does away with generality in favor of
expressivity for the application domain.

As for programming languages, modeling languages
come in many shapes and forms and UML is no more a
Universal Modeling Language than Esperanto is a
universal natural language. Modeling business
interactions and machine flight are fundamentally
different activities and are so at the modeling level.

Given the multi-language nature of large systems today, a
language that plays well with others and recognizes the
existence of other languages (DSL and otherwise) has a
definite advantage. Unsurprisingly, the message of this
section is that in addition to being a good play-mate with
other programming languages, Ada needs to meld well
with DSL for the domains Ada has been designed for:
industrial systems. See http://www.open-
do.org/projects/p/ for a possible approach in this area.

Raising the Level of Abstraction: Brick
by Brick

There is a constant race to raise the level of abstraction. In
the previous section we have looked at DSL as a possible
way to raise the level of abstraction. Another way is brick
by brick. If there are libraries, components, frameworks
with the desired functional and extra-functional (safety,
security …) behavior and properties that can be acquired
cost-effectively we may as well use them. This will
reduce our time to delivery and it will increase the quality
of our apps while allowing us to keep the costs under
control: the programming language here becomes the
cement between the bricks.

Apart from things like standard libraries and containers,
components are domain-specific. We are unlikely to find
high-quality components covering a large spectrum of
application domains that can all be used effortlessly in a
single programming language. There is an interesting

circular dependency (a bootstrap problem if you prefer)
between the application-domain of a component and the
language it is written in. We are back at the generality vs.
universality dilemma.

In today’s systems of systems with many connected
devices, security issues are a growing concern. In addition
to Ada’s orientation towards safety, Ada could play the
role of a glue language for certifiable/provable
components with the desired security properties. Ada 4.0
has certainly made this possible. In this respect it is
fascinating to go back to the “Finale” of John’s 1983
book:

“Indeed, in the imagined future market for software
components it is likely that packages of all sorts of
generalities and performance will be available. We
conclude by imagining a future conversation in our local
software shop.

Customer: Could I have a look at the reader writer
package you have in the window?

Server: Certainly sir. Would you be interested
in this robust version – proof against
abort? Or we have this slick version for
trusty callers. Just arrived this week.

Customer: Well – it’s for a cooperating system so
the new one sounds good. How much is
it?

Server: It’s 250 Eurodollars but as it’s new
there is a special offer with it – a free
copy of this random number generator
and 10% off your next certification.

Customer: Great. It is validated?

Server: All our products conform to the highest
standards sir. The parameter
mechanism conforms to ES98263 and it
has the usual multitasking certificate.

Customer: OK, I’ll take it.

Server: Will you take it as is or shall I
instantiate it for you?

Customer: As it is please. I prefer to do my own
instantiation..”

John and the Ada community had sensed the growing role
that components were to play in the coming decades.
Because large industrial systems is the domain where Ada
made its debut and showed its strengths, significant sets
of component libraries have not emerged from Ada to
date. This state-of-affairs is part of the socio-economics
of the domains Ada has targeted. This is very different
from the status of the Java context where a large set of
business-oriented components and frameworks have
appeared: in the last two decades business apps have
dominated the software and service industry.

Still what are we to do with the “certification” or
“provable properties” aspects of the components John
talks about in his fictional dialog? That is an interesting

F. Gasperoni 193

Ada User Journal Volume 33, Number 3, September 2012

alley where Ada 4.0 (with its assertions, pre/post
conditions, and type invariants) should be leveraged on in
the realm of provable/certifiable components in safety-
critical and security-critical domains (for safety-critical
domains DO-178C has created new opportunities for Ada
4.0 to lower the costs of certification). Efforts are ongoing
in these areas at Kansas State University and other places
such as in the Hi-Lite project (see http://www.open-
do.org/projects/hi-lite/). These efforts have their
foundations in the SPARK language and its vision.

The objective of Hi-Lite is to combine testing and formal
methods to lower the cost of verification. The enabler is
an "executable annotation language", which allows
writing contracts on types and subprograms for unit
testing (because it is executable) and unit proof (because
it has a logic interpretation). Ada 4.0 comes with such an
executable annotation language in the form of type
invariants, pre and post-conditions for subprograms, and a
rich expression language (if-expressions, case-
expressions, quantified-expressions, expression-
functions). Annotations can be written by the user,
inferred by static analysis, or generated with the code
from a model. Being able to apply formal verification to
parts of a program and testing to the rest of the program
will be key to lowering the costs of verification.

The message of this section is that Ada 4.0 (and beyond)
could be used to create certifiable components (general-
purpose and domain-specific: containers, TCP/IP stack
…) for the domains Ada has been designed for: industrial
systems.

Security

Security in mission-critical applications is a growing
concern, and a difficult one. In a safety-critical system
developers have to ensure that software malfunctions lead
either to fail-safe modes or have to show sufficient due
diligence so that chances of catastrophic failure are
reasonably low (the famous ALARP – As Low As
Reasonably Practical - principle). What these developers
fight against is their own mistakes or unforeseen
sequences of events in other software components or the
natural environment with which the software interacts.

In a security-critical application developers are fighting
against other humans of equal and sometimes superior
intelligence that may try to exploit any breach in the
software to take control of the underlying system.
ALARP approaches are no longer sufficient, the challenge
is much greater than in conventional safety-critical
systems: we need to use formal approaches to
demonstrate that the most critical applications are
provably secure in the context of their use.

Multicores and Industrial Systems

CPUs have gone multi-core. Industrial systems are
affected by this trend and will be even more so in this
decade. With all their glory and glitter, today languages
and their programming environments do not ease the task
of writing concurrent applications to take advantage of

multicores: it is both a matter of programming paradigm
and tools. Ada is no different, except that Tucker Taft, the
key architect of Ada 95 and beyond, has recently designed
a programming language, ParaSail, to address the issue of
programming multi-core (see http://parasail-programming
-language.blogspot.com/). A subset of Ada 2012 is a very
natural and sound basis on which to graft the concepts
introduced in ParaSail for seamless programming of multi
and many-cores.

Ada as a Pivot Language in
Requirements-Based Development

An interesting role that Ada 4.0 can play in the context of
safety-critical software is to facilitate collaboration and
communication within a team and lower the cost for the
production of certification artifacts. For more on this read
the Ada Europe 2012 paper: “Source Code as Key
Artifact in Requirements-Based Development: The Case
of Ada 2012” by Comar, Ruiz, and Moy.

Tools and Programming Languages

Suppose I gave you the programming language of your
dreams: The right level of expressiveness and efficient
use of target hardware for your application domain, a
clear and elegant syntax (textual or graphic). Need
anything else? Well of course you do. Some 30 years ago
a text editor and a compiler/interpreter were the only
things you needed. Fast forward to 2012: try teach
programming to young students providing just a text
editor and a compiler, good luck! Leaving aside the
importance of programming environments and libraries, if
you wanted safety 30 years ago, the philosophy was to put
the safety-nets in the language and compilers or run-time
systems were tasked with spotting unwanted behaviors.
Today there is an alternative. Use an un-safe or non-
secure language and use advanced tools (e.g. based on
static analysis) to detect unwanted behaviors in computer
programs. Depending on the application domain this
second approach makes sense.

On our travel from problem to computer-executable
solution it does not matter how we got there. What
matters is how easily we got there and, depending on the
application domain, the quality of the end result. In this
respect the environment that surrounds a given
programming language matters very much, it is part of the
“problem-to-solution travel experience”. As Erhard
Plödereder said at the Ada Europe 2012 conference in
Stockholm:

“Programming Language technology is increasingly
“environmental” … the distinction [between]
programming language and tool responsibilities blur”.

At the same conference José Maria Martinez Rodriguez
added:

“When starting a new software development project you
should take into account all the software development
cycle and how a potential language fits in this cycle. As
well as how the technology around this language helps or

194 Thoughts on Ada and Language Technology in Our Time

Volume 33, Number 3, September 2012 Ada User Journal

assists in supporting the life cycle. For example, having
the chance of generating code from design, a good and
solid support for your language within your favorite
design tool seems desirable. …. This “technology
assistance” gets crucial in verification and validation
since, in the context of complex systems, this task can be
quite time consuming.

It is so important how language technology assists in the
development of the final product, that sometimes it is
easier to choose the language based on the surrounding
technology …”

Ada for Digital Natives

Programming language experts focus on language purity,
elegance, and completeness. What do our young
programmers care about? And who are these
programmers anyway? Is computer science a specialist-
only discipline or is it a skill that most scientists and
engineers need to master much like the ability to speak
English? Today there is a broadening and blurring of
engineering roles. Engineers are required to have a hand
in multiple areas. As a result a programming language for
industrial systems should be attractive to engineers as
well as computer scientists.

How will these generations of new scientists and
engineers learn programming? This decade presents a
fantastic opportunity: web and tablet technologies allow
to easily reach current and future programmers of
industrial systems. To be vibrant the Ada experience must
be readily available to younger generations. These digital
natives are tech-savvy, plugged-in, and require quick and
convenient feedback.

The design complexity of modern programming
languages, be they Ada, C++, or Java, is significant.
John’s 1983 Edition of “Programming in Ada” was 367
pages; John’s “Programing in Ada 2005” is 828 pages.
For C++ it is terrifying: the book on “The C++ Standard
Library: A Tutorial and Reference (2nd Edition)” is 1128
pages, and that is just the standard library. Most
programmers don’t want to be gurus. We have to develop
short, interactive, design-elegant, self-contained, on-line
tutorials that present subsets of Ada in which useful
programs can be written. Not just one tutorial. A family of
tutorials depending on the concepts each tutorial wants to
convey.

Regarding the approach to tutorials and teaching (on-line
and off-line), I recommend the reading of “Programming
goes back to School” in the May 2012 edition of the
Communications of the ACM. The article promotes a
“project-first” approach instead of the more traditional
“principles-first” methodology. This pedagogical style
allows students to learn principles just-in-time which
proves to be very beneficial from the viewpoint of
captivating the audience (and I believe speed of learning

for many). The following diagram from the article is
particularly telling. The explanation of the diagram
quoted from Webb, Repenning, and Koh is fascinating.
The quote is an excerpt of their article: “Toward an
emergent theory of broadening participation in computer
science education” published in the ACM Special Interest
Group on Computer Science Education Conference in
2012 (SIGCSE 2012).

The fundamental idea of the Project-first approach can be
illustrated through what we call the Zones of Proximal
Flow (ZPF) […]. Flow is an ideal condition for learning
[…]. The ZPD can be understood as an orchestration of
participation in a rich set of carefully designed practices
where forms of assistance and tool use are strategically
employed. In the Zones of Proximal Flow diagram in
Figure 1, the horizontal axis represents students’
computational thinking (CT) skills and the vertical axis
represents the level of the design challenge that would be
intrinsic to a certain game or STEM simulation [STEM =
science, technology, engineering, and mathematics]. […]
As student acquisition of skills advances in response to
the challenges, an ideal path in the flow region would
progress from the origin to the upper right. Within this
diagram, pedagogical approaches can now be described
as instructional trajectories connecting a skill/challenge
starting point (A) with destination point (B) in the Zones
of Proximal Flow diagram. In many traditional CS
education models, a principles-first approach would
introduce students to a number of concepts such as AI
search algorithms that may, or may not, be relevant for
future projects. At some later stage, students receive the
challenge of making a project such as a Pacman-like
game.

The acquisition of skills without the context of concrete
challenges is not a bad pedagogical model, especially at
the undergraduate CS level, but it runs the risk of seeming
irrelevant, hence boring, for a broader audience of
younger students if it does not go hand-in-hand with
project based approaches. This assertion is consistent
with the Flow model and with our own observations in
classrooms. Instead of decoupling the acquisition of
principles and the applications of these principles to a
project, the project-first approach combines just-in-time
CT skill acquisition with application to produce a
tangible artifact.

In a nutshell: learn by doing, by example, by trial, by cut-
paste-modify. Engage students in an exciting and feasible
project. “I hear and I forget. I see and I remember. I do
and I understand”, Confucius.

In the end scientists and engineers want to build things.
Can we craft tutorials where students experience the
exhilarating feeling of building a system in Ada?
Simulations on tablets? Lego Mindstorms, train, UAV, or
robotics projects?

F. Gasperoni 195

Ada User Journal Volume 33, Number 3, September 2012

If we look at this issue from a different angle, it is
important that we help universities increase their focus on
software development for industrial systems. In these
contexts the use of Ada, as one of the tools in the Swiss
army knife of the engineer, is appealing and is to be
encouraged by providing to educators ready-made chunks
of self-contained and student-engaging Ada training
material.

The message of this section is that we should teach Ada
providing a level of immediate engineering feedback and
gratification. For instance, why bug students with
constraints that do not have a pedagogical purpose? Why
don’t we allow the direct execution of Ada programs
asking the compiler to automatically fix silly mistakes
like missing semicolons.

The entry point is the initial experience. If that experience
is gratifying, if the student has learnt and built something
by doing, Ada’s usage in industrial systems will broaden
as new generations of professionals enter the workforce.

Concluding Thoughts

Ada has been created for industrial systems embedded in
an airplane, train, satellite, helicopter, UAV, subway,
automobile, radar, medical device, … for industrial
systems controlling air traffic, power plants, railways, …
as well as simulators for all of the above. Ada has been
very successful in these areas. Ada’s strengths have
shown that its use in other domains can bring significant
advantages and rewards.

Today the software community is looking at the “Cloud”.
The fact that these new celestial systems have taken over
the financial and socio-dynamics of the computing
industry and use languages and technologies that are
intertwined with the history, evolution, and rise of the
Web is not contradictory with the strengths and use of
Ada for the domains Ada has been designed for: earthly
industrial systems where software matters.

To keep playing an important role in future industrial
systems, Ada’s level of abstraction in describing these
systems, should continue to rise, while attracting new
generations of users. For this to happen, Ada language
designers and tool providers should continue their cross-
fertilization journey towards model-based and formal
methods approaches integrating multi and many-cores in
the equation. The Ada community must develop exciting
Ada tutorials and should help teachers develop engaging
courses on software development for industrial systems.

Thank You

Many thanks to Ed Schonberg, Ben Brosgol, Yannick
Moy, Nicolas Setton, Ed Falis, Greg Gicca, Tucker Taft,
Eric Botcazou for their feedback on initial versions of this
paper. Many thanks to Erhard Plödereder, Bertrand
Meyer, and José María Martínez Rodríguez for very
interesting discussions at the panel of the Ada Europe
conference in Stockholm on June 12, 2012 . Special
thanks to John Barnes who decade after decade has
helped the Ada community with his prolific and thought-
provoking writings on Ada and SPARK.

Figure 1: Zones of Proximal Flow

196

Volume 33, Number 3, September 2012 Ada User Journal

Panel discussion: What is language technology
in our time?
Erhard Plödereder
University of Stuttgart, Germany

Whenever I am asked about the direction of language
technology, I fetch my crystal balls, dust them off, and try
to decipher the visions that they provide. Yes, plural,
because I have two crystal balls. One has a rosy hue and it
shows me the future as I wish it to be. What I see in it are
languages that meet three needs: the creation of reliable
software, as we increasingly entrust our life, money and
privacy to computers, code that can be parallelized easily,
as many-cores are the way of the future, and code that can
be quickly produced and maintained, as this is a driving
force in the producing industry. The first part spells
“Ada” to me but only after a long stay in a weight-loss
and rejuvenation clinic, or more likely one of its spiritual
descendants. The middle part spells “functional” to me,
but I take any model that tightly controls and minimizes
mutable global state, and promises the absence of
unintended race conditions in the code. And the last part
spells “program generation” and “language environment”.
Finally, 30 years after some of us have started pushing the
notion of supporting software production by environments
that are substantially more encompassing than just editors,
compilers and debuggers, we find a wider distribution of
language environments in use out there. Major collections
of reusable components are available, and tools help us in
building the new software. The tools still are not as fancy
and functional as we envisaged them a few decades ago,
but certainly a far cry beyond command-line invocations
of compilers, linkers and debuggers. As a consequence,
the dividing line for responsibilities between
programming languages and supporting tools will become
more diffuse in the future. Checks that today we see as
language-enforced might migrate into the realm of tools.
The strictness of the language models oriented on the
needs of separate compilation will be relaxed in a world
where checks involve global analyses. In fact, I recently
talked to a computer scientist, who believed that all
individual compilations were based on global
recompilations of the enclosing library already. And,
indeed, the collective speed of our multi-core computers
is close to making a global compilation indistinguishable
from a strictly separated compilation of individual units.
The use of specification languages and their associated
program generators will continue to increase. Here, too,
the border line between specification and programming
languages will blur. On this last point of environmental
embedding of languages, but alas only on this one, my
second crystal ball agrees with its sister, although it
cautions me to not expect it to happen as quickly as
technology would actually allow.

