

Ada User Journal Volume 34, Number 1, March 2013

ADA
USER
JOURNAL

Volume 34

Number 1

March 2013

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 5

Conference Calendar 22

Forthcoming Events 29

Press Release

 "Ada 2012 Language Standard Approved by ISO" 35

Special Contribution

 J. G. P. Barnes
“Rationale for Ada 2012: 6 Predefined Library” 38

Ada-Europe 2012 Tutorials

 J.-P. Rosen
“Designing and Checking Coding Standards for Ada” 45

 M. Aldea Rivas
“Advanced Ada Support for Real-Time Programming” 49

Ada Gems 57

Ada-Europe Associate Members (National Ada Organizations) 60

Ada-Europe 2012 Sponsors Inside Back Cover

2

Volume 34, Number 1, March 2013 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 3

Ada User Journal Volume 34, Number 1, March 2013

Editorial

In this first Editorial of 2013, I would like to start by drawing your attention to the preliminary program of the Ada-Europe
conference, which will take place June 10-14, in Berlin, Germany. You can find this preliminary program in the forthcoming
events section of this issue; details will be increasingly available in the conference website.

The conference program includes three very valuable keynotes (on Tuesday, Bruce Douglass, Chief Evangelist of IBM
Rational with a keynote about “Model-based Ada Development for DO-178B/C and the Application of Agile Methods”; on
Wednesday, Jack Ganssle, of The Ganssle Group, on “The Way Ahead in Software Engineering: Replacing Artists With
Disciplined Grownups”; and Thursday, Giorgio Buttazzo, from the Scuola Superiore Sant'Anna of Pisa, Italy, on “Research
Challenges in Exploiting Multi-Core Platforms for Real-Time Applications”), a panel concerning the use of Heap in Real-
Time Systems, six sessions of technical papers and industrial presentations, a session presenting the main changes and
improvements with Ada 2012, and an extensive group of tutorials on Monday and Friday. The week will also have an
interesting social program, in particular the Wednesday dinner at the Botanical Garden. I am looking forward to meet you all
in Berlin!

And this year is full of Ada-focused events. After the Ada Developer Room at FOSDEM, last February, and that we
mentioned in the last issue, we will have a new edition of the International Real-Time Workshop, which will take place in the
wonderful York, UK, April 17-19. One week after, in April 25th, the Ada Conference UK 2013 takes place in Birmingham,
UK, and finally the ACM SIGAda High Integrity Language Technology conference, taking place fall 2013, in Pittsburgh,
USA. Information in the latter two can also be found in the forthcoming events section.

As for the technical content of this issue, we continue the publication of the Ada 2012 Rationale, a very valuable contribution
to the Ada community by John Barnes. Chapter 6 describes some improvements done to the predefined library, except for
containers; changes there will be presented in the next issue.

The issue continues with contributions derived from the Ada-Europe 2012 conference: two articles presenting summaries
from tutorials. In the first, Jean-Pierre Rosen, from Adalog, France, presents an overview of the problems encountered with
coding standards, and gives some experience hints on how to have rules that are understood, and also accepted and used. In
the second article, Mario Aldea Rivas, from Universidad de Cantabria, Spain, presents an overview of the mechanisms for
real-time programming in Ada, focusing on the new approaches provided by Ada 2005 and Ada 2012.

We continue with contributions from the Gem of the Week; in this issue the series of gems from Bob Duff, of AdaCore,
which clarify what is the notion of “erroneous” in Ada. And, as usual, the reader will also encounter the information provided
in the News Digest and Calendar sections.

 Luís Miguel Pinho
Porto

March 2013
 Email: AUJ_Editor@Ada-Europe.org

 5

Ada User Journal Volume 34, Number 1, March 2013

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada- related Organizations 5
Ada-related Events 5
Ada Semantic Interface

Specification 5
Ada-related Resources 6
Ada-related Tools 6
Ada-related Products 12
Ada and GNU/Linux 13
Ada and Microsoft 13
References to Publications 14
Ada Inside 16
Ada in Context 17

Ada-related
Organizations

Ada 2012 Standard
approved by ISO

From: Dirk Craeynest
<dirk@vana.cs.kuleuven.be>

Date: Tue, 18 Dec 2012 07:45:44
Subject: Press Release - Ada 2012

Language Standard Approved by ISO
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

FOR IMMEDIATE RELEASE

Ada 2012 Language Standard Approved
by ISO

Language revision adds contract-based
programming, multicore support, and
other advanced features

GENEVA, Switzerland, December 18,
2012 - The Ada Resource Association
(ARA) and Ada-Europe today announced
the approval and publication of the latest
version of the Ada programming language
by the Geneva-based International
Organization for Standardization (ISO).
The language revision, known as Ada
2012, was under the auspices of ISO/IEC
JTC1/SC22/WG9 and was conducted by
the Ada Rapporteur Group (ARG) subunit
of WG9, with sponsorship in part from
the ARA and Ada-Europe. The formal
approval of the standard was issued on
November 20 by ISO/IEC JTC 1, and the
standard was published on December 15.

[see also the full press release included in
this issue. —sparre]

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you

are organising such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

Course at Open Source Days
in Copenhagen

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Mon, 14 Jan 2013
Subject: Parallel programming for

sequential programmers
URL: http://opensourcedays.org/2013/

content/parallel-programming-
sequential-programmers-0

Parallel programming for sequential
programmers.

Assuming you already know sequential
programming in a procedural
programming language, this course can
get you started writing parallel programs
using the Ada programming language.

Course contents:

- A quick introduction to the basics of
sequential programming in Ada. -- Just
enough to allow you to map your
existing programming knowledge to
Ada.

- Creating and understanding basic tasks
(parallel threads of execution) with Ada.
-- I.e. parallel programming without
interaction.

- Communication between tasks using
safe, shared objects. One kind of
interaction between tasks.

- Direct communication between tasks
using rendezvous. -- Another kind of
interaction between tasks.

- Patterns for implementing parallel
execution.

FOSDEM 2013

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Wed, 13 Feb 2013
Subject: Ada Developer Room at FOSDEM

2013
URL: http://people.cs.kuleuven.be/

~dirk.craeynest/ada-belgium/events/
13/130203-fosdem.html

All presentations from the Ada Developer
Room, held at FOSDEM 2013 in Brussels
recently, are available on the Ada-
Belgium web site now. A few pictures
taken during the event are on-line as well.

- "Welcome & Ada-Europe info" by Dirk
Craeynest - Ada-Belgium

- "Introduction to Ada for Beginning and
Experienced Programmers" by Jean-
Pierre Rosen - Adalog.

- "Tools and Techniques for Higher
Reliability Software" by Philippe
Waroquiers - Eurocontrol.

- "Ada on Android" by José F. Ruiz -
AdaCore.

- "Ada Tasking: Multithreading Made
Easy" by Ludovic Brenta - Debian.

- "Ada Steaming Ahead: New 2012
Features" by Jean-Pierre Rosen -
Adalog.

- "Compile-Time Dimensionality
Checking" by José F. Ruiz - AdaCore.

- "Telephone Reception Management
with Alice on Pi" by Kim Rostgaard
Christensen - AdaHeads K/S.

- "Simplifying the Use of Formal
Methods" by Valentine Reboul -
AdaCore.

Presentation abstracts, copies of slides,
speakers bios, pointers to relevant
information, links to other sites, some
pictures, etc., are all available on the Ada-
Belgium site[1].

[1] <http://www.cs.kuleuven.be/
~dirk/ada-belgium/events/13/
130203-fosdem.html>

Ada Semantic Interface
Specification (ASIS)

ASIS 2012

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Thu, 13 Dec 2012 19:01:39 -0500
Subject: ASIS 2012
Newsgroups: comp.lang.ada

I'm wondering if there is any work being
done on an update of the ASIS standard to
support Ada 2012.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 14 Dec 2012 06:24:50 +0100
Subject: Re: ASIS 2012
Newsgroups: comp.lang.ada

Yes. Now that Ada 2012 is out, the ARG
is working on ASIS. The decision was
taken to skip Ada2005, and go directly for
2012.

6 Ada-related Tools

Volume 34, Number 1, March 2013 Ada User Journal

Ada-related Resources

Smart Pointers

From: Christoph Karl Walter Grein
<christ-usch.grein@t-online.de>

Date: Wed, 10 Oct 2012
Subject: Smart Pointers
URL: http://www.christ-usch-grein.

homepage.t-online.de/Ada/
Smart_Pointers.html

Access types in Ada have been designed
in a way to prevent the occurrence of
dangling references, i.e. they can never
designate objects that have gone out of
scope. There remains however one
problem: When Unchecked_Deallocation
is used in order to reclaim storage, we
might access already freed storage or,
even worse, storage occupied by new
objects of different types, unless utmost
care is taken (this is the very reason why
the generic is called "unchecked"
deallocation).

[…]

[With source download. —sparre]

How tall is a kilogram

From: Vincent Pucci
Date: Mon, 12 Nov 2012
Subject: Gem #136: How tall is a kilogram?
URL: http://libre.adacore.com/

adaanswers/gems_single/
gem-136-how-tall-is-a-kilogram

This Gem outlines the new GNAT
dimensionality checking system. This
feature relies on Ada 2012 aspect
specifications, and is available from
version 7.0.1 of GNAT onwards.

The GNAT compiler now supports
dimensionality checking. Ever since the
appearance of user-defined operators in
Ada 83 there have been attempts to use
these to declare types with dimensions,
and perform dimensionality checks on
scientific code. These attempts were
unfortunately unwieldy and were not
adopted by the language. The system we
describe here is lightweight and relies on
the aspect specifications introduced in
Ada 2012. We hope that the engineering
and scientific community will find it
convenient and easy to use.

[…]

Ada Sub-Reddit has more
than 500 members

From: Marc Criley
<mc.provisional@gmail.com>

Date: Mon, 24 Dec 2012
Subject: Ada Sub-Reddit Barrels through

the 500 Members Threshold!
URL: http://www.reddit.com/r/Ada

Thanks to a pair of postings in Reddit's
general programming forum regarding the
official release of the Ada 2012 standard

that drew attention and a lot of upvotes --
and my plug in the comments section for
the Ada sub-reddit[1], r/ada added enough
members to now exceed 500.

It's a nice milestone to have hit, and
serves to confirm that interest in the
language continues to grow.

[1] http://www.reddit.com/r/Ada

Ada 2012 Reference Manual
in info format

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 26 Dec 2012 15:44:30 -0500
Subject: final version of Ada Reference

Manual in info format
Newsgroups: comp.lang.ada

The final version of the Ada Reference
Manual in info format is now available at
http://stephe-leake.org/ada/arm.html

Counting seconds with
attiny4313

From: Tero's Arduino Blog
Date: Mon, 21 Jan 2013
Subject: Counting seconds with attiny4313
URL: http://arduino.ada-language.com/

counting-seconds-with-attiny4313.html

AVR-Ada includes AVR.Real_Time
package and separate
AVR.Real_Time.Clock function, whose
job is to return the current time. On
Arduino, the current time means seconds
from the device bootup, in other words it
tells you how long the device has been on.

[…]

[Tero gives detailed instructions on how
to show the running time of an Arduino
on a 4x7 segment display. —sparre]

Ada community on Google+

From: Marc Hanisch and Thomas Løcke
Date: Tue, 22 Jan 2013
Subject: Ada group on Google+ with 100+

members
URL: https://plus.google.com/

[The Ada community on Google+ has
passed 100 members. —sparre]

Rosetta Code

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Thu, 24 Jan 2013
Subject: Ada on Rosetta Code
URL: https://bitbucket.org/

ada_on_rosetta_code/solutions

Ada solutions to the tasks presented on
Rosetta Code. All solutions included here
build and run (and should ideally also
include a test example).

[Not complete yet. Contributions are
welcome. —sparre]

Arduino temperature
measurement with DS18B20
and one-wire protocol

From: Tero's Arduino Blog
Date: Tue, 05 Feb 2013
Subject: Temperature measurement with

DS18B20 and one-wire protocol
URL: http://arduino.ada-language.com/

temperature-measurement-with-
ds18b20-and-one-wire-protocol.html

Required parts:

- Arduino UNO or Duemilanove

- DS18B20 temperature sensor

- Some jumper wires

- About 5K ohm resistor (4.7Kohm or
4.99Kohm is ok)

I had a couple of extra DS18B20
temperature sensors lying around, so I
was interested in communicating with
them using Arduino.

DS18B20 uses 1-wire protocol for
communication and AVR-Ada supports it
(1-wire and DS18B20) out of the box.

[…]

[Tero gives detailed instructions on how
to use an Arduino for making temperature
measurements. —sparre]

Introduction to AWS

From: Thomas Løcke <tl@ada-dk.org>
Date: Sun, 10 Feb 2013
Subject: Using the Ada Web Server (AWS),

part 1
URL: http://blogs.fsfe.org/thomaslocke/2013

/02/10/using-the-ada-web-server-aws-
part-1/

The Ada Web Server (AWS) is a big
library with a whole lot of functionality,
far more than I can manage to write
about, so what I am going to do in this
first article is focus on the basic stuff:
Getting a server up and registering a
couple of content handlers.

[…]

[Thomas Løcke gives a good introduction
for developers who want to get started
using AWS for implementing web
servers. —sparre]

Ada-related Tools

Code sketcher for
GtkAda 2.24

From: François Fabien
<francois_fabien@hotmail.com>

Date: Fri, 23 Nov 2012 14:28:39 +0100
Subject: [ANN] A code sketcher for

 GtkAda 2.24
To: gtkada@lists.adacore.com

Gate3[1] is an Ada code sketcher that
generates an Ada prototype from a glade
3.8 file.

Ada-related Tools 7

Ada User Journal Volume 34, Number 1, March 2013

It extracts the signal handlers from the
XML file and outputs a main procedure
and callbacks packages.

Comes with a tutorial and 4 code samples.

A starter for newcomers to glade3.

[1] http://sourceforge.net/projects/
lorenz/files/

Turbo Pascal 7 emulation

From: Pascal <p.p14@orange.fr>
Date: Sun, 2 Dec 2012 19:47:04 +0100
Subject: [gtkada] [ANN] TP7 emulation

V2.7 with GtkAda
To: GtkAda mailing list

<gtkada@lists.adacore.com>

Hello, here are changes of TP7-Ada since
last announcement in June.

Among changes:

- you can now use ESC key, left, right,
home and end arrows with input line in
text window,

- MouseNewPosition has been
implemented

- graphics fonts from TURBO CHR are
now translated in Ada (see screen
captures)

TP7-Ada is a port of Turbo Pascal
libraries in Ada with GtkAda support.
Moreover it can be used as a basic multi-
purpose library for simple text or graphic
stuff with GtkAda.

See screen captures on:

http://blady.pagesperso-orange.fr/
tp7ada.html

The complete code is here:

http://p2ada.svn.sourceforge.net/viewvc/
p2ada/extras/tp7ada/current/

All TP7 features are not completely
functional, see current status:

http://p2ada.svn.sourceforge.net/viewvc/
p2ada/extras/tp7ada/current/
TurboPascal7.0-Ada.html

All Pascal source codes were translated in
Ada with P2Ada translator:

http://sourceforge.net/projects/p2ada/

Feel free to send any feedback.

Generic Command Line
Parser

From: Riccardo Bernardini
<framefritti@gmail.com>

Date: Fri, 14 Dec 2012 13:17:17 -0800
Subject: GCLP (Generic Command Line

Parser) 1.0.0 released
Newsgroups: comp.lang.ada

I just released on Launchpad
(https://launchpad.net/gclp/1.0/1.0.0) the
very first release of GCLP (Generic
Command Line Parser).

I almost can hear you: "Not yet another
command line parser!" :-) Yes, I know
that there are few command line parsing

libraries, but I was not able to find one
that I liked, so… I scratched my own itch.

A peculiarity of GCLP, that I find very
convenient for commands with many
parameters, is that the parameters are
nominal and not positional. For example,

 fictional.exe input=foo.txt output=bar.xml

From: Yannick Duchêne
<yannick_duchene@yahoo.fr>

Date: Sat, 15 Dec 2012 00:33:41 +0100
Subject: Re: GCLP (Generic Command Line

Parser) 1.0.0 released
Newsgroups: comp.lang.ada

> fictional.exe input=foo.txt
output=bar.xml

If that's a real life example, then it does
not follow the standard on Windows
platform (as that's an *.exe), which is to
use a slash prefix for parameters.

One nice feature of a command line
parser I believe, is to allow to be close to
the platform standard. There's already too
much inconsistencies with too many
applications not following any common
standard. In return, this make the
command line interaction more intuitive
and straight away.

From: Riccardo Bernardini
<framefritti@gmail.com>

Date: Sat, 15 Dec 2012 08:20:19 -0800
Subject: Re: GCLP (Generic Command Line

Parser) 1.0.0 released
Newsgroups: comp.lang.ada

[…]

No, it is not a real life example. I just
added .exe to emphasise that "fictional"
was a command.

[…]

Do you mean something like

 fictional.exe /input=foo.txt /output=bar.xml

Well, you could do this as well, by setting
the parameter names to "/input" and
"/output". By the way, the real
"translation" of this under Linux would be

 fictional.exe --input=foo.txt
 -- output=bar.xml

and you can do this as well, by using "--
input" and "--output" as parameter names.

[…]

I agree that this differentiates itself from
the usual syntax. I choose this approach
(and wrote this package) once that I
needed to write a program with a fairly
complex syntax and with many possible
variations. So, I decided for this approach
that, you could say, have no (positional)
parameters, but only options. In this case,
the "--", "-" or "/" necessary to mark an
option became redundant. Nothing
prevents you to put that back in the option
name, if you desire.

From: Riccardo Bernardini
<framefritti@gmail.com>

Date: Sat, 15 Dec 2012 10:08:05 -0800

Subject: Re: GCLP (Generic Command Line
Parser) 1.0.0 released

Newsgroups: comp.lang.ada

> If the command line become too
complex, that may suggest the
command is not well suited for the
matter. May be a configuration file or
project file, using XML, could be an
option. […]

Yes, I understand, but between a simple
command like

 cp src dst

and a command that makes it convenient
to give parameters via a configuration file
(maybe in XML format), there is a grey
area where a positional syntax is too
complex (was the port number the first
parameter? or the third?), but the
complexity of a configuration file is not
justified (maybe also because you use the
command only once). In that grey area a
syntax like this, in my opinion, becomes
convenient.

I like this syntax also because it makes
calls in shell scripts a bit more readable.
As a quasi-real life example, recently we
wrote a program that takes a directory full
of images, process them and write the
result in another directory. A (more or
less) realistic call for this program could
be

 process input-dir=/foo/bar zoom=9
 area=128x128 output-dir=/bar/foo

this is a bit more readable (inside a script)
than

 process /foo/bar /bar/foo 9 128x128=20

Of course, if you prefer more standard
names like "--input-dir", you can use
them.

The example above shows what I mean
with "complex syntax" (maybe it is not a
perfect choice of words): a command that
requires a fair number of parameters (say,
more than 3-4), some of which can be
optional. If the syntax was such that you
need to express, say, conditionals or
complex dependencies between
parameters (the command line syntax of
VLC comes to my mind :-/), then I agree
that a structured configuration file is way
better (but not in XML, please! :-) I hate
to parse XML… :-) [even with specialised
libraries].

From: Brian Drummond
<brian@shapes.demon.co.uk>

Date: Tue, 18 Dec 2012 15:33:22 +0000
Subject: Re: GCLP (Generic Command Line

Parser) 1.0.0 released
Newsgroups: comp.lang.ada

[…]

Perhaps you can combine the two modes:
the GCLP could read a complex
command line, or some/all of the options -
in the exact same syntax - from file. It
would make refactoring complex
command lines effortless…

8 Ada-related Tools

Volume 34, Number 1, March 2013 Ada User Journal

Matreshka

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Sat, 15 Dec 2012 07:50:46 -0800
Subject: Announce: Matreshka 0.4.0
Newsgroups: comp.lang.ada

We are pleased to announce new version
of Matreshka framework. New version
includes support for SOAP protocol and
WS-Security extension, and WSDL to
Ada translator. See ReleaseNotes for
more information:

http://forge.ada-ru.org/matreshka/wiki/
ReleaseNotes/0.4

Matreshka 0.4.0 can be downloaded as
source tarball

http://forge.ada-ru.org/matreshka/wiki/
Download

or as binary package for OpenSUSE,
Fedora, and overlay for Gentoo.

Excel Writer

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Mon, 17 Dec 2012 03:49:26 -0800
Subject: Ann: Excel Writer v.10
Newsgroups: comp.lang.ada

There is a new release of Excel Writer[1].

What's new:

- Excel Writer is significantly faster,
especially for numerical output.

[1] http://excel-writer.sf.net

Qt5Ada

From: Leonid Dulman
<leonid.dulman@gmail.com>

Date: Fri, 21 Dec 2012 08:30:10 -0800
Subject: Announce : Qt5Ada version 5.0.0

release 1 free edition
Newsgroups: comp.lang.ada

Qt5Ada[1] is Ada-2012 port to Qt5
framework (based on Qt 5.0.0 final).

This is a first release of new Qt5 family.

Qt5Ada version 5.0.0 open source and
qt5c.dll(libqt5c.so) built with Microsoft
Visual Studio 2010 in Windows and GCC
x86 in Linux.

The package was tested with GNAT GPL
2012 on 32 and 64 bit Windows and on
64 bit Fedora 17.

It supports GUI, SQL, multimedia, web,
network and many others things.

[1] http://users1.jabry.com/
adastudio/index.html

GWindows Setup

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sat, 22 Dec 2012 12:11:52 -0800
Subject: Ann: GWindows Setup 22-Dec-

2012
Newsgroups: comp.lang.ada

An update of the GWindows framework
is packaged in an installer.

---> GWindows Setup 22-Dec-2012.exe

@ http://sf.net/projects/gnavi/

The major addition is a contribution,
GWindows.Common_Controls.Ex_List_
View, with very cool features, by
F. Maier.

Major changes in the framework -
numbers below refer to svn repository
revisions:

195: GWindows.Common_Dialogs:
Get_Directory with optional initial path

180: GWindows.Windows: Drop Files
support Unicode names

179: GWindows.Common_Dialogs:
Open_File, Open_Files, Save_File,
Get_Directory support Unicode names

173: GWindows.Common_Controls:
List_View_Control_Type: added
Column_Width function

170: GWindows.Common_Dialogs:
added Open_Files

166: GWindows.Common_Controls:
added method On_Item_Changed to
List_View_Control_Type

158: GWindows.Common_Controls:
List_View_Control_Type: Insert_Item
also with Sorted_Index as 'out' parameter

157: GWindows framework compatible
(again) with Ada 95

Zip-Ada

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sat, 22 Dec 2012 12:17:09 -0800
Subject: Ann: Zip-Ada v.45
Newsgroups: comp.lang.ada

There is a new version of Zip-Ada on
<http://unzip-ada.sf.net/>.

Latest changes (! marks an improvement
which brings an incompatibility):

Changes in '45'

- Decryption's password check also
working for archives encrypted by Info-
Zip software.

- Massive speedup when checking files
that are invalid Zip archives or Zip
archives with large comments.

- Added Is_Open method for
File_Zipstream.

- Zip.Load closes properly the file when
loading fails.

- Improved detection of invalid dates in
some Zip archives (e.g. wmpChrome.crx
Chrome extension).

- UnZip.Decompress: Optimized calls of
feedback: called only when 1% more
done.

- ! Removed case_sensitive as a parameter
in Zip.Exists, Zip.Find_Offset,
Zip.Get_Sizes, and

UnZip.Streams.Open, versions with
Zip_Info profiles. The Zip_info objects
now keep this information in a field after
Load. Rationale: case-sensitivity mode
for search makes only sense when it
matches the mode used for building the
dictionary.

- Added User_code to Zip_info entries.
Can be set with the Set_user_code and
User_code subprograms, or via the
Action procedure for the generic
Traverse_Verbose procedure.

- ! Improved (if not completed) Unicode
support (UTF-8); clearer information
about encoding.

Ada Utility Library

From: Stephane Carrez
<Stephane.Carrez@gmail.com>

Date: Wed, 26 Dec 2012 22:36:17 +0100
Subject: [Ann] Ada Utility Library 1.6.0 is

available
Newsgroups: comp.lang.ada

Ada Utility Library[1] is a collection of
utility packages for Ada 2005. A new
version is available which provides:

- Support for HTTP clients (curl, AWS,
…)

- Support for REST APIs using JSON

- New operations To_JSON and
From_JSON for easy object map
serialisation

- Added a listeners to help implementing
the observer/listener design patterns

- Added support for wildcard mapping in
serialisation framework

- New option -d <dir> for the unit test
harness to change the working directory,

- New example facebook.adb to show the
REST support.

It has been compiled and ported on Linux,
Windows and NetBSD (GCC 4.4, GNAT
2011, GCC 4.6.3).

[1] http://code.google.com/p/ada-util/
downloads/list

Lapack

From: jpwoodruff@gmail.com
Date: Thu, 27 Dec 2012 10:48:14 -0800
Subject: A thicker binding for Lapack
Newsgroups: comp.lang.ada

There is a complete thin binding for
lapack available which was evidently
started by Wasu Chaopanon in about 1996
and was recently finished by Nasser
Abbasi. There about 1000 subroutines;
their parameter signatures exactly
translate the Fortran, and each procedure
is Pragma Imported.

I've been considering adding value to that
binding to address two perceived
problems:

The specification involving the integer
index used for matrix types is inconsistent

Ada-related Tools 9

Ada User Journal Volume 34, Number 1, March 2013

between the binding and
Ada.Numerics.Generic_Real_Arrays. The
binding declares that type because the
user's code must comply with Fortran's
integer. The Ada compiler is obliged to
use that same type. Unfortunately
Generic_Real_Arrays uses the base type
integer for index, so there is no
expectation that the representation would
be the same as Fortran-compiled library.

Another issue to resolve is that lapack,
being Fortran, defines column-major
storage while Ada is row-major.
Parameters passing between these two
conventions evidently must be transposed.

I think I have a technique for
interoperating with the Ada.Numerics
types. My plan involves "wrapping" the
lapack routines in a layer that converts
types and transposes matrices.

Here is a typical procedure specification
as translated directly from the Fortran,
with my transformation to Ada standard
types.

 procedure SGESV
 (N : Natural;
 NRHS : Natural;
 A : in out Real_Arrays.Real_Matrix;
 -- instance of Generic_
 LDA : Natural ;
 IPIV : out Integer_Vector;
 B : in out Real_Arrays.Real_Matrix;
 LDB : Natural ;
 INFO : out Integer) ;

The math requirements for this procedure
are very much like the "Solve" that was
discussed in a recent thread.

 -- function Solve (A : Real_Matrix; X :
 Real_Vector) return Real_Vector;

The B parameter in sgesv resembles X in
the "Why X as argument name?"
discussion. I am trying to make the lapack
item as serviceable as the gnat standard
item.

My trials at maintaining parameter
definitions that echo the Fortran binding
have led only to grief. The integer inputs
N, NRHS, LDA, LDB make precious
little sense, considering the transposition
of the matrices that takes place inside the
body of procedure sgesv.

After several drafts I'm thinking that a
thick binding might look like this:

 procedure SGESV
 (A : in out Real_Arrays.Real_Matrix;
 IPIV : out Integer_Vector;
 B : in out Real_Arrays.Real_Matrix;
 INFO : out Integer) ;

Programming with Ada attributes seems
to clarify the relations between the several
parameters. Now I think that the integer
parameters will be computed inside the
body of the overlay procedure. Still
working on the details.

Guided by the spiral model I'll try a
couple examples. Later if there is a

benefit to Ada programmers interested in
numeric analysis I'll address the scale of
the massive lapack library.

Suggestions are welcome!

From: Shark8
<onewingedshark@gmail.com>

Date: Thu, 27 Dec 2012 11:18:09 -0800
Subject: Re: A thicker binding for Lapack
Newsgroups: comp.lang.ada

> [column-major vs. row-major]

This is a non-issue; Ada allows for the
specification of row- or column-major
ordering via the Convention pragma (or
aspect).

