

Ada User Journal Volume 33, Number 4, December 2012

ADA
USER
JOURNAL

Volume 33

Number 4

December 2012

Contents
Page

Editorial Policy for Ada User Journal 232

Editorial 233

Quarterly News Digest 235

Conference Calendar 259

Forthcoming Events 264

AdaWay Try-and-Beat-Me Challenge 270

Special Contribution

 J. G. P. Barnes
“Rationale for Ada 2012: 5 Iterators, Pools, etc.” 271

Articles from the Industrial Track of Ada-Europe 2012

 F. Kamei, D. C. Carta, I. Broster, W. Lunniss
“Tool Support for Verification of Software Timing and Stack Usage
 for a DO-178B Level A System” 289

 F. Ferrero, E. Alaña, A. I. Rodríguez, J. Zamorano, J. A. de la Puente
“Including Hardware/Software Co-design in the ASSERT Model Driven Engineering Process" 293

Ada User Guide

 P. V. Rego
"Integrating 8-bit AVR Micro-Controllers in Ada" 301

Ada-Europe Associate Members (National Ada Organizations) 306

Ada-Europe 2012 Sponsors Inside Back Cover

232

Volume 33, Number 4, December 2012 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 233

Ada User Journal Volume 33, Number 4, December 2012

Editorial

The reader may remember that last June the Ada User Journal published a press release on the completion of the design of
Ada 2012 and the submission to ISO for approval. I am glad to inform that this formal process concluded this December, with
the official publication of the new version of the Standard. The Standard received the approval vote of 18 members of ISO,
without comments or rejection ballots, in a swift process that between submission and approval only took around six months
to proceed. This was only possible due to the high-quality of the work carried by the ARG and WG9 prior to submission, and
the effort to quickly act in the ISO process.

I am sure that you will join me in congratulating both groups for this effort, and for the successful outcome.

As for the contents of the issue you are reading, we provide a new chapter of the Rationale for Ada 2012, which deals with
improvements on several areas of the language, such as iterators, storage pools, new restrictions, a new profile
(No_Implementation_Extensions), etc.

Afterwards, we publish two papers derived from the industrial track of Ada-Europe 2012. In the first paper, a group of
authors from Embraer, Brazil, and Rapita Systems, UK, present the experience of obtaining worst-case execution times and
worst case stack usage for a DO-178B level A Flight Control System. In the second paper, authors from GMV, Spain, and
Universidad Politécnica de Madrid, Spain, present a study on the integration of Hardware/Software co-design in the ASSERT
model-driven engineering process.

The issue continues with the return of the section on Ada User Guides, presenting a paper on how to program 8-bit AVR
Micro-Controllers with Ada, a contribution from Pablo Rego, from Embraer, Brazil. After a successful session at Ada-Europe
2012 on using Ada for Lego Mindstorms and Arduino-based devices, this is another contribution to promote the use of Ada
for programming small embedded systems.

And as usual the News Digest, Calendar and Forthcoming Events sections complete the issue. In the latter, the reader will
find information on several events related to Ada which will take place in 2013: the Ada Developer Room at the Free and
Open source Software Developers' European Meeting taking place February 3 in Brussels, Belgium; the 16th International
Real-Time Ada Workshop, which will take place April 17-19, in York, UK; the 18th International Conference on Reliable
Software Technologies – Ada-Europe 2013 that will take place June 10-14, in Berlin, Germany; and the SIGAda’s High
Integrity Language Technology conference, taking place fall 2013, in Pittsburgh, USA. Undoubtedly, a full year.

A final note to the “try and beat me” poster that the issue displays; after the announcement of the winners of the AdaWay
student contest, and the posting online of the sources of this implementation, an open ended challenge is now open: any
student team can attempt to improve over the reference implementation, on any of the evaluation criteria. Good Luck!.

 Luís Miguel Pinho
Porto

December 2012
 Email: AUJ_Editor@Ada-Europe.org

 235

Ada User Journal Volume 33, Number 4, December 2012

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada Semantic Interface

Specification 235
Ada and Education 235
Ada-related Resources 235
Ada-related Tools 236
Ada-related Products 240
Ada and GNU/Linux 241
Ada and MAC OS X 243
References to Publications 243
Ada Inside 244
Ada in Context 245

Ada Semantic Interface
Specification (ASIS)

Is ASIS being utilized as
much as it can be?

From: Joseph Wisniewski
<wisniewski.ru@gmail.com>

Date: Tue, 25 Sep 2012 18:26:21 -0700
Subject: Is ASIS being utilized as much as it

can be?
Newsgroups: comp.lang.ada

What are general views on how well
ASIS is being used?

If you are a vendor, do you see that your
clients are adequately aware of what ASIS
can do for them? Do you not have 'critical
mass of interest' to implement
features/annexes post Ada 95? I know that
that is an issue with some subset of the
vendors.

As users, do you see ASIS as "too
difficult" to learn and implement? Is there
an impression (or reflection of reality)
that there just a general lack of developers
that are able to "do ASIS" and develop
ASIS tools?

Were there programs perhaps that
developed ASIS (V1.0 - Ada 83)
applications and found that the "port" to
V2.0 and greater was "too much work or
too difficult"?

Ada and Education

AdaTutor on the web

From: Zhu Qun-Ying
<zhu.qunying@gmail.com>

Date: Fri, 28 Sep 2012 22:50:00 -0700
Subject: ANN: AdaTutor on the Web - done
Newsgroups: comp.lang.ada

I have finally finished the conversion of
the AdaTutor in my blog space:

http://zhu-qy.blogspot.com/2012/08/
adatutor.html

[See also "AdaTutor is back online", AUJ
32-3 (September 2012), p. 136. —sparre]

From: Christoph Grein
 <christ-usch.grein@t-online.de>

Date: Sat, 29 Sep 2012 03:22:41 -0700
Subject: Re: ANN: AdaTutor on the Web -

done
Newsgroups: comp.lang.ada

This text in the tutorial about UC is
nonsense:

“One use of Ada.Unchecked_Conversion
might be to allow us to and two Integers.
(Ada 95 allows us to and two objects of a
modular type, but not two Integers.) Some
Ada compilers come with a package that
enables us to and two Integers, but many
compilers have no such package. Suppose
that types Integer and Boolean occupy the
same amount of storage. If our program
says with Ada.Unchecked_Conversion;
we could write

function Int_To_Bool is new
 Ada.Unchecked_Conversion(Integer,
 Boolean);
function Bool_To_Int is new
 Ada.Unchecked_Conversion(Boolean,
 Integer);
function "and" (Left, Right : in Integer)
return Integer is
begin
 return Bool_To_Int(Int_To_Bool(Left) and
 Int_To_Bool(Right));
end "and"; ”

Integer and Boolean have never the same
size. Boolean'Size = 1. "and" will pick
either the MSB or the LSB of Left and
Right, depending on compiler resp.
hardware.

(Ada 83 was a bit unclear about the
meaning of 'Size, there are differences in
the behaviour of compilers. Ada 95 fixed
that - in a way that some find awkward.)

UC between Integer and Natural might
work or include a multiplication/division
by 2 because Natural'Size=Integer'Size-1.
I have been bitten by UC between objects
of types with different sizes when porting
some legacy Ada 83 code to a different
hardware and compiler. Be careful: Stand-
along objects of subtype Natural and of
Integer have of course the same size -
what matters for UC is the subtype's size,
which is given by 'Size - this is why
GNAT has an attribute 'Object_Size.

From: Shark8
<onewingedshark@gmail.com>

Date: Sun, 30 Sep 2012 21:39:46 -0700
Subject: Re: ANN: AdaTutor on the Web -

done
Newsgroups: comp.lang.ada

One little nit to pick, in the recursion
example (http://zhu-qy.blogspot.com/
2012/08/adatutor-recursion.html)
factorial is a bad choice to illustrate
recursion as it is worse, both in speed and
size [due to its linear call-nature], than the
iterative/for-loop -- a better candidate
would be the power function as it presents
a logarithmic call-nature… though I fully
expect "**" to be optimized even beyond
the simple recursive-function.

Ada-related Resources

Introduction to Glade 3

From: Françs Fabien
<francois_fabien@hotmail.com>

Date: Mon, 17 Sep 2012 20:31:21 +0200
Subject: Hello world with glade 3
URL: http://wiki.ada-dk.org/

building_gui_with_glade_3

I read on this list some posts for starting
with glade 3. ("hello world" with glade 3).
To gain more visibility on the web, I put a
summary on Ada-DK wiki:

http://wiki.ada-dk.org/
building_gui_with_glade_3

Remote-controlled robot
using XBees and Ada

From: Tero Koskinen
Date: October 24, 2012
Subject: Remote-controlled robot using

XBees and Ada
URL: http://arduino.ada-language.com/

remote-controlled-robot-using-xbees-
and-ada.html

As a continuation from my motor shield
article [1], I put my motor shield and
Arduino combination on wheels and
added a wireless shield to go with them.

[1] http://arduino.ada-language.com/
running-a-motor-with-motorshield-and-
pulse-width-modulation-pwm.html.

[Tero takes us through the whole process
of selecting the parts, putting the robot
together and writing the source text to
control it. —sparre].

236 Ada-related Tools

Volume 33, Number 4, December 2012 Ada User Journal

IRC channel

From: Genro Kane
<wmrg100@niestu.com>

Date: Wed, 7 Nov 2012 17:44:39 -0800
Subject: [ANN] Ada IRC channel on

Freenode
Newsgroups: comp.lang.ada

About twice a year we try to advertise the
#Ada channel on the Freenode IRC
network. Celebrating its eleventh birthday
next month, the channel continues to be
active and friendly. These days it
averages about 60 users at a time, large
enough to support lively and informative
discussions but small enough so it's not a
madhouse.

Topics range all over the map, from
building the latest GNAT to writing an
OS in Ada to daily Ada programming
issues to how to use PolyOrb to use the
Distributed Systems Annex. The stated
topic is discussing Ada in the context of
free and open-source software, but
commercial users are equally welcome.

So fire up your favorite IRC client and
come join us! The network is homed at
irc.freenode.net, but has servers all over
the world. Visit www.freenode.net on the
web for details. Hope to see you soon!

Controlling 4-digit 7-
segment display with AVR-
Ada

From: Tero Koskinen
Date: November 9, 2012
Subject: Controlling 4-digit 7-segment

display
URL: http://arduino.ada-language.com/

controlling-4-digit-7-segment-
display.html

A seven-segment display is nice for
showing a single number. And 4-digit
display is 4 times as nice since it can
show four numbers.

However, using 4-digit version is also
somewhat more complicated. The 4-digit
7-segment display (which I use) is done
so that each digit will have same set of
leds turned on at the same time when the
digits are turned on. This means that if we
want to show a different number in a
different digit, we need to turn other digits
off. Fortunately for us, other leds won't
turn off immediately, so if you do
turning on and off quick enough, you can
set the display so that each digit shows a
different number.

[Tero takes us through the whole process
of connecting the display to the
microcontroller and writing the source
text to control it. —sparre]

Directories of Open Source
software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: November 30 2012
Subject: Directories of Open Source

software
IRC: #Ada on irc.freenode.net

Free(code): 76 projects [1]

Ohloh: 73_268 source files [2]

[1] http://freecode.com/
search?page=1&with=2880

[2] http://code.ohloh.net/
search?s=is&fl=Ada&filterChecked=true

Repositories of Open Source
software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: November 30 2012
Subject: Repositories of Open Source

software
IRC: #Ada on irc.freenode.net

ada.cx: 8 repositories [1]

AdaForge: 7 repositories [2]

Bitbucket: 29+ repositories [3,4]

Codelabs: 9 repositories [5]

GitHub: 289 repositories [6]

 60 developers [7]

Rosetta Code: 549 examples [8]

 24 developers [9]

Sourceforge: 200+ repositories [10]

[1] http://git.scm.ada.cx/

[2] http://forge.ada-ru.org/adaforge

[3] https://bitbucket.org/repo/all/
relevance?name=binding&language=ada

[4] https://bitbucket.org/repo/all/
relevance?name=ada&language=ada

[5] http://git.codelabs.ch/

[6] https://github.com/search?q=
language%3AAda&type=Repositories

[7] https://github.com/search?q=
language%3AAda&type=Users

[8] http://rosettacode.org/wiki/
Category:Ada

[9] http://rosettacode.org/wiki/
Category:Ada_User

[10] http://sourceforge.net/directory/
language%3Aada/

Ada group on Google+

From: Thomas Løcke <tl@ada-dk.org>
Date: December 8, 2012
Subject: New Ada community at Google+
URL: http://identi.ca/notice/98337737

New !Ada community at Google+
http://ur1.ca/bwub4

Ada-related Tools

Generic Image Decoder

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sat, 8 Sep 2012 11:22:36 -0700
Subject: Ann: Generic Image Decoder v.02
Newsgroups: comp.lang.ada

I have the pleasure to announce the
second release of GID - the Generic
Image Decoder.

URL: http://gen-img-dec.sf.net/

New in V.02

GID is now able to inform about image
orientation, e.g. JPEG EXIF tag which is
usual on digital cameras.

See the To_BMP demo for an example of
how this information is used to rotate
target image.

About GID

The Generic Image Decoder (GID) is an
Ada package for decoding a broad variety
of image formats, from any data stream,
to any kind of medium, be it an in-
memory bitmap, a GUI object, some other
stream, arrays of floating-point initial data
for scientific calculations, a browser
element, a device,…

Animations are supported.

Features

- Standalone (no dependency on other
libraries, bindings,…)

- Unconditionally portable code: OS-,
CPU-, compiler- independent code.

- Multi-platform, but native code built

- Task safe

- Endian-neutral

- Use of generics and inlining at multiple
nesting levels for fast execution

- Free, open-source

Currently supported formats are: BMP,
GIF, JPEG, PNG, TGA.

[See also "Generic Image Decoder v.01",
AUJ 31-3 (September 2011), p. 157.
—sparre]

YAMI4

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Mon, 10 Sep 2012
Subject: YAMI4 1.6.0 released with message

queue server (implemented in Ada) and
Objective-C library bindings

URL: http://inspirel.com/yami4/

YAMI4 is a set of messaging libraries
designed for distributed systems with
particular focus on control and monitoring
systems. The major features of YAMI4
are:

Ada-related Tools 237

Ada User Journal Volume 33, Number 4, December 2012

* peer-to-peer messaging

* support for message priorities

* built-in support for load balancing and
automatic fail-over

* support for publish-subscribe messaging

* support for isolated memory partitions
(intended for embedded and critical
systems)

* support for real-time development with
comprehensive range of timeout features

* high performance and scalability with
non-blocking I/O

* small memory and resource footprint

* no dependencies on other libraries

[See also "Inspirel — YAMI4 1.4.0", AUJ
32-4 (December 2011), p. 141. —sparre]

Dequesterity

From: Brad Moore
<brad.moore@shaw.ca>

Date: Sat, 15 Sep 2012 10:43:59 -0600
Subject: ANN: Dequesterity 1.3
Newsgroups: comp.lang.ada

I am pleased to announce the availability
of Dequesterity, version 1.3.

Dequesterity is a set of Ada 2005 generics
that provide various forms of general
purpose buffer containers. Buffers may be
used as deques, queues, ring buffers,
stacks, double ended stacks, vectors,
priority queues, and similar abstractions.

There are various concurrent buffers,
priority buffers, streaming buffers, remote
buffers. In fact there are now over 100
buffer packages to choose from.

Some of the new features of this release
include;

- Added priority buffers. This is an
intermediate buffer class that can be
combined with lower simple buffer
classes, and optionally with higher level
concurrency buffers to generate a buffer
with the desired features.

- Converted a number of class-wide
subprograms to primitive subprograms.
This makes these calls easier to use,
including object prefix notation.

- Fixed bug in Replace_Element that
caused crash in indefinite bounded
buffers.

- Invalidate cursors when appropriate in
all buffer types

- Added Swap primitive to swap two
elements in a buffer.

NOTE: The Definite Priority Buffer
generics do not currently compile under
GNAT, due to a compiler bug. However,
they do compile with the ICC Ada 2005
compiler.

The Indefinite Priority buffer generics,
however do compile under GNAT, and
since any definite type can be used to
instantiate an indefinite priority buffer,

these can be used as a work around until a
version of GNAT is available that
addresses the compiler bug.

This release and older releases may be
downloaded from;

https://sourceforge.net/projects/
dequesterity/files/

[See also "Dequesterity", AUJ 33-2 (June
2012), p. 79. —sparre]

Tcl/Tk

From: Patrick
<patrick@spellingbeewinnars.org>

Date: Tue, 18 Sep 2012 04:56:08 -0700
Subject: Tcl/TK + Ada
Newsgroups: comp.lang.ada

This is probably just a continuation of the
recent Ada GTK vs QTbinding thread but
I didn't want to take a chance of thread-
jacking.

So I am working on a daemon that will be
written in Ada and controlled by a slew of
small simple commands. I am planning on
controlling it through a Tcl/Tk GUI. I am
wondering if this is a good design
decision? Has anyone done something
like this?

Tcl is not going to be as reliable as Ada
but if the code base is small (and Tcl was
designed for small code bases) then I
should be okay right?

There is an Ada binding:

http://tcladashell.sourceforge.net/index.ht
m

Am I walking into any pitfalls here?

From: Thomas Løcke <tl@ada-dk.org>
Date: Tue, 18 Sep 2012 14:42:25 +0200
Subject: Re: Tcl/TK + Ada
Newsgroups: comp.lang.ada

If the daemon is controlled by a "slew of
simple commands", why not just control it
from the command line interface? That
way your daemon is also controllable
from scripts, making it easier for
sysadmins to manage it.

Personally I can't stand daemons that are
managed from a GUI, as a GUI usually
limits my ability to control the daemon
however I want.

Server software without a decent CLI is a
dreadful thing to work with.

From: Patrick
<patrick@spellingbeewinnars.org>

Date: Tue, 18 Sep 2012 05:51:39 -0700
Subject: Re: Tcl/TK + Ada
Newsgroups: comp.lang.ada

Yep I had similar experiences with the
cherokee web server. I didn't want to
clutter the list but as per usual I can't be
short and clear.

Basically the daemon is an scientific
instrument control server. I need a GUI
for data visualization. The server would
maintain sanity and abstract the PC's

hardware. So for instance a command
could end up being sent over RS232,
ethernet or GPIB and if a command was
sent out of order, like some sort of
initialization after the instrument was
already running, then the server could
ignore it.

From: Simon Wright
<simon@pushface.org>

Date: Tue, 18 Sep 2012 18:36:54 +0100
Subject: Re: Tcl/TK + Ada
Newsgroups: comp.lang.ada

When you say "daemon" I imagine a
process which runs continually, and needs
to be controlled using separate, probably
short-lived, processes run from e.g. the
command line and which interact with the
daemon process using some sort of inter-
process comms.

The natural way of writing a TASH/Tk
app such as you describe has the GUI as
part of the app, and that's not how
daemons work.

Given that, even though I'm one of
TclAdaShell (aka TASH)'s maintainers, I
don't see any advantage to writing the
control process using TclAdaShell (aka
TASH) vs the web approach, where
connecting via a browser corresponds to
the short-lived "process".

I do have a minimal web server EWS[1],
but it doesn't hold your hand at all with
connecting web pages via e.g. AJAX to
an Ada application. You can do it, but it's
a lot of work.

In distinction, AWS from AdaCore has a
lot of support for this sort of thing, and is
definitely worth a look.

[1] https://sourceforge.net/projects/
embed-web-srvr/

From: Patrick
<patrick@spellingbeewinnars.org>

Date: Tue, 18 Sep 2012 11:57:21 -0700
Subject: Re: Tcl/TK + Ada
Newsgroups: comp.lang.ada

I am still really in the planning stage right
now…but when I say daemon I mean a
process that stays alive and accepts
instructions. I was planning on using a
port to receive on.

So let's say we were controlling an optical
spectrometer, we might have commands
like:

set_wavelength

set_high_voltage

set_stirrer

plot

etc.

So take the plot command for instance. I
want the command to send an instruction
and arguments to the daemon and then
return right away. The plotting could take
hours or days so the daemon could be
responsible for it after that point.

238 Ada-related Tools

Volume 33, Number 4, December 2012 Ada User Journal

If I had all these simple little commands
to control the daemon I thought I could
also build a gui for it to visualize the data
being collected.

From: Simon Wright
<simon@pushface.org>

Date: Tue, 18 Sep 2012 20:30:36 +0100
Subject: Re: Tcl/TK + Ada
Newsgroups: comp.lang.ada

> […]

OK. You could build the GUI in straight
Tcl/Tk and have it talk to the daemon's
port (on Linux, I guess that'd be a UNIX-
domain socket).

> […]

Yes, indeed; but it'd need to be on the user
side, not the daemon's, so you'd need a
protocol to request the current stats/return
them (2-way comms).

Equally you could use the same
architecture but with Gtk/Ada.

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Tue, 18 Sep 2012 19:23:19 -0400
Subject: Re: Tcl/TK + Ada
Newsgroups: comp.lang.ada

Mentally, I would consider "plot" to be an
analysis operation performed on collected
data. As such, it would NOT be a
responsibility of the daemon performing
data collection.

The various "set_" operations, OTOH,
implement configuration changes
regarding what data is collected, and
thereby seem viable as command-line
controls (creating a GUI later to invoke
those controls is another option, with the
GUI independent of the daemon itself).

From: john@peppermind.com
Date: Wed, 19 Sep 2012 03:02:05 -0700
Subject: Re: Tcl/TK + Ada
Newsgroups: comp.lang.ada

Like others said, you should provide all
means to control the behavior of the
daemon via command line.

Apart from that, Tcl/Tk should be fine,
but you might also want to consider
building a browser-based interface, e.g.
using AWS.

It's a bit more complicated, but it's
"modern" (whether you like it or not) and
does have advantages. For example, by
using SSL and basic authentication a
browser-based interface could easily be
used for remote-controlling the daemon if
security requirements are not very high.

From: Pascal Obry <pascal@obry.net>
Date: Wed, 19 Sep 2012 13:17:45 +0200
Subject: Re: Tcl/TK + Ada
Newsgroups: comp.lang.ada

> […]

Or use a client certificate based
authentication which is the highest
security level when dealing with Web
applications. Support for this has recently

been added into AWS. Worth looking at
the documentation I would say.

From: john@peppermind.com
Date: Wed, 19 Sep 2012 06:05:16 -0700
Subject: Re: Tcl/TK + Ada
Newsgroups: comp.lang.ada

> […]

Is your daemon not allowed to execute
external processes? If not, there are all
kinds of very powerful command-line
utilities you could use, e.g. gnuplot.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 19 Sep 2012 17:12:39 +0200
Subject: Re: Tcl/TK + Ada
Newsgroups: comp.lang.ada

[…]

Don't want to spoil the party, but GIMP is
based on GTK. So is AICWL [1].

It has oscilloscope widget which can be
used for plotting, both off-line and in-the-
loop. Since it is a plain GTK widget, you
can put into whatever window you
wished.

[1] http://www.dmitry-kazakov.de/
ada/aicwl.htm#12.5

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Fri, 21 Sep 2012 01:54:26 -0700
Subject: Re: Tcl/TK + Ada
Newsgroups: comp.lang.ada

If you want to use Ada with Tcl/Tk, try
VAD (Visual Ada Developer) from
http://users1.jabry.com/adastudio/
index.html

From: Jerry <lanceboyle@qwest.net>
Date: Fri, 21 Sep 2012 16:23:18 -0700
Subject: Re: Tcl/TK + Ada
Newsgroups: comp.lang.ada

And there's PLplot, a linkable library with
fine ;-) Ada bindings and extensions.

http://plplot.sourceforge.net/

Ada 2012 OpenGL binding

From: Shark8
<onewingedshark@gmail.com>

Date: Thu, 18 Oct 2012 10:16:51 -0700
Subject: Announcement: OpenGL Binding

w/ Ada-2012.
Newsgroups: comp.lang.ada

I've recently completed the initial binding
for OpenGL to Ada 2012. It's available at
http://github.com/OneWingedShark/
TAO-GL

Some notes:

1) Currently all the functions from
OpenGL 1.1 are included; this is
because I didn't realize at the time how
dated the C-headers I started out with
were - though it makes little difference
in the overall amount of work which is
mostly reading documentation and
typing/subtyping enumerations for the
parameters.

2) The preconditions are at present mostly
minimalistic (just the
easy/straightforward preconditions),
though all of them should have the
correct restrictions regarding the "raises
error between glBegin/glEnd"
restriction.

3) There are a few points where the
binding is not nearly thick enough for
my taste, mostly because I'm unsure of
how to correctly translate the function
[parameters esp] into nice Ada; this
usually results in an exposed
System.Address parameter.

GNAT licensing questions

From: Aditya Siram
<aditya.siram@gmail.com>

Date: Sat, 20 Oct 2012 10:18:18 -0700
Subject: Licensing Questions
Newsgroups: comp.lang.ada

Having looked at the Alioth benchmarks
I'm looking into Ada as an alternative to
C++ but I'm totally confused by the
licensing.

It seems like there's two entities GNU and
AdaCore both offering a compiler/runtime
but with different restrictions so please
excuse these simple questions:

- How are the two products different? Are
they just the same codebase with
different support models?

- Can I develop commercial closed-source
libraries and software using the GNU
version of GNAT?

- Will there be compatibility issues
between GNU GNAT and AdaCore
GNAT beyond missing Ada 2012
features?

- Is AdaCore the only company working
on GNAT right now?

- Are there performance differences
between the two compilers?

From: Yannick Duchêne
<yannick_duchene@yahoo.fr>

Date: Sat, 20 Oct 2012 20:03:36 +0200
Subject: Re: Licensing Questions
Newsgroups: comp.lang.ada

Same code base, but different support
models, indeed.

- FSF GNAT comes with no support, and
a delay of about one year lagging behind
GNAT Pro/GNAT GPL ;

- GNAT GPL comes with no support, but
benefits from more reactive updates than
FSF GNAT, while still lagging behind
GNAT Pro;

- GNAT Pro comes with full support and
a very reactive team of long time
experienced professional Ada
developers.

> - Can I develop commercial closed-
source libraries and software using the
GNU version of GNAT?

Ada-related Tools 239

Ada User Journal Volume 33, Number 4, December 2012

- With FSF GNAT which comes with the
runtime library exception: yes (*)

- With GNAT GPL: no

- With GNAT Pro: yes (**)

(*) Beware that some some other
conditions may make your applications
covered by the GPL.

(**) It will even give you the right to use
the otherwise GPL additional libraries, for
any purpose you want, either commercial,
open, closed source.

> - Will there be compatibility issues
between GNU GNAT and AdaCore
GNAT beyond missing Ada 2012
features?

FSF GNAT is lagging, but that's a matter
of delay and patience. GNAT GPL is
more up to date. GNAT Pro is a lot more
up to date than the two former. There are
compatibility issues with AUnit (AUnit is
to Ada, what JUnit is to Java), and both
are incompatible.

> - Is AdaCore the only company working
on GNAT right now?

As far as I know, yes, except there are
people working on GNAT FSF too.

> - Are there performance differences?

No. Except if you need support for no-
runtime variant or any other kind of
specific runtime meeting specific
requirement, then you will need GNAT
Pro. Otherwise, both provides comparable
performances.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Sat, 20 Oct 2012 21:25:50 +0300
Subject: Re: Licensing Questions
Newsgroups: comp.lang.ada

I'll take a shot at answering you. I'm not a
lawyer, and my understanding may be
incorrect or incomplete, but here is how I
understand it.

> It seems like there's two entities GNU
and AdaCore both offering a
compiler/runtime but with different
restrictions

The GNAT compiler is available with
three different licensing schemes:

- GNAT Pro from AdaCore. Expensive,
but you can distribute your Ada
programs in binary form (for free or for
a price) without distributing source. And
you get support from AdaCore.

- GNAT GPL from AdaCore. Free beer,
but with pure GPL, so can be used only
for developing GPL programs.

- GNAT from the Free Software
Foundation (FSF; I think this is what
you call "GNU GNAT"). Free beer, and
the compiler itself is under GPL, but the
programs that you develop with the
compiler are not, because the libraries
use a modified version of GPL that lets
you use the libraries in non-GPL
programs.

I use FSF GNAT to compile SW for
which I sell binary-only licences in the
traditional fashion.

> - How are the two products different?
Are they just the same codebase with
different support models?

The codebase is roughly the same; GNAT
Pro is most advanced and is frequently
updated. GNAT GPL is a snapshot of
GNAT Pro taken yearly (more or less).
FSF GNAT is maintained by the
community but receives updates from
AdaCore (tracking GNAT Pro) now and
then.

> - Can I develop commercial closed-
source libraries and software using the
GNU version of GNAT?

With the FSF GNAT, yes. The Debian
platform has excellent support for FSF
GNAT, thanks mainly to Ludovic Brenta.
For MS Windows, MinGW provides FSF
GNAT (as I understand it). It seems to
work, too.

> - Will there be compatibility issues
between GNU GNAT and AdaCore
GNAT beyond missing Ada 2012
features?

On the Ada source-code level, for
application programs, I don't expect any
compatibility problems.

On the internal level, the ASIS tool-set
depends on GNAT internals and must be
closely matched to GNAT, version by
version. You cannot use the GNAT GPL
version of ASIS to access compiled code
from FSF GNAT. Also, I would hesitate
to mix object code from different GNAT
versions in the same link.

> - Is AdaCore the only company working
on GNAT right now?

Yes, for the PC targets, as far as I know.
There have been some companies that
have developed off-shoots of GNAT for
embedded systems, for example the XGC
company in the UK.

> - Are there performance differences
between the two compilers?

Could be, since GNAT Pro is the
"wavefront" and so probably has more
evolved optimizations than the other
versions.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 20 Oct 2012 20:20:16 +0100
Subject: Re: Licensing Questions
Newsgroups: comp.lang.ada

Most of the updates to FSF Ada are from
AdaCore contributing a massive input at
the start of each release (4.6, 4.7, 4.8);
there are contributions from others in
between whiles, but still AdaCore
contribute a very great deal.

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Date: Sat, 20 Oct 2012 23:28:21 +0200
Subject: Re: Licensing Questions
Newsgroups: comp.lang.ada

I'm not going to repeat the good answers
from Yannick and Niklas (BTW, thanks
to both for mentioning me :)) but in case
you didn't know, there are other Ada
compilers besides GNAT. The full and
complete answer is in the Ada
Programming wikibook:

http://en.wikibooks.org/wiki/
Ada_Programming/Installing

The rest of the book is a good read, too,
and will answer many more questions.

Simple components for Ada

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 20 Oct 2012 21:09:24 +0200
Subject: ANN: Simple components for Ada

v3.21
Newsgroups: comp.lang.ada

The library provides implementations of
smart pointers, directed graphs, sets,
maps, stacks, tables, string editing,
unbounded arrays, expression analyzers,
lock-free data structures, synchronization
primitives (events, race condition free
pulse events, arrays of events, reentrant
mutexes, deadlock-free arrays of
mutexes), pseudo-random non-repeating
numbers, symmetric encoding and
decoding, IEEE 754 representations
support.

http://www.dmitry-kazakov.de/
ada/components.htm

[See also "Simple Components for Ada",
AUJ 33-2 (June 2012), p. 78. —sparre]

Qt5Ada

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Tue, 30 Oct 2012 10:08:25 -0700
Subject: Announce : Qt5Ada version 5.0.0

beta1 free edition
Newsgroups: comp.lang.ada

Qt5Ada is Ada-2012 port to Qt5
framework.

It supports GUI, SQL, Multimedia, Web,
Network and many others things.

Qt5Ada for Windows and Linux (Unix) is
available from

http://users1.jabry.com/adastudio/
index.html

Zip-Ada

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sun, 4 Nov 2012 18:37:49 -0800
Subject: Ann: Zip-Ada v.44
Newsgroups: comp.lang.ada

I am pleased to announce a new version
of the Zip-Ada library [1].

Major changes in the last version:

240 Ada-related Products

Volume 33, Number 4, December 2012 Ada User Journal

- The library provides now a complete
toolset for managing Zip archives
(creating, updating, extracting)

- Zip_Streams: All methods now with
pointer-free profiles

- Zip.Create:

 - new Add_Compressed_Stream for
copying entries from an archive to
another one

 - file modification date and read-only
attribute can be passed to Add_File

 - archive creation date is used when
entries are added which are from a
memory buffer (Add_String)

 - compression method can be changed
"on the fly", before adding new entries

Some features:

- full sources are in Ada (no binding)

- decompression for all Zip sub-formats
up to BZip2

- compression for all Zip sub-formats up
to Deflate

- unconditionally portable

- input and output can be any stream (file,
buffer,…) for archive creation as well as
data extraction.

- task safe

- endian-neutral

The zipada44.zip archive contains:

- The full library sources (inside one
directory: Zip_Lib), in Ada 95, using
only Ada 95 standard's libraries

- Some command-line demo / tools:

- ZipAda, a zipping tool

- UnZipAda, an unzipping utility

- Comp_Zip, compares two Zip files

- Find_Zip, searches a text string through
contents of a Zip file

- ReZip.adb, optimizes compression of
Zip archives

NB: the ZipAda, UnZipAda, ReZip use a
few non-Ada 95 library items.

[1] http://unzip-ada.sf.net/

[See also "Zip-Ada v.41 (beta)", AUJ 32-
3 (September 2011), p. 137. —sparre]

Ada BFD

From: Stephane Carrez
<Stephane.Carrez@gmail.com>

Date: Sun, 11 Nov 2012 10:45:36 +0100
Subject: [ANN] Ada BFD 1.0 is available
Newsgroups: comp.lang.ada

Ada BFD is an Ada binding for the GNU
Binutils BFD library. It allows to read
binary ELF, COFF files by using the
GNU BFD. The Ada BFD library allows
to:

- list and scan the ELF sections of an
executable or object file,

- get the content of the ELF sections,

- get access to the symbol table,

- use the BFD disassembler

Version 1.0 of this Ada binding library is
now available at [1].

This new release bring the following
changes:

- Fixed installation of library

- Added examples for BfdAda

- Add support to use the disassembler

For an introduction on using Ada BFD,
you may read the article: Reading a
program symbol table with Ada BFD [2]

[1] http://code.google.com/p/ada-bfd/

[2] http://blog.vacs.fr/index.php?post/
2012/11/03/Reading-a-program-symbol-
table-with-Ada-Bfd

Anet

From: Reto Buerki <reet@codelabs.ch>
Date: Thu, 15 Nov 2012 11:20:26 +0000
Subject: ANN: Anet version 0.2
Newsgroups: comp.lang.ada

I'm proud to announce the first official
release of Anet, a networking library for
the Ada programming language.

The project website is at [1], the current
release 0.2 can be downloaded from [2].
An example on how to use Anet to
implement client/server-applications is
provided on the project page as well.

Anet currently provides the following
features:

- BSD socket implementation

- High abstraction level

- Extendable socket type hierarchy

- Socket receiver tasks (Stream and
Datagram)

- Ada type serialisation/deserialisation
over sockets

- Supported socket families

 - IPv4 (AF_INET)

 - IPv6 (AF_INET6)

 - Packet (AF_PACKET)

 - UNIX domain (AF_UNIX)

 - Netlink (AF_NETLINK)

- Supported socket modes

 - Stream (TCP)

 - Datagram (UDP)

- Support for IPv4/IPv6 multicast

- UDP/IPv4 packet creation and
validation

- Binding to the Linux Packet Filter (LPF)
system

[1] http://www.codelabs.ch/anet/

[2] http://www.codelabs.ch/download/

OpenID authentication for
AWS

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sat, 01 Dec 2012 14:15:26 +0100
Subject: ANN: OpenID authentication for

AWS
Newsgroups: comp.lang.ada

I'm pleased to announce that my OpenID
client for AWS (forked from the ASF
OpenID implementation) is in a usable
state:

http://repositories.jacob-sparre.dk/
openid-client

The repository includes a demonstration
application (which can be seen running at
<https://jaws.adaheads.com/>).