My second crystal ball has a brownish hue from all the
CO2 and other waste and detrius that reality unloads on
us. It displays pictures that others might rejoice about
while I find some of the produced waste too poisonous to
join the happy fray. I see a steadily growing use of
dynamicity in programming languages, notably very
successful scripting languages that make it easy to mash
applications, applets, apps, and ‘a’s, into amazingly
complicated networks of interacting components, and all
so quickly that us old fogies that insist on static checking
of programs are left behind in the dust created by
amazingly agile and extreme programming. Still, I am
quite worried that my tires are being pressurized by “int”
or “float” and not by “bar”, “atm”, or “psi”. The lack of
redundancy in specification languages causes static
checks to become increasingly irrelevant, since there is
very little left to check against. Consequently we have no
verifiable notion of “correct” specification. Instead we
need to execute or simulate the execution of the system by
model checking to assess the plausibility that the
specification or code is indeed the intended one. In as
much as the languages are concerned, I wonder about the
audacity of their designers to ignore two thousand years
of unchallenged knowledge: “errare humanum est” or, as
Alexander Pope extended it so aptly: “To err is human, to
forgive divine.” In modern computer science lingo, divine
forgiveness is termed “duck typing”, a principle that, in
social sciences, is also known as “I can do no evil” or
“because I say so, it is”, which is a position usually
reserved for deities, absolutistic royalties and dictators. Or
is it that the designers wanted to create forgiving and
hence divine languages? More seriously, there are of
course reasons why flexibility and dynamicity of
execution is needed, particularly as we try to make
components cooperate that meet for the first time during
the execution of complicated systems. My question is
whether we should allow these principles to invade all
other domains of software. My crystal ball immediately
replies that the question is ill-posed: it is not a question
anymore, it is reality already. These flexible languages are
immensely popular and, by the traditional inertia of
language usage, will still be there many years from now.
The practical view therefore is that we have to deal with
the unwanted consequences. And maybe there is gold at
the end of this multi-hued rainbow after all. Our risks are
not only the languages that endanger the reliability of our
systems. It is also the growing complexity of the systems
themselves that makes their behavior so fault-laden.
Programming languages have only limited impact on
improving this situation. Maybe it is time to give up the

E. Plödereder 197

Ada User Journal Volume 33, Number 3, September 2012

goal of correct programs. Maybe future languages should
put more focus on dealing with the malfunctioning of
components and subsystems as a whole, be it from
avoidable programming errors, or more deeply rooted
design errors, or even ill-conceived requirements. Maybe
we can employ some variant of swarm intelligence to
recover from malfunctioning and massively faulty
individual software components. After all, the human race
has successfully applied this strategy in dealing with the
fact that to err is human. Of course, one has to know that
there is also something known as swarm stupidity, but,
knowing so, we can try to prevent its bad consequences. I
do, however, have definite problems with divine
forgiveness as the answer.

Who will take the lead? Or, put differently, which
language will succeed? I keep claiming, based on the
evidence of the past, that there are only three reasons that
can make a language successful. Technological

superiority is not among them. The three reasons are:
firstly, a major company must support the language by
decisive marketing and financial investment to create the
grass-root support for the language. Secondly, the
language must be perceived as opening a new application
domain – anybody not getting aboard, must be afraid that
he will miss the boat. Here, marketing plays a major role.
Alternatively, the language must appear to allow for a
completely painless, i.e., fully upward-compatible,
transition for users of an older language. Users will
migrate to more modern alternatives if they begin to be
malcontent with an old technology and can bring all their
human and product assets with them into the new
technology. Unfortunately, the programming language
community failed to produce the “social network
language (SNL)”, be it as an upward extension of an
existing language or as a new language that one couldn’t
do without. If pushed by a big player, it could not have
missed to be a major success.

198

Volume 33, Number 3, September 2012 Ada User Journal

Discussion Panel: What is language technology
in our time?
José María Martínez Rodríguez
Software Engineering Manager, CASSIDIAN

Abstract

This resume describes the position of the panelist
regarding language technology in the context of
embedded real-time software development for
airbone systems. These considerations can be
extended to those areas where high integrity systems
are present.

Language Technology

Language technology covers all the facilities built around
a specific language that help software-based systems
development. The concept is wider than language
specification itself (plus compiler, debugger, editor) and
includes libraries, design patterns, frameworks,
development tools, etc...

Systems are increasing in complexity by the time as well
as the design, coding, verification and validation tasks
needed to develop such systems. This trend has led to
extend language technology definition.

When starting a new software development project you
should take into account all the software development
cycle and how a potential language fits in this cycle. As
well as how the technology around this language helps or
assist in supporting the life cycle. For example, having the
chance of generating code from design, a good and solid
support for your language within your favourite design
tool seems desirable. If you need some graphics support,
having a good and mature library suitable for your desired
language is also preferred. This “technology assistance”
gets crucial in verification and validation since, in the
context of complex systems, this task can be quite time
consuming.

It is so important how language technology assist on the
development of the final product, that sometimes it is
easier to choose the language based on the surrounding
technology than in the advanced features of the language.

Ada language specification is growing with new features
and “heavier” runtime whereas current language usage in
high integrity systems sometimes is reduced and bounded,
typically zero footprint or ravenscar-like profiles are
being used. There is a necessity to strip unneeded
features/functionalities. It is also remarkable to point out
that nowadays it is not so rare to see Ada95 as the
preferred language baseline for new developments. For
example, the simple you keep it the easier/faster the
verification can become.

Considering this scenario, Ada should adapt to current
user usage providing more profiles depending on
application domain and, somehow, more involvement on
current tool ecosystem. Since “corporate tool” concept is
always present on the industry (only one tool for all the
company needs), market well known development tools
should have a robust Ada support on their features
making it suitable for a company-wide mixed languages
environment (one tool - multiple languages).

Ada should keep in mind that choosing a language for a
new software development is like buying a car: you may
have chosen the car segment (language characteristics)
but at the end of the day, the car’s equipment (things that
would made your “life” easier: tools, libraries, etc...) and
total investment will decide the winner. And this implies
not only a question of what language you choose for a
project, it also helps in creating a “language culture”
within a specific company.

Language technology is so important that can be a mean
to catch users for a language. Sometimes it is the
technology that leads you to choose a language and not
the other way round (as one may think as the proper way).

Ada community has and important challenge in building
and consolidating a state of the art language technology
that could attract new users and keep current ones.

 199

Ada User Journal Volume 33, Number 3, September 2012

Rules for effective language design
Bertrand Meyer
ETH Zurich, ITMO (Saint Petersburg) and Eiffel Software

Eiffel is more than a language and is best characterized as
a method of software development, addressing the full
software lifecycle. The language exists to support the
method. Both its original design and its evolution over 26
years have stuck to a number of principles [1], including:

 “One good way to do anything”: make sure the
constructs of the language are powerful and
expressive, but do not require language users to
choose between alternative ways of achieving
the results (such as, in C++, calling a
dynamically defined function through indexing
in an array of function pointers, or using O-O-
style dynamic binding).

 Throughout the language design and the
resulting style of software design, apply
thoroughly and consistently the ideas of object-
oriented development, meaning abstract data
types.

 Obviously, Design by Contract, as a basis for
correctness but also for exception handling, a
proper treatment of inheritance, built-on
documentation, built-in verification.

 Keep the language consistent and simple, by
making sure for example that the numbers of
keywords (about 65) and constructs remain
manageable.

 Define strong style guidelines along with the
language definition proper; for example, every
routine is expected to have a header comment
explaining its purpose, with a standard style for
how such comments should look like, and hooks
for them in compilers, documentation tools and
other parts of the IDE.

 Focus on helping programmers write correct,
robust programs, through techniques such as
strong typing and the more recent “void safety”
mechanism which guarantees the impossibility
of null-pointer dereferencing.

 Acceptance of the inevitability of evolution, as
new ideas emerge (such as agents, influenced by
mechanisms from functional languages and
providing higher-level functionals within an O-O
context) but with the constant constraint of
keeping the language simple.

 As a consequence, acceptance that language
mechanisms may be removed, provided a

transition path is available to language users,
who are given time and tools to upgrade to the
new, better facilities.

Ada was very much the reference when Eiffel was first
designed; Eiffel is a very different language, based on
object-oriented concepts, but the comb-like keyword-
based syntax resembles that of Ada, with
simplifications — for example, end is just end and
not qualified. [1], published in 1999, explicitly
mentions Ada, on the topic of how small a language
should be:

We could paraphrase a famous quote and state
that a language should be as small as possible
but no smaller. That doesn’t help much. More
interesting is the answer Jean Ichbiah gave to
the journalist who, at the time of Ada’s original
publication, asked him what he had to say to
those who criticized the language as too big and
complex: “Small languages”, he retorted, “solve
small problems”.

This comment is relevant because Ada, although
undoubtedly a “big language”, differs from
others in that category by clearly showing (even
to its critics) that it was designed and has little
gratuitous featurism. As with other serious
languages, the whole design is driven by a few
powerful ideas, and every feature has a rational
justification. You may disagree with some of
these ideas, contest some of the justifications,
and dislike some of the features, but it would be
unfair to deny the consistency of the edifice.
Consistency is indeed the key here: size, however
defined, is a measure, but consistency is the goal.

It has been a challenge, but also an ever exciting
endeavor, to grow the language over the past three
decades while maintaining that consistency.

Reference

[1] B. Meyer (2000), Principles of Language Design and
Evolution, in Millenial Perspectives in Computer
Science, Proceedings of the 1999 Oxford-Microsoft
Symposium in Honour of Sir Tony Hoare, eds. Jim
Davies, Bill Roscoe and Jim Woodcok, Cornerstones
of Computing, Palgrave, Basingstoke-New York,
pages 229-246, correct text at
http://se.ethz.ch/~meyer/publications/hoare/evolution
.pdf

200

Volume 33, Number 3, September 2012 Ada User Journal

What is Language Technology in Our Time?

A Summary of the Panel Session of Tuesday June 12th
Albert Llemosí
Universitat de les Illes Balears, Spain

At the start, Tullio Vardanega in his role of session chair
stated very clearly the rationale for choosing language
technology as a subject for a panel: a language is a view
of the world and the aim of language technology is to
provide the appropriate expressive power for such a view.
Indeed, these words are an obvious rhetoric overstatement
but they are quite precise as long as we take "a view of
the world" as a synonym for "an approach to
programming practice and style". What can be expressed
in the language exists, what cannot be expressed in the
language does not, and therefore, the aim of language
technology must not be a matter of syntactic details but a
matter to provide the programmers with the exact
expressive means that match their needs in the most
precise way.

The first panel speaker was Bertrand Meyer, a very well
known researcher as the designer of the OO language
Eiffel and the architect of its related software. He had
been the keynote speaker of the same day, so his words in
the panel were unavoidably related with the longer
exposition he had done a few hours ago, and therefore a
short comment about that keynote should be mentioned
here, even though the scope of this small report is
constrained to the panel session. The title of Meyer's
keynote talk was "Life with Contracts". The topic could
have offered him the opportunity to say that contracts
were invented in Eiffel and that he was glad to see them
now considered in Ada 2012 and to compare both
approaches. Instead, he focused his speech mainly on
syntactic details. Meyer's speech in the panel session went
basically the same way. First, he outlined the fact that
much has been said about language design, but very little
about language evolution, which is an essential aspect of
programming languages. Then he balanced the
alternatives of extensive democracy and restricted
meritocracy in the design of the language pointing out
that the right approach is to be dogmatic when it counts
and flexible when you want to help the users rather than
standing your way.

The speech included a eulogy of how carefully Ada was
designed and evolved; making particular emphasis on the
existence of a Rationale that shows that every feature has
its justification. Even if one disagrees with some of the
design decisions, nobody can deny the consistency of the
language. He also stated that both Eiffel and Ada are
designed to provide support to software engineering
principles as much completely and coherently as possible.

The next speaker was Franco Gasperoni, from AdaCore.
He made a great eulogy of the principles that guided the
design of Ada and the way they were exposed in the
famous book of John Barnes, Programming in Ada, with
particular emphasis on the second edition of the book,
which corresponds to the 1983 version of the language.
He also cited some of the comments that appeared in the
introduction to that book, which were written by Jean
Ichbiah.

Gasparoni remarked that we cannot expect that a
programming language may become absolutely universal,
because the requirements in different domains are so
different that no language can cover all them. Therefore,
we should not consider that Ada is not a success only
because it is not used in all domains. Ada was particularly
designed for industrial systems, and in this domain it has
been successful and it is still in use.

Gasperoni's speech concluded with some remarks
concerning the teaching of programming. The way the
new generations become educated in programming is
essential both for the quality of the software and for the
success of Ada. He presented a diagram to illustrate two
possible approaches for teaching programming. One path
started with a description of programming principles and
language features and then turned into the increasing
complexity of the systems addressed, and the second path
started addressing complex systems, even with a small set
of language features and very elementary programming
principles, so that the extension the repertoire of features
and techniques can be seen as a means to provide a better
support for the difficulties found during the construction
of such complex systems. He clearly advocated the
second approach because he considered that the first one
is very boring for the students.

The third speaker was Erhard Plödereder, from the
University of Stuttgart, which provided a more academic
view. He started pointing a few facts about the current
state of programming practice, some of which were more
desirable than others. The first fact is that programming
technology is increasingly environmental, i.e. it relies not
only on compilers and debuggers but on much larger
toolsets and, moreover, it is becoming a compositional
activity based in combining external components that we
are not responsible for. The second fact, to some extent a
consequence of the first one, is that software construction
is increasingly experimental. Most programmers don't
start from thinking, but from seeing what happens.

A. Llemosí 201

Ada User Journal Volume 33, Number 3, September 2012

Luckily, there are a few niches where program
understanding and analysis is still essential. The third fact
is that programming language tendencies stretch between
two extremes: some of them try to express the nature of
the problem regardless of its possible implementation,
whereas some others precisely focus on how the problem
is effectively mapped onto the target machine. As the OO
approaches are in the first set, they are probably ill suited
to deal with parallel processing in multicore architectures,
which is, no doubt, the future of the hardware platforms.

After having provided this academic view, professor
Plödereder turned into the reality view, and stated that the
technological superiority is not a guarantee for the success
of a language. Instead, the main factors for the success are
the support of a major player, such as Microsoft or
Oracle-Sun, the appearance of a new application area that
is deemed unreachable without the new language (most
likely, cloud computing and social networks shall require
the development of new languages) or a fully upward
compatible improvement of a successful but aged
language.

The last speaker was José-María Martínez, a software
engineering manager at Cassidian, a part of the EADS
consortium that is devoted to airbone systems. His view
was, obviously, that of a developer of high-integrity real-
time embedded software. He stated that the programming
language is only the lowest part of their V-shaped
software life cycle, which includes a big set of standards
to follow, including procedures, documents and the
certification process, with many people involved.