Example:

 B : array(Integer Range <>,
 Integer Range <>) of Integer:=
 (1..5 => (1..5 => 0));
 pragma Convention(Fortran, B);
 -- Forces B to use col-major order.

 -- NOTE: this pragma (or aspect) can be
 -- attached to the TYPE definition.
 type Test_Array is array
 (Integer Range <>,
 Integer Range <>) of Integer
 with Convention => Fortran;

 C : Test_Array:= (1..5 => (1..5 => 0));

From: Simon Wright
<simon@pushface.org>

Date: Thu, 27 Dec 2012 20:37:40 +0000
Subject: Re: A thicker binding for Lapack
Newsgroups: comp.lang.ada

> procedure SGESV
 (A : in out Real_Arrays.Real_Matrix;
 IPIV : out Integer_Vector;
 B : in out Real_Arrays.Real_Matrix;
 INFO : out Integer) ;

There may be some deep reason for
making A in-out, but if you don't see a
need to preserve the internal LU
decomposition I'd make a copy internally,
and also keep IPIV internal.

Also, I'd make B 'in' and use a third 'out'
parameter Result.

And, perhaps INFO should be replaced by
Constraint_Error?

From: jpwoodruff@gmail.com
Date: Sat, 29 Dec 2012 10:36:01 -0800
Subject: Re: A thicker binding for Lapack
Newsgroups: comp.lang.ada

> [column-major vs. row-major]

The use case I'm working on is to allow a
mathematical program that already uses
matrices to be enhanced with lapack
operators on the same type of operand. If
I'm not mistaken, pragma convention will
affect matrices that are used on the lapack
interface, but other matrix types in the
program remain row-wise.

This is the inconsistency I'm working to
avoid unless every matrix type is
conventioned, and it's not clear how to
catch them all.

The alignment is visible to the user
through (at least) the program's I/O.

Conclusion: transpose appears necessary.

From: Simon Wright
<simon@pushface.org>

Date: Sat, 29 Dec 2012 19:59:46 +0000
Subject: Re: A thicker binding for Lapack
Newsgroups: comp.lang.ada

For info, the compiler (well, GNAT) will
automatically transpose when doing
assignment between arrays with different
conventions. And it's quicker (not by very
much at -O2, though).

with Ada.Calendar; use Ada.Calendar;
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Numerics.Float_Random;
with Interfaces.Fortran;
with System.Generic_Array_Operations;
procedure Sauvage_Timing is

 package BLAS is
 -- Copied from old GNAT
 -- Interfaces.Fortran.BLAS.

 -- Vector types
 type Real_Vector is array
 (Integer range <>)
 of interfaces.Fortran.Real;
 type Complex_Vector is array
 (Integer range <>)
 of Interfaces.Fortran.Complex;
 type Double_Precision_Vector is array
 (Integer range <>)
 of Interfaces.Fortran.Double_Precision;
 type Double_Complex_Vector is array
 (Integer range <>)
 of Interfaces.Fortran.Double_Complex;

 -- Matrix types
 type Real_Matrix is array
 (Integer range <>,
 Integer range <>)
 of Interfaces.Fortran.Real;
 type Double_Precision_Matrix
 is array (Integer range <>,
 Integer range <>)
 of Interfaces.Fortran.Double_Precision;
 type Complex_Matrix is array
 (Integer range <>,
 Integer range <>)
 of Interfaces.Fortran.Complex;
 type Double_Complex_Matrix is array
 (Integer range <>,
 Integer range <>)
 of Interfaces.Fortran.Double_Complex;
 end BLAS;

 procedure Transpose is new
 System.Generic_Array_Operations
 .Transpose (Scalar =>
 Interfaces.Fortran.
 Double_Precision'Base,
 Matrix =>
 BLAS.Double_Precision_Matrix);
 type Double_Precision_Matrix is array (
 Integer range <>, Integer range <>)
 of Interfaces.Fortran.Double_Precision;
 pragma Convention (Fortran,
 Double_Precision_Matrix);
 A, B : BLAS.Double_Precision_Matrix
 (1 .. 100, 1 .. 100);

10 Ada-related Tools

Volume 34, Number 1, March 2013 Ada User Journal

 C : Double_Precision_Matrix
 (1 .. 100, 1 .. 100);
 pragma Volatile (B);
 pragma Volatile (C);
 Gen :
 Ada.Numerics.Float_Random.Generator;
 Start, Finish : Time;
 use type
 Interfaces.Fortran.Double_Precision;
begin
 Ada.Numerics.Float_Random.Reset(Gen);
 for J in A'Range (1) loop
 for K in A'Range (2) loop
 A (J, K) := Interfaces.Fortran.
 Double_Precision (J* K)
 * Interfaces.Fortran.
 Double_Precision
 (Ada.Numerics.Float_Random.
 Random (Gen));
 end loop;
 end loop;

 Start := Clock;
 for J in 1 .. 100 loop
 Transpose (A, B);
 end loop;
 Finish := Clock;
 Put_Line ("Transpose took " &
 Duration'Image (Finish - Start));

 Start := Clock;
 for J in 1 .. 100 loop
 C := Double_Precision_Matrix (A);
 end loop;
 Finish := Clock;
 Put_Line ("Assignment took" &
 Duration'Image (Finish - Start));

 declare
 Same : Boolean := True;
 begin
 for J in 1 .. 100 loop
 for K in 1 .. 100 loop
 if B (J, K) /= C (K, J) then
 Same := False;
 end if;
 end loop;
 end loop;
 Put_Line ("B = ~C: " & Same'Img);
 end;
end Sauvage_Timing;

From: jpwoodruff@gmail.com
Date: Sun, 30 Dec 2012 10:05:49 -0800
Subject: Re: A thicker binding for Lapack
Newsgroups: comp.lang.ada

I'll be darned. You are both right about
pragma Convention. I am going to
unwrite some code. Even my old gnat gpl
2010 got it right. I need to (re)learn to
trust Lady Ada.

From: Simon Wright
<simon@pushface.org>

Date: Sun, 30 Dec 2012 19:41:54 +0000
Subject: Re: A thicker binding for Lapack
Newsgroups: comp.lang.ada

NB, GNATs later than GCC 4.6 or GNAT
GPL 2010 don't use LAPACK or BLAS. I
wrote a bit about this on comp.lang.ada at
[1].

[1] http://coding.derkeiler.com/Archive/
Ada/comp.lang.ada/2012-77/
msg00138.html

From: jpwoodruff@gmail.com
Date: Mon, 31 Dec 2012 16:24:34 -0800
Subject: Re: A thicker binding for Lapack
Newsgroups: comp.lang.ada

I'm uncertain about what Ada lapack
materials are in play. Please help me get
the story of the several variations straight.

about System.Generic_Real_LAPACK --

Is it true that this structure that I see in my
gpl 2010 is obsolete? Has it been removed
in later gnats? Has
interfaces.fortran.lapack met the same
fate?

About lapack.ads on sourceforge,
attributed to NMA and SJW: --

Is this in fact the only low-level binding
to the Fortran linear algebra subroutines?

Properties of lapack.ads:

 - largely auto-generated.

 - covers the entire lapack library: single,
double precision, real and complex.

 - defines array types with components
and indices specified from types defined
by interfaces.fortran.

 - uses pragma fortran for vector and
matrix array types.

Evidently conversion between
columnwise and row-wise storage is
handled transparently by Ada language
specification of pragma. Transparent
transposition happens on assignment (but
not on parameter elaboration?). Some
testing is in order here.

I considered enumerating the properties of
System.Generic_Real_LAPACK but if it's
leaving, why bother?

From: Leo Brewin
<leo.brewin@internode.on.net>

Date: Sat, 5 Jan 2013 16:46:24 -0800
Subject: Announce: Updated version of ada-

lapack on sourceforge
Newsgroups: comp.lang.ada

I've updated the ada-lapack library on
sourceforge.

The most significant change since the
initial release is the change in the

package spec to use the standard real and
complex arrays provided by
Ada.Numerics.

The package now conforms with Ada
Annex G.3.

New procedures in this release are

 gesdd and gesvd (implementing dgesdd,
dgesvd, zgesdd and zgesvd).

Minor housekeeping has also be done to
the code base.

You can find the code at

http://sourceforge.net/projects/ada-lapack/

Comments, opinions, suggestions etc. are
most welcome.

Stepper motor control for
Arduino

From: Gustaf Thorslund
<gustaf@thorslund.org>

Date: Tue, 08 Jan 2013 22:22:28 +0100
Subject: Stepper motor code to look at or

even try
Mailing list: AVR-Ada <avr-ada-

devel@lists.sourceforge.net>

I've now cleaned up (or more or less re-
written) my stepper motor code. It can be
accessed from:

$ git clone http://gustaf.thorslund.org/src/
avr_stepper_motor

Comments are more than welcome.

Open Source Operating
System

From: Frederic Boyer
Date: Sun, 13 Jan 2013
Subject: OASYS-OS
URL: http://sourceforge.net/projects/

oasysos/

OASYS is a project to write an Ada based
Unix like OS, but instead of having
POSIX thread in process, have some Ada
Tasks.

This is a screenshot I sent to Gautier to
show the console feature. [Image of
classical black-green console. —sparre]
Right now, I manage to boot Ada code,
set console, in colour mode x), set GDT
and IDT. I began to write a little FS too
…

My main goal is to made an OS made by
Ada developers, for Ada developers.

I'd like to see on that OS:

- Polyorb,

- AWS,

- All known bindings: Gtk, OpenGL, …

- Jadam JVM if it works a day x)

- LLVM infra

- Bush (Business Shell from Pegasoft) for
scripting shell

- …

Ahven

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Thu, 24 Jan 2013 22:41:53 +0200
Subject: ANN: Ahven 2.3
Newsgroups: comp.lang.ada

I am pleased to announce Ahven 2.3[1].

Ahven is a simple unit test library (or a
framework) for Ada programming
language. It is loosely modelled after
JUnit and some ideas are taken from
AUnit.

Ada-related Tools 11

Ada User Journal Volume 34, Number 1, March 2013

Ahven is free software distributed under
permissive ISC license and should work
with any Ada 95, 2005, or 2012 compiler.

Starting from this release, the exception
backtraces are now stored to the test
results and printed out along with the
results. In addition, the documentation
received some improvements, and the
output of multiline messages from
TAP_Runner has been fixed.

- Source text: [2]

- Changelog: [3]

[1] http://ahven.stronglytyped.org/

[2] https://sourceforge.net/projects/
ahven/files/

[3] https://bitbucket.org/tkoskine/ahven/
src/ahven-2.3/NEWS

HAC Ada Compiler

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sun, 27 Jan 2013
Subject: HAC Ada Compiler
URL: http://sourceforge.net/projects/

hacadacompiler/

HAC - Hacker's Ada Compiler or Hello-
world Ada Compiler is meant to be
experimental and won't probably ever
cover the full language, but an ever
growing subset.

It originates from a translation of
SmallAda from Pascal to Ada.

HAC is perhaps the first open-source
(partial) Ada compiler programmed in
Ada itself.

[GNAT is also written (mostly) in Ada.
—sparre]

GeoTIFF

From: Riccardo Bernardini
<framefritti@gmail.com>

Date: Mon, 28 Jan 2013 02:28:39 -0800
Subject: GeoTIFF (TIFF) binding for Ada?
Newsgroups: comp.lang.ada

I need to be able to read the tags in a
GeoTIFF file from Ada. On the GeoTIFF
page (http://trac.osgeo.org/geotiff/) I
found few libraries

 GDAL : (C++) http://www.gdal.org/

 libgeotiff : (C)
 http://www.remotesensing.org/
 geotiff/api/index.html

 libtiff : http://www.remotesensing.org/
 libtiff/

so I could write a binding for then, but
before starting working I wanted to check
if there was something ready.

Do you know if there is

 1. An Ada binding for libgeotiff/GDAL/
 libtiff?

 2. An Ada library for reading GeoTIFF
 tags?

 3. An Ada library for reading TIFF tags?
 (GeoTIFF images are just TIFF images
 with a special set of tags, so that any
 TIFF-capable library would work)

From: John B. Matthews
Date: Mon, 28 Jan 2013 06:39:09 -0500
Subject: Re: GeoTIFF (TIFF) binding for

Ada?
Newsgroups: comp.lang.ada

Indirectly, Ossim, <http://trac.osgeo.org/
ossim/>, includes Ossim_Ada,
<http://trac.osgeo.org/ossim/browser/
trunk/ossim_contrib/Ossim_Ada>, which
exposes an ossim.Connectable.Source.
Image.Handler.TiffTileSource.

I've not examined the tags directly.

Ada Server Faces

From: Stephane Carrez
<Stephane.Carrez@gmail.com>

Date: Wed, 06 Feb 2013
Subject: Ada Server Faces 0.5.0 is available
URL: http://blog.vacs.fr/

index.php?post/2013/02/05
/Ada-Server-Faces-0.5.0-is-available

Ada Server Faces [1] is an Ada
implementation of several Java standard
web frameworks.

[1] http://code.google.com/p/ada-asf/

Ada Database Objects

From: Stephane Carrez
<Stephane.Carrez@gmail.com>

Date: Sun, 10 Feb 2013 22:52:13 +0100
Subject: [Ann] Ada Database Objects 0.4.0

is available
Newsgroups: comp.lang.ada

The Ada Database Objects is an Object
Relational Mapping for the Ada 2005
programming language. It allows to map
database objects into Ada records and
access databases easily. Most of the
concepts developed for ADO come from
the Java Hibernate
(http://www.hibernate.org/) ORM. ADO
supports MySQL and SQLite databases.

The new version brings:

- Support to reload query definitions,

- It optimises session factory
implementation,

- It allows to customise the MySQL
database connection by using MySQL
SET.

This version can be downloaded from
http://code.google.com/p/
ada-ado/downloads/list

Dynamo

From: Stephane Carrez
<Stephane.Carrez@gmail.com>

Date: Sun, 10 Feb 2013 23:35:39 +0100
Subject: Dynamo 0.6.0 is available
Newsgroups: comp.lang.ada

Dynamo is a tool to help developers write
some types of Ada Applications which
use the Ada Server Faces or Ada
Database Objects frameworks. Dynamo
provides several commands to perform
one specific task in the development
process: creation of an application,
generation of database model, generation
of Ada model, creation of database.

The new version of Dynamo provides:

- A new command build-doc to extract
some documentation from the sources,

- The generation of MySQL and SQLite
schemas from UML models,

- The generation of Ada database
mappings from UML models,

- The generation of Ada beans from the
UML models,

- A new project template for command
line tools using ADO,

- A new distribution command to merge
the resource bundles.

The Dynamo tool is available at
http://code.google.com/p/ada-gen

Ada Web Application

From: Stephane Carrez
<Stephane.Carrez@gmail.com>

Date: Fri, 15 Feb 2013 23:22:56 +0100
Subject: [Ann] Ada Web Application 0.3.0 is

available
Newsgroups: comp.lang.ada

Ada Web Application is a framework to
build web applications.

- AWA uses Ada Server Faces for the
web framework. This framework is
using several patterns from the Java
world such as Java Server Faces and
Java Servlets.

- AWA provides a set of ready to use and
extendable modules that are common to
many web application. This includes
managing the login, authentication,
users, permissions.

- AWA uses an Object Relational
Mapping that helps in writing Ada
applications on top of MySQL or
SQLite databases. The ADO framework
allows to map database objects into Ada
records and access them easily.

- AWA is a model driven engineering
framework that allows to design the
application data model using UML and
generate the corresponding Ada code.

The new version of AWA provides:

- New jobs plugin to manage
asynchronous jobs,

- New storage plugin to manage a storage
space for application documents,

- New votes plugin to allow voting on
items,

- New question plugin to provide a
general purpose Q&A.

12 Ada-related Products

Volume 34, Number 1, March 2013 Ada User Journal

AWA can be downloaded at
http://code.google.com/p/ada-awa/
downloads/list

A live demonstration of various features
provided by AWA is available at

http://demo.vacs.fr/atlas

Yolk

From: Thomas Løcke <tl@ada-dk.org>
Date: Thu, 21 Feb 2013
Subject: Updated README to reflect the

new SQLite addition to the demo.
URL: https://github.com/ThomasLocke/yolk

Yolk is an Ada based web-toolbox that
sits on top of AWS, GNATcoll, Florist
and XML/Ada. You will also need to
compile GNATcoll with SQLite and/or
PostgreSQL support in order to try the
Yolk demo. If you don't want to muck
about with the demo, and you have no
need for PostgreSQL or SQLite, then you
can safely compile GNATcoll without
support for these two databases.

It is important to understand that Yolk
itself does very little that cannot be
accomplished using plain AWS,
GNATcoll, XML/Ada and Florist. It is,
for lack of a better term, a convenience.
Some of things that Yolk offers are:

- Sending emails from the application

- Loading configuration files

- Handling the most common static
content types (HTML, PNG, ICO and so
on)

- Easy Atom RSS feed generation

- Switching to an un-privileged user.

- Start/stop as a "regular" daemon using
an rc script.

- Easy logging to syslogd.

Be sure to check out the Yolk demo
application for a good example on how to
make use of Yolk.

I've only ever tested Yolk on Linux. I've
no idea if it works on Windows or Mac,
and I've no current plans for trying my
hand at those two platforms. If you'd like
to help make it work for Mac and/or
Windows, feel free to contact me at
<thomas@12boo.net>.

Yolk is GPLv3.

Gate3-in code generator for
Glade2 and Glade3
GtkBuilder

From: Rob Groen <robgr@xs4all.nl>
Date: Sat, 23 Feb 2013 16:33:47 +0100
Subject: [gtkada] gate3-in code generator

for Glade2 and Glade 3 GtkBuilder and
LibGlade files

Mailing list: GtkAda
<gtkada@lists.adacore.com>

Inspired by the work of Francois Fabien
on a Glade3 code sketcher (see the

GtkAda Digest of November 24th 2012) I
brought the old gate-in code generator
back to life.

The work is based on the sources found in
the 2011 GtkAda distribution, notably
Glib.Glade, Gtk.Glade and
Gtk_Generates. This is work in progress,
so not all Glade3 features are supported
(yet). Also, Glade2 testing is limited to
Glade2 files that I have used in the past,
so they probably don't touch all the
functionality.

Testing has been done on WinXP and on
Ubuntu 10.04, using the 2012 GNAT
GPL and GtkAda distribution. No other
prerequisites are known to me.

Download the zip file from:
http://robgr.home.xs4all.nl/

When building gate3-in the gpr file
specifies "debug" and "obj" subdirectories
relative to the directory where the sources
and the gpr file are found.

OpenID authentication for
AWS

From: Thomas Løcke <tl@ada-dk.org>
Date: Tue, 26 Feb 2013
Subject: openid-client
URL: https://github.com/AdaHeads/

openid-client

OpenID authentication for the Ada Web
Server library (AWS).

Build (with demo application):

 SERVER_NAME=your.server.name make

Run demo application:

 sudo ./demo/openid_demo

[This is the OpenID client for AWS,
which was mentioned in AUJ 33-4. It has
moved to a new location. —sparre]

Ada-related Products

ObjectAda for Windows

From: Atego
Date: Tue, 22 Jan 2013
Subject: Atego Ships Major New Version of

Aonix ObjectAda for Windows
URL: http://www.atego.com/pressreleases/

pressitem/atego-ships-major-new-aonix-
objectada-for-windows-version/

Atego™, the leading independent supplier
of industrial-grade, collaborative
development tools for engineering
complex, mission- and safety-critical
architectures, systems, software and
hardware, has launched Aonix ObjectAda
9.0 for Windows with new support for
Ada 2005.

“Ada continues to be a mainstay in many
long-term military & aerospace
applications and assuring the tools that
support these applications remain not only
available, but current and well maintained

is critical,” said Dr. Jerry Krasner, Chief
Analyst Embedded Market Forecasters
(http://www.embeddedforecast.com).
“Not only has Ada as a language
continued to improve, but the hardware
and operating systems have evolved as
well. I credit Atego for progressing their
tools on both fronts to keep developers
well equipped with the latest-and-greatest
methodologies and technologies
available.” “It’s no mistake that IBM
entrusted Atego to take over their Ada
line of products.”

Aonix ObjectAda® 9.0 for Windows is a
major new release with significant
support for many of the new language
features in Ada 2005 that users require, as
well as a number of new or enhanced
features including:

- Aonix ObjectAda operation in either
Ada 2005 or Ada 95 mode

- Floating Point Overflow Control

- Non-Ada Threads Support

- Ada Binding to Java Native Interface
(JNI)

- File IO Open/Create support for
Unicode File Names

- Read/Write support in Text_IO for
decoding/Encoding UTF character data

- Runtime Corrections and Enhancements

- Debugger Enhancements for debugging
DLLs

This release builds on enhancements
provided with the 8.5 release from earlier
in 2012. Including enhanced compatibility
with Windows 7 and Windows 8 and is
based on Microsoft’s Visual Studio 2010
Service Pack 1 development tools and
libraries from the Microsoft Windows
Software Development Kit (SDK) version
7.1 for Windows 7 and .NET Framework
4. The combination of tools and libraries,
included with Aonix ObjectAda v 9.0 for
Windows, allows developers to create
applications for Windows 7, Server 2008
R2, Server 2008, XPSP3, Vista, and
Windows Server 2003 R2. Additionally,
the Ada bindings to the Windows API
provided by Aonix ObjectAda have been
adapted to work correctly with the
Windows SDK V7.1 libraries.

“We’re very pleased to announce Ada 05
support in our Aonix ObjectAda for
Windows product,” stated Hedley
Apperly, Atego’s Vice-President of
Product & Marketing. “We are committed
to the continued improvement of our
products for the Ada language and the
long-term availability these products,
which respond to our customers’ needs
and set them ahead of their competition.”

AWS hosting

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Tue, 29 Jan 2013 00:54:06 -0800

Ada and Microsoft 13

Ada User Journal Volume 34, Number 1, March 2013

Subject: Ada Web Server (AWS) hosting
Newsgroups: comp.lang.ada

I'm pleased to announce that Inspirel
offers a hosting service for AWS-based
projects:

http://inspirel.com/aws-hosting/

The purpose of this service is to promote
good practise in web development (which
is commonly going against sound
software engineering principles) and to
foster collaboration between individuals
and smaller teams that would like to use
Ada for their projects but are frequently
limited by the availability of dedicated
hosts.

GNAT for ARM

From: AdaCore Press Center
Date: Wed, 27 Feb 2013
Subject: AdaCore Releases GNAT Pro

Safety-Critical for ARM Processors
URL: http://www.adacore.com/press/

gnat-pro-safety-critical-for-arm/

Ada now available for popular bareboard
platform

NEW YORK, PARIS and
NUREMBERG, Germany, February 27,
2013 – Embedded World Conference –
AdaCore today announced the availability
of its GNAT Pro Safety-Critical product
for ARM Cortex micro-controllers. This
bareboard GNAT Pro Safety-Critical
product provides a complete Ada
development environment, oriented
towards systems that are safety-critical or
have stringent memory constraints.
Developers of such systems can now
exploit the software engineering benefits
of the Ada language, including reliability,
maintainability, and portability.

ARM processors are becoming more and
more prevalent in the aerospace, defense,
and transportation industries. This is due
in large part to the vibrant support
ecosystem that ARM enjoys, and to the
growing popularity of these low-cost,
low-power microprocessors.

The ARM platform adds to the GNAT
Pro Safety-Critical product offering,
which is already available for PowerPC
and LEON boards, allowing easy
portability among all three platforms. The
technology does not require any
underlying operating system, so it can be
deployed on very small memory boards.
The tool suite includes the following:

- Support for Ada 2012 (including the
important “contract-based
programming” features that make it
easier to reflect the program’s intent)
and all earlier versions of the Ada
language.

- Support for the Ravenscar tasking
profile.

- A set of static analysis tools:

 o GNATstack analysis tool

 o GNATmetrics complexity metrics tool

 o GNATcheck coding standard
verification tool

- The GNATtest unit test harness
generator.

- The GDB visual debugger.

- A native Integrated Development
Environment (IDE) as well as an Eclipse
plug-in.

GNAT Pro Safety-Critical for bareboard
ARM supplies a fully configurable /
customizable run-time library and
implements High-Integrity profiles that
are especially relevant to safety-critical
systems. The Zero Footprint Profile (ZFP)
in particular defines an Ada subset that
does not require any run-time routines,
thus reducing the memory footprint to
user code only.

“This new offering shows our
commitment to providing a complete
safety-oriented development toolset on a
large range of targets,” stated Cyrille
Comar, Managing Director of AdaCore.
“This allows customers to benefit from
the richness of the hardware platforms
used by the wider market beyond safety-
critical systems”

About GNAT Pro Safety-Critical

GNAT Pro Safety-Critical is a complete
development environment for applications
that need to meet the highest levels of
safety-related standards found in
industries such as aeronautics, space,
railway, defense and medical systems.
The product consists of the full GNAT
Pro environment enhanced with a suite of
tools — specifically GNATcheck,
GNATmetric, and GNATstack — and
specialized run-time libraries designed for
usage in a safety certification context.

Owing to both the product’s technical
features and the Ada language’s software
engineering foundations, GNAT Pro
Safety-Critical facilitates formal
compliance with domain-specific safety
standards. In addition to supporting
RTCA DO-178B / DO-178C (also known
as EUROCAE ED-12B / ED-12C),
GNAT Pro Safety-Critical can help
reduce the effort in certifying systems
against standards such as DEF STAN 00-
55 / 00-56 (defense), DO-278 / DO-278A
(ground-based systems), CENELEC EN
50128 (rail) and ECSS-E-ST-40C /
ECSS-Q-ST-80C (space). GNAT Pro
Safety-Critical has been used to develop
systems that have been certified to DO-
178B Level A.

Ada and GNU/Linux

Debian

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sun, 30 Dec 2012 10:10:15 +0100

Subject: Debian GNAT 4.7, status?
Newsgroups: comp.lang.ada

Any soon?

P.S. I am asking because yesterday I
discovered a severe bug in Debian's
GNAT 4.6 (compiler freeze). Fedora is
already 4.7 and there is no bug.

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Sun, 30 Dec 2012 14:51:00 +0100
Subject: Re: Debian GNAT 4.7, status?
Newsgroups: comp.lang.ada

I uploaded 4.7.2-1~exp1 to experimental
(which you must install on top of
unstable) a couple of days ago. The
packages are still in the NEW queue
pending manual review and approval.
And because this is experimental, this
compiler is for experimental purposes
only and no libraries, besides libgnat,
built with it.

I don't think I'll spend much time working
on 4.7, Debian 8 "Jessie" will probably
have 4.8 (or later) instead.

Ada and Microsoft

Compiler for Windows7

From: Vernon Marsden
<vmars316@gmail.com>

Date: Fri, 4 Jan 2013 15:00:10 -0800
Subject: where can I find a freeware ADA

compiler for home use (windows7) ?
Newsgroups: comp.lang.ada

Where can I find a freeware Ada compiler
for home use (Windows7)?

Also, is there a visual IDE that goes with
Ada?

From: Britt <britt.snodgrass@gmail.com>
Date: Fri, 4 Jan 2013 19:45:32 -0800
Subject: Re: where can I find a freeware

ADA compiler for home use (windows7)
?

Newsgroups: comp.lang.ada

http://libre.adacore.com/ is the place to
start.

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Sat, 05 Jan 2013 09:17:27 -0500
Subject: Re: where can I find a freeware

ADA compiler for home use (windows7)
?

Newsgroups: comp.lang.ada

GPS comes with the GNAT GPL
package, and Emacs has an Ada mode
(currently being upgraded; see
http://stephe-leake.org/emacs/ada-
mode/emacs-ada-mode.html)

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>

Date: Sat, 05 Jan 2013 14:39:53 -0500
Subject: Re: where can I find a freeware

ADA compiler for home use (windows7)
?