Help writing documentation is welcome.
The same goes for help making the
remaining ASF-originating files more
"Ada-like".

[See also "Ada Server Faces", AUJ 33-2
(June 2012), p. 76. —sparre]

Ada-related Products

VectorCAST validated
against ACATS 3.0

From: Vector Software
Date: 2012-08-13
Subject: VectorCAST validated against the

Ada Conformity Assessment Test Suite
(ACATS) 3.0

URL: http://www.vectorcast.com/news/
2012/pr_vector-supports-latest-ada.php

Vector Software remains committed to
the Ada software development
community.

Providence, RI – 08/13/2012 - Vector
Software, the leading provider of software
solutions for testing safety critical
applications, announced today that its
VectorCAST embedded software testing
platform has been validated against
version 3.0 of the Ada Conformity
Assessment Test Suite (ACATS).

ACATS provides the official tests used to
check conformity of an Ada
implementation with the Ada
programming language standard. ACATS
3.0 is the test suite for the current version
of Ada as defined by the joint ISO/ANSI
standard ISO/IEC 8652:1995/Amd
1:2007.

Vector Software's VectorCAST/Ada is an
integrated software test solution that
significantly reduces the time, effort, and
cost associated with testing Ada software
components necessary for validating
critical embedded systems.

VectorCAST/Ada parses source code and
invokes code generators to automatically
create the test code (stubs and drivers)

Ada and GNU/Linux 241

Ada User Journal Volume 33, Number 4, December 2012

required to construct a complete,
executable test harness. Once the test
harness is constructed, utilities can be
used to build and execute test cases and
report static measurements. Test data is
maintained separately from the test
harness enabling easy automatic
regression testing.

Additionally, Vector Software's code
coverage analysis tool
VectorCAST/Cover, has been updated to
support Ada 2005. VectorCAST/Cover
analyzes the completeness of system tests
ensuring that applications are not released
with untested code. With
VectorCAST/Cover developers can gauge
the effectiveness of their test efforts by
identifying which areas of an application
were exercised during a test run.

"Ada has long been recognized as a
highly effective language for developing
software in safety critical systems. In
recent years, Ada development has been
experiencing a resurgence in popularity
due to the growth of the number of safety
critical systems being developed," said
William McCaffrey, Chief Operating
Officer for Vector Software. "Vector
Software has always been strongly
committed to the Ada market and our
continued support demonstrates our
commitment to organizations developing
safety critical applications in Ada."

VectorCAST/Ada fully supports Ada 83,
Ada 95, and Ada 2005. Vector Software
support for Ada is available to all
VectorCAST/Ada customers under
standard software maintenance
agreement. Additionally, the VectorCAST
platform has integrations to IBM®
Rational® Rhapsody®, AdaCore GNAT,
Green Hills® AdaMULTI™, Atego™
ObjectAda®Aonix, and DDC-I™
SCORE®.

[See also "Vector Software —
VectorCAST 5.3", AUJ 32-4 (December
2011), p. 141. —sparre]

Aonix ObjectAda 8.5 for
Windows

Subject: Atego Releases Aonix ObjectAda
8.5 for Windows

Date: September 11, 2012
From: Atego Press Releases
URL: http://www.atego.com/

pressreleases/pressitem/atego-launches-
aonix-objectada-85

Atego™, the leading independent supplier
of industrial-grade, collaborative
development tools for engineering
complex, mission- and safety-critical
architectures, systems, software and
hardware, has launched Aonix
ObjectAda® 8.5 for Windows with new
support for Microsoft Windows® 7
systems.

The new release is based on the latest
build tools and libraries from the

Microsoft Windows SDK 7.1 and Visual
Studio 2010 SP1 and provides a new
streamlined, modernized installer based
on the Microsoft Windows Installer.
Advancements to the Aonix ObjectAda
debugger, Integrated Development
Environment (IDE), and AonixADT
support debugging of Ada code in DLLs
and allow the debugger to attach to
running processes. Aonix ObjectAda 8.5
includes improved usability in the
documentation and online help for
Windows 7. And, the product supplies the
first implementation of AonixADT on
Windows that supports the latest version
of Eclipse a multi-language software
development environment comprising an
open-source (IDE) and an extensible
plug-in system.

“Aonix ObjectAda for Windows is one of
the most popular Ada environments of all
time and is used by the majority of
Atego’s ObjectAda customers for
development of large-scale mission-
critical applications. This release
strengthens Atego’s leadership position in
Ada development tools for the Windows
platform,” stated Hedley Apperly,
Atego’s Vice-President of Product &
Marketing. “We are committed to
providing support for modern, up-to-date
engineering platforms such as provided
by Microsoft and other hardware vendors
in support of our customer requirements
and demands.”

Shipping and Availability

Aonix ObjectAda 8.5 for Windows is
fully released and immediately available.
Product license pricing is available on
request.

SPARK Pro 11

From: AdaCore Press Center
Date: November 29, 2012
Subject: AdaCore and Altran Praxis Release

SPARK Pro 11
URL: http://www.adacore.com/press/

spark-pro-11/

Increased verification efficiency for high-
assurance systems

BATH, NEW YORK and PARIS,
November 29, 2012 – High Assurance
Software Symposium and SPARK User
Group - AdaCore and Altran Praxis today
announced the release of the SPARK Pro
11 software development and verification
environment, providing a major step
forward for the developers of high-
assurance systems. SPARK Pro 11 offers
many enhancements particularly in the
area of program proof.

Major improvements to proof functions

A number of significant enhancements
have been made to the way that functions
and proof functions are handled in
SPARK Pro 11. These changes will
improve project efficiency by eliminating
the vast majority of rules that were

previously manually encoded. The main
changes include a more powerful
language for specifying proof functions
and the ability to use the functions in any
proof context. This greatly simplifies the
task of writing and maintaining functional
contracts for critical software, providing
high-assurance at lower cost.

Counter-example generation

Proof is a very powerful technique for
achieving high levels of assurance in
safety or security-critical software.
However, when performing proofs users
typically spend much of their time
inspecting undischarged “verification
conditions” to determine whether they can
indeed be proved. Included with SPARK
Pro 11, Riposte is a new tool that not only
determines whether a verification
condition is false, but can also generate a
counter-example to demonstrate the
conditions under which it is false. Riposte
is a major improvement to the verification
workflow, saving projects a significant
amount of time previously spent
analyzing unprovable verification
conditions and providing developers with
intuitive explanations. Riposte was
developed jointly by Altran Praxis and the
University of Bath (UK).

Clearly defined assumptions

The new assume contract in SPARK Pro
11 allows users to introduce system-level
assumptions about programs into their
proofs in a clear and concise format.
Previously, these assumptions might have
been captured by user rules or manual
review.

Availability

SPARK Pro 11 is available now. For
more information please visit
http://www.adacore.com/home/products/s
parkpro/ or contact info@adacore.com.

Demonstration

A demonstration providing an
introduction to the new features in
SPARK Pro 11 is available now at
http://adaco.re/2h

[See also "AdaCore / Altran Praxis —
SPARK Pro 10", AUJ 32-3 (September
2011), p. 137. —sparre]

Ada and GNU/Linux

GNADE ODBC on 64-bit
Debian

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Mon, 3 Sep 2012 21:17:36 +0200
Subject: Status of GNADE ODBC under

Debian 64-bit
Newsgroups: comp.lang.ada

What is the status of the bug reported by
Ludovic Brenta [1].

242 Ada and GNU/Linux

Volume 33, Number 4, December 2012 Ada User Journal

I am asking because it seems there that
the latest version of libgnadeodbc2 has
the issue not resolved. In particular gnu-
db-sqcli.adb has GetData declared as:

function GetData (
 StatementHandle : in SQLHSTMT;
 ColumnNumber : in SQL_Column_Number;
 TargetType: in SQL_C_DATA_TYPE;
 TargetValue: in SQLPOINTER;
 BufferLength: in SQLINTEGER;
 StrLen_Or_Ind: access SQLINTEGER)
 return SQLRETURN;

This is wrong and causes programs using
GNADE ODBC crash.

BufferLength must have been SQLLEN.
StrLen_Or_Ind must have been access
SQLLEN. The type SQLLEN is 64-bit
under Debian 64-bit (32-bit under Debian
32-bit).

[1] https://sourceforge.net/tracker/
?func=detail&aid=1591916&group_id=2
3045&atid=377331

From: Graham Stark
<graham.stark@virtual-worlds.biz>

Date: Tue, 4 Sep 2012 02:40:32 -0700
Subject: Re: Status of GNADE ODBC under

Debian 64-bit
Newsgroups: comp.lang.ada

[…]

If you just change SQLUINTEGER to
SQLUBIGINT in the indicated places
Ludovic's warning goes away. It seems
harmless either way, to the limited extent
that I understand the code - the thing that's
declared as a pointer is really just a
bitmap, so it's just that the top 32 bits
can't be set by that function.

The SQLLEN thing looks like a different
problem and really quite nasty - I hadn't
come across this before. My reading of it
is that some ODBC drivers might need 32
bits there even on 64 bit systems; see [1],
for instance.

I have notice some funny behaviour
retrieving strings from databases, where
the length is not returned correctly, so
maybe that's the cause. Never seen a
crash, though.

[1] http://www.martin-evans.me.uk/
node/99

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 4 Sep 2012 13:54:14 +0200
Subject: Re: Status of GNADE ODBC under

Debian 64-bit
Newsgroups: comp.lang.ada

[…]

Should I report it independently to
sourceforge?

[…]

Specifically to unixodbc and Debian, the
macro BUILD_LEGACY_64_BIT_
MODE if defined in sqltypes.h, makes
SQLLEN 32-bit. When undefined it is 64-
bit. The effect of SQLINTEGER (always

32-bit) passed instead of 64-bit is memory
corruption.

It should also become an issue for native
Windows 64-bit applications, once GNAT
to support them.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Fri, 07 Sep 2012 05:51:09 -0400
Subject: Re: Status of GNADE ODBC under

Debian 64-bit
Newsgroups: comp.lang.ada

As far as I know, there is no current
Debian maintainer for GNADE. I was the
maintainer, but I've resigned, partly
because the code is hard to maintain in the
first place, and needs to be re-written.

I suggest you switch to GNATcoll, which
includes Ada front-ends for postgres and
SQLite3 (but not ODBC). That code is
better written, and actively maintained,
supported by paying customers.

It also includes higher-level object
oriented front-ends.

If paying customers lobby for ODBC
support, it will happen.

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Fri, 7 Sep 2012 03:57:37 -0700
Subject: Re: Status of GNADE ODBC under

Debian 64-bit
Newsgroups: comp.lang.ada

> […]

But GNATcoll doesn't have a Debian
maintainer either and is not even
packaged in Debian. If someone here on
comp.lang.ada would like to make a
difference, the one thing to know is that
the sources of GNATcoll are part of the
sources of GPS, therefore packaging
GNATcoll for Debian requires modifying
the packaging of gnat-gps; see [1]. As
much as I would like to do that work
myself, I lack time for it.

PS. AFAIU, part of GNATcoll is built on
top of GNADE (and includes a fork of
GNADE).

[1] http://bugs.debian.org/640532

From: Graham Stark
<graham.stark@virtual-worlds.biz>

Date: Fri, 7 Sep 2012 04:25:32 -0700
Subject: Re: Status of GNADE ODBC under

Debian 64-bit
Newsgroups: comp.lang.ada
I'd think Gnade is worth persevering with.

The changes that need to be made to
support 64 bit ODBC are detailed here:

http://support.microsoft.com/kb/298678

The scary bit is that (if I've read this right)
sometimes function returns are 32 bit and
sometimes 64 bit depending on the inputs.
We're going to need a slightly thicker
binding than at present to handle this, I'd
think.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 7 Sep 2012 14:10:27 +0200
Subject: Re: Status of GNADE ODBC under

Debian 64-bit
Newsgroups: comp.lang.ada

[…]

Yes. Simple components provide a safer
layer on top GNADE ODBC. E.g.
controlled types for handles, typed
SQLGetData, etc.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Fri, 07 Sep 2012 18:06:25 +0200
Subject: Re: Status of GNADE ODBC under

Debian 64-bit
Newsgroups: comp.lang.ada

GNATcoll relies a few GNAT specific
packages; any experience whether these
work with other Ada compilers?

with GNAT.Strings, GNATCOLL.*,
GNAT.Calendar… etc. Nothing terrible,
and I am not complaining, just
mentioning.

Also, for those who might need copy
protection for their sources, the license
(GPL) might not be what they'd like,
IINM.

From: Graham Stark
<graham.stark@virtual-worlds.biz>

Date: Mon, 10 Sep 2012 11:10:47 -0700
Subject: Re: Status of GNADE ODBC under

Debian 64-bit
Newsgroups: comp.lang.ada

It would be interesting to know if the
other database interfaces out there (I
know of GNATcoll and SOCI) are
immune to these 64/32 bit problems.

QtAda in Debian

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Tue, 18 Sep 2012 00:16:38 -0700
Subject: Re: QtAda in Debian (was: Re: Qt

or Gtk? (from an Ada perspective))
Newsgroups: comp.lang.ada

>> GtkAda is packaged in Debian, Qt is
not.

> BTW: Are there any plans to do this?

Not that I know of. As usual, if someone
volunteers to do that, they will find help
and support on debian-
ada@lists.debian.org and they will
become rich and famous :)

In theory, whenever someone plans to
make a new package for Debian, they
open a "bug" report to say so. Look for
"Ada" on the (long!) list of "Work-
Needing and Prospective Packages" at
http://bugs.debian.org/wnpp to get an idea
of what's planned.

GPS tips of the day

From: Ada novice <shai.lesh@gmx.com>
Date: Sun, 23 Sep 2012 06:14:59 -0700
Subject: Packaged Debian Ada doesn't show

tips of the day

References to Publ icat ions 243

Ada User Journal Volume 33, Number 4, December 2012

Newsgroups: comp.lang.ada

Following an earlier discussion with
Ludovic Brenta, I have put back the
packaged Debian Ada on my Crunchbang
Linux. What I am writing below applies
to Linux Mint as well. Both Linux Mint
and Crunchbang are direct derivatives of
Debian. Crunchbang is so close to Debian
that even its installation set up is identical
to Debian!

I installed GNAT via the synaptic
package manager. I think it was GNAT-
4.6 and GPS alongside. On typing gnat-
gps at the command line, I get in the
message panel of GPS:

Welcome to GPS 5.0-12 (Debian) hosted
on a i486-linux gnu)

Some year here -2010 AdaCore

Traceback (most recent call last):

File "/usr/share/gps/plug-ins
/tip_of_the_day.py", line 628, in
on_gps_started

Messages = GPS.MDI-get("Messages").
pywidget()

AttributeError: MDIwindow instance has
no attribute 'pywidget'

It could be something simple missing that
comes with Debian but not on its
derivatives that is causing me to get this
message. However, I do not get the above
message with GNAT GPL from AdaCore.

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Sun, 23 Sep 2012 14:04:00 +0000
Subject: Re: Packaged Debian Ada doesn't

show tips of the day
Newsgroups: comp.lang.ada

> […]

If I google "debian what provides
pywidget" the first hit I see is [1] which
looks relevant.

Looks like it might be worth installing or
updating PyGTK.

[1] http://bugs.debian.org/cgi-bin/
bugreport.cgi?bug=654339

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Sun, 23 Sep 2012 22:08:57 +0200
Subject: Re: Packaged Debian Ada doesn't

show tips of the day
Newsgroups: comp.lang.ada

> Looks like it might be worth installing
or updating PyGTK.

Specifically, install the package python-
gtk2 which gnat-gps recommends.

From: Ada novice <shai.lesh@gmx.com>
Date: Thu, 27 Sep 2012 22:37:26 -0700

Subject: Re: Packaged Debian Ada
doesn't show tips of the day

Newsgroups: comp.lang.ada

> […]

python-gtk2 was already installed
(perhaps before or was installed during

the installation of gnat-gps) and I have the
latest version 2.24.0-3.

I will stick to GNAT GPL which works
fine.

Ada and Mac OS X

GCC 4.7.0 for Mac OS X
Lion

From: Simon Wright
<simon@pushface.org>

Date: Sun, 23 Sep 2012 19:58:33 +0100
Subject: GCC 4.7.0 for Mac OS X Lion
Newsgroups: comp.lang.ada

Following up on a recent posting:

https://sourceforge.net/projects/gnuada/
files/GNAT_GCC%20Mac%20OS%20X/
4.7.0/

The README says:

This is GCC 4.7.0 built for Mac OS X
Lion.

Includes AUnit, GPRbuild, XMLAda
from GNAT GPL 2012.

Compilers included: Ada C C++ Fortran.

Target: x86_64-apple-darwin11

Configured with: \

 ../gcc-4.7.0/configure \

 --prefix=/opt/gcc-4.7.0 \

 --disable-bootstrap \

 --disable-multilib \

 --enable-languages=c,ada,fortran,c++ \

 --build=x86_64-apple-darwin11

Thread model: posix

gcc version 4.7.0 (GCC)

Install by

$ cd /

$ sudo tar jxvf ~/Downloads/gcc-4.7.0-
x86_64-apple-darwin11.tar.bz2

(and I see that it ought to add, "Ensure
that /opt/gcc-4.7.0/bin is at the start of
your PATH"

Installing GNAT 2012 on Mountain Lion

From: alexmartin715@gmail.com
Date: Tue, 23 Oct 2012 06:03:28 -0700
Subject: Installing GNAT 2012 on Mountain

Lion
Newsgroups: comp.lang.ada

I don't know if I made a mistake during
installation but I am trying to get GNAT
working on Mountain Lion. It has
installed but when I run gnatmake I get
this:

gnatbind -x extra.ali

gnatlink extra.ali

ld: in /usr/bin/GNAT/lib/gcc/x86_64-
apple-
darwin10.8.0/4.5.4/adalib/libgnat.a(raise-
gcc.o), corrupt archive, member contents

extends past end of file for architecture
x86_64

collect2: ld returned 1 exit status

gnatlink: error when calling
/usr/bin/gnat/bin/gcc

gnatmake: **- link failed.

I have it installed on a current generation
MBP 13 inch I7.

From: Simon Wright
<simon@pushface.org>

Date: Tue, 23 Oct 2012 16:02:07 +0100
Subject: Re: Installing GNAT 2012 on

Mountain Lion
Newsgroups: comp.lang.ada

I have it installed on a current gen MBP
13-inch I5, and no such problems. This is
an install that was done on the previous
early-2008 MBP 15-inch running - well, I
can't remember when I installed Lion, so
it could have been Lion or Snow Leopard
- and recovered from a Time Machine
backup.

I seem to have downloaded on 7 July, and
the libgnat.a info is

$ ls -l /opt/gnat-gpl-2012/lib/gcc/x86_64-
apple-darwin10.8.0/4.5.4/adalib/libgnat.a

-rw-r--r--@ 1 simon1 simon1 5764464 14
May 15:10 /opt/gnat-gpl-
2012/lib/gcc/x86_64-apple-
darwin10.8.0/4.5.4/adalib/libgnat.a

$ md5 /opt/gnat-gpl-2012/lib/gcc/x86_64-
apple-darwin10.8.0/4.5.4/adalib/libgnat.a

MD5 (/opt/gnat-gpl-2012/lib/gcc/x86_64-
apple-darwin10.8.0/4.5.4/adalib/libgnat.a)
= 19dd744947c6fa1d180dfb520f6b077d

I can only suggest reinstalling.

Did it really install in /usr/bin/gnat/?
Here, it wants to install in /usr/local/gnat/
which is much more normal. You'll see
from the above that I have my own views
on where to install GNAT (because I need
to have several version on-the-go).

References to
Publications

Ada gets a makeover

From: Jack G. Ganssle
<jack@gannsle.com>

Date: September 10, 2012
Subject: Ada gets a makeover
URL: http://www.embedded.com/

electronics-blogs/break-points/
4395816/Ada-2012

Ada 2012 includes some important
improvements.

Dan Saks noted recently that
embedded.com surveys over the last
dozen years indicate that we primarily use
C in embedded applications. C++ is a
distant second, with everything else being
in the noise.

[…]

244 Ada Inside

Volume 33, Number 4, December 2012 Ada User Journal

There is a small community of Ada users
who routinely crank out code an order of
magnitude less buggy than common in the
C/C++ world. The language has been
revised several times. The latest is Ada
2012 which is expected to get an ISO
approval this year.

The new version has some fantastic
additions.

[…]

What does it mean to say
that code must work all the
time?

From: Robert Dewar
Date: September 27, 2012 11:56 AM
Subject: What does it mean to say that code

must work all the time?
URL: http://electronicdesign.com/

article/embedded/code-work-time-74483

[About tolerating defects in software.
—sparre]

From: Steve Morton
Date: 2012-10-01
Subject: Re: What does it mean to say that

code must work all the time?
Source: LinkedIn

It's important to remember that process is
a means to achieve correctness, as
opposed to the measure of correctness.
Sometimes it seems that we have
forgotten that we put process steps in
place to avoid repeating past mistakes
(our own or those committed by others).

No programmer can anticipate every
possible combination of conditions, to
explicitly address every situation that
could conceivably arise. But having a fail-
safe state, where unknown issues cause
the system to revert to a controllable
status to allow for a safe conclusion of a
given flight (or sequence in an industrial
setting) is very important. The difficulty
lies, in my experience, in precluding a
corner case from slipping beneath the
radar and causing the software to make
just the wrong decision at just the wrong
time.

As engineers, we often loathe the phrase
"I don't know", yet we must continually
hone our skills in making the software we
write come to just that determination -
and then to have it make the safest
decision possible. In situations like these,
technical psychology almost become art.

Ada Inside

A little software piracy

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Tue, 11 Sep 2012 17:53:44 +0000
Subject: A little software piracy
Newsgroups: comp.lang.ada

In honour of September 19, "Talk Like a
Pirate Day"

http://www.dragondreamscreations.co.uk/
pirate.html

With apologies to the CBSG project
authors…

SecureOne™

From: AdaCore Press Center
Date: September 17, 2012
Subject: Rockwell Collins Develops

SecureOne™ with SPARK Pro and
GNAT Pro High-Security

URL: http://www.adacore.com/press/
secureone/

NEW YORK, PARIS, and CEDAR
RAPIDS, Iowa, September 17, 2012 -
Design East Boston 2012 - AdaCore
today announced the successful usage of
its SPARK Pro and GNAT Pro High-
Security products by Rockwell Collins in
the development of the SecureOne™
Guard, a high assurance cross domain
guard for military tactical systems. The
SecureOne Guard has strict requirements
for reliability and security. In order to
meet these needs, Rockwell Collins
selected SPARK Pro and GNAT Pro
High-Security as key development tools
for the project.

Rockwell Collins selected the GNAT Pro
High-Security and SPARK Pro
development tools to support the
redeployment of the cross domain guard
software from the UCDMO Baseline-
approved TurnstileTM Cross Domain
Guard to a Multiple Independent Levels
of Security (MILS) Real Time Operating
System (RTOS) as part of the SecureOne
project development. The SecureOne
Guard is one of the five SecureOne cross
domain technologies for high assurance
military tactical systems.

“Software at the highest security
assurance levels needs to be developed
with the most trustworthy languages and
tools,” said Robert Dewar, AdaCore
President and CEO. “The SPARK
programming language, and its supporting
toolset, meets these requirements,
allowing formal demonstration of
security-related properties, such as
absence of run-time exceptions. We are
pleased that Rockwell Collins, a
longstanding AdaCore customer, chose
our SPARK Pro tools and GNAT Pro
High-Security technology to develop the
SecureOne components.”

[…]

About SecureOne

SecureOne is a family of high assurance
cross domain technologies, providing
trusted multi-classification information
sharing for military tactical systems.
Using SecureOne, users can securely
access both unclassified and classified
data on the same equipment while

benefiting from reduced size, weight and
power.

The GNU Ada KDF9
emulator, now on Raspberry
Pi

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: Wed, 03 Oct 2012 07:26:15 +0100
Subject: ee9, the GNU Ada KDF9 emulator,

now on Raspberry Pi
Newsgroups: comp.lang.ada

ee9, my GNU Ada emulator of the
English Electric KDF9, has been available
for some time: for the x86_64 and
PowerPC G5 architectures under Mac OS
X; for the x86_32 and x86_64
architectures under Linux/FreeBSD; and
for the x86_32 architecture under
Microsoft Windows (XP/SP3 or newer).

It has now also been implemented for the
ARM architecture, in the form of the
Raspberry Pi educational microcomputer
running under Raspbian Linux (i.e.
Debian Wheezy for ARM11).

Download packages for all of these hosts,
including executable binaries and
complete sources, can be found at:
<http://www.findlayw.plus.com/
KDF9/#Emulator>

ee9 is distributed as free software under
the terms of GNU General Public
License.

[See also "KDF9 emulator in Ada 2005",
AUJ 32-2 (June 2011), p. 74. —sparre]

ADHCP

From: Adrian-Ken Rueegsegger
<ken@codelabs.ch>

Date: Thu, 15 Nov 2012 15:38:39 +0100
Subject: ANN: ADHCP version 0.3
Newsgroups: comp.lang.ada

I am proud to announce the first official
release of ADHCP, which is an
implementation of the DHCP protocol in
Ada. Currently the project provides client
and relay services for DHCPv4.

The project website is at [1], the current
release 0.3 can be downloaded from [2].

The ADHCP DHCPv4 client
(adhcp_client) is D-Bus aware and can be
used on most modern Linux distributions
as a drop-in replacement for other clients
such as ISC's dhclient or busybox's
udhcpc. Instructions on how to use
adhcp_client on a Linux desktop are
available on the project website.

adhcp_relay is a DHCPv4 and BOOTP
relay agent written in Ada. The relay
agent listens for DHCPv4 or BOOTP
queries from clients or other relay agents
on a given interface, forwarding them to a
specified upstream server or relay agent.

The ADHCP implementation is designed
to be simple and supports only essential

Ada in Context 245

Ada User Journal Volume 33, Number 4, December 2012

features while still conforming to the
related DHCP RFCs. A small text file
documenting the RFC compliance of
ADHCP is part of the project
documentation [3].

[1] - http://www.codelabs.ch/adhcp/

[2] - http://www.codelabs.ch/download/

[3] - http://www.codelabs.ch/adhcp/rfc-
conformity.html

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sun, 18 Nov 2012 13:00:21 +0100
Subject: Re: ADHCP version 0.3
Newsgroups: comp.lang.ada

Randy Brukardt wrote:

> In this specific case, I'm not sure what
use a DHCP client would be useful for -
getting IP addresses is something that
has to be done very early in a system's
life

Or whenever you move it to a different
network.

> and thus belongs to the kernel/OS and
not the application program.

On unix systems the DHCP client is
typically running in user-space, and as
such a part of the OS you can switch for a
different implementation practically as
easily as any application.

I think replacing unsafe/buggy parts of an
OS with safer/less buggy implementations
is a worthy goal. And if using Ada can
help getting there, it is both fine and a
good way to promote our favourite
programming language.

> I could see if having use in an all-Ada
system but that's about it.

Once it comes as a package in Debian, I
expect to use instead of the ISC DHCP
client I use at the moment.

Java Virtual Machine

From: Frederic BOYER
<frederic.boyer.kx@gmail.com>

Date: November 23, 2012
Subject: jadam
URL: http://sourceforge.net/projects/jadam/

Jadam is an effort to code a Java Virtual
Machine using the Ada 2005 language.

AZip

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sun, 25 Nov 2012 08:53:05 -0800
Subject: Ann: AZip 0.95
Newsgroups: comp.lang.ada

AZip [1] is a Zip archive manager.

Some features:

- multi-document (should be familiar to
MS Office users)

- simple to use (or at least I hope so ;-)) -
portable (currently on GWindows, but

the key parts of the UI and user
persistence are generic)

- uses the highly portable Zip-Ada library

- useful tools:

 - integrity check

 - text search function through archive,
without extracting files

 - (*) archive refresher

 - (*) archive comparison

 - (*) archive recompression

 - (*) archive merge

AZip is from A to Z in Ada :-)

(*): not yet implemented but some exist
as command line tools with Zip-Ada

[1] http://sf.net/projects/azip/

Ada in Context

Identifier casing considered
ugly

From: Yannick Duchêne
<yannick_duchene@yahoo.fr>

Date: Wed, 05 Sep 2012 21:01:02 +0200
Subject: Ada's identifiers casing considered

ugly
Newsgroups: comp.lang.ada

[…] http://www.python.org/dev/peps/pep-
0008/

 > The following naming styles are
commonly distinguished:

 > […]

 > Capitalized_Words_With_
Underscores (ugly!)

With an exclamation mark, above all.

Just to get back to a more interesting
topic, I also had another though while
reading this PEP: this may help if there
was such a precise layout convention for
Ada as the one there is for Python. But
may be the one of AdaCore is more
widespread than I believe (we already
discussed this a bit with in old topic about
the *_Type convention).

From: Pascal Obry <pascal@obry.net>
Date: Wed, 05 Sep 2012 21:23:50 +0200
Subject: Re: Ada's identifiers casing

considered ugly
Newsgroups: comp.lang.ada

>> Capitalized_Words_With_
Underscores (ugly!)

iunderstandthemasitisreallyhardtoreadatex
twithunderscoresseparatingwords.

From: Vinzent Hoefler
<0439279208b62c95f1880bf0f8776eeb
@t-domaingrabbing.de>

Date: Wed, 05 Sep 2012 21:37:42 +0200
Subject: Re: Ada's identifiers casing

considered ugly
Newsgroups: comp.lang.ada

>>> Capitalized_Words_With_
Underscores (ugly!)

> iunderstandthemasitisreallyhardtorea
datextwithunderscoresseparatingwords.

AndItSureDoesNotLookSoUgly.

From: Manuel Collado
<m.collado@domain.invalid>

Date: Wed, 05 Sep 2012 23:07:25 +0200
Subject: Re: Ada's identifiers casing

considered ugly
Newsgroups: comp.lang.ada

> […]

Ada code is case insensitive. So a code
reformatter can safely change the case of
identifiers to a normalized form, in order
to avoid variants of the same identifier
inside a set of source files. If there are no
underscores to delimit components of a
composed identifier, then they can/should
be merged in a single word. Underscores
as separators ensure that the composed
name remains a composed one.

After that, capitalization of individual
components of a composed identifier
remains a matter of taste. Some people
will find it easier to read (w.r.t. all
lowercase or uppercase).

From: Vinzent Hoefler
<0439279208b62c95f1880bf0f8776eeb
@t-domaingrabbing.de>

Date: Wed, 05 Sep 2012 21:15:49 +0200
Subject: Re: Ada's identifiers casing

considered ugly
Newsgroups: comp.lang.ada

> […] a precise layout convention for
Ada […]

What's wrong with the famous "Ada 95
Quality & Style: Guidelines for
Professional Programmers"? ;)

From: Nasser M. Abbasi
<nma@12000.org>

Date: Wed, 05 Sep 2012 18:23:13 -0500
Subject: Re: Ada's identifiers casing

considered ugly
Newsgroups: comp.lang.ada

>> Capitalized_Words_With_
Underscores (ugly!)

I agree it is ugly. I said this same thing
myself many times.

http://coding.derkeiler.com/Archive/Ada/
comp.lang.ada/2012-08/msg00219.html

“I like underscore in names of variables.
But I do not like at all the current Ada
tradition of using Upper case for first
letter as in

 This_Is_An_Identifier

I find this ugly and hard on the eye to
read. I like all lower case for variable
names, as it is easier to read. Less
variation in texture and form

this_is_an_identifier”

So, I am not the only one then who thinks
this Ada naming style is ugly ;)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 16 Oct 2012 18:07:32 -0500

246 Ada in Context

Volume 33, Number 4, December 2012 Ada User Journal

Subject: Re: Ada's identifiers casing
considered ugly

Newsgroups: comp.lang.ada

> This_Is_An_Identifier

> […] ugly and hard on the eye to read.

I agree with this.

> [easier to read]

> this_is_an_identifier

But I don't agree with this. This blends
identifiers and reserved words into an
unreadable mess. (Maybe it's OK if you
ONLY use colorizing editors and never
expect anyone else to use your code.)

RRS uses "title case" for identifiers,
which means that we use the same casing
as you would if you wrote this as the title
of something. For the above, that gives:

 This_is_an_Identifier

Our pretty printer can enforce this style
directly (it has a list of words that aren't
capitalized).

I've also experimented with capitalizing
just the first letter:

 This_is_an_identifier

I definitely agree that capitalizing words
like "Is" is ugly. I get in trouble
repeatedly working on the Ada Standard,
because I naturally refuse to type "_Is_"
and thus a lot of identifiers end up in the
"wrong" case.

Tasking and timing out

From: Thomas Løcke <tl@ada-dk.org>
Date: Thu, 20 Sep 2012 10:17:22 +0200
Subject: Tasking and timing out
Newsgroups: comp.lang.ada

I need to be able to be abandon a socket
connection in a task and let the task
complete if:

a. the socket connect takes too long to
complete or

b. the Start task entry isn't called within a
set timeframe

My current solution appears to do the
trick just fine, but I'm not sure if it's a
"good" solution, specifically the nested
select block pains me to no end - I can't
explain why though. :)

 task body AMI_Action is
 begin
 select
 accept Start do
 select
 delay 2.0;
 raise AMI_Action_Error with
 Connect_Timed_Out_Message;
 then abort
 AWS.Net.Std.Connect (
 Socket => Action_Socket,
 Host => Config.Get (PBX_Host),
 Port => Config.Get (PBX_Port));
 end select;
 end Start;
 or

 delay 3.0;
 raise AMI_Action_Error with
 No_Call_On_Start_Received;
 end select;

 loop
 -- Mad socket action!
 end loop;
 exception
 -- Catch exceptions, log issue and
 -- complete.
 end AMI_Action;

The general idea is that if the call to
AWS.Net.Std.Connect takes more than 2
seconds to complete, then I raise an
exception or if the Start entry isn't called
before 3 seconds have passed, then I also
raise an exception. In both cases I just
want the task to log the issue and
complete.

It works - at least I haven't been able to
make it fail in my tests, it's just that I'm
not sure if this is the right way to live up
to the requirements - maybe there's a
better way?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 20 Sep 2012 10:53:42 +0200
Subject: Re: Tasking and timing out
Newsgroups: comp.lang.ada

> I need to be able to be abandon a socket
connection in a task and let the task
complete if:

ATC is almost never a good idea. I
wonder how it worked in your case.
Maybe because the default socket timeout
was incidentally close to 2 sec?

In any case you should not expect Ada
run-time aborting outstanding OS I/O
requests. In some better world, but not
under Windows or Linux.

A proper solution for blocking sockets is
to close the socket from an independent
task and catching socket error when it
propagates or else to manipulate the
socket timeout before starting any
blocking operation.

From: Thomas Løcke <tl@ada-dk.org>
Date: Thu, 20 Sep 2012 11:36:38 +0200
Subject: Re: Tasking and timing out
Newsgroups: comp.lang.ada

> ATC is almost never a good idea. I
wonder how it worked in your case.
Maybe because the default socket
timeout was incidentally close to 2 sec?