Regarding the selection of the language, the decision is
influenced by many factors, and technological superiority
is not the major among them. Instead, the major factors
are the task to be performed, the certification regulations
to fulfil, the company standards, the schedule, the budget
and the past, i.e. the languages the people involved are
familiar with, the work done that can be reused, and the
available tools.

After these short presentations by the panellists, a
discussion started with the participation of the audience.
Ian Broster said that nobody had mentioned how a
language can be made “cool”. By cool, he meant what the
young people seem to know about. The answer from
Erhard Plödereder was that cool stuff gets hot very
rapidly, and later cools again, and that the problem of
language technology is that it takes a very long time to
mature, to be produced and to be targeted to a particular
area, which will be a difficulty for the future generation of
programming languages. José-María Martínez claimed
that Ada is hidden, that there is no advertising for it and
that a Web page should exist for this purpose. Franco
Gasperoni said that cool means fashionable and that
fashion comes and goes. He remarked the position of
Erhard Plödereder's panel that a programming language is
cool because it is associated to a cool set of applications
that you couldn't do before, and Java is a clear example of
this. Then he suggested that there should be a sociological

study about the human aspects of coolness in
programming languages.

Ben Brosgol pointed that two things seemed contradictory
in Erhard Plódereder's presentation: that OO is dead and
that the future is C# scripting. Erhard's reply was that
there two sides to his argument: the first part was the
academic view and the second part was the reality view.
He insisted on the fact that technologies are successful not
because they are technologically superior. Obviously, it
helps, if they are, but it is not a decisive factor. His
particular opinion is that the future is functional simply
because the distribution of functional software is so much
easier than that of OO software. Then Bertrand Meyer
commented to oppose to this latter statement. He told that
he had recently published a paper comparing functional
and OO languages and that the problem of functional
languages is that they don't scale up. Instead, OO design
and OO technology are there to address the real problems
of software engineering: they provide clear guidelines
about how to build, grow, maintain and evolve large
software systems, taking "large" in the sense of number of
people involved, the time they must remain in existence
and the number of changes they have to handle.
Functional languages have some very nice ideas and they
are very elegant, but in terms of modularity they don't
provide anything. Meyer wanted to convey that he wasn't
saying that functional programming ideas were not useful:
Eiffel and C#, which are very successful in scaling
systems up, have also been successful in integrating some
functional programming principles. However, for
designing software architectures, which is what software
engineering is about, OO decomposition is the useful
approach, which in turn is the application of abstract data
types, which in turn is the application of the scientific
principles of separation of concerns and abstraction.

Franco Gasperoni asked the audience about how many
among them felt themselves as computer scientists and
how many as engineers. The interesting thing is that some
people raised their hands twice, which allowed Franco to
set the question of the melting of (or the fighting between)
these two opposing views in the working environments of
the people attending the panel. The most common view
was that people working in industrial environments see
themselves as engineers (software, mechanical, control or
whatsoever) and that, in principle, as engineers they do
not aim to improve but to put to use the sciences their
technologies are based upon. The problem with software
engineering is that its link with its scientific grounds is
very weak. No other engineering domains (mechanical,
chemical, ...) can achieve any useful result without a deep
knowledge of the physical sciences they make use of.
Erhard Plödereder noted that there is a significant
difference between software and other engineering
disciplines: a civil or mechanical engineer is responsible
of the system he designs because the problems that he
solves are in the scope of what he is able to control and
predict. Instead, for a software engineer there is no way of
predicting the behaviour of a system but to put the system
into operation. The computer science fault is that it does

202 What is Language Technology in Our Time

Volume 33, Number 3, September 2012 Ada User Journal

not provide the appropriate science. It has mathematics in
its grounds but not those that the software engineer would
need.

Bertrand Meyer answered that the situation that Erhard
had described is deplorable but that he was sure that it
will change soon. According to him, it would be
inconceivable that if a car doesn't work, the excuse is that
the mechanical engineer hadn't wanted to learn
differential equations. Likewise, it should not be
acceptable – and does not make sense – that we refuse to
teach simple things like contracts to the software
engineers just because the programmers won't make use
of them. However, this is not going to last forever and it is
changing quickly. To be more precise, we have to
distinguish among three areas of the IT industry because
if we mix all them together we are never going to get a
good analysis. The three areas are casual programming,
enterprise programming and mission-critical
programming. Casual programming is what everybody
does, including people with no computer science training
at all (Web sites, Java scripts, ...). In contrast, in the area
of mission-critical software, this kind of discussion does
not exist anymore: the people in that community have
accepted that not to use the appropriate methods means
killing people. To Meyer, the interesting part is the
enterprise area, which involves very important financial
and commercial applications whose misbehaviour may
have very important consequences, but not visible enough
because they prevantely entail loss of money but not of
lives. So, they haven't yet realized how important it is to
move to an engineering mode of working, but this will
happen. So, he is sure that we will not have the same kind
of discussion in five or fifteen years from now.

Then Marco Panunzio expressed that he was happy that
modelling had been mentioned in some of the
presentations because he is convinced that modelling is
becoming increasingly important, as a lot of things can be
done there, such as verification of properties and code
generation. Apparently, it might seem that, as a
consequence, the programming language is becoming less
important, but he thought that this is a more debatable
conclusion. Therefore, he wants to know the opinion of
the panellists about if (and in what area) the programming
language matters and the things that a programming
language should offer to complement what is done at the
modelling level.

The answer from Erhard Plödereder was twofold. First,
that it should be clear that the language that describes a
model is also a programming language, especially if it is
generative. Second, that the redundancy disappears with
the modelling approach: there is nothing one can validate
against, just because the model is always correct. He
considers this extremely dangerous. Then Bertrand Meyer
objected that the revolution about OO technology has
been to unify concepts of software development all the
way from requirements modelling and so on, and this has
made the success of OO programming. He added that now
we have seen attempts to reintroduce distinctions that OO

programming had removed, such as the distinction
between models and realizations of the models, which is
the biggest step backwards in the history of software
engineering ever, because it turns it into a monster of
complexity that leads to never ever model. He very much
insisted that the modelling powers of OO languages are
such that they can accompany us all the way from the
most abstract study at the non-imperative stages down to
the implementation and go back and forth. And, according
to Meyer, this latter ability is essential because the
problem of the software is not only building a system but
also making it to evolve through the years.

Then José-María Martínez explained briefly some
experience in his company that was in favour of Erhard's
position. A couple of years ago they started thinking
about using a model-driven development in a project due
to the verification facilities of the modelling language.
However, there was no way to control if the timing
requirements were fulfilled during the modelling process.
Franco Gasperoni added that modelling is a too general
concept and that we should use the term domain-specific
languages. For certain things, domain-specific languages
are very interesting (for instance, writing automata) and
that Ada has an important role to play in industrial
contexts, possibly melting well with other domain-
specific languages.

At this point, Tullio Vardanega, as the chair of the session
proposed to the panellists to propose a final set of
recommendations, especially what would they
recommend language technology of the future to be.

Bertrand Meyer's started expressing how exciting it has
been to participate in the design of a language and its
evolution along 25 years as an inter pares, not necessarily
primus. He obviously agrees with Franco when he says
that no perfect language exists. However he considered
that the requirement of having a different language for
each particular domain (for instance, graphic interfaces or
mobile phones) should be admitted as a failure. A
programming language should provide good structuring
mechanisms, and domain-specificities should be relegated
to the libraries. He also remembered a comment from
John McCarthy that languages are not designed but
discovered, because a certain view of the programming
activity pre-exists and the programming language raises
as the expressive means that best matches this view.
Therefore, his conclusion was that, given a certain view
of the software, it is possible to get as close as humanly
possible to the asymptote of perfection to design a
language that should eventually cover in the end the entire
application domains.

Franco Gasperoni decided to conclude by taking some
pieces of sentences said by various people in the session,
both speakers and the audience, and putting them
together. He addressed first the question of the focusing
of languages upon users (as representative of target
application domains); three clear domains have been put
off (casual, enterprise and mission-critical), and it is
important to decide to whom we talk about, as they have

A. Llemosí 203

Ada User Journal Volume 33, Number 3, September 2012

to be dealt with separately. The second important matter
is that the difference between programming languages
and tool responsibilities is blurred. One can do nothing
with a programming language unless there is a complete
set of tools available surrounding it. The third conclusion
is that software engineering and computer science are
working and need to work together more closely. The last
important point is that teaching is fundamental for the
success of a programming language technology. This is to
be done by the writing of cool applications that are part of
the target domain that we want to get.

Erhard Plödereder started expressing his agreement with
Franco's last point. In terms of answering the question of
what is the ideal technology, his view is a series of
languages that at every level gives him the highest
expressiveness for his purposes. Namely, an architecture
language that allows him to design subsystems and

systems regardless of any paradigm at all, a language for
defining the models and simulate how the system is going
to behave, a language for expressing contracts, both at the
model level and at the implementation level, and so on.
To sum up, the important thing is to have a language at
each stage of a project that allows one to express the
important aspects of that stage.

José-María Martínez also started expressing his
agreement with Franco's points. He stressed that a
language is useless if it is not complemented by a
complete set of surrounding tools that provide a proper
benefit by themselves. Moreover, a language technology
must be mature, otherwise it is not sufficiently sound and
robust to be applied at production levels.

The session concluded with a sonorous applause to the
panellists and the chair.

204

Volume 33, Number 3, September 2012 Ada User Journal

Reliable Software, a Perspective from Industry

Jørgen Bundgaard
Ada in Denmark

Abstract

The invited panelists discussed what they see as the
most pressing and challenging industrial needs in
the way of software technology to facilitate the
production of reliable software, such as:

 Quality and safety standards

 Life-cycle models

 Processes, methods, techniques

 Languages and tools

Questions to the panel:

 If we have the right people on the team what
else do we need, really?

 If we had a very pressing need, we would
apply our engineering skills and solve it,
wouldn’t we?

 Are the “traditional” quality and safety
standards a burden or a help?

 What do you think will be the next “Killer
app” in software engineering?

 What are the main obstacles to innovation in
our industry?

 When will we ever learn to estimate
(development cost) correctly?

Position of the moderator

I have always felt that the “most challenging need” -
when starting a software project – is to have a
development method with processes that work well for
the given case.

For a software product in the maintenance phase this is
usually not a problem. The work typically consists of
planning, change management, changing the code,
verification, regression- and validation testing, release
management, and documentation. It is not too difficult to
establish and optimize processes for that, and tools are
usually available from the development phase.

The key is that the team gets to execute the processes
multiple times, with opportunities to fine-tune the steps in
the processes.

For a development project similar to one the team has
done before there is at least the opportunity to look at the
history and decide if changes are needed to the
development method and processes used previously.

The key is to have people on board who have “done it
before” and who can adapt the “standard” development
method and processes for the specific project at hand,
including how to comply with applicable standards, like
DO-178B (aerospace), ISO 26262 (automotive), EN
50128 (railway), ECSS-E-ST-40C (space), etc.
Organizations at a certain maturity level have
“documented” and “repeatable” processes.

For a development project, which has aspects very
different to anything the team has done before, the
method and process issues are more problematic. It may
be a project involving a new type of stakeholder, a project
on a much larger scale, a new domain, a new standard, a
new architecture, a new technology, a new role, and so
on. Established processes may be inadequate to cope
efficiently and effectively with the new challenges, risks,
and opportunities.

The key is to get people on board who have “done it
before”. They may come from outside the team. For
example, external “consultants” can, on the basis of
experience, demonstrate the need for extra rounds in
requirements clarification with the end users. They can
show how to fulfill requirements like “The planning of
the software integration shall describe the steps for
integrating the individual software units hierarchically
into software components until the embedded software is
fully integrated” (ISO 26262-6). Or they can propose
tools for demonstrating 100% MC/DC in unit testing, and
much more.

Alternatively, the team members will have to figure it out
by themselves, and if so they will do wise in clearing their
approach in advance with auditors and assessors, if the
project outcome is subject to formal approval.

There is evidence for the need of ongoing process
definition and adaptation. Large established organizations
use consultancy services to help defining processes for
model based software engineering, to develop guidelines
to comply with functional safety standards, and to
advance from one SPICE level to the next.

From a software project management point of view it
makes very good sense to ensure that (most of) the
necessary steps in the development process have been
identified, understood, and validated (if possible) in
advance. The risk of unpleasant surprises (of many kinds)
will be reduced.

On the other hand, there is a justified fear among
managers as well as engineers that mandating compliance
with a comprehensive process and standards library will

J. Bundgaard 205

Ada User Journal Volume 33, Number 3, September 2012

prevent the use of common sense and will be
counterproductive.

The key is to apply a balanced view where common sense
is in the high seat and the involvement of the people who
must live the processes is mandatory. After all, it seems
like good idea to work on a project where we have faith in
our approach! NB! This should not stand in the way of
innovation. Promising new ideas should be applied to
important, but not critical work.

In conclusion, “the most pressing and challenging
industrial needs in the way of software technology to
facilitate the production of reliable software” are to have
people onboard who have done it before – plus
development models, processes, and checklists – made by
people who have done it before – but are open to new
ideas!.

206

Volume 33, Number 3, September 2012 Ada User Journal

Reliable Software, a Perspective from Industry
Ana Rodríguez
GMV Spain

In the last decades, the lessons learned coming from many
critical software development processes on the different
domains have led to the definition of a number of
standards compiling good practices, recommendations or
even mandatory rules to be applied in software
development and, very specially, in software verification
processes.

Dependability and safety are issues of paramount
importance in the development and operations of critical
systems. The contribution of software to system
dependability and safety is a key factor, especially in view
of the growing complexity of the software used in critical
applications, together with the increasing cost and
schedule constraints. For example, the need for more
dependable and safe software has led to ESA the
publication of “Software Dependability and Safety
Handbook” (ECSS-Q-HB-80-03C) meant to provide
guidelines on the implementation of the software
dependability and safety requirements and on the
application of methods and techniques for software
dependability and safety.

Failures are caused by different reasons. Here are some
possible ones:

 Software requirements are incorrect, incomplete
or ambiguous. They can include unhandled states
or unhandled environmental conditions, non-
conformance in the software or deficiencies in
the code (they cause software faults).

 Software requirements have not been
implemented, validated and verified properly.

 Software has not been tested enough or has been
tested inadequately.

 Software Defects.

 Software is used incorrectly.

 Poor design or implementation.

 Rare events can lead to uncontrolled states.

The consequences of a failure vary but may be severe. On
the one hand, failures due to inadequate designs or
implementations are easier to detect and solve. During
validation and verification phases, it is checked that
everything is in conformance to requirements. So, wrong
designs and implementations are discovered.

On the other hand, unexpected behaviours or states due to
different failures are more difficult to detect and therefore
to solve. But the entire software must be designed in such
a way that any single or combination of failures does not
cause both critical and catastrophic consequences.
Generally, a Safety Critical System must include proper

mechanisms or means to guarantee dependability and
safety at any level:

 Software fault prevention: Avoidance and/or
reduction of fault causes before software go
operational.

 Software fault tolerance: Ability of a functional
unit to continue running correctly despite the
presence of faults or errors.

 Software fault removal: To identify and remove
the presence (number, seriousness) of faults after
they occur. Fault removal takes place either
during the development process or after system
goes operational.

 Software fault forecasting: Software fault
forecasting is used to predict software behaviour
when a fault occurs. This involves how to
estimate the present number, the future incidence
and the consequences of faults.

To begin with, to make software as fault tolerant as
possible, the Single Points of Failure (SPF), a part of a
system which, if it fails, will stop the entire system from
working, shall be minimised. The implementing fault
tolerant measures can be done at the following levels:

 System-level measures: Fault tolerant measures
such as redundant networking equipments,
redundant storage, a carefully planned
operational and maintenance strategy, and a
carefully planned monitoring strategy.