Newsgroups: comp.lang.ada

14 References to Publ icat ions

Volume 34, Number 1, March 2013 Ada User Journal

[...]

https://en.wikibooks.org/wiki/Ada_Progra
mming/Installing#GNAT.2C_the_GNU_
Ada_Compiler_from_AdaCore_and_the_
Free_Software_Foundation

From: Anh Vo <anhvofrcaus@gmail.com>
Date: Sun, 6 Jan 2013 19:31:36 -0800
Subject: Re: ADA for home/hobby-ist

windows7 version ?
Newsgroups: comp.lang.ada

I think you need a basic Ada compiler and
a simple IDE. By the way, Ada language
is spelled as Ada in honor of Ada
Lovelace who is considered the world
first programmer.

1. For an Ada compiler for window,
download gnat-gpl-2012-i686-pc-
mingw32-bin.exe at
http://libre.adacore.com/download/

2. Download Adagide at
http://sourceforge.net/projects/adagide/.

References to
Publications

Writing bindings for C
libraries

From: Felix Krause
Date: Wed, 13 Jun 2012
Subject: Writing Ada Bindings for C

Libraries, Part 1
URL: http://flyx.org/2012/06/13/

adabindings1/

This article gives an overview over
problems, solutions and guidelines for
writing an Ada binding for a C library. It
summarises experiences I made while
implementing OpenCLAda and
OpenGLAda. Code examples are taken
from those projects.

The Ada code examples shown here are
written in Ada 2005. Note that you can
import C functions somewhat nicer in
Ada 2012.

[The last of three parts was published
February 18th. —sparre]

Ada on Raspberry Pi: new
article in MagPi issue 8

From: Rego, P. <pvrego@gmail.com>
Date: Sat, 1 Dec 2012 16:51:32 -0800
Subject: Ada on Raspberry Pi: new article

in MagPi issue 8
Newsgroups: comp.lang.ada

I had a very happy surprise today when I
opened the MagPi issue 8 and found the
Ada article "Beginning Ada" by Luke
Guest. And it's the second part, started in
issue 6 (which I had not read til today...).
Congratulations!

http://www.themagpi.com/

From: Luke A. Guest
<laguest@archeia.com>

Date: Sun, 2 Dec 2012 17:19:56 +0000
Subject: Re: Ada on Raspberry Pi: new

article in MagPi issue 8
Newsgroups: comp.lang.ada

Thanks, the idea was to get Ada into the
minds of kids reading that magazine as an
additional language and to prove it can be
used for beginners with no programming
experience whatsoever.

I'm also trying to think of a good project
to document in the next articles, I have
two ideas, but not sure about them. The
aim would be to show the use of:

1) packages

2) possibly separates for platform
dependencies

3) GNAT project files & Makefiles

4) Representation clauses for mapping to
hardware or C API's

5) Maybe tasking

Any ideas? It has to have a cool factor.
Mine are:

1) ZX Spectrum emulator. or

2) A language compiler going from
source -> ELF/ARM binary.

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: Sun, 02 Dec 2012 18:47:23 +0000
Subject: Re: Ada on Raspberry Pi: new

article in MagPi issue 8
Newsgroups: comp.lang.ada

> Any ideas? [...]

A KDF9 emulator?

 <http://www.findlayw.plus.com/KDF9>

From: Shark8
<onewingedshark@gmail.com>

Date: Sun, 2 Dec 2012 11:22:57 -0800
Subject: Re: Ada on Raspberry Pi: new

article in MagPi issue 8
Newsgroups: comp.lang.ada

> 1) packages

Excellent idea, packages are really a
fundamental Ada building-block and
should be introduced early-on.

> 2) possibly separates for platform
dependencies

Good idea, but you may want to deffer
that to a bit later... perhaps after
introducing #4 and representation clauses
-- if you go with using representation
clauses for low-level interfacing you can
introduce separates for HW variations.

> 3) GNAT project files & Makefiles

GPR files do seem to be _much_ better
than makefiles; however, it is platform
[toolchain, rather] specific.

> 4) Representation clauses for mapping
to hardware or C API's

Reading your articles I would suggest you
do the main article on hardware-mapping
and sidenote C-API interfacing and
perhaps a small example w/layouts.

> 5) Maybe tasking

Tasking is one of Ada's excellent features,
IMO. If we are going to introduce kids to
programming via Ada, it might well
behoove us to spoil them on parallel-
computing w/ tasks.

> Any ideas? [...]

Might I suggest an interpreter? You could
explain it a bit more succinctly [and with
less jargon (no need to go into linking,
object files, loaders, etc)] than a compiler.
(To keep syntax & parsing simple you
could go with the old-school/early-
computing LISP.)

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Mon, 03 Dec 2012 12:53:58 +0100
Subject: Re: Ada on Raspberry Pi: new

article in MagPi issue 8
Newsgroups: comp.lang.ada

> 4) Representation clauses for mapping
to hardware or C API's

Based on what John McCormick found to
be so valuable about Ada's expressive
fundamental type system, I'd like to
humbly suggest that it be made known,
and preferred to implementation defined
C like types such as Integer. In particular,
Ada's scalar types allow programmers to
just say what they already know instead
of thinking hard about which int-like type
might somehow match what they cannot
express in the fundamental type system
(of C, or Ada's library types), such as
range 1 .. 80_000 (vs C's
INT_MAX/Ada's System.Max_Int):

[...]

http://archive.adaic.com/projects/atwork/
trains.html

From: Rego, P. <pvrego@gmail.com>
Date: Mon, 3 Dec 2012 17:43:50 -0800
Subject: Re: Ada on Raspberry Pi: new

article in MagPi issue 8
Newsgroups: comp.lang.ada

> Any ideas? [...]

I think that sometimes it's a good
incentive (for people to use a
programming language) to have some
device libraries implemented, so they can
use the Ada features, but don't have to
implement all of it from scratch. Maybe
GPIO? A good play could be to
demonstrate the
tasking/rendevouz/semaphores concepts
using leds through GPIO.

Raspberry is a good portfolio for motivate
more people to use Ada, and your articles
follows it. Very good.

From: Simon Wright
<simon@pushface.org>

Date: Mon, 10 Dec 2012 20:12:45 +0000
Subject: Re: Ada on Raspberry Pi: new

article in MagPi issue 8
Newsgroups: comp.lang.ada

> Any ideas? [...]

References to Publ icat ions 15

Ada User Journal Volume 34, Number 1, March 2013

The one I'm having fun with is an
interface to I2C, targeted at the
MCP23017 I/O expander.

"Writeup": http://raspi-i2c-
ada.sourceforge.net/

Code tip: https://sourceforge.net/p/
raspi-i2cada/code/ci/
e83f5cbe29602a7f306dcd
917d8d79c61d7c6399/tree/

At the moment it detects input changes
via polling; I'm working on an interrupt-
driven variant (the nearest to interrupt-
driven you'll get in userland, anyway, I
think) but I haven't pushed those changes
yet.

The "interrupt" changes will be based on
WiringPi at
https://projects.drogon.net/raspberry-
pi/wiringpi/ and will effectively provide
an Ada interface to GPIO - I'm trying to
avoid too much direct work with GPIO in
case I let the magic smoke out.

Work is a tad held up due to illness;
hopefully both I and the work are on the
road to recovery!

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Tue, 11 Dec 2012 12:04:35 +0100
Subject: Re: Ada on Raspberry Pi: new

article in MagPi issue 8
Newsgroups: comp.lang.ada

> Any ideas? [...]

For the "cool factor" (but maybe too large
otherwise) one of my colleagues has an
Ada managed phone system running on a
Raspberry Pi. (You can call his phone
queue on +45 77 34 34 20, but nobody is
answering yet. ;-)

The source code for the Ada part will be
available on GitHub.

From: Simon Wright
<simon@pushface.org>

Date: Tue, 11 Dec 2012 12:34:23 +0000
Subject: Re: Ada on Raspberry Pi: new

article in MagPi issue 8
Newsgroups: comp.lang.ada

I see I've already got some early code up
there: [1].

The reason for going with an interface
like wiringPi, by the way, is that direct
access to RPi GPIO requires root
privilege. wiringPi provides a setuid-root
program gpio; it lets you - for example -
access the value on GPIO pin x at
/sys/class/gpio/gpiox/value.

[1] https://sourceforge.net/u/
simonjwright/wiringpi-ada/code

OOP in embedded critical
systems

From: Quentin Ochem
Subject: Object Orientation in Embedded

Critical Systems – don't be scared
anymore!

Date: Fri, 07 Dec 2012

URL: http://electronicdesign.com/article/
embedded/object-orientation-embedded-
critical-systems-dont-scared-anymore-
74763

Object Oriented Programming (OOP) was
introduced to software development
almost half a century ago, and its
popularity has reached all fields of
software development. All? Well almost.
OOP was banished from embedded,
safety-critical development for this entire
time, so many of the latest design
methodologies often based on these
patterns became wishful thinking.

[…]

Top ten milestones in
embedded 2012

From: Jack Ganssle <jack@ganssle.com>
Date: Wed, 19 Dec 2012
Subject: Top ten milestones in embedded

2012
URL: http://www.embedded.com/

electrical-engineer-community/
industry-blog/4403699/2/Ten-most-
important-milestones-in-embedded-
systems-2012

Number 9: Ada 2012

[…]

Heart Pump Software with
SPARK and Echo

From: John Knight, Xiang Yin and Patrick
John Graydon

Date: Tue, 01 Jan 2013
Subject: Formally Verifying Heart Pump

Software with SPARK and Echo
URL: http://www.medicaldesignbriefs.com/

component/content/article/15536

The Ada-based SPARK programming
language and toolset offer strong
guarantees about the behaviour of
software systems. This powerful core
underpins Echo, a complete approach to
practical formal verification developed at
the University of Virginia, Charlottesville,
by Dr. John Knight and his student, Xiang
Yin. Echo extends the verification power
afforded by the SPARK tools and the
PVS Specification and Verification
System to provide a complete proof that a
given SPARK implementation re fines its
formal specification.

[…]

AdaCore answers questions
from Jack Ganssle

From: Jack Ganssle <jack@ganssle.com>
Date: Mon, 14 Jan 2013
Subject: Ada 2012 redux
URL: http://www.embedded.com/

electronics-blogs/break-points/
4404928/Ada-2012-redux

In September I wrote about the new Ada
2012 standard ("Ada gets a makeover").

That article elicited quite a few responses,
and some misinformation. So, I digested
some of the discussion into questions,
which I sent to the folks at AdaCore.
They were kind to reply. Here's that
discussion.

[Good questions, debatable answers. —
sparre]

Contract-Driven
Programming Takes
Specification Beyond The
Stone Age

From: Quentin Ochem
Date: Mon, 04 Feb 2013
Subject: Contract-Driven Programming

Takes Specification Beyond The Stone
Age

URL: http://electronicdesign.com/
contributing-technical-experts/contract-
driven-programming-takes-specification-
beyond-stone-age

The industrialisation age of programming
by contract is opening a new era in
software development. Just as
development techniques went from
assembly to structured languages and
from structured languages to object
orientation, contract-based programming
is providing one more abstraction to
software design.

[…]

Java specifies what exceptions may be
thrown, Ada enables you to specify type
ranges, C allows… um, never mind.

[The paper covers JML (Java), ACSL (C)
and Ada with a few references to SPARK
thrown in for good measure. —sparre]

Reducing the gap between
design and code for critical
software with Ada 2012

From: S. Tucker Taft, AdaCore
Date: Mon, 14 Feb 2013
Subject: Reducing the gap between design

and code for critical software with Ada
2012

URL: http://www.embedded.com/design/
programming-languages-and-tools/
4407006/Reducing-the-gap-between-
design-and-code-for-critical-software-
with-Ada-2012

The latest version of the Ada language
standard, known as Ada 2012 [1], has
extended the language's support for
minimising the gap between design and
code by raising the level of discourse, a
principle that is fundamental to software
development and that has been an
underlying goal throughout Ada's
evolution.

[…]

Valentines Greetings

From: AdaCore Press Center

16 Ada Inside

Volume 34, Number 1, March 2013 Ada User Journal

Date: Mon, 14 Feb 2013
Subject: Ada Passion: Developers speak out

about why they use Ada and what they
love about it.

URL: http://www.ada2012.org/passion.html

[Unfortunately we can't reprint the nice
video here. —sparre]

[…]

“Ada is readable and reliable. She's a hard
mistress that keeps me from doing bad
things, and coming from PHP I know
all about doing bad things.

With her strong emphasis on types and
structure Ada keeps me on the right path,
constantly helping me to better express
what it is I'm trying to accomplish with
my code.” — Thomas Løcke

“Good practise from the ground, I like
Ada as she talks to me with the right
abstraction level. Thanks Ada, we
understand each other.” — Pascal Obry

[…]

“The strict requirements on structure and
types, allow you to build REALLY
complex software which works and
works. This strictness lets you build
literally anything you can imagine. And
that's good for me because I can imagine a
lot.” — Tony Gair

[… and lots of other quotes about why
developers like Ada. —sparre]

Embedded Newsletter

From: UBM Tech
Date: Tue, 19 Feb 2013
URL: http://e.ubmelectronics.com/audience/

eetnewsletters/02-19-2013-
EmbeddedNL.html

Tech Focus: Using Ada in embedded
design

- Is Ada ready for mainstream embedded
designs?

- Reducing the gap between design and
code for critical software with Ada 2012

- Ada 2012: say what you mean, mean
what you say

- Ada 2012 redux

[An embedded newsletter with a strong
focus on Ada. —sparre]

Ada Inside

Traceability Analysis Helps
Rockwell Collins Achieve
DO-178B Certification

From: AdaCore Press Center
Date: Tue, 04 Dec 2012
Subject: Traceability Analysis Helps

Rockwell Collins Achieve DO-178B
Certification

URL: http://www.adacore.com/press/
traceability-analysis/

BOSTON, December 4, 2012 - ACM
SIGAda HILT Conference - AdaCore
today announced the successful usage of
its Code Traceability Analysis for DO-
178B by Rockwell Collins in the
certification of the Integrated Display
System (IDS) for a large, next-generation,
commercial aircraft. The Traceability
Analysis package is part of the evidence
needed to satisfy the DO-178B objectives
for structural code coverage at Level A,
the highest (most stringent) level for
avionics software safety.

The IDS, featuring Rockwell Collins’
EFIS/EICAS Interface Unit (EIU-7001),
includes many of the advanced features
found on the Boeing 787, such as an
electronic checklist with cursor control
panel, navigation performance scales and
vertical situation displays. This critical
system is Level A and was developed in
Ada using AdaCore’s GNAT Pro High-
Integrity Edition for DO-178B, targeted to
PowerPC-ELF and using the Zero
Footprint (ZFP) run-time library.

Certification at Level A is a major effort,
involving a variety of software life cycle
processes. One of the verification process
activities entails demonstration of
complete coverage of the source code
through requirements-based tests. If any
object code is not traceable to the source
code (for example, if a high-level source
construct is compiled into complex object
code involving conditional instructions)
then DO-178B specifies the following
activity: ‘additional verification should be
performed on the object code to establish
the correctness of such generated code
sequences’. AdaCore has developed an
infrastructure and methodology to
perform this activity; the product of this
activity is a source-to-object Code
Traceability Analysis.

AdaCore’s approach has been
successfully used in the past, saving
customers time and effort in conducting
DO-178B certification. In light of this
successful previous experience, Rockwell
selected AdaCore to conduct an
analogous traceability analysis for this
next generation IDS Program. Rockwell
has now successfully completed the
certification of its IDS, with AdaCore’s
Traceability Study serving as part of the
full certification evidence.

“The traceability analysis that is needed to
meet the structural code coverage
objectives requires a detailed knowledge
of both the source language semantics and
the generated object code,” said Robert
Dewar, AdaCore President and CEO.
“With our expertise in the Ada language
and compiler technology, AdaCore was
uniquely qualified to perform this analysis
both accurately and efficiently. This
allowed Rockwell Collins engineers to
devote their energies to certification
activities directly related to their actual
application.”

Atmosphere Space
Interactions Monitor

From: AdaCore Press Center
Date: Mon, 17 Dec 2012
Subject: GNAT Pro Safety-Critical used by

Terma A/S for Space Monitor Project
URL: http://www.adacore.com/press/terma/

PARIS, NEW YORK, December 17,
2012 – Paris Space Week 2012- AdaCore
today announced that Terma A/S has
selected the GNAT Pro Safety-Critical
development environment to develop
onboard software for the Atmosphere-
Space Interactions Monitor (ASIM) that
will be mounted on the Columbus module
of the International Space Station. Terma
will use GNAT Pro Safety-Critical
combined with the GNATemulator and
GNATcoverage dynamic testing tools to
develop and test the application prior to
deployment on the actual LEON 3
embedded processor.

ASIM is used to detect lightning
formations known as “red sprites”, “blue
jets” and “elves”, and to detect X-ray and
γ-ray discharges. The objective is to
search for a correlation between these
formations and large thunderstorms,
improving our understanding of these
phenomena and their influence on the
Earth’s climate. Terma is – under contract
to the European Space Agency (ESA) –
the prime contractor for the development
of the ASIM instrument including
development of the on-board software.
ASIM will be deployed in space where
repairs are costly if possible at all, making
reliability of the platform and its software
essential. This need for reliability was a
principal factor in selecting the Ada
programming language for the software
development. The Ravenscar profile (a
subset of the Ada tasking features
designed for safety-critical hard real-time
computing) will be used to ensure that all
multi-processing/tasking within the
application can be proven deterministic
and schedulable. Ada’s ability to define
static and dynamic contracts and checks –
including features recently introduced in
the new Ada 2012 standard – helps
developers express requirements directly
in the software. This allows early
detection of inconsistencies, either
statically (at compile time) or
dynamically (during testing).

To carry out the Ada development, Terma
selected the LEON 3 ELF configuration
of the GNAT Pro Safety-Critical
development environment. It includes
tools that take advantage of the
language’s properties to perform
additional static and dynamic analysis,
reaching even higher levels of reliability.
Complexity and other metrics are
automatically monitored using
GNATmetrics, while GNATcheck
enforces a consistent coding style, and
detects well-defined categories of code

Ada in Context 17

Ada User Journal Volume 34, Number 1, March 2013

vulnerabilities. The GNATstack tool
performs static stack analysis, so that
stack size requirements can be verified
prior to execution. For dynamic analysis,
GNATemulator is used to perform unit
testing of the software using the LEON 3
toolchain, independent of and prior to the
availability of the final hardware. In
combination with GNATemulator,
GNATcoverage is used to provide very
early structural coverage analysis without
need to instrument the software under
test. The software is tested in a fully
simulated environment, ensuring that only
integration and system-specific
verification need to be performed on the
final target.

“At Terma we find Ada to be suitable for
on-board software development, due to its
strengths and proven track record in the
field of critical real-time software. By
choosing GNAT Pro for LEON 3 ELF,
we have an Ada development toolchain
that can deliver the required quality, and
body of evidence thereof, needed when
developing critical software. We are
excited about not having to rely on a
separate real-time operating system, as
GNAT Pro for LEON 3 ELF allows us to
develop Ravenscar-compliant real-time
software targeting a LEON 3 bare-board
with a minimum of fuss.” [Mark
Lorenzen, Software Engineer, ASIM
instrument software responsible]

“Ada and GNAT Pro have a solid track
record in space applications, and their
selection for the ASIM software continues
to demonstrate their advantages in this
critical domain.” said Cyrille Comar,
Managing Director at AdaCore. “What is
particularly pleasing in this project is to
see Terma using the full range of
complementary technologies that make up
GNAT Pro to ensure the highest levels of
reliability.”

About Terma A/S

Operating in the aerospace, defence, and
security sector, Terma supports customers
and partners all over the world. With
more than 1,100 committed employees
worldwide, the company develops and
manufactures mission-critical products
and solutions that meet customers’ needs
and requirements.

AdaChess

From: Alessandro Iavicoli
Date: Tue, 22 Jan 2013
Subject: AdaChess
URL: http://www.alessandroiavicoli.it/

AdaChess is a simple, small yet complete
chess engine written in Ada. The code is
clean, well-formed and readable. Talking
in terms of chess engine programming,
AdaChess comes with a lot of features!

AdaChess has been developed using easy-
to-do data structures. Chessboard is
represented with an array of 64 elements.

Each piece can move inside the board
using a piece-offset table. The move-
generator is a resource-heavy since it
looks only for legal moves before
“register” a move as a valid move. This
means that the generator is slow but he
returns a vector with only the playable,
legal moves.

Each move is scored using the History
Euristic or, if there’s no history for a
specific move, trying to the MVV_LVA.
If that move is not a capture move (i.e.
MVV_LVA returns without scoring the
move) then the preference is for the
moves towards the centre of the board.

[…]

TeXCAD

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Wed, 30 Jan 2013
Subject: TeXCAD
URL: http://sourceforge.net/projects/texcad/

TeXCAD is a program for drawing or
retouching {picture}s in LaTeX. It
extends the original {picture} capabilities,
even without any obligatory LaTeX
package, class or style sheet. Core of
TeXCAD is totally portable. MS
Windows version available.

Ray-tracer

From: Vladimir Frolov
<asmcerf@gmail.com>

Date: Mon, 25 Feb 2013
Subject: ada-ray-tracer
URL: http://code.google.com/p/

ada-ray-tracer/

This is a simple ray tracer for people who
really love Ada. The goals of the project
are:

- Have fun of the Ada programming.

- Create simple and stable ray tracing
software.

- Bring a bit of Graphics to the Ada
community and bring a bit of Ada to the
Graphics Community.

- Have understandable and easy-to-
maintain source code.

- Teach students to look broadly
programming and graphics.

Ada in Context

IBM 437 encoded String to
UTF-16 Wide_String

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 27 Nov 2012 13:02:05 -0800
Subject: IBM 437 encoded String to UTF-16

Wide_String
Newsgroups: comp.lang.ada

I'm looking for a IBM 437 encoded String
[1] to UTF-16 Wide_String conversion.

In the Ada 2012 standard (I found the
very useful UTF-8 <-> UTF-16
conversions)? In GNAT? In some open-
source package?

[1] http://en.wikipedia.org/wiki/
Code_page_437

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Tue, 27 Nov 2012 22:38:05 +0100
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

That doesn't look possible, since IBM 437
is a character set (a mapping from code
points to glyphs) while UTF-16 is an
encoding scheme (a way to compress all
10646 code points on 16 (or sometimes
32) bits values.

For an explanation of these strange terms,
refer to the discussion section of AI05-
0137-2/03.

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 27 Nov 2012 14:12:04 -0800
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

Found! It was just a question of reading
carefully the Wikipedia page:

> [1] http://en.wikipedia.org/wiki/
Code_page_437

More specifically, the reference #8:
http://www.unicode.org/Public/MAPPIN
GS/VENDORS/MICSFT/PC/CP437.TXT

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Tue, 27 Nov 2012 23:14:22 +0100
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

What about

 type Map is array (Character) of
 Wide_Character :=
 (Wide_Character'Val (0),
 Wide_Character'Val (1),
 <other values from the wiki page>);

It is not a big deal to type 256 values.
Half of them (0..127) are literals
corresponding to 7-bit ASCII.

That would give you UCS-2. I presume
that UTF-16 is not needed in this case.

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 27 Nov 2012 15:13:00 -0800
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

Type ? I'm too lazy for that :-). I've put
this [from the Wiki page] into Excel, and
abracadabra, it became that:

http://sf.net/p/azip/code/69/tree//trunk/
gui_common/azip_common.adb

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Tue, 27 Nov 2012 15:41:35 -0800

18 Ada in Context

Volume 34, Number 1, March 2013 Ada User Journal

Subject: Re: IBM 437 encoded String to
UTF-16 Wide_String

Newsgroups: comp.lang.ada

Matreshka [1] includes text codecs to
convert text data between different
encoding.

[1] http://forge.adaru.org/matreshka/wiki/
League/TextCodec

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Wed, 28 Nov 2012 00:34:53 -0800
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

XML/Ada also has a few conversion
packages, but not IBM 437. I think the
most convenient here would be to create a
small binding to the iconv library. I
believe it exists on most systems,
although with slightly different interfaces.
And it supports a huge number of
encodings. You basically need to bind
three functions ("open", "iconv" and
"close")

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Wed, 28 Nov 2012 05:51:58 -0800
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

[binding to the iconv library]

Thanks for that, it could be useful in
another project. In this case (Zip archives)
there are two entry name encodings: UTF-
8 and IBM 437. Now that latter is covered
too, with a simple constant
array(Character) of Wide_Character. No
need to look further...

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 28 Nov 2012 09:52:33 +0100
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

No. IMO the most convenient way would
be to fix the language in order to have
Wide_Wide_String'Class of which String,
Wide_String, Wide_Wide_String,
UTF8_String etc were members.

Encoding is nothing but an instance of
Wide_Wide_String'Class implementing
the interface of an array of code units. In
the case of IBM 437 it is something like:

 type IBM_437_String is
 new Wide_Wide_String
 -- Logical view, string of code points
 and array (Positive range <>) of Byte;
 -- Presentation view

Conversions if ever needed, would be
type/view conversions.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Wed, 28 Nov 2012 12:31:35 +0100
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

In case of differentiation by sets of code
points, I'd rather have an honest type
Unicode_String and---if we are already
fixing the language---put everything that
has {Wide_}String in its name in Annex
J.

But then, consider

 type Index is range 1 .. 12;
 type R is ('I', 'V', 'X', 'L', 'C', 'D', 'M');
 type N is array (Index range <>) of R;

A string of R, named N here, is just fine.
In fact,

 Year : constant N := "MCMLXXXIII";

has a valid literal, and the year so written
is not of any of the standard string types.
The definition of type R actually implies a
codespace, and, for example,
Character'('V') or Wide_Character'('V')
have no role in it, irrespective of any
accidental overlap in encoding or
representation or position.

So, which by force should type N be in
Whatever_String'Class?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 28 Nov 2012 14:36:02 +0100
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

Per inheritance:

 type N is
 new Wide_Wide_String
 and array (...) of R;

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 28 Nov 2012 15:23:08 +0100
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

[...]

It says that instance implementing the
interface are substitutable where a string
is expected. You should be able to pass
IBM_437_String to Put_Line, Trim,
To_Lower etc.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 28 Nov 2012 21:18:23 -0600
Subject: Re: IBM 437 encoded String to

UTF-16 Wide_String
Newsgroups: comp.lang.ada

> In case of differentiation by sets of code
points, I'd rather have an honest type
Unicode_String and---if we are already
fixing the language---put everything
that has {Wide_}String in its name in
Annex J.

That's rather what I would like to do,
especially as trying to support
Wide_Wide_String file names makes
things into a hash. (Do we really want to
have Wide_Wide_Open in Text_IO??).

The language already has almost
everything needed to support
Root_String'Class. Most of the missing

capabilities center around getting string
literals for such a type. We'd probably
need to keep Wide_Wide_String around
in order to provide a common
interconversion format.
> type Index is range 1 .. 12;
 type R is ('I', 'V', 'X', 'L', 'C', 'D', 'M');
 type N is array (Index range <>) of R;

 Year : constant N := "MCMLXXXIII";

N is not derived from Root_String'Class,
and as such it couldn't be used with
Put_Line (for one example). If you
derived it from that type (possibly using a
generic to fill in the operations), then of
course you could. In that case, you'd have
to provide (or let the generic provide)
conversions to and from Unicode.

Ada.Directories and UTF-8
encoding

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Thu, 6 Dec 2012 05:37:27 -0800
Subject: Ada.Directories and UTF-8

encoding ?
Newsgroups: comp.lang.ada

Is there a support for UTF-8-encoded file
names in Ada.Directories, either
mentioned in the RM 2005, 2012, or in
some implementations?

For instance only Copy_File has a Form
parameter and on GNAT GPL 2012 it
seems to ignore "encoding=utf-8".

For Copy_File, Delete_File and Rename
it doesn't bother me since I plan anyway
my own implementation, using
Stream_IO where the form
"encoding=utf-8" is working, at least on
GNAT.