I tested this with a call to a dummy
procedure that did nothing but hang for X
seconds, so the fact that it works have
nothing to do with the default socket
timeout. When X > 2 the exception was
raised, and when X < 2 then the task
proceeded to enter the loop.

ATC might almost never be a good idea,
but that "almost" surely means that in
some cases it can be a good idea? :)

As it is said in the John Barnes book
"Programming in Ada 2005":

 “The general effect can of course be
programmed by the introduction of an
agent task and the use of the abort
statement but this is a heavy solution not
at all appropriate for most applications
needing a mode change.”

The "then abort" syntax seems appropriate
for this specific case, where all I want is a
completed task in case things aren't
happening within a set time limit.

> In any case you should not expect Ada
run-time aborting outstanding OS I/O
requests. In some better world, but not
under Windows or Linux.

I had not thought about that. What you're
saying is that despite the "then abort"
syntax I cannot safely rely on the
termination of the ongoing
AWS.Net.Std.Connect procedure? In that
case then this is indeed a rather nasty
problem. Again from John Barnes:

 “The general idea is that if the statements
between "then abort" and "end select" do
not complete before the expiry of the
delay then they are abandoned and the
statements following the delay are
executed instead.”

If I cannot rely on the runtime to actually
abandon the call to
AWS.Net.Std.Connect, then I wonder
what circumstances John Barnes is
referring to?

> A proper solution for blocking sockets
is to close the socket from an
independent task and catching socket
error when it propagates or else to
manipulate the socket timeout before
starting any blocking operation.

I did think about having an agent task to
manage this, but it seemed messy and
heavy compared to the extreme simplicity
of this solution. Also I found it hard to
meet my two requirements.

I felt relatively safe using "then abort"
because John Barnes specifically
mentions this form of select statement as
a solution to the problem of quitting
action A and do B instead if A doesn't
complete within a specified duration.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 20 Sep 2012 12:21:19 +0200
Subject: Re: Tasking and timing out
Newsgroups: comp.lang.ada

ARM 9.8 provides the guideline.

Specifically, you should consider:

1. Operations which can be prematurely
aborted (no side effects)

2. Operations which cannot be aborted:

 2.1 Ones for which 9.8 provides safety
 against abort:

 2.1.1. Ones which are time bounded

 2.1.2. Ones which could deadlock
 when abort attempted (difficult

Ada in Context 247

Ada User Journal Volume 33, Number 4, December 2012

 to construct, but I would not
 exclude a possibility of)

 2.2 Ones for which 9.8 does not
 provide cover:

 2.2.1. Ones for which abort would
 cause malfunction (memory,
 resource leaks, corruption etc)

 2.2.2. Ones of which premature
 termination is impossible, e.g.
 system calls, most I/O, waitable
 system objects etc.

> […]

There is not much difference between
ATC and explicit aborting tasks. Both
represent the case when the task control
flow is preempted. The perils are
basically same.

> I had not thought about that. What
you're saying is that despite the "then
abort" syntax I cannot safely rely on the
termination of the ongoing
AWS.Net.Std.Connect procedure?

Not if that is 1) an OS-native thread, 2)
blocked by the OS, e.g. upon waiting for
an outstanding I/O request.

A good example is using ATC when
reading the keyboard input using
Get_Line. Depending on the
implementation of Get_Line it may work
or may not work. 80 to 20 for the latter.

> If I cannot rely on the runtime to
actually abandon the call to
AWS.Net.Std.Connect, then I wonder
what circumstances John Barnes is
referring to?

#1 + #2.1.1 above. E.g. some
computations, even with controlled types
involved. Anything else requires *careful-
analysis and thus is necessarily very
fragile. Ergo, for the software design
POV, it is better to forget about ATC, too
problematic.

> I did think about having an agent task to
manage this, but it seemed messy and
heavy compared to the extreme
simplicity of this solution.

Not really. Usually you have some worker
task anyway due to the asynchronous
nature of I/O and because you liked to
share the connection between several
tasks.

The clients are separate tasks asking the
worker for data ready. They would do that
by a timed entry call to the worker's entry
or else to a protected object's entry. Upon
timeout of this call you would call some
Cancel operation on the communication
object which internally would close the
socket at some stage. That in turn will
cause an error in the worker task, which
would drop the connection and then
would try to reconnect etc

From: Adam Beneschan
<adam@irvine.com>

Date: Thu, 20 Sep 2012 11:33:46 -0700
Subject: Re: Tasking and timing out

Newsgroups: comp.lang.ada

First of all, doesn't AWS.Net.Std.Connect
have its own facility for handling
timeouts? I'm looking at the source, and it
looks like it does, but I don't know if I'm
looking at the most recent version. If it
does, you should definitely use that, and
not rely on ATC.

> I had not thought about that. What
you're saying is that despite the "then
abort" syntax I cannot safely rely on the
termination of the ongoing
AWS.Net.Std.Connect procedure?

That's correct. Here are my thoughts on
this, to add to what Dmitry said:

If your 2-second period times out, the call
to AWS.Net.Std.Connect is *aborted*.
RM 9.8 defines exactly what that means.
The important thing is that it defines
certain points called "abort completion
points". They include things like the
beginning or end of an ACCEPT
statement, the beginning of end of a
DELAY statement, entry calls, and a
number of other cases. When the code
being aborted gets to one of those points,
then it will be aborted. However, the
language doesn't define whether the code
could be aborted *before- one of those
points. In particular, a blocking I/O
operation (such as Ada.Text_IO.Get_Line
from a console, or a socket connect) is
*not- an abort completion point. It's up to
an Ada implementation to decide where
things could be aborted. In your case,
since you're calling a procedure in another
package, you'd have to peek at the source
of that package to find out where abort
completion points might be happening.

If the code in Connect is executing some
OS operation that's doing the connect,
then aborting the code could have several
different effects, depending on the Ada
implementation:

(1) The OS operation is not affected, since
it's not an abort completion point. The
program still waits for the OS call to
return; and then, later, when some other
abort completion point is reached, the
abort will finally take place.

(2) The expiration of the "delay 2.0"
causes some sort of interrupt handler to be
executed. This may or may not disrupt the
OS call. The interrupt handler then
manipulates the program stack to cause it
to continue executing at the statement
after the "delay 2.0". Whether this
actually works or not is highly OS- and
implementation-dependent, and it's
entirely possible that on some OS's it
could do damage.

(3) The Ada implementation provides
facilities for abortable I/O operations, and
integrates this with its runtime so that an
abort will work properly. Of course, this
means that AWS.Net.Std.Connect would
have to use those facilities, rather than
calling the OS operation directly. Also, a

facility like this would have to be written
separately for each kind of I/O operation.

Whether a facility *could- be written to
make a particular type of I/O abortable
depends on the OS, and I don't think it
can always be done. On Linux, there's a
connect() call to connect to a socket. But I
don't think there's a cancel_connect() call
that would let you terminate a connect()
call that had started (perhaps in a different
thread). This means that if you want a
timeout, you probably have to know
*ahead- of time, before you call
connect(), whether the connect() will have
an expiration period and how long it is.
(And I'm not even 100% sure that you can
do a "timed connect" in Linux even if you
do know.)

From: Thomas Løcke <tl@ada-dk.org>
Date: Thu, 20 Sep 2012 22:40:57 +0200
Subject: Re: Tasking and timing out
Newsgroups: comp.lang.ada

> Ergo, for the software design POV, it is
better to forget about ATC, too
problematic.

I've taken your advice to heart Dmitry,
and re-coded the routine without ATC,
and it is much better for it.

From: Thomas Løcke <tl@ada-dk.org>
Date: Thu, 20 Sep 2012 22:43:41 +0200
Subject: Re: Tasking and timing out
Newsgroups: comp.lang.ada

> […]

Awesome explanation Adam! Your post
really drove the point Dmitry made home.

And yes, AWS does have some facilities
for this, and yes I'm using those in my
new non-ATC solution.

"then abort" is out the window!

Optimization away of checks
in 'Valid

From: Joseph Wisniewski
<wisniewski.ru@gmail.com>

Date: Tue, 25 Sep 2012 18:33:54 -0700
Subject: optimization away of checks in

'valid
Newsgroups: comp.lang.ada

Ran into an issue with one compiler
having to do with the implementation of
'Valid. Was looking for comments as to
how other compilers handle this.

Basically, the question is, if 'Valid is
called on an integer object, are there
conditions under which some of the
checks done by 'Valid (range checking on
an object of an integer subtype) are
removed?

Specifically, we had a case where C++
code was not checking the bounds of an
integer subtype as it was passed to Ada
code via a function parameter. The Ada
code _was_ checking via 'Valid. 'Valid
returned true even though the integer
value was out of bounds. Turns out the
compiler relied on the "allowed

248 Ada in Context

Volume 33, Number 4, December 2012 Ada User Journal

assumption" that all callers "check their
bounds" for such data. As such, the range
checks in 'Valid were eliminated as
redundant as part of building with
optimization on. In fact, I believe the
checks were eliminated under no-opt also.

My question is whether this is similar
behavior across compilers or if 'Valid is
viewed as always performing the same
checks, including and perhaps especially
bounds checks in this kind of situation.

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Wed, 26 Sep 2012 01:35:24 -0700
Subject: Re: optimization away of checks in

'valid
Newsgroups: comp.lang.ada

> Turns out the compiler relied on the
"allowed assumption" that all callers
"check their bounds" for such data.

I'd think this assumption should be
disallowed for exported subprograms, or
actually for all subprograms with a
Convention other than Ada?

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Wed, 26 Sep 2012 14:01:14 +0200
Subject: Re: optimization away of checks in

'valid
Newsgroups: comp.lang.ada

> Specifically, we had a case where C++
code was not checking the bounds of a
integer subtype as it was passed to Ada
code via a function parameter. The Ada
code _was_ checking via 'valid. 'valid
returned true even though the integer
value was out of bounds. Turns out the
compiler relied on the "allowed
assumption" that all callers "check their
bounds" for such data.

FWIW, is the function like any of the
ones below? I see Exported_2 and
Exported_3 have 'Valid removed after
compilation, as expected maybe.

with Interfaces.C;
package Rcheck is
 use type Interfaces.C.int;
 subtype T is Interfaces.C.int
 range -7 .. 100;
 subtype int is Interfaces.C.int;
 function Exported_1 (Item : T) return T;
 pragma Export (C, Exported_1);
 function Exported_2 (Item : int) return int;
 pragma Export (C, Exported_2);
 function Exported_3 (Item : int) return T;
 pragma Export (C, Exported_3);
 Default_Value : constant T := 33;
end Rcheck;
package body Rcheck is
 Dummy : constant := 66;
 function Exported_1 (Item : T) return T is
 Result : T;
 begin
 if Item'Valid then
 Result := Dummy;
 else
 Result := Default_Value;
 end if;
 return Result;

 end Exported_1;

 function Exported_2 (Item : int)
 return int is
 Result : int;
 begin
 if Item'Valid then
 Result := Dummy;
 else
 Result := Default_Value;
 end if;
 return Result;
 end Exported_2;

 function Exported_3 (Item : int) return T is
 Result : T;
 begin
 if Item'Valid then
 Result := Dummy;
 else
 Result := Default_Value;
 end if;
 return Result;
 end Exported_3;
end Rcheck;

From: Jeffrey Carter <jrcarter@acm.org>
Date: Wed, 26 Sep 2012 09:46:42 -0700
Subject: Re: optimization away of checks in

'valid
Newsgroups: comp.lang.ada

Using any scalar subtype other than those
in Interfaces.C when interfacing to C/++
is asking for trouble.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Thu, 27 Sep 2012 02:00:08 -0400
Subject: Re: optimization away of checks in

'valid
Newsgroups: comp.lang.ada

[…]

See ARM 13.9.2; it lists the operations
that can return invalid values.

[…]

Reading an input parameter is not in the
list of operations that can return invalid
values.

"interfacing to another language" is on the
list, which is what you are doing, but I
suspect that really means "calling a
subprogram implemented in another
language"; i.e., a subprogram with
pragma Import.

Do you have pragma Export on the Ada
function? That would mean reading the
input parameter _is_ interfacing to
another language, and you could complain
to your compiler vendor.

Highest bit, statically
determined

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Sat, 29 Sep 2012 19:34:09 +0200
Subject: highest bit, statically determined
Newsgroups: comp.lang.ada

Is there a shorter/better way of having the
compiler find the highest bit = 1 in a static
numeric constant?

If N is such a constant, e.g.
Some_Type'Last where Some_Type'Size
= 8 and its bound are static, then

Highest_Bit_In_Octet : constant :=
 Natural'Max
 (8- Boolean'Pos (N / 2**7 > 0),
 Natural'Max
 (7- Boolean'Pos (N / 2**6 > 0),
 Natural'Max
 (6- Boolean'Pos (N / 2**5 > 0),
 Natural'Max
 (5- Boolean'Pos (N / 2**4 > 0),
 Natural'Max
 (4- Boolean'Pos (N / 2**3 > 0),
 Natural'Max
 (3- Boolean'Pos (N / 2**2 > 0),
 Natural'Max
 (2- Boolean'Pos (N / 2**1 > 0),
 Natural'Max
 (1- Boolean'Pos (N / 2**0 > 0),
 0))))))));

From: Pascal Obry <pascal@obry.net>
Date: Sat, 29 Sep 2012 20:11:11 +0200
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

if N > 128 then
 return 8;
elsif N > 64
 return 7;
elsif …

elsif N > 0 then
 return 1;
end if;

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Sat, 29 Sep 2012 20:59:43 +0200
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

> […]

The N > 2**X part is good, thanks for the
answer that removed a fair bit of fog. But
the "return X" indicates that the solution
cannot be static, or can it?

There might be an expression in Ada
2012 that does it. Alas, I cannot use Ada
2012 yet -- which I should have
mentioned!

Highest_Bit_In_Octet_2012 : constant :=
 (if N >= 2**7 then 8
 elsif N >= 2**6 then 7
 elsif N >= 2**5 then 6
 elsif N >= 2**4 then
 elsif N >= 2**3 then 4
 elsif N >= 2**2 then 3
 elsif N >= 2**1 then 2
 elsif N >= 2**0 then 1
 else 0);

[with later fix merged in —sparre]

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: Sat, 29 Sep 2012 19:57:08 +0100

Ada in Context 249

Ada User Journal Volume 33, Number 4, December 2012

Subject: Re: highest bit, statically
determined

Newsgroups: comp.lang.ada

> […]

In my experience that sort of code,
applied in non-static cases, is less
efficient than one would hope, and more
obvious code works faster.

Something like the following can be
readily extended to greater operand
widths:

 function First_1_Bit (y : Octet)
 return Natural is
 x : Octet;
 r : Natural;
 begin
 if y = 0 then return 0; end if;
 if (y / 16) /= 0 then
 r := 4; x := y / 16;
 else
 r := 0; x := y;
 end if;
 if (x / 4) /= 0 then
 r := r + 2; x := x / 4;
 end if;
 if (x / 2) /= 0 then
 r := r + 1;
 end if;
 return r + 1;
 end First_1_Bit;

It looks fairly inline-able, and foldable for
a static value of y.

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: Sat, 29 Sep 2012 20:16:01 +0100
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

> […]

I can now confirm that with GNAT GPL
2012 at -O3 it does inline and fold, but I
now see that you want the result to be
static as well as the operand, and this does
not achieve that.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Sat, 29 Sep 2012 23:36:59 +0200
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

> function First_1_Bit

[…]

Daringly, I have tried to steal the idea and
try a comparison (out of curiosity, not for
the static thing). GCC performs simple
tail call elimination (explaining the Shift
parameter)!

 function First_1_Bit_A (y : Octet; Shift :
 Integer := 0) return Natural is
 begin
 if y >= 2**4 then
 if y >= 2**6 then
 return Shift + 7 + Boolean'Pos
 (y >= 2**7);
 else

 return Shift + 5 + Boolean'Pos
 (y >= 2**5);
 end if;
 else
 if Y = 0 then
 return 0;
 else
 return First_1_Bit_A
 (y- 2**4, Shift => -4);
 end if;
 end if;
 end First_1_Bit_A;

Don't know if that's as readily adaptable
to other word sizes, but it might make the
functionist happier. ;-)

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Sun, 30 Sep 2012 00:06:51 +0200
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

[…]

First_1_Bit is better [than First_1_Bit_A]
by between 30% and 40% speed here.

Inlining can mean that the program runs
about 4x as fast, for each of the two
functions.

(But, with GNAT, the deprecated -gnatN
has *no- effect in the case of
First_1_Bit_A. Best options: -O2 -funroll-
loops -gnatp -gnatn.)

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Sun, 30 Sep 2012 08:01:54 -0700
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

If you don't need static function, you can
use following function (GCC can
precompute its result for static value):

 with Interfaces.C; use Interfaces.C;
 function Bit (X : Unsigned)
 return Unsigned;
 pragma Inline (Bit);
 function Bit (X : Unsigned)
 return Unsigned is
 function CLZ (X : Unsigned)
 return Unsigned;
 pragma Import (Intrinsic, CLZ,
 "__builtin_clz");
 begin
 if X = 0 then
 return 0;
 else
 return Unsigned'Size - CLZ (X);
 end if;
 end Bit;

From: Anatoly Chernyshev
<achernyshev@gmail.com>

Date: Sun, 30 Sep 2012 08:39:41 -0700
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

Ouch…

 with Ada.Numerics.Elementary_Functions;
 use Ada.Numerics.Elementary_Functions;

 Highest_Bit_In_Octet := Natural
 (Float'Truncation (Log (Float (N), 2.0)));

I didn't check it for speed though. Pros
that it doesn't depend on the size.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Mon, 01 Oct 2012 10:07:33 +0200
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

> […]

I did. And this time I had the program
actually call the randomizing Initialize I
had written for the test data. .-/ Results
have changed in favor of the recursive
first_1_bit_a. The test is running on a
laptop, so it likely says little about results
on a microcontroller.

x an array of 12_000 octets, 10_000
iterations for each test.

First column: Count (f(x{k}) =
 f(x_{k + 1})),

Second column: time in seconds

 68580000 2.635991000
 -- f is First_1_Bit

 68580000 2.036651000
 -- f is First_1_Bit_A

 68580000 27.735934000
 -- f is First_1_Bit_Log

with inline expansion:

 68580000 1.687923000

 68580000 1.447859000

 68580000 24.48147200

Slightly faster in both cases when
translation suppresses checks, the integer
versions more than the FPT version.

From: Anatoly Chernyshev
<achernyshev@gmail.com>

Date: Mon, 1 Oct 2012 01:52:43 -0700
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

[…] Here's the draft lightning-fast
version:

 Last_Bit_A : array (0 .. 255) of Natural := (
 0 => 0,
 1 => 1,
 2..3 => 2,
 4..7 => 3,
 8..15 => 4,
 16..31 => 5,
 32..63 => 6,
 64..127 => 7,
 128..255 => 8);

[with a fix to match the reference
implementation —sparre]

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Mon, 01 Oct 2012 23:30:24 +0200
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

250 Ada in Context

Volume 33, Number 4, December 2012 Ada User Journal

 68580000 2.653934000

 68580000 2.021029000

 68580000 27.702262000

 68580000 1.173348000
 -- first_1_bit_table

I guess the approaches can be used
together for larger N-tests.

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 1 Oct 2012 15:55:43 -0700
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

I wouldn't be surprised if you could make
it faster by making it a constant.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Tue, 02 Oct 2012 01:25:19 +0200
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

It is a constant. Making it variable does
not make a difference, though.

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Tue, 2 Oct 2012 11:03:22 +0000
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

Just for completeness,

function First_Bit_Case (N : Octet)
 return natural is
begin
 case N is
 when 0 => return 0;
 when 1 => return 1;
 when 2..3 => return 2;
 when 4..7 => return 3;
 when 8..15 => return 4;
 when 16..31 => return 5;
 when 32..63 => return 6;
 when 64..127 => return 7;
 when others => return 8;
 end case;
end First_Bit_Case;

Here (on an Atom netbook) it measures
about the same as the equivalent if

chain; faster than the recursive versions
but slower than the table.

--Z := Z + First_1_Bit_Ifchain(Data(i));
-- real 0m3.208s
--Z := Z + First_Bit_Table(Data(i));
-- reaL 0m1.971s
--Z := Z + First_1_Bit(Data(i));
-- real 0m4.672s
--Z := Z + First_1_Bit_A(Data(i));
-- real 0m3.937s
 Z := Z + First_Bit_Case(Data(i));
-- real 0m3.272s

The Ada-2012 case expression was no
faster.

From: Kalvin <kalvink65@gmail.com>
Date: Wed, 3 Oct 2012 02:30:51 -0700
Subject: Re: highest bit, statically

determined

Newsgroups: comp.lang.ada

How about binary search algorithm with
constant execution time

Binary_Search_Highest_Bit_In_Octet_2012:
constant :=
 (if N > (2**4)-1 then
 -- determine upper or lower nibble
 -- upper nibble
 if N > (2**6)-1
 -- bits 7 and 6
 if N > (2**7)-1 then
 7
 else
 6
 else
 -- bits 5 and 4
 if N > (2**5)-1 then
 5
 else
 4
 else
 -- lower nibble
 if N > (2**2)-1 then
 -- bits 3 and 2
 if N > (2**3)-1 then
 3
 else
 2
 else
 -- bits 1 and 0
 if N > (2**1)-1 then
 1
 else
 0);

Disclaimer: I am not an Ada programmer,
so this might not compile, but describes
the idea anyway.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Thu, 04 Oct 2012 09:46:16 +0200
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

> […]

For the recursive one, the above one, and
the one using a table, respectively, I get,
in seconds:

1.62, 1.57, 0.95

From: Tomi Saarnio
<kalvin.news@gmail.com>

Date: Thu, 4 Oct 2012 03:01:50 -0700
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

> [First_Bit_Table]

This can be optimised for improved size
so that we create a lookup table only for a
nibble values (0..15), and divide the
handling into two parts according to
whether the higher nibble is zero or non-
zero. The end result would be a slighter
slower execution speed but less code
space. And this method can easily be
extended to larger data sizes, too.

From: Anatoly Chernyshev
<achernyshev@gmail.com>

Date: Fri, 5 Oct 2012 00:50:15 -0700

Subject: Re: highest bit, statically
determined

Newsgroups: comp.lang.ada

If you play with the memory optimization
(I'm not very good at it), the array above
will be made of 4 bit integers (0 to 8),
which occupy lousy 4*256/8 = 128 bytes
of memory. Laughable by today's
standards. Even if you go for
long_long_long…_integers, the table will
be quite small.

From: Anatoly Chernyshev
<achernyshev@gmail.com>

Date: Fri, 5 Oct 2012 01:38:18 -0700
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

Here we go:

 with Text_IO; use Text_IO;
 procedure Table_Size is
 type Small_Integer is range 0 .. 8;
 type Small_Integer_Array is array
 (0 .. 255) of Small_Integer;
 for Small_Integer_Array'
 Component_Size use 8;
 Last_Bit_A : Small_Integer_Array :=
 0 => 0,
 1 => 1,
 2..3 => 2,
 4..7 => 3,
 8..15 => 4,
 16..31 => 5,
 32..63 => 6,
 64..127 => 7,
 128..255 => 8);
 begin
 Put_Line (Integer'Image
 (Last_Bit_A'Size / 8));
 end Table_Size;

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: Sun, 04 Nov 2012 22:00:52 +0000
Subject: Re: highest bit, statically

determined
Newsgroups: comp.lang.ada

> What means folding in this context?

Compile-time evaluation, so that the end
result is a compile-time known (I do not
say static, as that is a term of art in Ada)
value.

API design considerations

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Mon, 8 Oct 2012 02:03:03 -0700
Subject: API design considerations -

variable-length array in record type
Newsgroups: comp.lang.ada

I am working on the API design where
there is a need for a record type with
field(s) that are arrays of some predefined
type (say, Integer). So, an example record
type might look like this:

type R is record
 X : Integer;
 Y : Unbounded_String;

Ada in Context 251

Ada User Journal Volume 33, Number 4, December 2012

 Z : Array_Of_Integers_That_We_
 Talk_About_Here;
end record;

The trouble is, the types involved should
comply with the following requirements:

- the enclosing record type should not be
limited (it should be copyable)

- the record type can be explicitly
controlled, if necessary

- the record type should be definite (it
should not require initialization)

- it should be possible to assign to Z, just
as it is possible to assign to X and Y,
and the new value for Z *might have a
different length*

An important relaxation is that it is not
necessary to support in-place
modifications of the field in question.
That is, Y above can be modified (by
appending or modifying individual
characters, for example) in place. It is not
necessary to support it for Z, assignment
of the whole array is the only operation
that is needed there.

A straightforward choice is a predefined
instantiation of Ada.Containers.Vectors
for Integer and this would be probably the
least surprising, especially in the context
of Y : Unbounded_String, but at the same
time I'm open to consider some more
lightweight alternatives. The problem is -
any other alternative I can think of leads
to the complication of API in the form of
introducing Ada.Finalization.Controlled
to the picture.

Do you have some favourite solutions?

For comparison, in C++ this would be
solved with std::vector<int>, which
suggests Ada.Containers.Vectors for Ada;
but in Java this would be done simply
with int[], which is conceptually lighter
and easier to use in this particular context.

From: Simon Wright
<simon@pushface.org>

Date: Mon, 08 Oct 2012 12:13:46 +0100
Subject: Re: API design considerations -

variable-length array in record type
Newsgroups: comp.lang.ada

> [predefined instantiation of
Ada.Containers.Vectors]

This would be my choice!

> The problem is - any other alternative I
can think of leads to the complication
of API in the form of introducing
Ada.Finalization.Controlled to the
picture.

You could use "private with".

From: Egil Høvik
<egilhovik@hotmail.com>

Date: Mon, 8 Oct 2012 04:29:26 -0700
Subject: Re: API design considerations -

variable-length array in record type
Newsgroups: comp.lang.ada

> […]

If you don't mind using Ada 2012
packages, there's also
Ada.Containers.Indefinite_Holders (RM
A.18.18). I haven't used it myself yet, so I
can't say anything about how lightweight
it is compared to Vector.

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Mon, 8 Oct 2012 04:53:15 -0700
Subject: Re: API design considerations -

variable-length array in record type
Newsgroups: comp.lang.ada

> [Ada.Containers.Indefinite_Holders]

That would be a perfectly justified choice,
except for the fact that this is a library
code, which is intended for wider use and
relying on Ada 2012 would be too
constraining.

Still, a possible approach would be to
(re)implement Indefinite_Holders as a
supporting package and at some point in
the future switch to the standard package
with minimal or no impact. I will
seriously take it into consideration.

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Mon, 8 Oct 2012 17:37:58 +0300
Subject: Re: API design considerations -

variable-length array in record type
Newsgroups: comp.lang.ada

> […]

I have variation of Indefinite_Holders
implemented in Ada 95 here:

https://bitbucket.org/tkoskine/
hauki/src/tip/src/hauki-containers-
object_holders.ads

https://bitbucket.org/tkoskine/
hauki/src/tip/src/hauki-containers-
object_holders.adb

My implementation probably doesn't
match Ada 2012 100%, but shows that it
is possible to implemented them in Ada
95 also.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Mon, 08 Oct 2012 23:10:48 -0400
Subject: Re: API design considerations -

variable-length array in record type
Newsgroups: comp.lang.ada

> […]

Ada.Containers.Bounded_Vectors meets
these requirements.

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 8 Oct 2012 19:02:36 -0700
Subject: Re: API design considerations -

variable-length array in record type
Newsgroups: comp.lang.ada

> […]

Why not use discriminants on the record?

 Default : constant := Natural'First;
 type R (Array_Length : Natural :=
 Natural'First) is record
 X : Integer;
 Y : Unbounded_String;

 Z : Array_Of_Integers_That_We_
 Talk_About_Here (1 .. Array_Length) :=
 (others => Default);
 end record;

From: Adam Beneschan
<adam@irvine.com>

Date: Mon, 8 Oct 2012 22:16:28 -0700
Subject: Re: API design considerations -

variable-length array in record type
Newsgroups: comp.lang.ada

> [record discriminant]

Note that this will not work on all
implementations. There are two ways to
implement an array component whose
bound depends on a discriminant: (1) the
record type will contain space for the
largest possible array, or (2) the record
type can contain a pointer to a
dynamically sized array, which then may
need to be deallocated and reallocated
when a new value is assigned to the
record. (Other methods are possible in
theory.) The above won't work well on
compilers that implement (1) because the
record will then need to be big enough to
hold Natural'Last integers (plus the other
fields), and that could be way too much
space depending on the range of Natural.
If there is a known, fairly small upper
bound, and you're willing to allocate that
much space in every record, then declare
a subtype of Natural and use that subtype
in the discriminant clause. Otherwise I'd
avoid this construct.

(P.S. Is it just me, or is anyone else
irritated by the use of Natural'First or
Positive'First? Using something like
Integer'First is a great idea, because that
makes things portable between
implementations since not all
implementations have the same Integer
bounds. And if you have a subtype S, you
should usually say S'First instead of
coding the literal value, because who
knows what reason you might have in the
future for deciding to change the
declaration of S, and then you only have
to change it in one place. But I don't see
the point of Natural'First. It will always be
0, on all implementations, and can never
be changed no matter how many times
you redesign your program, so why not
just write 0? OK, that's my one rant for
the day.)

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Tue, 09 Oct 2012 08:42:08 +0300
Subject: Re: API design considerations -

variable-length array in record type
Newsgroups: comp.lang.ada

> [record discriminant]

Requirement 4 is not satisfied: if you
assign a new value to R.Z, it has to have
the same length as the old value
(R.Array_Length). You can change the
length only by assigning a new value,
with the new discriminant value, to the
whole record.

252 Ada in Context

Volume 33, Number 4, December 2012 Ada User Journal

And there is the memory usage problem
that Adam described.

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 8 Oct 2012 22:45:49 -0700
Subject: Re: API design considerations -

variable-length array in record type
Newsgroups: comp.lang.ada

> [irritated by Natural'First]

I'm more irritated there's no 'type attribute
so you can't say something like Type K(
X : Enum_21:= X'Type'First) […] for
specifying that you do want the type to
have a defaulted discriminant, and that
should be the 'First of that type. {After-all
the type of X has to be known at compile-
time.} Though that particular example
might not be the best; using X before it's
declaration is illegal. — Though the idea
could be useful other places.

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Tue, 9 Oct 2012 00:47:12 -0700
Subject: Re: API design considerations -

variable-length array in record type
Newsgroups: comp.lang.ada

> Ada.Containers.Bounded_Vectors
meets these requirements.

No, because there is no predefined upper
bound on the length of array.

I have to admit that the idea with
Indefinite_Holders looks the most
attractive and the essential parts of this
solution are very easy to implement.

How large were MIL STD
1750A Ada-running
systems?

From: mjsilva@scriptoriumdesigns.com
Date: Thu, 11 Oct 2012 10:57:09 -0700
Subject: How large were MIL STD 1750A

Ada-running systems?
Newsgroups: comp.lang.ada

I wondered about this in another thread,
but thought I'd start a separate thread for
visibility. How large (how much memory)
were 1750A systems that ran Ada (and
especially, Ada with some form of
tasking)?

I'm only asking about 1750A systems
because it was a fairly small device with,
from what I read, a lot of Ada activity.
What I'm really curious to know is how
much memory should be required on a
modern 32-bit device to run a small Ada
application with e.g. Ravenscar tasking,
but without the entire runtime support that
full Ada requires.

From: Niklas Holsti
<niklas.holsti@tidorum.fi>

Date: Thu, 11 Oct 2012 23:03:57 +0300
Subject: Re: How large were MIL STD

1750A Ada-running systems?
Newsgroups: comp.lang.ada

> […]

I worked on one 1750A application, at
Space Systems Finland Ltd: the on-board
Application SW for the GOMOS ozone-
monitoring instrument on the ESA
ENVISAT satellite (which was a mostly-
or-completely Ada satellite, as I
remember).

I think this system had the full 64 kilo-
words (128 KiB) of code memory but
only 32 kilo-words (64 KiB) of data
memory. We used the TLD Ada compiler,
but (by the customer's decision) a small
RT kernel instead of Ada tasking.

As I remember, some other 1750A
systems on ENVISAT needed more
memory, and had to use banking schemes
to extend the 16-bit address space (with
the predictable problems that causes).

> [Ravenscar tasking]

Sorry, I have no experience of Ada
tasking on the 1750A. But it seems to me
that the RTOS we used was about as
complex as Ravenscar tasking, and it was
definitely not the major consumer of code
memory.

RESTful web API using
AWS

From: Adrian Hoe <abyhoe@gmail.com>
Date: Thu, 11 Oct 2012 08:17:59 -0700
Subject: Re: RESTful web API using AWS?
Newsgroups: comp.lang.ada

> I'm currently tasked with developing a
RESTful web API as a font-end for
what amounts to a bunch of bog-
standard RDB operations. I'm currently
using PHP, which, as it stands is
making me feel ill.

> While investigating other (more
orthogonal) technology choices

> (erlang, Scala, etc.), I happened to come
across Ada Web Server. I suppose my
question is: is AWS up to the job? Has
anyone here done this before?

> It seems to me like AWS' dispatcher
mechanisms are ideal for this purpose,
because they don't make assumptions
about what you want to do with the
incoming HTTP request (I'm tired of
frameworks that force you into a ham-
fisted, code generating MVC
implementation).

> Any input from experienced Ada
engineers would be greatly appreciated.

Yes, I'm developing both web application
servers and RESTful web API servers
using AWS. Codes written in Ada are
more maintainable than anything else
especially when your apps are big.

I strongly recommend. Cheers.

High-precision floating point

From: Jerry <lanceboyle@qwest.net>
Date: Fri, 19 Oct 2012 01:57:19 -0700

Subject: How to get high-precision floating
point--MPFR

Newsgroups: comp.lang.ada

I have a few lines of floating point code in
a large program which I suspect could be
causing subtle errors. (It uses lots of
recursion with some dicey numbers.) I am
using GNAT GPL 2011 on an Intel Mac,
Long_Float (64 bits) everywhere.

I understand that recent versions of GCC
come with MPFR (Multiple Precision
Floating-Point Reliably).

Here is what I want to do

type Giant_Float is digits 30;

but GNAT says, sorry not more than
digits 18 (see below related note). So
what I think I have to do is find an Ada
binding to MPFR and re-write my code. Is
that correct? Do I already have the library
with GPL 2011 or OS X 10.7? If not, I
can build with Macports. I gather that
Vincent's binding here

http://code.google.com/p/
adabindinggmpmpfr/

is the way to go. Did this binding ever
make it into GCC?

If I do quadruple precision I would expect
the relevant lines to execute 5-6 times
slower than with Long_Float. I need only
multiplication and addition, and will
convert the result to Long_Float.

I don't need a computational model where
the precision increases every time I do an
operation; I'm certain that I can easily
specify a fixed precision that will suffice.
Is that the way MPFR works?