 Component-level measures: At building block
level, you should use fault tolerant components
such as power control, Error Correction Code
(ECC) memory, and redundant fans. At the
network-level, you should implement fault
tolerant networking components such as
redundant switches, routing, and wiring.

 Operating Systems and SW environment
measures: Before implementing specific
component-level and system-level fault tolerant
measures, there are certain operating systems,
Software Development and Operational
Environment measures to consider.

There are many fault tolerance practices currently applied
in the different technology domains and software failure
propagation prevention is actually taken into account in
the Standards. The maturity, qualification status,
availability and portability of the different methods and
tools need further research.

 207

Ada User Journal Volume 33, Number 3, September 2012

Reliable Software, a Perspective from Space
Steen Palm
Terma A/S, Vasekær 12, 2730 Herlev, Denmark; Tel: +45 4594 9665; email: sup@terma.com

Reliable software is a must within the space community.
A small software bug can result in the loss of a satellite,
which has been built over many years and whose
development costs are measured in hundreds of million
euros. Therefore, the European Space Agency (ESA) has
very strict requirements to the software development
process and the quality of the final software. These
requirements are documented in a set of so-called ECSS
(European Cooperation for Space Standardization)
standards that must be followed on every ESA software
development project. The ECCS standards very precisely
define activities to be performed, designs to be
constructed, documents to be produced, reviews to be
held, tests to be performed, etc. The overall objectives of
the ECCS standards are to ensure reliable software
products that will not fail during operation.

However, to follow the ECCS standards requires a
substantial effort, especially because it involves an
overwhelming number of tests at many different levels
ranging from unit testing of software modules to assembly
and integration tests on different satellite models. At the
same time, satellites become more complex, the on-board
software has to perform more advanced tasks, and the
time available for the development decreases, while the
requirements to the reliability of the final software
product are unchanged.

ESA is aware of this problem and has taken an initiative
to improve the way that the European Space community
builds avionics subsystems. This initiative is called
SAVOIR (Space Avionics Open Interface aRchitecture)
and has taken inspiration from AUTOSAR (AUTomotive
Open System ARchitecture), although the underlying
industrial business model is different. The space
community is smaller, the production is based on a few
spacecrafts per year, and there are industrial policy
constraints. Still, there is a need to streamline the
production of avionics software and improve
competitiveness of European industry. Reference
architectures, reference specifications and standard

interfaces between building blocks are an efficient mean
to achieve the goal. Reusing specifications is expected to
allow reusing products.

A promising aspect of SAVOIR is that it builds on the
outcome of the ASSERT (Automated proof-based System
and Software Engineering for Real-Time systems)
project. The ASSERT process aims to enhance the system
& software engineering activities by means of model-
driven and property-preserving methods and automation
tools. A main feature of the ASSERT process is that the
software design is Ravenscar compliant by construction,
implying for instance that timing properties of the system
can be analysed by means of a schedulability analysis.

At present, a SAVOIR software reference architecture has
been defined and is being validated within a number of
ESA technology development projects. EDISoft RTEMS,
which is a real-time operating system, is an example of a
reusable building block that fits the reference architecture.

The SAVOIR software development process is intended
to make use of standard building blocks and to be
supported by a tool chain. Tools supporting the SAVOIR
process are currently under development based on a
combination of Obeo Designer and TASTE (The Assert
Set of Tools for Engineering). Until tool support is
available, the tool set TASTE supporting the ASSERT
process can be used to achieve many of the advantages of
using SAVOIR.

Terma is currently using the principles of SAVOIR and
ASSERT for the development of software for controlling
two instruments that are to be mounted on the outside of
the International Space Station. The instrument MMIA
(Modular Multispectral Imaging Array) is intended to
study the high-altitude electrical discharges in the
stratosphere and mesosphere above severe thunderstorms,
the so-called red sprites, blue jets, and elves, while the
instrument MXGS (Modular X and Gamma ray Sensor)
will observe terrestrial gamma flashes occurring during
the severe thunderstorms.

208

Volume 33, Number 3, September 2012 Ada User Journal

Developing Reliable Software is Impossible!
Ricky E. Sward, PhD.

The MITRE Corporation, Colorado Springs, CO, USA.

As software systems become more complex, ensuring that
operational systems are 100% free of errors is an impossible
task. Complex software systems may include millions of
lines of code, developed by hundreds of software engineers,
and will include errors found only during operational use of
the system. In 2002, NIST reported that errors in software
cost the US economy $59.2 billion annually [1]. One
approach to reducing software errors is to increase the
testing, validation and verification processes required for
certification of systems. These processes are often mandated
via policies and procedures. Another approach is to increase
the use of Formal Methods in the development of complex
software systems and prove certain aspects of the software’s
quality. Using Formal Methods during software engineering
improves the requirements specifications, reduces the
introduction of errors, improves error detection, reduces
overall cost [2] and can help us accomplish this impossible
task.

As an example of high integrity, safety critical systems,
we’ll consider some of the systems being developed as part
of Unmanned Aircraft Systems (UAS). Although the FAA
has not yet mandated certification of UAS, the components
may include safety-critical sub-systems such as flight control
systems, sense and avoid and navigation systems [3]. UAS
have been used extensively in defense operations, but there
are hundreds of civilian applications for UAS that are
emerging. The software systems used to control these UAS
must be reliable and predictable as we move to a world
where unmanned aircraft are flying in the same airspace as
manned aircraft. A major question for UAS is how do we
build trust in the software and systems that control these
aircraft?

Currently in the US, unmanned aircraft are not permitted to
fly outside of Restricted Airspace unless they have obtained
a Certificate of Authorization (COA) from the FAA [4]. The
FAA has begun to streamline the COA application process
and increase the number of UAS allowed to operate in the
NAS. For manned aircraft systems, the FAA approves all
aerospace software-based systems using the DO-178C
standard. DO-178C includes activities needed when using
Formal Methods in place of conventional review, analysis
and testing of software systems [5].

Some UAS systems have already started the process of
adhering to the DO-178C standard. Because of this,
manufacturers of emerging UAS systems may include
Formal Methods as part of their software development
process, which will reduce their need for lengthy verification
and validation procedures. If UAS manufacturers use Formal
Methods, they will need processes and tools that allow them
to quickly deliver capabilities to their operational users. The

current UAS market if very competitive and getting a
validated capability to the field is the key objective of UAS
companies. They need ways to quickly train their software
engineers on software development using Formal Methods.
They also need tools that assist the engineers with proof
obligations and formal requirements specification.

Another emerging trend in UAS development is to build
Command and Control (C2) systems that include the man
“on” the loop versus the man “in” the loop. More automated
functions are being developed to relieve the UAS operator of
mundane, tedious tasks. As these systems mature, they will
also be scrutinized for their reliability and level of trust in
the system. C2 systems are particularly susceptible to cyber-
attacks, which may include an adversary taking over control
of the system.

To validate the security of UAS systems and classified
systems in general, there has been an increase in the security
testing and certification required for these systems. As the
requirements for certification increase, one beneficial
practice is to incorporate the fulfillment of these
requirements as part of the software development process.
This is in contrast to attempting to fulfill the requirements
after the software has already been developed. In the
Tokeneer project [6], Formal Methods were used to achieve
a higher assurance level of the Common Criteria.

If software development firms are to build reliable software
and pass these stringent certification requirements, they
should build the fulfillment of the requirements into their
processes. If they use Formal Methods to attain higher
assurance levels, they should also be provided tools and
processes that help to incorporate Formal Methods into their
software development processes.

The task of building reliable software, free of error when
delivered to operational users, may indeed be impossible.
Formal Methods can reduce the testing, validation,
verification and certification requirements of software
system. Building Formal Methods into the software
development process may help software systems achieve
higher assurance levels. Providing improved Formal
Methods tools and processes to software developers may
help achieve this impossible task.

References

[1] G. Tassey (2002), The Economic Impacts of Inadequate
Infrastructure for Software Testing, Final Report,
Prepared for National Institute of Standards and
Technology by RTI.

[2] D. Mery and N. K. Singh (2010), Trustable Formal
Specification for Software Certification, T. Margaria

R. E. Sward 209

Ada User Journal Volume 33, Number 3, September 2012

and B. Steffen (Eds.): ISoLA 2010, Part II, LNCS 6416,
Springer-Verlag, pp. 312–326.

[3] Safety-Critical Services for UAS, retrieved from
http://www.certon.com/uas-uav.php on May 31, 2012.

[4] FAA Unmanned Aircraft Systems (UAS). Retrieved
from http://www.faa.gov/about/office_org/
headquarters_offices/ato/service_units/systemops/aaim/
organizations/uas/ on May 26, 2012.

[5] D. Brown, H. Delseny, K. Hayhurst, V. Wiels (2010),
Guidance for Using Formal Methods in a Certification
Context, ERTS 2010 – Toulouse, France.

[6] Tokeneer Project. Retrieved from
http://www.adacore.com/sparkpro/tokeneer on May 27,
2012.

210

Volume 33, Number 3, September 2012 Ada User Journal

Reliable Software, a Perspective from Industry

A Summary of the Panel Session of Wednesday June 13th
José Ruiz
AdaCore, France

What are the most pressing and challenging industrial needs
in the way of software technology to facilitate the production
of reliable software?

Introduction

To start the discussion, Jørgen Bundgaard, from Rovsing
A/S, stated that the current situation in the high-integrity
industry is that there are many different and diverse safety
standards, many different lifecycles in use, a variety of
programming languages, and a huge variety of tools
supporting the previous elements. This complexity needs to
be addressed to produce reliable software.

Position statements

Ana Rodríguez, from GMV, believes that we are able to do
software which is 99% reliable, with the help of existing
guidelines, methods and techniques for building safe and
dependable systems. However, things are made more
difficult each day by the continuous increase in software
complexity together with the increasing cost and schedule
constraints. If we look at the origin of failures, there is a
wide range of errors which may come from software
requirements, design and implementation, validation and
verification, or incorrect use of the software. The failures
which are the most difficult to detect and fix are those
caused by unexpected events. And then, We need to apply
fault tolerant measures to avoid failures to have critical or
catastrophic consequences. Hence, reliable software is
achieved by accepting the existence of failures, and
designing systems minimizing single point of failures
applying fault tolerance techniques.

Steen Palm, from Terma, indicated that in the space industry
problems may cause the loss of an expensive satellite, so on-
board software must be reliable, and ESA standards have
been developed to help having reliable products. He agreed
with Ana Rodríguez in the trend to have more complex
software which need to be developed more quickly and
cheaper. One of the initiative which may help producing
reliable software under such conditions is the use of
component-based reference architectures, such as those
being defined in the SAVOIR and SAVOIRE FAIRE
projects. Another way to achieve reliability is by imposing a
way to use existing reliability standards, because different
groups of people use them in different ways with
heterogeneous results in terms of reliability.

Ricky Sward, from the MITRE Corporation, believes that
given the huge size and complexity of modern software,

which is developed by many different people, there will
always be errors. However, we are able to produce
successful operational software with errors. Exhaustive
testing and strict methodologies help producing reliable
software, but still problems are found in the operational
environment. He suggested that formal methods is the way
to go as the most effective way to reduce verification and
validation costs, increasing assurance levels, and helping
detect problems early. It is important to note that the use of
formal methods will require good training for the
development teams, and tools and processes to incorporate
formal methods into software development.

Discussion

After these position statements, there were questions from
the audience. The first of them was about the need of good
engineers to have successful projects, and whether the use of
well-defined methods and advanced tools was there to try to
fix the need of having well-trained people. The three panelist
agreed on the fact that you need good people, but tools and
methods help a lot in the different phases of software
production, and they help reducing the cost and time-to-
market. For example, correctness-by-construction
approaches with formal methods are very useful for
achieving reliable software, and they help reducing the cost
of verification and validation.

Another issue that was raised from the audience is the terms
to be used for software that needs to be correct. Reliable is
probably not the best term (it implies probability analysis
which is not probably what we want to apply to software).
Safety is used in avionics, and dependability is also another
term which applies well to software.

One of the problems to address in high-integrity systems is
the need to think about all possibilities, and to have barriers
for any failure. Fault tolerance techniques and exhaustive
testing help a lot to achieve this goal, but improving the
software development process may be more effective. In this
line, requirements engineering was identified as one of the
weakest parts in software development, which is often
neglected. A clear definition of what needs to be done is
essential to have a good understanding of the intention for
the software. Formal methods help having requirements well
defined from the beginning, and incremental development is
a good approach for finding missing or bad requirements.

There is always code that needs to be written manually, and
automatic code generation from models is something widely
used these days. Its huge influence in safety needs to be

J. Ruiz 211

Ada User Journal Volume 33, Number 3, September 2012

addressed, and there is a need to use qualified tools for code
generation for ensuring safety.

Raising the abstraction level of languages up to formal
methods was identified as an interest, and if we want to
make it mainstream we need to put a clear business case to
show the need and advantages of using contracts. It can
reduce the amount of testing and increase the confidence
level, reducing then the cost.

Closing

To conclude the discussion, the panelists were asked to
provide their view on the most pressing industrial needs
these days.

Ana Rodriguez insisted on the need to achieve reliability at a
lower cost. Agile lifecycle models, generic reference
architectures, formal methods, and dependability analysis
are good ways to explore.

Ricky Sward believes that we need to give the right tools to
people. More formal methods, more automated testing, and
more formal processes are being introduced to improve
safety.

Steen Palm said that the problem to address is how to build
complex systems quickly, and it can only be done
streamlining the software development process and doing
verification and validation earlier. Formal methods can help
a lot, although it is not widely used in the space.

212

The Ada Way: development of a soccer simulator
Ricardo Aguirre Reyes, Andrea Graziano, Marco Teoli, Alberto Zuccato
University of Padua, Department of Mathematics, via Trieste 63, 35121 Padua, Italy.

1 Introduction
The Ada Way is the annual student programming contest first
launched in 2010 and organized by Ada-Europe [1]. This
initiative is an annual programming competition among stu-
dent teams where the participants have to produce a software
following a project specification. The contest aims to attract
students and educators to Ada in a form that is both fun and
educative.

The theme for the 2010-2011 edition of The Ada Way was
a software simulator of a soccer match [2]. The simulator
had to allow playing at least a single match between two
user-configurable teams. Each team was formed by players
with individually configurable characteristics for technical
and tactical skills (e.g. speed, fatigue, tackle skill, etc) who
would play according to the team tactic. Each team had a
software manager to configure the initial players line up, the
initial tactic and to issue commands for tactic changes and
substitutions. The simulator had to play the match according
to the regular soccer rules; to do this each match must have
a software referee (and eventually two assistant referees) to
control the game and ensure that the applicable rules are
followed.

From the architectural point of view the software system had
to include a software core implementing all the logic of the
simulation, one graphical window for displaying the match
(and other relevant data like statistics) and two graphical
panels to influence the actions of the team managers during
the game.

In Fall 2010 we attended the Concurrent and Distributed Sys-
tems course of our Master Degree in Computer Science; the
competition was proposed by our professor as the educational
project of the course. We are a team composed by four master
students at the University of Padua; we decided to participate
because we considered The Ada Way an interesting opportu-
nity to put ourselves at stake in an international competition
that would have allowed us to prove the skills we acquired
during the university course.

2 The story of a long-lasting project
Our adventure started after December 2010 when we began
working on the project, shortly after the end of the Concurrent
and Distributed Systems lectures. We were already aware that
solving concurrent problems is a complex issue and we had
the confirmation once we started addressing the project speci-
fication: we soon realized that a neat design of the simulator
was a difficult challenge to achieve.

At the beginning the team was composed by only two of us,
Andrea and Marco, and the original idea was not to enter the

Figure 1: Team members with their awards. From left to right:
Andrea, Ricardo, Marco and Alberto.

competition. As a matter of fact we began to work steadily on
the project when we were close to the competition deadline.
Soon after the organizers extended the deadline; at the same
time Ricardo and Alberto joined the team and proposed to
participate in the competition.