For a directory search using Search it
would be nice to have UTF-8 working
(not tested yet; I'll give a try with the
Rosetta code [1]).

[1] http://rosettacode.org/wiki/
Walk_a_directory/Recursively#Ada

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 6 Dec 2012 17:53:43 +0100
Subject: Re: Ada.Directories and UTF-8

encoding ?
Newsgroups: comp.lang.ada

> […]

I am using GIO bindings instead of
Ada.Directories for this reason.

> […]

Form is a system-dependent parameter.

> For a directory search using Search […]

You could use GIO bindings, they should
work as expected in a system-independent
way. They also support MIME types. See
Dir_Open, Dir_Read_Name, Dir_Close.

http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm#
Gtk.Missed.Dir_Open

Ada in Context 19

Ada User Journal Volume 34, Number 1, March 2013

From: Michael Rohan
<michael@zanyblue.com>

Date: Thu, 6 Dec 2012 09:56:17 -0800
Subject: Re: Ada.Directories and UTF-8

encoding ?
Newsgroups: comp.lang.ada

I raised this issue a while ago. Using
UTF-8 encoded names appears to work
with the current packages (on my Linux
system) but the Ada standard really needs
to be extended to have Wide_ versions of
various file, directory, etc, packages.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 10 Dec 2012 17:28:34 -0600
Subject: Re: Ada.Directories and UTF-8

encoding ?
Newsgroups: comp.lang.ada

> […] the Ada standard really needs to be
extended to have Wide_ versions of
various file, directory, etc, packages.

That way lies madness. We already have
packages like Wide_Text_IO, but this is
orthogonal to those (they're about the type
of file, not the type of the file names). If
we made a Wide_Directories that
supported wide file names, you'd have to
use various combinations of
xxx_Directories and xxx_Text_IO
depending on what you want to do.
Hardly anyone could figure it out.
Besides, the current mechanisms for
handling UTF-8 aren't type-safe.

A better solution would be to require
some sort of UTF-8 support, but that
would actually break the support that
already works for free on Linux. Thus it
got a lot of opposition and we decided
that it was too late to do anything about
this for Ada 2012.

I think we will have to obsolesce the
entire set of String types and routines and
replace them with something truly
general. (Dmitry has been pointing the
way.) But whether we'll have the will to
do that, I cannot say.

In any case, we have an Amendment AI
on this topic, but of course when it will be
addressed could be a long ways off.
(We're not planning to "approve" any
Amendments until we are given an
official charge to do a revision, and that's
unlikely for the next few years.)

Fun with predicates

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: Tue, 18 Dec 2012 21:12:25 +0000
Subject: Re: Press Release - Ada 2012

Language Standard Approved by ISO
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

[…]

A bit of fun with a predicate:

-- compile with gnatmake -gnat12la pn.adb
with Ada.Text_IO;
use Ada.Text_IO;

procedure pn is
 type candidate is range 1 .. 2**30;

 function is_prime (nr : candidate)
 return Boolean is
 n : constant candidate := nr;
 j : candidate;

 begin
 if n < 2 then return False; end if;
 for d in candidate range 2..3 loop
 if n = d then
 return True;
 elsif n mod d = 0 then
 return False;
 end if;
 end loop;
 j := 5; -- j = 6k-1, k = 1
 loop
 if n mod j = 0 then
 return False;
 end if;
 j := j + 2; -- j = 6k+1
 exit when j >= n;
 if n mod j = 0 then
 return False;
 end if;
 j := j + 4; -- j = 6k+5 = 6k'-1, k' = k+1
 exit when j >= n;
 end loop;
 return True;
 end is_prime;
 -- The following exemplifies a couple of
 -- new features in Ada 2012, namely
 -- predicates on subtypes, and conditional
 -- expressions (redux, after Algol 60).
 -- Only prime numbers can be successfully
 -- assigned to this subtype.
 subtype prime_number is candidate
 with Dynamic_Predicate =>
 is_prime(prime_number);
 OK : constant prime_number := 31;
 -- 31 is prime
 KO : prime_number := 19;
 -- 19 is prime

begin
 Put_Line(candidate'Image(OK) &
 (if is_prime(OK) then " is" else " is
 not") & " a prime");
 Flush;
 KO := 32; -- 32 is NOT prime, so this
 -- should raise an exception!
 Put_Line(candidate'Image(OK) &
 (if is_prime(KO) then " is" else " is
 not") & " a prime");
 Flush;

exception
 when others =>
 Put_Line("KO was" &
 (if KO = 19 then " NOT" else "
 WRONGLY") & " set to 32");
 Flush;
end pn;

From: Jeffrey Carter <jrcarter@acm.org>
Date: Tue, 18 Dec 2012 14:36:12 -0700
Subject: Re: Press Release - Ada 2012

Language Standard Approved by ISO
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

> exit when j >= n;

 …

 exit when j >= n;

Can't these exit when j > n / 2?

From: Bill Findlay
<yaldnif.w@blueyonder.co.uk>

Date: Tue, 18 Dec 2012 21:57:26 +0000
Subject: Re: Press Release - Ada 2012

Language Standard Approved by ISO
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

> […]

Or, better, j > sqrt(n), but I was not trying
very hard to be efficient.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Wed, 19 Dec 2012 09:33:01 +0100
Subject: Re: Press Release - Ada 2012

Language Standard Approved by ISO
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

On Tue, 18 Dec 2012 21:12:25 +0000,
Bill Findlay wrote:

> […]

Take an instance of
Ada.Numerics.Discrete_Random and do:

 subtype More_Fun_Number is Integer

 with Dynamic_Predicate =>

 Random = More_Fun_Number;

On style: Any opinions on
not capitalising the first
letter of verbs in a procedure
name?

From: Rod Kay
<rodakay@internode.on.net>

Date: Thu, 3 Jan 2013 20:27:42 -0800
Subject: On Style: Any opinions on *not-

capitalising the first letter of verbs in a
procedure name ?

Newsgroups: comp.lang.ada

Hi folks,

I've been trialling this style and come to
like it. An example would be …

 declare
 package Integer_Vectors is new
 Ada.Containers.Vectors
 (Positive, Integer);
 Integers : Integer_Vectors.Vector;
 begin
 Integers.reserve_Capacity (100);
 Integers.clear;
 end;

The idea is to only capitalise the noun
parts of the procedure name. It's a minor
thing I guess, yet I find code a little easier
to read when used.

On the other hand, the half dozen Ada
people I've discussed the style with have
been dubious at best.

So any thoughts ? … good, bad or ugly ?

From: Adam Beneschan
<adam@irvine.com>

Date: Fri, 4 Jan 2013 08:31:09 -0800

20 Ada in Context

Volume 34, Number 1, March 2013 Ada User Journal

Subject: Re: On Style: Any opinions on
*not- capitalising the first letter of verbs
in a procedure name ?

Newsgroups: comp.lang.ada

That would make sense if German is your
first language, I suppose. To me, whose
main language is (American) English, it
just looks a little weird, aesthetically. But
I don't find it either easier or more
difficult to read either way.

From: Christoph Karl Walter Grein
<christ-usch.grein@t-online.de>

Date: Fri, 4 Jan 2013 08:52:43 -0800
Subject: Re: On Style: Any opinions on

*not- capitalising the first letter of verbs
in a procedure name ?

Newsgroups: comp.lang.ada

I use lower case for small verbs or
prepositions like: is_Empty, has_Item,
Member_of_Something

From: Simon Wright
<simon@pushface.org>

Date: Fri, 04 Jan 2013 18:32:56 +0000
Subject: Re: On Style: Any opinions on

*not- capitalising the first letter of verbs
in a procedure name ?

Newsgroups: comp.lang.ada

I like my IDE (Emacs) to capitalise for
me, and this would need so many case
exceptions that it'd become impractical.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Fri, 04 Jan 2013 20:30:20 -0500
Subject: Re: On Style: Any opinions on

*not- capitalising the first letter of verbs
in a procedure name ?

Newsgroups: comp.lang.ada

It's not what everyone else does, so it's not
a good idea. I suggest you save your
creativity for higher-level stuff, like
interesting algorithms and abstractions.
For low-level stuff like indentation and
casing, just blindly do what everybody
else does. That makes the code more
readable for everybody.

From: Rod Kay
<rodakay@internode.on.net>

Date: Fri, 4 Jan 2013 19:33:02 -0800
Subject: Re: On Style: Any opinions on

*not- capitalising the first letter of verbs
in a procedure name ?

Newsgroups: comp.lang.ada

It occurred to me that verbs are never
capitalised in English (except as the
leading word in a sentence, of course).
Proper nouns (and at one time normal
nouns) are capitalised. I guess I find it
slightly easier to read as it resembles
normal English sentences a little more.

From: Rod Kay
<rodakay@internode.on.net>

Date: Fri, 4 Jan 2013 19:47:28 -0800
Subject: Re: On Style: Any opinions on

*not- capitalising the first letter of verbs
in a procedure name ?

Newsgroups: comp.lang.ada

> I like my IDE (Emacs) to capitalise for
me, and this would need so many case
exceptions that it'd become impractical.

I have a similar trouble with GPS
identifier completion, to only with
standard Ada and 'external/contributed'
packages.

From: Rod Kay
<rodakay@internode.on.net>

Date: Fri, 4 Jan 2013 19:58:53 -0800
Subject: Re: On Style: Any opinions on

*not- capitalising the first letter of verbs
in a procedure name ?

Newsgroups: comp.lang.ada

Breaking with convention has been the
main criticism I've received from others
so far. I agree it's definitely a 'con'.

From: Britt <britt.snodgrass@gmail.com>
Date: Fri, 4 Jan 2013 20:19:45 -0800
Subject: Re: On Style: Any opinions on

*not- capitalising the first letter of verbs
in a procedure name ?

Newsgroups: comp.lang.ada

I agree with Bob Duff's reply. I think
anything starting with lowercase (other
than keywords) looks weird and would
distract me. The common Ada convention
is to capitalise first letters and each letter
immediately following an underscore. I
also prefer to capitalise the first letter of
attributes as in 'Pos. Acronyms should be
all caps.

Your proposal would be awkward for
most pretty printers like to handle but I
think gnatpp could support it using its
default "as declared" casing mode.
Gnatpp also supports casing exception
dictionaries.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 4 Jan 2013 23:13:41 -0600
Subject: Re: On Style: Any opinions on

*not- capitalising the first letter of verbs
in a procedure name ?

Newsgroups: comp.lang.ada

That makes sense, other than "what
everybody else does" is not well-defined.
There still seems to be a lot of code in the
Ada 83 style around, just to take one
example.

At RR Software, our style guide
recommends using "Title Case" for
identifiers. That is, capitalise an identifier
the same way as you would a title. (Our
pretty printer will automatically use this
style if requested.)

For instance, taking some examples from
one of the AI tools:

 procedure Put_AI_Header_and_Subject
 (Fyle : in Ada.Text_IO.File_Type;
 Issue : in AI_Types.AI_Identifier) is
 -- Put a line containing an AI identifier,
 -- version, last modification date, and
 -- subject to Fyle.

 procedure Records_of_Response
 (TXT_Name, RTF_Name,
 HTML_Name : in String);

 -- Create the record of response document
 -- from the data stored in
 -- AI_Data.AI_Database and the original
 -- AI files.

I'm forever getting in trouble with people
like Bob when I write identifiers in this
style in the Ada Standard. :-) To me,
capitalising "_And_" and "_Of_" is ugly.
(It should be noted, this was not originally
my idea, it took a lot of convincing
originally.)

I think the best advice is to use whatever
typographical style that makes sense in
your organisation. But try to make sure
that everyone that works on a project uses
the same style! It's that consistency that
counts most, not the details.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 4 Jan 2013 23:18:51 -0600
Subject: Re: On Style: Any opinions on

*not- capitalising the first letter of verbs
in a procedure name ?

Newsgroups: comp.lang.ada

This would make sense to me, but only if
you capitalised the first letter of every
Identifier. This to me is like starting a
sentence or title (RRS thinks of identifiers
as titles), and the first letter is always
capitalised. Thus,

 Is_Valid and Window_is_Valid

Certainly, I'd never think that something
like

 reserve_Capacity

is correct. But I could see a style where a
verb in the middle was in lower case.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 4 Jan 2013 23:24:49 -0600
Subject: Re: On Style: Any opinions on

*not- capitalising the first letter of verbs
in a procedure name ?

Newsgroups: comp.lang.ada

> Your proposal would be awkward for
most pretty printers like to handle but I
think gnatpp could support it using its
default "as declared" casing mode.
Gnatpp also supports casing exception
dictionaries.

True, but Title Case is easy (the number
of exceptions is very small, I think there
are twenty words in the Janus/Ada pretty
printer's list). And it's what you'd write in
text: you'd write "Records of Response",
never "Records Of Response".

As with all such things, there can be no
resolution to such an argument. Just don't
ever start an identifier with a lower case
letter, that's just too weird. :-)

From: Britt <britt.snodgrass@gmail.com>
Date: Sun, 6 Jan 2013 14:03:42 -0800
Subject: Re: On Style: Any opinions on

*not- capitalising the first letter of verbs
in a procedure name ?

Newsgroups: comp.lang.ada

Ada in Context 21

Ada User Journal Volume 34, Number 1, March 2013

After thinking about why your proposal
looks bad to me I realised that I always
regard the name of a subprogram as a
singular proper noun (rather than a
sentence in itself) because it is used in the
source code as a proper name. E.g.

 procedure Run_Very_Quickly
 (Direction : in Direction_Type) is ...

and, at the point of use:

 Run_Very_Quickly (Direction =>
 North_By_Northwest);

it is the _name_ of the procedure and
should be capitalised as a name (proper
noun).

From: John English
<john.foreign@gmail.com>

Date: Fri, 11 Jan 2013 00:01:20 -0800
Subject: Re: On Style: Any opinions on

*not- capitalising the first letter of verbs
in a procedure name ?

Newsgroups: comp.lang.ada

So perhaps you should ask yourself these
questions:

- Is_It_Easier_To_Read?

- Will_Autoformatting_Still_Work?

and then decide to either do_It or
Avoid_It… :-)

State machines

From: david.mentre@gmail.com
Date: Mon, 21 Jan 2013 02:42:17 -0800
Subject: References on encoding

(Hierarchical) State Machines /
Automata in Ada?

Newsgroups: comp.lang.ada

Would somebody have references on the
encoding of State Machines or
Hierarchical State Machines in Ada?

I am looking for best practices for such
encoding (reasonable efficiency, safe
encoding) or pointer to publicly available
reference code. The application domain is
safety critical systems with real time
constraints (timers).

For now, I have found "Implementation of
state machines with tasks and protected
objects" (Ada User Journal 20:4 (Jan
2000), 273-288).

Moreover, I am strongly interested in the
formal verification of such machines
using SPARK or GNATprove tools. So if
somebody is aware of research work on
automata in Ada with such tools, I would
be very interested in them.

From: Rolf Ebert <rrr.eee.27@gmail.com>

Date: Wed, 13 Feb 2013 08:02:23 -0800
Subject: Re: References on encoding

(Hierarchical) State Machines /
Automata in Ada?

Newsgroups: comp.lang.ada

I recommend looking at "Rhapsody in
Ada", now by IBM, formerly iLogix. I
used it around 2004. AFAIK it is still
available.

"Rhapsody in Ada" is a UML tool very
strong in (hierarchical) state machines.
There are external add-ons (provers) for
almost everything you can prove in a state
machine.

I did not consider the generated Ada code
as very efficient, though (don't remember
why).

From: Simon Wright
<simon@pushface.org>

Date: Wed, 13 Feb 2013 18:05:57 +0000
Subject: Re: References on encoding

(Hierarchical) State Machines /
Automata in Ada?

Newsgroups: comp.lang.ada

There was a paper at an Ada UK
conference a while back - the idea was
machine verification of hand-coded state
charts; turned out that the implementers
didn't understand the state machines the
way the designers had intended, and they
got them wrong anyway.

So I'd be reluctant to see hierarchical state
machines used in safety-related software;
the simpler the better.

On the other hand, if you don't allow
HSMs you will have separate cooperating
state machines; also tricky to reason
about.

From: Jeffrey Carter <jrcarter@acm.org>
Date: Wed, 13 Feb 2013 13:25:43 -0700
Subject: Re: References on encoding

(Hierarchical) State Machines /
Automata in Ada?

Newsgroups: comp.lang.ada

I recall someone named Robert Dewar
(whoever he is :) saying that the
mechanical implementation of STDs is a
place where one should use "goto". That
was here on c.l.a:

https://groups.google.com/forum/
?fromgroups=#!topic/comp.lang.ada/
tFlS5d7bfpo

This might also be interesting:

https://groups.google.com/forum/
?fromgroups=#!topic/comp.lang.ada/
FPcgCSWstXk[1-25-false]

From: Simon Wright
<simon@pushface.org>

Date: Wed, 13 Feb 2013 22:28:40 +0000
Subject: Re: References on encoding

(Hierarchical) State Machines /
Automata in Ada?

Newsgroups: comp.lang.ada

I can understand that if the FSM is a task -
you're implementing the states in terms of
the program counter, nothing wrong with
goto for that. But if you've inverted this,
so that the FSM is a passive construct,
you're going to need an enumeration of
the possible states, and some way of
representing the possible events (I made
an abstract type Event_Base with an
abstract Handler, then each concrete event
that could be received by a particular
FSM has a case statement over the
possible states; the whole thing generated
from a UML model [1]).

[1] http://coldframe.sourceforge.net/
coldframe/events.html

From: jpwoodruff@gmail.com
Date: Wed, 13 Feb 2013 16:00:12 -0800
Subject: Re: References on encoding

(Hierarchical) State Machines /
Automata in Ada?

Newsgroups: comp.lang.ada

I wonder if you are aware of FSMedit by
Christoph Grein, dated about 2004.

http://www.christ-usch-grein.homepage.
t-online.de/Ada/FSM.html

This is plainly not directly applicable to
"safety critical systems with real time
constraints". However perhaps some
useful thoughts.

Ada up on the transparent
language popularity index

From: Thomas Løcke <tl@ada-dk.org>
Date: Sun, 17 Feb 2013
Subject: Ada has moved one up at the

transparent language popularity index
for February 2013!

URL: https://plus.google.com/
112815721307813813920/posts/ZdKfFo
8i9o3

She's now sitting at #8 for compiled
languages. There's still a good way to go
before we overtake Pascal, but with a
concerted effort I'm sure we can make it
happen. :)

http://lang-index.sourceforge.net

22

Volume 34, Number 1, March 2013 Ada User Journal

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2013

April 08-11 25th IEEE Software Technology Conference (STC'2013). Salt Lake City, Utah, USA. Theme: "Back

to the Future: Enabling Mission Success through Software Technology". Topics include: cybersecurity,
software production efficiencies, resilient software, software engineering best practices, etc.

 April 17-19 16th International Real-Time Ada Workshop (IRTAW'2013). Kings Manor, York,
UK. In cooperation with Ada-Europe.

 April 25 Ada Conference UK 2013. Birmingham, UK. Theme: "Building better, safer
software". Topics include: a benchmark for safety, security and reliability - the new
updated Ada 2012 language.

May 06-08 15th Workshop Software Reengineering (WSR'2013). Bad-Honnef, Germany. Topics include: all
activities that aim at examination and alteration of a software system to reconstitute it in a new form,
such as: methods and models for software reengineering; embedding reengineering activities into
software development; tools for program comprehension, redocumentation, software visualization, static
and dynamic program analysis, software test, software maintenance, program transformation;
interoperability between software reengineering and development tools; migration strategies and
transformation approaches; architecture reconstruction, assessment, migration; approaches for assessing
software quality; improving software quality by reengineering; economical aspects of reengineering;
experience reports about maintenance activities, migration and reengineering projects; etc.

May 14-16 5th NASA Formal Methods Symposium (NFM'2013). Moffett Field, California, USA. Topics include:
identifying challenges and providing solutions to achieving assurance in mission- and safety-critical
systems; formal verification, including theorem proving, model checking, and static analysis; techniques
and algorithms for scaling formal methods, including but not restricted to abstraction and symbolic
methods, compositional techniques, as well as parallel and distributed techniques; model-based
development; applications of formal methods to aerospace systems; formal methods for multi-core
implementations; etc.

 May 14-17 DAta Systems In Aerospace (DASIA'2013). Porto, Portugal.

 May 18-26 35th International Conference on Software Engineering (ICSE'2013). San Francisco, USA. Theme:
"Software Engineering Ideas to Change the World".

May 18-19 10th Working Conference on Mining Software Repositories (MSR'2013). Topics
include: mining of repositories across multiple projects; characterization, classification,
and prediction of software defects based on analysis of software repositories; techniques
to model reliability and defect occurrences; search techniques to assist developers in
finding suitable components and code fragments for reuse; empirical studies on
extracting data from repositories of large long-lived and/or industrial projects; mining
execution traces and logs; etc.

May 19-21 26th Conference on Software Engineering Education and Training (CSEET'2013).
Theme: "SE Education and Training: maintaining quality in an uncertain future". Topics
include: modern development methods, and particularly agile or lean methods; tools and

Conference Calendar 23

Ada User Journal Volume 34, Number 1, March 2013

environments, including open source and commercial products; industry-academia
collaboration; technology in support of education and training; etc.

 May 20-24 27th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2013). Boston-
Cambridge, Massachusetts, USA. Topics include: all areas of parallel and distributed processing, such
as parallel and distributed algorithms, applications of parallel and distributed computing, parallel and
distributed software, including parallel and multicore programming languages and compilers, runtime
systems, parallel programming paradigms, and programming environments and tools, etc.

May 24 14th International Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDSEC-13). Topics include: parallel and distributed
computing techniques and codes; practical experiences using various parallel and
distributed systems; loop and task parallelism; scheduling and load balancing; compiler
issues for scientific and engineering computing; scientific and engineering computing on
parallel computers, multicores, GPUs, FPGAs, ...; etc.

June 03-06 8th International Federated Conferences on Distributed Computing Techniques (DisCoTec'2013).
Firenze, Italy. Includes the COORDINATION, DAIS, and FMOODS/FORTE conferences. Deadline for
early registration: April 25, 2013.

June 03-05 13th IFIP International Conference on Distributed Applications and Interoperable
Systems (DAIS'2013). Topics include: all aspects of distributed applications and
systems, throughout their lifecycle; design, architecture, implementation and operation
of distributed computing systems, their supporting middleware, appropriate software
engineering methods and tools, as well as experimental studies and practical reports;
language-based approaches; domain-specific languages; etc.

June 04-06 13th International Conference on Software Process Improvement and Capability dEtermination
(SPICE'2013). Bremen, Germany. Topics include: process assessment, improvement and risk
determination in areas of application such as automotive systems and software, aerospace systems and
software, medical device systems and software, safety-related systems and software, financial
institutions and banks, small and very small enterprises, etc.

June 04-07 22nd Australasian Software Engineering Conference (ASWEC'2013). Melbourne, Australia. Topics
include: empirical research in software engineering; formal methods; legacy systems and software
maintenance; measurement, metrics, experimentation; modularisation techniques, including component-
based software engineering and aspect-oriented programming; programming techniques, such as object-
oriented, functional and hybrid programming; open source software development; quality assurance;
real-time and embedded software; software analysis; software design and patterns; software engineering
education; software processes and quality; software re-use and product development; software risk
management; software security, safety and reliability; software verification and validation; standards
and legal issues; etc.

 June 10-14 18th International Conference on Reliable Software Technologies - Ada-
Europe'2013. Berlin, Germany. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN.

June 10-14 10th International Conference on integrated Formal Methods (iFM'2013). Turku, Finland. Topics
include: the combination of (formal and semi-formal) methods for system development, regarding
modeling and analysis, and covering all aspects from language design through verification and analysis
techniques to tools and their integration into software engineering practice.

June 12-14 14th International Conference on Product Focused Software Development and Process
Improvement (PROFES'2013). Paphos, Cyprus. Topics include: software engineering techniques,
methods, and technologies for product-focused software development and process improvement as well
as their practical application in an industrial setting.

June 16-21 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'2013).
Seattle, Washington, USA. Topics include: programming languages, their design, implementation,
development, and use; innovative and creative approaches to compile-time and runtime technology,
novel language designs and features, and results from implementations; language designs and
extensions; static and dynamic analysis of programs; domain-specific languages and tools; type systems
and program logics; checking or improving the security or correctness of programs; memory
management; parallelism, both implicit and explicit; debugging techniques and tools; etc.

24 Conference Calendar

Volume 34, Number 1, March 2013 Ada User Journal

 June 16-23 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES'2013). Topics include: programming language challenges
(features to exploit multicore architectures; features for distributed and real-time control
embedded systems; language features and techniques to enhance reliability, verifiability,
and security; virtual machines, concurrency, inter-processor synchronization, and
memory management; ...); compiler challenges (interaction between embedded
architectures, operating systems, and compilers; support for enhanced programmer
productivity; support for enhanced debugging, profiling, and exception/interrupt
handling; ...); tools for analysis, specification, design, and implementation (distributed
real-time control, system integration and testing, run-time system support for embedded
systems, support for system security and system-level reliability, ...); etc.

June 17-21 4th International Symposium on Architecting Critical Systems (ISARCS'2013). Vancouver, Canada.
Topics include: tools for construction, design, and testing of critical systems; architectural description
languages, models, and notations; evolution and maintenance of critical systems; industrial reports, case
studies, and application domains; formal methods, model checking, and theorem proving for critical
software design; etc.

June 18-21 13th International Conference on Software Reuse (ICSR'2013). Pisa, Italy. Theme: "Safe and Secure
Reuse". Topics include: guaranteeing safety and security related properties of reusable components,
certification issues for mission-critical reusable components, component-based reuse, COTS-based
development, generator-based techniques, domain-specific languages, testing in the context of software
reuse, model-driven development, reuse of non-code artifacts (process, experience, etc.), software
product line techniques, quality-aspects of reuse, industrial experience with reuse, software evolution
and reuse, large-scale systems, etc.

 June 19-21 16th IEEE International Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC'2013). Paderborn, Germany. Topics include: Programming and system engineering
(ORC paradigms, languages, model-driven development of high integrity applications, specification,
design, verification, validation, testing, maintenance, ...); System software (real-time kernels,
middleware support for ORC, extensibility, synchronization, scheduling, fault tolerance, security, ...);
Applications (embedded systems (automotive, avionics, consumer electronics, ...), real-time object-
oriented simulations, ...); System evaluation (timeliness, worst-case execution time, dependability, end-
to-end QoS, fault detection and recovery time. ...); etc.

June 20-21 Symposium on Languages, Applications and Technologies (SLATE'2013). Porto, Portugal. Topics
include: programming language concepts and methodologies; design of novel language constructs and
their implementation; Domain Specific Languages design and implementation; programming tools;
programming, refactoring and debugging environments; dynamic and static analysis: program slicing;
compilation and interpretation techniques; code generation and optimization; etc.

June 25-28 9th International Conference on Open Source Systems (OSS'2013). Koper/Capodistria, Slovenia.

June 26-28 16th International System Design Languages Forum (SDL'2013). Montréal, Canada. Topics include:
dependability (availability and reliability) engineering, approaches and standards; industrial application
reports (industrial usage reports, standardization activities, tool support and frameworks, domain-
specific applicability such as telecommunications, aerospace, automotive, control, etc.); evolution of
development languages: domain-specific language profiles especially for dependability, modular
language design, semantics and evaluation, methodology for application; etc. Deadline for submissions:
May 15, 2013 (posters, exhibit proposals).

June 27-29 25th International Conference on Software Engineering and Knowledge Engineering (SEKE'2013).
Boston, USA. Deadline for early registration: May 10, 2013.

 June 27-30 12th International Symposium on Parallel and Distributed Computing (ISPDC'2013). Bucharest,
Romania. Topics include: tools and environments for parallel program analysis, parallel programming
paradigms and APIs, distributed systems methodology and networking, distributed software
components, task scheduling and load balancing, fault tolerance in parallel and distributed systems,
security in parallel and distributed systems, performance management in parallel and distributed
systems, real-time distributed and parallel systems, etc. Deadline for early registration: April 25, 2013.