On a related note, I have a
(borrowed/stolen) program which prints
out some numeric attributes. I won't
bother pasting the code, but a partial
output listing is this:

Long_Float bits is 64

Long_Long_Float bits is 128

The smallest Long_Float is
1.94469227433160678E-62

The largest Long_Float is
2.57110087081438330E+61

The number of digits in Long_Float is 15

The size of the Long_Float mantissa in
bits is 51

However, the CPU's Long_Float mantissa
is 53

The smallest Long_Long_Float is
1.76868732008334226E-74

The largest Long_Long_Float is
2.82695530364541493E+73

The number of digits in Long_Long_Float
is 18

The size of the Long_Long_Float
mantissa in bits is 61

However, the CPU's Long_Long_Float
mantissa is 64

Ada in Context 253

Ada User Journal Volume 33, Number 4, December 2012

Can someone explain this? At first it
looks like Long_Long_Float is going to
be quadruple precision (128 bits) but then
the precision results indicate that it is only
3 digits better than Long_Float and has a
rather small increase in exponent range.
And why is the Ada type using less
mantissa bits than the hardware?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 19 Oct 2012 11:45:41 +0200
Subject: Re: How to get high-precision

floating point--MPFR
Newsgroups: comp.lang.ada

AFAIK x86/x86-64 do not have hardware
128-bit floats (IEEE or not). See

http://en.wikipedia.org/wiki/
Quadruple-precision_floating-
point_format

Which also says that gcc's long double is
merely 80-bit extended precision. That, I
presume, corresponds to the GNAT's
Long_Long_Float.

You could compare attributes of
Long_Long_Float and
Interfaces.C.long_double,
T'Machine_Mantissa (A.5.3), in
particular, it should be 64 for 80-bit
extended precision.

Why GNAT uses 128 bit instead of 80
actually used bit? Maybe, because of
alignment issues.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Fri, 19 Oct 2012 12:47:53 +0200
Subject: Re: How to get high-precision

floating point--MPFR
Newsgroups: comp.lang.ada

One possible solution has a description
here:

http://web.am.qub.ac.uk/users/j.parker/
miscellany/arbitrary/README.arbitrary

From: Jerry <lanceboyle@qwest.net>
Date: Fri, 19 Oct 2012 04:05:28 -0700
Subject: Re: How to get high-precision

floating point--MPFR
Newsgroups: comp.lang.ada

That looks interesting. The readme says it
is done entirely in integers but suitably
optimized runs 1/2 to 2/3 the speed of
Fortran quad precision.

Ada.Storage_IO example?

From: Yannick Duchêne
<yannick_duchene@yahoo.fr>

Date: Tue, 23 Oct 2012 21:42:43 +0200
Subject: Ada.Storage_IO: applied example?
Newsgroups: comp.lang.ada

I'm seeking for a tiny use case showing
`Ada.Storage_IO` in action. I also believe
the topic is worth for many people,
beginners or not, as this is the kind of
stuff so typical of Ada. I always liked the
clean distinction Ada makes between
streams and files. Looking for some
reminder about it in the RM, I just noticed

this `Ada.Storage_IO` I've never noticed
before, but feel surprised the buffer
always contains a single element; thus the
question. The RM makes a reference from
there to `Ada.Direct_IO`, but the latter
does not reciprocally mention the former.

From: Jeffrey Carter <jrcarter@acm.org>
Date: Tue, 23 Oct 2012 14:02:43 -0700
Subject: Re: Ada.Storage_IO: applied

example?
Newsgroups: comp.lang.ada

> […]

The buffer is the correct size that
corresponds to an object of
Element_Type. Much easier than figuring
that out oneself.

From: Adam Beneschan
<adam@irvine.com>

Date: Tue, 23 Oct 2012 14:21:21 -0700
Subject: Re: Ada.Storage_IO: applied

example?
Newsgroups: comp.lang.ada

> […]

Looking at the AARM, it appears that the
main reason this might be useful is you've
defined a record type that contains a
hidden pointer (i.e. a pointer that the Ada
implementation sets up, not a
subcomponent of an access type). In that
case, the buffer contains the "flattened"
version of the data. E.g.

 type Rec is record
 S : String (1 .. Name_Size);
 … other components
 end record;

where Name_Size is non-static object (i.e.
the value can't be determined at compile
time). Some implementations (but not
GNAT, I believe) would store S as a
pointer, rather than fool around with Rec
objects whose size isn't known at compile
time, and possibly components whose
location in the record isn't known at
compile time. In this case, you couldn't
rely on Rec'Size (or Rec'Size /
System.Storage_Unit) to be large enough
to contain all the data; I think that's the
kind of case where the language designers
thought this would be useful, because you
could write code that would work with
any Ada implementation. Still, you should
be able to accomplish the same thing
using the stream features of Ada, and I
think that would be preferable.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 24 Oct 2012 07:03:43 +0200
Subject: Re: Ada.Storage_IO: applied

example?
Newsgroups: comp.lang.ada

> […]

Imagine you want to implement a binary
IO package. On one side you have high
level data type, on the other side system
files that are just blocks of bytes.
Storage_IO allows you to bridge this gap
(at least that's my understanding).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 24 Oct 2012 09:34:58 +0200
Subject: Re: Ada.Storage_IO: applied

example?
Newsgroups: comp.lang.ada

> […]

In that case the package should rather
define conversions to and from
Storage_Array, better as in-place
operations with a position to get/put data
at. Furthermore the generic parameter
should have been declared as:

 type Element_Type (<>) is private.

And, of course, implementation-defined
I/O is a bad idea anyway in modern times
of interoperability. (This also applies to
Direct_IO and Sequential_IO, which are
remnants of late 70's.)

From: Christoph Grein <christ-
usch.grein@t-online.de>

Date: Wed, 24 Oct 2012 02:49:02 -0700
Subject: Re: Ada.Storage_IO: applied

example?
Newsgroups: comp.lang.ada

See AARM A.9(1.a):

Reason: This package exists to allow the
portable construction of user-defined
direct-access-oriented input-output
packages. The Write procedure writes a
value of type Element_Type into a
Storage_Array of size Buffer_Size,
flattening out any implicit levels of
indirection used in the representation of
the type. The Read procedure reads a
value of type Element_Type from the
buffer, reconstructing any implicit levels
of indirection used in the representation of
the type. It also properly initializes any
type tags that appear within the value,
presuming that the buffer was written by a
different program and that tag values for
the “same” type might vary from one
executable to another.

> Furthermore the generic parameter
should have been declared as:

> type Element_Type (<>) is private.

See A.9(10.a):

Reason: As with Direct_IO, the
Element_Type formal of Storage_IO does
not have an unknown_discriminant_part
so that there is a well-defined upper
bound on the size of the buffer needed to
hold the content of an object of the formal
subtype (i.e. Buffer_Size). If there are no
implicit levels of indirection, Buffer_Size
will typically equal:

 (Element_Type'Size +
 System.Storage_Unit - 1) /
 System.Storage_Unit

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 24 Oct 2012 12:28:00 +0200
Subject: Re: Ada.Storage_IO: applied

example?
Newsgroups: comp.lang.ada

254 Ada in Context

Volume 33, Number 4, December 2012 Ada User Journal

portable construction of X /= construction
of portable X

The package cannot be used to write files
in a way that an application compiled by
one compiler X1 under OS Y1 could
write a file readable for compiler X2
under OS Y2.

In order to be portable they should have
defined the exact representation of the
object in the file. Yes, nobody would do
that, but then they should not include
useless packages into the standard either.

> […]

The reason why Direct_IO must have an
upper bound is to allow accessing records
randomly without an excessive (in 70's it
was excessive) overhead of indexing
them. This simply does not apply to
Storage_IO, which has just one "record."

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 24 Oct 2012 14:27:28 +0200
Subject: Re: Ada.Storage_IO: applied

example?
Newsgroups: comp.lang.ada

> What about private persistent storage?

 X1 = X2 and Y1 = Y2

What are chances of having this? And
what are chances that a user would
mistakenly use the package when X1 /=
X2 or Y1 /= Y2?

Specifically to persistent storage, you
would need to be able to debug it,
reinterpret using some independent tools,
have redundancy and additional checks on
top, be able to store indefinite objects, be
independent on the medium etc. A
*generic- package parameterized by a
private type with no representation
defined is a non-starter.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Wed, 24 Oct 2012 16:03:51 +0200
Subject: Re: Ada.Storage_IO: applied

example?
Newsgroups: comp.lang.ada

> What about private persistent storage?

If traditional Ada I/O is good for your
Ada program, you can use Storage_IO in
conventional algorithms this way. The
setup can employ static polymorphism
that allows selecting instances of
Storage_IO or Direct_IO as needed.
Either at startup or later.

<rant>

The solution, using the egregious generic
mechanisms of Ada, will suffer from all
the advantages of lack of an unused
tagged parameter.

The whole approach of stating
requirements as generic formals suffers
from good opportunities for compilers to
perform optimization.

It suffers from the fact that stored internal
program data is not being stored in an

ISO-approved form ready for inspection
by non-generic programs of an unrelated
make and purpose.

It also suffers from the problem that it still
cannot make the external world an Ada
object, which could mollify the previously
argued flaw.

It suffers from lack of opportunities to
control I/O of octets algorithmically, thus
preventing emulation of nice per-program
Storage_IO objects in DIY fashion.

It also suffers from not being a silver
bullet.

But other than that …</rant>

with Ada.Direct_IO;
with Ada.Storage_IO;
with Ada.Command_Line;
use Ada.Command_Line;
procedure Lookahead is
 use Ada;
 type Sentence (Length : Positive := 100)
 is record
 Text : Wide_String (1 .. 100);
 end record;
 subtype Name is Wide_String (1 .. 20);
 type Big is record
 -- objects that will be processed
 First, Last : Name;
 Age : Natural;
 Motto : Sentence;
 end record;
 generic
 with procedure Store_Single_Item
 (Item : in Big);
 with procedure Fetch_Single_Item
 (Item : out Big);
 procedure Process_Records;
 procedure Process_Records is separate;

begin
 if Natural'Value (Argument(1)) = 0 then
 declare
 package Volatile is
 procedure Store (Item : in Big);
 procedure Fetch (Item : out Big);
 end Volatile;
 package body Volatile is
 package Undo_Buffer is new
 Storage_IO (Big);
 Storage : Undo_Buffer.Buffer_Type;
 procedure Fetch (Item : out Big) is
 begin
 Undo_Buffer.Read (Storage, Item);
 end Fetch;
 procedure Store (Item : in Big) is
 begin
 Undo_Buffer.Write (Storage, Item);
 end Store;
 end Volatile;
 procedure Run is new
 Process_Records
 (Store_Single_Item => Volatile.Store,
 Fetch_Single_Item => Volatile.Fetch);
 begin
 Run;
 end;
 else
 declare
 package Permanent is
 procedure Store (Item : in Big);

 procedure Fetch (Item : out Big);
 end Permanent;
 package body Permanent is
 package Undo_Buffer is new
 Direct_IO (Big);
 Storage : Undo_Buffer.File_Type;
 procedure Fetch (Item : out Big) is
 begin
 Undo_Buffer.Read (Storage, Item);
 end Fetch;
 procedure Store (Item : in Big) is
 begin
 Undo_Buffer.Write (Storage, Item);
 end Store;
 use Undo_Buffer;
 begin
 open (storage, Inout_File, "item.sto");
 end Permanent;
 procedure Run is new
 Process_Records
 (Store_Single_Item =>
 Permanent.Store,
 Fetch_Single_Item =>
 Permanent.Fetch);
 begin
 Run;
 end;
 end if;
end Lookahead;

separate (Lookahead)
procedure Process_Records is
 package Rec_IO is new Direct_IO (Big);
 use Rec_IO;
 Current: Big := (Age => Natural'Last,
 others => <>);
 input : File_Type;
 output : File_Type;
begin
 open (input, In_File, "records.all");
 open (output, Out_File, "records.flt");
 loop
 Store_Single_Item (Current);
 Read (input, current);
 -- … filter based on pairs …
 write (output, current);
 end loop;
end Process_Records;

Import a constant value
from C

From: Enzo Guerra
<enzoguerra1@gmail.com>

Date: Fri, 26 Oct 2012 15:45:29 -0700
Subject: pragma import (C, ,); -- import a

constant value from C library
Newsgroups: comp.lang.ada

Trying to import a constant value from C
library (libgsl) but having no luck

 M_EULER : Long_Float;
 -- M_EULER, Euler's constant, \gamma
 pragma Import (C, M_EULER,
 "M_EULER");

Get error undefined reference to
`M_EULER'

From: Simon Wright
<simon@pushface.org>

Date: Sat, 27 Oct 2012 00:06:06 +0100

Ada in Context 255

Ada User Journal Volume 33, Number 4, December 2012

Subject: Re: pragma import (C, ,); -- import
a constant value from C library

Newsgroups: comp.lang.ada

> […]

I wonder if the C M_EULER is in fact a
macro? If so, it doesn't exist in the library
as a symbol in its own right.

You might try defining it as a variable in
C and importing that:

 /- m_euler_definition.c */
 #include <libgsl.h>
 /- wherever M_EULER's defined */
 const double m_euler_for_GNAT =
 M_EULER;

-- m_euler.ads

M_EULER : constant Long_Float;
 -- or Interfaces.C.double
 pragma Import (C, "M_EULER",
 "m_euler_for_GNAT");

and then when you build you'll need to
include m_euler_definition.o.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 27 Oct 2012 09:40:01 +0200
Subject: Re: pragma import (C, ,); -- import

a constant value from C library
Newsgroups: comp.lang.ada

[…] in general, you can define any
constant this way in Ada. The precision is
limited only by the source where you get
its tabulated value. And it will work for
all real types. E.g.

gamma : constant :=
0.57721_56649_01532_86060_65120_9008
2_40243;
X : Long_Float := gamma;
Y : Float := gamma;
…

The compiler truncates the value when
you use a narrower target like
Long_Float.

You can even perform simple calculations
with such constants keeping their huge
precision. The compiler uses arbitrary-
precision arithmetic for them. E.g.

[with Ada.Numerics; use Ada.Numerics;]

half_pi : constant := pi / 2.0;
-- far more than enough right digits for a
Long_Float

Child packages named Ada

From: Marius Amado-Alves
<amado.alves@gmail.com>

Date: Wed, 31 Oct 2012 09:47:04 -0700
Subject: Child packages named Ada illegal?
Newsgroups: comp.lang.ada

I was getting misleading <<missing "with
Ada…">> errors from GNAT (the
packages were withen). In a moment of
inspiration I renamed package
AA.Languages.Ada to
AA.Languages.Ada_Languages and all
went well.

Just curious: was GNAT misbehaving
(unlikely) or is it somehow forbidden to
have child packages named Ada?

From: Shark8
<onewingedshark@gmail.com>

Date: Wed, 31 Oct 2012 10:02:44 -0700
Subject: Re: Child packages named Ada

illegal?
Newsgroups: comp.lang.ada

It's probably an issue of visibility.
Consider:

 with Ada.Calendar.Time;
 procedure Test is
 package Ada is
 end Ada;

 Now : constant Ada.Calendar.Time :=
 Ada.Calendar.Clock;
 begin
 null;
 end Test;

In this case the Now declaration is
prevented from being valid because the
type, Time, resides in the package
Calendar which is a child of Ada… but
Ada at that point refers to Test.Ada which
has no Calendar child package.

That the following compiles indicates
Ada is not reserved:

 procedure Test is
 Now : constant Ada.Calendar.Time :=
 Ada.Calendar.Clock;
 begin
 declare
 package Ada is
 end Ada;
 begin
 null;
 end;
 end Test;

From: Adam Beneschan
<adam@irvine.com>

Date: Wed, 31 Oct 2012 10:20:31 -0700
Subject: Re: Child packages named Ada

illegal?
Newsgroups: comp.lang.ada

Without seeing your exact code, it's hard
to say for sure, but Shark8 is probably
right that it's a visibility issue. If you're
inside AA.Languages.Ada, and you refer
to the identifier Ada without any other
qualification, then that identifier would
refer to your child package, not the top
level Ada package. (Standard.Ada would
still get you the top-level package.) The
error messages are confusing, though. I
can understand it, because 99.9999% of
the time when a user uses one of the
language-defined package names and it
isn't defined, it's because they forgot to
WITH it; the GNAT people apparently
didn't think of this possibility, which is
understandable.

From: Shark8
<onewingedshark@gmail.com>

Date: Wed, 31 Oct 2012 12:39:32 -0700
Subject: Re: Child packages named Ada

illegal?

Newsgroups: comp.lang.ada

> package body AA.Languages.Ada is

> …

> function
>Non_Alphanum_To_Underscore
> (From >: Character) return Character is
> (if Ada.Characters.Handling.
> Is_Alphanumeric (From) then From
else '_');
> … end;

One option would be to put package
renaming inside the AA or Languages
package; thus:

with Ada.Characters;
package AA.Language is
…
package Internal_Characters
 renames Ada.Characters;
end AA.Language;

would allow you to refer to
Ada.Characters via the
Internal_Characters name.

Class wide preconditions

From: Yannick Duchêne
<yannick_duchene@yahoo.fr>

Date: Mon, 05 Nov 2012 21:41:48 +0100
Subject: Class wide preconditions: error in

the Ada 2012 Rationale?
Newsgroups: comp.lang.ada

I have a doubt, and this one disturb me, so
this topic.

I was reading the revised version (fourth
draft) of the Ada 2012 Rationale, when I
saw this:

> However, the rules regarding
preconditions are perhaps surprising.
The specific precondition Pre for
Equilateral_Triangle must be true
(checked in the body) but so long as
just one of the class wide preconditions
Pre'Class for Object and Triangle is
true then all is well.

Then later, a summary of the rule:

> In summary, class wide preconditions
are checked at the point of call. Class
wide postconditions and both specific
pre- and postconditions are checked in
the actual body.

http://www.ada-auth.org/standards/12rat/
html/Rat12-2-3.html

I believe either my understanding is
wrong, or the Rationale is wrong. The
above statements are not compatible with
the substitution principle. What if a
subprogram expects a class wide type
with a root type and its precondition, and
get a derived type with a specific
precondition it can't know about?

There may be a comment on that point,
see below, but first, an example test,
compiled with GNAT:

 with Ada.Text_IO;
 procedure Ex is
 package P1 is

256 Ada in Context

Volume 33, Number 4, December 2012 Ada User Journal

 type T is interface;
 Condition : Boolean;
 procedure P (E : T) is abstract
 with Pre'Class => P1.Condition;
 end P1;

 package P2 is
 type T is interface and P1.T;
 Condition : Boolean;
 overriding
 procedure P (E : T) is abstract
 with Pre'Class => P2.Condition;
 end P2;

 package P3 is
 type T is new P2.T with null record;
 Condition : Boolean;
 overriding
 procedure P (E : T)
 with Pre'Class => P3.Condition;
 end P3;

 package body P3 is
 procedure P (E : T) is
 begin
 Ada.Text_IO.Put_Line ("You're OK!");
 end P;
 end P3;

 E : P3.T;

 begin
 P1.Condition := True;
 P2.Condition := True;
 P3.Condition := True;
 -- Hint: try to set this to `False`.
 E.P;
 end Ex;

Side-note: the package prefix added to
access the condition in the Pre'Class, are
not strictly required, but required with
GNAT to bypass one of its bug.

Test this example modifying each of the
conditions: it `P3.Condition` is set to
`False`, there won't be any error at
runtime, and you'll be OK, although
`P3.Condition` is the specific
precondition for the concrete
implementation. It will fails only if all
preconditions are false. No specific
precondition seems to be checked in the
body of `P`, or else it would trigger an
exception when `P3.Condition` is set to
`False`.

GNAT's interpretation is compatible with
my own, and does not seems to be
compatible with the one from the
Rationale.

But there may be a trick? Let's try turning
`E.P;` into `P3.P (E);`: same result. Not
let's try turning `P3.P (E);` into `P3.P
(P3.T'(E));`: same result. GNAT does not
know about anything like specific
precondition, and I'm OK with GNAT this
time.

So is this me not understanding the
Rationale? Or the Rationale has either
wrong or unclear words?

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 8 Nov 2012 18:57:51 -0600
Subject: Re: Class wide preconditions:

error in the Ada 2012 Rationale?
Newsgroups: comp.lang.ada

>> In summary, class wide preconditions
are checked at the point of call. Class
wide post-conditions and both specific
pre- and post-conditions are checked in
the actual body.

The above is correct.

> The above statements are not
compatible with the substitution
principle.

*Specific- preconditions and
postconditions are not necessarily
compatible with the substitution principle.
If you want that, you either have to be
careful what you write, or (better IMHO)
use only class-wide preconditions and
postconditions.

You don't always want strict LSP, and
using specific preconditions gives you a
way to get that when needed. But of
course, in that case, dispatching calls may
fail for no reason visible at the point of
the call. (LSP = Liskov Substitutability
Principle).

> What if a sub-program expects a class
wide type with a root type and its
precondition, and get a derived type
with a specific precondition it can't
know about?

You still evaluate the specific
precondition associated with the
subprogram that is actually called.

My understanding is that a lot of GNAT
users only use carefully written specific
preconditions (probably because they
learned how to do that before class-wide
preconditions existed in GNAT). Those
can be, but don't have to, follow LSP.
OTOH, class-wide preconditions follow
LSP by design.

My rule of thumb is that in a given
derivation chain, you should only use one
or the other. (I wanted to make that a
requirement, but that was shot down.)

I think given the sorts of programs that
you write, you should only use class-wide
preconditions and postconditions, and
forget that specific ones exist at all. In
which case, you won't have a problem
with LSP.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 8 Nov 2012 20:13:23 -0600
Subject: Re: Class wide preconditions:

error in the Ada 2012 Rationale?
Newsgroups: comp.lang.ada

> How shot down? (if the question is not
too much inquisitive)

I don't recall the details, but I think most
people wanted as few restrictions as
possible. "Methodological restrictions"
have a bad history in Ada, and thus we

often avoid them. Clearly a tool like
AdaControl can enforce style rules
beyond those the language requires, and
that was thought to be the best option
here.

IBM 437 encoded String to
UTF-16 Wide_String

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 27 Nov 2012 13:02:05 -0800
Subject: IBM 437 encoded String to UTF-16

Wide_String
Newsgroups: comp.lang.ada

I'm looking for a IBM 437 encoded String
[1] to UTF-16 Wide_String conversion.

[1] http://en.wikipedia.org/wiki/
Code_page_437

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 27 Nov 2012 14:12:04 -0800 (P
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

> […]

Found!

[…]

http://www.unicode.org/Public/MAPPIN
GS/VENDORS/MICSFT/PC/CP437.TXT

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 27 Nov 2012 23:14:22 +0100
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

> […]

What about

 type Map is array (Character) of
 Wide_Character :=
 (Wide_Character'Val (0),
 Wide_Character'Val (1),
 <other values from the wiki page>);

It is not a big deal to type 256 values.
Half of them (0..127) are literals
corresponding to 7-bit ASCII.

That would give you UCS-2. I presume
that UTF-16 is not needed in this case.

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 27 Nov 2012 15:13:00 -0800
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

> It is not a big deal to type 256 values.

Type ? I'm too lazy for that :-).

I've put this:

http://www.unicode.org/Public/
MAPPINGS/VENDORS/MICSFT/PC/
CP437.TXT

(from the Wiki page) into Excel, and
abracadabra, it became that:

Ada in Context 257

Ada User Journal Volume 33, Number 4, December 2012

http://sf.net/p/azip/code/69/tree//
trunk/gui_common/azip_common.adb

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Tue, 27 Nov 2012 15:41:35 -0800
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

Matreshka includes text codecs to convert
text data between different encoding, see

http://forge.ada-ru.org/matreshka/wiki/
League/TextCodec

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Wed, 28 Nov 2012 00:34:53 -0800
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

XML/Ada also has a few conversion
packages, but not IBM 437.

I think the most convenient here would be
to create a small binding to the iconv
library. I believe it exists on most
systems, although with slightly different
interfaces. And it supports a huge number
of encodings.

You basically need to bind three functions
("open", "iconv" and "close")

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 28 Nov 2012 09:52:33 +0100
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

> [binding to the iconv library]

No. IMO the most convenient way would
be to fix the language in order to have
Wide_Wide_String'Class of which String,
Wide_String, Wide_Wide_String,
UTF8_String etc were members.

Encoding is nothing but an instance of
Wide_Wide_String'Class implementing
the interface of an array of code units. In
the case of IBM 437 it is something like:

 type IBM_437_String is
 new Wide_Wide_String
 -- Logical view, string of code points
 and array (Positive range <>) of Byte;
 -- Presentation view

Conversions if ever needed, would be
type/view conversions.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 28 Nov 2012 10:58:59 +0100
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

> If there isn't anything special about
{Wide_}Character, a Vector of
Character might be an alternative,

No. When I mentioned
Wide_Wide_String I meant an array of
code points. The logical view of *any-
string type is array of code points. The
only difference between different string
types is in the constraints put on the code
points. E.g. String has code points 0 to
255. IBM_437_String would have a non-
contiguous set of code points etc.

> though hated by haters of generics, I
should think.

I don't see how generics are relevant here.
All strings are arrays of code points. They
all belong to this class. No explicit
conversions should be needed between
them.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Wed, 28 Nov 2012 12:31:35 +0100
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

In case of differentiation by sets of code
points, I'd rather have an honest type
Unicode_String and- if we are already
fixing the language- put everything that
has {Wide_}String in its name in
Annex J.

But then, consider

 type Index is range 1 .. 12;
 type R is ('I', 'V', 'X', 'L', 'C', 'D', 'M');
 type N is array (Index range <>) of R;

A string of R, named N here, is just fine.
In fact,

 Year : constant N := "MCMLXXXIII";

has a valid literal, and the year so written
is not of any of the standard string types.
The definition of type R actually implies a
codespace, and, for example,
Character'('V') or Wide_Character'('V')
have no role in it, irrespective of any
accidental overlap in encoding or
representation or position.

So, which by force should type N be in
Whatever_String'Class?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 28 Nov 2012 14:36:02 +0100
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

>> IBM_437_String would have a non-
contiguous set of code points etc.

> What is a non-contiguous set?

A convex set in this case, i.e.:

for code points x,y,z, such that x<y<z if
x,z in S then y in S

> […] So, which by force should type N
be in Whatever_String'Class?

Per inheritance:

 type N is
 new Wide_Wide_String
 and array (…) of R;

[…] The problem is not construction of a
container type. It is the relation of the
obtained type to the string interface. The
string interface is an array of code points.
The container must implement this
interface in order to be a string. All
strings must implement this interface, this
is why they are called "strings."

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 28 Nov 2012 19:00:46 +0100
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

[…] A string can have any
implementation. The set of operations is
determined by the contract, not otherwise.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 28 Nov 2012 21:18:23 -0600
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

> In case of differentiation by sets of code
points, I'd rather have an honest type
Unicode_String and --- if we are
already fixing the language --- put
everything that has {Wide_}String in
its name in Annex J.

That's rather what I would like to do,
especially as trying to support
Wide_Wide_String file names makes
things into a hash. (Do we really want to
have Wide_Wide_Open in Text_IO??).

The language already has almost
everything needed to support
Root_String'Class. Most of the missing
capabilities center around getting string
literals for such a type. We'd probably
need to keep Wide_Wide_String around
in order to provide a common
interconversion format.

> So, which by force should type N be in
Whatever_String'Class?

N is not derived from Root_String'Class,
and as such it couldn't be used with
Put_Line (for one example). If you
derived it from that type (possibly using a
generic to fill in the operations), then of
course you could. In that case, you'd have
to provide (or let the generic provide)
conversions to and from Unicode.

 259

Ada User Journal Volume 33, Number 4, December 2012

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2013

 January 23-25 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2013),

Rome, Italy. Topics include: fundamental principles and important innovations in the design, definition,
analysis, transformation, implementation and verification of programming languages, programming
systems, and programming abstractions.

Jan 20-21 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM'2013). Topics include: Program and model manipulation techniques (such as:
partial evaluation, slicing, symbolic execution, refactoring, ...); Program analysis
techniques that are used to drive program/model manipulation (such as: abstract
interpretation, termination checking, type systems, ...); Techniques that treat
programs/models as data objects (including: metaprogramming, generative
programming, model-driven program generation and transformation, ...); etc.
Application of the above techniques including case studies of program manipulation in
real-world (industrial, open-source) projects and software development processes,
descriptions of robust tools capable of effectively handling realistic applications,
benchmarking.

Jan 29 - Feb 01 11th Australasian Symposium on Parallel and Distributed Computing (AusPDC'2013), South
Australia. Topics include: multicore systems; GPUs and other forms of special purpose processors;
middleware and tools; parallel programming models, languages and compilers; runtime systems;
reliability, security, privacy and dependability; applications; etc.

 February 03 Ada at the Free and Open-Source Software Developers' European Meeting
(FOSDEM'2013), Brussels, Belgium. FOSDEM 2013 is a two-day event (Sat-Sun 02-03
February). This years' edition includes again an Ada Developer Room, organized by
Ada-Belgium in cooperation with Ada-Europe, which will be held on Sunday 3
February.

January 21-23 6th India Software Engineering Conference (ISEC'2013), New Delhi, India. Topics include: static
analysis, specification and verification, model driven software engineering, software architecture and
design, tools and environments, maintenance and evolution, component based software engineering,
object-oriented technology, distributed software development, software engineering education, software
security, mining software repositories, embedded and real-time systems, etc.

 January 23-27 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP'2013), Shenzhen, China. Topics include: formal analysis and verification; parallel programming
languages; compilers and runtime systems; development, analysis, or management tools; concurrent
data structures; synchronization and concurrency control; software engineering for parallel programs;
software issues for multicore and multithreaded processors; task mapping and scheduling; etc.

Feb 27 – Mar 01 5th International Symposium on Engineering Secure Software and Systems (ESSoS'2013), Paris,
France. Topics include: security architecture and design for software and systems; specification
formalisms for security artifacts; verification techniques for security properties; systematic support for
security best practices; programming paradigms for security; processes for the development of secure
software and systems; support for assurance, certification and accreditation; etc.

260 Conference Calendar

Volume 33, Number 4, December 2012 Ada User Journal

Feb 27 – Mar 01 21st Euromicro International Conference on Parallel, Distributed and Network-Based Computing
(PDP'2013), Belfast, Northern Ireland, UK. Topics include: embedded parallel and distributed systems,
multi- and many-core systems, programming languages and environments, runtime support systems,
dependability and survivability, advanced algorithms and applications, etc.

March 05-08 17th European Conference on Software Maintenance and Reengineering (CSMR'2013), Genova,
Italy. Topics include: development of maintainable systems, and evolution, migration and reengineering
of existing ones; experience reports on maintenance and reengineering of large-scale systems; language
support for software maintenance and evolution; etc.

March 06-09 44th ACM Technical Symposium on Computer Science Education (SIGCSE'2013), Denver,
Colorado, USA.

March 16-24 ETAPS2013 - 16th International Conference on Fundamental Approaches to Software
Engineering (FASE'2013), Rome, Italy. Topics include: software engineering as an engineering
discipline; specification, design, and implementation of particular classes of systems (collaborative,
embedded, distributed, ...); software quality (validation and verification of software using theorem
proving, model checking, testing, analysis, refinement methods, metrics, ...); model-driven development
and model transformation; software evolution (refactoring, reverse and re-engineering, configuration
management, ...); etc.

March 18-22 28th ACM Symposium on Applied Computing (SAC'2013), Coimbra, Portugal.

 Mar 18-22 Track on Programming Languages (PL'2013). Topics include: Compiling
Techniques, Formal Semantics and Syntax, Garbage Collection, Language Design and
Implementation, Languages for Modeling, Model-Driven Development New
Programming Language Ideas and Concepts, Practical Experiences with Programming
Languages, Program Analysis and Verification, Programming Languages from All
Paradigms, etc.

 Mar 18-22 Track on Object-Oriented Programming Languages and Systems (OOPS'2013).
Topics include: Aspects and components; Distribution and concurrency; Formal
verification; Integration with other paradigms; Interoperability, versioning and software
evolution and adaptation; Language design and implementation; Modular and generic
programming; Static analysis; Type systems; etc.

March 18-22 Track on Software Verification and Testing (SVT'2013). Topics include: tools and
techniques for verification of large scale software systems, real world applications and
case studies applying software verification, static and run-time analysis, refinement and
correct by construction development, software certification and proof carrying code, etc.

March 18-22 Embedded Systems Track (EMBS'2013). Topics include: Multithreading in Embedded
Systems design and development; Compilation strategies, code transformation and
parallelization for Embedded Systems; Reliability in Embedded Computing and
Systems; Security within Embedded Systems; Safety-critical Embedded Systems; Case
studies; etc.

March 18-22 6th IEEE International Conference on Software Testing, Verification and Validation (ICST'2013),
Luxembourg. Topics include: domain specific testing, security testing, embedded-software testing,
testing concurrent software, testing large-scale distributed systems, testing in multi-core environments,
quality assurance, empirical studies, agile/iterative/incremental testing processes, testing of open source
and third-party software, software reliability, formal verification, experience reports, etc. Deadline for
submissions: mid January 2013 (workshop contributions), February 9, 2013 (posters).

March 18 2nd International Workshop on Engineering Safety and Security Systems
(ESSS'2013). Topics include: methods, techniques and tools for system safety and
security; methods, techniques and tools for analysis, certification, and debugging of
complex safety and security systems; case studies and experience reports on the use of
formal methods for analyzing safety and security systems; etc.

March 23 ETAPS2013 - 10th International Workshop on Formal Engineering approaches to Software
Components and Architectures (FESCA'2013), Rome, Italy. Topics include: modelling formalisms for
the analysis of concurrent, embedded or model-driven systems assembled of components; interface
compliance (interface-to-interface and interface-to implementation) and contractual use of components;

Conference Calendar 261

Ada User Journal Volume 33, Number 4, December 2012

techniques for prediction and formal verification of system properties, including static and dynamic
analysis; industrial case studies and experience reports; etc.

March 25-29 12th International Conference on Aspect-Oriented Software Development (AOSD'2013), Fukuoka,
Japan. Topics include: Complex systems; Software design and engineering (evolution, economics,
composition, methodology, ...); Programming languages (language design, compilation and
interpretation, verification and static program analysis, formal languages, execution environments and
dynamic weaving, ...); Varieties of modularity (model-driven development, generative programming,
software product lines, contracts and components, ...); Tools (evolution and reverse engineering,
crosscutting views, refactoring, ...); Applications (distributed and concurrent systems, middleware,
runtime verification, ...); etc.

April 01-05 6th Latin-American Symposium on Dependable Computing (LADC'2013), Rio de Janeiro, Brazil.
Topics include: computer system dependability. Deadline for submissions: January 18, 2013 (fast
abstracts, student forum and industrial track).

April 08-11 25th IEEE Software Technology Conference (STC'2013), Salt Lake City, Utah, USA. Theme: "Back
to the Future: Enabling Mission Success through Software Technology". Topics include: cybersecurity,
software production efficiencies, resilient software, software engineering best practices, etc.

 April 17-19 16th International Real-Time Ada Workshop (IRTAW'2013), Kings Manor, York,
UK. In cooperation with Ada-Europe. Deadline for submissions: February 1, 2013
(position papers).

 May 18-26 35th International Conference on Software Engineering (ICSE'2013), San Francisco, USA. Theme:
"Software Engineering Ideas to Change the World". Deadline for submissions: January 30, 2013
(SCORE full project submission).

 May 20-24 27th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2013), Boston-
Cambridge, USA. Topics include: all areas of parallel and distributed processing, such as parallel and
distributed algorithms, applications of parallel and distributed computing, parallel and distributed
software, including parallel and multicore programming languages and compilers, runtime systems,
parallel programming paradigms, and programming environments and tools, etc.

June 04-06 13th International Conference on Software Process Improvement and Capability dEtermination
(SPICE'2013), Bremen, Germany. Topics include: process assessment, improvement and risk
determination in areas of application such as automotive systems and software, aerospace systems and
software, medical device systems and software, safety-related systems and software, financial
institutions and banks, small and very small enterprises, etc.