Our original plan was to start with the design of the core
functionalities (solving the concurrent problems firstly) and
then to develop the distributed features and the Graphical
User Interfaces. Along with the decision to participate in the
competition and with the extension of the development team
we changed our original plan; in particular we decided to
develop the distribution features and the GUI applications in
parallel with the development of the core features. During the
development of the project we made frequent partial revisions
with our professor to check if our design was correct and
coherent with the competition requirements. This approach
allowed us to avoid incorrect solutions and to receive feedback
on our main design choices. We also used prototyping to
incrementally arrive at the final product. In particular we
developed a non distributed version of the core system able
to show the simulation on a text-based output; this prototype
allowed us to test the core functionalities without waiting for
the development of distributed features and GUI applications.

At the end of the development we wrote the technical report
and the user manual [3] to provide a detailed description of
our work, then we made the final revision with our professor
and passed the exam with full marks. Finally we made the
last corrections and submitted the completed work to the
evaluation committee.

Volume 33, Number 3, September 2012 Ada User Jour na l

R. Agui r re Reyes, A. Graz iano, M. Teol i , A . Zuccato 213

3 The development
Our project consisted on the design and implementation of
many different components. The Core component is the
part that actually performs the simulation of the game; it
contains the implementation of the computer-driven actors
(players, referees), their business logic, passive items (field,
ball, ...) and any other data structure needed in order to run
the simulation.

We developed three types of graphical user interfaces that
can be used by humans to control the game. An indefinite
number of users can act as spectators and watch the game
through the Spectator GUI (shown in Fig. 2). Up to two users
can connect as coaches, selecting and managing their team
through a Manager GUI and at the same time watching the
game using the Spectator GUI already mentioned. A special
Simulation user can manage the simulation, deciding when
it has to be started or stopped (thus aborting the simulation).
For this purpose a Simulator GUI is available.

Figure 2: Spectator GUI allows users to watch the game.

All the user interfaces are distributed. None of them are
required to run the simulation, because we wanted the Core
execution to be independent from any distributed component.
A time-out notifies the referee that he has to start the game in
case there is no Simulator GUI connected, or in case nobody
presses the Start button in time. The game proceeds without
any substitution for teams that have no coaches connected.
Coaches can connect during the game, anyway. Spectators
are not required and their absence does not cause side effects.

In order to manage connections from an indefinite number
of GUIs, we developed a component called Billboard, which
is also distributed. For technical reasons, Billboard is con-
stituted by two parts, aimed at handling communication in
both directions; from Core to Billboard and vice-versa. The
former module, that handles the Core output, is needed to
run the simulation. Components can be executed on the same
node (obviously) or on different nodes.

To develop this system we found that it was important to
follow some design principles. The quality of design was
an important evaluation criterion both for the competition
and for the exam. Trying to achieve it was challenging but
also necessary in order to get things work. We tried to build
a modular and flexible system. Designing with separation
of concerns and isolation within different components was

mandatory to have a maintainable system, and to avoid un-
necessary coupling that would have made the implementation
harder to fix.

In the following subsections we discuss some of the most
important aspects of our solution. Readers will find that there
are problems which could have been addressed differently, we
will try to show why we think that these ideas are good and
we will mention a few other possibilities. Workable further
improvements will be described afterwards.

3.1 Concurrency

Concurrency issues were the first aspects we focused on dur-
ing design. Because this is an experience report of a project
that had educative purposes, instead of just describing the
strengths and weaknesses of the final solution, we would like
to briefly discuss how we get there. As you will see, we had
a long way to go.

We started by identifying entities and trying to classify them.
No doubt that in soccer there are players, referees, a field
and many other items, but modeling them was not always
obvious. Players clearly had to be active entities, and had to
synchronize themselves coherently both in time and space.
The space for synchronization was the field. We have been
given the good advice that things are more affordable when
they are made discrete. We initially thought that the field had
to be a matrix of protected objects and thus we entered the
nightmare of enabling players’ movements without letting
them accumulate resources (i.e. field “cells”), or otherwise
avoiding deadlocks.

Then we understood that it was far easier to develop an access
protocol. The field was still a matrix of cells, but there was
only a protected object used by players who wanted to move.
The idea is that players had to declare themselves to that
object (called Barrier) at the beginning of every single action
(movement, kick, tackle, ...), and then at the end when they
are done.

If nobody else is playing too close, the Barrier grants the
right to play a move, otherwise the player task is requeued
on another entry and then released as soon as the player
who is too close finishes his move. “Too close” means that
their concurrent actions could eventually conflict. This might
happen for example when they are separated by only one free
cell: if they decide to move on that cell, after having seen it
free, they would make an illegal action because in our model
we do not allow players to share the same position.

Time management is probably one of the most critical as-
pects. In our solution, we decided to split time into small
time periods. The important property of time periods is that
nothing is allowed to change twice in the same one. During
a time period, each player can only perform a single action.
All player tasks becomes ready at the beginning of the time
periods in which they have to execute. The ball is a passive
entity and its motion is coded in a way that it changes position
exactly when a new time period begins (and never inside time
periods).

Ada User Jour na l Vo lume 33, Number 3, September 2012

214 The Ada Way: deve lopment of a soccer s imula tor

The ball is the fastest object on the field. If we set its max-
imum speed at 30 m/s, the length of a time period is conse-
quently fixed to 1/30 seconds. Players run far slower, so they
generally execute once and then sleep for many time periods.
The most important property that must be granted for the cor-
rect functioning of the simulator is that all players must have
enough time to execute once in the same time period, as well
as the tasks that execute in consequence of their actions. For
example, when the ball falls out of bounds, also the assistant
referee task wakes up to notify the referee task, which then
wakes up as well to interrupt the game.

The constraint of maximum one execution per time period
imposes a limit in the computations done during a short time
interval. If the computations scheduled at a specific time
period exceed in length, there is no guarantee that everything
works properly. For example, if a player task tries to stop a
ball running very fast and has only a time period to stop it1, it
would fail if the other player tasks scheduled at the same time
period execute before and exceed the time slot. The player
task would fail because - having no CPU time when needed
- it would read the ball position too late, when the ball has
already moved away. This was the worst anomaly we were
able to anticipate, but we never saw it happen in reality.

The passive nature of the ball frees its movements from any
delay that could have happened if the ball was an active
entity. More precisely, this prevents players from delaying
the ball execution, thus impeding who is eventually waiting
to stop it from doing so (because the ball is still in its previous
position). Its passive nature also imposes a timing constraint
in execution, as described above.

We opted for this solution to achieve predictability of exe-
cution, except for some desirable non-determinism (due to
the physical characteristics of players) that we developed
explicitly through randomization. The simulator generates
and compares pseudo-random numbers with a threshold that
corresponds to the probability that a player has to do an ac-
tion successfully. That probability depends on his own skills,
obviously. If the generated number exceeds the threshold, the
player fails (or succeeds).

3.2 Distribution

Since the first analysis and design phases, we decided to build
a distributed system in order to overcome the limitations of
a centralized system; in this way the whole software can run
over a network and be very flexible and scalable. We pro-
ceeded partitioning each component: the Core that manages
the simulation, the Billboard mediator that handles the com-
munication between the partitions and enforces the proper
constraints on the graphical interfaces, and the Front-end
clients, which are the graphical applications by which the
user can control the simulation. Each of these partitions are
designed to run on separate nodes but nothing prevents from
running them all on a single node.

We chose to use Java to build the Front-ends because we al-
ready had some experience with it, this fact forced us to use

1In order to stop the ball, the player must be in its same cell

CORBA as the communication technology between the par-
titions, since the system was no longer homogeneous. Then
we chose to adopt the Push model for both communication
directions between Core and Billboard, but soon we under-
stood that it was simpler (in terms of exchanged data types)
to use the DSA and consequently to develop a homogeneous
Core-Billboard subsystem. A different choice was made
in terms of the exchanged data between Billboard and the
Java Front-ends: we decided to use the Publish-Subscribe
paradigm because we had some different types of GUI, hence
different classes of data consumers. Subsequently, during the
implementation, we came across some hurdles that forced
us to revise the design and to adopt different strategies and
solutions. In the following paragraphs we provide a brief
description of the main obstacles that we encountered during
implementation; things seems always well-defined in theory
but when one goes deeply into practice realizes that the path
is not so straightforward.

One of the first issues regarded the interface between Bill-
board and the Front-ends: we began to write the IDL data
structures that had to be used as objects exchanged between
the two partitions. Once compiled these IDL files in Java and
Ada, we saw that the code generated by IDL was really simi-
lar to objects that Ada uses in its remote procedures calls, so
we tried to use the same Ada data structure generated by the
IAC compiler, using them as objects parameters. We realized
that IAC generates data structures based on CORBA types
and those were not the same types used by the DSA (needed
for Billboard-Core communication). We tried to define some
Ada remote types using CORBA types but we had no success.

We also had some problems configuring PolyORB: once
downloaded and installed the software using “make install”
like any other program, the installation completed without
errors, but when we tried to run PolyORB examples we saw
that something was wrong. We studied the Gnatdist macro-
compiler documentation, trying to understand why it did not
work. Eventually we wrote on Ada IRC channel for help and
they gave us the correct installation parameters revealing that
the configuration step was not so trivial.

During the process of building and interfacing the GUI, we
read a lot of Java documentation and examples, noticing that
Java only implements a small part of CORBA specification.
“Event Service” and “Notification Service” in particular are
not implemented; all examples were outdated, prompting us
to look for other CORBA implementation providers. We
found that nobody has given continuity to the old open-source
projects like OpenORB; in the industry Oracle practically
bought all the other vendors like BEA Tuxedo and Glassfish-
CORBA. We understood that we were dealing with a market
monopoly issue, so we wrote on the PolyORB mailing list
asking if anyone had been able to use the “Event Service”
between Java and PolyORB before. They answered:

“The biggest problem is that even though all
vendors have good intentions and believe in the
seamless interoperability between different prod-
ucts, whenever something bad happens on the line
between two unrelated implementations, you will

Volume 33, Number 3, September 2012 Ada User Jour na l

R. Agui r re Reyes, A. Graz iano, M. Teol i , A . Zuccato 215

find it difficult to get all those vendors together to
help you.”

Maciej Sobczak recommended us to use YAMI4; we read that
it was presented to Ada-Europe last year, so we decided to
give it a try.

We installed YAMI4 and tested it on Java, this time without
troubles, it worked fine like any other API. Regards Ada it was
a little bit different because at first we had to solve a library
linking problem. Having written to the YAMI4 mailing list,
they recommended us to include all YAMI4 sources within
our project, because otherwise we would have got always the
old linking problems. We did not like that solution but we did
not know how to solve the problem otherwise. At the end we
had other little issues like synchronization that were solved
quickly.

Once the development of the modules was at a good stage and
we were ready to integrate the parts, we stumbled across some
integration problems. Firstly we had some equivalent types
defined in both Ada partitions, so we resolved combining and
placing them inside Billboard partition. Then we had to face
a circular dependency problem: when the Core started up, it
needed to have Billboard already started and when Billboard
started up needs to have the Core already started. So we
decided to split Billboard in two partitions: BillboardInput
and BillboardOutput.

Finally, when we integrated the whole Core within the dis-
tributed project we had many dependency problems; to solve
them we needed to define a common directory included by
BillboardOutput, BillboardInput and Core Ada projects. The
fastest solution (clearly not the best) was to include all direc-
tories in all projects.

Apart from technological issues, we learned that distribution
brings many additional difficulties compared to the classical
way of coding a centralized system. Working on separated
nodes exposes to delays because there is the network in be-
tween; moreover we have to deal with possible network issues
and a whole new set of problems such as equivalence of data
types, caching policies, load balancing and the cycle of oper-
ation of the system. Those are things that have to be tested
during system integration.

Sometimes distribution directly affects the design of the inter-
nal parallelism of the partitions, so we need to build robust
protocols and well-defined interfaces in order to have a coher-
ent and maintainable system and avoid or mitigate exceptional
dynamic situations that could arise.

3.3 The technical specification and COMET
The technical specification of our project is also the report we
submitted for the exam at the university. That specification
contains an extensive description and discussion of almost
all the choices we made during the development phases. We
started writing the report when we were fixing and connecting
together the distributed components of the simulator.

During the development, we found a book that presents a
methodology for the development of concurrent and distri-
bution systems called COMET [4]. That book presents an
extensive set of case studies.

At that time it was too late to follow the methodology because
we had already made many design choices, but we decided to
use the book to shape our report according to its case studies.
We thought that this extra effort would have helped us to
structure the report (by giving us a skeleton) and that it would
have been instructive to analyse the quality of our work from
a different perspective.

Re-thinking the project following COMET would have re-
quired us an important effort and would be time consuming,
because we did not start with it from the beginning. We spent
more time than what we might have saved using its use cases.
Thus it has not been an advantage for our report, but it has
been instructive because we had to analyse examples of good
design and to compare them with our project.

In its first half, our specification is really technical and adher-
ent with COMET. In its last half, it becomes more descriptive
because we wanted to provide an in-depth discussion for all
the design choices that were more related to the topics covered
during the course.

4 Things we left behind

During the development phase we had to look for some trade-
offs. This was partially due to the huge size of the project
that required us to cut off some aspects. On the other side,
some aspects could have been addressed differently; in some
case we selected a solution according to some criteria (e.g.
determinism/non-determinism) and in some other we found
many solutions and then we tried to choose the best one. This
was not trivial because in many cases there are many choices
that are equally good, while in others we had not clear how
to choose, due to lack of experience. Sometimes experience
enables the intuitions needed to make the right choices, and
gives some knowledge that cannot be obtained from books.

It also happened that we thought “Maybe we could have
done/tried doing this way...”, but still without the certainty
that it would have been better and clearly without the time
to try many different alternatives. In this section we present
some good argument to argue on our choices and to show that
there is room for improvements, starting from the “Barrier”
mechanism which is probably more interesting than others
for whom (like us) are more concerned with concurrency and
distribution issues than with other aspects.

Since all the awaiting players are held on the same queue,
they all have to be re-evaluated when someone else ends,
and then requeued if the ending player was not the one who
prevented the player under evaluation from playing (the entry
closes automatically when they have all been re-evaluated).
This single queue for awaiting players is clearly a bottleneck,
because in order to release a player we re-evaluate all those
that are waiting. A possibility would be the use of a family of
entries. We did not immediately realise this possibility and
then we found not trivial to find how to adapt our solution
accordingly. The potential advantage of doing so is anyway
reduced by the fact that players are not generally close to each
other, nor they always get ready at the same time.

Ada User Jour na l Vo lume 33, Number 3, September 2012

216 The Ada Way: deve lopment of a soccer s imula tor

Due to their business logic, players are not generally close
to more than one opponent at a time (and they are typically
not close to teammates). This means that in our expectations,
many player tasks are generally allowed to execute concur-
rently. Because of time management, as we will see, a small
number of them becomes ready at the same time, so a few of
them are actually requeued.

Other improvements can be done on players’ artificial intel-
ligence. Players can be seen as reflex agents: they see the
external environment, they choose what to do following the
condition/action rules given by their business logic and then
they act accordingly. Their business logic is quite simple and
has a huge room for improvements. Just to give an example,
when they pass the ball they do not check the positions of
their opponents, they just look for the closest teammate whose
position is more closed to the opponents’ goal. If there is an
opponent in between, they do not change decision.

Improvements can be done also in how their physical charac-
teristics are used. They have a level of health that decreases
when they are tackled and decreases more if they receive fouls.
If their health - after a foul - gets too low, they get injured
and leave the field. The health mechanism could be far more
sophisticated in order to approximate fatigue in a better way.
For example, the physical characteristics of players (speed,
power, accuracy, ...) could be decreased according to their
health. This would be quite easy to implement (because the
simulator already supports this feature), but it is probably
time consuming to tune the system accordingly, because it
requires to test the simulator with many different values until
the right ones are found.