 July 01-02 International Symposium on High-Level Parallel Programming and applications (HLPP'2003).
Paris, France.

Conference Calendar 25

Ada User Journal Volume 34, Number 1, March 2013

July 01-03 18th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2013). Canterbury, Kent, UK.

July 01-03 7th International Symposium on Theoretical Aspects of Software Engineering (TASE'2013).
Birmingham, UK. Topics include: the theoretical aspects of model driven software engineering,
component based software engineering, software security, reliability, and verification, embedded and
real time software systems, aspect and object oriented software design, reverse engineering, etc.

 July 01-05 27th European Conference on Object-Oriented Programming (ECOOP'2013). Montpellier, France.
Topics include: all areas of object technology and related software development technologies, such as
aspects, components, modularity, concurrent and parallel systems, distributed computing, programming
environments, versioning, refactoring, software evolution, language definition and design, language
implementation, compiler construction, design methods and design patterns, real-time systems, security,
specification, verification, type systems, etc. Deadline for submissions: April 5, 2013 (tutorials), April
15, 2013 (research project symposium abstracts). Deadline for early registration: June 1, 2013.

July 01 Workshop on MechAnisms for SPEcialization, Generalization and inHerItance
(MASPEGHI'2013). Topics include: the design of inheritance-related reuse
mechanisms, including their dynamic semantics, static analysis, permissions and
visibility; software engineering issues, including metrics, interactions with
methodologies, and consequences for quality parameters such as maintainability and
comprehensibility. Deadline for paper submissions: April 21, 2013.

 July 02 8th Workshop on Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems (ICOOOLPS'2013). Topics include: efficient
implementation and compilation of OO languages in various application domains
ranging from embedded and real-time systems to desktop systems. Deadline for paper
submissions: April 19, 2013.

July 03-07 8th International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE'2013). Angers, France. Topics include: emerging as well as established SE methods, practices,
architectures, technologies and tools; software process improvement, model-driven engineering,
application integration technologies, software quality management, software change and configuration
management, geographically distributed software development environments, formal methods,
component-based software engineering and commercial-off-the-shelf (COTS) systems, software and
systems development methodologies, etc.

 July 12-14 GNU Tools Cauldron 2013. Mountain View, California, USA. Topics include: gathering of GNU tools
developers, to discuss current/future work, coordinate efforts, exchange reports on ongoing efforts,
discuss development plans for the next 12 months, developer tutorials and any other related discussions.

 July 16-18 11th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA'2013). Melbourne, Australia. Topics include: parallel and distributed algorithms, and
applications; high-performance scientific and engineering computing; middleware and tools; reliability,
fault tolerance, and security; parallel/distributed system architectures; tools/environments for
parallel/distributed software development; novel parallel programming paradigms; compilers for parallel
computers; distributed systems and applications; etc.

July 17-19 18th IEEE International Conference on the Engineering of Complex Computer Systems
(ICECCS'2013). Singapore. Topics include: verification and validation, security of complex systems,
model-driven development, reverse engineering and refactoring, design by contract, agile methods,
safety-critical & fault-tolerant architectures, real-time and embedded systems, tools and tool integration,
industrial case studies, etc.

July 23-25 25th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA'2013). Montreal,
Canada. Topics include: parallel and distributed algorithms; multi-core architectures; compilers and
tools for concurrent programming; synergy of parallelism in algorithms, programming, and architecture;
etc.

July 29-30 13th International Conference on Quality Software (QSIC'2013). Nanjing, China. Theme: "Quality
of Evolving Software". Topics include: dynamic analysis, software quality, inspection, fault localization,
code review, formal methods, static analysis, proof-based systems, verification techniques combining
proofs and tests, testing in multi-core environments, etc. Deadline for submissions: April 5 2013
(technical papers, industry papers).

26 Conference Calendar

Volume 34, Number 1, March 2013 Ada User Journal

August 19-23 9th Joint European Software Engineering Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE'2013). Saint Petersburg, Russia. Topics include:
components, development environments and tools, distributed software, embedded and real-time
software, maintenance and evolution, model-driven software engineering, parallel and concurrent
software, reverse engineering, software architecture, validation, verification, and testing, etc.

 Aug 19-20 International Conference on Multicore Software Engineering, Performance, and
Tools (MUSEPAT'2013). Topics include: software engineering for multicore systems;
specification, modeling and design; programming models, languages, compiler
techniques and development tools; verification, testing, analysis; debugging,
performance tuning, and security testing; software maintenance and evolution; multicore
software issues in scientific computing, embedded and mobile systems; energy-efficient
computing; experience reports.

 August 19-21 19th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA'2013). Taipei, Taiwan. Topics include: embedded system design practices,
software and compiler issues for heterogeneous multi-core embedded platform, real-time scheduling,
timing analysis, programming languages and run-time systems, middleware systems, design and
analysis tools, case studies and applications, etc.

 August 26-30 19th International European Conference on Parallel and Distributed Computing (Euro-Par'2013).
Aachen, Germany. Topics include: all aspects of parallel and distributed computing, such as support
tools and environments, scheduling, high-performance compilers, distributed systems and algorithms,
parallel and distributed programming, multicore and manycore programming, theory and algorithms for
parallel computation, etc.

September 04-06 39th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2013).
Santander, Spain. Topics include: information technology for software-intensive systems. Deadline for
submissions: April 12, 2013 (PhD Symposium).

September 08-11 10th International Conference on Parallel Processing and Applied Mathematics (PPAM'2013).
Warsaw, Poland. Topics include: multi-core and many-core parallel computing; parallel/distributed
algorithms: numerical and non-numerical; scheduling, mapping, load balancing; parallel/distributed
programming; tools and environments for parallel/distributed computing; security and dependability in
parallel/distributed environments; applications of parallel/distributed computing; etc. Event also
includes: workshop on Language-Based Parallel Programming Models. Deadline for submissions: April
21, 2013 (papers).

 Sep 10-13 International Conference on Parallel Computing 2013 (ParCo'2013). München, Germany. Topics
include: all aspects of parallel computing, including applications, hardware and software technologies as
well as languages and development environments, in particular Parallel programming languages,
compilers, and environments; Tools and techniques for generating reliable and efficient parallel code;
Best practices of parallel computing on multicore, manycore, and stream processors; etc. Deadline for
submissions: July 31, 2013 (full papers).

September 22-28 29th IEEE International Conference on Software Maintenance (ICSM'2013). Eindhoven, the
Netherlands. Topics include: software repository analysis and mining; reverse engineering, re-
engineering and migration; software refactoring, restructuring and renovation; software and system
comprehension; maintenance-related testing; maintenance and evolution processes; software quality
improvement; etc. Deadline for submissions: April 17, 2013 (abstracts research track), April 24, 2013
(full papers research track), June 17, 2013 (abstracts), June 24, 2013 (full papers).

 Sep 23-24 18th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2013).
Madrid, Spain. Topics include: design, specification, code generation and testing based on formal
methods; methods, techniques and tools to support automated analysis, certification, debugging,
learning, optimization and transformation of complex, distributed, real-time systems and embedded
systems; verification and validation methods that address shortcomings of existing methods with respect
to their industrial applicability (e.g., scalability and usability issues); tools for the development of formal
design descriptions; case studies and experience reports on industrial applications of formal methods,
focusing on lessons learned or identification of new research directions; impact of the adoption of
formal methods on the development process and associated costs; application of formal methods in
standardization and industrial forums. Deadline for submissions: May 3, 2013 (papers).

Conference Calendar 27

Ada User Journal Volume 34, Number 1, March 2013

September 23-27 11th International Conference on Software Engineering and Formal Methods (SEFM'2013).
Madrid, Spain. Topics include: programming languages, program analysis and type theory; formal
methods for real-time, hybrid and embedded systems; formal methods for safety-critical, fault-tolerant
and secure systems; light-weight and scalable formal methods; tool integration; applications of formal
methods, industrial case studies and technology transfer; education and formal methods; etc.

 Sep 29 - Oct 04 CBSoft2013 - 17th Brazilian Symposium on Programming Languages (SBLP'2013). Brasília,
Distrito Federal, Brazil. Topics include: the fundamental principles and innovations in the design and
implementation of programming languages and systems; programming paradigms and styles, including
object-oriented, real-time, multithreaded, parallel, and distributed programming; program analysis and
verification, including type systems, static analysis and abstract interpretation; programming language
design and implementation, including new programming models, programming language environments,
compilation and interpretation techniques; etc. Deadline for submissions: April 19, 2013 (abstracts),
April 26, 2013 (full papers).

Sep 30 - Oct 03 32nd International Symposium on Reliable Distributed Systems (SRDS'2013). Braga, Portugal.
Topics include: distributed objects and middleware systems, enabling technologies for dependable
applications, formal methods and foundations for dependable distributed computing, analytical or
experimental evaluations of dependable distributed systems, secure and trusted systems, high-assurance
and safety-critical system design and evaluation, etc. Deadline for submissions: April 2, 2013
(abstracts), April 8, 2013 (full papers).

 Sep 30- Oct 04 12th International Conference on Parallel Computing Technologies (PaCT'2013). Saint-Petersburg,
Russia. Topics include: new developments, applications, and trends in parallel computing technologies;
all technological aspects of the applications of parallel computer systems; high level parallel
programming languages and systems; methods and tools for parallel solution of large-scale problems;
languages, environments and software tools supporting parallel processing; teaching parallel processing;
etc.

 October 03 ICPP2013 - International Workshop on Embedded Multicore Systems (EMS'2013). Lyon, France.
Topics include: programming models for embedded multicore systems; software for Multicore, GPU,
and embedded architectures; real-time system designs for embedded multicore environments;
applications for automobile electronics of multicore designs; compiler for worst-case execution time
analysis; formal method for embedded systems; etc. Deadline for submissions: May 1, 2013.

October 10-11 7th International Symposium on Empirical Software Engineering and Measurement (ESEM'2013).
Baltimore, Maryland, USA. Topics include: qualitative methods; replication of empirical studies;
empirical studies of software processes and products; industrial experience and case studies; evaluation
and comparison of techniques and models; reports on the benefits / costs associated with using certain
technologies; empirically-based decision making; quality measurement and assurance; software project
experience and knowledge management; etc. Deadline for submissions: June 11, 2013 (short papers,
posters).

October 26-28 6th International Conference on Software Language Engineering (SLE'2013). Indiana, Indianapolis,
USA. Topics include: formalisms used in designing and specifying languages and tools that analyze
such language descriptions; language implementation techniques; program and model transformation
tools; language evolution; approaches to elicitation, specification, or verification of requirements for
software languages; language development frameworks, methodologies, techniques, best practices, and
tools for the broader language lifecycle; design challenges in SLE; applications of languages including
innovative domain-specific languages or "little" languages; etc. Deadline for submissions: June 7, 2013
(abstracts), June 14, 2013 (full papers).

 October 26-31 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2013). Indiana, Indianapolis, USA. Deadline for submissions: April 5, 2013
(Onward! research papers, wavefront papers, experience reports), April 10, 2013 (Onward! essays), June
8, 2013 (Dynamic Languages Symposium).

 Oct 26 - 31 128th Annual Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA'2013). Topics include: any aspect of programming,
systems, languages, and applications; any aspect of software development, including
requirements, modeling, prototyping, design, implementation, generation, analysis,
verification, testing, evaluation, maintenance, reuse, replacement, and retirement of

28 Conference Calendar

Volume 34, Number 1, March 2013 Ada User Journal

software systems; large-scale software repositories; tools (such as new languages,
program analyses, or runtime systems) or techniques (such as new methodologies,
design processes, code organization approaches, and management techniques) that go
beyond objects in interesting ways; etc.

Oct 29 - Nov 01 15th International Conference on Formal Engineering Methods (ICFEM'2013). Queenstown, New
Zealand. Topics include: abstraction and refinement; program analysis; software verification; formal
methods for software safety, security, reliability and dependability; tool development, integration and
experiments involving verified systems; formal methods used in certifying products under international
standards; formal model-based development and code generation; etc. Deadline for submissions: April
1, 2013 (workshops, tutorials), April 15, 2013 (abstracts), April 22, 2013 (full papers).

 Nov 10-11 ACM SIGAda Annual International Conference on High Integrity Language
Technology (HILT'2013). Pittsburgh, Pennsylvania, USA. Date of event: late October
or early November, 2013. Deadline for submissions: June 29, 2013 (technical articles,
extended abstracts, experience reports, panel sessions, workshops, tutorials), August
1, 2013 (industrial presentations).

December 02-05 20th Asia-Pacific Software Engineering Conference (APSEC'2013). Bangkok, Thailand. Topics
include: software engineering methodologies; software analysis and understanding; software testing,
verification and validation; software maintenance and evolution; software quality and measurement;
software process and standards; software security, reliability and privacy; software engineering
environments and tools; software engineering education; distributed and parallel software systems;
embedded and real-time software systems; formal methods in software engineering; etc. Deadline for
submissions: 11 June 2013 (workshops), 18 June 2013 (papers), 30 July 2013 (industry track papers,
postgraduate symposium papers, tutorials).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2014

April 05-13 European Joint Conferences on Theory and Practice of Software (ETAPS'2014). Grenoble, France.

Events include: CC, International Conference on Compiler Construction; ESOP, European Symposium
on Programming; FASE, Fundamental Approaches to Software Engineering; FOSSACS, Foundations of
Software Science and Computation Structures; POST, Principles of Security and Trust; TACAS, Tools
and Algorithms for the Construction and Analysis of Systems.

Forthcoming Events 29

Ada User Journal Volume 34, Number 1, March 2013

A benchmark for safety, security and reliability
– the new updated Ada 2012 language

In an era when software impacts on almost every part of our lives, the need for software that is
both safe and secure has never been greater or more urgent. With decades of success in
industrial sectors including avionics, aerospace and defence, Ada is generating new interest in
domains such as automotive, medical and financial systems, where the cost of software errors
can range from lost livelihoods to lost lives. Ada 2012 is the next generation of the world’s
premier programming language for engineering safe, secure and reliable software.

The most important enhancements in Ada 2012 are directly related to program “correctness”,
namely the introduction of more powerful assertion mechanisms (predicates) into the
language: pre- and post-conditions for subprograms, type invariants, and subtype predicates.
These are mechanisms that encourage the programmer to better specify the intent of the code
they write, and allow the run-time system to verify that this intent is actually achieved. These
“programming by contract” features are also beneficial when utilising static analysis tools.

The one-day Ada Conference UK will feature a half-day tutorial on the new capabilities
introduced in this latest version. Presented in the morning by Tucker S. Taft, language expert
and member of the Ada Rapporteur Group (ARG), this tutorial will introduce these new
features to programmers familiar with either Ada or other systems programming languages
such as C, C++ or Java. The afternoon session will offer talks from industry and technical
experts as well as a selection of vendor talks from the Ada ecosystem.

Registration details and further information on this key event in the Ada calendar can be found
at www.ada-uk-conference.co.uk.

Event operated by CSR, in cooperation with
the Safety-Critical Systems Club:

www.scsc.org.uk

Event lead sponsor and advocate:
www.adacore.com

30 Forthcoming Events

Volume 34, Number 1, March 2013 Ada User Journal

Ada Conference UK
Austin Court, Birmingham

25th April 2013

Provisional PROGRAMME

08.30 Coffee and Registration

09.00 Introduction and Welcome: John Barnes, Event Chairman

09.00 Ada 2012 Tutorial: Tucker Taft, SofCheck, Inc.
 (mid-morning break 10.15 to 10.45)

12.00 Lunch

13.15 Keynote Speaker: John C. Knight, University of Virginia, Charlottesville
 “Ada Types - Are They Sufficient?”

14.00 Technical Track Vendor Track

Speaker from Def Stan Authoring Team
Proposed Revision to Def Stan 00-56

Atego

Altran
Jeff Cousins, BAE Systems

Ada 2005 in Practice AdaCore

15.00 Break

15.30 Technical Track Vendor Track

Mark Richardson, LDRA

From the model to the target to certification

IBM

Wind River

Nick Tudor, D-RisQ Ltd
Applying D0333/DO178C

VectorCast

16.30 Closing Keynote Speaker: Robert Dewar, New York University and AdaCore
 “I’m as Mad as Hell, and I’m Not Going To Take This Anymore!”

17.15 Close

The event website at www.ada-uk-conference.co.uk will provide further details as they become available

Forthcoming events 31

Ada User Journal Volume 34, Number 1, March 2013

18th International
Conference on Reliable
Software Technologies

Ada-Europe 2013
 June 10-14, 2013, Berlin, Germany

The 18th International Conference on Reliable Software Technologies - Ada-Europe
2013 will offer an outstanding technical program, invited talks, an exhibition from
Tuesday to Thursday, and a series of tutorials on Monday and Friday.

Keynotes

Bruce Powel Douglass, Chief Evangelist IBM Rational: Model-based Ada
Development for DO-178B/C and the Application of Agile Methods.

Jack G. Ganssle, The Ganssle Group: The Way Ahead in Software Engineering:
Replacing Artists With Disciplined Grownups.

Giorgio C. Buttazzo, Scuola Superiore Sant'Anna of Pisa, Italy: Research
Challenges in Exploiting Multi-Core Platforms for Real-Time Applications.

Schedule

Date / Time Morning Afternoon Late afternoon /
Evening

Monday,
June 10

Tutorial 1 – 3 Tutorial 4 - 6 Get Together

Tuesday,
June 11

Registration

Keynote 1

Session Multicore and
Distributed Systems

Session Industrial
Experience 1

Special Session:
Ada 2012

Session Ada
and Spark

Ada Europe General
Assembly

Welcome Party Products
(Vendor
Session)

Wednesday,
June 12

Keynote 2

Session Dependability

Products (Vendor Session)

Session Industrial Experience 2

Conference Dinner at
the Botanical Garden

Thursday,
June 13

Keynote 3

Panel: How to Use the
Heap in Real-Time
Systems

Session Real-Time Systems

Closing Session

Friday, June 14 Tutorial 7 -9 Tutorial 7, 10-11

For the detailed program including working group meetings, tutorials, social events, exhibition and registration
information see www.ada-europe.org/conference2013. For exhibition and sponsorship information please ask at
exhibition / sponsor@ada-europe2013.org.
Working group, tutorial or conference registration as well as accommodation requests can only be made online. The
early registration is possible until April, 30th and online registration is possible until June, 2nd.
A block of rooms at reduced prices has been reserved at the hotel until April, 30th. Attendees are asked to stay at
the conference hotel and make hotel reservations only on the conference registration page.

32 Forthcoming Events

Volume 34, Number 1, March 2013 Ada User Journal

Tutorials

Monday, June 10, 2013

AM Tutorial 1:
T. Taft, AdaCore, USA:
Multicore programming using
divide-and-conquer and work
Stealing

Tutorial 2:
J.-P. Rosen, Adalog, France:
Designing and checking coding
standards for Ada

Tutorial 3:
W.G.Bail, The MITRE Corporation,
USA:
Effective requirements
development practices and their
role in effective design

PM Tutorial 4:
K. Nilsen, Atego Systems, Inc.,
USA:
Understanding dynamic memory
management in safety critical
Java

Tutorial 5:
J.-P. Rosen, Adalog, France:
Developing code analysis
applications with ASIS

Tutorial 6:
W.G.Bail, The MITRE Corporation,
USA:
Verification and validation
techniques for dependable
systems

Friday, June 14, 2013

AM Tutorial 7:
B. Sanden, Colorado Technical
University, USA:
Design of multitask software:
The entity-life modeling
approach

Tutorial 8:
I. Broster, Rapita Systems, UK:
Testing real-time software

Tutorial 9:
R. Sward, The MITRE Corporation,
USA:
Service-oriented architecture
and enterprise service bus
tutorial

PM Continuing Tutorial 7:

B. Sanden:
Design of multitask software:
The entity-life modeling
approach

Tutorial 10:
J. de la Puente, Universidad
Politécnica de Madrid, Spain:
Developing high-integrity
systems with GNAT GPL
and the Ravenscar profile

Tutorial 11:
D. Sauvage, AdaLabs Ltd,
Republic of Mauritius:
Maximize your application
potential

Conference Registration

Conference
Early registration by

April, 30th

Late/on-site registration
after

April, 30th
Day registration

Member of Ada-Europe,
ACM SIG (Ada, BED,
PLAN), Ada Germany

Academic 580 €
730 € 365 €

Non academic 640 €

Non-member
Academic 640 €

790 € 395 €
Non academic 700 €

Tutorial Registration

Tutorial
Early registration

by April, 30th
Late/on-site registration

after April, 30th

Half day 130 € 145 €

Full day or two half days on the same day 260 € 290 €

Accommodation
Please book your accommodation at the conference hotel by using the online conference registration form only.

Hotel Seminaris Double room (single use) Double room (two persons)

Cost per night 99 € 134 €

Weekend rate (Fr-Sun) 86 € 106 €

www.ada‐europe.org/conference2013

Forthcoming Events 33

Ada User Journal Volume 34, Number 1, March 2013

ACM SIGAda Annual International Conference

High Integrity Language Technology
HILT 2013

Call for Technical Contributions

Developing and Certifying Critical Software

Pittsburgh, Pennsylvania, USA
Fall of 2013 [Mid October to Mid November]

Sponsored by ACM SIGAda

www.sigada.org/conf/hilt2013

SUMMARY
High integrity software must not only meet correctness and performance criteria but also satisfy stringent safety
and/or security demands, typically entailing certification against a relevant standard. A significant factor affecting
whether and how such requirements are met is the chosen language technology and its supporting tools: not just
the programming language(s) but also languages for expressing specifications, program properties, domain
models, and other attributes of the software or overall system.

HILT 2013 will provide a forum for experts from academia/research, industry, and government to present the
latest findings in designing, implementing, and using language technology for high integrity software. To this end
we are soliciting technical papers, experience reports (including experience in teaching), and tutorial proposals on
a broad range of relevant topics.

POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:

 New developments in formal methods
 Multicore and high integrity systems
 Object-Oriented Programming in high integrity systems
 High-integrity languages (e.g., SPARK)
 Use of high reliability profiles such as Ravenscar
 Use of language subsets (e.g., MISRA C, MISRA C++)
 Software safety standards (e.g., DO-178B and DO-178C)
 Typed/Proof-Carrying Intermediate Languages
 Contract-based programming (e.g., Ada 2012)
 Model-based development for critical systems
 Specification languages (e.g., Z)
 Annotation languages (e.g., JML)

 Teaching high integrity development
 Case studies of high integrity systems
 Real-time networking/quality of service guarantees
 Analysis, testing, and validation
 Static and dynamic analysis of code
 System Architecture and Design including

Service-Oriented Architecture and Agile Development
 Information Assurance
 Security and the Common Criteria /

Common Evaluation Methodology
 Architecture design languages (e.g., AADL)
 Fault tolerance and recovery

KINDS OF TECHNICAL CONTRIBUTIONS
TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically 10-
20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings and
in ACM Ada Letters. The Proceedings will be entered into the widely consulted ACM Digital Library accessible
online to university campuses, ACM’s 100,000 members, and the software community.

EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature. If
your abstract is accepted, a full paper is required and will appear in the proceedings. Extended abstracts will be
double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its relationship with previous work
by you and others (with bibliographic references), results to date, and future directions.

34 Forthcoming Events

Volume 34, Number 1, March 2013 Ada User Journal

EXPERIENCE REPORTS present timely results and “lessons learned”. Submit a 1-2 page description of the
project and the key points of interest. Descriptions will be published in the final program or proceedings, but a
paper will not be required.

PANEL SESSIONS gather groups of experts on particular topics. Panelists present their views and then exchange
views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic,
coordinator, and potential panelists.

INDUSTRIAL PRESENTATIONS Authors of industrial presentations are invited to submit a short overview (at
least 1 page in size) of the proposed presentation and, if selected, a subsequent abstract for a 30-minute talk. The
authors of accepted presentations will be invited to submit corresponding articles for ACM Ada Letters.

WORKSHOPS are focused sessions that allow knowledgeable professionals to explore issues, exchange views,
and perhaps produce a report on a particular subject. Workshop proposals, up to 5 pages in length, will be selected
based on their applicability to the conference and potential for attracting participants.

TUTORIALS can address a broad spectrum of topics relevant to the conference theme. Submissions will be
evaluated based on applicability, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial
proposals should include the expected level of experience of participants, an abstract or outline, the qualifications
of the instructor(s), and the length of the tutorial (half day or full day).

HOW TO SUBMIT: Send in Word, PDF, or text format:

Submission Deadline Send to
Technical articles, extended abstracts,
experience reports, panel session
proposals, or workshop proposals

June 29, 2013 Tucker Taft, Program Chair
taft@adacore.com

Industrial presentation proposals
August 1, 2013 (overview)
September 30, 2013 (abstract)

Tutorial proposals June 29, 2013 John McCormick, Tutorials Chair
mccormick@cs.uni.edu

At least one author is required to register and make a presentation at the conference.

FURTHER INFORMATION
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and
university curricula. The Conference welcomes a grant application from anyone whose goals meet this
description. The benefits include full conference registration with proceedings and registration costs for 2 days of
conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students from
GNAT Academic Program member institutions, which can be combined with conference grants. For more details
visit the conference web site or contact Prof. Michael B. Feldman (MFeldman@gwu.edu)

OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper
selected by the program committee as the outstanding student contribution to the conference.

SPONSORS AND EXHIBITORS: Please contact Greg Gicca (gicca@adacore.com) to learn the benefits of
becoming a sponsor and/or exhibitor at HILT 2013.

IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be particularly
aware and careful about visa requirements, and should plan travel well in advance. Visit the conference website
for detailed information pertaining to visas.

ANY QUESTIONS?

Please send email to SIGAda.HILT2013@acm.org, or contact the Conference Chair (Jeff Boleng,
jlboleng@SEI.CMU.EDU), Program Chair (Tucker Taft, taft@adacore.com),SIGAda’s Vice-Chair
for Meetings and Conferences (Alok Srivastava, alok.srivastava@tasc.com), or SIGAda’s Chair
(Ricky E. Sward, rsward@mitre.org).

Press Release 35

Ada User Journal Volume 34, Number 1, March 2013

FOR IMMEDIATE RELEASE

Ada 2012 Language Standard Approved by ISO
Language revision adds contract-based programming, multicore support,

and other advanced features

GENEVA, Switzerland, December 18, 2012 – The Ada Resource Association (ARA)
and Ada-Europe today announced the approval and publication of the latest version of
the Ada programming language by the Geneva-based International Organization for
Standardization (ISO). The language revision, known as Ada 2012, was under the
auspices of ISO/IEC JTC1/SC22/WG9 and was conducted by the Ada Rapporteur
Group (ARG) subunit of WG9, with sponsorship in part from the ARA and Ada-Europe.
The formal approval of the standard was issued on November 20 by ISO/IEC JTC 1,
and the standard was published on December 15.

Ada 2012 brings significant enhancements to Ada, most notably in the area of
“contract-based programming.” New features here include the ability to specify
preconditions and postconditions for subprograms, and invariants for private
(encapsulated) types. These take the form of Boolean expressions that can be
interpreted (under programmer control) as run-time conditions to be checked. The
contract-based programming features fit in smoothly with Ada’s Object-Oriented
Programming model, and support the type substitutability guidance supplied in the
Object-Oriented Technologies and Related Techniques Supplement (DO-332) to the
new avionics software safety standard DO-178C / ED-12C.

Other new features in Ada 2012 include enhancements to the containers library,
additional expressiveness through features such as conditional expressions and more
powerful iterators, and support for multicore platforms (task affinities, and the extension
of the Ravenscar profile – standardized in Ada 2005 as an efficient and predictable
tasking subset for high-integrity real-time systems – to multiprocessor and multicore
environments).