June 04-07 22nd Australasian Software Engineering Conference (ASWEC'2013), Melbourne, Australia. Topics
include: empirical research in software engineering; formal methods; legacy systems and software
maintenance; measurement, metrics, experimentation; modularisation techniques, including component-
based software engineering and aspect-oriented programming; programming techniques, such as object-
oriented, functional and hybrid programming; open source software development; quality assurance;
real-time and embedded software; software analysis; software design and patterns; software engineering
education; software processes and quality; software re-use and product development; software risk
management; software security, safety and reliability; software verification and validation; standards
and legal issues; etc. Deadline for submissions: March 1, 2013 (experience reports, doctoral
symposium).

 June 10-14 18th International Conference on Reliable Software Technologies - Ada-
Europe'2013, Berlin, Germany. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN. Deadline for submissions: January 14, 2013 (industrial
presentations).

June 10-14 10th International Conference on integrated Formal Methods (iFM'2013), Turku, Finland. Topics
include: the combination of (formal and semi-formal) methods for system development, regarding
modeling and analysis, and covering all aspects from language design through verification and analysis
techniques to tools and their integration into software engineering practice. Deadline for submissions:
January 10, 2013 (abstracts), January 17, 2013 (papers).

262 Conference Calendar

Volume 33, Number 4, December 2012 Ada User Journal

June12-14 14th International Conference on Product Focused Software Development and Process
Improvement (PROFES'2013), Paphos, Cyprus. Topics include: software engineering techniques,
methods, and technologies for product-focused software development and process improvement as well
as their practical application in an industrial setting. Deadline for submissions: January 31, 2013
(papers).

June 16-21 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'2013),
Seattle, Washington, USA. Topics include: programming languages, their design, implementation,
development, and use; innovative and creative approaches to compile-time and runtime technology,
novel language designs and features, and results from implementations; language designs and
extensions; static and dynamic analysis of programs; domain-specific languages and tools; type systems
and program logics; checking or improving the security or correctness of programs; memory
management; parallelism, both implicit and explicit; debugging techniques and tools; etc.

June 18-21 13th International Conference on Software Reuse (ICSR'2013), Pisa, Italy. Theme: "Safe and Secure
Reuse". Topics include: guaranteeing safety and security related properties of reusable components,
certification issues for mission-critical reusable components, component-based reuse, COTS-based
development, generator-based techniques, domain-specific languages, testing in the context of software
reuse, model-driven development, reuse of non-code artifacts (process, experience, etc.), software
product line techniques, quality-aspects of reuse, industrial experience with reuse, software evolution
and reuse, large-scale systems, etc.

 June 19-21 16th IEEE International Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC'2013), Paderborn, Germany. Topics include: Programming and system engineering
(ORC paradigms, languages, model-driven development of high integrity applications, specification,
design, verification, validation, testing, maintenance, ...); System software (real-time kernels,
middleware support for ORC, extensibility, synchronization, scheduling, fault tolerance, security, ...);
Applications (embedded systems (automotive, avionics, consumer electronics, ...), real-time object-
oriented simulations, ...); System evaluation (timeliness, worst-case execution time, dependability, end-
to-end QoS, fault detection and recovery time. ...); etc.

July 01-03 18th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2013), Canterbury, Kent, UK.

July 01-03 7th International Symposium on Theoretical Aspects of Software Engineering (TASE'2013),
Birmingham, UK. Topics include: the theoretical aspects of model driven software engineering,
component based software engineering, software security, reliability, and verification, embedded and
real time software systems, aspect and object oriented software design, reverse engineering, etc.
Deadline for submissions: January 18, 2013 (abstracts), January 25, 2013 (papers).

July 01-05 27th European Conference on Object-Oriented Programming (ECOOP'2013), Montpellier, France.
Topics include: all areas of object technology and related software development technologies, such as
aspects, components, modularity, concurrent and parallel systems, distributed computing, programming
environments, versioning, refactoring, software evolution, language definition and design, language
implementation, compiler construction, design methods and design patterns, real-time systems, security,
specification, verification, type systems, etc. Deadline for early registration: June 1, 2013.

July 03-07 8th International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE'2013), Angers, France. Topics include: emerging as well as established SE methods, practices,
architectures, technologies and tools; software process improvement, model-driven engineering,
application integration technologies, software quality management, software change and configuration
management, geographically distributed software development environments, formal methods,
component-based software engineering and commercial-off-the-shelf (COTS) systems, software and
systems development methodologies, etc. Deadline for submissions: January 30, 2013 (papers), March
31, 2013 (mini-symposia).

July 17-19 18th IEEE International Conference on the Engineering of Complex Computer Systems
(ICECCS'2013), Singapore. Topics include: verification and validation, security of complex systems,
model-driven development, reverse engineering and refactoring, design by contract, agile methods,
safety-critical & fault-tolerant architectures, real-time and embedded systems, tools and tool integration,
industrial case studies, etc. Deadline for submissions: February 1, 2013 (abstracts), February 15, 2013
(papers, workshops).

Conference Calendar 263

Ada User Journal Volume 33, Number 4, December 2012

July 23-25 25th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA'2013), Montreal,
Canada. Topics include: parallel and distributed algorithms; multi-core architectures; compilers and
tools for concurrent programming; synergy of parallelism in algorithms, programming, and architecture;
etc. Deadline for submissions: February 11, 2013 (abstracts), February 13, 2013 (full papers).

September 08-11 10th International Conference on Parallel Processing and Applied Mathematics (PPAM'2013),
Warsaw, Poland. Topics include: multi-core and many-core parallel computing; parallel/distributed
algorithms: numerical and non-numerical; scheduling, mapping, load balancing; parallel/distributed
programming; tools and environments for parallel/distributed computing; security and dependability in
parallel/distributed environments; applications of parallel/distributed computing; etc. Event also
includes: workshop on Language-Based Parallel Programming Models. Deadline for submissions:
February 1, 2013 (workshops), April21, 2013 (papers).

 September 10-13 International Conference on Parallel Computing 2013 (ParCo'2013), München, Germany. Topics
include: all aspects of parallel computing, including applications, hardware and software technologies as
well as languages and development environments, in particular Parallel programming languages,
compilers, and environments; Tools and techniques for generating reliable and efficient parallel code;
Best practices of parallel computing on multicore, manycore, and stream processors; etc. Deadline for
submissions: February 28, 2013 (extended abstracts), March 31, 2013 (mini-symposia), July 31, 2013
(full papers).

 Sep 30- Oct 04 12th International Conference on Parallel Computing Technologies (PaCT'2013), Saint-Petersburg,
Russia. Topics include: new developments, applications, and trends in parallel computing technologies;
all technological aspects of the applications of parallel computer systems; high level parallel
programming languages and systems; methods and tools for parallel solution of large-scale problems;
languages, environments and software tools supporting parallel processing; teaching parallel processing;
etc. Deadline for submissions: February 11, 2013 (full papers), February 25, 2013 (extended abstracts).

 November ACM SIGAda Annual International Conference on High Integrity Language Technology
(HILT'2013), Pittsburgh, Pennsylvania, USA.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

264 Forthcoming Events

Volume 33, Number 4, December 2012 Ada User Journal

Preliminary Call for Participation
Ada Developer Room at FOSDEM 2013

3 February 2013, Brussels, Belgium

Organized by Ada-Belgium
in cooperation with Ada-Europe

FOSDEM1, the Free and Open source Software Developers' European Meeting, is a free two-day annual
event organized in Brussels, Belgium, that offers open source communities a place to meet, share ideas
and collaborate. It is renowned for being highly developer-oriented and brings together 5000+ geeks
from all over the world. The 2013 edition takes place on Saturday 2 and Sunday 3 February, 2013.

For the 4th time, Ada-Belgium2 organizes a series of presentations related to Ada and Free Software in a
s.c. Developer Room. The “Ada DevRoom” at FOSDEM 2013 is held on the second day of the event,
i.e. on Sunday 3 February. The program offers introductory presentations on the Ada programming
language, including the recently published new Ada 2012 ISO standard, as well as more specialised
presentations on focused topics. We also provide time for discussion and interaction, and organize the
by now famous “Adaists dinner” on Saturday evening...

More details are available on the Ada at FOSDEM 2013 web-page, such as the full list with abstracts of
presentations, biographies of speakers, and the concrete schedule. For the latest information at any time,
contact <Dirk.Craeynest@cs.kuleuven.be>, or see:

http://www.cs.kuleuven.be/~dirk/ada-belgium/events/13/130203-fosdem.html

1 https://fosdem.org/2013
2 http://www.cs.kuleuven.be/~dirk/ada-belgium

Forthcoming Events 265

Ada User Journal Volume 33, Number 4, December 2012

16TH INTERNATIONAL REAL-TIME ADA WORKSHOP

(IRTAW 2013)

17-19 April 2013 – Kings Manor, York, England

http://www.cs.york.ac.uk/~andy/IRTAW2013/

CALL FOR PAPERS

Since the late Eighties the International Real-Time Ada Workshop series has

provided a forum for identifying issues with real-time system support in Ada and for
exploring possible approaches and solutions, and has attracted participation from key
members of the research, user, and implementer communities worldwide. Recent IRTAW
meetings have significantly contributed to the Ada 2005 and Ada 2012 standards,
especially with respect to the tasking features, the real-time and high-integrity systems
annexes, and the standardization of the Ravenscar profile.

In keeping with this tradition, the goals of IRTAW-16 will be to:

 review the current status of the Ada 2012 Issues that are related with the support of real-time systems;
 examine experiences in using Ada for the development of real-time systems and applications, especially – but not

exclusively – those using concrete implementation of the new Ada 2012 real-time features;
 report on or illustrate implementation approaches for the real-time features of Ada 2012;
 consider the added value of developing other real-time Ada profiles in addition to the Ravenscar profile;
 examine the implications to Ada of the growing use of multiprocessors in the development of real-time systems,

particularly with regard to predictability, robustness, and other extra-functional concerns;
 examine and develop paradigms for using Ada for real-time distributed systems, with special emphasis on

robustness as well as hard, flexible and application-defined scheduling;
 consider the definition of specific patterns and libraries for real-time systems development in Ada;
 identify how Ada relates to the certification of safety-critical and/or security-critical real-time systems;
 examine the status of the Real-Time Specification for Java and other languages for real-time systems development,

and consider user experience with current implementations and with issues of interoperability with Ada in embedded
real-time systems;

 consider the lessons learned from industrial experience with Ada and the Ravenscar Profile in actual real-time
projects;

 consider the language vulnerabilities of the Ravenscar and full language definitions.

Participation at IRTAW-16 is by invitation following the submission of a position paper addressing one or more of the
above topics or related real-time Ada issues. Alternatively, anyone wishing to receive an invitation, but for one reason or
another is unable to produce a position paper, may send in a one-page position statement indicating their interests. Priority
will, however, be given to those submitting papers.

Submission requirements

Position papers should not exceed ten pages in typical IEEE conference layout, excluding code inserts. All accepted
papers will appear, in their final form, in the Workshop Proceedings, which will be published as a special issue of Ada
Letters (ACM Press). Selected papers will also appear in the Ada User Journal.

Please submit position papers, in PDF format, to the Program Chair by e-mail: alan.burns@york.ac.uk

Important Dates

Receipt of Position Paper: 1 February 2013
Notification of Acceptance: 1 March 2013

Final Copy of Paper: 1 April 2013
Workshop Date: 17-19 April 2013

266 Forthcoming Events

Volume 33, Number 4, December 2012 Ada User Journal

Call for Participation

18th International Conference on

Reliable Software Technologies

Ada‐Europe 2013

10‐14 June 2013, Berlin, Germany

http://www.ada‐europe.org/conference2013

Special Interest
Group Ada
of the German
Informatics
Society

Conference and Program
 Co‐Chairs

Hubert B. Keller
Karlsruhe Institute of
Technology
hubert.keller@kit.edu

Erhard Plödereder
University of Stuttgart
ploedere@iste.uni-stuttgart.de

Tutorial Chair

Jürgen Mottok
Regensburg University of Applied
Sciences
Juergen.Mottok@hs‐
regensburg.de

Industrial Chair

Jørgen Bundgaard
Ada in Denmark
jb@ada‐dk.org

Exhibition Chair

Peter Dencker
ETAS GmbH
peter.dencker@etas.com

Publicity Chair

Dirk Craeynest
Ada‐Belgium & KU Leuven
Dirk.Craeynest@cs.kuleuven.be

Local Chair

Raúl Rojas
FU Berlin
Raul.Rojas@fu‐berlin.de

Local Organizer

Christine Harms
christine.harms@ccha.de

In cooperation with
ACM SIGAda, SIGBED, SIGPLAN

General Information

The 18th International Conference on Reliable Software Technologies – Ada‐Europe 2013 will take
place in Berlin, Germany. Following its traditional style, the conference will span a full week,
including, from Tuesday to Thursday, three days of parallel scientific, technical and industrial
sessions, along with parallel tutorials and workshops on Monday and Friday.

Topics

The conference has successfully established itself as an international forum for providers,
practitioners and researchers into reliable software technologies across many programming
languages. The conference presentations will illustrate current work in the theory and practice of
the design, development and maintenance of long‐lived, high‐quality software systems for a
variety of application domains. The program will allow ample time for keynotes, Q&A sessions,
panel discussions and social events. Participants will include practitioners and researchers
representing industry, academia and government organizations active in the promotion and
development of reliable software technologies.
To mark the completion of the Ada 2012 standard revision process, contributions were sought
that discuss experiences with the revised language.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS)
series by Springer, and will be available at the start of the conference.
The conference is ranked class A in the CORE ranking, is among the top quarter of CiteSeerX
Venue Impact Factor, and listed in DBLP, SCOPUS and the Web of Science Conference Proceedings
Citation index, among others.

Awards

Ada‐Europe will offer honorary awards for the best regular paper and the best presentation.

Forthcoming Events 267

Ada User Journal Volume 33, Number 4, December 2012

Program Committee
Ted Baker, US National Science

Foundation, USA
Johann Blieberger, Technische

Universität Wien, Austria
Bernd Burgstaller, Yonsei University,

Korea
Alan Burns, University of York, UK
Rod Chapman, Altran Praxis Ltd, UK
Dirk Craeynest, Ada-Belgium &

KU Leuven, Belgium
Juan A. de la Puente, Universidad

Politécnica de Madrid, Spain
Franco Gasperoni, AdaCore, France
Michael González Harbour,

Universidad de Cantabria, Spain
Xavier Grave, Centre National de la

Recherche, France
Christoph Grein, Ada Germany,

Germany
J. Javier Gutiérrez, Universidad de

Cantabria, Spain
Peter Hermann, Universität Stuttgart,

Germany
Jérôme Hugues, ISAE Toulouse, France
Pascal Leroy, Google, Switzerland
Albert Llemosí, Universitat de les Illes

Balears, Spain
Kristina Lundqvist, Mälardalen

University, Sweden
Franco Mazzanti, ISTI-CNR Pisa, Italy
John McCormick, University of

Northern Iowa, USA
Stephen Michell, Maurya Software,

Canada
Luís Miguel Pinho, CISTER Research

Centre/ISEP, Portugal
Jürgen Mottok, Regensburg University

of Applied Sciences, Germany
Manfred Nagl, RWTH Aachen

University, Germany
Laurent Pautet, Telecom ParisTech,

France
Jorge Real, Universitat Politécnica de

València, Spain
Jean-Pierre Rosen, Adalog, France
José Ruiz, AdaCore, France
Ed Schonberg, AdaCore, USA
Tucker Taft, AdaCore, USA
Theodor Tempelmeier, Univ. of Applied

Sciences Rosenheim, Germany
Elena Troubitsyna, Åbo Akademi

University, Finland
Tullio Vardanega, Università di Padova,

Italy
Juan Zamorano, Universidad

Politécnica de Madrid, Spain

Industrial Committee
Jørgen Bundgaard, Rambøll Danmark,

Denmark
Jacob Sparre Andersen, JSA, Denmark
Jamie Ayre, AdaCore, France
Ian Broster, Rapita Systems, UK
Rod Chapman, Altran Praxis Ltd, UK
Dirk Craeynest, Ada-Belgium &

KU Leuven, Belgium
Michael Friess, AdaCore, France
Ismael Lafoz, Airbus Military, Spain
Ahlan Marriott, White-Elephant GmbH,

Switzerland
Steen Ulrik Palm, Terma, Denmark
Paolo Panaroni, Intecs, Italy
Paul Parkinson, Wind River, UK
Ana Isabel Rodríguez, GMV, Spain
Jean-Pierre Rosen, Adalog, France
Alok Srivastava, TASC Inc, USA
Claus Stellwag, Elektrobit AG,

Germany
Jean-Loup Terraillon, European Space

Agency, The Netherlands
Rod White, MBDA, UK

Call for Exhibitors

The commercial exhibition will span the three days of the main conference. Vendors and providers of
software products and services should contact the Exhibition Chair for information and for allowing
suitable planning of the exhibition space and time.

Grant for Reduced Student Fees

A limited number of sponsored grants for reduced fees is expected to be available for students who
would like to attend the conference or tutorials. Contact a Conference Co‐Chair for details.

Location

The conference will take place in Berlin, city of many charms. The most difficult activity for tourists is
the search for a piece of the Berlin Wall. It has all but disappeared in the vibrant capital of Germany.
Berlin has over 170 museums, making the city one of the world's prime locations for first‐rate historical
art collections, cultural exhibitions, and museums of science and
technology. The theatres of performing arts offer programs from
opera to musicals, from drama to comedy, from classics to ultra‐
modern. For a calendar and up‐to‐date information on events
browse under http://www.berlin.de
The conference dinner will take place at the Botanischer Garten
of the Freie Universität Berlin.
The conference site is the Seminaris Conference Hotel.
The hotel represents a modern life style and aims to suit the
demands of visitors to conferences, business meetings, and
cultural programs in Berlin and its surroundings. Each of the 186
first‐class rooms are air‐conditioned, with bath or shower/WC,
TV, minibar, large desk, safe, phone, and high‐speed internet

access. Named
the Dahlem
Cube, the con‐
ference center
in the shape of a glass cube with its 2600 sqm of
conference space is a masterpiece of modern
architecture by Helmut Jahn, Chicago. The hotel is
located in the suburb Dahlem at Takustraße 39, 14195
Berlin, and connected to the center of Berlin by
subway transportation of about 30 minutes. Details
are found under http://www.seminaris.de/berlin.
A block of rooms at reduced prices has been reserved

at the hotel. Attendees are asked to stay at the conference hotel. Details will become available with
the publication of the registration form.

For travelling to Berlin by plane, see http://www.berlin‐airport.de (Airport Tegel).

268 Forthcoming Events

Volume 33, Number 4, December 2012 Ada User Journal

ACM SIGAda Annual International Conference

High Integrity Language Technology

HILT 2013
Call for Technical Contributions

Developing and Certifying Critical Software

Pittsburgh, Pennsylvania, USA
Fall of 2013 [Mid Oct to early Dec]

Sponsored by ACM SIGAda
SIGAda.HILT2013@acm.org

http://www.sigada.org/conf/hilt2013

SUMMARY
High integrity software must not only meet correctness and performance criteria but also satisfy stringent safety
and/or security demands, typically entailing certification against a relevant standard. A significant factor affecting
whether and how such requirements are met is the chosen language technology and its supporting tools: not just
the programming language(s) but also languages for expressing specifications, program properties, domain
models, and other attributes of the software or overall system.

HILT 2013 will provide a forum for experts from academia/research, industry, and government to present the
latest findings in designing, implementing, and using language technology for high integrity software. To this end
we are soliciting technical papers, experience reports (including experience in teaching), and tutorial proposals on
a broad range of relevant topics.

POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:
 New developments in formal methods
 Multicore and high integrity systems
 Object-Oriented Programming in high integrity systems
 High-integrity languages (e.g., SPARK)
 Use of high reliability profiles such as Ravenscar
 Use of language subsets (e.g., MISRA C, MISRA C++)
 Software safety standards (e.g., DO-178B and DO-178C)
 Typed/Proof-Carrying Intermediate Languages
 Contract-based programming (e.g., Ada 2012)
 Model-based development for critical systems
 Specification languages (e.g., Z)
 Annotation languages (e.g., JML)

 Teaching high integrity development
 Case studies of high integrity systems
 Real-time networking/quality of service guarantees
 Analysis, testing, and validation
 Static and dynamic analysis of code
 System Architecture and Design including

Service-Oriented Architecture and Agile Development
 Information Assurance
 Security and the Common Criteria /

Common Evaluation Methodology
 Architecture design languages (e.g., AADL)
 Fault tolerance and recovery

KINDS OF TECHNICAL CONTRIBUTIONS
TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically 10-
20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings and
in ACM Ada Letters. The Proceedings will be entered into the widely consulted ACM Digital Library accessible
online to university campuses, ACM’s 100,000 members, and the software community.

EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature. If
your abstract is accepted, a full paper is required and will appear in the proceedings. Extended abstracts will be
double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its relationship with previous work
by you and others (with bibliographic references), results to date, and future directions.

Forthcoming Events 269

Ada User Journal Volume 33, Number 4, December 2012

EXPERIENCE REPORTS present timely results and “lessons learned”. Submit a 1-2 page description of the
project and the key points of interest. Descriptions will be published in the final program or proceedings, but a
paper will not be required.

PANEL SESSIONS gather groups of experts on particular topics. Panelists present their views and then exchange
views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic,
coordinator, and potential panelists.

INDUSTRIAL PRESENTATIONS Authors of industrial presentations are invited to submit a short overview (at
least 1 page in size) of the proposed presentation and, if selected, a subsequent abstract for a 30-minute talk. The
authors of accepted presentations will be invited to submit corresponding articles for ACM Ada Letters.

WORKSHOPS are focused sessions that allow knowledgeable professionals to explore issues, exchange views,
and perhaps produce a report on a particular subject. Workshop proposals, up to 5 pages in length, will be selected
based on their applicability to the conference and potential for attracting participants.

TUTORIALS can address a broad spectrum of topics relevant to the conference theme. Submissions will be
evaluated based on applicability, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial
proposals should include the expected level of experience of participants, an abstract or outline, the qualifications
of the instructor(s), and the length of the tutorial (half day or full day).

HOW TO SUBMIT: Send in Word, PDF, or text format:

Submission Deadline Send to
Technical articles, extended abstracts,
experience reports, panel session
proposals, or workshop proposals

June 29, 2013 Tucker Taft, Program Chair
taft@adacore.com

Industrial presentation proposals

August 1, 2013 (overview)
September 30, 2013 (abstract)

Tutorial proposals June 29, 2013 John McCormick, Tutorials Chair
mccormick@cs.uni.edu

At least one author is required to register and make a presentation at the conference.

FURTHER INFORMATION
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and
university curricula. The Conference welcomes a grant application from anyone whose goals meet this
description. The benefits include full conference registration with proceedings and registration costs for 2 days of
conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students from
GNAT Academic Program member institutions, which can be combined with conference grants. For more details
visit the conference web site or contact Prof. Michael B. Feldman (MFeldman@gwu.edu)

OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper
selected by the program committee as the outstanding student contribution to the conference.

SPONSORS AND EXHIBITORS: Please contact Greg Gicca (gicca@adacore.com) to learn the benefits of
becoming a sponsor and/or exhibitor at HILT 2013.

IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be particularly
aware and careful about visa requirements, and should plan travel well in advance. Visit the conference website
for detailed information pertaining to visas.

ANY QUESTIONS?

Please send email to SIGAda.HILT2013@acm.org, or contact the Conference Chair (Jeff Boleng,
jlboleng@SEI.CMU.EDU), SIGAda’s Vice-Chair for Meetings and Conferences (Alok Srivastava,
alok.srivastava@tasc.com), or SIGAda’s Chair (Ricky E. Sward, rsward@mitre.org).

 271

Ada User Journal Volume 33, Number 4, December 2012

Rationale for Ada 2012: 5 Iterators, Pools, etc.
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract

This paper describes various improvements in a
number of general areas in Ada 2012.

There are some minor but perhaps surprising changes
concerning matters such as the placement of pragmas
and labels.

There are important new features regarding indexing
and accessing largely introduced to simplify iterating
over containers.

There are also a number of additional Restrictions
identifiers many related to the introduction of aspect
specifications.

The functionality of access types and storage
management is made more flexible by the introduction
of subpools.

Finally, a number of minor additions and corrections
are made to a range of topics such as generics.

Keywords: rationale, Ada 2012.

1 Overview of changes

The areas mentioned in this paper are not specifically
mentioned in the WG9 guidance document [1] other than
under the request to remedy shortcomings and improve the
functionality of access types and dynamic storage
management.

The following Ada Issues cover the relevant changes and
are described in detail in this paper.

 6 Nominal subtypes for all names

 71 Class-wide operations for formal subprograms

 95 Address of intrinsic subprograms

100 Placement of pragmas

111 Subpools, allocators & control of finalization

119 Package Calendar, Daylight Saving Time and
 UTC_Offset

123 Composability of equality

139 Syntactic sugar for access, containers & iterators

148 Accessibility of anonymous access stand-alone objects

149 Access type conversion and membership

152 Restriction No_Anonymous_Allocators

163 Pragmas in place of null

173 Testing of tags representing abstract types

179 Labels at end of a sequence of statements

189 Restriction No_Standard_Allocators_After_
 Elaboration

190 Global storage pool control

193 Alignment of allocators

212 Accessors and iterators for Ada.Containers

241 Aspect-related restrictions

242 No_Implementation_Units restriction

246 Restrictions No_Implementation_Identifiers and Profile
 No_Implementation_Extensions

252 Questions on subpools

253 Accessibility of allocators for anonymous access of an
 object

255 User-defined iterators and quantified expressions

272 Pragma and attribute restrictions

292 Terminology: indexable type is confusing

These changes can be grouped as follows.

First there are some minor changes to elementary matters
such as the placement of pragmas, labels and null
statements (100, 163, 179).

An important addition is the introduction of more user-
friendly mechanisms for iterating over structures such as
arrays and containers (139, 212, 255, 292).

Further flexibility for storage management is provided by
the introduction of subpools of storage pools (111, 190,
252). A number of issues concerning anonymous access
types and allocators are also resolved (148, 149, 193, 253).

A number of new Restrictions identifiers have been added.
They include No_Standard_Allocators_After_Elaboration,
No_Anonymous_Allocators, No_Implementation_Units, and
No_Implementation_Identifiers. A blanket new profile covering
a number of restrictions, No_Implementation_Extensions, is
also added (152, 189, 241, 242, 246, 272).

Finally, there are a number of minor unrelated improvements.
Four are actually classed as binding interpretations and so apply
to Ada 2005 as well; they concern nominal subtypes (6), address
of intrinsic subprograms (95), time in the package Calendar
(119), and class wide operations on formal generic subprograms
(71). The other miscellaneous issues concern the composability
of equality (123), and tags of abstract types (173).

272 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

Volume 33, Number 4, December 2012 Ada User Journal

2 Position of pragmas and labels

It is surprising that basic stuff such as where one can place
a pragma should be the subject of discussion thirty years
after Ada became an ANSI standard.

However, there is a real problem in this area which one
could imagine might have led to headlines in the Wall
Street Journal and Financial Times such as

Collapse of NY Stock Market because of Safety
Fears in Avionic Applications after Discovery that

Ada is Illegal

Indeed, it seems that the package Ada in Ada 2005 might
be illegal. This surprising conclusion was triggered by the
consideration of

task type TT is
 pragma Priority(12);
end TT;

The rules in Ada 83, Ada 95 and Ada 2005 concerning the
position of pragmas say

Pragmas are only allowed at the following places in a
program:

 After a semicolon delimiter, but not within a formal
part or discriminant part.

 At any place where the syntax rules allow a construct
defined by a syntactic category whose name ends with
"declaration", "statement", "clause", or "alternative"; or
one of the syntactic categories variant or
exception_handler; but not in place of such a construct.
Also at any place where a compilation_unit would be
allowed.

Now the syntax for task_definition in Ada 2005 is

task_definition ::=
 {task_item}
[private
 {task_item}]
end [task_identifier]

There are at least two problems. The key one here is that
the list of categories in the rule does not include "item".
The other concerns the words "not in place of". It seems
that the intent was that if at least one instance of the
construct is required (as in a sequence of statements) then
the pragma cannot be given in place of a single statement.
So it looks as if the task type TT is not legal.

It has probably been permitted because task_item itself
splits down into aspect_clause or entry_declaration and
they seem to be allowed. But if none is present then we
cannot tell which category is permitted!

Note rather scarily that the package Ada is given as

package Ada is
 pragma Pure(Ada);
end Ada;

and the same problem applies.

The entities in a package specification are of the category
basic_declarative_item and again although it splits down
into things ending _clause or _declaration we don't know
which.

The fear concerning package Ada made one member of the
ARG concerned that the sky might be falling in. Of course,
we don't ever have to submit a package Ada in our file (on
punched cards, paper tape or whatever media we are using).
The package Ada is just in the mind of the compiler so that
it behaves as if she were declared. The same applies to
Standard. They are sort of synthesized and not actually
declared.

Anyway, the upshot is that in Ada 2012, the description of
the placement of pragmas is corrected by adding "item" to
the list and clarifying the meaning of not in place of.

A further discussion considered sequences of statements. In
a structure such as an if statement the syntax is

if_statement ::=
 if condition then
 sequence_of_statements
 ...

where

sequence_of_statements ::= statement {statement}

The important point is that a sequence_of_statements must
have at least one statement. Moreover, the rules for placing
pragmas in Ada 2005 do not allow a pragma in place of a
construct so we cannot write

if B then
 pragma Assert(...); -- illegal in Ada 2005
else ...

but have to include at least one statement (such as a null
statement) by writing perhaps

if B then
 pragma Assert(...); null;
else ...

or

if B then
 null; pragma Assert(...);
else ...

On reflection this seemed irritating so the rules for the
placement of pragmas are further amended to include
another bullet

 In place of a statement in a sequence_of_statements

A useful note on a language definition principle is added to
the AARM which is that if all pragmas are treated as
unrecognized then a program should remain legal.

Incidentally, there are other places in the language where at
least one item is required such as in a component list.
Again if we don't want any components we have to write a
null component as in

J. G. P. Barnes 273

Ada User Journal Volume 33, Number 4, December 2012

type Nothing is
 record
 null;
 end record;

One might have thought that we could similarly now allow
one to write

type T is
 record
 pragma Page;
 end record;

Indeed, it might have been thought that we could simply
say that in general a pragma can be given "in place of" an
entity. But this doesn't work in some cases. For example, an
asynchronous select statement can take the form of a series
of statements in its triggering alternative thus

select
 S1(...);
 S2(...);
 S3(...);
then abort
 ...
end select;

Now the call of S1 is the triggering statement and has a
different status to S2 and S3. It would be very confusing to
be able to replace the call of S1 by a pragma. So such
generalization was dismissed as leading to trouble.

The final topic in this vein concerns the position of labels.
This was triggered by the consideration of the problem of
quitting one iteration of a loop if it proves unsuccessful and
then trying the next iteration. As described in the
Introduction this can be done by writing

for I in Some_Range loop
 ...
 if not OK then goto End_Of_Loop; end if;
 ... -- lots of other code
<<End_Of_Loop>> null; -- try another iteration
end loop;

Of course, maybe we should avoid the goto and write

for I in Some_Range loop
 ...
 if OK then
 ... -- lots of other code
 end if;
 -- try another iteration
end loop;

At first sight the latter structure looks nicer. However, if the
"lots of other code" encounters several situations which
mean that the iteration has to be abandoned then we quickly
get a deeply nested structure which is not easy to
understand and becomes heavily indented.

Much consideration was given to the introduction of a
continue statement but it was felt that this would obscure
the existence of the transfer of control. Although the goto
may be deprecated as obscure, the corresponding obvious

label in its aggressive double angle brackets is a strong clue
to the existence of the transfer of control.

In the end it was decided that the only sensible
improvement was to remove the need for the null statement
at the end of the loop.

This is achieved by changing the syntax for a sequence of
statements to

sequence_of_statements ::= statement {statement} {label}

and adding a rule to the effect that if one or more labels end
a sequence of statements then an implicit null statement is
inserted after the labels. So the loop example can now be
written as

for I in Some_Range loop
 ...
 if not OK then goto End_Of_Loop; end if;
 ... -- lots of other code
<<End_Of_Loop>> -- try another iteration
end loop;

More generally we can write

if B then
 S1; S2; <<My_Label>>
end if;

as well as giving the null explicitly thus

if B then
 S1; S2; <<My_Label>> null;
end if;

but we still cannot write

if B then
 <<My_Label>> -- illegal
end if;

since a sequence of statements must still include at least
one statement. Of course, we could never jump to such a
label anyway since control cannot be transferred into a
structure.

3 Iteration

Iteration and subprogram calls are in some sense the twin
cornerstones of programming. We are all familiar with the
ubiquitous nature of statements such as

for I in A'Range loop
 A(I) := 0;
end loop;

which in one form or another exist in all (normal)
programming languages.

The detail of giving the precise description of the iteration
and the indexing is really a violation of abstraction by
revealing unnecessary detail. All we want to say is "assign
zero to each element of the set A".

However, although it's not too much of a hassle with
arrays, the introduction of containers revealed that detailed
iteration could be very heavy-handed. Thus, as mentioned

274 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

Volume 33, Number 4, December 2012 Ada User Journal

in the Introduction, suppose we are dealing with a list,
perhaps a list of the type Twin declared as

type Twin is
 record
 P, Q: Integer;
 end record;

To manipulate every element of the list in Ada 2005, we
have to write something like

C := The_List.First; -- C declared as of type Cursor
loop
 exit when C = No_Element;
 E := Element(C); -- E is of type Twin
 if Is_Prime(E.P) then
 Replace_Element(The_List, C, (E.P, E.Q + X));
 end if;
 C := Next(C);
end loop;

This reveals the gory details of the iterative process
whereas all we want to say is "add X to the component Q
for all members of the list whose component P is prime".

There is another way in Ada 2005 and that is to use the
procedure Iterate. In that case the details of what we are
doing have to be placed in a distinct subprogram called
perhaps Do_It. Thus we can write

declare
 procedure Do_It(C: in Cursor) is
 begin
 E := Element(C); -- E is of type Twin
 if Is_Prime(E.P) then
 Replace_Element(The_List, C, (E.P, E.Q + X));
 end if;
 end Do_It;
begin
 The_List.Iterate(Do_It'Access);
end;

This avoids the fine detail of calling First and Next but uses
what some consider to be a heavy infrastructure.

However, in Ada 2012 we can simply say

for E of The_List loop
 if Is_Prime(E.P) then
 E.Q := E.Q + X;
 end if;
end loop;

Not only is this just five lines of text rather than nine or
eleven, the key point is that the possibility of making
various errors of detail is completely removed.

The mechanisms by which this magic abstraction is
achieved are somewhat laborious and it is anticipated that
users will take a cookbook approach (show us how to do it,
but please don't explain why – after all, this is the approach
taken with boiling an egg, we can do it without deep
knowledge of the theory of coagulation of protein
material).