Other possible improvements are the support for a series of
matches, a better support for the physics of the ball and a more
realistic simulation. Players currently pass the ball impressing
it a fixed angle, in a way that the ball hits the ground for the
first time in a position closed (depending on their accuracy)
to that of their target teammates. There is no drift, but at each
bounce the ball loses some energy, until it stops. When trying
to volley the ball, players never hit it badly; this is unrealistic,
because it should be common for them to cause deviations
or to interfere with the ball without being able to give it a
proper direction. Similarly, when a goalkeeper is not able to
catch the ball but he is able to reach it with his hands, he can
hit the ball to throw it away. We are not currently simulating
these behaviours, but they would improve the quality of the
simulation. Corner kicks for example are never assigned
because of this.

Regarding distribution, we implemented all the requirements
and the room for improvement is limited. In fact, having
decided at the beginning the key design factors, the rest of the
work proceeded smoothly, apart from technical configuration
troubles with the tools that we used. Certain things however
could be improved, like the definition of the messages; having
a standard structure among various classes of messages in fact
helps to minimize the misinterpretations of their data fields.
Other improvements could be made on certain functionalities
on user’s side, to increase the usability of the GUI. As a rule
of thumb we saw that giving less constraints to the user results

in more complicated code, that’s why we chose the simpler
but still effective solution.

5 Conclusion
Ada is not just a programming language, it is a world and has
its own way to do the whole. Ada perfectly suits the iceberg
analogy because it is not just about learning the language:
beneath the surface you see there is much more that you need
to know. Ada has its own, clever and unique paradigm. Its
learning curve seems pretty steep and it is common to have
hard times before mastering Ada, but at the end it’s worth to
learn its good style.

Sometimes during the project we experienced the difficulty of
finding out someone who found and possibly solved our own
problems, which is so much easier with more commonly used
languages. From this perspective Ada looks like a language
for the chosen few, not supposed - and probably not willing -
to conquer the masses.

Working in a group always requires a relevant time overhead
for organization and communication. This is the price to pay,
which is even higher if you do not have a long teamwork
experience. Anyway we think that the decision of creating a
team was essential for our success; at the end we think that
we achieved our goal because we were really motivated in
finishing the project. At the beginning everybody wanted to
finish as soon as possible, and in the last days we strived to
complete the project as good as possible.

The project was very challenging, but it also took us much
time. In our opinion the requirements were oversized. It was
time expensive to develop a full soccer simulator and it has not
been easy to fulfill all its requirements. Now the project has
already entered the “try and beat me” mode and we hope that
students will find it easier to keep their time and effort under
control with this modality. By the way, they will start from
our solution, making it better and better. We are honoured that
our solution has been chosen as the reference implementation
and we will be pleased, hopefully, to see the improvements
that could come from the forthcoming competitions.

Even though it has been time expensive, this project was a
worthwhile part of our education that allowed us to learn
many advanced aspects which are essential to enrich our
background. Finally, we believe that the strong effort required
was rewarded by the achievement of an outstanding result.

References
[1] Ada-Europe organization. http://www.ada-europe.org

[2] Student programming Contest “The Ada Way”.
http://www.ada-europe.org/AdaWay/

[3] Project documentation and source code. http://www.ada-
europe.org/AdaWay/Reference_Implementation.zip

[4] H. Gomaa (2000), Designing Concurrent, Distributed,
and Real-Time Applications with UML. Addison Wesley.

Volume 33, Number 3, September 2012 Ada User Jour na l

 217

Ada User Journal Volume 33, Number 3, September 2012

Combining Code Generation and Ada Generics to
implement a Software Product Line
Frank Dordowsky
ESG Elektroniksystem- und Logistik-GmbH, Livry-Gargan-Str. 6, D-82256 Fürstenfeldbruck, Germany;
Tel+49 8 9216 2871; email: Frank.Dordowsky@esg.de

Richard Bridges, Dr. Holger Tschöpe
Eurocopter Deutschland GmbH, D-81663 München, Germany; Tel:+49 89 607 28891/+49 89 607 26713;
email:{Richard.Bridges, Holger.Tschoepe}@eurocopter.com

Abstract

Distributed embedded real-time systems such as the
NH90 avionics system exchange a large amount of
data over real-time data-buses. Due to space and
time restrictions, the data in the messages are highly
compressed and represented at the bit level.
Moreover, system variants usually constitute varying
sets of equipment connected to the data buses so that
the data transmitted via the data buses are highly
susceptible to system variants.

The real-time application software must decode and
encode the data contained in the messages for
processing. This software is complex and difficult to
develop, especially with the additional requirement
that it must be highly adaptive to support varying
system configurations.

As a solution to this problem, the software
architecture of the main computers of the NH90
avionics system provide a generated high level
interface of the message data to the application
software, where the data is represented in domain
specific Ada data types rather than in raw bit
format.

This paper shows how this IO data interface is
designed, and how it is generated using Ada generic
units as basic building blocks. It also describes the
tools used for generation and the approach taken to
qualify the generator tool suite.

Keywords: Avionics Systems, Software Product
Lines, Ada

1 Introduction

1.1 Project background
The NH90 is a medium weight multi-role military
helicopter that comes in two basic versions: the Tactical
Transport Helicopter (TTH) and the NATO Frigate
Helicopter (NFH). It is being produced in more than 20
variants for 14 nations and their armed forces.

The software division at Eurocopter Germany develops
the on-board software for three computers of the NH90
avionics system. The growing number of customers and

their specific set of mission requirements for the NH90
have led to an increasing number of functionally different
helicopter variants. In order to cope with the high number
of software variants, the NH90 software team has
developed concepts and strategies for SW architecture
and tool modifications based on Software Product Line
(SPL) principles [1]. The implementation of the NH90
SPL relies on three pillars [2] software architecture,
software design pattern and, to a very large extent, code
generation.

1.2 Avionics system architecture
The NH90 avionics system architecture is a typical
representative of the federated avionics architecture. In
contrast to Integrated Modular Avionics (IMA), federated
architectures are characterised by a multitude of
specialised equipment that implement the avionics
functions. This equipment (also called devices in NH90
terminology) is connected via avionics data buses to a
central main computer that also controls the deterministic
message traffic on the data buses. Typical examples for
avionics data buses are MIL-Std 1553B (Milbus), ARINC
429, AFDX, but also serial lines (RS-232, RS-485). For
reliability and safety reasons, the main computers as well
as the avionics buses and even critical equipment is often
dual redundant.

The NH90 avionics architecture is structured into two
large subsystems, each controlled by a dedicated main
computer: the CORE Management Computer CMC
controls the CORE subsystem, and the MISSION Tactical
Computer MTC is responsible for the MISSION
subsystem.

The crew interacts with the system with Multi-Function
Displays (MFD) and Display and Keyboard Units (DKU).
MFDs provide system, flight and mission data in a
graphical format to the crew, whereas DKUs are used for
displaying and keying in alphanumeric data [3].

Main computers, MFDs and DKUs as well as most
equipment contains micro processors, so that the overall
system forms a distributed, embedded real-time system.

Avionics systems and military mission systems are safety
critical – for the NH90, a project specific safety level was

218 Combining Code Generat ion and Ada Gener ics to implement a Software Product Line

Volume 33, Number 3, September 2012 Ada User Journal

defined that ranges between design assurance level B and
C as defined by DO-178B [4,5].

NH90 product variants are established by different system
configurations, i.e. different set of equipment of
equipment capabilities in case an equipment is itself
configurable. There are also a varying number of DKUs
and MFDs, and different sets of equipment lead to
variations in the data to be displayed on DKU and MFD.
Especially the data transmitted via the avionics data buses
differ largely between variants.

1.3 Messages and Signals
A message is a set of data words that are together
transmitted over an avionics bus at one time. Size and
number of data words are different for the various data
bus technologies: A Milbus message can consist of up to
32 data words of 20 bits each, with a payload of 16 bit.
ARINC-429 buses transmit single labels that consist of a
32 bit data word with a 19 bit payload.

A signal is the smallest unit of data to be transmitted over
the data bus. It may encompass of a single bit only but
can also extend over several data words (e.g. in case of
strings). For every signal, the Most Significant Bit (MSB)
and the Least Significant Bit (LSB) must be specified to
indicate the order in which the signal representation shall
be interpreted.

In the NH90 project, many signals have a validity bit
attached to it, to indicate to the processing unit that the
transmitted data is valid or not.

The NH90 avionics main computers must handle a very
large amount of signals as indicated in Table 1:

Table 1- Number of Avionics Bus Signals

Avionic Bus
Signals

CMC MTC

IN OUT IN OUT

MIL-1553 13500 26600 5500 7000

ARINC 429 500 1200 300 2700

The CMC must handle a total of more than 40,000 MIL-
Std 1553B signals and the MTC about 3,000 ARINC 429
signals.

The signals are typed: signal data types that are used to
define the semantics of the signals at system level. System
engineers use a data base tool to define and maintain
messages, signals and their types (see section 3.1). Table
2 shows the signal data types that are used within the
NH90 project.

The definition of a numeric interface type (i.e. one of
BIN, BN2 and BCD) for example includes the following
information:

 the number of bits used for the presentation of the
signals of that type,

 LSB and MSB,

 the value represented by the LSB, i.e. the precision of
the signal values,

 the minimum and maximum value for that type,
 and a default value.
This type of information is captured into a data base tool
by systems engineers during systems design and later
used by the code generators.

Table 2 - Signal Data Types

ID Signal Data Type
AS7 ASCII 7 String
AS8 ASCII 8 String
BIN Unsigned Binary
BN2 Signed Binary (2’s complement)
BCD Binary Coded Decimal
TOR Boolean
DIS Endumeration

1.4 Message Data Processing
The application software on the main computers must
extract the data from the messages in up to 50 Hz cycles,
process the data and encode them into messages to the
equipment. Due to different structure, formats and sizes of
the signals, the software for decoding and encoding the
data is complex and therefore difficult and error prone to
develop. Moreover, since the system variants have a large
impact on the data of the avionics buses, the software for
decoding and encoding must be very adaptive to support
this variability.

Our solution to this problem is to provide a high-level
Ada interface to the application software with Ada types
representing domain level concepts rather than bit
encoding. Decoding and encoding of the message data is
handled by the implementation of this interface. In order
to manage the variability for the NH90 system variants,
the interface and its implementation is completely
generated.

The remainder of the paper will describe the architecture
of the I/O subsystem and how it fits into the overall
software architecture, the tools used to generate the
software, and finally the approach taken to qualify the
code generators.

The problem addressed by this paper is common to
distributed embedded real-time systems and so that the
solution may be of interest to other developers of similar
systems. The solution can also be transferred to other
languages than Ada as long as they provide a mechanism
similar to Ada generics.

2 Software Architecture

Code generation is strongly related to the overall structure
of the software. This section provides an overview over
the software architecture of the NH90 main computers
that is necessary to understand how low-level message
data are transformed into high-level data and vice versa.

Both CMC and MTC share the same hardware and the
same software architecture. The architecture of both

F. Dordowsky, R. Br idges, H.Tschöpe 219

Ada User Journal Volume 33, Number 3, September 2012

computers is shaped by the embedded real-time
framework NSS.

2.1 Embedded Real-time Framework NSS
The software framework NSS (NH90 System Software)
relieves the application programmer of intricate real-time
programming tasks such as real-time scheduling, error
and exception handling, redundancy management, and, as
the subject of this paper, device and I/O handling as well
as the data conversion between Ada data structures and
raw I/O data.

The main components of the architecture are the
following (Fig. 1):

The System Controller forms the uppermost layer and
controls the complete operational software. It is
responsible for the control, schedule and dispatch of Ada
tasks as well as general management functions such as
start-up, shutdown and redundancy management for
example. The system controller also determines the
helicopter variant by reading a designated non-volatile
memory location that contains the variant id string.

The System Drivers drive the physical exchange of raw
I/O data. There are drivers for Milbus, ARINC, Ethernet,
serial and discrete lines. They store data received from
external equipment in the Virtual Subsystems (see below),
or retrieve data from the Virtual Subsystems and send it to
the external equipment.

The Application Servers make use of the system drivers
and provide a higher level of abstraction on data
exchange. Important examples of Application Servers are
the DKU Server which handles the communication to the
DKUs, or the NVM Server which manages access to the
non-volatile memory (NVM) of the main computers.
Another application server that is important for the
handling of I/O data is the SMD server which is explained
in more detail section 2.2 below.

The On-board Processing Functions (OPFs) implement
the proper application specific processing requirements.
An OPF is a set of operations which accept data or control
input, perform computational or control functions and
produce data or control output. The OPFs form the
application components and are referred to as operational
software.

The Virtual Subsystems are a common real-time data
store which provides a uniform data abstraction of the
avionic subsystems to the operational processing
functions, and isolates these from I/O interface specific
data representations. They also organise the data
exchange between application components and between
application components and the NSS. Virtual subsystems
represent typical avionics subsystems such as Navigation,
Communication, Mission Management, etc.

The Isolation layer provides an abstract interface to the
equipment software (EQSW) and the Ada Run-time
Kernel (ARTK). It isolates the operational software from
system dependent features and enables the operational
software to run on target and host platforms as well as the
different hardware architectures with only minor
modifications.

The EQSW/ARTK layer contains the software provided
by equipment manufacturers of the computer hardware
and the compiler vendors.

The major topic of this paper is the interface between the
on-board processing functions (the operational software)
and the virtual subsystem as it is detailed in section 2.3
below.

2.2 I/O Processing
The original hardware of the NH90 main computers
consists of two separate processing boards and shared
memory between them, as shown in Fig. 2.

The IO processing board handles all input and output of
computer, whereas the data processing board executes the
application software and the control logic. There are two
independent executables for each processing board, so
each main computer forms a distributed real-time system
in itself.

The system drivers, running on the IO board, obtain
messages from the hardware interfaces via equipment
software and place the messages into a global buffer in
shared memory that is used to exchange data between the
two processor boards.

The Shared Memory Data (SMD) Server takes the
messages from the global buffers and places them into the
raw buffers. Up to this point, messages are handled as
array of data words without considering their internal
structure.

The raw buffers are aligned with the formatted buffers
using a well-known overlay technique. The virtual

Figure 3: - I/O Processing

Figure 2: Software Architecture Overview

220 Combining Code Generat ion and Ada Gener ics to implement a Software Product Line

Volume 33, Number 3, September 2012 Ada User Journal

subsystems access the formatted buffers to provide the
operational software with a high-level view on the data.

The way back is similar: the operational software writes
outgoing data to the formatted buffers using the high-level
interface provided by the virtual subsystems. The SMD
server reads the data for the outgoing messages from the
raw buffers and places them into the global buffer. The
system drivers then pick up the messages and transmit
them via equipment software and interface hardware to
the devices that are connected to the avionics data bus.

2.3 Interface between Virtual Subsystems and
Operational SW

The interface between the virtual subsystems and the
operational software provides the high-level abstraction of
the message data as indicated in section 1.4 above. Virtual
subsystems are divided into virtual devices – a virtual
device is an Ada package representation of a real
equipment connected to a data bus, or an equipment
capability if the equipment is configurable. The virtual
devices form one of the basic building blocks of the
NH90 SPL.

Since a virtual device is implemented as an Ada package,
the Ada package specification of the virtual device
represents the high level interface to the message data to
and from that device. The following code section shows a
part of the Ada package specification for the FLIR
(Forward Looking Infrared) virtual device:

with ...
package Flir_Vd is
 …

 procedure Get_Flir_Los
 (Value : out Flir_Los;
 Valid : out Data_Validity);

 procedure Put_Flir_Mode_Cmd
 (Value : in Flir_Mode_Cmds);
 …

end Flir_Vd;

The name of the equipment is encoded in the Ada
package name.