A technical summary of Ada 2012, together with an explanation of the language’s
benefits and a set of links to further information, is available at www.ada2012.org, a
website maintained by the Ada Resource Association.

“Ada 2012 is a major advance in the state of the art in programming languages,” said
Dr. Edmond Schonberg, Rapporteur of the ARG. “The new features answer real user
needs, and help cement Ada’s reputation as a language of choice for systems where
reliability, safety, and security are paramount.”

36 Press Release

Volume 34, Number 1, March 2013 Ada User Journal

“I would like to give special thanks to Randy Brukardt for his editorial work on the
Language Reference Manual, to Ed Schonberg and the Ada Rapporteur Group (ARG)
for their excellent work in developing the language revision, and to all members of WG
9 in producing a quality document that achieved unanimous approval from our parent
organization,” said Dr. Joyce Tokar, Convenor of WG9. “Ada 2012 is a significant
technical accomplishment.”

With the growing complexity of software systems in most aspects of our daily
professional and personal life, program correctness is a paramount concern. Ada 2012
provides outstanding solutions to that end, which can be applied both in industry for
production software development, and in academia for teaching and research.

About the Ada Resource Association
The Ada Resource Association (ARA) is a non-profit organization chartered to support
the continued evolution of the Ada language and its infrastructure, to serve as a source
of information about Ada and its usage, and to promote Ada as a language for effective
software engineering. To these ends the ARA maintains the Ada Information
Clearinghouse website www.adaic.org and has provided funding for the development
and maintenance of the Ada language standard and the Ada Conformance
Assessment Test Suite. For information about the ARA, including sponsorship
opportunities, please visit www.adaresource.com. The ARA is headquartered in
Oakton, VA (US).

About Ada-Europe
Ada-Europe is the international non-profit organization that promotes the knowledge
and use of the Ada programming language in academia, research and industry in
Europe. Its flagship event is the annual international conference on reliable software
technologies, a high-quality technical and scientific event that has been successfully
running in the current format for the last 17 years. Ada-Europe has member
organizations all over the continent, in Belgium, Denmark, France, Germany, Spain,
Sweden, and Switzerland, as well as individual members in many other countries. For
information about Ada-Europe, its charter, activities and sponsors, please visit:
www.ada-europe.org. Ada-Europe is headquartered in Brussels, Belgium.

Organization Contacts

Ada Resource Association
Ben Brosgol, ARA President
brosgol@adacore.com

Ada-Europe
Tullio Vardanega, Ada-Europe President
president@ada-europe.org

Press Contacts

Ada Resource Association
Jessie Glockner
Rainier Communications
Tel: +1-508-475-0025 x140
 jglockner@rainierco.com

 http://twitter.com/JessieGlockner

Ada-Europe
Dirk Craeynest, Ada-Europe Vice-president
c/o KU Leuven
Department of Computer Science

 dirk.craeynest@cs.kuleuven.be

38

Volume 34, Number 1, March 2013 Ada User Journal

Rationale for Ada 2012: 6 Predefined library
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract

This paper describes various relatively minor
improvements to the predefined library in Ada 2012.
The major changes concerning the container library
will be described in a later paper.

Keywords: rationale, Ada 2012

1 Overview of changes

The WG9 guidance document [1] does not specifically
identify problems in this area other than through a general
exhortation to remedy shortcomings.

We have already discussed the additional library packages
in the area of tasking and real-time in a previous paper.
There are also many additional library packages concerning
containers and these will be discussed in a later paper. The
following Ada issues cover the relevant changes in other
areas and are described in detail in this paper:

 1 Bounded containers and other container issues

 31 Add a From parameter to Find_Token

 49 Extend file name processing in Ada.Directories

127 Adding locale capabilities

137 String encoding package

185 Wide_Character and Wide_Wide_Character
 classification and folding

233 Questions on locales

266 Use latest version of ISO/IEC 10646

283 Stream_IO should be preelaborated

285 Defaulted environment variable queries

286 Internationalization of Ada

These changes can be grouped as follows.

A number of enhancements concern strings and characters.
These include comprehensive new packages to support
conversions between strings (and wide strings and wide-
wide strings) and the UTF-8 and UTF-16 encodings (137).
It is important to note that Ada 2012 directly supports
source code in UTF-8 (286). Additional facilities are also
provided for the classification of characters and new
packages added for similar operations on wide characters
and wide wide characters (185, 266). A minor change is the
provision of a further procedure Find_Token with an
additional parameter giving the start of the search (31).

The file name processing in Ada.Directories is enhanced to
overcome some shortcomings (49).

A new package is added to enable a program to identify the
locale in which it is being used (127, 233).

There are a number of additional facilities regarding
hashing and case insensitive comparisons. The hashing
issues really relate to containers but are briefly mentioned
here for completeness (1, 286).

Finally, other improvements are that the package
Ada.Streams.Stream_IO is now preelaborated (283) and
that an additional function Value is added to the package
Ada.Environment_Variables (285).

2 Strings and characters

Ada 95 added a number of packages for manipulating
strings and characters. Three child packages of Ada.Strings
enable the manipulation of fixed length, bounded and
unbounded strings. They are Ada.Strings.Fixed,
Ada.Strings.Bounded and Ada.Strings.Unbounded. The
packages have many subprograms with similar facilities.

In particular there are functions Index and
Index_Non_Blank which search through a string and return
the index of the first character satisfying some criteria and
procedures Find_Token which search through a string and
find the first instance of a slice satisfying some other
criteria.

As originally defined in Ada 95 these subprograms all
started the search at the beginning of the string. This
proved to be somewhat inconvenient and so in Ada 2005,
versions of the functions Index and Index_Non_Blank with
an extra parameter From were added to enable the search to
be started at any position. However, the fact that versions
of the procedures Find_Token with an extra parameter
From should also have been added was overlooked. This is
remedied in Ada 2012.

So in Ada 2012 corresponding additional subprograms
Find_Token are added to the appropriate packages. They
are

procedure Find_Token(Source: in String;

 Set: in Maps.Character_Set;

 From: in Positive;

 Test: in Membership;

 First: out Positive;

 Last: out Natural);

procedure Find_Token(Source: in Bounded_String;

 Set: in Maps.Character_Set;

J. G. P. Barnes 39

Ada User Journal Volume 34, Number 1, March 2013

 From: in Positive;

 Test: in Membership;

 First: out Positive;

 Last: out Natural);

procedure Find_Token(Source: in Unbounded_String;

 Set: in Maps.Character_Set;

 From: in Positive;

 Test: in Membership;

 First: out Positive;

 Last: out Natural);

Note also that the wording for Find_Token is modified to
make it clear that the values of First and Last identify the
longest possible slice starting at From. If no characters
satisfy the criteria then First is set to From and Last is set to
zero.

The existing procedures Find_Token are now defined as
calls of the new ones with From set to Source'First.

The encodings UTF-8 and UTF-16 are now widely used
but Ada 2005 provides no mechanisms to convert between
these encodings and the types String, Wide_String, and
Wide_Wide_String.

The encoding UTF-8 works in terms of raw bytes and is
straightforward; it is defined in Annex D of ISO/IEC
10646. However, UTF-16 comes in two forms according to
whether the arrangement of two bytes into a 16-bit word
uses big-endian or little-endian packing. So there are two
forms UTF-16BE and UTF-16LE; they are defined in
Annex C of ISO/IEC 10646.

The different encodings can be distinguished by a special
value known as a BOM (Byte Order Mark) at the start of
the string. So we have BOM_8, BOM_16BE, BOM_16LE,
and just BOM_16 (for wide strings).

To support these encodings, Ada 2012 includes the
following five new packages

Ada.Strings.UTF_Encoding

Ada.Strings.UTF_Encoding.Conversions

Ada.Strings.UTF_Encoding.Strings

Ada.Strings.UTF_Encoding.Wide_Strings

Ada.Strings.UTF_Encoding.Wide_Wide_Strings

The first package declares items that are used by the other
packages. It is

package Ada.Strings.UTF_Encoding is

 pragma Pure(UTF_Encoding);

 type Encoding_Scheme is

 (UTF_8, UTF_16BE, UTF_16LE);

 subtype UTF_String is String;

 subtype UTF_8_String is String;

 subtype UTF_16_Wide_String is Wide_String;

 Encoding_Error: exception;

 BOM_8: constant UTF_8_String :=

 Character'Val(16#EF#) &

 Character'Val(16#BB#) &

 Character'Val(16#BF#);

 BOM_16BE: constant UTF_String :=

 Character'Val(16#FE#) &

 Character'Val(16#FF#);

 BOM_16LE: constant UTF_String :=

 Character'Val(16#FF#) &

 Character'Val(16#FE#);

 BOM_16: constant UTF_16_Wide_String :=

 (1 => Wide_Character'Val(16#FEFF#);

 function Encoding(Item: UTF_String;

 Default: Encoding_Scheme := UTF_8)

 return Encoding_Scheme;

end Ada.Strings.UTF_Encoding;

Note that the encoded forms are actually still held in
objects of type String or Wide_String. However, in order to
aid understanding, the subtypes UTF_String, UTF_8_String
and UTF_16_Wide_String are introduced and these should
be used when referring to objects holding the encoded
forms.

The type Encoding_Scheme defines the various schemes.
Note that an encoded string might or might not start with
the identifying BOM; it is optional. The function Encoding
takes a UTF_String (that is a plain old string), checks the
BOM if present and returns the value of Encoding_Scheme
identifying the scheme. If there is no BOM then it returns
the value of the parameter Default which itself by default is
UTF_8.

Note carefully that the function Encoding does not do any
encoding – that is done be functions Encode in the other
packages which will be described in a moment. Note also
that there is no corresponding function Encoding for wide
strings; that is because there is only one relevant scheme
corresponding to UTF_16_Wide_String, namely that with
BOM_16.

We will now look at the other packages. The package
UTF_Encoding.Strings contains functions Encode and
Decode which convert between the raw type String and the
UTF forms. Similar packages apply to wide and wide wide
strings. The package UTF_Encoding.Conversions contains
functions Convert which convert between the various UTF
forms.

The package for the type String is

package Ada.Strings.UTF_Encoding.Strings is

 pragma Pure(Strings);

 function Encode(Item: String;

 Output_Scheme: Encoding_Scheme;

 Output_BOM: Boolean := False)

 return UTF_String;

 function Encode(Item: String;

 Output_BOM: Boolean := False)

 return UTF_8_String;

 function Encode(Item: String;

 Output_BOM: Boolean := False)

 return UTF_16_Wide_String;

40 Rat ionale for Ada 2012: 6 Predefined l ibrary

Volume 34, Number 1, March 2013 Ada User Journal

 function Decode(Item: UTF_String;

 Input_Scheme: Encoding_Scheme)

 return String;

 function Decode(Item: UTF_8_String;)

 return String;

 function Decode(Item: UTF_16_Wide_String;)

 return String;

end Ada.Strings.UTF_Encoding.Strings;

The functions Encode take a string and return it encoded.
The first function has a parameter Output_Scheme which
determines whether the encoding is to be to UTF_8,
UTF_16BE or UTF_16LE. The second function is provided
as a convenience for the common case of encoding to
UTF_8 and the third function is necessary for encoding to
UTF_16_Wide_String. In all cases there is a final optional
parameter indicating whether or not an appropriate BOM is
to be placed at the start of the encoded string.

The functions Decode do the reverse. Thus the first
function takes a value of subtype UTF_String and a
parameter Input_Scheme giving the scheme to be used and
returns the decoded string. If a BOM is present which does
not match the Input_Scheme, then the exception
Encoding_Error is raised. The second function is a
convenience for the common case of decoding from UTF_8
and the third function is necessary for decoding from
UTF_16_Wide_String; again, if a BOM is present that does
not match the expected scheme then Encoding_Error is
raised.

In all cases all the strings returned have a lower bound of 1.

The packages UTF_Encoding.Wide_Strings and
UTF_Encoding.Wide_Wide_Strings are identical except that
the type String is replaced by Wide_String or
Wide_Wide_String throughout.

Finally, the package for converting between the various
UTF forms is as follows

package Ada.Strings.UTF_Encoding.Conversions is

 pragma Pure(Conversions);

 function Convert(Item: UTF_String;

 Input_Scheme: Encoding_Scheme

 Output_Scheme: Encoding_Scheme;

 Output_BOM: Boolean := False)

 return UTF_String;

 function Convert(Item: UTF_String;

 Input_Scheme: Encoding_Scheme

 Output_BOM: Boolean := False)

 return UTF_16_Wide_String;

 function Convert(Item: UTF_8_String;

 Output_BOM: Boolean := False)

 return UTF_16_Wide_String;

 function Convert(Item: UTF_16_Wide_String;

 Output_Scheme: Encoding_Scheme;

 Output_BOM: Boolean := False)

 return UTF_String;

 function Convert(Item: UTF_16_Wide_String;

 Output_BOM: Boolean := False)

 return UTF_8_String;

end Ada.Strings.UTF_Encoding.Conversions;

The purpose of these should be obvious. The first converts
between encodings held as strings with parameters
indicating both the Input_Scheme and the Output_Scheme.
If the input string has a BOM that does not match the
Input_Scheme then the exception Encoding_Error is raised.
The final optional parameter indicates whether or not an
appropriate BOM is to be placed at the start of the
converted string.

The other functions convert between UTF encodings held
as strings and wide strings. Two give the explicit
Input_Scheme or Output_Scheme and two are provided for
convenience for the common case of UTF_8.

The final topic in this section concerns the classification
and folding of characters and strings. The package
Ada.Characters.Handling was introduced in Ada 95; this
contains various classification functions such as Is_Lower,
Is_Digit and so on. This package also contains functions
such as To_Upper and To_Lower which convert characters
to upper case or lower case; such conversions are often
referred to as case folding operations.

These facilities are extended in Ada 2012 by the addition of
a few more classification functions in the package
Ada.Characters.Handling plus two similar packages named
Ada.Wide_Characters.Handling for dealing with wide
characters and Ada.Wide_Wide_Characters.Handling for
dealing with wide wide characters.

It should be noticed that these new packages are children of
Ada.Wide_Characters and Ada.Wide_Wide_Characters
respectively. These packages were introduced in Ada 2005
but are empty other than for pragmas Pure.

The additional functions in Ada.Characters.Handling are

function Is_Line_Terminator ...

function Is_Mark(Item: Character) return Boolean;

function Is_Other ...

function Is_Punctuation_Connector ...

function Is_Space ...

In each case they have a single parameter Item of type
Character and return a result of type Boolean.

The meanings are as follows

Is_Line_Terminator – returns True if Item is one of
Line_Feed (10), Line_Tabulation (11), Form_Feed (12),
Carriage_Return (13), or Next_Line (133).

Is_Mark – always returns False.

Is_Other_Format – returns True if Item is Soft_Hyphen
(171).

Is_Punctuation_Connector – returns True if Item is
Low_Line (95); this is often known as Underscore.

J. G. P. Barnes 41

Ada User Journal Volume 34, Number 1, March 2013

Is_Space – returns True if Item is Space (32) or
No_Break_Space (160).

Readers might feel that Is_Mark is a foolish waste of time.
However, it is introduced because the corresponding
functions in the new packages for wide and wide wide
characters can return True.

An important point is that these classifications enable a
compiler to analyze Ada source code without direct
reference to the definition of ISO/IEC 10646. Note further
that case insensitive text comparison which is useful for the
analysis of identifiers is now provided by new functions
described in Section 5 below.

The new package Wide_Characters.Handling is very similar
to the package Characters.Handling (as modified by the
additional functions just described) with Character and
String everywhere replaced by Wide_Character and
Wide_String. However, there are no functions
corresponding to Is_Basic, Is_ISO_646, To_Basic and
To_ISO_646. In the case of Is_Basic this is because there is
no categorization of Basic in 10646. In the case of ISO-646
it is not really necessary because it would seem rather
unlikely that one would want to check a wide character WC
to see if it was one of the 7-bit ISO-646 set. In any event,
one could always write

WC in Wide_Characters'POS(0) .. Wide_Characters'POS(127)

The package Wide_Characters.Handling also has the new
function Character_Set_Version thus

function Character_Set_Version return String;

The string returned identifies the version of the character
set standard being used. Typically it will include either
"10646:" or "Unicode". The reason for introducing this
function is because the categorization of some wide
characters depends upon the version of 10646 or Unicode
being used. So rather than specifying that the package uses
a particular set (which might be a nuisance in the future if
the character set standard changes), it seemed more
appropriate to enable the program to find out exactly which
version is being used. For most programs, it won't matter at
all of course.

Note that there is no corresponding function in
Ada.Characters.Handling. This is because the set used for
the type Character is frozen as at 1995 and the
classification functions defined for the type Character are
frozen as well. It might be that classifications for wide and
ever wider characters might change in the future for some
obscure characters but the programmer can rest assured that
Character is forever reliable.

So Wide_Characters.Handling in essence is

package Ada.Wide_Characters.Handling is

 pragma Pure(Handling);

 function Character_Set_Version return String;

 function Is_Control(Item: Wide_Character)

 return Boolean;

 ... -- and so on

 function To_Upper(Item: Wide_String)

 return Wide_String);

end Ada.Wide_Characters.Handling.

The new package Wide_Wide_Characters.Handling is the
same as Wide_Characters.Handling with Wide_Character
and Wide_String replaced by Wide_Wide_Character and
Wide_Wide_String throughout.

3 Directories

The package Ada.Directories was introduced in Ada 2005.
However, experience with its use has revealed a number of
shortcomings which are rectified in Ada 2012.

Three specific problems are mentioned in AI-49.

First, it is not possible to concatenate a root directory such
as "/tmp" with a relative pathname such as "public/file.txt"
using the procedure Compose thus

The_Path: String := Compose("/tmp", "public/file.txt");

This is because the second parameter of Compose has to be
a simple name such as just "file" if there is no extension
parameter. If we supply the extension parameter thus

The_Path: String := Compose("/tmp", "public/file", "txt");

then the second parameter has to be just a base name such
as "public".

Another problem is that there is no sensible way to check
for a root directory. Thus suppose the string S is a directory
name and we want to see whether it is just a root such as "/"
in Unix then the only thing that we can do is write

Containing_Directory(S)

which will raise Use_Error which is somewhat ugly.

We could write if S ="/" then but this would not be portable
from Unix to other systems. Indeed, the whole purpose of
providing file name operations in Ada.Directories is so that
file names can be manipulated in an abstract manner
without fiddling with text strings.

The third problem concerns case sensitivity. At the moment
it is not possible to write portable programs because
operating systems differ in their approach to this issue.

This last problem is solved by adding an enumeration type
Name_Case_Kind and a function Name_Case_Equivalence
to the file and directory name operations of the package
Ada.Directories. So in outline we now have

with Ada.IO_Exceptions; with Ada.Calendar;

package Ada.Directories is

 ...

-- File and directory name operations:

 function Full_Name(Name: String) return String;

 function Simple_Name(Name: String) return String;

 function Containing_Directory(Name: String)

 return String;

42 Rat ionale for Ada 2012: 6 Predefined l ibrary

Volume 34, Number 1, March 2013 Ada User Journal

 function Extension(Name: String) return String;

 function Base_Name(Name: String) return String;

 function Compose(Containing_Directory: String := "";

 Name: String;

 Extension: String := "")

 return String;

 type Name_Case_Kind := (Unknown, Case_Sensitive,

 Case_Insensitive, Case_Preserving);

 function Name_Case_Equivalence(Name: String)

 return Name_Case_Kind;

 -- File and directory queries:

 -- and so on

end Ada.Directories;

The function Name_Case_Equivalence returns the file
name equivalence rule for the directory containing Name. It
raises Name_Error if Name is not a Full_Name.

It returns Case_Sensitive if file names that differ only in
the case of letters are considered to be different. If file
names that differ only in the case of letters are considered
to be the same, then it returns Case_Preserving if the name
has the case of the file name used when a file is created and
Case_Insensitive otherwise. It returns Unknown if the name
equivalence rule is not known.

We thus see that Unix and Linux are Case_Sensitive,
Windows is Case_Preserving, and historic systems such as
CP/M and early MS/DOS were Case_Insensitive.

The other problems are solved by the introduction of an
optional child package for dealing with systems with
hierarchical file names. Its specification is

package Ada.Directories.Hierarchical_File_Names is

 function Is_Simple_Name(Name: String)

 return Boolean;

 function Is_Root_Directory_Name(Name: String)

 return Boolean;

 function Is_Parent_Directory_Name(Name: String)

 return Boolean;

 function Is_Current_Directory_Name(Name: String)

 return Boolean;

 function Is_Full_Name(Name: String)

 return Boolean;

 function Is_Relative_Name(Name: String)

 return Boolean;

 function Simple_Name(Name: String)

 renames Ada.Directories.Simple_Name;

 function Containing_Directory(Name: String)

 renames Ada.Directories. Containing_Directory;

 function Initial_Directory(Name: String) return String;

 function Relative_Name(Name: String) return String;

 function Compose(Directory: String := "";

 Relative_Name: String;

 Extension: String := "") return String;

end Ada.Directories.Hierarchical_File_Names;

Note that the six functions, Full_Name, Simple_Name,
Containing_Directory, Extension, Base_Name and
Compose in the existing package Ada.Directories just
manipulate strings representing file names and do not in
any way interact with the actual external file system. The
same applies to many of the new functions such as
Is_Simple_Name.

In particular, Is_Root_Directory_Name returns true if the
string is syntactically a root and so cannot be decomposed
further. It therefore solves the second problem mentioned
earlier. Thus

Is_Root_Directory_Name("/")

returns true for Unix. In the case of Windows "C:\" and
"\\Computer\Share" are roots.

The function Is_Parent_Directory_Name returns true if and
only if the Name is ".." for both Unix and Windows.

The function Is_Current_Directory_Name returns true if and
only if Name is "." for both Unix and Windows.

The function Is_Full_Name returns true if the leftmost part
of Name is a root whereas Is_Relative_Name returns true if
Name allows identification of an external file but is not a
full name. Note that relative names include simple names
as a special case.

The functions Simple_Name and Containing_Directory are
just renamings of those in the parent package and are
provided for convenience.

Finally, the functions Initial_Directory, Relative_Name and
Compose provide the ability to manipulate relative file
names and so solve the problem with Compose mentioned
at the beginning of this section.

Thus Initial_Directory returns the leftmost directory part of
Name and Relative_Name returns the entire full name apart
from the initial directory portion.

If we apply Relative_Name to a string that is just a single
part of a name then Name_Error is raised. In particular this
happens if Relative_Name is applied to a name which is a
Simple Name, a Root Directory Name, a Parent Directory
Name or a Current Directory Name.

The function Compose is much like Compose in the parent
package except that it takes a relative name rather than a
simple name. It therefore allows us to write

The_Path: String := Compose("/tmp", "public/file.txt");

as required.

The result of calling Compose is a full name if
Is_Full_Name(Directory) is true and otherwise is a relative
name.

4 Locale

When writing portable software it is often necessary to
know the locality in which the software is to be run. Two
key items are the country and the language (human
language that is, not programming language).

J. G. P. Barnes 43

Ada User Journal Volume 34, Number 1, March 2013

To enable this to be done, Ada 2012 includes the following
package

package Ada.Locales is

 pragma Preelaborate(Locales);

 pragma Remote_Types(Locales);

 type Language_Code is array (1 .. 3) of Character

 range 'a' .. 'z';

 type Country_Code is array (1 .. 2) of Character

 range 'A' .. 'Z';

 Language_Unknown: constant Language_Code :=

 "und";

 Country_Unknown: constant Country_Code := "ZZ";

 function Language return Language_Code;

 function Country return Country-Code;

end Ada.Locales;

The various country codes and language codes are defined
in ISO/IEC 3166-1:2006 and ISO/IEC 639-3:2007
respectively.

Knowledge of the locale is important for writing programs
where the convention for certain information varies. Thus
in giving a date we might want to add the name of the day
of the week and clearly in order to do this we need to know
what language to use. An earlier (really grotesque) attempt
at providing this information introduced a host of packages
addressing many issues. However, it was decided that for
simplicity and indeed reliability all that is really needed is
to know the language to use and the country.

Canada is interesting in that it has just one country code
("CA") but two language codes ("eng" and "fra"). In Quebec,
a decimal value for a million dollars and one cent is written
as $1.000.000,01 whereas in English language parts it is
written as $1,000,000.01 with the comma and stop
interchanged.

Sometimes, several locales might be available on a target.
Some environments define a system locale and a locale for
the current user. In the case of an Ada program the active
locale is the one associated with the partition of the current
task.

5 Hashing and comparison

New library functions are added for case insensitive
comparisons and hashing. Thus we have

function Ada.Strings.Equal_Case_Insensitive

 (Left, Right: String) return Boolean;

pragma Pure(Ada.Strings.Equal_Case_Insensitive);

This simply compares the strings Left and Right for equality
but ignoring case. Thus

Equal_Case_Insensitive("Pig", "PIG")

is true.

The function Ada.Strings.Fixed.Equal_Case_Insensitive is
a renaming of the above. There are also similar functions
Ada.Strings.Bounded.Equal_Case_Insensitive for bounded

and Ada.Strings.Unbounded.Equal_Case_Insensitive for
unbounded strings. And, as expected, there are similar
functions for wide and wide wide versions.

Note that the comparison for strings can be phrased as
convert to lower case and then compare. But this does not
always work for wide and wide wide strings. The proper
terminology is "locale-independent case folding and then
compare".

Although it comes to the same thing for Latin-1 characters
there are problems with some character sets where there is
not a one-one correspondence between lower case and
upper case. This used to apply to English with the two
forms of lower case S and still applies to the corresponding
letters in Greek where the upper case character is and
there are two lower case versions namely and . So

Ada.Wide_Strings.Equal_Case_Insensitive("", "")

returns true. Note that if we convert to lower case first then
it would not be true.

Furthermore there is also

function Ada.Strings.Less_Case_Insensitive

 (Left, Right: String) return Boolean;

pragma Pure(Ada.Strings.Less_Case_Insensitive);

which does a lexicographic comparison.

As expected there are similar functions for fixed, bounded
and unbounded strings and, naturally, for wide and wide
wide versions.

Ada 2005 has functions for hashing such as

with Ada.Containers;

function Ada.Strings.Hash(Key: String)

 return Containers.Hash_Type;

Ada 2012 adds case insensitive versions as well such as

with Ada.Containers;

function Ada.Strings.Hash_Case_Insensitive

 (Key: String) return Containers.Hash_Type;

There are also fixed, bounded and unbounded versions and
the inevitable wide and wide wide ones as well.

6 Miscellanea

The first item is that the package Stream_IO should be
marked as preelaborated. So in Ada 2012 it now begins

with Ada.IO_Exceptions;

package Ada.Streams.Stream_IO is

 pragma Preelaborate(Stream_IO);

 ...

The reason for making this change concerns the use of
input–output in preelaborated packages. The normal input–
output packages such as Text_IO are not preelaborated and
so cannot be used in packages that are themselves
preelaborated. This makes preelaborated packages
awkward to debug since they cannot do straightforward
output for monitoring purposes. To make packages such as
Text_IO preelaborated is essentially impossible because

44 Rat ionale for Ada 2012: 6 Predefined l ibrary

Volume 34, Number 1, March 2013 Ada User Journal

they involve local state. However, no such problem exists
with Stream_IO, and so making it preelaborated means that
it can be used to implement simple logging facilities in
other preelaborated packages.

In principle, there is a similar problem with pure units. But
they cannot change state anyway and so cannot do output
since that changes the state of the environment. They just
have to be written correctly in the first place.

(I have been told that there are naughty ways around this
with pure packages but I will not contaminate innocent
minds with the details.)

The package Ada.Environment_Variables was introduced in
Ada 2005 as follows

package Ada.Environment_Variables is

 pragma Preelaborate(Environment_Variables);

 function Value(Name: String) return String;

 function Exists(Name: String) return Boolean;

 procedure Set(Name: in String; Value: in String);

 procedure Clear(Name: in String);

 procedure Clear;

 procedure Iterate(Process: not null access procedure

 (Name, Value: in String));

end Ada.Environment_Variables;

If we do not know whether an environment variable exists
then we can check by calling Exists prior to accessing the
current value. Thus a program might be running in an
environment where we might expect an environment
variable "Ada" whose value indicates the version of Ada
currently supported.