We will start by looking at the process using arrays. Rather
than

for I in A'Range loop
 if A(I) /= 0 then
 A(I) := A(I) + 1;
 end if;
end loop;

we can write

for E of A loop
 if E /= 0 then
 E := E + 1;
 end if;
end loop;

In the case of a two-dimensional array, instead of

for I in AA'Range(1) loop
 for J in AA'Range(2) loop
 A(I, J) := 0.0;
 end loop;
end loop;

we can write

for EE of AA loop
 EE := 0.0;
end loop;

In Ada 2005 (and indeed in Ada 95 and Ada 83), the syntax
for a loop is given by

loop_statement ::= [loop_statement_identifier :]
 [iteration_scheme] loop
 sequence_of_statements
 end loop [loop_identifier] ;

iteration_scheme ::= while condition
 | for loop_parameter_specification

loop_parameter_specification ::= defining_identifier in
 [reverse] discrete_subtype_definition

This is all quite familiar. In Ada 2012, the syntax for
loop_statement remains the same but iteration_scheme is
extended to give

iteration_scheme ::= while condition
 | for loop_parameter_specification
 | for iterator_specification

Thus the new form iterator_specification is introduced
which is

iterator_specification ::=
 defining_identifier in [reverse] iterator_name
 | defining_identifier [: subtype_indication] of
 [reverse] iterable_name

The first production defines a generalized iterator whereas
the second defines an array component iterator or a
container element iterator. For the moment we will just
consider the second production which has of rather than in.
The iterable_name can refer to an array or a container.
Suppose it is an array such as A or AA in the examples
above.

J. G. P. Barnes 275

Ada User Journal Volume 33, Number 4, December 2012

We note that we can optionally give the subtype of the loop
parameter. Suppose that the type A is given as

type A is array (index) of Integer;

then the subtype of the loop parameter (E in the example) if
not given will just be that of the component which in this
case is simply Integer. If we do give the subtype of the loop
parameter then it must cover that of the component. This
could be useful with tagged types.

Note carefully that the loop parameter does not have the
type of the index of the array as in the traditional loop but
has the type of the component of the array. So on each
iteration it denotes a component of the array. It iterates over
all the components of the array as expected. If reverse is
not specified then the components are traversed in
ascending index order whereas if reverse is specified then
the order is descending. In the case of a multidimensional
array then the index of the last dimension varies fastest
matching the behaviour of AA in the expanded traditional
version as shown (and which incidentally is the order used
in streaming). However, if the array has convention Fortran
then it is the index of the first dimension that varies fastest
both in the case of the loop and in streaming.

There are other obvious rules. If the array A or AA is
constant then the loop parameter E or EE is also constant.
So it all works much as expected. But do note carefully the
use of the reserved word of (rather than is) which
distinguishes this kind of iteration from the traditional form
using an index.

As another array example suppose we have the following

type Artwin is array (1 .. N) of Twin;

The_Array: Artwin;

which is similar to the list example above. In the traditional
way we might write

for K in Artwin'Range loop
 if Is_Prime(The_Array(K).P) then
 The_Array(K).Q := The_Array(K).Q + X;
 end if;
end loop;

Using the new notation this can be simplified to

for E: Twin of The_Array loop
 if Is_Prime(E.P) then
 E.Q := E.Q + X;
 end if;
end loop;

where we have added the subtype Twin to clarify the
situation. Similarly, in the simple list example we could
write

for E: Twin of The_List loop
 if Is_Prime(E.P) then
 E.Q := E.Q + X;
 end if;
end loop;

Note the beautiful similarity between these two examples.
The only lexical difference is that The_Array is replaced by
The_List showing that arrays and containers can be treated
equivalently.

We now have to consider how the above can be considered
as behaving like the original text which involves C of type
Cursor, and subprograms First, No_Element, Element,
Replace_Element and Next.

This magic is performed by several new features. One is a
generic package whose specification is

generic
 type Cursor;
 with function Has_Element(Position: Cursor)
 return Boolean;
package Ada.Iterator_Interfaces is
 pragma Pure(Iterator_Interfaces);

 type Forward_Iterator is limited interface;
 function First(Object: Forward_Iterator)
 return Cursor is abstract;
 function Next(Object: Forward_Iterator,
 Position: Cursor) return Cursor is abstract;

 type Reversible_Iterator is limited interface and
 Forward_Iterator;
 function Last(Object: Reversible_Iterator)
 return Cursor is abstract;
 function Previous(Object: Reversible_Iterator;
 Position: Cursor) return Cursor is abstract;
end Ada.Iterator_Interfaces;

This generic package is used by the container packages
such as Ada.Containers.Doubly_Linked_Lists. Its actual
parameters corresponding to the formal parameters Cursor
and Has_Element come from the container which includes
an instantiation of Ada.Iterator_Interfaces. The instantiation
then exports the various required types and functions. Thus
in outline the relevant part of the list container now looks
like

with Ada.Iterator_Interfaces;
generic
 type Element_Type is private;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Doubly_Linked_Lists is
 ...
 type List is tagged private ...
 ...
 type Cursor is private;
 ...
 function Has_Element(Position: Cursor)
 return Boolean;
 package List_Iterator_Interfaces is
 new Ada.Iterator_Interfaces(Cursor, Has_Element);
 ...
 ...
end Ada.Containers.Doubly_Linked_Lists;

The entities exported from the generic package
Ada.Iterator_Interfaces are the two interfaces

276 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

Volume 33, Number 4, December 2012 Ada User Journal

Forward_Iterator and Reversible_Iterator. The interface
Forward_Iterator has functions First and Next whereas the
Reversible_Iterator (which is itself descended from
Forward_Iterator) has functions First and Next inherited
from Forward_Iterator plus additional functions Last and
Previous.

Note carefully that a Forward_Iterator can only go forward
but a Reversible_Iterator can go both forward and
backward. Hence it is reversible and not Reverse_Iterator.

The container packages also contain some new functions
which return objects of the type Reversible_Iterator'Class
or Forward_Iterator'Class. In the case of the list container
they are

function Iterate(Container: in List) return
 List_Iterator_Interfaces.Reversible_Iterator'Class;
function Iterate(Container: in List;
 Start: in Cursor) return
 List_Iterator_Interfaces.Reversible_Iterator'Class;

These are new functions and are not to be confused with
the existing procedures Iterate and Reverse_Iterate which
enable a subprogram to be applied to every element of the
list but are somewhat cumbersome to use as shown earlier.
The function Iterate with only one parameter is used for
iterating over the whole list whereas that with two
parameters iterates starting with the cursor value equal to
Start.

Now suppose that the list container is instantiated with the
type Twin followed by the declaration of a list

package Twin_Lists is
 new Ada.Containers.Doubly_Linked_Lists
 (Element_Type => Twin);
The_List: Twin_Lists.List;

So we have now declared The_List which is a list of
elements of the type Twin. Suppose we want to do
something to every element of the list. As we have seen we
might write

for E: Twin of The_List loop
 ... -- do something to E
end loop;

However, it might be wise at this point to introduce the
other from of iterator_specification which is

 defining_identifier in [reverse] iterator_name

This defines a generalized iterator and uses the traditional
in rather than of used in the new array component and
container element iterators. Using this generalized form we
can write

for C in The_List.Iterate loop
 ... -- do something via cursor C
end loop;

In the body of the loop we manipulate the elements using
cursors in a familiar way. The reader might wonder why
there are these two styles, one using is and the other using
of. The answer is that the generalized iterator is more

flexible; for example it does not need to iterate over the
whole structure. If we write

for C in The_List.Iterate(S) loop

then the loop starts with the cursor value equal to S; this is
using the version of the function Iterate with two
parameters. On the other hand, the array component and
container element iterators are more succinct where
applicable and are the only from of these new iterators that
can be used with arrays.

The generalized iterators for the list container use
reversible iterators because the functions Iterate return a
value of the type Reversible_Iterator'Class. The equivalent
code generated uses the functions First and Next exported
from List_Iterator_Interfaces created by the instantiation of
Ada.Iterator_Interfaces with the actual parameters
The_List.Cursor and The_List.Has_Element. The code then
behaves much as if it were (see paragraph 13/3 of subclause
5.5.2 of the RM)

C: The_List.Cursor;
E: Twin;
F: Forward_Iterator'Class := The_List.Iterate;
...
C := F.First;
loop
 exit when not The_List.Has_Element(C);
 E := The_List.Element(C);
 ... -- do something to E
 C := F.Next(C);
end loop;

Of course, the user does not need to know all this in order
to use the construction. Note that the functions First and
Next used here (which operate on the class Forward_Iterator
and are inherited by the class Reversible_Iterator) are not to
be confused with the existing functions First and Next
which act on the List and Cursor respectively. The existing
functions are retained for compatibility and for use in
complex situations.

It should also be noted that the initialization of F is legal
since the result returned by Iterate is a value of
Reversible_Iterator'Class and this is a subclass of
Forward_Iterator'Class.

If we had written

for C in reverse The_List.Iterate loop
 ... -- do something via cursor C
end loop;

then the notional code would have been similar but have
used the functions Last and Previous rather than First and
Next.

Another point is that the function call F.First will deliver
the very first cursor value if we had written The_List.Iterate
but the value S if we had written The_List.Iterate(S).
Remember that we are dealing with interfaces so there is
nothing weird here; the two functions Iterate return
different types in the class and these have different

J. G. P. Barnes 277

Ada User Journal Volume 33, Number 4, December 2012

functions First so the notional generated code calls different
functions.

If we use the form

for E: Twin of The_List loop
 ... -- do something to E
end loop;

then the generated code is essentially the same. However,
since we have not explicitly mentioned an iterator, a default
one has to be used. This is given by one of several new
aspects of the type List which actually now is

type List is tagged private
 with Constant_Indexing => Constant_Reference,
 Variable_Indexing => Reference,
 Default_Iterator => Iterate,
 Iterator_Element => Element_Type;

The aspect we need at the moment is the one called
Default_Iterator which as we see has the value Iterate (this
is the one without the extra parameter). So the iterator F is
initialized with this default value and once more we get

C: The_List.Cursor;
E: Twin;
F: Forward_Iterator'Class := The_List.Iterate;
...

The use of the other aspects will be explained in a moment.

Lists, vectors and ordered maps and sets can be iterated in
both directions. They all have procedures Reverse_Iterate
as well as Iterate and the two new functions Iterate return a
value of Reversible_Iterator'Class.

However, it might be recalled that the notion of iterating in
either direction makes no sense in the case of hashed maps
and hashed sets. Consequently, there is no procedure
Reverse_Iterate for hashed maps and hashed sets and there
is only one new function Iterate which (in the case of
hashed maps) is

function Iterate(Container: in Map) return
 Map_Iterator_Interfaces.Forward_Iterator'Class;

and we note that this function returns a value of
Forward_Iterator'Class rather than Reversible_Iterator'Class
as in the case of lists, vectors, ordered maps, and ordered
sets.

Naturally, we cannot put reverse in an iterator over hashed
maps and hashed sets nor can we give a starting value. So
the following are both illegal

for C in The_Hash_Map.Iterate(S) loop -- illegal

for E of reverse The_Hash_Map loop -- illegal

The above should have given the reader a fair
understanding of the mechanisms involved in setting up the
loops using the new iterator forms. We now turn to
considering the bodies of the loops, that is the code marked
"do something via cursor C " or "do something to E ".

In the Ada 2005 example we wrote

 if Is_Prime(E.P) then
 Replace_Element(The_List, C, (E.P, E.Q + X));
 end if;

It is somewhat tedious having to write Replace_Element
when using a container whereas in the case of an array we
might directly write

if Is_Prime(A(I).P) then
 A(I).Q := A(I).Q + X;
end if;

The trouble is that Replace_Element copies the whole new
element whereas in the array example we just update the
one component. This doesn't matter too much in a case
where the components are small such as Twin but if they
were giant records it would clearly be a problem. To
overcome this Ada 2005 includes a procedure
Update_Element thus

procedure Update_Element(Container: in out List;
 Position: in Cursor;
 Process: not null access procedure
 (Element: in out Element_Type));

To use this we have to write a procedure Do_It say thus

procedure Do_It(E: in out Twin) is
begin
 E.Q := E.Q + X;
end Do_It;

and then

 if Is_Prime(E.P) then
 Update_Element(The_List, C, Do_It'Access);
 end if;

This works fine because E is passed by reference and no
giant copying occurs. However, the downside is that the
distinct procedure Do_It has to be written so that the overall
text is something like

declare
 procedure Do_It(E: in out Twin) is
 begin
 E.Q := E.Q + X;
 end Do_It;
begin
 if Is_Prime(E.P) then
 Update_Element(The_List, C, Do_It'Access);
 end if;
end;

which is a bit tedious.

But of course, the text in the body of Do_It is precisely
what we want to say. Using the historic concepts of left and
right hand values, the problem is that The_List(C).Element
cannot be used as a left hand value by writing for example

The_List(C).Element.Q := ...

The problem is overcome in Ada 2012 using a little more
magic by the introduction of generalized reference types
and various aspects. In particular we find that the
containers now include a type Reference_Type and a

278 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

Volume 33, Number 4, December 2012 Ada User Journal

function Reference which in the case of the list containers
are

type Reference_Type
 (Element: not null access Element_Type) is private
 with Implicit_Dereference => Element;

function Reference(Container: aliased in out List;
 Position: in Cursor) return Reference_Type;

Note the aspect Implicit_Dereference applied to the type
Reference_Type with discriminant Element.

There is also a type Constant_Reference_Type and a
function Constant_Reference for use when the context
demands read-only access.

The alert reader will note the inclusion of aliased for the
parameter Container of the function Reference. As
discussed in the paper on Structure and Visibility, this
ensures that the parameter is passed by reference (it always
is for tagged types anyway); it also permits us to apply
'Access to the parameter Container within the function and
to return that access value.

It might be helpful to say a few words about the possible
implementation of Reference and Reference_Type
although these need not really concern the user.

The important part of the type Reference_Type is its access
discriminant. The private part might contain housekeeping
stuff but we can ignore that. So in essence it is simply a
record with just one component being the access
discriminant

type Reference_Type
 (E: not null access Element_Type) is null record;

and the body of the function might be

function Reference(Container: aliased in out List;
 Position: in Cursor) return Reference_Type is
begin
 return (E => Container.Element(Position)'Access);
end Reference;

The rules regarding parameters with aliased (which we
gloss over) ensure that no accessibility problems should
arise. Note also that it is important that the discriminant of
Reference_Type is an access discriminant since the lifetime
of the discriminant is then just that of the return object.

Various aspects are given with the type List which as
shown earlier now is

type List is tagged private
 with Constant_Indexing => Constant_Reference,
 Variable_Indexing => Reference,
 Default_Iterator => Iterate,
 Iterator_Element => Element_Type;

The important aspect here is Variable_Indexing. If this
aspect is supplied then in essence the type can be used in a
left hand context by invoking the function given as the
value of the aspect. In the case of The_List this is the
function Reference which returns a value of type
Reference_Type. Moreover, this reference type has a

discriminant which is of type access Element_Type and
the aspect Implicit_Dereference with value Element and so
gives direct access to the value of type Element.

We can now by stages transform the raw text. So using the
cursor form we can start with

for C in The_List.Iterator loop
 if Is_Prime(The_List.Reference(C).Element.all.P) then
 The_List.Reference(C).Element.all.Q :=
 The_List.Reference(C).Element.all.Q + X;
 end if;
end loop;

This is the full blooded version even down to using all.

Omitting the all and using the dereferencing with the aspect
Implicit_Dereference we can omit the mention of the
discriminant Element to give

for C in The_List.Iterator loop
 if Is_Prime(The_List.Reference(C).P) then
 The_List.Reference(C).Q :=
 The_List.Reference(C).Q + X;
 end if;
end loop;

Remember that Reference is a function with two
parameters. It might be clearer to write this without prefix
notation which gives

for C in Iterator(The_List) loop
 if Is_Prime(Reference(The_List, C).P) then
 Reference(The_List, C).Q :=
 Reference(The_List, C).Q + X;
 end if;
end loop;

Now because the aspect Variable_Indexing for the type List
has value Reference, the explicit calls of Reference can be
omitted to give

for C in The_List.Iterator loop
 if Is_Prime(The_List(C).P) then
 The_List(C).Q := The_List(C).Q + X;
 end if;
end loop;

It should now be clear that the cursor C is simply acting as
an index into The_List. We can compare this text with

for C in The_Array'Range loop
 if Is_Prime(The_Array(C).P) then
 The_Array(C).Q := The_Array(C).Q + X;
 end if;
end loop;

which shows that 'Range is analogous to .Iterator.

Finally, to convert to the element form using E we just
replace The_List(C) by E to give

for E of The_List loop
 if Is_Prime(E.P) then
 E.Q := E.Q + X;
 end if;
end loop;

J. G. P. Barnes 279

Ada User Journal Volume 33, Number 4, December 2012

The reader might like to consider the transformations in the
reverse direction to see how the final succinct form
transforms to the expanded form using the various aspects.
This is indeed what the compiler has to do.

This underlying technique which transforms the sequence
of statements of the container element iterator can be used
quite generally. For example, we might not want to iterate
over the whole container but just manipulate a particular
element given by a cursor C. Rather than calling
Update_Element with another subprogram Do_Something,
we can write

The_List.Reference(C).Q := ...

or simply

The_List(C).Q := ...

Moreover, although the various aspects were introduced
into Ada 2012 primarily to simplify the use of containers
they can be used quite generally.

The reader may feel that these new features violate the
general ideas of a language with simple building blocks.
However, it should be remembered that even the traditional
form of loop such as

for Index in T range L to U loop
 ... -- statements
end loop;

is really simply a shorthand for

declare
 Index: T;
begin
 if L <= U then
 Index := L;
 loop
 ... -- statements
 exit when Index = U;
 Index := T'Succ(Index);
 end loop;
 end if;
end;

Without such shorthand, programming would be very
tedious and very prone to errors. The features described in
this section are simply a further step to make programming
safer and simpler.

Further examples of the use of these new features with
containers will be given in a later paper dedicated to
containers.

The mechanisms discussed above rely on a number of new
aspects, a summary of which follows and might be found
useful. It is largely based on extracts from the RM.

Dereferencing

The following aspect may be specified for a discriminated
type T.

Implicit_Dereference This aspect is specified by a name
that denotes an access discriminant of the type T.

A type with a specified Implicit_Dereference aspect is a
reference type. The Implicit_Dereference aspect is inherited
by descendants of type T if not overridden.

A generalized_reference denotes the object or subprogram
designated by the discriminant of the reference object.

Indexing

The following aspects may be specified for a tagged type T.

Constant_Indexing This aspect is specified by a name that
denotes one or more functions declared immediately within
the same declaration list in which T is declared. All such
functions shall have at least two parameters, the first of
which is of type T or T'Class, or is an access-to-constant
parameter with designated type T or T'Class.

Variable_Indexing This aspect is specified by a name that
denotes one or more functions declared immediately within
the same declaration list in which T is declared. All such
functions shall have at least two parameters, the first of
which is of type T or T'Class, or is an access parameter
with designated type T or T'Class. All such functions shall
have a return type that is a reference type, whose reference
discriminant is of an access-to-variable type.

These aspects are inherited by descendants of T (including
T'Class). The aspects shall not be overridden, but the
functions they denote may be.

An indexable container type is a tagged type with at least
one of the aspects Constant_Indexing or Variable_Indexing
specified.

An important difference between Constant_Indexing and
Variable_Indexing is that the functions for variable indexing
must return a reference type so that it can be used in left
hand contexts such as the destination of an assignment.
Note that, in both cases, the name can denote several
overloaded functions; this is useful, for example, with maps
to allow indexing both with cursors and with keys.

Both Constant_Indexing and Variable_Indexing can be
provided since the constant one might be more efficient
whereas the variable one is necessary in left hand contexts.
But we are not obliged to give both, just Variable_Indexing
might be enough for some applications.

Iterating

An iterator type is a type descended from the
Forward_Iterator interface.

The following aspects may be specified for an indexable
container type T.

Default_Iterator This aspect is specified by a name that
denotes exactly one function declared immediately within
the same declaration list in which T is declared, whose first
parameter is of type T or T'Class or an access parameter
whose designated type is type T or T'Class, whose other
parameters, if any, have default expressions, and whose
result type is an iterator type. This function is the default
iterator function for T.

280 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

Volume 33, Number 4, December 2012 Ada User Journal

Iterator_Element This aspect is specified by a name that
denotes a subtype. This is the default element subtype for T.

These aspects are inherited by descendants of type T
(including T'Class).

An iterable container type is an indexable container type
with specified Default_Iterator and Iterator_Element
aspects.

The Constant_Indexing and Variable_Indexing aspects (if
any) of an iterable container type T shall denote exactly one
function with the following properties:

 the result type of the function is covered by the default
element type of T or is a reference type with an access
discriminant designating a type covered by the default
element type of T;

 the type of the second parameter of the function covers
the default cursor type for T;

 if there are more than two parameters, the additional
parameters all have default expressions.

These functions (if any) are the default indexing functions
for T.

The reader might care to check that the aspects used in the
examples above match these definitions and are used
correctly. Note for example that the Default_Iterator and
Iterator_Element aspects are only needed if we use the of
form of iteration (and both are needed in that case, giving
one without the other would be foolish).

This section has largely been about the use of iterators with
loop statements. However, there is one other use of them
and that is with quantified expressions which are also new
to Ada 2012. Quantified expressions were discussed in
some detail in the paper on Expressions so all we need here
is to consider a few examples which should clarify the use
of iterators.

Instead of

B := (for all K in A'Range => A(K) = 0);

which assigns true to B if every component of the array A
has value 0, we can instead write

B := (for all E of A => E = 0);

Similarly, instead of

B := (for some K in A'Range => A(K) = 0);

which assigns true to B if some component of the array A
has value 0, we can instead write

B := (for some E of A => E = 0);

In the case of a multidimensional array, instead of

B := (for all I in AA'Range(1) =>
 (for all J in AA'Range(2) => AA(I, J) = 0));

we can write

B := (for all E of AA => E = 0);

which iterates over all elements of the array AA however
many dimensions it has.

We can also use these forms with the list example. Suppose
we are interested in checking whether some element of the
list has a prime component P. We can write

B := (for some E of The_List => Is_Prime(E.P));

or perhaps

B := (for some C in The_List.Iterator =>
 Is_Prime(The_List(C).P));

which uses the explicit iterator form.

4 Access types and storage pools

A significant change in Ada 2005 was the introduction of
anonymous access types. It is believed that the motivation
was to remove the feeling that Ada 95 was unnecessarily
pedantic in requiring the introduction of lots of named
access types whereas in languages such as C one can just
place a star on the identifier of the type being referenced in
order to introduce a pointer type.

However, anonymous access types raised more complex
accessibility check problems which did not arise with
named access types. Most of these problems were resolved
in the definition of Ada 2005 but one remained concerning
stand-alone objects of anonymous access types.
Interestingly, such stand-alone objects were added to Ada
2005 late in the development process; perhaps hastily as it
turned out.

In Ada 2005, local stand-alone objects take the accessibility
level of the master in which they are declared.

Consider an attempt to use a local stand-alone object in an
algorithm to reverse a list. We assume that the list
comprises nodes of the following type

type Node is
 record
 ...
 Next: access Node;
 end record;

and we write

function Reverse(List: access Node)
 return access Node is
 Result: access Node := null;
 This_Node: access Node := List;
 Next_Node: access Node := null;
begin
 while This_Node /= null loop
 Next_Node := This_Node.Next;
 This_Node.Next := Result; -- access failure in 2005
 Result := This_Node;
 This_Node := Next_Node;
 end loop;
 return Result; --access failure in 2005
end Reverse;

This uses the obvious algorithm of working down the list
and rebuilding it. However, in Ada 2005 there are two

J. G. P. Barnes 281

Ada User Journal Volume 33, Number 4, December 2012

accessibility failures associated with the variable Result.
The assignment to This_Node.Next fails because Result
might be referring to something local and we cannot assign
that to a node of the list since the list itself lies outside the
scope of Reverse_List. Similarly, attempting to return the
value in Result fails.

The problem with returning a result can sometimes be
solved by using an extended return statement as illustrated
in [2]. But this is not a general remedy. The problem is
solved in Ada 2012 by treating stand-alone access objects
rather like access parameters so that they carry the
accessibility of the last value assigned to them as part of
their value.

Another reason for introducing anonymous access types in
Ada 2005 was to reduce the need for explicit type
conversions (note that anonymous access types naturally
have no name to use in an explicit conversion). However, it
turns out that in practice it is convenient to use anonymous
access types in some contexts (such as the component Next
of type Node) but in other contexts we might find it logical
to use a named access type such as

type List is access Node;

In Ada 2005, explicit conversions are often required from
anonymous access types to named access types and this has
been considered to be irritating. Accordingly, the rule has
been changed in Ada 2012 to say that an explicit
conversion is only required if the conversion could fail.

This relaxation covers both accessibility checks and tag
checks. For example we might have

type Class_Acc is access T'Class; -- named type
type Rec is
 record
 Comp: access T'Class; -- anon type
 end record;

R: Rec;

and then some code somewhere

Z: Class_Acc;
...
Z := R.Comp; -- OK in Ada 2012

The conversion from the anonymous type of Comp to the
named type Class_Acc of Z on the assignment to Z cannot
fail and so does not require an explicit conversion whereas
it did in Ada 2005. Incidentally, the example uses a
component Comp rather than a stand-alone object to avoid
confusion arising from the special properties of stand-alone
objects just discussed.

With regard to tag checks, if it is statically known that the
designated type of the anonymous access type is covered
by the designated type of the named access type then there
is no need for a tag check and so an explicit conversion is
not required.

It will be recalled that there is a fictitious type known as
universal_access (much as universal_integer, root_Integer
and so on). For example, the literal null is of this universal

type. Moreover, there is a function "=" used to compare
universal_access values. Permitting implicit conversions
requires the introduction of a preference rule for the
equality operator of the universal type. Suppose we have

type A is access Integer;
R, S: access Integer;
...
if R = S then

Now since we can do an implicit conversion from the
anonymous access type of R and S to the type A, there is
confusion as to whether the comparison uses the equality
operator of the type universal_access or that of the type A.
Accordingly, there is a preference rule that states that in the
case of ambiguity there is a preference for equality of the
type universal_access. Similar preference rules already
apply to root_integer and root_real.

A related topic concerns membership tests which were
described in the paper on Expressions.

If we want to ensure that a conversion from perhaps Integer
to Index will work and not raise Constraint_Error we can
write

subtype Index is Integer range 1 .. 20;
I: Index;
K: Integer;
...
if K in Index then
 I := Index(K); -- bound to work
else
 ... -- remedial action
end if;

This is much neater than attempting the conversion and
then handling Constraint_Error.

However, in Ada 2005, there is no similar facility for
testing to see whether an access type conversion would fail.
So membership tests in Ada 2012 are extended to permit
such a test. So if we have

type A is access T1;
X: A;
...
type Rec is
 record
 Comp: access T2;
 end record;

R: Rec;
Y: access T2;

we can write

if R.Comp in A then
 X := A(R.Comp) -- conversion bound to work
else ...

The membership test will return true if the type T1 covers
T2 and the accessibility rules are satisfied so that the
conversion is bound to work. Note that the converted
expression (R.Comp in this case) can be an access
parameter or a stand-alone access object such as Y.

282 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

Volume 33, Number 4, December 2012 Ada User Journal

We now turn to consider various features concerning
allocation and storage pools.

It will be recalled that if we write our own storage pools
then we have to declare a pool type derived from the type
Root_Storage_Pool in the package System.Storage_Pools.
So we might write

package My_Pools is
 type Pond(Size: Storage_Count) is
 new Root_Storage_Pool with private;
 ...

where the discriminant gives the size of the pool. We then
have to provide procedures Allocate and Deallocate for our
own pool type Pond corresponding to those for
Root_Storage_Pool. The procedures Allocate and
Deallocate both have four parameters. For example, the
procedure Allocate is

procedure Allocate(Pool: in out Root_Storage_Pool;
 Storage_Address: out Address;
 Size_In_Storage_Elements,
 Alignment: in Storage_Count) is abstract;

When we declare our own Allocate we do not have to use
the same names for the formal parameters. So we might
more simply write

procedure Allocate(Pool: in out Pond;
 Addr: out Address;
 SISE: in Storage_Count;
 Align: in Storage_Count);

As well as Allocate and Deallocate we also have to write a
function Storage_Size and procedures Initialize and
Finalize. However, the key procedures are Allocate and
Deallocate which give the algorithms for determining how
the storage in the pool is manipulated.

Two parameters of Allocate give the size and alignment of
the space to be allocated. However, it is possible that the
particular algorithm devised might need to know the worst
case values in determining an appropriate strategy. The
attribute Max_Size_In_Storage_Elements gives the worst
case for the storage size in Ada 2005 but there is no
corresponding attribute for the worst case alignment.

This is overcome in Ada 2012 by the provision of the
attribute Max_Alignment_For_Allocation. There are various
reasons for possibly requiring a different alignment to that
expected. For example, the raw objects might simply be
byte aligned but the algorithm might decide to append dope
or monitoring information which is integer aligned.

The collector of Ada curiosities might remember that
Max_Size_In_Storage_Elements is the attribute with most
characters in Ada 2005 (28 of which 4 are underlines).
Curiously, Max_Alignment_For_Allocation also has 28
characters of which only 3 are underlines.

There are problems with anonymous access types and
allocation. Consider

package P is
 procedure Proc(X: access Integer);
end P;

with P;
procedure Try_This is
begin
 P.Proc(new Integer'(10));
end Try_This;

The procedure Proc has an access parameter X and the call
of Proc in Try_This does an allocation with the literal 10.
Where does it go? Which pool? Can we do
Unchecked_Deallocation? There are special rules for
allocators of anonymous access types which aim to answer
such questions. The pool is "created at the point of the
allocator" and so on.

But various problems arise. An important one is that it is
not possible to do unchecked deallocation because the
access type has no name; this is particularly serious with
library level anonymous access types. An example of such
a type might be that of the component Next if the record
type Node discussed earlier had been declared at library
level.

Consequently, it was concluded that it is best to use named
access types if allocation is to be performed. We can
always convert to an anonymous type if desired after the
allocation has been performed.

In order to avoid encountering such problems a new
restriction identifier is introduced. So writing

pragma Restrictions(No_Anonymous_Allocators);

prevents allocators of anonymous access types and so
makes the call of the procedure Proc in the procedure
Try_This illegal.

Many long-lived control programs have a start-up phase in
which various storage structures are established and which
is then followed by the production phase in which various
restrictions may be imposed. Ada 2012 has a number of
features that enable this to be organized and monitored.

One such feature is the new restriction

pragma Restrictions(No_Standard_Allocators_
 After_Elaboration);

This specifies that an allocator using a standard storage
pool shall not occur within a parameterless library
subprogram or within the statements of a task body. In
essence this means that all such allocation must occur
during library unit elaboration. Storage_Error is raised if
allocation occurs afterwards.

However, it is expected that systems will permit some use
of user-defined storage pools. To enable the writers of such
pools to monitor their use some additional functions are
added to the package Task_Identification so that it now
takes the form

package Ada.Task_Identification is
 ...

J. G. P. Barnes 283

Ada User Journal Volume 33, Number 4, December 2012

 type Task_Id is private;
 ...
 function Current_Task return Task_Id;
 function Environment_Task return Task_Id;
 procedure Abort_Task(T: in Task_Id);

 function Is_Terminated(T: Task_Id) return Boolean;
 function Is_Callable(T: Task_Id) return Boolean;
 function Activation_Is_Complete(T: Task_Id)
 return Boolean;
private
 ...
end Ada.Task_Identification;

The new function Environment_Task returns the
identification of the environment task. The function
Activation_Is_Complete returns true if the task concerned
has finished activation. Moreover, if
Activation_Is_Complete is applied to the environment task
then it indicates whether all library items of the partition
have been elaborated.

A major new facility is the introduction of subpools. This is
an extensive subject so we give only an overview. The
general idea is that one wants to manage heaps with
different lifetimes. It is often the case that an access type is
declared at library level but various groups of objects of the
type are declared and so could be reclaimed at a more
nested level. This is done by splitting a pool into separately
reclaimable subpools. This is far safer and often cheaper
than trying to associate lifetimes with individual objects.

A new child package of System.Storage_Pools is declared
thus

package System.Storage_Pools.Subpools is
 pragma Preelaborate(Subpools);

 type Root_Storage_Pool_With_Subpools is
 abstract new Root_Storage_Pool with private;

 type Root_Subpool is
 abstract tagged limited private;

 type Subpool_Handle is
 access all Root_Subpool'Class;
 for Subpool_Handle'Storage_Size use 0;

 function Create_Subpool
 (Pool: in out Root_Storage_Pool_With_Subpools)
 return not null Subpool_Handle is
 abstract;

 function Pool_of_Subpool
 (Subpool: not null Subpool_Handle) return
 access Root_Storage_Pool_With_Subpools'Class;

 procedure Set_Pool_of_Subpool
 (Subpool: not null Subpool_Handle;
 To: in out Root_Storage_Pool_With_Subpools'Class);

 procedure Allocate_From_Subpool(
 Pool: in out Root_Storage_Pool_With_Subpools;
 Storage_Address: out Address;
 Size_In_Storage_Elements: in Storage_Count;
 Alignment: in Storage_Count;

 Subpool: in not null Subpool_Handle) is abstract
 with Pre'Class =>
 Pool_of_Subpool(Subpool) = Pool'Access;

 procedure Deallocate_Subpool(
 Pool: in out Root_Storage_Pool_With_Subpools;
 Subpool: in out Subpool_Handle) is abstract
 with Pre'Class =>
 Pool_of_Subpool(Subpool) = Pool'Access;

 function Default_Subpool_for_Pool
 (Pool: in out Root_Storage_Pool_With_Subpools)
 return not null Subpool_Handle;

 overriding
 procedure Allocate(
 Pool: in out Root_Storage_Pool_With_Subpools;
 Storage_Address: out Address;
 Size_In_Storage_Elements: in Storage_Count;
 Alignment: in Storage_Count);

 overriding
 procedure Deallocate(...) is null;

 overriding
 function Storage_Size
 (Pool : Root_Storage_Pool_With_Subpools)
 return Storage_Count is
 (Storage_Count'Last);

private
 ... -- not specified by the language
end System.Storage_Pools.Subpools;

If we wish to declare a storage pool that can have subpools
then rather than declare an object of the type
Root_Storage_Pool in the package System.Storage_Pools
we have to declare an object of the derived type
Root_Storage_Pool_With_Subpools declared in the child
package.

The type Root_Storage_Pool_With_Subpools inherits
operations Allocate, Deallocate and Storage_Size from the
parent type. Remember that Allocate and Deallocate are
automatically called by the compiled code when items are
allocated and deallocated. In the case of subpools we don't
need Deallocate to do anything so it is null. The function
Storage_Size determines the value of the attribute
Storage_Size and is given by a function expression.

Subpools are separately reclaimable parts of a storage pool
and are identified and manipulated by objects of the type
Subpool_Handle (these are access values). We can create a
subpool by a call of Create_Subpool. So we might have
(assuming appropriate with and use clauses)

package My_Pools is
 type Pond(Size: Storage_Count) is
 new Root_Storage_Pool_With_Subpools with private;

 subtype My_Handle is Subpool_Handle;
 ...

and then

My_Pool: Pond(Size => 1000);

284 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

Volume 33, Number 4, December 2012 Ada User Journal

Puddle: My_Handle := Create_Subpool(My_Pool);

The implementation of Create_Subpool should call

Set_Pool_Of_Subpool(Puddle, My_Pool);

before returning the handle. This enables various checks to
be made.