Domain specific high-level data structures are represented
by Software Objects. A scalar software object consists of
a single data item that represents a single signal. In
addition, the programmer can define more complex
structures to represent more sophisticated domain objects,
although not the full range of Ada types are admitted for
complexity reasons – only the following structured
software objects are possible: record types, array types,
matrix types (two dimensional arrays), and arrays of
records. Nesting, i.e. records of records, is not possible.

For every software object, there may be a put procedure,
or a get procedure, or both, depending on the direction of
the messages that eventually contain the data of the
software object. A put procedure provides data to the
drivers to be transmitted to the equipment; a get

procedure allows retrieval of the data that has been
received from the equipment.

In the code section shown above there is a get procedure
for the Line-of-Sight (LoS) Data that are actually a record
containing azimuth and elevation of the line of sight of
the FLIR sensor. The validity of the LoS data is indicated
with a separate Valid parameter in the get procedure.

The FLIR equipment accepts moding commands that are
also modelled as software objects so that they will be
transmitted to the FLIR when placed into the virtual
device with the corresponding put procedure. The type for
this software object is an enumeration type. The NH90
coding rules force all enumeration types to include the
enumeration literal Undefined that indicates non-
validity so that the put and get procedures for software
objects with enumeration type do not require an additional
parameter for the validity.

To summarise: the high level Ada interface of message
data is contained in a number of virtual devices that are
part of a virtual subsystem. The virtual devices represent a
real equipment connected to one of the avionics data
buses. As such, the virtual devices are an instance of the
proxy pattern [5,6]. The high-level data of a virtual device
is represented as software objects, and for every software
object there may be a put and a get procedure. On-board
processing functions use this interface as a high level
interface to low-level I/O data without the need to know
about their bit-level representation.

The following subsections describe the implementation of
the virtual subsystems in more detail.

2.4 Virtual Subsystem Architecture
The virtual subsystem component of the architecture is in
itself layered in order to reduce the complexity of the
generated code and to facilitate debugging and
qualification of the generated code. Fig. 3 shows the three
sub-layers:

1. The bottom layer is the Generic Sub-layer that
provides a fixed set of fundamental translation
generics for numeric data, enumerations and
strings.

2. The Conversion Sub-layer is a completely
generated set of the instantiations of the
translation generics for all required mappings
between low-level message data and their high-
level Ada representations.

3. The Structure Access Sub-layer provides the
actual access to the high-level virtual subsystem
data, as well as more complex data structures
such as arrays and records. This sub-layer is also
completely generated.

Aside to these sub-layers, there is a generated data
component that contains the message buffers. The raw
message buffers as they are used by the system drivers are
simply arrays of data words. They are overlaid with the

F. Dordowsky, R. Br idges, H.Tschöpe 221

Ada User Journal Volume 33, Number 3, September 2012

formatted buffers that represent the bit level layout of the
messages.

2.4.1 Buffer Overlay
There is a separate buffer for every message on the data
buses. These raw buffers are aliased with record
structures as shown in the code section below: the
formatted buffer Flir_Los_Fmt is aliased with the
corresponding raw buffer Flir_Los_Raw. The overlay
is enforced with an address specification.

Flir_LoS_Fmt : Flir_LoS;
 for Flir_LoS_Fmt use at Flir_LoS_Raw’Address;

 type Flir_LoS is
 record
 ...
 Flir_LoS_Valid : T_B_Validity;
 ...
 Flir_Los_Az : Raw_Int_16;
 Flir_Los_El : Raw_Int_16;
 end record;

 for Flir_LoS use
 record
 ...
 Flir_LoS_Valid at 0 range
 W16_Bit_2_2'First .. W16_Bit_2_2'Last;
 ...
 Flir_Los_Az at 2 range
 W16_Bit_0_15'First .. W16_Bit_0_15'Last;
 Flir_Los_El at 4 range
 W16_Bit_0_15'First .. W16_Bit_0_15'Last;
 end record;

 for Flir_LoS'Size use 48;

The record components of the formatted buffer refer to
the individual signals of the message that will be put into
the corresponding raw buffer. The component types form
an Ada representation of the signal data types - they are
called Driver Basic Types.

Generated record type presentations allow a bit level
access to the individual signals within a message buffer.
The position and length of the individual components are
calculated by the generator tools from signal type

information that are associated with the signal (see section
1.3).

The ranges of the component locations are specified
indirectly with the 'First and 'Last attributes of a
type that represents the bit positions within a data word.
This is necessary because the project uses several
compilers of different vendors, and these compilers define
a different bit and byte ordering in a data word. Since Ada
95 it is possible to enforce the bit ordering of a type with
the Bit_Order attribute, but this was not available with
Ada 83.

2.4.2 Generic Sub-layer
The generics sub-layer provides the basic building blocks
for the data conversion in form of a set of generic
transformation routines. There is a total of 8 generic
conversion packages called Base Conversions. The base
conversion packages are required for the combination of
interface types and high-level software types, as indicated
in table 3. There are three classes: numeric conversions,
discrete conversions, and string conversions. The
interface types are those defined in section 1.3 above. For
the numeric conversions, the target software type is either
an integer type or a floating point type.

Table 3 - Generic Conversion Packages

Class Generic
Conversion
Package (Base
Conversions)

Interface
Type

Software Type

Numeric

Bin_Int_Generic BIN/BN2 Integer Type

Bin_Real_Generic BIN/BN2 Real (Float) Type

Bcd_Int_Generic BCD Integer Type

Bcd_Real_Generic BCD Real (Float) Type

Discrete
Bool_Generic TOR Boolean

Enum_Generic DIS Enumeration

String
Str_Ascii7_GenericASCII7 String Type

Str_Ascii8_GenericASCII8 String Type

The code snippet below shows the generic package
specification for the binary to real conversion as an
example.

generic
 type Raw is range <>;
 Raw_Min : Raw;
 Raw_Max : Raw;
 Raw_Default : Raw;

 type Eng is digits <>;
 Eng_Min: Eng;
 Eng_Max: Eng;
 Eng_Default : Eng;
 Lsb : Universal_Types.Real;

package Bin_Real_Generic is

 type Image_With_Val is
 record

Conversion Sub-Layer

<Device>Enum
Conversion

String
Conversion

Numeric
Conversion

Generic Sub-Layer

Enum Base
Conversion

String Base
Conversion

Numeric Base
Conversion

Structure Access Sub-Layer

<Device>_Vd

Raw Buffer

Formatted
Buffer

«overlay»

Figure 4: VS Layers and Components

222 Combining Code Generat ion and Ada Gener ics to implement a Software Product Line

Volume 33, Number 3, September 2012 Ada User Journal

 Value : Eng;
 Valid : Boolean;
 end record;

 type Raw_With_Val is
 record
 Value : Raw;
 Valid : Boolean;
 end record;

 function To_Image
 (Source : in Raw;
 Validity : in Boolean)
 return Image_With_Val;

 function To_Raw
 (Source : in Eng;
 Validity : in Boolean)
 return Raw_With_Val;

end Bin_Real_Generic;

The package imports the drivers basic type (Raw) and the
high-level Ada type (Eng), together with their admissible
minimum and maximum values. The last generic formal
parameter declaration LSB represents the precision of the
representation.

The generic package exports two conversion functions,
one for the conversion of the raw driver type to the high-
level Ada type (function To_Image) and vice versa
(To_Raw).

The conversion functions do not only convert the values
but also establish the validity of the converted values.
Two record types that bundle the converted value with its
validity are necessary to be able to use conversion
functions rather than procedures.

As shown in the code snippet below, the actual
conversion is performed in the declaration part of the
conversion function. The body of the function then checks
if the converted value is within the admitted range and
returns not valid (Validity = False) if this is not
the case.

function To_Image
 (Source : in Raw;
 Validity : in Boolean) return Image_With_Val is

 Result : Image_With_Val
 := (Value => Eng_Default, Valid => False);
 Calculated : Universal_Types.Real
 := Universal_Types.Real (Source) * Lsb;

begin
 if Calculated in Eng_Min .. Eng_Max then
 Result
 := (Value => Eng (Calculated), Valid => Validity);
 else
 Result := (Value => Eng_Default, Valid => False);
 end if;
 return Result;
exception
 when Numeric_Error | Constraint_Error =>

 return (Value => Eng_Default, Valid => False);
end To_Image;

All other conversion functions in the eight generic base
conversion packages are set up in a similar way.

2.4.3 Conversion Sub-layer
The conversion sub-layer consists of a large set of generic
instantiations of the base conversion packages and is
completely generated. The generator exploits the type
mapping between the interface type and the drivers basic
type on one hand and a similar mapping between the
interface types and the high-level software types on the
other (see Fig. 4).

These mappings are managed by software engineers in a
data base tool called ODIN (see section 3.1 for more
information on ODIN). For every interface type there is a
pair of driver basic type and software type, and for every
type pair there is an instantiation of the suitable base
conversion package.

The code snippet below shows an instantiation of the
binary to real conversion for the conversion of an angle
used in the MISSION system:

 package T_I _Angle is
 new Bin_Real_Generic
 (Raw => Raw_Int_16,
 Raw_Min => Raw_Int_16 (-32768),
 Raw_Max => Raw_Int_16 (32767),
 Raw_Default => Raw_Int_16 (0),
 Eng => Degree,
 Eng_Default => Degree (0.0),
 Lsb => Universal_Types.Real (0.00549317));

The instantiation uses a general purpose floating point
type Degree exported from package Universe that
represents angles measured in degrees.

2.4.4 Structure Access Sub-layer
The Structure Access Layer now implements the
operational interface, i.e. it provides the package bodies
of the package specifications introduced in section 2.3
above. The code section below shows the implementation
of the body of the get procedure for the Flir_Los
software object, which is actually a record with the
components Flir_Los_Az (Azimuth) and
Flir_Los_El (Elevation). The implementation uses
the conversion package for angular data that was shown
in section 2.4.3 above.

package body Flir_Vd is

 procedure Get_Flir_LoS
 (Value : out Flir_LoS;
 Valid : out Data_Validity) is

 My_Los_Az : T_I_Angle.Image_With_Val :=

Figure 5: Type Mappings used for Generation

F. Dordowsky, R. Br idges, H.Tschöpe 223

Ada User Journal Volume 33, Number 3, September 2012

 T_I_Angle.To_Image
 (Flir_LoS_Fmt.Flir_LoS_Az,
 Flir_LoS_Validity and
 To_Bool
 (Flir_LoS_Fmt.Flir_LoS_Valid));

 My_Los_El : T_I_Angle.Image_With_Val :=
 T_I_Angle.To_Image
 (Flir_LoS_Fmt.Flir_LoS_El,
 Flir_LoS_Validity and
 To_Bool
 (Flir_LoS_Fmt.Flir_LoS_Valid));
 begin
 Value := (Los_Az => My_Los_Az.Value,
 Los_El => My_Los_El.Value);
 Valid := My_Los_Az.Valid and My_Los_El.Valid;
 end Get_Flir_LoS;

end Flir_Vd;

The actual conversion takes place in the declaration part,
mainly because the NH90 coding rules require all local
variables to be initialised. This is possible because the
conversion subroutines are declared as functions and not
as procedures. The input parameters to the conversion
functions are the components of the formatted buffer that
represent the signals of the message that encode the
azimuth and elevation, as well as the signals validity.
Note that the overall validity of the component of the
software object is the logical conjunction of the signal
validity and the overall message validity
(Flir_Los_Validity is the message validity and
Flir_Los_Fmt.Flir_LoS_Valid is the signal
validity).

The structure access sub-layer is completely generated
and can become quite complex for software objects of
more sophisticated types such as matrix of array of
records.

3 The NH90 Tool Chain

3.1 NH90 Code Generation Tools
Code generation in the NH90 software project is based on
data kept in relational databases rather than in graphical
models or domain specific languages (DSL). The
advantage of this approach is its capability to consistently
handle a very large amount of data (more than 10,000
signals, see section 1.3). Fig. 5 shows the tools that are
used for code generation [1]:

The definition of equipment, equipment interfaces
together with messages, their signals and the signal data
types are maintained by systems engineers in a database
tool named Avionics Data Base System (ADBS). These
data are imported over a gateway into the software
engineering database ODIN (OFRS Data and Interfaces
of NH90). With this import, the software engineers have
the information described in section 1.3 available so that
it is not necessary to re-enter them into their tools. The
Software Requirements Specifications (SRS) are created
by systems engineers in the requirements engineering tool
DOORS and exported as documents. The software

engineers use the SRS to establish high-level domain
types. In ODIN, the software engineers map the low-level
driver basic types and the high-level domain abstractions
to the signal data types that are imported from ADBS, as
indicated in Fig. 4 in section 2.4.3 above.

Extract scripts export selected data from ODIN to prepare
for subsequent code generation. Since not all variants
need all I/O data, the extract scripts take a selection of
helicopter variants as input and select only those data
from ODIN that is relevant to the selected variants. This
is described in more detail in section 3.3 below.

The generator suite is a set of PERL programs that take
the data extracted from ODIN and uses a set of templates
to generate the final source code, which can then be
compiled and linked to the operational software. The
generator suite is not aware of helicopter variants – all
variant specific processing and selection is performed in
the extract scripts, solely controlled by data of the ODIN
database.

3.2 Template Based Code Generation
The generation process is based on templates specified in
the Perl template language [8]. The following listing
shows the template for the generation of the virtual device
package specification, using directive tags of the
Template Toolkit:

<tmpl_include name="Common/spec_header.tmpl">

-- Package <tmpl_var name="device">_Vd
-- provides the procedural interface for
-- <tmpl_var name="device"> Vd.

<tmpl_loop name="withs"><NOBR>
with <tmpl_var name="name">;
</tmpl_loop><NOBR>

package <tmpl_var name="device">_Vd is

<tmpl_loop name="sw_object">

 -- This represents the procedural interface
 -- to the <tmpl_var name="suffix"> VD.

Generated
Sources

SRSSRS

ADBS

ODIN

Extract
SQL

Variant
Select

PERL
Generator

SuiteManual input of
SW specific data

Gateway

I/O Definition.
Database

Central SW
Database

Templates

Figure 6: NH90 Code Generation Tool Chain

224 Combining Code Generat ion and Ada Gener ics to implement a Software Product Line

Volume 33, Number 3, September 2012 Ada User Journal

 <tmpl_if name="is_get"><NOBR>
 <tmpl_include name="SS#LLD.ads.get.tmpl">
 </tmpl_if><NOBR>
 <tmpl_if name="is_put"><NOBR>
 <tmpl_include name="SS#LLD.ads.put.tmpl">
 </tmpl_if><NOBR>
</tmpl_loop><NOBR>

end <tmpl_var name="device">_Vd;

The template variables such as device or sw_object
will be substituted with data obtained from the extract
files. The template in the listing contains a loop over all
software objects associated with the device
(tmpl_loop name="sw_object"). Template
control logic (e.g. tmpl_if name="is_get") checks
if there is a get procedure defined for the software object,
or a put procedure or both. The generation of the actual
procedure specification is delegated to another template
using the tmpl_include tag.

With the sophisticated control logic of the template
language it is possible to control the output of the
generation process using the data extracted from the
database tool ODIN.

3.3 Variant Handling in the Generator Tool
Chain

One of the driving forces for the NH90 SPL is that the
software for a helicopter variant or set of variants shall
only include the code that is necessary for that variant or
set of variants, and not more [1,9]. Moreover, the
software for a helicopter variant or set of variants shall be
assembled from pre-fabricated components rather than
copied and modified, which also applies to data used for
code generation. To achieve this in an efficient way, the
generator tool chain has to fulfil the following
requirements:

 Selection and control of variant specific code
only from data kept in the ODIN database (data
centric rather than code centric).