So as in [2] we might write

if not Exists("Ada") then

 raise Horror;

end if;

Put ("Current Ada is "); Put_Line(Value("Ada"));

But this raises a possible race condition. After determining
that Ada does exist some malevolent process (such as
another Ada task or an external human agent) might
execute Clear("Ada"); and then the call of Value("Ada") will
raise Constraint_Error.

The other race condition might arise as well. Having
decided that Ada does not exist and so taking remedial
action some kindly process might have created Ada.

These problems are overcome in Ada 2012 by the
introduction of an additional function Value with a default
parameter

 function Value(Name: String; Default: String);

Calling this version of Value returns the value of the
variable if it exists and otherwise returns the value of
Default.

References
[1] ISO/IEC JTC1/SC22/WG9 N498 (2009) Instructions

to the Ada Rapporteur Group from SC22/WG9 for
Preparation of Amendment 2 to ISO/IEC 8652.

[2] John Barnes (2006) Programming in Ada 2005,
Addison-Wesley.

© 2013 John Barnes Informatics.

 45

Ada User Journal Volume 34, Number 1, March 2013

Designing and Checking Coding Standards for Ada
Jean-Pierre Rosen
Adalog, 2 rue du Docteur Lombard,92130 Issy-Les-Moulineaux, France; Tel: +33 1 45 29 21 52;
email: rosen@adalog.fr

Abstract

This paper is an extended summary of the tutorial
given at Ada-Europe 2012. It presents the challenges
of establishing a coding standard, not just for the sake
of having one, but with the goal of actually improving
the quality of software.

Keywords: Ada, coding standard, checking tools.

Introduction

Most companies have developed coding standards, but few
have conducted an analysis of the value, consistency, and
efficiency of the standard. This means not only having
"good" rules, but also having rules that are understood,
accepted, and adhered to by the programming team. The
tutorial explored the issues involved in achieving these
goals.

1 What is a coding standard?

A coding standard is a document that defines a number of
requirements that are to be obeyed during software
development. This document often includes coding rules
and coding guidelines. Although these are often mixed
together in a single document, it is important to understand
the differences, since they serve very different purposes.

Coding rules are formally defined, and safe for special (and
justified) cases, and should always be followed by
developers. They define patterns that are either required or
forbidden. They can (and should) be checked by automated
tools.

Coding guidelines are informal recommendations,
expressing best practices, how-to's, general principles, that
are by nature hard or even impossible to enforce by
automated tools. Whether a coding guideline has been
satisfactorily followed is often a matter of judgement.

For example, "All variables shall be written in title-case" is
a programming rule. "All variables shall have readable
names that express their purpose" is a programming
guideline.

1.1 Purpose of coding standards
A coding standard may serve several different purposes:

 Uniformity: provide a common look-and-feel at project
or even company level.

 Error prevention: avoid use of error-prone or dangerous
features.

 Maintainability: ease of maintenance and evolution by
others than the initial coder.

 Safety and domain specific rules: enforce project
specific requirements: validation, efficiency,
provability, etc.

But there is another reason for having a coding standard
that is unfortunately often encountered: the coding standard
is there just because some process (DO-178B/C, EN-
50128, and the like) requires one to exist. This can lead to
having rules just for the sake of having rules, without a
clear understanding of their purpose, with the result that the
coding standard is full of unjustified rules, and may end up
being an obstacle to software development rather than a
factor of software quality.

Providing guidance for avoiding misguided rules and
fostering effective ones is the purpose of this tutorial.

1.2 Strength of coding rules
Most coding standards contain a hierarchy of rules
according to their "strengths": some rules define things that
are always required, things that are simply recommended,
things that are allowed only with proper justification, things
that are forbidden, etc.

However, it should be understood that there are always
exceptions to the rules. In some cases, strict adherence to
the rules even when they are not applicable can be
dangerous, and lead to consequences worse than what the
rule was intended to prevent (see section 4.3 "Undesirable
effects").

Therefore, rather than defining "strong" or "weak" rules, it
is better to state as a general principle that any rule can be
violated in some special cases, provided that exceptions are
properly justified, especially by showing that following the
rule would lead to consequences that would oppose the
intended purpose of the rule.

1.3 Some publicly available coding standards
When designing a new coding standard, it is advisable to
start from a recognized source. Many companies have
developed their own (and generally proprietary - if not
company-secret) standard. However, some documents are
freely available on the web, and can be used as a starting
point:

 Ada Quality and Style Guide [1]: This document,
initially designed for Ada83, then updated to Ada95, is
not a coding standard per se, but rather a template for
producing coding standards. It results from a careful
study of best practices, and most coding standards use it

46 Designing and Checking Coding Standards for Ada

Volume 34, Number 1, March 2013 Ada User Journal

as a basis. It has been turned into a wiki [2] for the
general public to help in evolving it to more recent
versions of Ada.

 ESA Coding Standard [3]: this standard is a bit old
(1998), and was mainly concerned with the transition
from Ada83 to Ada95. A number of rules are
questionable, and although it is an interesting reading, it
should be taken with care as a starting point.

 NASA Coding Standard [4]: (actually, the Goddard
Dynamic Simulator Coding Standard - not a general
NASA standard). Developed by S. Leake, this document
is permanently being updated, and addresses the latest
versions of Ada. It features a number of interesting
ideas.

2 Survey of some common coding rules

In this part, we provide some examples of commonly found
rules, with a discussion why the rule might not be as
obvious as it may seem at first sight - or even have adverse
effects. All these examples are genuinely taken from actual
coding standards - none was made up.

2.1 Examples of generally accepted rules
Every task must have an exception handler (that prints a
message to Standard_Error, NASA 12.4). Tasks that
terminate silently are the cause of very hard to find errors,
and although the rule does not fully avoid silent termination
of tasks, it forces the programmer to consider the issue -
which is a good thing.

No return in procedures, only one in functions (Variant:
only one return point). This is a common rule, since
unnoticed returns from subprograms are a common cause
of errors (especially when modifying the code). However,
the rule as stated is not sufficient: it should consider also
the case of exception handlers, which in fact create more
return points.

2.3 Examples of debatable/debated issue
Many coding standards include lengthy rules about
capitalization of identifiers or keywords, indentation,
spacing etc. Although uniformity of presentation is
important, it is questionable to enforce this in a coding
standard, because checking the rule is about the same effort
as fixing the presentation with a pretty-printer. It is actually
simpler to just define a pretty-printer program (with
appropriate parameterization) to be run on any source code.

There is no generally accepted naming convention. For
example, some standards require type names to be
terminated by "_T" or "_Type", while others forbid it.
There is no clear accepted convention on such issues,
except for one: whatever convention is required by the
standard, it should be applied uniformly and consistently.

Usage of use clauses is also a highly debated issue. Some
common rules are:

Use clauses are not allowed.

Use clauses are allowed only for predefined packages.

Use clauses shall be limited to the innermost scope where
they are useful.

Use clauses are allowed in bodies, but not in specifications
or context clauses.

This variety of rules reflect the fact that use clauses help
readability by providing names that are easier to grasp and
understand, at the cost of relying on visibility rules for
making sure that the intended element is used. In the end,
which rule to apply is a trade-off between safety,
readability, and maintainability, which depends on the
application domain.

2.4 Examples of inappropriate rules
Rules may be truly inappropriate, sometimes because they
simply do not apply to Ada, or even sometimes because
they originate from a clear misunderstanding of the
language.

The use of the goto statement shall be avoided. This rule is
found in almost every coding standard for Ada … and
practically useless. The "goto debate" died long ago, and
very few people are tempted to use a goto in Ada. This
means that, if there is a goto in a program, chances are that
it is justified. Therefore, prohibiting goto's in a coding
standard is useless (although harmless in general, safe for
the fact that it increases the number of rules).

Always use the short circuits form of boolean operators
(and then, or else). Most of the time, this rule is guided by
efficiency considerations. However, there is no evidence in
general that short-circuits evaluations are more efficient
than regular boolean operators. More generally, any rule
motivated by efficiency considerations is at best applicable
on a single version of a single compiler, and only after
careful measurements to justify it. On the other hand, there
is one good reason for this rule (but not related to
efficiency): if full conditions coverage is required, short
circuit operators reduce the testing effort, since they require
only three combinations of values, while the regular
operators require four.

Every "if" must have an "else" part. This is an example of
an inappropriately imported rule from Misra/C, where it is
expected to prevent an "else" to refer to the wrong "if".
However, since Ada has an "end if", the problem it is
expected to prevent in C simply cannot happen in Ada.

No 'Access since it causes dynamic allocation. This is a
clear misunderstanding of the role of 'Access, since it
actually prevents dynamic allocation!

Information shall be obtained from the compiler vendor as
to the adopted method to support instantiation of generic
units. Although this is good advice, it has nothing to do
with the way code is written, and should not be part of a
coding standard (but may well be in some other kind of
document).

2.5 Rules with unexpected consequences
Those who design rules know well what they want achieve;
however, the way the rules are formulated may lead to
unexpected consequences, especially when enforced by a

J. -P. Rosen 47

Ada User Journal Volume 34, Number 1, March 2013

tool that will apply the rule as stated, not necessarily as
intended!

Predefined types shall not be used. This rule is intended to
improve portability by not depending, typically, on the
range of Integer and the like. But this formulation would
forbid the types Character, String, and even Boolean!

All subprogram calls shall use named notation. This is a
typical example of a rule that seems to make sense, but
where it is quite difficult to capture the real intent. For
example, a strict application of the rule would forbid:

A*B + C*D

and require instead (since named notation is not possible
with infix notation):

"+" (Left => "*" (Left => A, Right => B), Right =>

"*" (Left => C, Right => D))

So, should operators be exempted from the rule? What
about calling subprograms with only one parameter, or
whose type are all different, thus preventing risks in case of
confusion of parameters?

No numeric literal other than 0 or 1, use named constants
instead. At the very least, this rule should have an
exception for the definition of named numbers. And the
rule is actively harmful if applied to things like bit positions
in representation clauses. And even with these exceptions, a
strict application of the rule would prevent useful uses like
writing "X**2", etc.

3 Defining a coding standard

We hope from the previous examples that the reader is
convinced that defining a good, useful, coding standard is
far from easy. Moreover, the appropriateness of rules
depends on the application domain, and is hard to estimate
beforehand. We propose therefore the following road-map
for defining a coding standard:

 Start from a well-defined basis, and especially consider
carefully the Ada Quality & Style [1] document.

 Gather prospective rules, from your own knowledge and
from informal discussions with colleagues (and
especially the ones who will be using the coding
standard).

 Conduct a round of evaluation for each rule, especially
considering the following issues:

o What is the problem that this rule will
prevent/minimize? (no rule without a well-defined
purpose).

o Is this rule really necessary? (avoid having too many
rules).

o What are the possible adverse or perverse effects of
the rule? (avoid rules with drawbacks that overcome
the benefits).

o What are the cases where the rule should not be
obeyed? (prepare derogations).

o Is this rule automatically checkable? (uncheckable
rules are just wishful thinking).

 Define the structure of the document:

o Introduction explaining the purpose of the coding
standard.

o Statements of the rules.
o Procedure to request a derogation, and to submit

improvements/suggestions to the rules .

Each rule should have a convenient reference number,
and be described with information such as:

o Statement of the rule.
o Motivation for the rule.
o Examples (do's and don't's).
o Exceptions (cases where not applicable).
o Tool used to check.

4 Using the coding standard

4.1 Checking the rules
Needless to say, a standard is of no value if it is not
applied. Proper usage of a coding standard in a company
needs addressing a number of issues:

 Make sure every person who is part of software
development knows that the standard exists.

 Make sure that every concerned person has read and
understood the standard.

 Make sure that the standard is perceived as a help rather
than as an extra burden.

 Promote use of checking tools.

Note that the term "checking tools" encompasses various
tools. The compiler itself may have options to check
various aspects of the code (in addition to legality of
course), and proper use of pragma Restriction can be handy
for enforcing certain rules. Other than the compiler, there
are various specialized tools, such as:

 Ada-Assured (Gramma Tech)

 AdaControl (Adalog)

 Adarc (RainCode)

 Gnatcheck (Adacore)

 Rule Checker (Logiscope)

 Testbed (LDRA)

Finally, peer reviews are the last "tool" for rules that cannot
be automated, but they are hard to use systematically, and
especially after each modification to the code, due to their
high cost.

Another important issue is when to check the code. The
general advice is "as early as possible". Some rules (like
casing of identifiers) can be checked during typing with a
properly parameterized syntactic editor. With a proper IDE,
the checking tool should be integrated, therefore allowing
the checking of units at the click of a button. This makes it
easy for developers to check the rules after each successful
compilation (many rules cannot be checked unless the code
is compilable).

48 Designing and Checking Coding Standards for Ada

Volume 34, Number 1, March 2013 Ada User Journal

In addition (but preferably not in place!), checking the code
should be part of the VCS process. Scripts, or hooks in the
VCS, can be used to check units before they are entered in
configuration. Refusing acceptance of units that do not
follow the standard is a strong incentive for developers to
obey by the rules.

An extra checking of the rule should be part of integration /
acceptance tests. Checks should not fail at this point, since
correcting flaws could be quite expensive. On the other
hand, it is the only place where manual reviews can be
practical.

And then… it's too late. Unfortunately, it happens
sometimes that coding standards are defined very late in the
development process, and applied to existing, sometimes
already certified, code. Since any change would require
running the certification process again, it is almost
impossible to correct deficient code. Short of fixing it, it is
then necessary to justify that every non-conformance is not
a safety hazard. Quite a boring and costly process…

4.2 Obstacles to acceptance
Having the standard accepted by the developers is not an
easy task. A number of psychological factors may come
into play.

First of all, there might be a feeling that the standard has
been designed by people "who don't know the issues". This
happens often if the standard is imposed by the QA
department, without proper interaction with the final users.
Participation of the whole development team to the design
of the coding standard is the first key to acceptance.

Another similar factor is the feeling that the rules are not
appropriate to the kind of development ("that's not the rules
we need!"), or that they are actively harmful by preventing
useful programming patterns ("those rules do not allow us
to do it the way we want"). Note that the last case may or
may not be justified; for example, a low level device driver
may seem to need extensive use of Unchecked_Conversion,
but a careful examination may reveal that, safe for a small
number of places, unchecked conversions can be replaced
by higher level constructs.

Rules that are too difficult to check (especially those that
require manual checking) may simply be too costly to
check - and therefore quickly become ignored.

Lack of proper information about the importance of early
detection of violations may lead to a situation where the
developers constantly delay the time to check ("we are
under pressure to deliver, we'll check later"), and then when
the checks are eventually performed, it is too late to fix the
violations. Ease of automatic checking, and especially a
convenient integration of the checking tool into the IDE is
necessary to avoid this effect.

4.3 Undesirable effects
It must be stressed that obeying the coding standard cannot
be an excuse for writing bad code! Typically, we

discovered in a project review a lot of places that used
variables overlays to overcome the typing system - in
contexts where an Unchecked_Conversion (which would
have been much safer) would have been perfectly justified.
When asked why these overlays were used, the developers
said "well, Unchecked_Conversion was not allowed, so we
had to find something else".

The real issue here is that the developers felt easier to
exploit an omission in the rules (overlays should have been
forbidden as well) than to ask for a derogation, which
would have been perfectly justified.

4.4 Coding standard and legacy code
It is a fact of life that coding standards are often designed at
a time where a lot of code exists, and is being reused even
in new projects. There is little chance that legacy code
meets spontaneously the standard, and fixing it would
require a lot of effort, and even induce a risk for certified
software.

In this case, the best solution is to take the opportunity of a
change for some other reason to bring the software back to
conformance, i.e. don't touch it until it has to be modified,
but when modified, take the extra move to fully fix it.

Conclusion

Introducing a coding standard can be deemed successful if
the standard is well accepted, actually applied project-wide,
and results in an improvement of the quality of the product.

These goals require a reasonably sized set of rules that can
be easily checked with automated tools. The rules must be
designed in cooperation with the future users who must be
aware that the design of appropriate rules is an iterative
process where their feed-back is welcome.

Information of users must include justifications of when the
rules are to be applied or not, and that granting derogations
when appropriate is part of the normal process.

References

[1] Software Productivity Consortium, Ada Quality and
Style Guide.
http://www.adaic.org/resources/add_content/docs/
95style/95style.pdf

[2] Software Productivity Consortium, Ada Quality and
Style Guide wiki.
http://en.wikibooks.org/wiki/Ada_Style_Guide

[3] European Space Agency, ESA Coding Standard.
ftp://ftp.estec.esa.nl/pub/wm/anonymous/wme/bssc/
bssc983.pdf

[4] S. Leake, Goddard Dynamic Simulator, Ada Coding
Standard.
http://gds.gsfc.nasa.gov/code_standards_ada.pdf

49

Advanced Ada Support for Real-Time
Programming ∗

Mario Aldea Rivas
Universidad de Cantabria, 39005 Santander, Spain; email: aldeam@unican.es

Abstract

This paper is an extended summary of the tutorial given
at Ada-Europe 2012.

In the 2005 and 2012 revisions of the Ada standard, real-
time programming has experienced a large improvement
but most of the new services introduced are unknown
or underused due to the lack of free software implemen-
tations. The tutorial presented an overview of these
new services trying to focus on their utility for real-time
systems and their typical use patterns.

Keywords: Ada 2005, Ada 2012, real-time systems, pro-
gramming languages.

1 Introduction

The support of Ada for real-time programming has experi-
enced a large improvement in the last years positioning the
language one step ahead of other real-time languages and op-
erating system interfaces. Functionalities such as hierarchical
scheduling based on priority ranges, new dispatching policies,
execution time clocks and timers, timing events, etc. are in
the standard from the 2005 revision [1] [2] but they have not
gotten the relevance that they deserve due to the lack of free
software implementations.

Most of these relatively new services are starting to be avail-
able in some platforms. In particular, in this tutorial we used
the MaRTE OS/GNAT [3] platform. This platform supports
most of these new services [4] [5]:

- Timing events.

- Execution time clocks and timers.

- Task group execution time budgets.

- Dynamic ceiling priorities for protected objects.

- Additional scheduling policies: Round robin, EDF,
Mixed (priority-specific policies).

- Immediate priority changes.

- Execution Time for Interrupt Handlers.

∗This work has been funded in part by the Spanish Government and
FEDER funds under grant number TIN2011-28567-C03-02 (HI-PARTES).

The first objective of this tutorial was to provide an overview
of the real-time “classic” model established in Ada 95, and
to show how this classic model has been reinforced with
extensions defined in Ada 2005 and Ada 2012 [6] [7].

The second objective was to perform an intensive review
of the new real-time services added in Ada 2005 and Ada
2012 trying to describe the utility of each service along with
examples and use patterns1.

1.1 Evolution of the real-time Ada

Table 1 shows the evolution of the real-time services included
in the Ada language. The core of the “classic” real-time
concurrency model based in preemptive fixed priorities was
established in Ada 95, having the tasks and the protected
objects as its most relevant elements.

A very important group of real-time facilities was added to
the standard in the revision of the year 2005. The most rel-
evant additions were related to time management (timing
events, execution time clocks and timers and group budgets),
to dispatching (new dispatching policies and priority specific
dispatching) and the Ravenscar profile.

The number and the importance of the new real-time services
added in Ada 2012 is not as impressive as in Ada 2005 but it
is also quite important. Among all the new services added in
this revision of the standard it deserves a special mention the
support for multiprocessor architectures.

2 Classic Ada real-time model
In the Ada 95 real-time model the task is the concurrency
unit and the synchronization and mutual exclusion among
tasks is accomplished by the use of protected objects or ren-
dezvous. Analysable scheduling is achieved with the use
of the FIFO_Within_Priorities dispatching policy and the
locking policy Ceiling_Locking.

Time management, and in particular the periodic activation
of tasks, is performed with the monotonic clock provided by
package Ada.Real_Time and the delay until state-
ment. Other services related to real-time in Ada 95 are the
dynamic priorities for tasks and the interrupt handling facili-
ties among others.

The classic model allowed to dynamically change the prior-
ity of the tasks, but there was not a similar functionality to

1Most of the examples used in the tutorial are not included in this sum-
mary due to the lack of space.

Ada User Jour na l Vo lume 34, Number 1, March 2013

50 Advanced Ada Suppor t for Real -T ime Programming

Ada 95 Ada 2005 additions Ada 2012 additions
Tasks Ravenscar profile Multiprocessor and Dispatching domains
FIFO_Within_Priorities Timing events Group budgets and multiprocessors
Dynamic priorities Execution time clocks and timers Barriers
Protected objects Group budgets Suspension objects
Ceiling_Locking Non-preemtive dispatching “Synchronization” aspect
Monotonic clock EDF dispatching Yield_To_Higher
delay until Round robin dispatching Execution time of interrupt handlers

Priority specific dispatching Suspend_Until_True_And_Set_Deadline
Dynamic priorities for POs
Synchronized interfaces
Task termination
Partition elaboration policy

Table 1: Evolution of the real-time Ada

Listing 1: Use of the Priority attribute

protected body PO is
procedure Change_Ceiling (Prio: in System.Priority) is
begin

... −− PO’Priority has old value here
PO’Priority := Prio;
... −− PO’Priority has new value here

end Change_Ceiling; −− ceiling is changed here
...

end PO;

change the ceiling of the protected objects. This was a serious
limitation in many applications, specially in those that require
“mode changes”. This problem was solved in Ada 2005 with
the definition of the attribute Priority for the protected
objects (see Ada 2012 Reference Manual2 D.5.2). An exam-
ple of use of this attribute is shown in Listing 1. Note the
unusual syntax: it is the only attribute in the language that is
possible to assign a value to.

Other addition to the classic model is the introduction in Ada
2005 of the Detect_Blocking pragma (RM H.5). Its use
in a partition forces to detect potentially blocking operations
within any protected action.

The introduction of the “aspects” in Ada 2012 has had an im-
portant impact everywhere in the language. In relation to the
real-time concurrency model the most important effect is the
change in the assignment of the priority to tasks and protected
objects. Now aspects should be used for this purpose instead
of the old pragmas (that are declared obsolescent):

task Controller with Priority => 12;

protected PO with Priority => 20 is
...

end PO;

Other very relevant addition in Ada 2005 was the Ravenscar
Profile (RM D.13). A profile is a collection of restrictions
and other pragmas that describes a subset of the language
intended for a particular purpose. The Ravenscar Profile is a
subset of the Ada tasking model targeted to critical real-time
applications. The main objectives of this profile are:

2From now on shortened as “RM”.

• Produce a deterministic concurrent execution model that
can be analysable.

• Allow an efficient and small implementation of the run-
time library.

Most of the restrictions of the profile have the objective of
produce static applications where all the tasks and protected
objects are defined at library level and tasks never terminate.
The profile also avoids constructs that can be very complex or
difficult to analyse like the abort, select or requeue statements.

3 Advanced time management
In Ada 95 the real-time management was based on the mono-
tonic clock defined in the Ada.Real_Time package and
on the delay and delay until statements. Nowadays
Ada provides a much larger diversity of services for time
management with the definition of new clocks and timers:

• Execution time clocks for tasks (Ada 2005).

• Execution time clocks for interrupt handlers (Ada 2012).

• Timing events (Ada 2005).

• Execution time timers for tasks (Ada 2005).

• Execution time timers for groups of tasks (Ada 2005).

3.1 Timing events
Package Ada.Real_Time.Timing_Events (RM D.15)
allows user-defined handlers to be executed at a specific time.
The handler is a protected procedure that is executed at in-
terrupt priority directly by the system timer interrupt service
routine without the need of using an auxiliary task or a delay
statement.

They are intended for applications that require to execute a
short action at a very precise time. A typical example would
be a control system where the output to the actuators must
be updated at a very precise rate. They are also useful to
implement scheduling algorithms that requires programming
scheduling actions to be done at a future point in time.

As a simple example, Listing 2 shows the body of a protected
object used to generate a periodic pulse based on the use of a
timing event.

Volume 34, Number 1, March 2013 Ada User Jour na l

M. Aldea Rivas 51

Listing 2: Periodic pulse generator based on a timing event

−− Timing event declaration
Pulse : Timing_Event;

...

protected body Pulser is
procedure Start is
begin

Output_High;
Next_Time := Clock + Pulse_Interval;

−− Program first timing event expiration
Set_Handler (Pulse, Next_Time, Handler’Access);

end Start;

procedure Stop is
Cancelled : Boolean;

begin
Cancel_Handler(Pulse, Cancelled);
if not Cancelled then

raise Handler_Not_Set;
end if ;

end Stop;

−− This is the handler of the timing event
procedure Handler (T : in out Timing_Event) is
begin

Output_Swap;
Next_Time := Next_Time + Pulse_Interval;

−− Program next timing event expiration
Set_Handler (Pulse, Next_Time, Handler’Access);

end Handler;
end Pulser;

3.2 Execution time clocks

Each task has an associated execution time clock (package
Ada.Execution_Time, RM D.14) which measures its
execution time, that is, the time spent by the system execut-
ing that task. Having such clocks eases the measurement
of the worst-case execution times (WCET) of the tasks, a
key parameter in the schedulability analysis of the real-time
applications.

Besides their usefulness for measuring the WCET, the execu-
tion time clocks are also very important in real-time systems
because they are the base clocks of the execution time timers,
as it will be described in Section 3.3.

3.3 Execution time timers

The execution time timers (package
Ada.Execution_Time.Timers, RM D.14.1) al-
low user-defined handlers to be executed when the execution
time clock of a task has reached the desired value. From the
user’s interface point of view, they look very much like the
timing events, both have an expiration time and a protected
handler procedure.

The main application of these timers is to take corrective
actions on WCET overrun situations. This situations are
relatively common in modern architectures since pipelines,
branch prediction, cache effects, and so on, makes it very
complex to measure the actual WCET of a task. Using the

execution time timers, the corrective action (lower the task
priority, enter in a safe operation mode, etc.) can be done by
the timer handler at the very moment the task overruns its
WCET.

3.4 Group execution time budgets
The package Ada.Execution_Time.Group_Budgets
(RM D.14.1) allows to assign execution time budgets to
a group of tasks (with the restriction that a task can only
belongs to one group). The execution of any task member
of the group results in the budget counting down. When
the budget becomes exhausted, the user-defined handler (a
protected procedure) is executed.

The main application of the group budgets is the implementa-
tion of “aperiodic servers” [8] to achieve temporal isolation
among different parts of a complex application where each
part, maybe an independent application, is made up of a num-
ber of tasks.

With the multiprocessor support provided in Ada 2012, the
group budget definition has been tuned and now a group
budget is attached to a particular processor. Only execution
of the tasks in this particular processor reduces the remaining
budget of the group.

3.5 Execution time of interrupt handlers
A common assumption is that the effect of the interrupt han-
dlers on the execution time clocks of the tasks is negligible
because handlers are usually very short pieces of code. Under
that assumption systems charge the time consumed by the
interrupt handlers to the task executing when the interrupt is
generated.

This assumption may not be realistic in real-time systems that
undertake an intensive use of interrupts or uses timing events
with relatively long handlers. In these systems, it would be
desirable to have a separate account of the interrupt handlers
execution time.

The Ada language, in the pack-
ages Ada.Execution_Time and
Ada.Execution_Time.Interrupts (RM D.14.3)
provides support for the separate accounting of the execution
time of interrupt handlers. This time includes the time
consumed by the timing event handlers since they are
executed directly by the system timer ISR.

The RM allows to the implementations to provide three sup-
port levels:

1. No support at all: “it is implementation defined which
task, if any, is charged the execution time that is con-
sumed by interrupt handlers” (RM D.13,11/3).