In order to allocate an object of type T from a subpool, we
have to use a new form of allocator. But first we must
ensure that T is associated with the pool itself. So we might
write

type T_Ptr is access T;
for T_Ptr'Storage_Pool use My_Pool;

And then to allocate an object from the subpool identified
by the handle Puddle we write

X := new (Puddle) T'(...);

where the subpool handle is given in parentheses following
new.

Of course we don't have to allocate all such objects from a
specified subpool since we can still write

Y := new T'(...);

and the object will be allocated from the parent pool
My_Pool. It is actually allocated from a default subpool in
the parent pool and this is determined by writing a suitable
body for the function Default_Subpool_for_Pool and this is
called automatically by the allocation mechanism. Note that
in effect the whole of the pool is divided into subpools one
of which may be the default subpool. If we don't provide an
overriding body for Default_Subpool_For_Pool then
Program_Error is raised. (Note that this function has a
parameter of mode in out for reasons that need not bother
us.)

The implementation carries out various checks. For
example, it will check that a handle refers to a subpool of
the correct pool by calling the function Pool_Of_Subpool.
Both this function and Set_Pool_Of_Subpool are provided
by the Ada implementation and typically do not need to be
overridden by the implementor of a particular type derived
from Root_Storage_Pool_With_Subpools.

In the case of allocation from a subpool, the procedure
Allocate_From_Subpool rather than Allocate is
automatically called. Note the precondition to check that all
is well.

It will be recalled that for normal storage pools, Deallocate
is automatically called from an instance of
Unchecked_Deallocation. In the case of subpools the
general idea is that we get rid of the whole subpool rather
than individual items in it. Accordingly, Deallocate does
nothing as mentioned earlier and there is no
Deallocate_From_Subpool. Instead we have to write a
suitable implementation of Deallocate_Subpool. Note again
the precondition to check that the subpool belongs to the
pool.

Deallocate_Subpool is called automatically as a
consequence of calling the following library procedure

with System.Storage_Pools.Subpools;
use System.Storage_Pools.Subpools;
procedure Ada.Unchecked_Deallocate_Subpool(
 Subpool: in out Subpool_Handle);

So when we have finished with the subpool Puddle we can
write

Unchecked_Dellocate_Subpool(Puddle);

and the handle becomes null. Appropriate finalization also
takes place.

In summary, the writer of a subpool implementation
typically only has to provide Create_Subpool,
Allocate_From_Subpool and Deallocate_Subpool since the
other subprograms are provided by the Ada implementation
of the package System.Storage_Pools.Subpools and can be
inherited unchanged.

An example of an implementation will be found in
subclause 13.11.6 of the RM. This shows an
implementation of a Mark/Release pool in a package
MR_Pool. Readers are invited to create variants called
perhaps Miss_Pool and Dr_Pool!

Further control over the use of storage pools (nothing to do
with subpools) is provided by the ability to define our own
default storage pool as mentioned in the Introduction. Thus
we can write (and completing our Happy Family of Pools)

pragma Default_Storage_Pool(Master_Pool);

and then all allocation within the scope of the pragma will
be from Master_Pool unless a different specific pool is
given for a type. This could be done by using an attribute
definition clause thus

type Cell_Ptr is access Cell;
for Cell_Ptr'Storage_Pool use Cell_Ptr_Pool;

or by using an aspect specification thus

type Cell_Ptr is access Cell
 with Storage_Pool => Cell_Ptr_Pool;

A pragma Default_Storage_Pool can be overridden by
another one so that for example all allocation in a package
(and its children) is from another pool.

The default pool can be specified as null thus

pragma Default_Storage_Pool(null);

and this prevents any allocation from standard pools.

Allocation normally occurs from the default pool unless a
specific pool has been given for a type. But there are two
exceptions, one concerns access parameter allocation and
the other concerns coextensions; in these cases allocation
uses a pool that depends upon the context.

Thus in the case of the procedure Proc discussed above, a
call such as

P.Proc(new Integer'(10));

J. G. P. Barnes 285

Ada User Journal Volume 33, Number 4, December 2012

might allocate the space in a secret pool created on the fly
and that secret pool might be placed on the stack.

Such allocation can be prevented by two more specific
restrictions. They are

pragma Restriction(No_Access_Parameter_Allocators);

and

pragma Restriction(No_Coextensions);

These two pragmas plus using the restriction
Default_Storage_Pool with null ensure that all allocation is
from user-defined pools.

5 Restrictions

Restrictions provide a valuable way of increasing security.
Ada is a rich language and even richer with Ada 2012 and
although individual features are straightforward, certain
combinations can cause problems.

The new restrictions introduced into Ada 2012 have already
been described in this or earlier papers such as the
Introduction. However, for convenience here is a complete
list giving the annex where appropriate.

The new Restrictions identifiers are

No_Access_Parameter_Allocators High-Integrity
No_Anonymous_Allocators High-Integrity
No_Cooextensions High-Integrity
No_Implementation_Aspect_Specifications
No_Implementation_Identifiers
No_Implementation_Units
No_Specification_Of_Aspect
No_Standard_Allocators_After_Elaboration
 Real-Time
No_Use_Of_Attribute
No_Use_Of_Pragma

Some of the new Restrictions identifiers are in the High-
Integrity annex. They are

pragma Restrictions(No_Access_Parameter_Allocators);

pragma Restrictions(No_Anonymous_Allocators);

pragma Restrictions(No_Coextensions);

and these were discussed in the previous section.

In a similar vein there is one new restriction in the Real-
Time annex, namely

pragma Restrictions(No_Standard_Allocators_
 After_Elaboration);

and this was also discussed in the previous section.

A number of restrictions prevent the use of
implementation-defined features. They are

pragma Restrictions(No_Implementation_Aspect_
 Specifications);

pragma Restrictions(No_Implementation_Identifiers);

pragma Restrictions(No_Implementation_Units);

These do not apply to the whole partition but only to the
compilation or environment concerned. This helps us to
ensure that implementation dependent areas of a program
are identified. They were discussed in the Introduction and
join similar restrictions No_Implementation_Attributes and
No_Implementation_Pragmas introduced in Ada 2005.

The restrictions on implementation-defined aspect
specifications, attributes and pragmas are obvious but some
clarification of what is meant by the restrictions on units
and identifiers might be helpful.

It will be recalled that the predefined packages are Ada,
System and Interfaces plus various children. In the so-
called standard mode, implementations are not permitted to
add their own child packages of Ada but can add
grandchildren. Thus an implementation might add an
additional container package called perhaps
Ada.Containers.Slopbucket. If a program were to use this
grandchild then clearly it would be unlikely to be portable
to other implementations. Accordingly, giving the
restriction No_Implementation_Units prevents such
potential difficulties. Similarly, this restriction prevents the
use of implementation-defined child units of System and
Interfaces.

The restriction No_Implementation_Identifiers is more
subtle. It will be recalled that several predefined packages
are permitted to add implementation-defined identifiers.
They are

Standard, System, Ada.Command_Line, Interfaces.C,
Interfaces.C.Strings, Interfaces.C.Pointers,
Interfaces.COBOL, and Interfaces.Fortran.

Moreover, the following predefined packages only contain
implementation-defined identifiers

Interfaces, System.Machine_Code,
Ada.Directories.Information, Ada.Directories.Names,
and the packages Implementation nested in the queue
containers.

The restriction No_Implementation_Identifiers prevents the
use of any of these.

There is a slight subtlety regarding Long_Integer and
Long_Float in Standard. The types Integer and Float must
be provided. Types such as Short_Integer and
Long_Long_Float may be provided but are definitely
considered to be implementation-defined and so excluded
by the restriction on implementation identifiers. However,
Long_Integer and Long_Float should be provided (if the
hardware is capable) and so are considered to be predefined
and not covered by the restriction. Nevertheless, an
implementation on a specialized small machine might not
provide them.

Finally, there are restrictions preventing the use of
particular facilities

pragma Restrictions(No_Specification_Of_Aspect => X);

pragma Restrictions(No_Use_Of_Attribute => X);

pragma Restrictions(No_Use_Of_Pragma => X);

286 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

Volume 33, Number 4, December 2012 Ada User Journal

where X is the name of a specific aspect, attribute or
pragma respectively. They are similar to the restriction
No_Dependence introduced in Ada 2005. They apply to a
complete partition.

Note that No_Specification_Of_Aspect prevents the
specification of an aspect by any means. Remember that
some aspects can be specified by an aspect specification or
by a pragma or by an attribute definition clause. Thus we
mentioned above that a storage pool could be given by an
attribute definition clause thus

type Cell_Ptr is access Cell;
for Cell_Ptr'Storage_Pool use Cell_Ptr_Pool;

or by using an aspect specification thus

type Cell_Ptr is access Cell
 with Storage_Pool => Cell_Ptr_Pool;

Writing

pragma Restrictions(No_Specification_Of_Aspect =>
 Storage_Pool);

prevents both of these whereas

pragma Restrictions(No_Use_Of_Attribute =>
 Strorage_Pool);

prevents only the first. Naturally, No_Use_Of_Attribute
prevents both setting an attribute and using it whereas
No_Specification_Of_Aspect prevents just setting it. Thus
we might want to use 'Size but prevent setting it.

Similarly

pragma Restrictions(No_Specification_Of_Aspect =>
 Pack);

prevents both

type Flags is array (1 .. 8) of Boolean
 with Pack;

and

type Flags is array (1 .. 8) of Boolean;
pragma Pack(Flags);

whereas

pragma Restrictions(No_Use_Of_Pragma => Pack);

prevents only the latter.

In summary, No_Specification_Of_Aspect does not mean
No_Aspect_Specification (which does not exist).

Remember that several restrictions can be given in one
pragma, so we might have

pragma Restrictions(No_Use_Of_Pragma => P,
 No_Use_Of_Attribute => A);

As mentioned in the Introduction there is also a new profile
No_Implementation_Extensions. This is specified by

pragma Profile(No_Implementation_Extensions);

and is equivalent to writing

pragma Restrictions(
 No_Implementation_Aspect_Specifications,
 No_Implementation_Attributes,
 No_Implementation_Identifiers,
 No_Implementation_Pragmas,
 No_Implementation_Units);

thus providing blanket security against writing programs
that use language extensions. This profile is defined in the
core language. The only other profile defined in Ada 2012
is Ravenscar which was introduced in Ada 2005 and is in
the Real-Time systems annex. Remember that the pragma
Profile is a configuration pragma.

Finally, those of a recursive nature might note that writing

pragma Restrictions(No_Use_Of_Pragma =>
 Restrictions);

is illegal (this prevents the risk that the compiler might melt
down). More curiously, there is not a restriction
No_Implementation_Restrictions. This might be because of
similar concern regarding what would happen with its
recursive use.

6 Miscellanea

A number of improvements do not neatly fit into any other
section of these papers and so are lumped together here.

The first four are in fact binding interpretations and thus
apply to Ada 2005 as well.

First, nominal subtypes are defined for enumeration literals
and attribute references so that all names now have a
nominal subtype.

This is clearly a matter for the language lawyer rather than
the happy programmer. Consider the following weird
example

subtype S is Integer range 1 .. 10;
...
case S'Last is
 when 0 => -- ????

This is clearly nonsense. However, Ada 2005 does not
define a nominal subtype for attributes such as S'Last and
so we cannot determine whether 0 is allowed as a discrete
choice. The language definition is tidied up to cover such
cases.

The second gap in Ada 2005 concerns intrinsic
subprograms. Remember that intrinsic subprograms are
functions such as "+" on the type Integer that only exist in
the mind of the compiler. Clearly they have no address. The
following is added to the RM:

The prefix of X'Address shall not statically denote a
subprogram that has convention Intrinsic. X'Address
raises Program_Error if X denotes a subprogram that
has convention Intrinsic.

The dynamic check is needed because of the possibility of
passing an intrinsic operation as a generic parameter.

J. G. P. Barnes 287

Ada User Journal Volume 33, Number 4, December 2012

The third of these binding gems concerns the package
Ada.Calendar.

The problem is that Calendar.Time is not well-defined
when a time zone change occurs as for example when
Daylight Saving Time is introduced or removed. Thus
operations involving several time values (such as
subtraction) might give the "correct" answer or might be an
hour adrift. The conclusion reached was simply to admit
that it is not defined so the wording is slightly changed.

Another problem with the wording in Ada 2005 is that the
sign of the difference between local time and UTC as
returned by UTC_Offset is not clearly defined. The sign is
clarified so that for example UTC_Offset is negative in the
American continent.

There is another problem with the package Calendar which
will need to be addressed at some time (probably long after
the author is dead). Much effort was exerted in Ada 2005 to
cope with leap seconds. These arise because the angular
velocity of rotation of the Earth is gradually slowing down.
In earlier epochs when measurements of time were not
accurate this did not matter. However, we now have atomic
clocks and the slowdown is significant so that clocks are
adjusted by one second as necessary and these are known
as leap seconds.

But leap seconds are under threat. There is a move to
suggest that tiny adjustments of one second are not worth
the effort and that we should wait until the time is a whole
hour wrong. A simple adjustment similar to that with which
we are familiar with Daylight Saving changes is all that is
needed. In other words we will have a leap hour every now
and then. Indeed, if leap seconds occur about once a year as
they have done on average since 1972 then a leap hour will
be needed sometime in the 37th century. This will probably
need to be addressed in Ada 3620 or so.

The final binding interpretation concerns class wide types
and generics.

An annoyance was recently discovered concerning the use
of the indefinite container packages such as

generic
 type Index_Type is range <>;
 type Element_Type(<>) is private;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Indefinite_Vectors is
 ...

We can instantiate this with an indefinite type such as
String by writing perhaps

package String_Vectors is
 new Containers.Indefinite_Vectors(Positive, String);

The third actual parameter can be omitted because the
predefined operation "=" on the type String exists and does
what we want.

Class wide types are another example of indefinite types.
Thus we might like to create a vector container whose
elements are a mixture of objects of types Circle, Square,
Triangle and so on. Assuming these are all descended from
the abstract type Object we want to instantiate with the
class wide type Object'Class.

However, unlike String, class wide types such as
Object'Class do not have a predefined equals. This is
annoying since the derived types Circle, Square, and
Triangle (being just records) do have a predefined equals.

So we have to write something like

function Equal(L, R: Object'Class) is
begin
 return L = R;
end Equal;

Note that this will dispatch to the predefined equals of the
type of the objects passed as parameters. They both must be
of the same type of course; we cannot compare a Circle to a
Triangle (anymore than we can compare Thee to a
Summer's Day).

So we can now instantiate thus

package Object_Vectors is
 new Containers.Indefinite_Vectors(
 Positive, Object'Class, Equal);

Note irritatingly that we cannot write Equal as just "="
because this causes ambiguities.

This is all a bit annoying and so in Ada 2012, the required
"=" is automatically created, we do not have to declare
Equal, and the instantiation can simply be

package Object_Vectors is
 new Containers.Indefinite_Vectors(
 Positive, Object'Class);

This improvement is also a binding interpretation and so
applies to Ada 2005 as well.

A more serious matter is the problem of the composability
of equality.

In Ada 2005, tagged record types compose but untagged
record types do not. If we define a new type (a record type,
array type or a derived type) then equality is defined in
terms of equality for its various components. However, the
behaviour of components which are records is different in
Ada 2005 according to whether they are tagged or not. If a
component is tagged then the primitive operation is used
(which might have been redefined), whereas for an
untagged type, predefined equality is used even though it
might have been overridden.

Consider

type Tagrec is tagged
 record
 X1: Integer;
 X2: Integer;
 end record;

288 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

Volume 33, Number 4, December 2012 Ada User Journal

type Untagrec is
 record
 Y1: Integer;
 Y2: Integer;
 end record;

type Index is range 0 .. 64;

...

function "=" (L, R: Tagrec) return Boolean is
begin
 return L.X1 = R.X1; -- compare only first component
end;

function "=" (L, R: Untagrec) return Boolean is
begin
 return L.Y1 = R.Y1; -- compare only first component
end;

function "=" (L, R: Index) return Boolean is
begin
 raise Havoc;
 return False;
end;

...

type Mixed is
 record
 T: Tagrec;
 U: Untagrec;
 Z: Index;
 end record;

Here we have a type Mixed whose components are of a
tagged record type Tagrec, an untagged record type
Untagrec, and an elementary type Index. Moreover, we
have redefined equality for these types.

In Ada 2005, the equality for the type Mixed uses the
redefined equality for the component T but the predefined
equality for U and Z. Thus it compares T.X1, U.Y1 and
U.Y2 and does not raise Havoc.

In Ada 83, the predefined equality always emerged for the
components of arrays and records. One reason was to avoid
confusion if an inconsistency arose between "=", "<" and
"<=". Remember that many elementary types and certain
array types have predefined "<" as well as "=" and to get the
relationship messed up would have been confusing.

However, Ada 95 introduced tagged record types and
inheritance of operations became an important feature. So it
seemed natural that if a structure (array or record) had
components of a tagged type and equality for that tagged
type had been redefined then it would be natural to expect
that equality for the structure should use the redefined
equality. But, fearful of introducing an incompatibility, the
rule for untagged record types was left unchanged so that
predefined equality reemerges.

On reflection, this difference between tagged and untagged
records was surprising and so has been changed in Ada

2012 so that all record types behave the same way and use
the primitive operation. This is often called composability
of equality so we can say that in Ada 2012, record types
always compose for equality. Remember that this only
applies to records; components which are of array types
and elementary types continue to use predefined equality.
So in Ada 2012, equality for Mixed only compares T.X1 and
U.Y1 but not U.Y2 and still does not raise Havoc.

Concern for incompatibility and inconsistency has been
allayed by a deep analysis of a number of programs. No
nasties were revealed and in the only cases where it made a
difference it was clear that the original behaviour was in
fact wrong.

The final miscellaneum (singular of miscellanea?) concerns
tags.

The package Ada.Tags defines various functions operating
on tags. For example

function Parent_Tag(T: Tag) return Tag;

returns the tag of the parent unless the type has no parent in
which case it returns No_Tag.

However, in Ada 2005 there is no easy way to test whether
a tag corresponds to an abstract type. The key property of
abstract types is that we cannot have an object of an
abstract type. If we wish to create an object using
Generic_Dispatching_Constructor and the tag represents an
abstract type then Tag_Error is raised. However, it would
be far better to check whether a tag represents an abstract
type before using Generic_Dispatching_Constructor.

Moreover, if we have a tag and wish to know whether it
represents an abstract type, then in Ada 2005 there is no
sensible way to find out. We could attempt to create an
object and see if it raises Tag_Error. If it doesn't then we
know that it was not abstract but we have also created an
object we maybe didn't want; if it does raise Tag_Error then
it might or might not have been abstract since there are
other reasons for the exception being raised. Either way this
is madness.

In Ada 2012, we can test the tag using the new function

function Is_Abstract(T: Tag) return Boolean;

which is added near the end of the package Ada.Tags just
before the declaration of the exception Tag_Error.

References

[1] ISO/IEC JTC1/SC22/WG9 N498 (2009) Instructions
to the Ada Rapporteur Group from SC22/WG9 for
Preparation of the Amendment.

[2] John Barnes (2006) Programming in Ada 2005,
Addison-Wesley.

© 2012 John Barnes Informatics.

 289

Ada User Journal Volume 33, Number 4, December 2012

Tool Support for Verification of Software Timing
and Stack Usage for a DO-178B Level A System
Eng. Felipe Kamei, Eng. Daniela Cristina Carta
Embraer, Sao Jose dos Campos, Brazil; email: felipe.kamei@embraer.com.br, daniela.carta@embraer.com.br

Dr. Ian Broster, Will Lunniss
Rapita Systems Ltd.,York, England; email: ianb@rapitasystems.com, wlunniss@rapitasystems.com

Abstract

This paper describes an approach to obtain worst-
case execution times and worst-case stack usage
using a method supported by the Rapita Verification
Suite (RVS) from Rapita Systems Ltd for a DO-178B
level A Flight Control System software application.
The approach has been applied in a Research and
Development project in Embraer. The paper outlines
the technical approach, and the results achieved so
far using two successful testing strategies.

Keywords: WCET, timing, Stack, DO178-B.

1 Introduction

For critical aerospace applications, it is necessary to
demonstrate that the software complies with timing and
memory related non-functional requirements. Compliance
to the RTCA DO-178B (Software Considerations in
Airborne Systems and Equipment Certification) [1]
guidelines is the usual method to achieve approval for
software implementing critical functions of aircraft systems
for aircraft certification regulations. One of the verification
activities required by DO-178B is to obtain the worst-case
timing and the stack usage values for the application. This
ensures that the implementation of the software is accurate,
consistent and compliant with its non-functional
requirements. Further, in the real-time software application
area, optimizing the usage of resources, such as CPU usage
and stack memory usage is a valuable exercise.

The relevant section (section 6.3.4) of DO-178B is entitled
“Reviews and Analyses of the Source Code". An approach
consisting of a combination of functional, timing and stack
usage analysis performed by executing tests on the software
running on the hardware may be used to accomplish this
objective [2]. In this paper, we describe performing
software timing and stack analysis in a R&D project whose
main purpose is to generate and exercise processes for the
development of critical aircraft systems and software.

The system developed as the POC (Proof of Concept) for
the processes proposed is a Flight Control System (FCS).
This FCS is designed to provide aircraft flight dynamics
control by employing Fly-By-Wire (FBW) technology
through the actuation of aerodynamic surfaces in response
to crew (pilot and co-pilot) commands. Data processing and
the logic of the FCS system are implemented by software,

which due to the criticality of the FCS function, is
classified as Level A software.

One of the drivers for the R&D project is the use of tools to
decrease development cost. The proposed method for
timing and stack analysis is aided by a tool, named Rapita
Verification Suite (RVS). Tool qualification and the
activities that need to be performed are discussed later in
the paper.

Section 2 provides an overview of the characteristics of the
FCS software application. Section 3 presents an overview
of RVS together with the proposed method for timing and
stack analysis in DO-178B, and Section 4 shows how the
RVS integration was performed with the FCS application.
Section 5 shows the results obtained, while Section 6
concludes.

2 FCS Software Application

The software under analysis implements the FCS system
logic and data processing. It is written in the C
programming language and contains approximately 73,000
lines of code. The hardware chosen to support the
application is based on a 7448 PowerPC microprocessor
running an operating system compliant with the ARINC
653 standard [3].

The FCS software development complies with DO-178B
Level A objectives. Hence the whole set of activities
required need to be performed for the FCS application. This
includes producing requirements, architecture and design
documentation artefacts and the review of said artefacts. It
additionally covers verification using inspections and tests,
structural coverage analysis using MC/DC criteria, and
object code analysis, among others. Initial requirements for
the FCS application required a worst-case execution time
(WCET) of less than 5 milliseconds, and a maximum stack
usage of 20,000 bytes.

3 RVS and combination of analysis and
test for timing and stack analysis

RVS is a set of tools for on-target verification of software
timing (RapiTime), code coverage (RapiCover) and stack
usage (RapiSafeStack, currently a prototype) from Rapita
Systems Ltd. RVS provides an automated method of
software instrumentation, measurement and worst-case
analysis. In this project, the particular features of RVS

290 Tool Support for Ver i f icat ion of Software Timing and Stack Usage

Volume 33, Number 4, December 2012 Ada User Journal

being used are RapiTime for WCET analysis and
RapiSafeStack for worst-case stack analysis.

RapiTime combines execution time measurements with
structural code analysis. It takes detailed timing
measurements from test cases executed on an embedded
target or on a simulator, and then uses source-code analysis
to construct the worst-case path, worst-case execution time
and other metrics [4].

The method of using the RapiTime tool in this project
comprises the following stages:

 Using RapiTime to add instrumentation to the source
code, according to a predefined level of
instrumentation suitable for each procedure.

 Building the instrumented code with the compiler
configured in the same way as it is used in the
development activities.

 Using RapiTime to analyze the source code and
generate an overall structure of the code and the paths
through it.

 Exercising the instrumented application on the
representative target using test case scenarios that
cover all the added instrumentation points.

 Capturing execution data according to a predefined
extraction method.

 Using RapiTime to generate a report based on the
execution data results and the code structure.

 Based on this report, comparing the non-functional
requirements’ expected values with the values
obtained.

The most important part of this process is that it is not
strictly necessary to explicitly design a test case for the
worst-case path because RapiTime will both calculate the
worst-case path and report whether that path corresponds to
the longest path observed during testing. This leads to a
significant reduction in effort since generating a worst-case
execution time scenario is a time consuming activity for a
complex application.

The process for use of RapiSafeStack is similar to the one
used for RapiTime. However, the traces used by
RapiSafeStack are different in two ways.

 Instrumentation points are only used for function entry
and exits.

 Timestamps are replaced with value of the stack
pointer.

The results of RVS automated activities are not verified by
other means; therefore tool qualification according to DO-
178B for RVS’s features is necessary. As RVS does not
introduce errors in the application and may only fail to
detect an error, it can be qualified as a verification tool
(which requires less effort than qualification for a
development tool). For that, Rapita Systems can provide a
qualification kit for the RapiTime tool, which contains a set
of documentation for qualification activities compliant to

DO-178B, which then need to be complemented by tool
user activities in the user environment. As RapiSafeStack is
still a prototype, it does not contain this set of
documentation yet.

4 Integration of RVS and FCS application

The steps to prepare and execute the RapiTime and
RapiSafeStack processes were performed using the FCS
software. The level of instrumentation chosen for timing
analysis was such that a measurement point was inserted in
each branch, start and end of functions of the code. Source
code for the operating system functions was not available,
so these calls within the application were treated as “black
boxes” to simply measure the execution time of the
operating system functions end to end, without analyzing
them internally.

For stack analysis, inserting a measurement point at the
start and end of each function was sufficient. The
application required approximately 13,000 instrumentation
points for timing analysis and 152 instrumentation points
for stack analysis.

4.1 Testing
The initial intention was to exercise the whole integrated
application on the representative target; however, due to
project decisions, functional verification and structural
coverage analysis of the software was performed only on
parts of the internal component level of the FCS
application. Functional verification of the whole integrated
application was performed at the higher level system
process perspective, without covering all the paths of the
software. Functional test case scenarios for the whole
integrated application were not available in the software
development process, so some input arrays had to be
generated specifically for the timing and stack analysis. 785
test scenarios were created, varying the 500 parameters of
the input array of the application. Since the purpose of this
testing activity was only to exercise the paths through the
application, the outputs were not evaluated and could be
ignored. This method achieved coverage of approximately
77% of the instrumentation points for timing analysis, and
100% of the instrumentation points for stack analysis.

Higher coverage is normally expected for WCET analysis
with RapiTime; otherwise justification is needed that
untested code cannot lie on the worst-case path. However,
devising additional test scenarios would require
considerable effort in order to exercise the remainder of the
code. This is because some specific internal conditions
must be met from an external environment perspective. Out
of the application's 73,000 lines of code, about 3000
instrumentation points were not covered.

Figure 1 shows a very simplified view of the FCS
Application as a block diagram. The blocks described as
"Components tested according to formal process (MC/DC
coverage)" represent the components selected as samples to
fully exercise the formal process aiming to comply with all
DO-178B Level A objectives. For such components, test
drivers were already available and timing and stack

F. Kamei, D. C. Carta, I . Broster, W. Lunniss 291

Ada User Journal Volume 33, Number 4, December 2012

analysis could be performed considering them as
standalone software.

In the initial approach, where the whole application is
considered, components described as "Components not
feasible (deactivated code)", were not analyzed in this task
and their execution time and stack usage contribution were
not evaluated. This can happen, for example, because of
some constant input replicating the output from an external
system still in development or that will not be part of the
final solution. This constant input then drives execution
such that certain components’ functionalities are not used.

Therefore, an alternative approach was taken where the
analysis from the system-level functional tests were
complemented by exercising some of the application’s
internal components as standalone software modules. This
allowed the test cases prepared for formal functional
verification to be reused. This approach exercised internal
components of the FCS application using already available
test drivers, in the same way as used for functional testing.
It was possible to reuse the test cases generated for
functional verification of the application, without any
additional effort.

Figure 1 - Different verification approaches in FCS
Application components

However, following this approach requires a justification
that the timing results from component tests are applicable
to system tests. Reasons that they might not match include:
components were executed in a different context (i.e. each
component executed standalone, rather than as part of the
whole application), configurations might be different for
both approaches (internal components as standalone
software are tested with drivers, which does not happen
with the whole integrated application) and the influence of
cache memory and the execution of hidden operating
system instructions.

To address the applicability of the timing results from these
tests, a small, but important, component of the FCS was
analyzed using both approaches. This component already
had a larger test set of 1200 functional tests which also
provided full MC/DC coverage and, in consequence, full
branch coverage. When this component was analyzed, the
WCET estimate was found to be slightly higher with the

isolated, but larger test set, compared to the other approach
where this same component was part of the whole
application but only partially covered.

4.2 Trace Data Extraction
Finally, an important part in performing RVS tool
integration is the trace data extraction from the target. In
this project, when the application was complete and
integrated on-target, external communication could only be
done through a specific aeronautic bus. This was
successfully used to transfer the data off the target by
writing it through this bus to a PC, using the concept of a
queuing service.

For the analysis of the application’s internal components
using test drivers executed on the target, the trace data
extraction method used was writing to a file stored on the
target environment, and transferring it to the PC using a
normal file transfer protocol.

5 Results

After running and processing data, the WCET value for the
whole integrated application was computed as 2.279 ms
and the worst-case stack usage was 3416 bytes. For the
WCET analysis, 77% coverage was achieved for the
instrumentation points with the set of test scenarios used.
For stack analysis, 100% coverage of the instrumentation
points was achieved.

With the partial timing coverage results, the results
confirmed that the FCS was compliant with the required
limit on the execution time of 5 ms, and that the stack
usage was below the limit of 20,000 bytes. Furthermore,
some optimizations to the FCS application with regard to
the usage of allocated platform resources could be applied.
A 4 ms window was reserved, instead of the previous 5 ms
value, which still allows some room for future expansion,
but is still well above the obtained value of 2.279 ms.

6 Summary and Next Steps

In summary, the viability of this method of measuring
WCET and worst-case stack usage has been successfully
shown.

From the project management point of view, this method
brings the benefit of obtaining a WCET and stack usage
value without the need to generate and demonstrate the test
scenario that provokes the WCET and worst-case stack
value, which for complex application is a high resource
consuming activity. Additionally, once the integration is set
up, the method can be repeated with relative ease.

From a certification perspective, the method may be
acceptable since it is supported by tool qualification
activities and by the same level of rigor as used when
performing tests on target for functional verification.

There are still some particular issues to address in the
future. Firstly, although tracing via the available platform
bus was possible, other more efficient methods to access
data externally while the application is running, like a real-
time debugger, should also be considered earlier in the

292 Tool Support for Ver i f icat ion of Software Timing and Stack Usage

Volume 33, Number 4, December 2012 Ada User Journal

design process and possibly before the selection of the
target platform.

Second, even though it is not necessary to obtain the test
case scenario that exercises exactly the worst-case path, it
is necessary to have a test set that exercises most (if not all)
the code branches or justify by review that the untested
code cannot affect the worst-case execution time.
Considering the whole integrated application, such a test
set is not always available or practical. However, when it is
not available, internal components of the application can be
exercised as standalone applications. In this case, it is
necessary to evaluate how different hardware conditions
affect each approach.

Finally, it is important to note that the usage of black box
instrumentation for operating system functions is
convenient, but instead of a detailed analysis of the
internals of the function, only the highest recorded
execution time for the functions is considered, without
confirming that their worst-case scenario has been
exercised. It would therefore be better to have access to the
source code for these functions, so that they can be
instrumented or reviewed in order to obtain justification
that the OS functions are adequately tested for timing.

Our next steps are to exercise tool qualification of tools
considering this method, to analyze the target influences in

time measurements and, finally, to implement the process
on a software development project in an aircraft program.

Acknowledgments

The research leading to these results has received funding
from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no.
287519, parMERASA.

We acknowledge the support of the EPSRC, via grant
EP/F501374/1, through the Engineering Doctorate Centre
in Large-Scale Complex IT Systems.

References

[1] RTCA (1992), Software Consideration in Airborne
Systems and Equipment Certification, RTCA/DO-
178B.

[2] RTCA (2001), Final report for clarification of DO-
178B: Software Consideration in Airborne Systems
and Equipment Certification, RTCA/DO-248B.

[3] ARINC 653 Standard (2006), Avionics Application
Software Standard Interface.

[4] Rapita Systems Ltd (2010), RapiTime White Paper.
http://www.rapitasystems.com/

293

Including Hardware/Software Co-design in the
ASSERT Model Driven Engineering Process ∗

Francisco Ferrero, Elena Alaña, Ana Isabel Rodríguez
GMV, E-28760 Madrid, Spain; email: {fferrero,ealana}@gmv.com
Juan Zamorano, Juan A. de la Puente
Universidad Politécnica de Madrid (UPM), E-28040 Madrid, Spain; email: {jzamora,jpuente}@dit.upm.es

Abstract

The ASSERT project defined new software engineering
methods and tools for the development of critical em-
bedded real-time systems in the space domain. The
ASSERT model-driven engineering process was one of
the achievements of the project and is based on the con-
cept of property-preserving model transformations. The
key element of this process is that non-functional prop-
erties of the software system must be preserved during
model transformations. Properties preservation is car-
ried out through model transformations compliant with
the Ravenscar Profile and provides a formal basis to the
process. In this way, the so-called Ravenscar Compu-
tational Model is central to the whole ASSERT process.
This paper describes the work done in the HWSWCO
study, whose main objective has been to address the in-
tegration of the Hardware/Software co-design phase in
the ASSERT process. In order to do that, non-functional
properties of the software system must also be preserved
during hardware synthesis.

Keywords: Ada 2005, Ravenscar profile, Hardware/-
Software co-design, real-time systems, high-integrity
systems, ORK.

1 Overview
Embedded systems are commonly built by specifying and
developing independently the hardware and software subsys-
tems from the system specification phase and their integration
is performed lately at the end of the system development.
However, current embedded systems are more complex and
have shorter time-to-market and thus it is needed to adopt new
techniques to reduce time and costs by simplifying the hard-
ware/software integration process. The hardware/software co-
design exploits the trade-offs between hardware and software
in a system by developing concurrently both systems. The
HW/SW co-development approach mainly consists of speci-
fying the system functions (typically in a behavioural form)
in a representation that is independent from the underlying
execution platform, modelling the system platform describing
the hardware architecture of the target platform, partitioning
the system into either hardware or software, implementing the

∗This work has been funded by ESA, contract no. 22810/09/NL/JK
(HWSWCO).

hardware and software systems, and scheduling the execution
of the tasks to meet any timing constraint.

The ASSERT Project1 was aimed at defining new software
engineering methods and tools for the development of critical
embedded real-time systems in the space domain. One of
its main achievements is a new model-driven software pro-
cess, which is based on the concept of property-preserving
model transformations [1]. The key element of the ASSERT
process is that non-functional properties must be preserved
during all phases of model transformations. Therefore, the
different views of models must be consistent and thus a a
common Component Model (CM) was defined to provide
formal basis to the ASSERT process. Moreover, the resulting
software architecture must be amenable for response time
analysis and thus that CM is compatible with the Ada Raven-
scar Profile [2] and is called the Ravenscar Computational
Model (RCM). The required real-time behaviour must be
guaranteed at execution time and thus the ASSERT execution
platform or Virtual Machine (VM) [3] is bound to a GNAT
cross-compilation system that only accepts Ravenscar Profile
compliant code. In order to ensure compatibility with the
Ravenscar Profile, application-level software is built in such
a way that all functional code and data is encapsulated into
VM-Level Containers (VMLC), which are the run-time code
entities that operate on top of the VM. Accordingly, VMLC
are coded in Ada 2005 [4] restricted by the Ravenscar profile.
However, the functional code can be written in Ada, C or
C++.