 A single data repository for all variants in order
to avoid duplicated effort for maintaining several
copies of the same data. This comprehensive
repository is called a superset.

The solution to these requirements is the identification of
building blocks that can be assembled to form a helicopter
variant. Virtual devices are the ideal candidates to become
these building blocks because software objects are too
fine grained so that there are too many of them, whereas
virtual subsystems are too coarse and will be part of every
helicopter variant.

At the highest level, helicopter variants are identified by a
selection of features. Functional features are defined as
the largest coherent set of functions that

 are either together included into or excluded
from a helicopter variant, or

 are activated or de-activated together, and
 do not change across helicopter variants.

Physical equipment or special capabilities of such
equipment implement the functional features. The
equipment is represented by virtual devices so that
helicopter variants determine the virtual devices to be
included into the variant specific software. In ODIN, it is
therefore possible to relate devices to the features that
they implement – a feature is implemented by at least one
virtual device, see Fig. 6.

For variant selection, ODIN must also be able to manage
the relation between helicopter variants and the set of
features that characterise the variant.

In the NH90 project, there is not a one-to-one
correspondence between executable software and
helicopter variants. Instead, it is possible that a single
executable is used for several variants. The actual
helicopter variant is encoded in non-volatile memory and
is evaluated at start up of the software [2]. The set of
variants that can be supported by a single executable
software is defined in a variant group (Fig 6).

The extraction script takes a variant group as input and
selects all virtual devices that implement at least one
feature required for at least one variant in the variant
group. This way, the selection of data to be extracted from
the database solely depends on the data that are managed
in ODIN.

4 Code Generator Qualification

Only a minor part of the total development effort in safety
critical military avionics projects is actually induced by
coding (see for example [10]). Therefore, full benefit of
code generation can only be realised if also verification
and documentation activities can be reduced or even
eliminated or automated. This approach is only acceptable
to certification authorities if the generator tools have been
qualified, which is the case for the NH90 code generators.
The qualification process was established in a generator
qualification plan and agreed with the certification
authority.

The generator qualification plan defines a number of test
classes, where every test class represents a certain
ramification of the extraction or generation logic and
hence produces different output. For the code generator
components that are the subject of this paper, 56 test
classes have been specified. For every test class, there is a

Virtual
Subsystem

Device

Software
Object

Feature
Helicopter

Variant

Variant
Group

1..n

1..n

implements

11..n

required for

0..n 0..n

grouped by
1..n

0..n

Figure 7: Feature based Code Selection

F. Dordowsky, R. Br idges, H.Tschöpe 225

Ada User Journal Volume 33, Number 3, September 2012

representative test data set defined in ODIN. The code
generators take these test data to generate example code.

For every test class, there is also a unit test defined,
implemented in a set of test drivers to allow automation of
the test execution [11]. The test drivers execute the unit
tests on the example code and produce test result
documentation automatically.

5 Summary

High level access to low level interface data is a common
problem in resource constrained distributed embedded
real-time systems. One solution to this problem is to
separate the handling of low level interface data from
higher level application logic (separation of concerns)
and to provide a structured, domain related high-level
interface to the application software.

The mapping between low-level interface data
representation and the domain related high-level data
representation should be generated, at least if there is a
high number of interface data involved. Generation
relieves software developers from error prone and time
consuming low level bit manipulation.

In the NH90 software project, code generation is one of
the pillars on which the implementation of the NH90
Software Product Line relies. The variations induced by
the different system configurations have a large impact on
the messages and signals transmitted over the avionics
data buses. With code generation, developers do not need
to take care about inclusion or exclusion of signals and
messages for the different variants.

The code generators in the NH90 project have been
qualified in order to reduce the effort required for
verification and documentation of generated code, as it is
required for safety critical avionics software. The overall
reduction in development effort is significant since more
than 50 percent of the software of the NH90 avionics
main computers is generated.

References

[1] F. Dordowsky and W. Hipp (2009), Adopting
software product line principles to manage software
variants in a complex avionics system, in
Proceedings of the 13th International Software
Product Line Conference volume 1, J. D. McGregor
and D. Muthig (eds), Software Engineering Institute.

[2] R. Bridges, F. Dordowsky, and H. Tschöpe (2011),
Implementing a software product line for a complex
avionics system in Ada 83, Ada User Journal 32(2),
pp 107–114.

[3] R.Bridges (2007), NH90 helicopter avionics systems
from the 1990s to 2010 and beyond, in Workshop
Software-Architekturen für Onboardsysteme in der
Luft- und Raumfahrt. Fachausschuss T6.4 Software
Engineering, Deutsche Gesellschaft fuer Luft- und
Raumfahrt.

[4] RTCA DO-178B Software Considerations in
Airborne Systems and Equipment Certification,
RTCA/EUROCAE Std. ED-12B/DO-178B,
December 1992.

[5] G. Budich (2000), Generation of Ada code from
specifications for NH90 computers., in Proceedings
of the 26th European Rotorcraft Forum, pp 26–29.

[6] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal (1996), Pattern-oriented
Software Architecture: A System of Patterns, John
Wiley & Sons.

[7] E. Gamma, R. Helms, R. Johnson, and J. Vlissides
(1995), Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

[8] D. Chamberlain, D. Cross, and A. Wardley (2003),
Perl Template Toolkit, O’Reilly Media. Used in
NH90 for code generation.

[9] F. Dordowsky, R. Bridges, and H. Tschöpe (2011),
Implementing a software product line for a complex
avionics system, in Proceedings of the 15th
International Software Product Line Conference, I.
Schaefer, I. John, and K. Schmid (eds), IEEE
Computer Society, pp 241–250.

[10] C. Jones (2002), Software cost estimation in 2002, in
CrossTalk: The Journal of Defense Software
Engineering, pp 4–8.

[11] I. Groselj (2006), Prozeß zur qualifizierung von
generiertem code im nh90 sw - projekt. In Workshop
Software-Architekturen für Onboardsysteme in der
Luft- und Raumfahrt. Fachausschuss T6.4 Software
Engineering, Deutsche Gesellschaft fuer Luft- und
Raumfahrt.

 227

Ada User Journal Volume 33, Number 3, September 2012

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/adaanswers/gems.

Gem #127: Iterators in Ada 2012 -
Part 1
Emmanuel Briot, AdaCore

Abstract. Ada 2012 iterators provide syntactic sugar for
iterating over data structures. This Gem describes the new
syntax and what it brings to the language. Part 2 will explain
how you can define your own iterators when formulating new
data structures.

Let’s get started…

The following examples assume we have instantiated an Ada
list such as:

 with Ada.Containers.Doubly_Linked_Lists;
...
declare
 package Integer_Lists is
 new Ada.Containers.Doubly_Linked_Lists (Integer);
 use Integer_Lists;

 L : Integer_Lists.List;

begin
 L.Append (10);
 L.Append (20);
end;

In Ada 2005, an iteration over this list would look like:

declare
 C : Integer_Lists.Cursor;
begin
 C := First (L);
 while Has_Element (C) loop
 -- Print current value
 Put_Line (Integer'Image (Element (C)));

 -- Change the element in place in the list
 Replace_Element (L, C, Element (C) + 1);

 Next (C);
 end loop;
end;

If the list contains elements more complex than integers
(controlled types for instance), the above code is not very
efficient, since a call to function Element will return a copy of
the element. To avoid a copy, one could use a nested
subprogram and the procedures Query_Element and
Update_Element, but that would make the code more complex
and less readable.

Ada 2012 defines three forms of iterators. The first form is
called a generalized iterator. The syntax and semantics for it is

given in the Ada 2012 Reference Manual (5.5.2), but here is an
example of its use:

for C in L.Iterate loop
 Put_Line (Integer'Image (Element (C)));
 Replace_Element (L, C, Element (C) + 1);
 end loop;

The third form of iterator, called an array component iterator,
is similar to a container element iterator, but applies to array
types. Here is an example of this form:

declare
 Arr : array (1 .. 2) of Integer := (1 => 10, 2 => 20);
begin
 for E of Arr loop
 Put_Line (Integer'Image (E));
 E := E + 1; -- Change in place
 end loop;
end;

As the example shows, we can even modify the iterator
element E directly, and this modifies the value in the list itself.
This is also efficient code when the list contains complex
types, since E is not a copy of an element, but a reference to it.

The second part of this Gem series will explain how to write
your own iterators and how the loops shown above are
expanded by the compiler.

Gem #128: Iterators in Ada 2012 -
Part 2
Emmanuel Briot, AdaCore

Abstract: The first part of this two-part Gem series explained
the basics of Ada 2012 iterators. Part 2 goes into more detail,
showing how to create iterators for user-defined data
structures.

Let’s get started…

In Part 1, we discussed the basic forms of iterators in Ada
2012 and gave some simple examples. This part goes into
greater detail, showing how to create iterators for your own
data structures. We'll start by learning about two supporting
features introduced in Ada 2012.

The first is the new generic package Ada.Iterator_Interfaces.
This package defines two abstract types Forward_Iterator and
Reverse_Iterator. The intent is that each container should
declare extensions of these and provide concrete
implementations for their primitive operations. Briefly, an
iterator encapsulates a cursor and a container, and hides the
First, Has_Element, and Next operations.

The second new feature is that of a reference type. A reference
type is a record with an access discriminant that defines the
"Implicit_Dereference" aspect. This is the actual type
manipulated by the container element iterators, and the aspect

228 Ada Gems

Volume 33, Number 3, September 2012 Ada User Journal

eliminates the need to write ".all" every time an element is
referenced.

Here is an example of such a declaration, taken from the
standard package Ada.Containers.Doubly_Linked_Lists:

 type Constant_Reference_Type
 (Element : not null access constant Element_Type)
 is private with Implicit_Dereference => Element;

Whenever we have such a reference, for example E of type
Constant_Reference_Type, we can just use the name "E", and
this is automatically interpreted as "E.Element.all". Another
advantage of this type over a simple access to element is that it
ensures the user cannot accidentally free the element.

Now that we understand what iterators and references are, we
can start applying them to our own data structures.

Let's assume we are creating our own data structure (such as a
graph, a queue, or anything that is not a direct instantiation of
an Ada 2005 container). The following examples are framed as
a "list", but this really applies to any data structure. Let's also
assume that the container holds unconstrained elements of type
"T'Class", giving us a more realistic and interesting example
than the Part 1 example that just contained Integers.

To provide iterators for this data structure, we need to define a
number of Ada 2012 aspects, described in more detail below.

type T is tagged null record; -- any type

 type T_List is ... -- a structure of such types
 with Default_Iterator => Iterate,
 Iterator_Element => T'Class,
 Constant_Indexing => Element_Value;

 type Cursor is private;
 function Has_Element (Pos : Cursor) return Boolean;
 -- As for Ada 2005 containers

 package List_Iterators is
 new Ada.Iterator_Interfaces (Cursor, Has_Element);

 function Iterate (Container : T_List)
 return List_Iterators.Forward_Iterator'Class;
 -- Returns our own iterator, which in general will be
 -- defined in the private part or the body.

 function Element_Value (Container : T_List;
 Pos : Cursor) return T'Class;
 -- Could also return a reference type as defined in the
 -- Part 1 Gem

For those unfamiliar with aspects in Ada 2012, it's worth
noting that they can be forward references: in the case above,
for instance, the aspect "Default_Iterator" is defined before
Iterate is declared (and we could not declare it first in any case,
since the function Iterate needs to know about T_List).

To understand the aspects, let's look at how the generalized
iterators are expanded by the compiler.

This loop:

 for C in List.Iterate loop -- C is a cursor
 declare
 E : T'Class := Element (C);
 begin

 ...
 end;
 end loop;

is expanded into:

 declare
 Iter : Forward_Iterator'Class := List.Iterate;
 -- Default_Iterator aspect
 C : Cursor := Iter.First; -- Primitive operation of iterator
 begin
 while Has_Element (C) loop
 -- From Iterator_Interfaces instance
 declare
 E : T'Class := List.Element_Value (C);
 -- Constant_Indexing aspect
 begin
 ...
 end;
 C := Iter.Next (C); -- Primitive operation of iterator
 end loop;
 end;

The subprogram Iterate, referenced in the "Default_Iterator"
aspect, creates and returns a new iterator. In general, it will
also hold a reference to the container itself to ensure the
container lives at least as long as the iterator.

The iterator is then used to get and manipulate a cursor.
Retrieving an element from the cursor is done via the function
defined in the "Constant_Indexing" aspect. (A similar aspect
"Variable_Indexing" is used when the loop needs to write the
element, but we will not demonstrate that here.)

The function Element_Value is written here in its simplest
form: it directly returns a copy of the element contained in the
data structure. We could choose instead to return a reference
type as explained in the Part 1 Gem, to avoid copies of the
elements. (Note that in the case of Variable_Indexing, the
function's result type must be a reference type.)

The container element iterators are expanded similarly. The
only difference is that the cursor C is not visible.

For the actual implementation of Iterate and Element_Value,
we recommend looking at the implementation for the standard
containers, such as Doubly_linked_Lists. All of the Ada 2005
containers were enhanced to support iterators, and these
provide various examples of code that can be reused for your
own applications.

Finally, let's look at a code pattern that might be useful. The
test case is the following: we have implemented a complex
data structure that contains elements of type T'Class. When we
use the container element iterators, E is thus of type T'Class,
which we can express with the following syntax:

 for E : T'Class of List loop
 ...
 end loop;

Now let's consider a type TChild that extends T. We can still
store elements of type TChild in the data structure, but we then
need explicit conversions in the loop above to cast E to
TChild'Class. We would like to minimize the amount of code
needed to create a container that holds TChild'Class elements.
For instance:

 type TChild_List is <see full type below>;

Ada Gems 229

Ada User Journal Volume 33, Number 3, September 2012

 Child_List : TChild_List;
 for E of Child_List loop
 -- E is of type TChild'Class, so no conversion is needed.
 end loop;

Of course, one possibility is to make our container generic and
instantiate it once for T'Class, once for TChild'Class, and so on.
That's certainly a minimal amount of Ada source code, but it
can still represent a significant amount of compiled code and
will increase the size of the final executable. In fact, we can
simply mirror the T / TChild hierarchy in the containers
themselves and redefine only a minimal number of aspects to
achieve the goal.

 type TChild_List is new T_List with null record
 with Constant_Indexing => Child_Value,
 Default_Iterator => Iterate, -- inherited from T_List
 Iterator_Element => TChild'Class;

 function Child_Value (Self : TChild_List; Pos :
Cursor'Class);
 return TChild'Class is
 begin
 return TChild'Class (Element_Value (Self, Pos));
 end Child_Value;

The amount of additional code is minimal (just one extra
function, which is likely to be inlined), and now we can write
the container element loop with no need for conversions. Since
the containers themselves are now organized as a hierarchy,
we can have subprograms that work on a T_List that also work
on a TChild_List (the usual reuse of object-oriented code).

However, the new structure is not perfect. One caveat is that
it's possible to insert an object of type T in a TChild_List
(because the list contains T'Class elements). The consequence
is that the iterator will raise Constraint_Error in the implicit
call to Child_Value in the expanded code.

We hope that this Gem has helped to explain some of the
"magic" behind the Ada 2012 iterators and containers, and will
enable you to use them more effectively in your own code.
Even though they do require quite a lot of boilerplate code,
written once up front for a container, they definitely make
code in clients of the container easier to read and understand.

One final note: the examples in this Gem require a fairly
recent version of the compiler, which includes a number of
adjustments to reflect recent clarifications in the Ada 2012
rules.

230

Volume 33, Number 3, September 2012 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Press Release
	Rationale for Ada 2012: 4 Tasking and Real-Time
	What is Language Technology in Our Time - Panel
	Reliable Software, a Perspective from Industry - Panel
	The Ada Way: development of a soccer simulator
	Combining Code Generation and Ada Generics to implement a Software Product Line
	Ada Gems
	National Ada Organizations