2. Execution time of interrupt handlers not charged to tasks
and accounted by one global clock.

3. Execution time of interrupt handlers not charged to tasks
and accounted by one different clock for each interrupt.

The support level is defined by the value of the
boolean constants Interrupt_Clocks_Supported
and Separate_Interrupt_Clocks_Supported de-
fined in the package Ada.Execution_Time.

Ada User Jour na l Vo lume 34, Number 1, March 2013

52 Advanced Ada Suppor t for Real -T ime Programming

4 Advanced dispatching

In Ada 95 there was only one predefined dispatching policy
called FIFO_Within_Priorities. It defines a fixed
priority scheduling with FIFO order for tasks with the same
priority.

In Ada 2005 three new dispatching policies where defined:

• Non_Preemptive_FIFO_Within_Priorities
(RM D.2.4): fixed priority without preemption when a
higher priority task is runnable.

• Round_Robin_Within_Priorities (RM
D.2.5): fixed priority with cyclic scheduling between
tasks with the same priority.

• EDF_Across_Priorities (RM D.2.6): “Earliest
Deadline First” scheduling policy.

The policies can be applied to the whole partition using the
configuration pragma:

pragma Task_Dispatching_Policy (dispatching_policy);

They can also be applied to a particular priority range us-
ing pragma Priority_Specific_Dispatching. The
priority specific dispatching will be described in Section 4.4.

4.1 Non-Preemptive dispatching

The policy identifier Non_Preemptive_
FIFO_Within_Priorities defines a policy iden-
tical to FIFO_Within_Priorities but without
preemption when a higher priority task is runnable. When
this policy is in use, a task will run until completion or until
it is blocked or executes a delay statement (More technically:
the only dispatching points are blocking or termination of a
task, a delay, or a call to a “yield” procedure).

This policy is intended to be used in high-integrity appli-
cations since it is much more deterministic than preemptive
policies and it is a intermediate step between cyclic executives
and preemptive multitasking.

Since non-preemption reduces schedulability, it is usual when
using a non-preemptive dispatching that tasks volunteer to be
preempted at some points of its execution. Traditionally Ada
tasks yields the CPU using a delay 0.0 statement.

In Ada 2012 new yield procedures has been
added to packages Ada.Dispatching and
Ada.Dispatching.Non_Preemptive (RM D.2.4).
The most interesting of this new yield procedures is
Yield_To_Higher, this procedure only yields the CPU to
tasks with higher priority than the calling task. An interesting
point about this procedure is that it can be used from inside a
protected action, since if the Ceiling_Locking policy
is in use the possible preemption cannot put in danger the
mutual exclusion achieved by the protected object.

4.2 Round Robin dispatching
The policy Round_Robin_Within_Priorities al-
lows a set of tasks with the same priority to make progress at
a similar rate:

1. Each task can execute at most during an interval of time
called “quantum”.

2. When the quantum is exhausted, and the task is not
executing a protected operation, it is moved to the tail of
its priority queue.

3. The task at the head of the priority queue gets the CPU.

This policy is usually applied to mixed dispatching applica-
tions, where the tasks with real-time constrains are dispatched
under FIFO or EDF policies at the highest priority levels, and
the non real-time tasks are executed at the lowest priority
under the Round Robin policy, in order to share the spare
time.

The package Ada.Dispatching.Round_Robin allows
to get and set the quantum assigned to each priority level
where the Round robin policy is applied. Note that the RM
allows to the implementations to restrict the available quan-
tum values and, in consequence, the quantum assigned by
the programmer (using procedure Set_Quantum) could be
different from the one that is actually been used by the imple-
mentation (returned by Actual_Quantum).

4.3 Earliest Deadline First dispatching
The EDF policy (EDF_Across_Priorities) is the most
popular dynamic priority policy. It is based on the concept
of “deadline”, that is, the time when an activation of a task
should have finished its job.

The policy requires a new scheduling attribute to be defined
for the tasks: the “relative deadline”. For each activation a
task has a different “absolute deadline” that is equal to its
activation time plus its relative deadline. Tasks at the same
priority level are ordered according to their absolute deadlines
(the task with the earliest absolute deadline is executed first).

Scheduling theory proves that dynamic priority policies al-
low a better resource usage in some cases. EDF is the most
popular dynamic priority policy for several reasons:

• Its implementation is relatively simple compared to other
dynamic priority policies.

• It is optimal in monoprocessors: if a set of tasks is
schedulable by any dispatching policy then it will also
be schedulable by EDF.

• It can guarantee all the tasks’ deadlines at higher proces-
sor load (up to 100%) than fixed priorities.

Of course, EDF has disadvantages compared to fixed priority
policies:

• It requires a more complex implementation than the
fixed priority policies what implies a higher scheduler
overhead.

• Under an overload situation the set of tasks that will miss
their deadlines is unpredictable.

Volume 34, Number 1, March 2013 Ada User Jour na l

M. Aldea Rivas 53

4.3.1 Managing EDF tasks

The initial relative deadline of a task can be spec-
ified with the Relative_Deadline aspect (pragma
Relative_Deadline is declared obsolescent):

task EDF_Task with Relative_Deadline => Time;

The Time value is an expression of type
Real_Time.Time_Span. The first absolute dead-
line of the task will be its activation time plus the relative
deadline assigned with this aspect. If the aspect is not
specified, then the initial absolute deadline of a task is
Ada.Real_Time.Time_Last.

The package Ada.Dispatching.EDF pro-
vides operations to set and get the absolute dead-
line of a task. It also provides the procedure
Delay_Until_And_Set_Deadline mainly intended
to create periodic EDF tasks:

−− Periodic EDF task with deadline equal to period
task body Periodic_Task is

Interval : Time_Span := Milliseconds (10);
Next : Time;

begin
Next := Clock; −− Start time
loop
−− task’s body
...
Next := Next + Interval ;
Delay_Until_And_Set_Deadline (Next, Interval);

end loop;
end Periodic_Task;

The call to Delay_Until_And_Set_Deadline delays
the task until the time Next and, when the task becomes
runnable again, it will have an absolute deadline equal
to Next plus Interval. The use of this procedure
avoids unnecessary context switches that can happen if the
Set_Deadline procedure and the delay until state-
ment are used instead.

4.3.2 EDF and the priority ceiling protocol

The definition of the Ceiling_Locking policy suffers
some changes when applied to EDF tasks. In such situation,
the protocol defined by the Ada RM is know in the literature as
the “Preemption Level Control Protocol” (PLCP) (also known
as “Baker’s Protocol” or “SRP Protocol”) [9]. This protocol is
a generalization of the “Immediate Ceiling Priority Protocol”
(ICPP) the Ada interpretation of the Ceiling_Locking
policy for FIFO tasks.

The PLCP has the same good properties than the ICPP on
fixed priorities:

• Minimizes the priority inversion.

• In a uniprocessor, the protocol itself ensures the mutual
exclusion (no lock is required).

• A task can only be blocked at the very beginning of its
execution.

• A task can only suffer a single block.

• The protocol ensures that deadlocks cannot occur.

The PLCP requires a new parameter for tasks and protected
objects: the “preemption level”. In the definition of the PLCP,
the preemption level is a small integer number that should be
assigned to the tasks in deadline monotonic order, the shorter
the relative deadline of a task, the higher its preemption level.
The preemption level of a protected object is the maximum
preemption level of any task that uses it.

In the Ada definition of PLCP the priority of tasks and pro-
tected objects is used in the role of the preemption level. So,
the declaration of two EDF tasks could be:

task EDF_Task_With_Short_Deadline with
Relative_Deadline => Ada.Real_Time.Milliseconds (10),
Priority => 4;

task EDF_Task_With_Long_Deadline with
Relative_Deadline => Ada.Real_Time.Milliseconds (20),
Priority => 3;

The rules to integrate the PLCP in the Ada priority based
model are quite complex (see RM D.2.6, 23/2-26/3) but they
are only relevant for implementers. The programmer only
needs to care about setting the preemption level (priority) of
tasks and protected objects as explained above.

4.4 Mixed hierarchical dispatching

Ada goes a step further in dispatching flexibility by support-
ing mixed hierarchical scheduling configurations. A two-
levels dispatching model is defined with a base fixed priority
policy and several second-level dispatching policies in non-
overlapping priority ranges.

The configuration pragma
Priority_Specific_Dispatching is used for
this purpose:

pragma Priority_Specific_Dispatching (policy_identifier ,
first_priority , last_priority);

By using this pragma, tasks with active priority in the range
[first_priority, last_priority] are scheduled
under the policy specified by policy_identifier
(where policy_identifier can be any Ada dispatch-
ing policy but the Non-Preemptive which can only be used as
the global partition dispatching policy).

When several priority ranges are defined, high priority ranges
take precedence over low priority ranges according to the key
rule of the base fixed priority policy: the processor is assigned
to the first task of the highest occupied priority queue.

A task can “jump” from one priority range to an-
other when its base priority is changed (using package
Dynamic_Priorities) or while it is inheriting a prior-
ity. Special care has to be taken when, due to a base priority
change, a task “jumps” to an EDF range. In such situation,
and in the case the Relative_Deadline aspect was not
specified for the task, it will have the longest absolute dead-
line and, consequently, it will be the less prioritary task in the
range.

Protected objects can be used to share data between tasks
in different priority ranges. As it could be expected, the

Ada User Jour na l Vo lume 34, Number 1, March 2013

54 Advanced Ada Suppor t for Real -T ime Programming

Listing 3: Priority ranges configuration

pragma Priority_Specific_Dispatching
(FIFO_Within_Priorities, 10, 16);

pragma Priority_Specific_Dispatching
(EDF_Across_Priorities, 2, 9);

pragma Priority_Specific_Dispatching
(Round_Robin_Within_Priorities, 1, 1);

Ceiling_Locking rules are obeyed and the promoted
task competes with the other tasks in the range according to
the priority it has just inherited.

Mixed scheduling allows to combine in the same application
the good properties of the different policies. For example,
with the configuration described in Listing 3 an application
could take advantage of the predictability of the FIFO schedul-
ing for the critic tasks, the better resource usage provided by
EDF for the non-critic tasks and the fair distribution of re-
sources provided by the Round robin policy for the non-RT
tasks.

5 Multiprocessor support

Multiprocessor architectures are becoming popular in many
application areas including the embedded systems. Ada is
ready to face this important architectural change thanks to the
new services defined in Ada 2012. The core of the new Ada
multiprocessor support are the “Dispatching Domains”, other
services like the “Synchronous Barriers” are also targeted to
the multiprocessor architectures.

Ada multiprocessor support is intended for “Symmetric mul-
tiprocessing” (SMP). In a SMP architecture two or more
identical processors are connected to a single shared memory.

Package System.Multiprocessors (RM D.16) defines
the integer type to identify the processors and also provides a
function to know the number of processors in the system.

5.1 Dispatching domains

The package System.Multiprocessors.
Dispatching_Domains (RM D.16.1) allows to
group processors into “Dispatching domains”. Each domain
is a contiguous range containing one or more processors.
Each processor belongs to only one dispatching domain.

At the beginning of the execution all the processors belong
to the System_Dispatching_Domain and the environ-
ment task is allocated to it.

During the elaboration of the partition the programmer can
create new domains that will remain unchanged during the rest
of the execution of the application. As processors are added
to the new dispatching domains they are removed from the
System_Dispatching_Domain. Dispatching domains
are created using the Dispatching_Domains.Create
function:

Domain_1 : Dispatching_Domain := Create (15, 17);

Every task is allocated to a dispatching domain. Inside its do-
main, a task can execute in any processor unless it is explicitly
assigned to a particular processor. The processor affinity of
a task inside its domain can be changed at run-time as many
times as desired.

This flexibility allows Ada to support the most popular allo-
cation approaches:

1. Fully Partitioned: each task is allocated to a single pro-
cessor on which all its jobs must run.

2. Dynamically Partitioned: at run-time the application can
change the assignment of a task from one processor to
another.

3. Partially Partitioned: tasks are restricted to a subset of
the available CPUs, jobs may migrate during execution.

4. Global: all tasks/jobs can run on all processors, jobs may
migrate during execution.

By default all the tasks are allocated to the
System_Dispatching_Domain. A task can be
allocated to a user defined dispatching domain using the
Dispatching_Domain and CPU aspects:

−− Allocate task to Domain_1 (the task can execute in any
−− processor in the domain)
task T with Dispatching_Domain => Domain_1;

−− Allocate task to Domain_1 and assign it to the processor 16
task T with CPU => 16, Dispatching_Domain => Domain_1;

Alternatively, a task allocated to the
System_Dispatching_Domain can be al-
located to a user defined domain with the
Dispatching_Domains.Assign_Task procedure:

−− Allocate task to Domain_1 (the task can execute in any
−− processor in the domain)
Assign_Task (Domain_1, T’Identity);

−− Allocate task to Domain_1 and assign it to the processor 16
Assign_Task (Domain_1, 16, T’Identity);

Note that Assign_Task can only be used to move tasks
from the System_Dispatching_Domain. Once a task
has been allocated to a user defined domain it will remain in
that domain forever.

At any time we can use the the Set_CPU procedure to change
the affinity of a task inside its domain:

−− Assign task to the processor 17
Set_CPU (17, T’Identity);

−− Allow task to execute in any processor in its domain
Set_CPU (Not_A_Specific_CPU, T’Identity);

During the revision process it was considered to include in
the Ada standard the possibility of specifying dispatching
policies on a per-dispatching domain basis.

Although this functionality was finally rejected for been con-
sidered too complex, there is a less elegant but efficient ap-
proach that can be used. This approach consist on including
in a dispatching domain tasks in a specific priority range and
use the Priority_Specific_Dispatching pragma
to apply the desired dispatching policy to that range and con-
sequently to the tasks in the dispatching domain.

Volume 34, Number 1, March 2013 Ada User Jour na l

M. Aldea Rivas 55

5.2 Synchronous Barriers

The synchronous barriers (package
Ada.Synchronous_Barriers, RM D.10.1) are a
synchronization primitive intended for massively parallel
machines. To take advantage of the parallelism provided for
such architectures, it is usual to use algorithms that can be
performed in parallel for a large number of tasks. After this
parallel part, it is very common that the algorithm has a final
sequential part to recombine the results.

Usually the parallel computations are very short. In that case
the use of a complex synchronization primitive would remove
any gains obtained from the use of the parallel algorithm. Syn-
chronous barriers have been designed to solve this problem
since they can be implemented very efficiently.

Synchronous barriers are used to synchronously release a
group of tasks after the number of blocked tasks reaches a
specified count value.

A barrier is created specifying is “release threshold” (the num-
ber of blocked tasks required for the barrier to be open). When
a task reaches the barrier (calls the Wait_For_Release
procedure) it is blocked in the barrier.

procedure Wait_For_Release (
The_Barrier : in out Synchronous_Barrier;
Notified : out Boolean);

If the number of blocked tasks reaches the release threshold
the barrier is open an all the tasks are released. Only one
of the released tasks will be notified with the Notified
parameter set to True. In the case that a final sequential
part of the algorithm is required, the programmer can use this
notifications to be sure that one, and only one, task will do
this final part of the computation.

References
[1] S. T. Taft, R. A. Duff, R. Brukardt, E. Plödereder, and

P. Leroy (2006), Ada 2005 Reference Manual. Language
and Standard Libraries - International Standard ISO/IEC
8652/1995 (E) with Technical Corrigendum 1 and Amend-
ment 1, ser. Lecture Notes in Computer Science, Springer,
vol. 4348.

[2] J. Barnes (2008), Ada 2005 Rationale: The Language,
The Standard Libraries, ser. Lecture Notes in Computer
Science, Springer, vol. 5020.

[3] MaRTE OS website. http://marte.unican.es/ Mar. 2013.

[4] M. Aldea Rivas and J. F. Ruiz (2007), Implementation
of New Ada 2005 Real-Time Services in MaRTE OS and
GNAT, Proceedings of the 12th International Conference
on Reliable Software Technologies, Springer-Verlag, pp.
29–40.

[5] M. Aldea Rivas, M. González Harbour, and J. F. Ruiz
(2009), Implementation of the Ada 2005 Task Dispatching
Model in MaRTE OS and GNAT, ser. Lecture Notes in
Computer Science, F. Kordon and Y. Kermarrec (Eds.),
vol. 5570, Springer, pp. 105–118.

[6] Ada Reference Manual (2013). Language and Standard
Libraries - International Standard ISO/IEC 8652/2012
(E) with Technical Corrigendum 1 and Amendment 1.

[7] Ada 2012 rationale. http://www.adacore.com/knowledge/
technical-papers/ada-2012-rationale/,” Feb. 2013. [On-
line].

[8] A. Burns and A. Wellings (2005), Programming
Execution-Time Servers in Ada 2005, Real-Time Systems
Symposium, 27th IEEE International, pp. 47 –56.

[9] T. P. Baker (1991), Stack-based Scheduling of Real-Time
Processes, Real-Time Systems, vol. 3, no. 1, pp. 67–99.

Ada User Jour na l Vo lume 34, Number 1, March 2013

 57

Ada User Journal Volume 34, Number 1, September 2012

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/adaanswers/gems.

Gem #132: Erroneous execution -
Part 1
Bob Duff, AdaCore

Abstract. Many Ada programmers are confused by the term
"erroneous", in part because Ada uses the term to mean
something other than what it means in plain English. In
English, "erroneous" just means "wrong". But in Ada it refers
to a particular kind of wrongness. This gem is intended to
clarify the Ada meaning.

Let’s get started…

Ada is pretty good about requiring compilers to detect errors at
compile time, or failing that, at run time. However, there are
some kinds of errors that are infeasible to detect. The
Reference Manual calls such errors "erroneous execution".

RM-1.1.5(10) defines the term:

...[T]he implementation need not detect such errors either prior
to or during run time. ...[T]here is no language-specified
bound on the possible effect of erroneous execution; the effect
is in general not predictable.

An example of erroneous execution is suppressing a check that
fails. For example:

pragma Suppress (All_Checks); -- Or use the -gnatp switch

...

A (X) := A (X) + 1;

If X is out of bounds, then the above results in erroneous
execution. That means that the program can do anything at all.
In explaining the meaning of erroneousness, people often like
to talk of spectacular disasters: "It might erase your system
disk!" "Your keyboard might catch on fire!" "Nasal demons!"

I think that's somewhat misleading. For one thing, if you're
running under an operating system, with proper protections set
up, erroneous execution will not erase your system disk. The
point is that Ada doesn't ensure that, but the operating system
does. Likewise, Ada doesn't prevent your keyboard from
catching on fire, but we hope the computer manufacturer will.

One disaster that actually might happen is that the above code
will overwrite some arbitrary memory location. Whatever
variable was stored there might be destroyed. That's a disaster
because it can take hours or even days to track down such
bugs. If you're lucky, you'll get a segmentation fault right
away, making the bug much easier to figure out.

But the worst thing of all is not keyboard fires, nor destroyed
variables, nor anything else spectacular. The worst thing an
erroneous execution can cause is for the program to behave
exactly the way you wanted it to, perhaps because the
destroyed memory location wasn't being used for anything
important. So what's the problem? If the program works, why
should we care if some pedantic language lawyer says it's
being erroneous?

To answer that question, note this common debugging
technique: You have a large program. You make a small
change (to fix a bug, to add a new feature, or just to make the
code cleaner). You run your regression tests, and something
fails. You deduce that the cause of the new bug is the small
change you made. Because the change is small relative to the
size of the whole program, it's easy to figure out what the
problem is.

With erroneousness, that debugging technique doesn't work.
Somebody wrote the above erroneous program (erroneous if X
is out of bounds, that is). It worked just fine. Then a year later,
you make some change totally unrelated to the "A (X) := A
(X) + 1;" statement. This causes things to move around in
memory, such that now important data is destroyed. You can
no longer assume that your change caused the bug; you have
to consider the entire program text.

The moral of the story is: Do not write erroneous programs.

Gem #133: Erroneous execution -
Part 2
Bob Duff, AdaCore

Abstract. The previous Gem said that "erroneous execution"
means that anything can happen as far as the Ada RM is
concerned, and in particular, the program might work
properly. This Gem continues the discussion.

Let’s get started…

The moral of the story was: Do not write erroneous programs.

Strictly speaking, that's wrong usage. "Erroneous" refers to a
particular execution of a program, not to the program itself. It's
possible to write a program that has erroneous behavior for
some input data, but not for some other input data.
Nonetheless, it's reasonable to use "erroneous program" to
refer to a program that might have erroneous behavior. Just
remember that "erroneous" is not a property of the program
text, but a property of the program text plus its input, and even
its timing.

Never deliberately write code that can cause erroneous
execution. For example, I've seen people suppress
Overflow_Checks, because they "know" the hardware does
wrap-around (modular) arithmetic, and that's what they want.
That's wrong reasoning. The RM doesn't say that overflow,
when suppressed, will do what the hardware does. The RM
says anything at all can happen.

If you suppress Overflow_Checks, you are telling the compiler
to assume to assume that overflow will not happen. If
overflow can happen, you are telling the compiler to assume a
falsehood. In any mathematical system, if you assume "false",
anything at all can be proven true, causing the whole house of
cards to tumble. Optimizers can and do prove all sorts of
amazing things when told to assume "false".

58 Ada Gems

Volume 34, Number 1, March 2013 Ada User Journal

Never try to guess that the optimizer isn't smart enough to
cause trouble. Optimizers are so complicated that even their
authors can't accurately predict what they will do. For
example:

X : Natural := ...;

Y : Integer := X + 1;

if Y > 0 then

 Put_Line (Y'Img);

end if;

The above will print some positive number, unless X is
Integer'Last, in which case Constraint_Error will be raised.
The optimizer is therefore allowed to deduce that when we get
to the 'if', Y must be positive, so it can remove the 'if',
transforming it to:

X : Natural := ...;

Y : Integer := X + 1;

Put_Line (Y'Img);

That's good: removing the 'if' probably makes it run faster,
which is the optimizer's goal. But if checks are suppressed, the
optimizer can still do the above transformation. The reasoning
is now: "when we get to the 'if', either Y must be positive, or
we must be erroneous". If the former, the 'if' can be removed
because it's True. If the latter, anything can happen (it's
erroneous!), so the 'if' can be removed in that case, too. "X +
1" might produce -2**31 (or it might not).

We end up with a program that says:

if Y > 0 then

 Put_Line (Y'Img);

end if;

and prints a negative number, which is a surprise.

Another possible behavior of the above code (with checks
suppressed) is to raise Constraint_Error. "Hey, I asked for the
checks to be suppressed. Why didn't the compiler suppress
them?" Well, if the execution is erroneous, anything can
happen, and raising an exception is one possible "anything".
The purpose of suppressing checks is to make the program
faster. Do not use pragma Suppress to suppress checks (in the
sense of relying on not getting the exception). Compilers do
not remove suppressed checks if they are free -- for example,
imagine a machine that automatically traps on overflow.

Perhaps pragma Suppress should have been called something
like Assume_Checks_Will_Not_Fail, since it doesn't
(necessarily) suppress the checks.

Gem #134: Erroneous execution -
Part 3
Bob Duff, AdaCore

Abstract: This Gem expands on the example of erroneous
execution discussed in Part 2.

Let’s get started…

We showed how this:

X : Natural := ...;

Y : Integer := X + 1;

if Y > 0 then

 Put_Line (Y'Img);

end if;

can end up printing a negative number if checks are
suppressed.

In fact, a good compiler will warn that "Y > 0" is necessarily
True, so the code is silly, and you can fix it. But you can't
count on that. Optimizers are capable of much more subtle
reasoning, which might not produce a warning. For example,
suppose we have a procedure:

procedure Print_If_Positive (Y : Integer) is

begin

 if Y > 0 then

 Put_Line (Y'Img);

 end if;

end Print_If_Positive;

It seems "obvious" that Print_If_Positive will never print a
negative number. But in the presence of erroneousness, that
reasoning doesn't work:

X : Natural := ...;

Y : Integer := X + 1;

Print_If_Positive (Y);

The optimizer might decide to inline the call, and then
optimize as in the previous example.

Other language features that can cause erroneous execution
include:

- Shared variables (erroneous if multiple tasks fail to
synchronize)

- Address clauses

- Unchecked_Conversion

- Interface to other languages

- Machine-code insertions

- User-defined storage pools

- Unchecked_Deallocation

A complete list can be found by looking up "erroneous" in the
RM index, or by searching the RM. Every case of erroneous
execution is documented under the heading "Erroneous
Execution".

You should try to minimize the use of such features. When
you need to use them, try to encapsulate them so you can
reason about them locally. And be careful.

As for suppressing checks: Don't suppress unless you need the
added efficiency and you have confidence that the checks
won't fail. If you do suppress checks, run regression tests on a
regular basis in both modes (suppressed and not suppressed).

The final part of this Gem series will explain the rationale
behind the concept of erroneous execution in Ada.

Gem #135: Erroneous execution -
Part 4
Bob Duff, AdaCore

Abstract: This Gem completes the series on erroneous
execution by discussing the language design. Why does Ada
have erroneous execution in the first place?

Ada Gems 59

Ada User Journal Volume 34, Number 1, March 2013

Let's get started...

Many programmers believe that "optimizers should not change
the behavior of the program". Many also believe that
"optimizers do not change the behavior of the program". Both
beliefs are false in the presence of erroneousness.

So if erroneousness is so bad, why does the Ada language
design have it? Certainly, a language designer should try to
minimize the amount of erroneousness. Java is an example of
a language that eschews erroneousness, but that comes at a
cost. It means that lots of useful things are impossible or
infeasible in Java: device drivers, for example. There is also an
efficiency cost. C is an example of a language that has way too
much erroneousness. Every single array-indexing operation is
potentially erroneous in C. (C calls it "undefined behavior".)

Ada is somewhere in between Java and C in this regard. You
can write device drivers in Ada, and user-defined storage
pools, and other things that require low-level access to the
machine.

But for the most part, things that can cause erroneousness can
be isolated in packages -- you don't have to scatter them all
over the program as in C.

For example, to prevent dangling pointers, try to keep the
"new" and Unchecked_Deallocations together, so they can be
reasoned about locally. A generic Doubly_Linked_List
package might have dangling pointer bugs within itself, but it
can be designed so that clients cannot cause dangling pointers.

Another way to prevent dangling pointers is to use user-
defined storage pools that allow deallocation of the entire pool
at once. Store heap objects with similar lifetimes in the same
pool. It might seem that deallocating a whole bunch of objects
is more likely to cause dangling pointers, but in fact just the
opposite is true. For one thing, deallocating the whole pool is

much simpler than walking complicated data structures
deallocating individual records one by one. For another thing,
deallocating en masse is likely to cause catastrophic failures
that can be fixed sooner rather than later. Finally, a user-
defined storage pool can be written to detect dangling pointers,
for example by using operating system services to mark
deallocated regions as inaccessible.

Note that Ada 2012 has "Subpools", which make user-defined
storage pools more flexible.

A final point about erroneousness that might be surprising is
that it can go backwards in time. For example:

if Count = 0 then

 Put_Line ("Zero");

end if;

Something := 1 / Count; -- could divide by zero

If checks are suppressed, the entire 'if' statement, including the
Put_Line, can be removed by the optimizer. The reasoning is:
If Count is nonzero, we don't want to print "Zero". If Count is
zero, then it's erroneous, so anything can happen, including not
printing "Zero".

Even if the Put_Line is not removed by the compiler, it can
appear to be, because the "Zero" might be stored in a buffer
that never gets flushed because some later erroneousness
caused the program to crash.

Every statement about Ada must be understood to have ",
unless execution is erroneous" after it. In this case, "Count = 0
returns True if Count is zero" is obviously true, but it really
means "Count = 0 returns True if Count is zero, unless
execution is erroneous, in which case anything can happen".

Moral: Take care to avoid writing erroneous programs.

60

Volume 34, Number 1, March 2013 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Ada 2012 Language Standard Approved by ISO
	Rationale for Ada 2012: 6 Predefined library
	Designing and Checking Coding Standards for Ada
	Advanced Ada Support for Real-Time Programming
	Ada Gems
	National Ada Organizations