This paper provides the feedback on the research activities
carried out in the Hardware-Software co-design discipline
and the conclusions extracted from HWSWCO ESA study.
The study has investigated the HW/SW co-design phase to
integrate this engineering task as part of the ASSERT process
and make it compatible with its approach, process and the
existing tool-set called TASTE2.

2 The HW/SW co-development Methodol-
ogy

The HW/SW co-development methodology is commonly di-
vided into four different phases: co-specification, co-design,
co-synthesis and co-validation. The proposed methodology

1Automated proof-based system and software engineering for real-time
systems, see www.assert-project.net.

2The ASSERT Set of Tools for Engineering

Ada User Jour na l Vo lume 33, Number 4, December 2012

294 Inc lud ing Hardware/Sof tware Co-des ign in the ASSERT process

starts from an abstract system description based on system be-
haviour and generates the architecture gradually adding imple-
mentation details to the design. In the context of HWSWCO
study, the first three phases were investigated to ensure consis-
tency between hardware and software design and verification.
Figure 1 shows the proposed methodology that is based on an
iterative process compliant with the ASSERT process.

The implementation of co-specification, co-design and co-
synthesis phases for this study is supported by a set of stan-
dard notations and tools that are included in Figure 1 together
with the output of each phase. The HWSWCO process uses
the model viewpoints from the ASSERT process that describe
the application by means of different model views that sepa-
rates the data modelling, functional and interface definition
in different AADL [5] models that form part of the Platform
Independent Model (PIM), according to the MDA guide [6].
The ASSERT Model Transformation (AMT) tool has been
implemented in order to support the different transformations
to be performed during the co-specification and co-design
phases. In this way, the tool processes those model view-
points, combines them with the description of the platform
in the Platform Description Model (PDM), and generates
the input to the ASSERT toolset (i.e. Data, Interface and
Deployment views).

Co-specification: the system functionality is described inde-
pendently of the system architecture and constitutes a
unified and unbiased representation of the system. The
system model encloses the System Logic View and Sys-
tem Platform View following the same model-driven
approach proposed in ASSERT.

Co-design: the system components are mapped to process-
ing resources and the feasibility of the partition is then
evaluated (which system functions are mapped either
to software or hardware). The feasibility analysis is
accomplished by performing high-level estimation anal-
ysis which provides figures about the use of the platform
resources. Those figures will drive the partitioning pro-
cess although it is necessary calculating the Worst Case
Execution Time of the sequential code of system com-
ponents of the software system and then a schedulability
analysis in order to assess partition scheme.

Co-synthesis: the HW and SW systems are synthesized and
integrated. In order to do this integration, communica-
tion interfaces between the HW and SW systems have to
be generated. The usage of a common data representa-
tion and a unified system model makes it easier and faster
enabling the automatic synthesis of the communication
interfaces for communicating both systems.

3 ASSERT Model Transformation

GMV’s ASSERT Model Transformation (AMT) tool is cen-
tral to the HWSWCO approach as it supports different Model-
to-Model transformations to be performed during the co-
design phase. Figure 2 shows the four basic operations that
the tool performs:

1. Imports the ASSERT Data, Functional and Interface
views. This function imports them to the AADL project
and creates an internal representation of the PIM.

2. Automatically generates the System Partitioned View
from the System Model (Logic and Platform views).

3. Transforms the AADL system model into models com-
patible with the ASSERT model views, i.e., ASSERT
Data, Functional, Interface and Deployment Views.

4. Finally, it generates the whole system and loads the
ASSERT Concurrency View required by AADS-T to
execute the performance analysis on the SW system.

The performance analysis performed during the co-design
phase is supported by AADS-T and SCoPE tools, developed
by the University of Cantabria. These tools provide the fol-
lowing features:

• Implementing the generation of RCM-compliant Sys-
temC in SCoPE.

• Implementing the estimation of the bus load in SCoPE.

• Modelling the LEON2 processor for SCoPE.

• Generating a SystemC executable model that includes
system description.

AADS-T enables the modeling of a subset of AADL including
the Behavioral Annex for purposes of implementation and
simulation. The starting point of the simulator is a functional
AADL specification that is parsed and a model suitable for
simulation with SCoPE is produced. SCoPE simulates the
SystemC code generated by AADS-T by using a POSIX
interface. AADS-T tool was improved in such a way that the
generated code is RCM-compliant.

The AMT and AADS-T tools are developed as Eclipse plug-
ins integrated with the OSATE AADL editor.

4 Case study
With the goal to exercise the HW/SW co-design methodology,
a case study was developed based on a simplified space appli-
cation for digital image processing. The figure 3 shows the
platform used in the HWSWCO case study that is composed
of two different processing boards:

FPGA design board: it hosts the HW system that consists
of the Image Processing System, formed by the Image
Processing Module, Science Data Reporting Module and
Control Module.

LEON2 design board: it hosts the SW system that consists
of the OBSW. The OBSW receives the start-up command
through a serial line and sends commands to control the
image processing functions of the HW system.

Moreover, the camera is replaced by a PC that communicates
to the FPGA through a serial bus.

Figure 4 shows the main functional blocks of the OBSW and
their interaction with the hardware components deployed in
the FPGA.

The image processing application performs the following
functions:

Volume 33, Number 4, December 2012 Ada User Jour na l

F. Ferrero, E. A laña, A. I . Rodr íguez, J. Zamorano, J. A. de la Puente 295

Figure 1: HWSWCO methodology, notations and tools.

Figure 2: ASSERT model transformation tool operation.

Ada User Jour na l Vo lume 33, Number 4, December 2012

296 Inc lud ing Hardware/Sof tware Co-des ign in the ASSERT process

Figure 3: HWSWCO demonstrator: FPGA Virtex 5, Leon2 development board and PC acting as camera instrument.

Figure 4: Image processing case-study.

Volume 33, Number 4, December 2012 Ada User Jour na l

F. Ferrero, E. A laña, A. I . Rodr íguez, J. Zamorano, J. A. de la Puente 297

• Image processing including image filtering.

• Interfacing with the On-Board SW (OBSW) for com-
mand and configuring messages.

• Interfacing with the OBSW for health status reporting.

• Configuring the image processing functions.

• Configuring the science packet reporting.

The system functions that are costly in terms of computation
requirements are executed on an FGPA, while the OBSW is
executed in a LEON2 processor. The OBSW will be respon-
sible for the housekeeping, and the control and monitoring of
the hardware system. The OBSW consists in two subcompo-
nents (see figure 4):

Start-up. It is responsible for the start-up routine: simu-
lates the initialization routine. It has only a subprogram
called startexecution that is in charge of initializing the
OBSW.

Image Processing Management. It commands the HW sys-
tem to cyclically start/stop the image filtering functions
and change the parameters of the filter. This is performed
by sending the corresponding data packets to the HW
system.

Moreover, the TASTE tool-chain generated the following set
of files in order to define common types and parameters for
the HW and SW systems:

asn1_types.ads It contains definition of common data
types.

polyorb_hi_generated.ads Pure root of the generated
PolyORB HI middleware hierarchy.

polyorb_hi_generated-deployment.ads It contains
identifiers of the components and their interfaces
deployed in the system. This information is used by the
broker to communicate components and therefore, it is
necessary to be known in the HW system.

PolyORB HI is a high integrity version of the PolyORB mid-
dleware [7] that is the part of the ASSERT Virtual Machine
in charge of dealing with distribution. However, the current
version of TASTE does not support communication through
serial lines for embedded targets. The workaround was to
develop the code semi-manually by using the definitions gen-
erated by TASTE and coding the activities following the
Ravenscar computational model.

The component Image Processing Management was coded
by following the archetype of figure 5. In order to provide
communication by serial lines, an UART device driver [8]
formerly developed for other LEON2 computer was adapted
to the HWSWCO LEON2 board. Listing 1 shows the used
archetype for the cyclic task that implements the Image Pro-
cessing Management functionality.

The code of the Image Processing Management component is
shown in listing 2. It must be noticed that a private child pack-
age called image_processing_management-packets.ads
contains the definitions of the packets to be send to the HW
system.

Figure 5: Image Processing Management component.

Listing 1: Component template for cyclic tasks

with System;
with Ada.Real_Time;

package Cyclic_Tasks is
protected type Cyclic_OBCS

(Ceiling_Priority : System.Priority)
is

pragma Priority(Ceiling_Priority);
procedure Signal;
entry Wait;

private
Occurred : Boolean := False;

end Cyclic_OBCS;

task type Cyclic_Thread
(Thread_Priority : System.Priority;
Period : Positive ;

−− milliseconds
OBCS : access Cyclic_OBCS;
Operation : access procedure)

is
pragma Priority(Thread_Priority);

end Cyclic_Thread;

end Cyclic_Tasks;

package body Cyclic_Tasks is

use Ada.Real_Time;
Next_Time : Time;

protected body Cyclic_OBCS is

procedure Signal is
begin

Occurred := True;
Next_Time := Ada.Real_Time.Clock;

end Signal;

entry Wait when Occurred is
begin

Occurred := False;
end Wait;

end Cyclic_OBCS;

task body Cyclic_Thread is
begin

OBCS.Wait;
loop

delay until Next_Time;
Operation.all ;
Next_Time := Next_Time +

Milliseconds(Period);
end loop;

end Cyclic_Thread;

end Cyclic_Tasks;

Ada User Jour na l Vo lume 33, Number 4, December 2012

298 Inc lud ing Hardware/Sof tware Co-des ign in the ASSERT process

Listing 2: Image Processing Management component

with Cyclic_Tasks; use Cyclic_Tasks;
package image_processing_management is

OBCS : aliased Cyclic_OBCS
(Ceiling_Priority => 2);

procedure initimageprocessingi
renames OBCS.Signal;

private

procedure Periodic_Activity;

Thread : Cyclic_Thread
(Thread_Priority => 1,
Period => 40_000, −− ms
OBCS => OBCS’Access,
Operation => Periodic_Activity ’Access);

end image_processing_management;

with GlUart.HLInterface;
with image_processing_management.packets;
with System;

package body image_processing_management is

package UHL renames GlUart.HLInterface;
package PKG renames

image_processing_management.packets;

Uart_2 : UHL.Serial_Port;
type Cycle_Type is mod 6;
Current_Cycle : Cycle_Type := 0;

procedure Periodic_Activity is
begin

case Current_Cycle is
when 0 => UHL.Write (Uart_2,

PKG.Start_Packet);
UHL.Write (Uart_2,
PKG.Filter_0_Packet);

when 1|4 => UHL.Write (Uart_2,
PKG.Filter_1_Packet);

when 2 => UHL.Write (Uart_2,
PKG.Filter_2_Packet);

when 3 => UHL.Write (Uart_2,
PKG.Filter_0_Packet);

when 5 => UHL.Write (Uart_2,
PKG.Stop_Packet);

end case;
Current_Cycle := Current_Cycle + 1;

end Periodic_Activity ;

begin

UHL.Open (Uart_2, UHL.UART_1);
UHL.Set (Port => Uart_2,

Rate => UHL.B115200);

end image_processing_management;

This case study exercises the whole methodology and rose
important conclusions with regard to the interaction between
the HW and SW synthesis phases.

5 Conclusions and future work
Four key points were identified in the development of a dis-
tributed HW/SW system compliant with the ASSERT pro-
cess:

• The modeling environment should be able to generate
HW data model compatible with ASSERT, especially in
terms of data size and bit ordering.

• The HW system must be compliant with the ASSERT
component model and have a similar programming
model.

• The HW system must have a common representation
of the system components so that the ASSERT HW
broker is able to dispatch the services mapped to HW,
and communicate with the SW system using the same
communication protocol.

• Finally, it should use a similar programming language
so that the effort of migrating system functions from SW
to HW is minimized to the maximum extent.

However this study did not cover all aspects of the HW/SW
co-development, and there are some missing issues to be
covered in future lines of work. One of the most interested is
the analysis and definition of a computational model for the
hardware systems that were analyzable and compatible with
the Ravenscar Computational Model of the SW system.

Acknowledgments
This work was supported by the HWSWCO project (“Hard-
ware/Software Co-design”), ESA Technological Research
Program (TRP) study, contract ESTEC 22810/09/JK, directed
by Dc. Eric Conquet. The partners involved in this study were
GMV as prime contractor, GMV Systems, the Universidad of
Cantabria and the Universidad Politécnica of Madrid.

References
[1] M. Bordin and T. Vardanega (2007), Correctness by

construction for high-integrity real-time systems: A
metamodel-driven approach, in 12th International Con-
ference on Reliable Software Technologies — Ada-Europe
2007 (N. Abdennadher and F. Kordon, eds.), no. 4498 in
LNCS, pp. 114–127, Springer-Verlag, 2007.

[2] ISO, ISO/IEC TR 24718:2005 (2005) — Guide for the
use of the Ada Ravenscar Profile in high integrity systems.
Based on the University of York Technical Report YCS-
2003-348 (2003).

[3] J. Zamorano, J. A. de la Puente, J. A. Pulido, and
S. Urueña (2008), The ASSERT virtual machine kernel:
Support for preservation of temporal properties’ in Data
Systems in Aerospace — DASIA 2008.

Volume 33, Number 4, December 2012 Ada User Jour na l

F. Ferrero, E. A laña, A. I . Rodr íguez, J. Zamorano, J. A. de la Puente 299

[4] ISO, ISO/IEC 8652:1995(E)/TC1(2000)/AMD1(2007):
Information Technology — Programming Languages —
Ada.

[5] SAE (2009), SAE AS5506A Architecture Analysis and
Design Language (AADL), January 2009. Available at
www.sae.org.

[6] OMG (2003), MDA Guide Version 1.0.1. Available at
http://www.omg.org/mda/.

[7] T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon (2004),
PolyORB: a schizophrenic middleware to build versatile
reliable distributed applications, in Proc. of the 9th In-
ternational Conference on Reliable Software Techologies
Ada-Europe 2004 (RST’04), vol. LNCS 3063, pp. 106–
119, Springer Verlag.

[8] J. López, Á. Esquinas, J. Zamorano, and J. A. de la Puente
(2010), Experience in programming device drivers with
the Ravenscar profile, Ada User Journal, vol. 31.

Ada User Jour na l Vo lume 33, Number 4, December 2012

301

Integrating 8-bit AVR Micro-Controllers in Ada

Pablo Vieira Rego
Embraer, S.A., Av. Brigadeiro Faria Lima 2170, Putim, São José dos Campos, SP, Brazil; email: pvrego@gmail.com

Abstract

The increasing popularity of 8-bit AVR micro-controllers
for using with robotics and low-complexity embedded
applications has called the attention of much of the
software community. The purpose of this paper is to
present an approach for developing embedded applica-
tions for these micro-controllers in Ada, using GNAT
AVR as Microsoft Windows cross-compiler and GNAT
Programming Studio as IDE.

Keywords: 8-bit AVR micro-controller, GNAT AVR, Ada,
ZFP.

1 Introduction
The Atmel AVRs1 are presented as a family of 8- and 32-
bit micro-controllers designed to provide flexibility, based a
priori in C and assembly programming. More specifically,
Arduino is a family of boards with a central 8-bit AVR micro-
controller and peripheral I/Os which implement a bunch of
low-level hardware support such as analog and digital data
write, read and storage, USART protocols, Ethernet, wifi
modules and others, for a reasonable low cost. They became
very popular in the development of memory mapped robotics
with open-source hardware for hobbyists and low-to-medium
complexity embedded products and introductory robotics pro-
gramming courses [1, 2, 3, 4, 5].

For open-source development in C/C++, there are four main
branches: Atmel Studio, WinAVR, Arduino IDE and Eclipse.
Atmel Studio2 provides the IDE with C and assembly com-
piler and debugger and several in-built libraries with pre-
implemented features and specific configurations for the
whole 8- and 32-bit families. WinAVR3 is a suite of ex-
ecutable, open source software development tools for the
Atmel AVR series of RISC microprocessors hosted on the
Windows platform, which includes the GNU GCC compiler
for C and C++. Arduino IDE4 is a platform written in Java
and based on Processing and avr-gcc and provides C++ devel-
opment based on application examples. On Eclipse, the AVR
Eclipse Plugin5 provides tools for developing C applications
on AVR micro-controllers. In all cases, Atmel’s Application
Notes serve as development guidelines, as well as the micro-
controllers datasheets, which contain the complete hardware

1http://www.atmel.com/products/microcontrollers/
avr/default.aspx

2http://www.atmel.com/microsite/atmel_studio6/
3http://winavr.sourceforge.net/index.html
4http://arduino.cc/en/Main/Software
5http://avr-eclipse.sourceforge.net/wiki/index.

php/The_AVR_Eclipse_Plugin

description and some code examples6. For RTOS’es support,
there are plenty of choices for AVR development, we could
cite AvrX7, FreeRTOS8 and RTEMS9, most of them written
in C/C++.

For the development in Ada, there are some academic refer-
ences for development on AVRs, most focused on the 32-bit
micro-controllers. Gregertsen and Skavhaug [6] describe a
deterministic multitasking run-time environment supporting
the Ravenscar tasking model of Ada 2005 implemented on
the Atmel AVR32 UC3A micro-controller. In [7], they de-
scribe an object-oriented real-time framework for Ada 2005
and Ravenscar profile implemented on AVR32 UC3 micro-
controller; in [8], they propose the addition of execution-time
control features for interrupt handling as an addition to the
Ada standard library and describes it using an implementation
of GNAT bare-board Ravenscar run-time environment on the
Atmel AVR32 architecture; and finally in [9, 10], Gregertsen
and Skavgaug describe an implementation of timing event and
execution time control features with support for interruption
on the same architecture.

For the 8-bit micro-controllers, however, there are fewer
academic references for the development in Ada. Ras and
Cheng [11] describe a deterministic run-time environment for
Ada-05 on the 8-bit ATmega16 micro-controller; and Ander-
sen [12] presented an approach for developing Arduinos with
the AVR-Ada cross-compiler.

There are some open-source cross-compiler options for pro-
gramming AVR micro-controllers in Ada, we can cite AVR-
Ada10 and GNAT AVR GPL [13]. In this paper we will show
an approach to generate a .hex target burning file for the
micro-controller using the open-source GNAT AVR cross
compiler and the GPS IDE. The GNAT AVR provides a Mi-
crosoft Windows cross-compiler and builder for AVR 8-bit
micro-controllers [14] and implements Zero Footprint Profile
(ZFP), which does not require any run-time routines, and is
intended for high-critically applications related to DEF Stan
00-55 certification [15]. Thus it does not have support for
tasking or exception propagation. So, the purpose of this pa-
per is to serve as an user guide for development of monotask
applications in 8-bit AVR micro-controllers in Ada, following
the ZFP.

6http://www.atmel.com/products/microcontrollers/
avr/default.aspx

7http://www.barello.net/avrx/index.htm
8http://www.freertos.org/
9http://www.rtems.com/

10http://sourceforge.net/apps/mediawiki/avr-ada/
index.php?title=Main_Page

Ada User Jour na l Vo lume 33, Number 4, December 2012

302 In tegra t ing 8-b i t AVR Micro-Cont ro l le rs in Ada

2 Materials and Methods

2.1 Arduino Duemilanove (ATmega328P)

The Arduino Duemilanove is a development board based
on Atmel ATmega328P/ATmega168 8-bit micro-controllers.
This paper concerns to ATmega328P, but can be extended
to other AVR 8-bit chips with minor changes. Duemilanove
provides 14 digital I/O pins, 6 analog inputs, a 16 MHz crystal
oscillator, a USB connection, a power jack, an ICSP header
and a reset button11. Table 1 resumes some characteristics of
this board.

Table 1: Characteristics of Arduino Duemilanove with AT-
mega328p

micro-controller ATmega328P

Operating Voltage 5 V

Input Voltage (recommended) 7-12 V

Input Voltage (limits) 6-20 V

Digital I/O Pins 14

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB12

SRAM 2 KB

EEPROM 1 KB

Clock Speed 16 MHz

2.2 Development Environment and Target Gener-
ation

The required applications are the GNAT AVR GPL edition13,
which comes with the IDE and the Windows cross-compiler;
and WinAVR, which provides CRT libraries for the micro-
controllers.

For generating the output .hex file on Windows, the simple
project consists of the following elements:

• Specification package which will map the AVR registers;

• Main file which will include the chip specification pack-
age;

• GPS .gpr configuration file;

• An object library provided by WinAVR;

• A batch script which will provide .elf/.hex conversion
and a pre-configured burning tool.

11General description of Arduino Duemilanove can be found at http:
//arduino.cc/en/Main/arduinoBoardDuemilanove

12In which 2 KB is used by bootloader.
13http://libre.adacore.com

2.2.1 The Specification Package

Each AVR device has a number of I/Os associated with its
internal registers. These descriptions are present in micro-
controller datasheet and the specification package shall map
the memory address entries defined in the datasheet.

For the ATmega328P micro-controller, datasheet [16] section
Register Summary on page 423 describes all the memory
addresses available to develop the applications. Using the
Memory Mapped I/O approach as described by McCormick
et al. [17], each word shall be mapped, and sometimes it is
usefull to map also the meaning of each one of the bits. The
words so should be pointed exactly to the memory address it
describes.

For example, the registers Port B Data Register (PortB), Port
B Data Direction Register (DDRB) and Port B Input Pins
Address (PINB) could be mapped in a specification package
as

Listing 1: Simplified Specification Package for ATmega328P

−− atmega328p.ads
with Interfaces ; use Interfaces;
with System;

package ATmega328P is

−− PORTB: Port B Data Register
PORTB : Unsigned_8;
for PORTB’Address use System’To_Address (16#25#);

−− DDRB: Port B Data Direction Register
DDRB : Unsigned_8;
for DDRB’Address use System’To_Address (16#24#);

−− PINB: Port B Input Pins
PINB : Unsigned_8;
for PINB’Address use System’To_Address (16#23#);

end ATmega328P;

2.2.2 GPS Project File

The GPS project file has to include the AVR configurations
for the packages Ide, Compiler, Builder and Linker. Below
are presented some suggestions on how to configure these
project file packages in order to build the .elf output which
will be used to generate the .hex output.

Listing 2: GPS Project File for ATmega328P

−− arduino.gpr
project Arduino is

for Source_Dirs use (".", "src") ;
for Object_Dir use "obj";
for Exec_Dir use "bin";
for Main use ("main.adb");

package Ide is
for Gnat use "avr−gnat";
for Gnatlist use "avr−gnatls";
for Debugger_Command use "avr−gdb";

end Ide;

package Compiler is

Volume 33, Number 4, December 2012 Ada User Jour na l

P. V. Rego 303

for Default_Switches ("ada") use ("−mmcu=avr5");
end Compiler;

package Builder is
for Executable_Suffix use ".elf " ;
for Default_Switches ("ada") use ("−−RTS=rts−zfp");

end Builder;

package Linker is
for Default_Switches ("ada") use ("obj\crtm328p._o", "

−nostdlib", "−lgcc", "−mavr5", "−Tdata=0
x00800200", "−−mmcu=avr5");

end Linker;

end Arduino;

The Ide package configures the tools related to the AVR-
GNAT installation. The Builder package sets the suffix for
the builder output file and specifies the Zero Footprint Profile
as the Real-Time System.

In the Compiler package, the option -mmcu=avr5 enables
compilation using AVR5 architecture, which is the case of the
ATmega328P.

In the Linker package, the crtm328p._o is the CRT14 got from
WinAVR installation15, since GNAT AVR GPL only provides
CRT for ATmega2560. The option -nostdlib avoids linking
with standard libraries, not provided by GNAT AVR GPL, and
the option -lgcc tells the linker to use the compiler support
library. The options -mavr5 and -mmcu=avr5 set the device
architecture for AVR5. And the option -Tdata sets the start
address of the data section [18].

For the ATmega2560 micro-controller, we should exchange
from AVR5 to AVR6 architecture and the CRT. GNAT pro-
vides this CRT in a form of crt1-atmega2560.S file16, which
shall be compiled in order of obtaining the crt2560._o. One
can compile it using

avr−gcc −c −mmcu=avr6 −o crt2560._o crtl−atmega2560.S

2.2.3 The Main File

The Main file contains the main task available by ZFP and
the libraries related to the code. The following dummy code
should be modified in order to code the micro-controller.

Listing 3: Dummy main file

with ATmega328P; use ATmega328P;

procedure Main is
begin

null ;
end Main;

14C Run-Time Library.
15In this case, the crtm328p.o has its extension renamed to _o to avoid

been deleted when the user makes a project clean.
16The file crt1-atmega2560.S can be found on GNAT AVR GPL

2012 installation in the folder C:\GNAT\2012\share\examples\gnat-
cross\avr\atmega2560.

2.2.4 The Hex & Burn Batch Script

An option for a batch script to generate the .hex and burn it
on a micro-controller in COM7 follows.

Listing 4: Batch script for converting the .elf and burn the re-
sulting .hex

@rem hexitandburn_duemilanove.bat

@echo Converts .elf to .hex
avr−objcopy −O ihex main.elf main.hex

@echo Burn the chip
c :\ WinAVR\bin\avrdude.exe −p m328p −c avrisp −P com7

−b 57600 −e −U flash:w:main.hex

In the case of using the ATmega2560 micro-controller, the
avrdude line would change to

c :\ WinAVR\bin\avrdude.exe −p m2560 −c stk500v2 −P
com7 −b 115200 −e −U flash:w:bin\main.hex

And it is suggested to create a .xml file in Windows user pro-
file folder (eg. c:\Documents and Settings\user\.gps\plug-
ins) to enable a menu to execute the actions of convert and
burn the .hex in the micro-controller.

Listing 5: Script embedded.xml to enable a menu in GPS to
convert and burn Arduino Duemilanove

<?xml version="1.0" ?>
<embedded>

<action name="Hexit and Burn Duemilanove">
<external>cmd /c

hexitandburn_duemilanove.bat</
external>

</action>

<submenu after="Build">
< title >Embedded</title>
<menu action="Hexit and Burn

Duemilanove">
< title >[Hexit and Burn]

Duemilanove</title>
</menu>

</submenu>
</embedded>

3 Limitations of the Zero Footprint Profile
The Zero Footprint Profile defines an Ada run-time certifiable
run-time with a memory footprint reduced to null. It excludes
in particular the use of dynamic Ada semantic. The ZFP still
allows the use of the major Ada features such as generics,
child units, library-level tagged types, interfaces and local
exception handling [19]. The ZFP is suitable for software
certification using DEF Stan 00-55 standard [15].

The ZFP limitations are [20]:

• Constructs defined in the ARM Section 9 (Tasking and
Synchronization)

• Exception propagation

• Packed arrays with component size other than 1, 2, 4, 8
or 16 bits

Ada User Jour na l Vo lume 33, Number 4, December 2012

304 In tegra t ing 8-b i t AVR Micro-Cont ro l le rs in Ada

• Some exponentiation operation

• 64-bit integer and fixed-point types

• Boolean operation on packed arrays

• Some comparison operations on arrays of discrete com-
ponents

• The attributes Image, Value, Body_Version, Version,
Width, and Mantissa

• Controlled types

• Some applications of the attributes Address, Access,
Unchecked_Access, Unrestricted_Access

• Non library-level tagged types

• Annex E (Distributed Systems)

4 An Example Implementation
In this section we will show a very simple example appli-
cation. For this implementation, it is enough to use the
arduino.gpr project file described in section 2.2.2 and the
atmega328p.ads described in section 2.2.1 as specification
package and a main file. So, suppose we desire to move a
5-wires Stepper Motor some steps forward, blink a led once,
move the Stepper Motor some steps backward and blink the
same led twice. The Stepper Motor used is a Mototech S35S5
extracted from an old optical scanner.

Figure 1 shows the connections among the components. The
Arduino Duemilanove is connected to the Stepper Motor
through the current driver ULN2803AP using pins B0, B1,
B2 and B3, and the led is connected using pin B5.

A
T

m
eg

a3
28

P B0
B1
B2
B3

GND
B5

GND

LED 1k

U
L

N
28

03
A

P 10
11
12
13
14

5
6
7
8
9

M
ot

ot
ec

h0
1
2
3
4

S3
5S

5

Vcc 12V

Figure 1: Connections between Arduino Duemilanove, Led,
ULN2803AP and Stepper Motor.

−− main.adb
with ATmega328P; use ATmega328P;

procedure Main is

−− Stepper Motor coils definitions
COIL0 : constant := 2 ∗∗ 0;
COIL1 : constant := 2 ∗∗ 2;

COIL2 : constant := 2 ∗∗ 1;
COIL3 : constant := 2 ∗∗ 3;

−− Default delay and number of cycles
DEFAULT_DELAY : constant := 100;
DEFAULT_CYCLES : constant := 50;

−− Null instruction delay
procedure Custom_Delay (Wait_Cycle : Integer) is
begin

for i in 1 .. Wait_Cycle loop
for j in 1 .. Wait_Cycle loop

null ;
end loop;

end loop;
end Custom_Delay;

procedure Blink_Times (Times : Integer) is
begin

for Counter in 1 .. Times loop
PortB := 2#00100000#; Custom_Delay (5 ∗

DEFAULT_DELAY);
PortB := 2#00000000#; Custom_Delay (5 ∗

DEFAULT_DELAY);
end loop;

end Blink_Times;

begin

−− Initialize all PortB pins as outputs
DDRB := 2#11111111#;

−− Forward over the coils
for Counter in 1 .. DEFAULT_CYCLES loop

PortB := COIL0; Custom_Delay (DEFAULT_DELAY);
PortB := COIL1; Custom_Delay (DEFAULT_DELAY);
PortB := COIL2; Custom_Delay (DEFAULT_DELAY);
PortB := COIL3; Custom_Delay (DEFAULT_DELAY);

end loop;

−− Blink led once
Blink_Times (1);

−− Backward over the coils
for Counter in 1 .. DEFAULT_CYCLES loop

PortB := COIL3; Custom_Delay (DEFAULT_DELAY);
PortB := COIL2; Custom_Delay (DEFAULT_DELAY);
PortB := COIL1; Custom_Delay (DEFAULT_DELAY);
PortB := COIL0; Custom_Delay (DEFAULT_DELAY);

end loop;

−− Blink led twice
Blink_Times (2);

−− Disable all output pins
PortB := 0;

end Main;

5 Conclusion
This paper shows an approach for developing Ada applica-
tions for 8-bit AVR micro-controllers, using GNAT AVR as
the Microsoft Windows cross-compiler, and GNAT Program-
ming Studio as IDE. GNAT AVR follows the Zero Footprint
Profile for Real-Time Library, thus not all Ada Real-Time
features are present in this development such as multi-tasks.

We believe that Ada can improve the quality of the applica-
tions for AVRs. The AVR community is invited to try this
approach. Also the Ada community is encouraged to propa-
gate its knowledge about real-time applications to the AVRs

Volume 33, Number 4, December 2012 Ada User Jour na l

P. V. Rego 305

field in a mean that it certainly will gain more popularity over
more one embedded software branch.

References
[1] J. D. Brock, R. F. Bruce, and S. L. Reiser (2009), Us-

ing Arduino for introductory programming courses, J.
Comput. Sci. Coll., vol. 25, pp. 129–130.

[2] P. Jamieson, Arduino for Teaching Embedded Systems.
Are Computer Scientists and Engineering Educators
Missing the Boat?. http://www.users.muohio.
edu/jamiespa/html_papers/fecs_11.pdf.
Accessed: 23/06/2012.

[3] R. Balogh, Robotics course with the Acrob robot.
http://www.innoc.at/fileadmin/user_
upload/_temp_/RiE/Proceedings/15.pdf.
Accessed: 23/06/2012.

[4] R. Balogh (2010), Acrob - an Educational Robotic Plat-
form, AT&P Journal Plus, vol. 10, no. 2, pp. 6–9. ISSN
1336-5010.

[5] I. B. Gartseev, L.F. Lee, and V. N. Krovi (2011), A Low-
Cost Real-Time Mobile Robot Platform (ArEduBot) to
support Project-Based Learning in Robotics & Mecha-
tronics, pp. 117–124, INNOC - Austrian Society for
Innovative Computer Sciences. Accessed: 23/06/2012.

[6] K. N. Gregertsen and A. Skavhaug (2009), An efficient
and deterministic multi-tasking run-time environment
for Ada and the Ravenscar profile on the Atmel AVR32
UC3 microcontroller, in Proc. of Design, Automation
Test in Europe Conference Exhibition, pp. 1572 –1575.

[7] K. N. Gregertsen and A. Skavhaug (2009), A Real-Time
Framework for Ada 2005 and the Ravenscar Profile, in
Proc. Software Engineering and Advanced Applications,
35th Euromicro Conference on, pp. 515 –522.

[8] K. N. Gregertsen and A. Skavhaug (2010), Execution-
time control for interrupt handling, Ada Lett., vol. 30,
pp. 33–44.

[9] K. N. Gregertsen and A. Skavhaug (2010), Implement-
ing the new Ada 2005 timing event and execution time
control features on the AVR32 architecture, Journal of
Systems Architecture, vol. 56, no. 10, pp. 509 – 522.

[10] K. N. Gregertsen (2012), Execution Time Control : A
hardware accelerated Ada implementation with novel
support for interrupt handling. PhD thesis, Norwegian
University of Science and Technology, Department of
Engineering Cybernetics.

[11] J. Ras and A. M. Cheng (2010), A deterministic run-
time environment for Ada-05 on the ATmega16 micro-
controller, Ada Lett., vol. 30, pp. 13–22.

[12] J. S. Andersen (2012), Programming Arduinos in Ada,
Free and Open Source Software Developers’ European
Meeting (FOSDEM’12).

[13] AdaCore (2009), GNATPro available for 8-bit AVR Mi-
crocontroller. Accessed: 23/06/2012.

[14] AdaCore, Ada Development Environment for the Atmel
AVR 8-bit microcontroller.

[15] Ministry of Defence (1991), Requirements for Safety
Related Software in Defense Equipment.

[16] Atmel Corporation, 8-bit AVR Microcontroller with
4/8/16/32K Bytes In-System Programmable Flash: AT-
mega48PA/ ATmega88PA/ ATmega168PA/ ATmega328P.
Accessed: 21/06/2012.

[17] J. W. McCormick, F. Singhoff, and J. Hugues (2011),
Building Parallel, Embedded, and Real-Time Applica-
tions with Ada. New York, USA: Cambridge University
Press, first" ed..

[18] AdaCore, AVR Topics: J.2 Compiler and Linker
Flags for AVR. http://docs.adacore.com/
gnat-cross-docs/html/gnat_ugx_12.
html. Accessed: 24/06/2012.

[19] AdaCore, Runtime Profiles. http://www.adacore.
com/gnatpro/toolsuite/runtimes/. Ac-
cessed: 05/07/2012.

[20] AdaCore, Ada Restrictions in the Zero Foot-
print Profile. http://docs.adacore.com/
gnat-hie-docs/html/gnathie_ug_4.
html#SEC27. Accessed: 05/07/2012.

Ada User Jour na l Vo lume 33, Number 4, December 2012

306

Volume 33, Number 4, December 2012 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Ada Way
	Rationale for Ada 2012: 5 Iterators, Pools, etc.
	Tool Support for Verification of Software Timing and Stack Usage for a DO-178B Level A System
	Including Hardware/Software Co-design in the ASSERT Model Driven Engineering Process
	Integrating 8-bit AVR Micro-Controllers in Ada
	National Ada Organizations

